xref: /linux/fs/netfs/read_collect.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem read subrequest result collection, assessment and
3  * retrying.
4  *
5  * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  */
8 
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "internal.h"
16 
17 /*
18  * Clear the unread part of an I/O request.
19  */
20 static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
21 {
22 	netfs_reset_iter(subreq);
23 	WARN_ON_ONCE(subreq->len - subreq->transferred != iov_iter_count(&subreq->io_iter));
24 	iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
25 	if (subreq->start + subreq->transferred >= subreq->rreq->i_size)
26 		__set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags);
27 }
28 
29 /*
30  * Flush, mark and unlock a folio that's now completely read.  If we want to
31  * cache the folio, we set the group to NETFS_FOLIO_COPY_TO_CACHE, mark it
32  * dirty and let writeback handle it.
33  */
34 static void netfs_unlock_read_folio(struct netfs_io_subrequest *subreq,
35 				    struct netfs_io_request *rreq,
36 				    struct folio_queue *folioq,
37 				    int slot)
38 {
39 	struct netfs_folio *finfo;
40 	struct folio *folio = folioq_folio(folioq, slot);
41 
42 	flush_dcache_folio(folio);
43 	folio_mark_uptodate(folio);
44 
45 	if (!test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
46 		finfo = netfs_folio_info(folio);
47 		if (finfo) {
48 			trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
49 			if (finfo->netfs_group)
50 				folio_change_private(folio, finfo->netfs_group);
51 			else
52 				folio_detach_private(folio);
53 			kfree(finfo);
54 		}
55 
56 		if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
57 			if (!WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
58 				trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
59 				folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
60 				folio_mark_dirty(folio);
61 			}
62 		} else {
63 			trace_netfs_folio(folio, netfs_folio_trace_read_done);
64 		}
65 	} else {
66 		// TODO: Use of PG_private_2 is deprecated.
67 		if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
68 			netfs_pgpriv2_mark_copy_to_cache(subreq, rreq, folioq, slot);
69 	}
70 
71 	if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
72 		if (folio->index == rreq->no_unlock_folio &&
73 		    test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) {
74 			_debug("no unlock");
75 		} else {
76 			trace_netfs_folio(folio, netfs_folio_trace_read_unlock);
77 			folio_unlock(folio);
78 		}
79 	}
80 }
81 
82 /*
83  * Unlock any folios that are now completely read.  Returns true if the
84  * subrequest is removed from the list.
85  */
86 static bool netfs_consume_read_data(struct netfs_io_subrequest *subreq, bool was_async)
87 {
88 	struct netfs_io_subrequest *prev, *next;
89 	struct netfs_io_request *rreq = subreq->rreq;
90 	struct folio_queue *folioq = subreq->curr_folioq;
91 	size_t avail, prev_donated, next_donated, fsize, part, excess;
92 	loff_t fpos, start;
93 	loff_t fend;
94 	int slot = subreq->curr_folioq_slot;
95 
96 	if (WARN(subreq->transferred > subreq->len,
97 		 "Subreq overread: R%x[%x] %zu > %zu",
98 		 rreq->debug_id, subreq->debug_index,
99 		 subreq->transferred, subreq->len))
100 		subreq->transferred = subreq->len;
101 
102 next_folio:
103 	fsize = PAGE_SIZE << subreq->curr_folio_order;
104 	fpos = round_down(subreq->start + subreq->consumed, fsize);
105 	fend = fpos + fsize;
106 
107 	if (WARN_ON_ONCE(!folioq) ||
108 	    WARN_ON_ONCE(!folioq_folio(folioq, slot)) ||
109 	    WARN_ON_ONCE(folioq_folio(folioq, slot)->index != fpos / PAGE_SIZE)) {
110 		pr_err("R=%08x[%x] s=%llx-%llx ctl=%zx/%zx/%zx sl=%u\n",
111 		       rreq->debug_id, subreq->debug_index,
112 		       subreq->start, subreq->start + subreq->transferred - 1,
113 		       subreq->consumed, subreq->transferred, subreq->len,
114 		       slot);
115 		if (folioq) {
116 			struct folio *folio = folioq_folio(folioq, slot);
117 
118 			pr_err("folioq: orders=%02x%02x%02x%02x\n",
119 			       folioq->orders[0], folioq->orders[1],
120 			       folioq->orders[2], folioq->orders[3]);
121 			if (folio)
122 				pr_err("folio: %llx-%llx ix=%llx o=%u qo=%u\n",
123 				       fpos, fend - 1, folio_pos(folio), folio_order(folio),
124 				       folioq_folio_order(folioq, slot));
125 		}
126 	}
127 
128 donation_changed:
129 	/* Try to consume the current folio if we've hit or passed the end of
130 	 * it.  There's a possibility that this subreq doesn't start at the
131 	 * beginning of the folio, in which case we need to donate to/from the
132 	 * preceding subreq.
