xref: /linux/fs/netfs/write_issue.c (revision 332d2c1d713e232e163386c35a3ba0c1b90df83f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level (buffered) writeback.
3  *
4  * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  *
7  *
8  * To support network filesystems with local caching, we manage a situation
9  * that can be envisioned like the following:
10  *
11  *               +---+---+-----+-----+---+----------+
12  *    Folios:    |   |   |     |     |   |          |
13  *               +---+---+-----+-----+---+----------+
14  *
15  *                 +------+------+     +----+----+
16  *    Upload:      |      |      |.....|    |    |
17  *  (Stream 0)     +------+------+     +----+----+
18  *
19  *               +------+------+------+------+------+
20  *    Cache:     |      |      |      |      |      |
21  *  (Stream 1)   +------+------+------+------+------+
22  *
23  * Where we have a sequence of folios of varying sizes that we need to overlay
24  * with multiple parallel streams of I/O requests, where the I/O requests in a
25  * stream may also be of various sizes (in cifs, for example, the sizes are
26  * negotiated with the server; in something like ceph, they may represent the
27  * sizes of storage objects).
28  *
29  * The sequence in each stream may contain gaps and noncontiguous subrequests
30  * may be glued together into single vectored write RPCs.
31  */
32 
33 #include <linux/export.h>
34 #include <linux/fs.h>
35 #include <linux/mm.h>
36 #include <linux/pagemap.h>
37 #include "internal.h"
38 
39 /*
40  * Kill all dirty folios in the event of an unrecoverable error, starting with
41  * a locked folio we've already obtained from writeback_iter().
42  */
43 static void netfs_kill_dirty_pages(struct address_space *mapping,
44 				   struct writeback_control *wbc,
45 				   struct folio *folio)
46 {
47 	int error = 0;
48 
49 	do {
50 		enum netfs_folio_trace why = netfs_folio_trace_kill;
51 		struct netfs_group *group = NULL;
52 		struct netfs_folio *finfo = NULL;
53 		void *priv;
54 
55 		priv = folio_detach_private(folio);
56 		if (priv) {
57 			finfo = __netfs_folio_info(priv);
58 			if (finfo) {
59 				/* Kill folio from streaming write. */
60 				group = finfo->netfs_group;
61 				why = netfs_folio_trace_kill_s;
62 			} else {
63 				group = priv;
64 				if (group == NETFS_FOLIO_COPY_TO_CACHE) {
65 					/* Kill copy-to-cache folio */
66 					why = netfs_folio_trace_kill_cc;
67 					group = NULL;
68 				} else {
69 					/* Kill folio with group */
70 					why = netfs_folio_trace_kill_g;
71 				}
72 			}
73 		}
74 
75 		trace_netfs_folio(folio, why);
76 
77 		folio_start_writeback(folio);
78 		folio_unlock(folio);
79 		folio_end_writeback(folio);
80 
81 		netfs_put_group(group);
82 		kfree(finfo);
83 
84 	} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
85 }
86 
87 /*
88  * Create a write request and set it up appropriately for the origin type.
