xref: /linux/fs/netfs/buffered_write.c (revision f5c31bcf604db54470868f3118a60dc4a9ba8813)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level write support.
3  *
4  * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * Determined write method.  Adjust netfs_folio_traces if this is changed.
18  */
19 enum netfs_how_to_modify {
20 	NETFS_FOLIO_IS_UPTODATE,	/* Folio is uptodate already */
21 	NETFS_JUST_PREFETCH,		/* We have to read the folio anyway */
22 	NETFS_WHOLE_FOLIO_MODIFY,	/* We're going to overwrite the whole folio */
23 	NETFS_MODIFY_AND_CLEAR,		/* We can assume there is no data to be downloaded. */
24 	NETFS_STREAMING_WRITE,		/* Store incomplete data in non-uptodate page. */
25 	NETFS_STREAMING_WRITE_CONT,	/* Continue streaming write. */
26 	NETFS_FLUSH_CONTENT,		/* Flush incompatible content. */
27 };
28 
29 static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq);
30 
31 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
32 {
33 	if (netfs_group && !folio_get_private(folio))
34 		folio_attach_private(folio, netfs_get_group(netfs_group));
35 }
36 
37 #if IS_ENABLED(CONFIG_FSCACHE)
38 static void netfs_folio_start_fscache(bool caching, struct folio *folio)
39 {
40 	if (caching)
41 		folio_start_fscache(folio);
42 }
43 #else
44 static void netfs_folio_start_fscache(bool caching, struct folio *folio)
45 {
46 }
47 #endif
48 
49 /*
50  * Decide how we should modify a folio.  We might be attempting to do
51  * write-streaming, in which case we don't want to a local RMW cycle if we can
52  * avoid it.  If we're doing local caching or content crypto, we award that
53  * priority over avoiding RMW.  If the file is open readably, then we also
54  * assume that we may want to read what we wrote.
55  */
56 static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx,
57 						    struct file *file,
58 						    struct folio *folio,
59 						    void *netfs_group,
60 						    size_t flen,
61 						    size_t offset,
62 						    size_t len,
63 						    bool maybe_trouble)
64 {
65 	struct netfs_folio *finfo = netfs_folio_info(folio);
66 	loff_t pos = folio_file_pos(folio);
67 
68 	_enter("");
69 
70 	if (netfs_folio_group(folio) != netfs_group)
71 		return NETFS_FLUSH_CONTENT;
72 
73 	if (folio_test_uptodate(folio))
74 		return NETFS_FOLIO_IS_UPTODATE;
75 
76 	if (pos >= ctx->zero_point)
77 		return NETFS_MODIFY_AND_CLEAR;
78 
79 	if (!maybe_trouble && offset == 0 && len >= flen)
80 		return NETFS_WHOLE_FOLIO_MODIFY;
81 
82 	if (file->f_mode & FMODE_READ)
83 		goto no_write_streaming;
84 	if (test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
85 		goto no_write_streaming;
86 
87 	if (netfs_is_cache_enabled(ctx)) {
88 		/* We don't want to get a streaming write on a file that loses
89 		 * caching service temporarily because the backing store got
90 		 * culled.
91 		 */
92 		if (!test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
93 			set_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags);
94 		goto no_write_streaming;
95 	}
96 
97 	if (!finfo)
98 		return NETFS_STREAMING_WRITE;
99 
100 	/* We can continue a streaming write only if it continues on from the
101 	 * previous.  If it overlaps, we must flush lest we suffer a partial
102 	 * copy and disjoint dirty regions.
103 	 */
104 	if (offset == finfo->dirty_offset + finfo->dirty_len)
105 		return NETFS_STREAMING_WRITE_CONT;
106 	return NETFS_FLUSH_CONTENT;
107 
108 no_write_streaming:
109 	if (finfo) {
110 		netfs_stat(&netfs_n_wh_wstream_conflict);
111 		return NETFS_FLUSH_CONTENT;
112 	}
113 	return NETFS_JUST_PREFETCH;
114 }
115 
116 /*
117  * Grab a folio for writing and lock it.  Attempt to allocate as large a folio
118  * as possible to hold as much of the remaining length as possible in one go.
119  */
120 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
121 						loff_t pos, size_t part)
122 {
123 	pgoff_t index = pos / PAGE_SIZE;
124 	fgf_t fgp_flags = FGP_WRITEBEGIN;
125 
126 	if (mapping_large_folio_support(mapping))
127 		fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
128 
129 	return __filemap_get_folio(mapping, index, fgp_flags,
130 				   mapping_gfp_mask(mapping));
131 }
132 
133 /**
134  * netfs_perform_write - Copy data into the pagecache.
135  * @iocb: The operation parameters
136  * @iter: The source buffer
137  * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
138  *
139  * Copy data into pagecache pages attached to the inode specified by @iocb.
140  * The caller must hold appropriate inode locks.
141  *
142  * Dirty pages are tagged with a netfs_folio struct if they're not up to date
143  * to indicate the range modified.  Dirty pages may also be tagged with a
144  * netfs-specific grouping such that data from an old group gets flushed before
145  * a new one is started.
