xref: /linux/fs/netfs/read_collect.c (revision 8f0d91f41000e769f16b62a4b44f1f6da6db905b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem read subrequest result collection, assessment and
3  * retrying.
4  *
5  * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  */
8 
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "internal.h"
16 
17 /*
18  * Clear the unread part of an I/O request.
19  */
20 static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
21 {
22 	netfs_reset_iter(subreq);
23 	WARN_ON_ONCE(subreq->len - subreq->transferred != iov_iter_count(&subreq->io_iter));
24 	iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
25 	if (subreq->start + subreq->transferred >= subreq->rreq->i_size)
26 		__set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags);
27 }
28 
29 /*
30  * Flush, mark and unlock a folio that's now completely read.  If we want to
31  * cache the folio, we set the group to NETFS_FOLIO_COPY_TO_CACHE, mark it
32  * dirty and let writeback handle it.
33  */
34 static void netfs_unlock_read_folio(struct netfs_io_subrequest *subreq,
35 				    struct netfs_io_request *rreq,
36 				    struct folio_queue *folioq,
37 				    int slot)
38 {
39 	struct netfs_folio *finfo;
40 	struct folio *folio = folioq_folio(folioq, slot);
41 
42 	flush_dcache_folio(folio);
43 	folio_mark_uptodate(folio);
44 
45 	if (!test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
46 		finfo = netfs_folio_info(folio);
47 		if (finfo) {
48 			trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
49 			if (finfo->netfs_group)
50 				folio_change_private(folio, finfo->netfs_group);
51 			else
52 				folio_detach_private(folio);
53 			kfree(finfo);
54 		}
55 
56 		if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
57 			if (!WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
58 				trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
59 				folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
60 				folio_mark_dirty(folio);
61 			}
62 		} else {
63 			trace_netfs_folio(folio, netfs_folio_trace_read_done);
64 		}
65 	} else {
66 		// TODO: Use of PG_private_2 is deprecated.
67 		if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
68 			netfs_pgpriv2_mark_copy_to_cache(subreq, rreq, folioq, slot);
69 	}
70 
71 	if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
72 		if (folio->index == rreq->no_unlock_folio &&
73 		    test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) {
74 			_debug("no unlock");
75 		} else {
76 			trace_netfs_folio(folio, netfs_folio_trace_read_unlock);
77 			folio_unlock(folio);
78 		}
79 	}
80 
81 	folioq_clear(folioq, slot);
82 }
83 
84 /*
85  * Unlock any folios that are now completely read.  Returns true if the
86  * subrequest is removed from the list.
87  */
88 static bool netfs_consume_read_data(struct netfs_io_subrequest *subreq, bool was_async)
89 {
90 	struct netfs_io_subrequest *prev, *next;
91 	struct netfs_io_request *rreq = subreq->rreq;
92 	struct folio_queue *folioq = subreq->curr_folioq;
93 	size_t avail, prev_donated, next_donated, fsize, part, excess;
94 	loff_t fpos, start;
95 	loff_t fend;
96 	int slot = subreq->curr_folioq_slot;
97 
98 	if (WARN(subreq->transferred > subreq->len,
99 		 "Subreq overread: R%x[%x] %zu > %zu",
100 		 rreq->debug_id, subreq->debug_index,
101 		 subreq->transferred, subreq->len))
102 		subreq->transferred = subreq->len;
103 
104 next_folio:
105 	fsize = PAGE_SIZE << subreq->curr_folio_order;
106 	fpos = round_down(subreq->start + subreq->consumed, fsize);
107 	fend = fpos + fsize;
108 
109 	if (WARN_ON_ONCE(!folioq) ||
110 	    WARN_ON_ONCE(!folioq_folio(folioq, slot)) ||
111 	    WARN_ON_ONCE(folioq_folio(folioq, slot)->index != fpos / PAGE_SIZE)) {
112 		pr_err("R=%08x[%x] s=%llx-%llx ctl=%zx/%zx/%zx sl=%u\n",
113 		       rreq->debug_id, subreq->debug_index,
114 		       subreq->start, subreq->start + subreq->transferred - 1,
115 		       subreq->consumed, subreq->transferred, subreq->len,
116 		       slot);
117 		if (folioq) {
118 			struct folio *folio = folioq_folio(folioq, slot);
119 
120 			pr_err("folioq: orders=%02x%02x%02x%02x\n",
121 			       folioq->orders[0], folioq->orders[1],
122 			       folioq->orders[2], folioq->orders[3]);
123 			if (folio)
124 				pr_err("folio: %llx-%llx ix=%llx o=%u qo=%u\n",
125 				       fpos, fend - 1, folio_pos(folio), folio_order(folio),
126 				       folioq_folio_order(folioq, slot));
127 		}
128 	}
129 
130 donation_changed:
131 	/* Try to consume the current folio if we've hit or passed the end of
132 	 * it.  There's a possibility that this subreq doesn't start at the
133 	 * beginning of the folio, in which case we need to donate to/from the
134 	 * preceding subreq.