89  */
90 struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
91 						struct file *file,
92 						loff_t start,
93 						enum netfs_io_origin origin)
94 {
95 	struct netfs_io_request *wreq;
96 	struct netfs_inode *ictx;
97 
98 	wreq = netfs_alloc_request(mapping, file, start, 0, origin);
99 	if (IS_ERR(wreq))
100 		return wreq;
101 
102 	_enter("R=%x", wreq->debug_id);
103 
104 	ictx = netfs_inode(wreq->inode);
105 	if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &wreq->flags))
106 		fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
107 
108 	wreq->contiguity = wreq->start;
109 	wreq->cleaned_to = wreq->start;
110 	INIT_WORK(&wreq->work, netfs_write_collection_worker);
111 
112 	wreq->io_streams[0].stream_nr		= 0;
113 	wreq->io_streams[0].source		= NETFS_UPLOAD_TO_SERVER;
114 	wreq->io_streams[0].prepare_write	= ictx->ops->prepare_write;
115 	wreq->io_streams[0].issue_write		= ictx->ops->issue_write;
116 	wreq->io_streams[0].collected_to	= start;
117 	wreq->io_streams[0].transferred		= LONG_MAX;
118 
119 	wreq->io_streams[1].stream_nr		= 1;
120 	wreq->io_streams[1].source		= NETFS_WRITE_TO_CACHE;
121 	wreq->io_streams[1].collected_to	= start;
122 	wreq->io_streams[1].transferred		= LONG_MAX;
123 	if (fscache_resources_valid(&wreq->cache_resources)) {
124 		wreq->io_streams[1].avail	= true;
125 		wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
126 		wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
127 	}
128 
129 	return wreq;
130 }
131 
132 /**
133  * netfs_prepare_write_failed - Note write preparation failed
134  * @subreq: The subrequest to mark
135  *
136  * Mark a subrequest to note that preparation for write failed.
137  */
138 void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
139 {
140 	__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
141 	trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
142 }
143 EXPORT_SYMBOL(netfs_prepare_write_failed);
144 
145 /*
146  * Prepare a write subrequest.  We need to allocate a new subrequest
147  * if we don't have one.
148  */
149 static void netfs_prepare_write(struct netfs_io_request *wreq,
150 				struct netfs_io_stream *stream,
151 				loff_t start)
152 {
153 	struct netfs_io_subrequest *subreq;
154 
155 	subreq = netfs_alloc_subrequest(wreq);
156 	subreq->source		= stream->source;
157 	subreq->start		= start;
158 	subreq->max_len		= ULONG_MAX;
159 	subreq->max_nr_segs	= INT_MAX;
160 	subreq->stream_nr	= stream->stream_nr;
161 
162 	_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
163 
164 	trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
165 			     refcount_read(&subreq->ref),
166 			     netfs_sreq_trace_new);
167 
168 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
169 
170 	switch (stream->source) {
171 	case NETFS_UPLOAD_TO_SERVER:
172 		netfs_stat(&netfs_n_wh_upload);
173 		subreq->max_len = wreq->wsize;
174 		break;
175 	case NETFS_WRITE_TO_CACHE:
176 		netfs_stat(&netfs_n_wh_write);
177 		break;
178 	default:
179 		WARN_ON_ONCE(1);
180 		break;
181 	}
182 
183 	if (stream->prepare_write)
184 		stream->prepare_write(subreq);
185 
186 	__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
187 
188 	/* We add to the end of the list whilst the collector may be walking
189 	 * the list.  The collector only goes nextwards and uses the lock to
190 	 * remove entries off of the front.
191 	 */
192 	spin_lock(&wreq->lock);
193 	list_add_tail(&subreq->rreq_link, &stream->subrequests);
194 	if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
195 		stream->front = subreq;
196 		if (!stream->active) {
197 			stream->collected_to = stream->front->start;
198 			/* Write list pointers before active flag */
199 			smp_store_release(&stream->active, true);
200 		}
201 	}
202 
203 	spin_unlock(&wreq->lock);
204 
205 	stream->construct = subreq;
206 }
207 
208 /*
209  * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
210  * operation.  The operation may be asynchronous and should call
211  * netfs_write_subrequest_terminated() when complete.
