1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Network filesystem high-level buffered write support. 3 * 4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/fs.h> 10 #include <linux/mm.h> 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/pagevec.h> 14 #include "internal.h" 15 16 static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group) 17 { 18 if (netfs_group) 19 folio_attach_private(folio, netfs_get_group(netfs_group)); 20 } 21 22 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group) 23 { 24 void *priv = folio_get_private(folio); 25 26 if (unlikely(priv != netfs_group)) { 27 if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE)) 28 folio_attach_private(folio, netfs_get_group(netfs_group)); 29 else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE) 30 folio_detach_private(folio); 31 } 32 } 33 34 /* 35 * Grab a folio for writing and lock it. Attempt to allocate as large a folio 36 * as possible to hold as much of the remaining length as possible in one go. 37 */ 38 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping, 39 loff_t pos, size_t part) 40 { 41 pgoff_t index = pos / PAGE_SIZE; 42 fgf_t fgp_flags = FGP_WRITEBEGIN; 43 44 if (mapping_large_folio_support(mapping)) 45 fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part); 46 47 return __filemap_get_folio(mapping, index, fgp_flags, 48 mapping_gfp_mask(mapping)); 49 } 50 51 /* 52 * Update i_size and estimate the update to i_blocks to reflect the additional 53 * data written into the pagecache until we can find out from the server what 54 * the values actually are. 55 */ 56 static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode, 57 loff_t i_size, loff_t pos, size_t copied) 58 { 59 blkcnt_t add; 60 size_t gap; 61 62 if (ctx->ops->update_i_size) { 63 ctx->ops->update_i_size(inode, pos); 64 return; 65 } 66 67 i_size_write(inode, pos); 68 #if IS_ENABLED(CONFIG_FSCACHE) 69 fscache_update_cookie(ctx->cache, NULL, &pos); 70 #endif 71 72 gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1)); 73 if (copied > gap) { 74 add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE); 75 76 inode->i_blocks = min_t(blkcnt_t, 77 DIV_ROUND_UP(pos, SECTOR_SIZE), 78 inode->i_blocks + add); 79 } 80 } 81 82 /** 83 * netfs_perform_write - Copy data into the pagecache. 84 * @iocb: The operation parameters 85 * @iter: The source buffer 86 * @netfs_group: Grouping for dirty folios (eg. ceph snaps). 87 * 88 * Copy data into pagecache folios attached to the inode specified by @iocb. 89 * The caller must hold appropriate inode locks. 90 * 91 * Dirty folios are tagged with a netfs_folio struct if they're not up to date 92 * to indicate the range modified. Dirty folios may also be tagged with a 93 * netfs-specific grouping such that data from an old group gets flushed before 94 * a new one is started. 95 */ 96 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter, 97 struct netfs_group *netfs_group) 98 { 99 struct file *file = iocb->ki_filp; 100 struct inode *inode = file_inode(file); 101 struct address_space *mapping = inode->i_mapping; 102 struct netfs_inode *ctx = netfs_inode(inode); 103 struct writeback_control wbc = { 104 .sync_mode = WB_SYNC_NONE, 105 .for_sync = true, 106 .nr_to_write = LONG_MAX, 107 .range_start = iocb->ki_pos, 108 .range_end = iocb->ki_pos + iter->count, 109 }; 110 struct netfs_io_request *wreq = NULL; 111 struct folio *folio = NULL, *writethrough = NULL; 112 unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0; 113 ssize_t written = 0, ret, ret2; 114 loff_t i_size, pos = iocb->ki_pos; 115 size_t max_chunk = mapping_max_folio_size(mapping); 116 bool maybe_trouble = false; 117 118 if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) || 119 iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) 120 ) { 121 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 122 123 ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count); 124 if (ret < 0) { 125 wbc_detach_inode(&wbc); 126 goto out; 127 } 128 129 wreq = netfs_begin_writethrough(iocb, iter->count); 130 if (IS_ERR(wreq)) { 131 wbc_detach_inode(&wbc); 132 ret = PTR_ERR(wreq); 133 wreq = NULL; 134 goto out; 135 } 136 if (!is_sync_kiocb(iocb)) 137 wreq->iocb = iocb; 138 netfs_stat(&netfs_n_wh_writethrough); 139 } else { 140 netfs_stat(&netfs_n_wh_buffered_write); 141 } 142 143 do { 144 struct netfs_folio *finfo; 145 struct netfs_group *group; 146 unsigned long long fpos; 147 size_t flen; 148 size_t offset; /* Offset into pagecache folio */ 149 size_t part; /* Bytes to write to folio */ 150 size_t copied; /* Bytes copied from user */ 151 152 offset = pos & (max_chunk - 1); 153 part = min(max_chunk - offset, iov_iter_count(iter)); 154 155 /* Bring in the user pages that we will copy from _first_ lest 156 * we hit a nasty deadlock on copying from the same page as 157 * we're writing to, without it being marked uptodate. 