xref: /linux/fs/netfs/buffered_write.c (revision 2672031b20f6681514bef14ddcfe8c62c2757d11)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Network filesystem high-level write support.
3  *
4  * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15 
16 /*
17  * Determined write method.  Adjust netfs_folio_traces if this is changed.
18  */
19 enum netfs_how_to_modify {
20 	NETFS_FOLIO_IS_UPTODATE,	/* Folio is uptodate already */
21 	NETFS_JUST_PREFETCH,		/* We have to read the folio anyway */
22 	NETFS_WHOLE_FOLIO_MODIFY,	/* We're going to overwrite the whole folio */
23 	NETFS_MODIFY_AND_CLEAR,		/* We can assume there is no data to be downloaded. */
24 	NETFS_STREAMING_WRITE,		/* Store incomplete data in non-uptodate page. */
25 	NETFS_STREAMING_WRITE_CONT,	/* Continue streaming write. */
26 	NETFS_FLUSH_CONTENT,		/* Flush incompatible content. */
27 };
28 
29 static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq);
30 
31 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
32 {
33 	if (netfs_group && !folio_get_private(folio))
34 		folio_attach_private(folio, netfs_get_group(netfs_group));
35 }
36 
37 #if IS_ENABLED(CONFIG_FSCACHE)
38 static void netfs_folio_start_fscache(bool caching, struct folio *folio)
39 {
40 	if (caching)
41 		folio_start_fscache(folio);
42 }
43 #else
44 static void netfs_folio_start_fscache(bool caching, struct folio *folio)
45 {
46 }
47 #endif
48 
49 /*
50  * Decide how we should modify a folio.  We might be attempting to do
51  * write-streaming, in which case we don't want to a local RMW cycle if we can
52  * avoid it.  If we're doing local caching or content crypto, we award that
53  * priority over avoiding RMW.  If the file is open readably, then we also
54  * assume that we may want to read what we wrote.
55  */
56 static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx,
57 						    struct file *file,
58 						    struct folio *folio,
59 						    void *netfs_group,
60 						    size_t flen,
61 						    size_t offset,
62 						    size_t len,
63 						    bool maybe_trouble)
64 {
65 	struct netfs_folio *finfo = netfs_folio_info(folio);
66 	loff_t pos = folio_file_pos(folio);
67 
68 	_enter("");
69 
70 	if (netfs_folio_group(folio) != netfs_group)
71 		return NETFS_FLUSH_CONTENT;
72 
73 	if (folio_test_uptodate(folio))
74 		return NETFS_FOLIO_IS_UPTODATE;
75 
76 	if (pos >= ctx->zero_point)
77 		return NETFS_MODIFY_AND_CLEAR;
78 
79 	if (!maybe_trouble && offset == 0 && len >= flen)
80 		return NETFS_WHOLE_FOLIO_MODIFY;
81 
82 	if (file->f_mode & FMODE_READ)
83 		goto no_write_streaming;
84 	if (test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
85 		goto no_write_streaming;
86 
87 	if (netfs_is_cache_enabled(ctx)) {
88 		/* We don't want to get a streaming write on a file that loses
89 		 * caching service temporarily because the backing store got
90 		 * culled.
91 		 */
92 		if (!test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
93 			set_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags);
94 		goto no_write_streaming;
95 	}
96 
97 	if (!finfo)
98 		return NETFS_STREAMING_WRITE;
99 
100 	/* We can continue a streaming write only if it continues on from the
101 	 * previous.  If it overlaps, we must flush lest we suffer a partial
102 	 * copy and disjoint dirty regions.
103 	 */
104 	if (offset == finfo->dirty_offset + finfo->dirty_len)
105 		return NETFS_STREAMING_WRITE_CONT;
106 	return NETFS_FLUSH_CONTENT;
107 
108 no_write_streaming:
109 	if (finfo) {
110 		netfs_stat(&netfs_n_wh_wstream_conflict);
111 		return NETFS_FLUSH_CONTENT;
112 	}
113 	return NETFS_JUST_PREFETCH;
114 }
115 
116 /*
117  * Grab a folio for writing and lock it.  Attempt to allocate as large a folio
118  * as possible to hold as much of the remaining length as possible in one go.