212  */
213 static void netfs_do_issue_write(struct netfs_io_stream *stream,
214 				 struct netfs_io_subrequest *subreq)
215 {
216 	struct netfs_io_request *wreq = subreq->rreq;
217 
218 	_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
219 
220 	if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
221 		return netfs_write_subrequest_terminated(subreq, subreq->error, false);
222 
223 	// TODO: Use encrypted buffer
224 	if (test_bit(NETFS_RREQ_USE_IO_ITER, &wreq->flags)) {
225 		subreq->io_iter = wreq->io_iter;
226 		iov_iter_advance(&subreq->io_iter,
227 				 subreq->start + subreq->transferred - wreq->start);
228 		iov_iter_truncate(&subreq->io_iter,
229 				 subreq->len - subreq->transferred);
230 	} else {
231 		iov_iter_xarray(&subreq->io_iter, ITER_SOURCE, &wreq->mapping->i_pages,
232 				subreq->start + subreq->transferred,
233 				subreq->len   - subreq->transferred);
234 	}
235 
236 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
237 	stream->issue_write(subreq);
238 }
239 
240 void netfs_reissue_write(struct netfs_io_stream *stream,
241 			 struct netfs_io_subrequest *subreq)
242 {
243 	__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
244 	netfs_do_issue_write(stream, subreq);
245 }
246 
247 static void netfs_issue_write(struct netfs_io_request *wreq,
248 			      struct netfs_io_stream *stream)
249 {
250 	struct netfs_io_subrequest *subreq = stream->construct;
251 
252 	if (!subreq)
253 		return;
254 	stream->construct = NULL;
255 
256 	if (subreq->start + subreq->len > wreq->start + wreq->submitted)
257 		WRITE_ONCE(wreq->submitted, subreq->start + subreq->len - wreq->start);
258 	netfs_do_issue_write(stream, subreq);
259 }
260 
261 /*
262  * Add data to the write subrequest, dispatching each as we fill it up or if it
263  * is discontiguous with the previous.  We only fill one part at a time so that
264  * we can avoid overrunning the credits obtained (cifs) and try to parallelise
265  * content-crypto preparation with network writes.
266  */
267 int netfs_advance_write(struct netfs_io_request *wreq,
268 			struct netfs_io_stream *stream,
269 			loff_t start, size_t len, bool to_eof)
270 {
271 	struct netfs_io_subrequest *subreq = stream->construct;
272 	size_t part;
273 
274 	if (!stream->avail) {
275 		_leave("no write");
276 		return len;
277 	}
278 
279 	_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
280 
281 	if (subreq && start != subreq->start + subreq->len) {
282 		netfs_issue_write(wreq, stream);
283 		subreq = NULL;
284 	}
285 
286 	if (!stream->construct)
287 		netfs_prepare_write(wreq, stream, start);
288 	subreq = stream->construct;
289 
290 	part = min(subreq->max_len - subreq->len, len);
291 	_debug("part %zx/%zx %zx/%zx", subreq->len, subreq->max_len, part, len);
292 	subreq->len += part;
293 	subreq->nr_segs++;
294 
295 	if (subreq->len >= subreq->max_len ||
296 	    subreq->nr_segs >= subreq->max_nr_segs ||
297 	    to_eof) {
298 		netfs_issue_write(wreq, stream);
299 		subreq = NULL;
300 	}
301 
302 	return part;
303 }
304 
305 /*
306  * Write some of a pending folio data back to the server.
307  */
308 static int netfs_write_folio(struct netfs_io_request *wreq,
309 			     struct writeback_control *wbc,
310 			     struct folio *folio)
311 {
312 	struct netfs_io_stream *upload = &wreq->io_streams[0];
313 	struct netfs_io_stream *cache  = &wreq->io_streams[1];
314 	struct netfs_io_stream *stream;
315 	struct netfs_group *fgroup; /* TODO: Use this with ceph */
316 	struct netfs_folio *finfo;
317 	size_t fsize = folio_size(folio), flen = fsize, foff = 0;
318 	loff_t fpos = folio_pos(folio), i_size;
319 	bool to_eof = false, streamw = false;
320 	bool debug = false;
321 
322 	_enter("");
323 
324 	/* netfs_perform_write() may shift i_size around the page or from out
325 	 * of the page to beyond it, but cannot move i_size into or through the
326 	 * page since we have it locked.