158 * 159 * Not only is this an optimisation, but it is also required to 160 * check that the address is actually valid, when atomic 161 * usercopies are used below. 162 * 163 * We rely on the page being held onto long enough by the LRU 164 * that we can grab it below if this causes it to be read. 165 */ 166 ret = -EFAULT; 167 if (unlikely(fault_in_iov_iter_readable(iter, part) == part)) 168 break; 169 170 folio = netfs_grab_folio_for_write(mapping, pos, part); 171 if (IS_ERR(folio)) { 172 ret = PTR_ERR(folio); 173 break; 174 } 175 176 flen = folio_size(folio); 177 fpos = folio_pos(folio); 178 offset = pos - fpos; 179 part = min_t(size_t, flen - offset, part); 180 181 /* Wait for writeback to complete. The writeback engine owns 182 * the info in folio->private and may change it until it 183 * removes the WB mark. 184 */ 185 if (folio_get_private(folio) && 186 folio_wait_writeback_killable(folio)) { 187 ret = written ? -EINTR : -ERESTARTSYS; 188 goto error_folio_unlock; 189 } 190 191 if (signal_pending(current)) { 192 ret = written ? -EINTR : -ERESTARTSYS; 193 goto error_folio_unlock; 194 } 195 196 /* Decide how we should modify a folio. We might be attempting 197 * to do write-streaming, in which case we don't want to a 198 * local RMW cycle if we can avoid it. If we're doing local 199 * caching or content crypto, we award that priority over 200 * avoiding RMW. If the file is open readably, then we also 201 * assume that we may want to read what we wrote. 202 */ 203 finfo = netfs_folio_info(folio); 204 group = netfs_folio_group(folio); 205 206 if (unlikely(group != netfs_group) && 207 group != NETFS_FOLIO_COPY_TO_CACHE) 208 goto flush_content; 209 210 if (folio_test_uptodate(folio)) { 211 if (mapping_writably_mapped(mapping)) 212 flush_dcache_folio(folio); 213 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 214 if (unlikely(copied == 0)) 215 goto copy_failed; 216 netfs_set_group(folio, netfs_group); 217 trace_netfs_folio(folio, netfs_folio_is_uptodate); 218 goto copied; 219 } 220 221 /* If the page is above the zero-point then we assume that the 222 * server would just return a block of zeros or a short read if 223 * we try to read it. 224 */ 225 if (fpos >= ctx->zero_point) { 226 folio_zero_segment(folio, 0, offset); 227 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 228 if (unlikely(copied == 0)) 229 goto copy_failed; 230 folio_zero_segment(folio, offset + copied, flen); 231 __netfs_set_group(folio, netfs_group); 232 folio_mark_uptodate(folio); 233 trace_netfs_folio(folio, netfs_modify_and_clear); 234 goto copied; 235 } 236 237 /* See if we can write a whole folio in one go. */ 238 if (!maybe_trouble && offset == 0 && part >= flen) { 239 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 240 if (unlikely(copied == 0)) 241 goto copy_failed; 242 if (unlikely(copied < part)) { 243 maybe_trouble = true; 244 iov_iter_revert(iter, copied); 245 copied = 0; 246 folio_unlock(folio); 247 goto retry; 248 } 249 __netfs_set_group(folio, netfs_group); 250 folio_mark_uptodate(folio); 251 trace_netfs_folio(folio, netfs_whole_folio_modify); 252 goto copied; 253 } 254 255 /* We don't want to do a streaming write on a file that loses 256 * caching service temporarily because the backing store got 257 * culled and we don't really want to get a streaming write on 258 * a file that's open for reading as ->read_folio() then has to 259 * be able to flush it. 260 */ 261 if ((file->f_mode & FMODE_READ) || 262 netfs_is_cache_enabled(ctx)) { 263 if (finfo) { 264 netfs_stat(&netfs_n_wh_wstream_conflict); 265 goto flush_content; 266 } 267 ret = netfs_prefetch_for_write(file, folio, offset, part); 268 if (ret < 0) { 269 _debug("prefetch = %zd", ret); 270 goto error_folio_unlock; 271 } 272 /* Note that