146  */
147 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
148 			    struct netfs_group *netfs_group)
149 {
150 	struct file *file = iocb->ki_filp;
151 	struct inode *inode = file_inode(file);
152 	struct address_space *mapping = inode->i_mapping;
153 	struct netfs_inode *ctx = netfs_inode(inode);
154 	struct writeback_control wbc = {
155 		.sync_mode	= WB_SYNC_NONE,
156 		.for_sync	= true,
157 		.nr_to_write	= LONG_MAX,
158 		.range_start	= iocb->ki_pos,
159 		.range_end	= iocb->ki_pos + iter->count,
160 	};
161 	struct netfs_io_request *wreq = NULL;
162 	struct netfs_folio *finfo;
163 	struct folio *folio;
164 	enum netfs_how_to_modify howto;
165 	enum netfs_folio_trace trace;
166 	unsigned int bdp_flags = (iocb->ki_flags & IOCB_SYNC) ? 0: BDP_ASYNC;
167 	ssize_t written = 0, ret;
168 	loff_t i_size, pos = iocb->ki_pos, from, to;
169 	size_t max_chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
170 	bool maybe_trouble = false;
171 
172 	if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
173 		     iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
174 	    ) {
175 		if (pos < i_size_read(inode)) {
176 			ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
177 			if (ret < 0) {
178 				goto out;
179 			}
180 		}
181 
182 		wbc_attach_fdatawrite_inode(&wbc, mapping->host);
183 
184 		wreq = netfs_begin_writethrough(iocb, iter->count);
185 		if (IS_ERR(wreq)) {
186 			wbc_detach_inode(&wbc);
187 			ret = PTR_ERR(wreq);
188 			wreq = NULL;
189 			goto out;
190 		}
191 		if (!is_sync_kiocb(iocb))
192 			wreq->iocb = iocb;
193 		wreq->cleanup = netfs_cleanup_buffered_write;
194 	}
195 
196 	do {
197 		size_t flen;
198 		size_t offset;	/* Offset into pagecache folio */
199 		size_t part;	/* Bytes to write to folio */
200 		size_t copied;	/* Bytes copied from user */
201 
202 		ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
203 		if (unlikely(ret < 0))
204 			break;
205 
206 		offset = pos & (max_chunk - 1);
207 		part = min(max_chunk - offset, iov_iter_count(iter));
208 
209 		/* Bring in the user pages that we will copy from _first_ lest
210 		 * we hit a nasty deadlock on copying from the same page as
211 		 * we're writing to, without it being marked uptodate.
212 		 *
213 		 * Not only is this an optimisation, but it is also required to
214 		 * check that the address is actually valid, when atomic
215 		 * usercopies are used below.
216 		 *
217 		 * We rely on the page being held onto long enough by the LRU
218 		 * that we can grab it below if this causes it to be read.
219 		 */
220 		ret = -EFAULT;
221 		if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
222 			break;
223 
224 		folio = netfs_grab_folio_for_write(mapping, pos, part);
225 		if (IS_ERR(folio)) {
226 			ret = PTR_ERR(folio);
227 			break;
228 		}
229 
230 		flen = folio_size(folio);
231 		offset = pos & (flen - 1);
232 		part = min_t(size_t, flen - offset, part);
233 
234 		if (signal_pending(current)) {
235 			ret = written ? -EINTR : -ERESTARTSYS;
236 			goto error_folio_unlock;
237 		}
238 
239 		/* See if we need to prefetch the area we're going to modify.
240 		 * We need to do this before we get a lock on the folio in case
241 		 * there's more than one writer competing for the same cache
242 		 * block.
243 		 */
244 		howto = netfs_how_to_modify(ctx, file, folio, netfs_group,
245 					    flen, offset, part, maybe_trouble);
246 		_debug("howto %u", howto);
247 		switch (howto) {
248 		case NETFS_JUST_PREFETCH:
249 			ret = netfs_prefetch_for_write(file, folio, offset, part);
250 			if (ret < 0) {
251 				_debug("prefetch = %zd", ret);
252 				goto error_folio_unlock;
253 			}
254 			break;
255 		case NETFS_FOLIO_IS_UPTODATE:
256 		case NETFS_WHOLE_FOLIO_MODIFY:
257 		case NETFS_STREAMING_WRITE_CONT:
258 			break;
259 		case NETFS_MODIFY_AND_CLEAR:
260 			zero_user_segment(&folio->page, 0, offset);
261 			break;
262 		case NETFS_STREAMING_WRITE:
263 			ret = -EIO;
264 			if (WARN_ON(folio_get_private(folio)))
265 				goto error_folio_unlock;
266 			break;
267 		case NETFS_FLUSH_CONTENT:
268 			trace_netfs_folio(folio, netfs_flush_content);
269 			from = folio_pos(folio);
270 			to = from + folio_size(folio) - 1;
271 			folio_unlock(folio);
272 			folio_put(folio);
273 			ret = filemap_write_and_wait_range(mapping, from, to);
274 			if (ret < 0)
275 				goto error_folio_unlock;
276 			continue;
277 		}
278 
279 		if (mapping_writably_mapped(mapping))
280 			flush_dcache_folio(folio);
281 
282 		copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
283 
284 		flush_dcache_folio(folio);
285 
286 		/* Deal with a (partially) failed copy */
287 		if (copied == 0) {
288 			ret = -EFAULT;
289 			goto error_folio_unlock;
290 		}
291 
292 		trace = (enum netfs_folio_trace)howto;
293 		switch (howto) {
294 		case NETFS_FOLIO_IS_UPTODATE:
295 		case NETFS_JUST_PREFETCH:
296 			netfs_set_group(folio, netfs_group);
297 			break;
298 		case NETFS_MODIFY_AND_CLEAR:
299 			zero_user_segment(&folio->page, offset + copied, flen);
300 			netfs_set_group(folio, netfs_group);
301 			folio_mark_uptodate(folio);
302 			break;