133 	 *
134 	 * We also need to include any potential donation back from the
135 	 * following subreq.
136 	 */
137 	prev_donated = READ_ONCE(subreq->prev_donated);
138 	next_donated =  READ_ONCE(subreq->next_donated);
139 	if (prev_donated || next_donated) {
140 		spin_lock_bh(&rreq->lock);
141 		prev_donated = subreq->prev_donated;
142 		next_donated =  subreq->next_donated;
143 		subreq->start -= prev_donated;
144 		subreq->len += prev_donated;
145 		subreq->transferred += prev_donated;
146 		prev_donated = subreq->prev_donated = 0;
147 		if (subreq->transferred == subreq->len) {
148 			subreq->len += next_donated;
149 			subreq->transferred += next_donated;
150 			next_donated = subreq->next_donated = 0;
151 		}
152 		trace_netfs_sreq(subreq, netfs_sreq_trace_add_donations);
153 		spin_unlock_bh(&rreq->lock);
154 	}
155 
156 	avail = subreq->transferred;
157 	if (avail == subreq->len)
158 		avail += next_donated;
159 	start = subreq->start;
160 	if (subreq->consumed == 0) {
161 		start -= prev_donated;
162 		avail += prev_donated;
163 	} else {
164 		start += subreq->consumed;
165 		avail -= subreq->consumed;
166 	}
167 	part = umin(avail, fsize);
168 
169 	trace_netfs_progress(subreq, start, avail, part);
170 
171 	if (start + avail >= fend) {
172 		if (fpos == start) {
173 			/* Flush, unlock and mark for caching any folio we've just read. */
174 			subreq->consumed = fend - subreq->start;
175 			netfs_unlock_read_folio(subreq, rreq, folioq, slot);
176 			folioq_mark2(folioq, slot);
177 			if (subreq->consumed >= subreq->len)
178 				goto remove_subreq;
179 		} else if (fpos < start) {
180 			excess = fend - subreq->start;
181 
182 			spin_lock_bh(&rreq->lock);
183 			/* If we complete first on a folio split with the
184 			 * preceding subreq, donate to that subreq - otherwise
185 			 * we get the responsibility.
186 			 */
187 			if (subreq->prev_donated != prev_donated) {
188 				spin_unlock_bh(&rreq->lock);
189 				goto donation_changed;
190 			}
191 
192 			if (list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
193 				spin_unlock_bh(&rreq->lock);
194 				pr_err("Can't donate prior to front\n");
195 				goto bad;
196 			}
197 
198 			prev = list_prev_entry(subreq, rreq_link);
199 			WRITE_ONCE(prev->next_donated, prev->next_donated + excess);
200 			subreq->start += excess;
201 			subreq->len -= excess;
202 			subreq->transferred -= excess;
203 			trace_netfs_donate(rreq, subreq, prev, excess,
204 					   netfs_trace_donate_tail_to_prev);
205 			trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
206 
207 			if (subreq->consumed >= subreq->len)
208 				goto remove_subreq_locked;
209 			spin_unlock_bh(&rreq->lock);
210 		} else {
211 			pr_err("fpos > start\n");
212 			goto bad;
213 		}
214 
215 		/* Advance the rolling buffer to the next folio. */
216 		slot++;
217 		if (slot >= folioq_nr_slots(folioq)) {
218 			slot = 0;
219 			folioq = folioq->next;
220 			subreq->curr_folioq = folioq;
221 		}
222 		subreq->curr_folioq_slot = slot;
223 		if (folioq && folioq_folio(folioq, slot))
224 			subreq->curr_folio_order = folioq->orders[slot];
225 		if (!was_async)
226 			cond_resched();
227 		goto next_folio;
228 	}
229 
230 	/* Deal with partial progress. */
231 	if (subreq->transferred < subreq->len)
232 		return false;
233 
234 	/* Donate the remaining downloaded data to one of the neighbouring
235 	 * subrequests.  Note that we may race with them doing the same thing.