119  */
120 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
121 						loff_t pos, size_t part)
122 {
123 	pgoff_t index = pos / PAGE_SIZE;
124 	fgf_t fgp_flags = FGP_WRITEBEGIN;
125 
126 	if (mapping_large_folio_support(mapping))
127 		fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
128 
129 	return __filemap_get_folio(mapping, index, fgp_flags,
130 				   mapping_gfp_mask(mapping));
131 }
132 
133 /**
134  * netfs_perform_write - Copy data into the pagecache.
135  * @iocb: The operation parameters
136  * @iter: The source buffer
137  * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
138  *
139  * Copy data into pagecache pages attached to the inode specified by @iocb.
140  * The caller must hold appropriate inode locks.
141  *
142  * Dirty pages are tagged with a netfs_folio struct if they're not up to date
143  * to indicate the range modified.  Dirty pages may also be tagged with a
144  * netfs-specific grouping such that data from an old group gets flushed before
145  * a new one is started.
146  */
147 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
148 			    struct netfs_group *netfs_group)
149 {
150 	struct file *file = iocb->ki_filp;
151 	struct inode *inode = file_inode(file);
152 	struct address_space *mapping = inode->i_mapping;
153 	struct netfs_inode *ctx = netfs_inode(inode);
154 	struct writeback_control wbc = {
155 		.sync_mode	= WB_SYNC_NONE,
156 		.for_sync	= true,
157 		.nr_to_write	= LONG_MAX,
158 		.range_start	= iocb->ki_pos,
159 		.range_end	= iocb->ki_pos + iter->count,
160 	};
161 	struct netfs_io_request *wreq = NULL;
162 	struct netfs_folio *finfo;
163 	struct folio *folio;
164 	enum netfs_how_to_modify howto;
165 	enum netfs_folio_trace trace;
166 	unsigned int bdp_flags = (iocb->ki_flags & IOCB_SYNC) ? 0: BDP_ASYNC;
167 	ssize_t written = 0, ret;
168 	loff_t i_size, pos = iocb->ki_pos, from, to;
169 	size_t max_chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
170 	bool maybe_trouble = false;
171 
172 	if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
173 		     iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
174 	    ) {
175 		if (pos < i_size_read(inode)) {
176 			ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
177 			if (ret < 0) {
178 				goto out;
179 			}
180 		}
181 
182 		wbc_attach_fdatawrite_inode(&wbc, mapping->host);
183 
184 		wreq = netfs_begin_writethrough(iocb, iter->count);
185 		if (IS_ERR(wreq)) {
186 			wbc_detach_inode(&wbc);
187 			ret = PTR_ERR(wreq);
188 			wreq = NULL;
189 			goto out;
190 		}
191 		if (!is_sync_kiocb(iocb))
192 			wreq->iocb = iocb;
193 		wreq->cleanup = netfs_cleanup_buffered_write;
194 	}
195 
196 	do {
197 		size_t flen;
198 		size_t offset;	/* Offset into pagecache folio */
199 		size_t part;	/* Bytes to write to folio */
200 		size_t copied;	/* Bytes copied from user */
201 
202 		ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
203 		if (unlikely(ret < 0))
204 			break;
205 
206 		offset = pos & (max_chunk - 1);
207 		part = min(max_chunk - offset, iov_iter_count(iter));
208 
209 		/* Bring in the user pages that we will copy from _first_ lest
210 		 * we hit a nasty deadlock on copying from the same page as
211 		 * we're writing to, without it being marked uptodate.
212 		 *
213 		 * Not only is this an optimisation, but it is also required to
214 		 * check that the address is actually valid, when atomic
215 		 * usercopies are used below.
216 		 *
217 		 * We rely on the page being held onto long enough by the LRU
218 		 * that we can grab it below if this causes it to be read.
219 		 */
220 		ret = -EFAULT;
221 		if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
222 			break;
223 
224 		ret = -ENOMEM;
225 		folio = netfs_grab_folio_for_write(mapping, pos, part);
226 		if (!folio)
227 			break;
228 
229 		flen = folio_size(folio);
230 		offset = pos & (flen - 1);
231 		part = min_t(size_t, flen - offset, part);
232 
233 		if (signal_pending(current)) {
234 			ret = written ? -EINTR : -ERESTARTSYS;
235 			goto error_folio_unlock;
236 		}
237 
238 		/* See if we need to prefetch the area we're going to modify.
239 		 * We need to do this before we get a lock on the folio in case
240 		 * there's more than one writer competing for the same cache
241 		 * block.