303 		case NETFS_WHOLE_FOLIO_MODIFY:
304 			if (unlikely(copied < part)) {
305 				maybe_trouble = true;
306 				iov_iter_revert(iter, copied);
307 				copied = 0;
308 				goto retry;
309 			}
310 			netfs_set_group(folio, netfs_group);
311 			folio_mark_uptodate(folio);
312 			break;
313 		case NETFS_STREAMING_WRITE:
314 			if (offset == 0 && copied == flen) {
315 				netfs_set_group(folio, netfs_group);
316 				folio_mark_uptodate(folio);
317 				trace = netfs_streaming_filled_page;
318 				break;
319 			}
320 			finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
321 			if (!finfo) {
322 				iov_iter_revert(iter, copied);
323 				ret = -ENOMEM;
324 				goto error_folio_unlock;
325 			}
326 			finfo->netfs_group = netfs_get_group(netfs_group);
327 			finfo->dirty_offset = offset;
328 			finfo->dirty_len = copied;
329 			folio_attach_private(folio, (void *)((unsigned long)finfo |
330 							     NETFS_FOLIO_INFO));
331 			break;
332 		case NETFS_STREAMING_WRITE_CONT:
333 			finfo = netfs_folio_info(folio);
334 			finfo->dirty_len += copied;
335 			if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
336 				if (finfo->netfs_group)
337 					folio_change_private(folio, finfo->netfs_group);
338 				else
339 					folio_detach_private(folio);
340 				folio_mark_uptodate(folio);
341 				kfree(finfo);
342 				trace = netfs_streaming_cont_filled_page;
343 			}
344 			break;
345 		default:
346 			WARN(true, "Unexpected modify type %u ix=%lx\n",
347 			     howto, folio->index);
348 			ret = -EIO;
349 			goto error_folio_unlock;
350 		}
351 
352 		trace_netfs_folio(folio, trace);
353 
354 		/* Update the inode size if we moved the EOF marker */
355 		i_size = i_size_read(inode);
356 		pos += copied;
357 		if (pos > i_size) {
358 			if (ctx->ops->update_i_size) {
359 				ctx->ops->update_i_size(inode, pos);
360 			} else {
361 				i_size_write(inode, pos);
362 #if IS_ENABLED(CONFIG_FSCACHE)
363 				fscache_update_cookie(ctx->cache, NULL, &pos);
364 #endif
365 			}
366 		}
367 		written += copied;
368 
369 		if (likely(!wreq)) {
370 			folio_mark_dirty(folio);
371 		} else {
372 			if (folio_test_dirty(folio))
373 				/* Sigh.  mmap. */
374 				folio_clear_dirty_for_io(folio);
375 			/* We make multiple writes to the folio... */
376 			if (!folio_test_writeback(folio)) {
377 				folio_wait_fscache(folio);
378 				folio_start_writeback(folio);
379 				folio_start_fscache(folio);
380 				if (wreq->iter.count == 0)
381 					trace_netfs_folio(folio, netfs_folio_trace_wthru);
382 				else
383 					trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
384 			}
385 			netfs_advance_writethrough(wreq, copied,
386 						   offset + copied == flen);
387 		}
388 	retry:
389 		folio_unlock(folio);
390 		folio_put(folio);
391 		folio = NULL;
392 
393 		cond_resched();
394 	} while (iov_iter_count(iter));
395 
396 out:
397 	if (unlikely(wreq)) {
398 		ret = netfs_end_writethrough(wreq, iocb);
399 		wbc_detach_inode(&wbc);
400 		if (ret == -EIOCBQUEUED)
401 			return ret;
402 	}
403 
404 	iocb->ki_pos += written;
405 	_leave(" = %zd [%zd]", written, ret);
406 	return written ? written : ret;
407 
408 error_folio_unlock:
409 	folio_unlock(folio);
410 	folio_put(folio);
411 	goto out;
412 }
413 EXPORT_SYMBOL(netfs_perform_write);
414 
415 /**
416  * netfs_buffered_write_iter_locked - write data to a file
417  * @iocb:	IO state structure (file, offset, etc.)
418  * @from:	iov_iter with data to write
419  * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
420  *
421  * This function does all the work needed for actually writing data to a
422  * file. It does all basic checks, removes SUID from the file, updates
423  * modification times and calls proper subroutines depending on whether we
424  * do direct IO or a standard buffered write.
425  *
426  * The caller must hold appropriate locks around this function and have called
427  * generic_write_checks() already.  The caller is also responsible for doing
428  * any necessary syncing afterwards.
429  *
430  * This function does *not* take care of syncing data in case of O_SYNC write.
431  * A caller has to handle it. This is mainly due to the fact that we want to
432  * avoid syncing under i_rwsem.
433  *
434  * Return:
435  * * number of bytes written, even for truncated writes
436  * * negative error code if no data has been written at all
437  */
438 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
439 					 struct netfs_group *netfs_group)
440 {
441 	struct file *file = iocb->ki_filp;
442 	ssize_t ret;
443 
444 	trace_netfs_write_iter(iocb, from);
445 
446 	ret = file_remove_privs(file);
447 	if (ret)
448 		return ret;
449 
450 	ret = file_update_time(file);
451 	if (ret)
452 		return ret;
453 
454 	return netfs_perform_write(iocb, from, netfs_group);
455 }
456 EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
457 
458 /**
459  * netfs_file_write_iter - write data to a file
460  * @iocb: IO state structure
461  * @from: iov_iter with data to write
462  *
463  * Perform a write to a file, writing into the pagecache if possible and doing
464  * an unbuffered write instead if not.