135 	 *
136 	 * We also need to include any potential donation back from the
137 	 * following subreq.
138 	 */
139 	prev_donated = READ_ONCE(subreq->prev_donated);
140 	next_donated =  READ_ONCE(subreq->next_donated);
141 	if (prev_donated || next_donated) {
142 		spin_lock_bh(&rreq->lock);
143 		prev_donated = subreq->prev_donated;
144 		next_donated =  subreq->next_donated;
145 		subreq->start -= prev_donated;
146 		subreq->len += prev_donated;
147 		subreq->transferred += prev_donated;
148 		prev_donated = subreq->prev_donated = 0;
149 		if (subreq->transferred == subreq->len) {
150 			subreq->len += next_donated;
151 			subreq->transferred += next_donated;
152 			next_donated = subreq->next_donated = 0;
153 		}
154 		trace_netfs_sreq(subreq, netfs_sreq_trace_add_donations);
155 		spin_unlock_bh(&rreq->lock);
156 	}
157 
158 	avail = subreq->transferred;
159 	if (avail == subreq->len)
160 		avail += next_donated;
161 	start = subreq->start;
162 	if (subreq->consumed == 0) {
163 		start -= prev_donated;
164 		avail += prev_donated;
165 	} else {
166 		start += subreq->consumed;
167 		avail -= subreq->consumed;
168 	}
169 	part = umin(avail, fsize);
170 
171 	trace_netfs_progress(subreq, start, avail, part);
172 
173 	if (start + avail >= fend) {
174 		if (fpos == start) {
175 			/* Flush, unlock and mark for caching any folio we've just read. */
176 			subreq->consumed = fend - subreq->start;
177 			netfs_unlock_read_folio(subreq, rreq, folioq, slot);
178 			folioq_mark2(folioq, slot);
179 			if (subreq->consumed >= subreq->len)
180 				goto remove_subreq;
181 		} else if (fpos < start) {
182 			excess = fend - subreq->start;
183 
184 			spin_lock_bh(&rreq->lock);
185 			/* If we complete first on a folio split with the
186 			 * preceding subreq, donate to that subreq - otherwise
187 			 * we get the responsibility.
188 			 */
189 			if (subreq->prev_donated != prev_donated) {
190 				spin_unlock_bh(&rreq->lock);
191 				goto donation_changed;
192 			}
193 
194 			if (list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
195 				spin_unlock_bh(&rreq->lock);
196 				pr_err("Can't donate prior to front\n");
197 				goto bad;
198 			}
199 
200 			prev = list_prev_entry(subreq, rreq_link);
201 			WRITE_ONCE(prev->next_donated, prev->next_donated + excess);
202 			subreq->start += excess;
203 			subreq->len -= excess;
204 			subreq->transferred -= excess;
205 			trace_netfs_donate(rreq, subreq, prev, excess,
206 					   netfs_trace_donate_tail_to_prev);
207 			trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
208 
209 			if (subreq->consumed >= subreq->len)
210 				goto remove_subreq_locked;
211 			spin_unlock_bh(&rreq->lock);
212 		} else {
213 			pr_err("fpos > start\n");
214 			goto bad;
215 		}
216 
217 		/* Advance the rolling buffer to the next folio. */
218 		slot++;
219 		if (slot >= folioq_nr_slots(folioq)) {
220 			slot = 0;
221 			folioq = folioq->next;
222 			subreq->curr_folioq = folioq;
223 		}
224 		subreq->curr_folioq_slot = slot;
225 		if (folioq && folioq_folio(folioq, slot))
226 			subreq->curr_folio_order = folioq->orders[slot];
227 		if (!was_async)
228 			cond_resched();
229 		goto next_folio;
230 	}
231 
232 	/* Deal with partial progress. */
233 	if (subreq->transferred < subreq->len)
234 		return false;
235 
236 	/* Donate the remaining downloaded data to one of the neighbouring
237 	 * subrequests.  Note that we may race with them doing the same thing.