copy-to-cache may have been set. */ 273 274 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 275 if (unlikely(copied == 0)) 276 goto copy_failed; 277 netfs_set_group(folio, netfs_group); 278 trace_netfs_folio(folio, netfs_just_prefetch); 279 goto copied; 280 } 281 282 if (!finfo) { 283 ret = -EIO; 284 if (WARN_ON(folio_get_private(folio))) 285 goto error_folio_unlock; 286 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 287 if (unlikely(copied == 0)) 288 goto copy_failed; 289 if (offset == 0 && copied == flen) { 290 __netfs_set_group(folio, netfs_group); 291 folio_mark_uptodate(folio); 292 trace_netfs_folio(folio, netfs_streaming_filled_page); 293 goto copied; 294 } 295 296 finfo = kzalloc(sizeof(*finfo), GFP_KERNEL); 297 if (!finfo) { 298 iov_iter_revert(iter, copied); 299 ret = -ENOMEM; 300 goto error_folio_unlock; 301 } 302 finfo->netfs_group = netfs_get_group(netfs_group); 303 finfo->dirty_offset = offset; 304 finfo->dirty_len = copied; 305 folio_attach_private(folio, (void *)((unsigned long)finfo | 306 NETFS_FOLIO_INFO)); 307 trace_netfs_folio(folio, netfs_streaming_write); 308 goto copied; 309 } 310 311 /* We can continue a streaming write only if it continues on 312 * from the previous. If it overlaps, we must flush lest we 313 * suffer a partial copy and disjoint dirty regions. 314 */ 315 if (offset == finfo->dirty_offset + finfo->dirty_len) { 316 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 317 if (unlikely(copied == 0)) 318 goto copy_failed; 319 finfo->dirty_len += copied; 320 if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) { 321 if (finfo->netfs_group) 322 folio_change_private(folio, finfo->netfs_group); 323 else 324 folio_detach_private(folio); 325 folio_mark_uptodate(folio); 326 kfree(finfo); 327 trace_netfs_folio(folio, netfs_streaming_cont_filled_page); 328 } else { 329 trace_netfs_folio(folio, netfs_streaming_write_cont); 330 } 331 goto copied; 332 } 333 334 /* Incompatible write; flush the folio and try again. */ 335 flush_content: 336 trace_netfs_folio(folio, netfs_flush_content); 337 folio_unlock(folio); 338 folio_put(folio); 339 ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1); 340 if (ret < 0) 341 goto error_folio_unlock; 342 continue; 343 344 copied: 345 flush_dcache_folio(folio); 346 347 /* Update the inode size if we moved the EOF marker */ 348 pos += copied; 349 i_size = i_size_read(inode); 350 if (pos > i_size) 351 netfs_update_i_size(ctx, inode, i_size, pos, copied); 352 written += copied; 353 354 if (likely(!wreq)) { 355 folio_mark_dirty(folio); 356 folio_unlock(folio); 357 } else { 358 netfs_advance_writethrough(wreq, &wbc, folio, copied, 359 offset + copied == flen, 360 &writethrough); 361 /* Folio unlocked */ 362 } 363 retry: 364 folio_put(folio); 365 folio = NULL; 366 367 ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags); 368 if (unlikely(ret < 0)) 369 break; 370 371 cond_resched(); 372 } while (iov_iter_count(iter)); 373 374 out: 375 if (likely(written)) { 376 /* Set indication that ctime and mtime got updated in case 377 * close is deferred. 378 */ 379 set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags); 380 if (unlikely(ctx->ops->post_modify)) 381 ctx->ops->post_modify(inode); 382 } 383 384 if (unlikely(wreq)) { 385 ret2 = netfs_end_writethrough(wreq, &wbc, writethrough); 386 wbc_detach_inode(&wbc); 387 if (ret2 == -EIOCBQUEUED) 388 return ret2; 389 if (ret == 0) 390 ret = ret2; 391 } 392 393 iocb->ki_pos += written; 394 _leave(" = %zd [%zd]", written, ret); 395 return written ? written : ret; 396 397 copy_failed: 398 ret = -EFAULT; 399 error_folio_unlock: 400 folio_unlock(folio); 401 folio_put(folio); 402 goto out; 403 } 404 EXPORT_SYMBOL(netfs_perform_write); 405 406 /** 407 * netfs_buffered_write_iter_locked - write data to a file 408 * @iocb: IO state structure (file, offset, etc.) 409 * @from: iov_iter with data to write 410 * @netfs_group: Grouping for dirty folios (eg. ceph snaps). 411 * 412 * This function does all the work needed for actually writing data to a 413 * file. It does all basic checks, removes SUID from the file, updates 414 * modification times and calls proper subroutines depending on whether we 415 * do direct IO or a standard buffered write. 