465  *
466  * Return:
467  * * Negative error code if no data has been written at all of
468  *   vfs_fsync_range() failed for a synchronous write
469  * * Number of bytes written, even for truncated writes
470  */
471 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
472 {
473 	struct file *file = iocb->ki_filp;
474 	struct inode *inode = file->f_mapping->host;
475 	struct netfs_inode *ictx = netfs_inode(inode);
476 	ssize_t ret;
477 
478 	_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
479 
480 	if (!iov_iter_count(from))
481 		return 0;
482 
483 	if ((iocb->ki_flags & IOCB_DIRECT) ||
484 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
485 		return netfs_unbuffered_write_iter(iocb, from);
486 
487 	ret = netfs_start_io_write(inode);
488 	if (ret < 0)
489 		return ret;
490 
491 	ret = generic_write_checks(iocb, from);
492 	if (ret > 0)
493 		ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
494 	netfs_end_io_write(inode);
495 	if (ret > 0)
496 		ret = generic_write_sync(iocb, ret);
497 	return ret;
498 }
499 EXPORT_SYMBOL(netfs_file_write_iter);
500 
501 /*
502  * Notification that a previously read-only page is about to become writable.
503  * Note that the caller indicates a single page of a multipage folio.
504  */
505 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
506 {
507 	struct folio *folio = page_folio(vmf->page);
508 	struct file *file = vmf->vma->vm_file;
509 	struct inode *inode = file_inode(file);
510 	vm_fault_t ret = VM_FAULT_RETRY;
511 	int err;
512 
513 	_enter("%lx", folio->index);
514 
515 	sb_start_pagefault(inode->i_sb);
516 
517 	if (folio_wait_writeback_killable(folio))
518 		goto out;
519 
520 	if (folio_lock_killable(folio) < 0)
521 		goto out;
522 
523 	/* Can we see a streaming write here? */
524 	if (WARN_ON(!folio_test_uptodate(folio))) {
525 		ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED;
526 		goto out;
527 	}
528 
529 	if (netfs_folio_group(folio) != netfs_group) {
530 		folio_unlock(folio);
531 		err = filemap_fdatawait_range(inode->i_mapping,
532 					      folio_pos(folio),
533 					      folio_pos(folio) + folio_size(folio));
534 		switch (err) {
535 		case 0:
536 			ret = VM_FAULT_RETRY;
537 			goto out;
538 		case -ENOMEM:
539 			ret = VM_FAULT_OOM;
540 			goto out;
541 		default:
542 			ret = VM_FAULT_SIGBUS;
543 			goto out;
544 		}
545 	}
546 
547 	if (folio_test_dirty(folio))
548 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
549 	else
550 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
551 	netfs_set_group(folio, netfs_group);
552 	file_update_time(file);
553 	ret = VM_FAULT_LOCKED;
554 out:
555 	sb_end_pagefault(inode->i_sb);
556 	return ret;
557 }
558 EXPORT_SYMBOL(netfs_page_mkwrite);
559 
560 /*
561  * Kill all the pages in the given range
562  */
563 static void netfs_kill_pages(struct address_space *mapping,
564 			     loff_t start, loff_t len)
565 {
566 	struct folio *folio;
567 	pgoff_t index = start / PAGE_SIZE;
568 	pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
569 
570 	_enter("%llx-%llx", start, start + len - 1);
571 
572 	do {
573 		_debug("kill %lx (to %lx)", index, last);
574 
575 		folio = filemap_get_folio(mapping, index);
576 		if (IS_ERR(folio)) {
577 			next = index + 1;
578 			continue;
579 		}
580 
581 		next = folio_next_index(folio);
582 
583 		trace_netfs_folio(folio, netfs_folio_trace_kill);
584 		folio_clear_uptodate(folio);
585 		if (folio_test_fscache(folio))
586 			folio_end_fscache(folio);
587 		folio_end_writeback(folio);
588 		folio_lock(folio);
589 		generic_error_remove_folio(mapping, folio);
590 		folio_unlock(folio);
591 		folio_put(folio);
592 
593 	} while (index = next, index <= last);
594 
595 	_leave("");
596 }
597 
598 /*
599  * Redirty all the pages in a given range.
600  */
601 static void netfs_redirty_pages(struct address_space *mapping,
602 				loff_t start, loff_t len)
603 {
604 	struct folio *folio;
605 	pgoff_t index = start / PAGE_SIZE;
606 	pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
607 
608 	_enter("%llx-%llx", start, start + len - 1);
609 
610 	do {
611 		_debug("redirty %llx @%llx", len, start);
612 
613 		folio = filemap_get_folio(mapping, index);
614 		if (IS_ERR(folio)) {
615 			next = index + 1;
616 			continue;
617 		}
618 
619 		next = folio_next_index(folio);
620 		trace_netfs_folio(folio, netfs_folio_trace_redirty);
621 		filemap_dirty_folio(mapping, folio);
622 		if (folio_test_fscache(folio))
623 			folio_end_fscache(folio);
624 		folio_end_writeback(folio);
625 		folio_put(folio);
626 	} while (index = next, index <= last);
627 
628 	balance_dirty_pages_ratelimited(mapping);
629 
630 	_leave("");
631 }
632 
633 /*
634  * Completion of write to server
635  */
636 static void netfs_pages_written_back(struct netfs_io_request *wreq)
637 {
638 	struct address_space *mapping = wreq->mapping;
639 	struct netfs_folio *finfo;
640 	struct netfs_group *group = NULL;
641 	struct folio *folio;
642 	pgoff_t last;
643 	int gcount = 0;
644 
645 	XA_STATE(xas, &mapping->i_pages, wreq->start / PAGE_SIZE);
646 
647 	_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
648 
649 	rcu_read_lock();
650 
651 	last = (wreq->start + wreq->len - 1) / PAGE_SIZE;
652 	xas_for_each(&xas, folio, last) {
653 		WARN(!folio_test_writeback(folio),
654 		     "bad %zx @%llx page %lx %lx\n",
655 		     wreq->len, wreq->start, folio->index, last);
656 
657 		if ((finfo = netfs_folio_info(folio))) {
658 			/* Streaming writes cannot be redirtied whilst under
659 			 * writeback, so discard the streaming record.