327 	 */
328 	i_size = i_size_read(wreq->inode);
329 
330 	if (fpos >= i_size) {
331 		/* mmap beyond eof. */
332 		_debug("beyond eof");
333 		folio_start_writeback(folio);
334 		folio_unlock(folio);
335 		wreq->nr_group_rel += netfs_folio_written_back(folio);
336 		netfs_put_group_many(wreq->group, wreq->nr_group_rel);
337 		wreq->nr_group_rel = 0;
338 		return 0;
339 	}
340 
341 	if (fpos + fsize > wreq->i_size)
342 		wreq->i_size = i_size;
343 
344 	fgroup = netfs_folio_group(folio);
345 	finfo = netfs_folio_info(folio);
346 	if (finfo) {
347 		foff = finfo->dirty_offset;
348 		flen = foff + finfo->dirty_len;
349 		streamw = true;
350 	}
351 
352 	if (wreq->origin == NETFS_WRITETHROUGH) {
353 		to_eof = false;
354 		if (flen > i_size - fpos)
355 			flen = i_size - fpos;
356 	} else if (flen > i_size - fpos) {
357 		flen = i_size - fpos;
358 		if (!streamw)
359 			folio_zero_segment(folio, flen, fsize);
360 		to_eof = true;
361 	} else if (flen == i_size - fpos) {
362 		to_eof = true;
363 	}
364 	flen -= foff;
365 
366 	_debug("folio %zx %zx %zx", foff, flen, fsize);
367 
368 	/* Deal with discontinuities in the stream of dirty pages.  These can
369 	 * arise from a number of sources:
370 	 *
371 	 * (1) Intervening non-dirty pages from random-access writes, multiple
372 	 *     flushers writing back different parts simultaneously and manual
373 	 *     syncing.
374 	 *
375 	 * (2) Partially-written pages from write-streaming.
376 	 *
377 	 * (3) Pages that belong to a different write-back group (eg.  Ceph
378 	 *     snapshots).
379 	 *
380 	 * (4) Actually-clean pages that were marked for write to the cache
381 	 *     when they were read.  Note that these appear as a special
382 	 *     write-back group.
383 	 */
384 	if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
385 		netfs_issue_write(wreq, upload);
386 	} else if (fgroup != wreq->group) {
387 		/* We can't write this page to the server yet. */
388 		kdebug("wrong group");
389 		folio_redirty_for_writepage(wbc, folio);
390 		folio_unlock(folio);
391 		netfs_issue_write(wreq, upload);
392 		netfs_issue_write(wreq, cache);
393 		return 0;
394 	}
395 
396 	if (foff > 0)
397 		netfs_issue_write(wreq, upload);
398 	if (streamw)
399 		netfs_issue_write(wreq, cache);
400 
401 	/* Flip the page to the writeback state and unlock.  If we're called
402 	 * from write-through, then the page has already been put into the wb
403 	 * state.
404 	 */
405 	if (wreq->origin == NETFS_WRITEBACK)
406 		folio_start_writeback(folio);
407 	folio_unlock(folio);
408 
409 	if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
410 		if (!fscache_resources_valid(&wreq->cache_resources)) {
411 			trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
412 			netfs_issue_write(wreq, upload);
413 			netfs_folio_written_back(folio);
414 			return 0;
415 		}
416 		trace_netfs_folio(folio, netfs_folio_trace_store_copy);
417 	} else if (!upload->construct) {
418 		trace_netfs_folio(folio, netfs_folio_trace_store);
419 	} else {
420 		trace_netfs_folio(folio, netfs_folio_trace_store_plus);
421 	}
422 
423 	/* Move the submission point forward to allow for write-streaming data
424 	 * not starting at the front of the page.  We don't do write-streaming
425 	 * with the cache as the cache requires DIO alignment.
426 	 *
427 	 * Also skip uploading for data that's been read and just needs copying
428 	 * to the cache.
429 	 */
430 	for (int s = 0; s < NR_IO_STREAMS; s++) {
431 		stream = &wreq->io_streams[s];
432 		stream->submit_max_len = fsize;
433 		stream->submit_off = foff;
434 		stream->submit_len = flen;
435 		if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
436 		    (stream->source == NETFS_UPLOAD_TO_SERVER &&
437 		     fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
438 			stream->submit_off = UINT_MAX;
439 			stream->submit_len = 0;
440 			stream->submit_max_len = 0;
441 		}
442 	}
443 
444 	/* Attach the folio to one or more subrequests.  For a big folio, we
445 	 * could end up with thousands of subrequests if the wsize is small -
446 	 * but we might need to wait during the creation of subrequests for
447 	 * network resources (eg. SMB credits).