416 * 417 * The caller must hold appropriate locks around this function and have called 418 * generic_write_checks() already. The caller is also responsible for doing 419 * any necessary syncing afterwards. 420 * 421 * This function does *not* take care of syncing data in case of O_SYNC write. 422 * A caller has to handle it. This is mainly due to the fact that we want to 423 * avoid syncing under i_rwsem. 424 * 425 * Return: 426 * * number of bytes written, even for truncated writes 427 * * negative error code if no data has been written at all 428 */ 429 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from, 430 struct netfs_group *netfs_group) 431 { 432 struct file *file = iocb->ki_filp; 433 ssize_t ret; 434 435 trace_netfs_write_iter(iocb, from); 436 437 ret = file_remove_privs(file); 438 if (ret) 439 return ret; 440 441 ret = file_update_time(file); 442 if (ret) 443 return ret; 444 445 return netfs_perform_write(iocb, from, netfs_group); 446 } 447 EXPORT_SYMBOL(netfs_buffered_write_iter_locked); 448 449 /** 450 * netfs_file_write_iter - write data to a file 451 * @iocb: IO state structure 452 * @from: iov_iter with data to write 453 * 454 * Perform a write to a file, writing into the pagecache if possible and doing 455 * an unbuffered write instead if not. 456 * 457 * Return: 458 * * Negative error code if no data has been written at all of 459 * vfs_fsync_range() failed for a synchronous write 460 * * Number of bytes written, even for truncated writes 461 */ 462 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 463 { 464 struct file *file = iocb->ki_filp; 465 struct inode *inode = file->f_mapping->host; 466 struct netfs_inode *ictx = netfs_inode(inode); 467 ssize_t ret; 468 469 _enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode)); 470 471 if (!iov_iter_count(from)) 472 return 0; 473 474 if ((iocb->ki_flags & IOCB_DIRECT) || 475 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)) 476 return netfs_unbuffered_write_iter(iocb, from); 477 478 ret = netfs_start_io_write(inode); 479 if (ret < 0) 480 return ret; 481 482 ret = generic_write_checks(iocb, from); 483 if (ret > 0) 484 ret = netfs_buffered_write_iter_locked(iocb, from, NULL); 485 netfs_end_io_write(inode); 486 if (ret > 0) 487 ret = generic_write_sync(iocb, ret); 488 return ret; 489 } 490 EXPORT_SYMBOL(netfs_file_write_iter); 491 492 /* 493 * Notification that a previously read-only page is about to become writable. 494 * The caller indicates the precise page that needs to be written to, but 495 * we only track group on a per-folio basis, so we block more often than 496 * we might otherwise. 497 */ 498 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group) 499 { 500 struct netfs_group *group; 501 struct folio *folio = page_folio(vmf->page); 502 struct file *file = vmf->vma->vm_file; 503 struct address_space *mapping = file->f_mapping; 504 struct inode *inode = file_inode(file); 505 struct netfs_inode *ictx = netfs_inode(inode); 506 vm_fault_t ret = VM_FAULT_NOPAGE; 507 int err; 508 509 _enter("%lx", folio->index); 510 511 sb_start_pagefault(inode->i_sb); 512 513 if (folio_lock_killable(folio) < 0) 514 goto out; 515 if (folio->mapping != mapping) 516 goto unlock; 517 if (folio_wait_writeback_killable(folio) < 0) 518 goto unlock; 519 520 /* Can we see a streaming write here? */ 521 if (WARN_ON(!folio_test_uptodate(folio))) { 522 ret = VM_FAULT_SIGBUS; 523 goto unlock; 524 } 525 526 group = netfs_folio_group(folio); 527 if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) { 528 folio_unlock(folio); 529 err = filemap_fdatawrite_range(mapping, 530 folio_pos(folio), 531 folio_pos(folio) + folio_size(folio)); 532 switch (err) { 533 case 0: 534 ret = VM_FAULT_RETRY; 535 goto out; 536 case -ENOMEM: 537 ret = VM_FAULT_OOM; 538 goto out; 539 default: 540 ret = VM_FAULT_SIGBUS; 541 goto out; 542 } 543 } 544 545 if (folio_test_dirty(folio)) 546 trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus); 547 else 548 trace_netfs_folio(folio, netfs_folio_trace_mkwrite); 549 netfs_set_group(folio, netfs_group); 550 file_update_time(file); 551 set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags); 552 if (ictx->ops->post_modify) 553 ictx->ops->post_modify(inode); 554 ret = VM_FAULT_LOCKED; 555 out: 556 sb_end_pagefault(inode->i_sb); 557 return ret; 558 unlock: 559 folio_unlock(folio); 560 goto out; 561 } 562 EXPORT_SYMBOL(netfs_page_mkwrite); 563