660 			 */
661 			folio_detach_private(folio);
662 			group = finfo->netfs_group;
663 			gcount++;
664 			trace_netfs_folio(folio, netfs_folio_trace_clear_s);
665 			kfree(finfo);
666 		} else if ((group = netfs_folio_group(folio))) {
667 			/* Need to detach the group pointer if the page didn't
668 			 * get redirtied.  If it has been redirtied, then it
669 			 * must be within the same group.
670 			 */
671 			if (folio_test_dirty(folio)) {
672 				trace_netfs_folio(folio, netfs_folio_trace_redirtied);
673 				goto end_wb;
674 			}
675 			if (folio_trylock(folio)) {
676 				if (!folio_test_dirty(folio)) {
677 					folio_detach_private(folio);
678 					gcount++;
679 					trace_netfs_folio(folio, netfs_folio_trace_clear_g);
680 				} else {
681 					trace_netfs_folio(folio, netfs_folio_trace_redirtied);
682 				}
683 				folio_unlock(folio);
684 				goto end_wb;
685 			}
686 
687 			xas_pause(&xas);
688 			rcu_read_unlock();
689 			folio_lock(folio);
690 			if (!folio_test_dirty(folio)) {
691 				folio_detach_private(folio);
692 				gcount++;
693 				trace_netfs_folio(folio, netfs_folio_trace_clear_g);
694 			} else {
695 				trace_netfs_folio(folio, netfs_folio_trace_redirtied);
696 			}
697 			folio_unlock(folio);
698 			rcu_read_lock();
699 		} else {
700 			trace_netfs_folio(folio, netfs_folio_trace_clear);
701 		}
702 	end_wb:
703 		if (folio_test_fscache(folio))
704 			folio_end_fscache(folio);
705 		xas_advance(&xas, folio_next_index(folio) - 1);
706 		folio_end_writeback(folio);
707 	}
708 
709 	rcu_read_unlock();
710 	netfs_put_group_many(group, gcount);
711 	_leave("");
712 }
713 
714 /*
715  * Deal with the disposition of the folios that are under writeback to close
716  * out the operation.
717  */
718 static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq)
719 {
720 	struct address_space *mapping = wreq->mapping;
721 
722 	_enter("");
723 
724 	switch (wreq->error) {
725 	case 0:
726 		netfs_pages_written_back(wreq);
727 		break;
728 
729 	default:
730 		pr_notice("R=%08x Unexpected error %d\n", wreq->debug_id, wreq->error);
731 		fallthrough;
732 	case -EACCES:
733 	case -EPERM:
734 	case -ENOKEY:
735 	case -EKEYEXPIRED:
736 	case -EKEYREJECTED:
737 	case -EKEYREVOKED:
738 	case -ENETRESET:
739 	case -EDQUOT:
740 	case -ENOSPC:
741 		netfs_redirty_pages(mapping, wreq->start, wreq->len);
742 		break;
743 
744 	case -EROFS:
745 	case -EIO:
746 	case -EREMOTEIO:
747 	case -EFBIG:
748 	case -ENOENT:
749 	case -ENOMEDIUM:
750 	case -ENXIO:
751 		netfs_kill_pages(mapping, wreq->start, wreq->len);
752 		break;
753 	}
754 
755 	if (wreq->error)
756 		mapping_set_error(mapping, wreq->error);
757 	if (wreq->netfs_ops->done)
758 		wreq->netfs_ops->done(wreq);
759 }
760 
761 /*
762  * Extend the region to be written back to include subsequent contiguously
763  * dirty pages if possible, but don't sleep while doing so.
764  *
765  * If this page holds new content, then we can include filler zeros in the
766  * writeback.
767  */
768 static void netfs_extend_writeback(struct address_space *mapping,
769 				   struct netfs_group *group,
770 				   struct xa_state *xas,
771 				   long *_count,
772 				   loff_t start,
773 				   loff_t max_len,
774 				   bool caching,
775 				   size_t *_len,
776 				   size_t *_top)
777 {
778 	struct netfs_folio *finfo;
779 	struct folio_batch fbatch;
780 	struct folio *folio;
781 	unsigned int i;
782 	pgoff_t index = (start + *_len) / PAGE_SIZE;
783 	size_t len;
784 	void *priv;
785 	bool stop = true;
786 
787 	folio_batch_init(&fbatch);
788 
789 	do {
790 		/* Firstly, we gather up a batch of contiguous dirty pages
791 		 * under the RCU read lock - but we can't clear the dirty flags
792 		 * there if any of those pages are mapped.