236 	 */
237 	spin_lock_bh(&rreq->lock);
238 
239 	if (subreq->prev_donated != prev_donated ||
240 	    subreq->next_donated != next_donated) {
241 		spin_unlock_bh(&rreq->lock);
242 		cond_resched();
243 		goto donation_changed;
244 	}
245 
246 	/* Deal with the trickiest case: that this subreq is in the middle of a
247 	 * folio, not touching either edge, but finishes first.  In such a
248 	 * case, we donate to the previous subreq, if there is one, so that the
249 	 * donation is only handled when that completes - and remove this
250 	 * subreq from the list.
251 	 *
252 	 * If the previous subreq finished first, we will have acquired their
253 	 * donation and should be able to unlock folios and/or donate nextwards.
254 	 */
255 	if (!subreq->consumed &&
256 	    !prev_donated &&
257 	    !list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
258 		prev = list_prev_entry(subreq, rreq_link);
259 		WRITE_ONCE(prev->next_donated, prev->next_donated + subreq->len);
260 		subreq->start += subreq->len;
261 		subreq->len = 0;
262 		subreq->transferred = 0;
263 		trace_netfs_donate(rreq, subreq, prev, subreq->len,
264 				   netfs_trace_donate_to_prev);
265 		trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
266 		goto remove_subreq_locked;
267 	}
268 
269 	/* If we can't donate down the chain, donate up the chain instead. */
270 	excess = subreq->len - subreq->consumed + next_donated;
271 
272 	if (!subreq->consumed)
273 		excess += prev_donated;
274 
275 	if (list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
276 		rreq->prev_donated = excess;
277 		trace_netfs_donate(rreq, subreq, NULL, excess,
278 				   netfs_trace_donate_to_deferred_next);
279 	} else {
280 		next = list_next_entry(subreq, rreq_link);
281 		WRITE_ONCE(next->prev_donated, excess);
282 		trace_netfs_donate(rreq, subreq, next, excess,
283 				   netfs_trace_donate_to_next);
284 	}
285 	trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_next);
286 	subreq->len = subreq->consumed;
287 	subreq->transferred = subreq->consumed;
288 	goto remove_subreq_locked;
289 
290 remove_subreq:
291 	spin_lock_bh(&rreq->lock);
292 remove_subreq_locked:
293 	subreq->consumed = subreq->len;
294 	list_del(&subreq->rreq_link);
295 	spin_unlock_bh(&rreq->lock);
296 	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_consumed);
297 	return true;
298 
299 bad:
300 	/* Errr... prev and next both donated to us, but insufficient to finish
301 	 * the folio.
302 	 */
303 	printk("R=%08x[%x] s=%llx-%llx %zx/%zx/%zx\n",
304 	       rreq->debug_id, subreq->debug_index,
305 	       subreq->start, subreq->start + subreq->transferred - 1,
306 	       subreq->consumed, subreq->transferred, subreq->len);
307 	printk("folio: %llx-%llx\n", fpos, fend - 1);
308 	printk("donated: prev=%zx next=%zx\n", prev_donated, next_donated);
309 	printk("s=%llx av=%zx part=%zx\n", start, avail, part);
310 	BUG();
311 }
312 
313 /*
314  * Do page flushing and suchlike after DIO.
315  */
316 static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
317 {
318 	struct netfs_io_subrequest *subreq;
319 	unsigned int i;
320 
321 	/* Collect unbuffered reads and direct reads, adding up the transfer
322 	 * sizes until we find the first short or failed subrequest.