242 		 */
243 		howto = netfs_how_to_modify(ctx, file, folio, netfs_group,
244 					    flen, offset, part, maybe_trouble);
245 		_debug("howto %u", howto);
246 		switch (howto) {
247 		case NETFS_JUST_PREFETCH:
248 			ret = netfs_prefetch_for_write(file, folio, offset, part);
249 			if (ret < 0) {
250 				_debug("prefetch = %zd", ret);
251 				goto error_folio_unlock;
252 			}
253 			break;
254 		case NETFS_FOLIO_IS_UPTODATE:
255 		case NETFS_WHOLE_FOLIO_MODIFY:
256 		case NETFS_STREAMING_WRITE_CONT:
257 			break;
258 		case NETFS_MODIFY_AND_CLEAR:
259 			zero_user_segment(&folio->page, 0, offset);
260 			break;
261 		case NETFS_STREAMING_WRITE:
262 			ret = -EIO;
263 			if (WARN_ON(folio_get_private(folio)))
264 				goto error_folio_unlock;
265 			break;
266 		case NETFS_FLUSH_CONTENT:
267 			trace_netfs_folio(folio, netfs_flush_content);
268 			from = folio_pos(folio);
269 			to = from + folio_size(folio) - 1;
270 			folio_unlock(folio);
271 			folio_put(folio);
272 			ret = filemap_write_and_wait_range(mapping, from, to);
273 			if (ret < 0)
274 				goto error_folio_unlock;
275 			continue;
276 		}
277 
278 		if (mapping_writably_mapped(mapping))
279 			flush_dcache_folio(folio);
280 
281 		copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
282 
283 		flush_dcache_folio(folio);
284 
285 		/* Deal with a (partially) failed copy */
286 		if (copied == 0) {
287 			ret = -EFAULT;
288 			goto error_folio_unlock;
289 		}
290 
291 		trace = (enum netfs_folio_trace)howto;
292 		switch (howto) {
293 		case NETFS_FOLIO_IS_UPTODATE:
294 		case NETFS_JUST_PREFETCH:
295 			netfs_set_group(folio, netfs_group);
296 			break;
297 		case NETFS_MODIFY_AND_CLEAR:
298 			zero_user_segment(&folio->page, offset + copied, flen);
299 			netfs_set_group(folio, netfs_group);
300 			folio_mark_uptodate(folio);
301 			break;
302 		case NETFS_WHOLE_FOLIO_MODIFY:
303 			if (unlikely(copied < part)) {
304 				maybe_trouble = true;
305 				iov_iter_revert(iter, copied);
306 				copied = 0;
307 				goto retry;
308 			}
309 			netfs_set_group(folio, netfs_group);
310 			folio_mark_uptodate(folio);
311 			break;
312 		case NETFS_STREAMING_WRITE:
313 			if (offset == 0 && copied == flen) {
314 				netfs_set_group(folio, netfs_group);
315 				folio_mark_uptodate(folio);
316 				trace = netfs_streaming_filled_page;
317 				break;
318 			}
319 			finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
320 			if (!finfo) {
321 				iov_iter_revert(iter, copied);
322 				ret = -ENOMEM;
323 				goto error_folio_unlock;
324 			}
325 			finfo->netfs_group = netfs_get_group(netfs_group);
326 			finfo->dirty_offset = offset;
327 			finfo->dirty_len = copied;
328 			folio_attach_private(folio, (void *)((unsigned long)finfo |
329 							     NETFS_FOLIO_INFO));
330 			break;
331 		case NETFS_STREAMING_WRITE_CONT:
332 			finfo = netfs_folio_info(folio);
333 			finfo->dirty_len += copied;
334 			if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
335 				if (finfo->netfs_group)
336 					folio_change_private(folio, finfo->netfs_group);
337 				else
338 					folio_detach_private(folio);
339 				folio_mark_uptodate(folio);
340 				kfree(finfo);
341 				trace = netfs_streaming_cont_filled_page;
342 			}
343 			break;
344 		default:
345 			WARN(true, "Unexpected modify type %u ix=%lx\n",
346 			     howto, folio_index(folio));
347 			ret = -EIO;
348 			goto error_folio_unlock;
349 		}
350 
351 		trace_netfs_folio(folio, trace);
352 
353 		/* Update the inode size if we moved the EOF marker */
354 		i_size = i_size_read(inode);
355 		pos += copied;
356 		if (pos > i_size) {
357 			if (ctx->ops->update_i_size) {
358 				ctx->ops->update_i_size(inode, pos);
359 			} else {
360 				i_size_write(inode, pos);
361 #if IS_ENABLED(CONFIG_FSCACHE)
362 				fscache_update_cookie(ctx->cache, NULL, &pos);
363 #endif
364 			}
365 		}
366 		written += copied;
367 
368 		if (likely(!wreq)) {
369 			folio_mark_dirty(folio);
370 		} else {
371 			if (folio_test_dirty(folio))
372 				/* Sigh.  mmap. */
373 				folio_clear_dirty_for_io(folio);