238 	 */
239 	spin_lock_bh(&rreq->lock);
240 
241 	if (subreq->prev_donated != prev_donated ||
242 	    subreq->next_donated != next_donated) {
243 		spin_unlock_bh(&rreq->lock);
244 		cond_resched();
245 		goto donation_changed;
246 	}
247 
248 	/* Deal with the trickiest case: that this subreq is in the middle of a
249 	 * folio, not touching either edge, but finishes first.  In such a
250 	 * case, we donate to the previous subreq, if there is one, so that the
251 	 * donation is only handled when that completes - and remove this
252 	 * subreq from the list.
253 	 *
254 	 * If the previous subreq finished first, we will have acquired their
255 	 * donation and should be able to unlock folios and/or donate nextwards.
256 	 */
257 	if (!subreq->consumed &&
258 	    !prev_donated &&
259 	    !list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
260 		prev = list_prev_entry(subreq, rreq_link);
261 		WRITE_ONCE(prev->next_donated, prev->next_donated + subreq->len);
262 		subreq->start += subreq->len;
263 		subreq->len = 0;
264 		subreq->transferred = 0;
265 		trace_netfs_donate(rreq, subreq, prev, subreq->len,
266 				   netfs_trace_donate_to_prev);
267 		trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
268 		goto remove_subreq_locked;
269 	}
270 
271 	/* If we can't donate down the chain, donate up the chain instead. */
272 	excess = subreq->len - subreq->consumed + next_donated;
273 
274 	if (!subreq->consumed)
275 		excess += prev_donated;
276 
277 	if (list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
278 		rreq->prev_donated = excess;
279 		trace_netfs_donate(rreq, subreq, NULL, excess,
280 				   netfs_trace_donate_to_deferred_next);
281 	} else {
282 		next = list_next_entry(subreq, rreq_link);
283 		WRITE_ONCE(next->prev_donated, excess);
284 		trace_netfs_donate(rreq, subreq, next, excess,
285 				   netfs_trace_donate_to_next);
286 	}
287 	trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_next);
288 	subreq->len = subreq->consumed;
289 	subreq->transferred = subreq->consumed;
290 	goto remove_subreq_locked;
291 
292 remove_subreq:
293 	spin_lock_bh(&rreq->lock);
294 remove_subreq_locked:
295 	subreq->consumed = subreq->len;
296 	list_del(&subreq->rreq_link);
297 	spin_unlock_bh(&rreq->lock);
298 	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_consumed);
299 	return true;
300 
301 bad:
302 	/* Errr... prev and next both donated to us, but insufficient to finish
303 	 * the folio.
304 	 */
305 	printk("R=%08x[%x] s=%llx-%llx %zx/%zx/%zx\n",
306 	       rreq->debug_id, subreq->debug_index,
307 	       subreq->start, subreq->start + subreq->transferred - 1,
308 	       subreq->consumed, subreq->transferred, subreq->len);
309 	printk("folio: %llx-%llx\n", fpos, fend - 1);
310 	printk("donated: prev=%zx next=%zx\n", prev_donated, next_donated);
311 	printk("s=%llx av=%zx part=%zx\n", start, avail, part);
312 	BUG();
313 }
314 
315 /*
316  * Do page flushing and suchlike after DIO.
317  */
318 static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
319 {
320 	struct netfs_io_subrequest *subreq;
321 	unsigned int i;
322 
323 	/* Collect unbuffered reads and direct reads, adding up the transfer
324 	 * sizes until we find the first short or failed subrequest.