323 	 */
324 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
325 		rreq->transferred += subreq->transferred;
326 
327 		if (subreq->transferred < subreq->len ||
328 		    test_bit(NETFS_SREQ_FAILED, &subreq->flags)) {
329 			rreq->error = subreq->error;
330 			break;
331 		}
332 	}
333 
334 	if (rreq->origin == NETFS_DIO_READ) {
335 		for (i = 0; i < rreq->direct_bv_count; i++) {
336 			flush_dcache_page(rreq->direct_bv[i].bv_page);
337 			// TODO: cifs marks pages in the destination buffer
338 			// dirty under some circumstances after a read.  Do we
339 			// need to do that too?
340 			set_page_dirty(rreq->direct_bv[i].bv_page);
341 		}
342 	}
343 
344 	if (rreq->iocb) {
345 		rreq->iocb->ki_pos += rreq->transferred;
346 		if (rreq->iocb->ki_complete)
347 			rreq->iocb->ki_complete(
348 				rreq->iocb, rreq->error ? rreq->error : rreq->transferred);
349 	}
350 	if (rreq->netfs_ops->done)
351 		rreq->netfs_ops->done(rreq);
352 	if (rreq->origin == NETFS_DIO_READ)
353 		inode_dio_end(rreq->inode);
354 }
355 
356 /*
357  * Assess the state of a read request and decide what to do next.
358  *
359  * Note that we're in normal kernel thread context at this point, possibly
360  * running on a workqueue.
361  */
362 static void netfs_rreq_assess(struct netfs_io_request *rreq)
363 {
364 	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
365 
366 	//netfs_rreq_is_still_valid(rreq);
367 
368 	if (test_and_clear_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags)) {
369 		netfs_retry_reads(rreq);
370 		return;
371 	}
372 
373 	if (rreq->origin == NETFS_DIO_READ ||
374 	    rreq->origin == NETFS_READ_GAPS)
375 		netfs_rreq_assess_dio(rreq);
376 	task_io_account_read(rreq->transferred);
377 
378 	trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
379 	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
380 	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
381 
382 	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
383 	netfs_clear_subrequests(rreq, false);
384 	netfs_unlock_abandoned_read_pages(rreq);
385 	if (unlikely(test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)))
386 		netfs_pgpriv2_write_to_the_cache(rreq);
387 }
388 
389 void netfs_read_termination_worker(struct work_struct *work)
390 {
391 	struct netfs_io_request *rreq =
392 		container_of(work, struct netfs_io_request, work);
393 	netfs_see_request(rreq, netfs_rreq_trace_see_work);
394 	netfs_rreq_assess(rreq);
395 	netfs_put_request(rreq, false, netfs_rreq_trace_put_work_complete);
396 }
397 
398 /*
399  * Handle the completion of all outstanding I/O operations on a read request.
400  * We inherit a ref from the caller.
401  */
402 void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async)
403 {
404 	if (!was_async)
405 		return netfs_rreq_assess(rreq);
406 	if (!work_pending(&rreq->work)) {
407 		netfs_get_request(rreq, netfs_rreq_trace_get_work);
408 		if (!queue_work(system_unbound_wq, &rreq->work))
409 			netfs_put_request(rreq, was_async, netfs_rreq_trace_put_work_nq);
410 	}
411 }
412 
413 /**
414  * netfs_read_subreq_progress - Note progress of a read operation.
415  * @subreq: The read request that has terminated.
416  * @was_async: True if we're in an asynchronous context.
417  *
418  * This tells the read side of netfs lib that a contributory I/O operation has
419  * made some progress and that it may be possible to unlock some folios.
420  *
421  * Before calling, the filesystem should update subreq->transferred to track
422  * the amount of data copied into the output buffer.
423  *
424  * If @was_async is true, the caller might be running in softirq or interrupt
425  * context and we can't sleep.
426  */
427 void netfs_read_subreq_progress(struct netfs_io_subrequest *subreq,
428 				bool was_async)
429 {
430 	struct netfs_io_request *rreq = subreq->rreq;
431 
432 	trace_netfs_sreq(subreq, netfs_sreq_trace_progress);
433 
434 	if (subreq->transferred > subreq->consumed &&
435 	    (rreq->origin == NETFS_READAHEAD ||
436 	     rreq->origin == NETFS_READPAGE ||
437 	     rreq->origin == NETFS_READ_FOR_WRITE)) {
438 		netfs_consume_read_data(subreq, was_async);
439 		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
440 	}
441 }
442 EXPORT_SYMBOL(netfs_read_subreq_progress);
443 
444 /**
445  * netfs_read_subreq_terminated - Note the termination of an I/O operation.