374 			/* We make multiple writes to the folio... */
375 			if (!folio_test_writeback(folio)) {
376 				folio_wait_fscache(folio);
377 				folio_start_writeback(folio);
378 				folio_start_fscache(folio);
379 				if (wreq->iter.count == 0)
380 					trace_netfs_folio(folio, netfs_folio_trace_wthru);
381 				else
382 					trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
383 			}
384 			netfs_advance_writethrough(wreq, copied,
385 						   offset + copied == flen);
386 		}
387 	retry:
388 		folio_unlock(folio);
389 		folio_put(folio);
390 		folio = NULL;
391 
392 		cond_resched();
393 	} while (iov_iter_count(iter));
394 
395 out:
396 	if (unlikely(wreq)) {
397 		ret = netfs_end_writethrough(wreq, iocb);
398 		wbc_detach_inode(&wbc);
399 		if (ret == -EIOCBQUEUED)
400 			return ret;
401 	}
402 
403 	iocb->ki_pos += written;
404 	_leave(" = %zd [%zd]", written, ret);
405 	return written ? written : ret;
406 
407 error_folio_unlock:
408 	folio_unlock(folio);
409 	folio_put(folio);
410 	goto out;
411 }
412 EXPORT_SYMBOL(netfs_perform_write);
413 
414 /**
415  * netfs_buffered_write_iter_locked - write data to a file
416  * @iocb:	IO state structure (file, offset, etc.)
417  * @from:	iov_iter with data to write
418  * @netfs_group: Grouping for dirty pages (eg. ceph snaps).
419  *
420  * This function does all the work needed for actually writing data to a
421  * file. It does all basic checks, removes SUID from the file, updates
422  * modification times and calls proper subroutines depending on whether we
423  * do direct IO or a standard buffered write.
424  *
425  * The caller must hold appropriate locks around this function and have called
426  * generic_write_checks() already.  The caller is also responsible for doing
427  * any necessary syncing afterwards.
428  *
429  * This function does *not* take care of syncing data in case of O_SYNC write.
430  * A caller has to handle it. This is mainly due to the fact that we want to
431  * avoid syncing under i_rwsem.
432  *
433  * Return:
434  * * number of bytes written, even for truncated writes
435  * * negative error code if no data has been written at all
436  */
437 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
438 					 struct netfs_group *netfs_group)
439 {
440 	struct file *file = iocb->ki_filp;
441 	ssize_t ret;
442 
443 	trace_netfs_write_iter(iocb, from);
444 
445 	ret = file_remove_privs(file);
446 	if (ret)
447 		return ret;
448 
449 	ret = file_update_time(file);
450 	if (ret)
451 		return ret;
452 
453 	return netfs_perform_write(iocb, from, netfs_group);
454 }
455 EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
456 
457 /**
458  * netfs_file_write_iter - write data to a file
459  * @iocb: IO state structure
460  * @from: iov_iter with data to write
461  *
462  * Perform a write to a file, writing into the pagecache if possible and doing
463  * an unbuffered write instead if not.
464  *
465  * Return:
466  * * Negative error code if no data has been written at all of
467  *   vfs_fsync_range() failed for a synchronous write
468  * * Number of bytes written, even for truncated writes
469  */
470 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
471 {
472 	struct file *file = iocb->ki_filp;
473 	struct inode *inode = file->f_mapping->host;
474 	struct netfs_inode *ictx = netfs_inode(inode);
475 	ssize_t ret;
476 
477 	_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
478 
479 	if ((iocb->ki_flags & IOCB_DIRECT) ||
480 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
481 		return netfs_unbuffered_write_iter(iocb, from);
482 
483 	ret = netfs_start_io_write(inode);
484 	if (ret < 0)
485 		return ret;
486 
487 	ret = generic_write_checks(iocb, from);
488 	if (ret > 0)
489 		ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
490 	netfs_end_io_write(inode);
491 	if (ret > 0)
492 		ret = generic_write_sync(iocb, ret);
493 	return ret;
494 }
495 EXPORT_SYMBOL(netfs_file_write_iter);
496 
497 /*
498  * Notification that a previously read-only page is about to become writable.