448 	 */
449 	for (;;) {
450 		ssize_t part;
451 		size_t lowest_off = ULONG_MAX;
452 		int choose_s = -1;
453 
454 		/* Always add to the lowest-submitted stream first. */
455 		for (int s = 0; s < NR_IO_STREAMS; s++) {
456 			stream = &wreq->io_streams[s];
457 			if (stream->submit_len > 0 &&
458 			    stream->submit_off < lowest_off) {
459 				lowest_off = stream->submit_off;
460 				choose_s = s;
461 			}
462 		}
463 
464 		if (choose_s < 0)
465 			break;
466 		stream = &wreq->io_streams[choose_s];
467 
468 		part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
469 					   stream->submit_len, to_eof);
470 		atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
471 		stream->submit_off += part;
472 		stream->submit_max_len -= part;
473 		if (part > stream->submit_len)
474 			stream->submit_len = 0;
475 		else
476 			stream->submit_len -= part;
477 		if (part > 0)
478 			debug = true;
479 	}
480 
481 	atomic64_set(&wreq->issued_to, fpos + fsize);
482 
483 	if (!debug)
484 		kdebug("R=%x: No submit", wreq->debug_id);
485 
486 	if (foff + flen < fsize)
487 		for (int s = 0; s < NR_IO_STREAMS; s++)
488 			netfs_issue_write(wreq, &wreq->io_streams[s]);
489 
490 	_leave(" = 0");
491 	return 0;
492 }
493 
494 /*
495  * Write some of the pending data back to the server
496  */
497 int netfs_writepages(struct address_space *mapping,
498 		     struct writeback_control *wbc)
499 {
500 	struct netfs_inode *ictx = netfs_inode(mapping->host);
501 	struct netfs_io_request *wreq = NULL;
502 	struct folio *folio;
503 	int error = 0;
504 
505 	if (wbc->sync_mode == WB_SYNC_ALL)
506 		mutex_lock(&ictx->wb_lock);
507 	else if (!mutex_trylock(&ictx->wb_lock))
508 		return 0;
509 
510 	/* Need the first folio to be able to set up the op. */
511 	folio = writeback_iter(mapping, wbc, NULL, &error);
512 	if (!folio)
513 		goto out;
514 
515 	wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
516 	if (IS_ERR(wreq)) {
517 		error = PTR_ERR(wreq);
518 		goto couldnt_start;
519 	}
520 
521 	trace_netfs_write(wreq, netfs_write_trace_writeback);
522 	netfs_stat(&netfs_n_wh_writepages);
523 
524 	do {
525 		_debug("wbiter %lx %llx", folio->index, wreq->start + wreq->submitted);
526 
527 		/* It appears we don't have to handle cyclic writeback wrapping. */
528 		WARN_ON_ONCE(wreq && folio_pos(folio) < wreq->start + wreq->submitted);
529 
530 		if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
531 		    unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
532 			set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
533 			wreq->netfs_ops->begin_writeback(wreq);
534 		}
535 
536 		error = netfs_write_folio(wreq, wbc, folio);
537 		if (error < 0)
538 			break;
539 	} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
540 
541 	for (int s = 0; s < NR_IO_STREAMS; s++)
542 		netfs_issue_write(wreq, &wreq->io_streams[s]);
543 	smp_wmb(); /* Write lists before ALL_QUEUED. */
544 	set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
545 
546 	mutex_unlock(&ictx->wb_lock);
547 
548 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
549 	_leave(" = %d", error);
550 	return error;
551 
552 couldnt_start:
553 	netfs_kill_dirty_pages(mapping, wbc, folio);
554 out:
555 	mutex_unlock(&ictx->wb_lock);
556 	_leave(" = %d", error);
557 	return error;
558 }
559 EXPORT_SYMBOL(netfs_writepages);
560 
561 /*
562  * Begin a write operation for writing through the pagecache.