793 		 */
794 		rcu_read_lock();
795 
796 		xas_for_each(xas, folio, ULONG_MAX) {
797 			stop = true;
798 			if (xas_retry(xas, folio))
799 				continue;
800 			if (xa_is_value(folio))
801 				break;
802 			if (folio->index != index) {
803 				xas_reset(xas);
804 				break;
805 			}
806 
807 			if (!folio_try_get_rcu(folio)) {
808 				xas_reset(xas);
809 				continue;
810 			}
811 
812 			/* Has the folio moved or been split? */
813 			if (unlikely(folio != xas_reload(xas))) {
814 				folio_put(folio);
815 				xas_reset(xas);
816 				break;
817 			}
818 
819 			if (!folio_trylock(folio)) {
820 				folio_put(folio);
821 				xas_reset(xas);
822 				break;
823 			}
824 			if (!folio_test_dirty(folio) ||
825 			    folio_test_writeback(folio) ||
826 			    folio_test_fscache(folio)) {
827 				folio_unlock(folio);
828 				folio_put(folio);
829 				xas_reset(xas);
830 				break;
831 			}
832 
833 			stop = false;
834 			len = folio_size(folio);
835 			priv = folio_get_private(folio);
836 			if ((const struct netfs_group *)priv != group) {
837 				stop = true;
838 				finfo = netfs_folio_info(folio);
839 				if (finfo->netfs_group != group ||
840 				    finfo->dirty_offset > 0) {
841 					folio_unlock(folio);
842 					folio_put(folio);
843 					xas_reset(xas);
844 					break;
845 				}
846 				len = finfo->dirty_len;
847 			}
848 
849 			*_top += folio_size(folio);
850 			index += folio_nr_pages(folio);
851 			*_count -= folio_nr_pages(folio);
852 			*_len += len;
853 			if (*_len >= max_len || *_count <= 0)
854 				stop = true;
855 
856 			if (!folio_batch_add(&fbatch, folio))
857 				break;
858 			if (stop)
859 				break;
860 		}
861 
862 		xas_pause(xas);
863 		rcu_read_unlock();
864 
865 		/* Now, if we obtained any folios, we can shift them to being
866 		 * writable and mark them for caching.
867 		 */
868 		if (!folio_batch_count(&fbatch))
869 			break;
870 
871 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
872 			folio = fbatch.folios[i];
873 			trace_netfs_folio(folio, netfs_folio_trace_store_plus);
874 
875 			if (!folio_clear_dirty_for_io(folio))
876 				BUG();
877 			folio_start_writeback(folio);
878 			netfs_folio_start_fscache(caching, folio);
879 			folio_unlock(folio);
880 		}
881 
882 		folio_batch_release(&fbatch);
883 		cond_resched();
884 	} while (!stop);
885 }
886 
887 /*
888  * Synchronously write back the locked page and any subsequent non-locked dirty
889  * pages.
890  */
891 static ssize_t netfs_write_back_from_locked_folio(struct address_space *mapping,
892 						  struct writeback_control *wbc,
893 						  struct netfs_group *group,
894 						  struct xa_state *xas,
895 						  struct folio *folio,
896 						  unsigned long long start,
897 						  unsigned long long end)
898 {
899 	struct netfs_io_request *wreq;
900 	struct netfs_folio *finfo;
901 	struct netfs_inode *ctx = netfs_inode(mapping->host);
902 	unsigned long long i_size = i_size_read(&ctx->inode);
903 	size_t len, max_len;
904 	bool caching = netfs_is_cache_enabled(ctx);
905 	long count = wbc->nr_to_write;
906 	int ret;
907 
908 	_enter(",%lx,%llx-%llx,%u", folio->index, start, end, caching);
909 
910 	wreq = netfs_alloc_request(mapping, NULL, start, folio_size(folio),
911 				   NETFS_WRITEBACK);
912 	if (IS_ERR(wreq)) {
913 		folio_unlock(folio);
914 		return PTR_ERR(wreq);
915 	}
916 
917 	if (!folio_clear_dirty_for_io(folio))
918 		BUG();
919 	folio_start_writeback(folio);
920 	netfs_folio_start_fscache(caching, folio);
921 
922 	count -= folio_nr_pages(folio);
923 
924 	/* Find all consecutive lockable dirty pages that have contiguous
925 	 * written regions, stopping when we find a page that is not
926 	 * immediately lockable, is not dirty or is missing, or we reach the
927 	 * end of the range.
928 	 */
929 	trace_netfs_folio(folio, netfs_folio_trace_store);
930 
931 	len = wreq->len;
932 	finfo = netfs_folio_info(folio);
933 	if (finfo) {
934 		start += finfo->dirty_offset;
935 		if (finfo->dirty_offset + finfo->dirty_len != len) {
936 			len = finfo->dirty_len;
937 			goto cant_expand;
938 		}
939 		len = finfo->dirty_len;
940 	}
941 
942 	if (start < i_size) {
943 		/* Trim the write to the EOF; the extra data is ignored.  Also
944 		 * put an upper limit on the size of a single storedata op.
945 		 */
946 		max_len = 65536 * 4096;
947 		max_len = min_t(unsigned long long, max_len, end - start + 1);
948 		max_len = min_t(unsigned long long, max_len, i_size - start);
949 
950 		if (len < max_len)
951 			netfs_extend_writeback(mapping, group, xas, &count, start,
952 					       max_len, caching, &len, &wreq->upper_len);
953 	}
954 
955 cant_expand:
956 	len = min_t(unsigned long long, len, i_size - start);
957 
958 	/* We now have a contiguous set of dirty pages, each with writeback
959 	 * set; the first page is still locked at this point, but all the rest
960 	 * have been unlocked.