325 	 */
326 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
327 		rreq->transferred += subreq->transferred;
328 
329 		if (subreq->transferred < subreq->len ||
330 		    test_bit(NETFS_SREQ_FAILED, &subreq->flags)) {
331 			rreq->error = subreq->error;
332 			break;
333 		}
334 	}
335 
336 	if (rreq->origin == NETFS_DIO_READ) {
337 		for (i = 0; i < rreq->direct_bv_count; i++) {
338 			flush_dcache_page(rreq->direct_bv[i].bv_page);
339 			// TODO: cifs marks pages in the destination buffer
340 			// dirty under some circumstances after a read.  Do we
341 			// need to do that too?
342 			set_page_dirty(rreq->direct_bv[i].bv_page);
343 		}
344 	}
345 
346 	if (rreq->iocb) {
347 		rreq->iocb->ki_pos += rreq->transferred;
348 		if (rreq->iocb->ki_complete)
349 			rreq->iocb->ki_complete(
350 				rreq->iocb, rreq->error ? rreq->error : rreq->transferred);
351 	}
352 	if (rreq->netfs_ops->done)
353 		rreq->netfs_ops->done(rreq);
354 	if (rreq->origin == NETFS_DIO_READ)
355 		inode_dio_end(rreq->inode);
356 }
357 
358 /*
359  * Assess the state of a read request and decide what to do next.
360  *
361  * Note that we're in normal kernel thread context at this point, possibly
362  * running on a workqueue.
363  */
364 static void netfs_rreq_assess(struct netfs_io_request *rreq)
365 {
366 	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
367 
368 	//netfs_rreq_is_still_valid(rreq);
369 
370 	if (test_and_clear_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags)) {
371 		netfs_retry_reads(rreq);
372 		return;
373 	}
374 
375 	if (rreq->origin == NETFS_DIO_READ ||
376 	    rreq->origin == NETFS_READ_GAPS)
377 		netfs_rreq_assess_dio(rreq);
378 	task_io_account_read(rreq->transferred);
379 
380 	trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
381 	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
382 	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
383 
384 	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
385 	netfs_clear_subrequests(rreq, false);
386 	netfs_unlock_abandoned_read_pages(rreq);
387 	if (unlikely(test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)))
388 		netfs_pgpriv2_write_to_the_cache(rreq);
389 }
390 
391 void netfs_read_termination_worker(struct work_struct *work)
392 {
393 	struct netfs_io_request *rreq =
394 		container_of(work, struct netfs_io_request, work);
395 	netfs_see_request(rreq, netfs_rreq_trace_see_work);
396 	netfs_rreq_assess(rreq);
397 	netfs_put_request(rreq, false, netfs_rreq_trace_put_work_complete);
398 }
399 
400 /*
401  * Handle the completion of all outstanding I/O operations on a read request.
402  * We inherit a ref from the caller.
403  */
404 void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async)
405 {
406 	if (!was_async)
407 		return netfs_rreq_assess(rreq);
408 	if (!work_pending(&rreq->work)) {
409 		netfs_get_request(rreq, netfs_rreq_trace_get_work);
410 		if (!queue_work(system_unbound_wq, &rreq->work))
411 			netfs_put_request(rreq, was_async, netfs_rreq_trace_put_work_nq);
412 	}
413 }
414 
415 /**
416  * netfs_read_subreq_progress - Note progress of a read operation.
417  * @subreq: The read request that has terminated.
418  * @was_async: True if we're in an asynchronous context.
419  *
420  * This tells the read side of netfs lib that a contributory I/O operation has
421  * made some progress and that it may be possible to unlock some folios.
422  *
423  * Before calling, the filesystem should update subreq->transferred to track
424  * the amount of data copied into the output buffer.
425  *
426  * If @was_async is true, the caller might be running in softirq or interrupt
427  * context and we can't sleep.
428  */
429 void netfs_read_subreq_progress(struct netfs_io_subrequest *subreq,
430 				bool was_async)
431 {
432 	struct netfs_io_request *rreq = subreq->rreq;
433 
434 	trace_netfs_sreq(subreq, netfs_sreq_trace_progress);
435 
436 	if (subreq->transferred > subreq->consumed &&
437 	    (rreq->origin == NETFS_READAHEAD ||
438 	     rreq->origin == NETFS_READPAGE ||
439 	     rreq->origin == NETFS_READ_FOR_WRITE)) {
440 		netfs_consume_read_data(subreq, was_async);
441 		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
442 	}
443 }
444 EXPORT_SYMBOL(netfs_read_subreq_progress);
445 
446 /**
447  * netfs_read_subreq_terminated - Note the termination of an I/O operation.