446  * @subreq: The I/O request that has terminated.
447  * @error: Error code indicating type of completion.
448  * @was_async: The termination was asynchronous
449  *
450  * This tells the read helper that a contributory I/O operation has terminated,
451  * one way or another, and that it should integrate the results.
452  *
453  * The caller indicates the outcome of the operation through @error, supplying
454  * 0 to indicate a successful or retryable transfer (if NETFS_SREQ_NEED_RETRY
455  * is set) or a negative error code.  The helper will look after reissuing I/O
456  * operations as appropriate and writing downloaded data to the cache.
457  *
458  * Before calling, the filesystem should update subreq->transferred to track
459  * the amount of data copied into the output buffer.
460  *
461  * If @was_async is true, the caller might be running in softirq or interrupt
462  * context and we can't sleep.
463  */
464 void netfs_read_subreq_terminated(struct netfs_io_subrequest *subreq,
465 				  int error, bool was_async)
466 {
467 	struct netfs_io_request *rreq = subreq->rreq;
468 
469 	switch (subreq->source) {
470 	case NETFS_READ_FROM_CACHE:
471 		netfs_stat(&netfs_n_rh_read_done);
472 		break;
473 	case NETFS_DOWNLOAD_FROM_SERVER:
474 		netfs_stat(&netfs_n_rh_download_done);
475 		break;
476 	default:
477 		break;
478 	}
479 
480 	if (rreq->origin != NETFS_DIO_READ) {
481 		/* Collect buffered reads.
482 		 *
483 		 * If the read completed validly short, then we can clear the
484 		 * tail before going on to unlock the folios.
485 		 */
486 		if (error == 0 && subreq->transferred < subreq->len &&
487 		    (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags) ||
488 		     test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags))) {
489 			netfs_clear_unread(subreq);
490 			subreq->transferred = subreq->len;
491 			trace_netfs_sreq(subreq, netfs_sreq_trace_clear);
492 		}
493 		if (subreq->transferred > subreq->consumed &&
494 		    (rreq->origin == NETFS_READAHEAD ||
495 		     rreq->origin == NETFS_READPAGE ||
496 		     rreq->origin == NETFS_READ_FOR_WRITE)) {
497 			netfs_consume_read_data(subreq, was_async);
498 			__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
499 		}
500 		rreq->transferred += subreq->transferred;
501 	}
502 
503 	/* Deal with retry requests, short reads and errors.  If we retry
504 	 * but don't make progress, we abandon the attempt.
505 	 */
506 	if (!error && subreq->transferred < subreq->len) {
507 		if (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags)) {
508 			trace_netfs_sreq(subreq, netfs_sreq_trace_hit_eof);
509 		} else {
510 			trace_netfs_sreq(subreq, netfs_sreq_trace_short);
511 			if (subreq->transferred > subreq->consumed) {
512 				__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
513 				__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
514 				set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
515 			} else if (!__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
516 				__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
517 				set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
518 			} else {
519 				__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
520 				error = -ENODATA;
521 			}
522 		}
523 	}
524 
525 	subreq->error = error;
526 	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
527 
528 	if (unlikely(error < 0)) {
529 		trace_netfs_failure(rreq, subreq, error, netfs_fail_read);
530 		if (subreq->source == NETFS_READ_FROM_CACHE) {
531 			netfs_stat(&netfs_n_rh_read_failed);
532 		} else {
533 			netfs_stat(&netfs_n_rh_download_failed);
534 			set_bit(NETFS_RREQ_FAILED, &rreq->flags);
535 			rreq->error = subreq->error;
536 		}
537 	}
538 
539 	if (atomic_dec_and_test(&rreq->nr_outstanding))
540 		netfs_rreq_terminated(rreq, was_async);
541 
542 	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
543 }
544 EXPORT_SYMBOL(netfs_read_subreq_terminated);
545