961 	 */
962 	folio_unlock(folio);
963 	wreq->start = start;
964 	wreq->len = len;
965 
966 	if (start < i_size) {
967 		_debug("write back %zx @%llx [%llx]", len, start, i_size);
968 
969 		/* Speculatively write to the cache.  We have to fix this up
970 		 * later if the store fails.
971 		 */
972 		wreq->cleanup = netfs_cleanup_buffered_write;
973 
974 		iov_iter_xarray(&wreq->iter, ITER_SOURCE, &mapping->i_pages, start,
975 				wreq->upper_len);
976 		__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
977 		ret = netfs_begin_write(wreq, true, netfs_write_trace_writeback);
978 		if (ret == 0 || ret == -EIOCBQUEUED)
979 			wbc->nr_to_write -= len / PAGE_SIZE;
980 	} else {
981 		_debug("write discard %zx @%llx [%llx]", len, start, i_size);
982 
983 		/* The dirty region was entirely beyond the EOF. */
984 		fscache_clear_page_bits(mapping, start, len, caching);
985 		netfs_pages_written_back(wreq);
986 		ret = 0;
987 	}
988 
989 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
990 	_leave(" = 1");
991 	return 1;
992 }
993 
994 /*
995  * Write a region of pages back to the server
996  */
997 static ssize_t netfs_writepages_begin(struct address_space *mapping,
998 				      struct writeback_control *wbc,
999 				      struct netfs_group *group,
1000 				      struct xa_state *xas,
1001 				      unsigned long long *_start,
1002 				      unsigned long long end)
1003 {
1004 	const struct netfs_folio *finfo;
1005 	struct folio *folio;
1006 	unsigned long long start = *_start;
1007 	ssize_t ret;
1008 	void *priv;
1009 	int skips = 0;
1010 
1011 	_enter("%llx,%llx,", start, end);
1012 
1013 search_again:
1014 	/* Find the first dirty page in the group. */
1015 	rcu_read_lock();
1016 
1017 	for (;;) {
1018 		folio = xas_find_marked(xas, end / PAGE_SIZE, PAGECACHE_TAG_DIRTY);
1019 		if (xas_retry(xas, folio) || xa_is_value(folio))
1020 			continue;
1021 		if (!folio)
1022 			break;
1023 
1024 		if (!folio_try_get_rcu(folio)) {
1025 			xas_reset(xas);
1026 			continue;
1027 		}
1028 
1029 		if (unlikely(folio != xas_reload(xas))) {
1030 			folio_put(folio);
1031 			xas_reset(xas);
1032 			continue;
1033 		}
1034 
1035 		/* Skip any dirty folio that's not in the group of interest. */
1036 		priv = folio_get_private(folio);
1037 		if ((const struct netfs_group *)priv != group) {
1038 			finfo = netfs_folio_info(folio);
1039 			if (finfo->netfs_group != group) {
1040 				folio_put(folio);
1041 				continue;
1042 			}
1043 		}
1044 
1045 		xas_pause(xas);
1046 		break;
1047 	}
1048 	rcu_read_unlock();
1049 	if (!folio)
1050 		return 0;
1051 
1052 	start = folio_pos(folio); /* May regress with THPs */
1053 
1054 	_debug("wback %lx", folio->index);
1055 
1056 	/* At this point we hold neither the i_pages lock nor the page lock:
1057 	 * the page may be truncated or invalidated (changing page->mapping to
1058 	 * NULL), or even swizzled back from swapper_space to tmpfs file
1059 	 * mapping
1060 	 */
1061 lock_again:
1062 	if (wbc->sync_mode != WB_SYNC_NONE) {
1063 		ret = folio_lock_killable(folio);
1064 		if (ret < 0)
1065 			return ret;
1066 	} else {
1067 		if (!folio_trylock(folio))
1068 			goto search_again;
1069 	}
1070 
1071 	if (folio->mapping != mapping ||
1072 	    !folio_test_dirty(folio)) {
1073 		start += folio_size(folio);
1074 		folio_unlock(folio);
1075 		goto search_again;
1076 	}
1077 
1078 	if (folio_test_writeback(folio) ||
1079 	    folio_test_fscache(folio)) {
1080 		folio_unlock(folio);
1081 		if (wbc->sync_mode != WB_SYNC_NONE) {
1082 			folio_wait_writeback(folio);
1083 #ifdef CONFIG_FSCACHE
1084 			folio_wait_fscache(folio);
1085 #endif
1086 			goto lock_again;
1087 		}
1088 
1089 		start += folio_size(folio);
1090 		if (wbc->sync_mode == WB_SYNC_NONE) {
1091 			if (skips >= 5 || need_resched()) {
1092 				ret = 0;
1093 				goto out;
1094 			}
1095 			skips++;
1096 		}
1097 		goto search_again;
1098 	}
1099 
1100 	ret = netfs_write_back_from_locked_folio(mapping, wbc, group, xas,
1101 						 folio, start, end);
1102 out:
1103 	if (ret > 0)
1104 		*_start = start + ret;
1105 	_leave(" = %zd [%llx]", ret, *_start);
1106 	return ret;
1107 }
1108 
1109 /*
1110  * Write a region of pages back to the server
1111  */
1112 static int netfs_writepages_region(struct address_space *mapping,
1113 				   struct writeback_control *wbc,
1114 				   struct netfs_group *group,
1115 				   unsigned long long *_start,
1116 				   unsigned long long end)
1117 {
1118 	ssize_t ret;
1119 
1120 	XA_STATE(xas, &mapping->i_pages, *_start / PAGE_SIZE);
1121 
1122 	do {
1123 		ret = netfs_writepages_begin(mapping, wbc, group, &xas,
1124 					     _start, end);
1125 		if (ret > 0 && wbc->nr_to_write > 0)
1126 			cond_resched();
1127 	} while (ret > 0 && wbc->nr_to_write > 0);
1128 
1129 	return ret > 0 ? 0 : ret;
1130 }
1131 
1132 /*
1133  * write some of the pending data back to the server
1134  */
1135 int netfs_writepages(struct address_space *mapping,
1136 		     struct writeback_control *wbc)
1137 {
1138 	struct netfs_group *group = NULL;
1139 	loff_t start, end;
1140 	int ret;
1141 
1142 	_enter("");
1143 
1144 	/* We have to be careful as we can end up racing with setattr()
1145 	 * truncating the pagecache since the caller doesn't take a lock here
1146 	 * to prevent it.