448  * @subreq: The I/O request that has terminated.
449  * @error: Error code indicating type of completion.
450  * @was_async: The termination was asynchronous
451  *
452  * This tells the read helper that a contributory I/O operation has terminated,
453  * one way or another, and that it should integrate the results.
454  *
455  * The caller indicates the outcome of the operation through @error, supplying
456  * 0 to indicate a successful or retryable transfer (if NETFS_SREQ_NEED_RETRY
457  * is set) or a negative error code.  The helper will look after reissuing I/O
458  * operations as appropriate and writing downloaded data to the cache.
459  *
460  * Before calling, the filesystem should update subreq->transferred to track
461  * the amount of data copied into the output buffer.
462  *
463  * If @was_async is true, the caller might be running in softirq or interrupt
464  * context and we can't sleep.
465  */
466 void netfs_read_subreq_terminated(struct netfs_io_subrequest *subreq,
467 				  int error, bool was_async)
468 {
469 	struct netfs_io_request *rreq = subreq->rreq;
470 
471 	switch (subreq->source) {
472 	case NETFS_READ_FROM_CACHE:
473 		netfs_stat(&netfs_n_rh_read_done);
474 		break;
475 	case NETFS_DOWNLOAD_FROM_SERVER:
476 		netfs_stat(&netfs_n_rh_download_done);
477 		break;
478 	default:
479 		break;
480 	}
481 
482 	if (rreq->origin != NETFS_DIO_READ) {
483 		/* Collect buffered reads.
484 		 *
485 		 * If the read completed validly short, then we can clear the
486 		 * tail before going on to unlock the folios.
487 		 */
488 		if (error == 0 && subreq->transferred < subreq->len &&
489 		    (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags) ||
490 		     test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags))) {
491 			netfs_clear_unread(subreq);
492 			subreq->transferred = subreq->len;
493 			trace_netfs_sreq(subreq, netfs_sreq_trace_clear);
494 		}
495 		if (subreq->transferred > subreq->consumed &&
496 		    (rreq->origin == NETFS_READAHEAD ||
497 		     rreq->origin == NETFS_READPAGE ||
498 		     rreq->origin == NETFS_READ_FOR_WRITE)) {
499 			netfs_consume_read_data(subreq, was_async);
500 			__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
501 		}
502 		rreq->transferred += subreq->transferred;
503 	}
504 
505 	/* Deal with retry requests, short reads and errors.  If we retry
506 	 * but don't make progress, we abandon the attempt.
507 	 */
508 	if (!error && subreq->transferred < subreq->len) {
509 		if (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags)) {
510 			trace_netfs_sreq(subreq, netfs_sreq_trace_hit_eof);
511 		} else {
512 			trace_netfs_sreq(subreq, netfs_sreq_trace_short);
513 			if (subreq->transferred > subreq->consumed) {
514 				__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
515 				__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
516 				set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
517 			} else if (!__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
518 				__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
519 				set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
520 			} else {
521 				__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
522 				error = -ENODATA;
523 			}
524 		}
525 	}
526 
527 	subreq->error = error;
528 	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
529 
530 	if (unlikely(error < 0)) {
531 		trace_netfs_failure(rreq, subreq, error, netfs_fail_read);
532 		if (subreq->source == NETFS_READ_FROM_CACHE) {
533 			netfs_stat(&netfs_n_rh_read_failed);
534 		} else {
535 			netfs_stat(&netfs_n_rh_download_failed);
536 			set_bit(NETFS_RREQ_FAILED, &rreq->flags);
537 			rreq->error = subreq->error;
538 		}
539 	}
540 
541 	if (atomic_dec_and_test(&rreq->nr_outstanding))
542 		netfs_rreq_terminated(rreq, was_async);
543 
544 	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
545 }
546 EXPORT_SYMBOL(netfs_read_subreq_terminated);
547