563  */
564 struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
565 {
566 	struct netfs_io_request *wreq = NULL;
567 	struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
568 
569 	mutex_lock(&ictx->wb_lock);
570 
571 	wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
572 				      iocb->ki_pos, NETFS_WRITETHROUGH);
573 	if (IS_ERR(wreq)) {
574 		mutex_unlock(&ictx->wb_lock);
575 		return wreq;
576 	}
577 
578 	wreq->io_streams[0].avail = true;
579 	trace_netfs_write(wreq, netfs_write_trace_writethrough);
580 	return wreq;
581 }
582 
583 /*
584  * Advance the state of the write operation used when writing through the
585  * pagecache.  Data has been copied into the pagecache that we need to append
586  * to the request.  If we've added more than wsize then we need to create a new
587  * subrequest.
588  */
589 int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
590 			       struct folio *folio, size_t copied, bool to_page_end,
591 			       struct folio **writethrough_cache)
592 {
593 	_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
594 	       wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
595 
596 	if (!*writethrough_cache) {
597 		if (folio_test_dirty(folio))
598 			/* Sigh.  mmap. */
599 			folio_clear_dirty_for_io(folio);
600 
601 		/* We can make multiple writes to the folio... */
602 		folio_start_writeback(folio);
603 		if (wreq->len == 0)
604 			trace_netfs_folio(folio, netfs_folio_trace_wthru);
605 		else
606 			trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
607 		*writethrough_cache = folio;
608 	}
609 
610 	wreq->len += copied;
611 	if (!to_page_end)
612 		return 0;
613 
614 	*writethrough_cache = NULL;
615 	return netfs_write_folio(wreq, wbc, folio);
616 }
617 
618 /*
619  * End a write operation used when writing through the pagecache.
620  */
621 int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
622 			   struct folio *writethrough_cache)
623 {
624 	struct netfs_inode *ictx = netfs_inode(wreq->inode);
625 	int ret;
626 
627 	_enter("R=%x", wreq->debug_id);
628 
629 	if (writethrough_cache)
630 		netfs_write_folio(wreq, wbc, writethrough_cache);
631 
632 	netfs_issue_write(wreq, &wreq->io_streams[0]);
633 	netfs_issue_write(wreq, &wreq->io_streams[1]);
634 	smp_wmb(); /* Write lists before ALL_QUEUED. */
635 	set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
636 
637 	mutex_unlock(&ictx->wb_lock);
638 
639 	if (wreq->iocb) {
640 		ret = -EIOCBQUEUED;
641 	} else {
642 		wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
643 		ret = wreq->error;
644 	}
645 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
646 	return ret;
647 }
648 
649 /*
650  * Write data to the server without going through the pagecache and without
651  * writing it to the local cache.
652  */
653 int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
654 {
655 	struct netfs_io_stream *upload = &wreq->io_streams[0];
656 	ssize_t part;
657 	loff_t start = wreq->start;
658 	int error = 0;
659 
660 	_enter("%zx", len);
661 
662 	if (wreq->origin == NETFS_DIO_WRITE)
663 		inode_dio_begin(wreq->inode);
664 
665 	while (len) {
666 		// TODO: Prepare content encryption
667 
668 		_debug("unbuffered %zx", len);
669 		part = netfs_advance_write(wreq, upload, start, len, false);
670 		start += part;
671 		len -= part;
672 		if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
673 			trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
674 			wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
675 		}
676 		if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
677 			break;
678 	}
679 
680 	netfs_issue_write(wreq, upload);
681 
682 	smp_wmb(); /* Write lists before ALL_QUEUED. */
683 	set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
684 	if (list_empty(&upload->subrequests))
685 		netfs_wake_write_collector(wreq, false);
686 
687 	_leave(" = %d", error);
688 	return error;
689 }
690