1147 	 */
1148 
1149 	if (wbc->range_cyclic && mapping->writeback_index) {
1150 		start = mapping->writeback_index * PAGE_SIZE;
1151 		ret = netfs_writepages_region(mapping, wbc, group,
1152 					      &start, LLONG_MAX);
1153 		if (ret < 0)
1154 			goto out;
1155 
1156 		if (wbc->nr_to_write <= 0) {
1157 			mapping->writeback_index = start / PAGE_SIZE;
1158 			goto out;
1159 		}
1160 
1161 		start = 0;
1162 		end = mapping->writeback_index * PAGE_SIZE;
1163 		mapping->writeback_index = 0;
1164 		ret = netfs_writepages_region(mapping, wbc, group, &start, end);
1165 		if (ret == 0)
1166 			mapping->writeback_index = start / PAGE_SIZE;
1167 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
1168 		start = 0;
1169 		ret = netfs_writepages_region(mapping, wbc, group,
1170 					      &start, LLONG_MAX);
1171 		if (wbc->nr_to_write > 0 && ret == 0)
1172 			mapping->writeback_index = start / PAGE_SIZE;
1173 	} else {
1174 		start = wbc->range_start;
1175 		ret = netfs_writepages_region(mapping, wbc, group,
1176 					      &start, wbc->range_end);
1177 	}
1178 
1179 out:
1180 	_leave(" = %d", ret);
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL(netfs_writepages);
1184 
1185 /*
1186  * Deal with the disposition of a laundered folio.
1187  */
1188 static void netfs_cleanup_launder_folio(struct netfs_io_request *wreq)
1189 {
1190 	if (wreq->error) {
1191 		pr_notice("R=%08x Laundering error %d\n", wreq->debug_id, wreq->error);
1192 		mapping_set_error(wreq->mapping, wreq->error);
1193 	}
1194 }
1195 
1196 /**
1197  * netfs_launder_folio - Clean up a dirty folio that's being invalidated
1198  * @folio: The folio to clean
1199  *
1200  * This is called to write back a folio that's being invalidated when an inode
1201  * is getting torn down.  Ideally, writepages would be used instead.
1202  */
1203 int netfs_launder_folio(struct folio *folio)
1204 {
1205 	struct netfs_io_request *wreq;
1206 	struct address_space *mapping = folio->mapping;
1207 	struct netfs_folio *finfo = netfs_folio_info(folio);
1208 	struct netfs_group *group = netfs_folio_group(folio);
1209 	struct bio_vec bvec;
1210 	unsigned long long i_size = i_size_read(mapping->host);
1211 	unsigned long long start = folio_pos(folio);
1212 	size_t offset = 0, len;
1213 	int ret = 0;
1214 
1215 	if (finfo) {
1216 		offset = finfo->dirty_offset;
1217 		start += offset;
1218 		len = finfo->dirty_len;
1219 	} else {
1220 		len = folio_size(folio);
1221 	}
1222 	len = min_t(unsigned long long, len, i_size - start);
1223 
1224 	wreq = netfs_alloc_request(mapping, NULL, start, len, NETFS_LAUNDER_WRITE);
1225 	if (IS_ERR(wreq)) {
1226 		ret = PTR_ERR(wreq);
1227 		goto out;
1228 	}
1229 
1230 	if (!folio_clear_dirty_for_io(folio))
1231 		goto out_put;
1232 
1233 	trace_netfs_folio(folio, netfs_folio_trace_launder);
1234 
1235 	_debug("launder %llx-%llx", start, start + len - 1);
1236 
1237 	/* Speculatively write to the cache.  We have to fix this up later if
1238 	 * the store fails.
1239 	 */
1240 	wreq->cleanup = netfs_cleanup_launder_folio;
1241 
1242 	bvec_set_folio(&bvec, folio, len, offset);
1243 	iov_iter_bvec(&wreq->iter, ITER_SOURCE, &bvec, 1, len);
1244 	__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
1245 	ret = netfs_begin_write(wreq, true, netfs_write_trace_launder);
1246 
1247 out_put:
1248 	folio_detach_private(folio);
1249 	netfs_put_group(group);
1250 	kfree(finfo);
1251 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
1252 out:
1253 	folio_wait_fscache(folio);
1254 	_leave(" = %d", ret);
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(netfs_launder_folio);
1258