499  * Note that the caller indicates a single page of a multipage folio.
500  */
501 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
502 {
503 	struct folio *folio = page_folio(vmf->page);
504 	struct file *file = vmf->vma->vm_file;
505 	struct inode *inode = file_inode(file);
506 	vm_fault_t ret = VM_FAULT_RETRY;
507 	int err;
508 
509 	_enter("%lx", folio->index);
510 
511 	sb_start_pagefault(inode->i_sb);
512 
513 	if (folio_wait_writeback_killable(folio))
514 		goto out;
515 
516 	if (folio_lock_killable(folio) < 0)
517 		goto out;
518 
519 	/* Can we see a streaming write here? */
520 	if (WARN_ON(!folio_test_uptodate(folio))) {
521 		ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED;
522 		goto out;
523 	}
524 
525 	if (netfs_folio_group(folio) != netfs_group) {
526 		folio_unlock(folio);
527 		err = filemap_fdatawait_range(inode->i_mapping,
528 					      folio_pos(folio),
529 					      folio_pos(folio) + folio_size(folio));
530 		switch (err) {
531 		case 0:
532 			ret = VM_FAULT_RETRY;
533 			goto out;
534 		case -ENOMEM:
535 			ret = VM_FAULT_OOM;
536 			goto out;
537 		default:
538 			ret = VM_FAULT_SIGBUS;
539 			goto out;
540 		}
541 	}
542 
543 	if (folio_test_dirty(folio))
544 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
545 	else
546 		trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
547 	netfs_set_group(folio, netfs_group);
548 	file_update_time(file);
549 	ret = VM_FAULT_LOCKED;
550 out:
551 	sb_end_pagefault(inode->i_sb);
552 	return ret;
553 }
554 EXPORT_SYMBOL(netfs_page_mkwrite);
555 
556 /*
557  * Kill all the pages in the given range
558  */
559 static void netfs_kill_pages(struct address_space *mapping,
560 			     loff_t start, loff_t len)
561 {
562 	struct folio *folio;
563 	pgoff_t index = start / PAGE_SIZE;
564 	pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
565 
566 	_enter("%llx-%llx", start, start + len - 1);
567 
568 	do {
569 		_debug("kill %lx (to %lx)", index, last);
570 
571 		folio = filemap_get_folio(mapping, index);
572 		if (IS_ERR(folio)) {
573 			next = index + 1;
574 			continue;
575 		}
576 
577 		next = folio_next_index(folio);
578 
579 		trace_netfs_folio(folio, netfs_folio_trace_kill);
580 		folio_clear_uptodate(folio);
581 		if (folio_test_fscache(folio))
582 			folio_end_fscache(folio);
583 		folio_end_writeback(folio);
584 		folio_lock(folio);
585 		generic_error_remove_folio(mapping, folio);
586 		folio_unlock(folio);
587 		folio_put(folio);
588 
589 	} while (index = next, index <= last);
590 
591 	_leave("");
592 }
593 
594 /*
595  * Redirty all the pages in a given range.
596  */
597 static void netfs_redirty_pages(struct address_space *mapping,
598 				loff_t start, loff_t len)
599 {
600 	struct folio *folio;
601 	pgoff_t index = start / PAGE_SIZE;
602 	pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
603 
604 	_enter("%llx-%llx", start, start + len - 1);
605 
606 	do {
607 		_debug("redirty %llx @%llx", len, start);
608 
609 		folio = filemap_get_folio(mapping, index);
610 		if (IS_ERR(folio)) {
611 			next = index + 1;
612 			continue;
613 		}
614 
615 		next = folio_next_index(folio);
616 		trace_netfs_folio(folio, netfs_folio_trace_redirty);
617 		filemap_dirty_folio(mapping, folio);
618 		if (folio_test_fscache(folio))
619 			folio_end_fscache(folio);
620 		folio_end_writeback(folio);
621 		folio_put(folio);
622 	} while (index = next, index <= last);
623 
624 	balance_dirty_pages_ratelimited(mapping);
625 
626 	_leave("");
627 }
628 
629 /*
630  * Completion of write to server
631  */
632 static void netfs_pages_written_back(struct netfs_io_request *wreq)
633 {
634 	struct address_space *mapping = wreq->mapping;
635 	struct netfs_folio *finfo;
636 	struct netfs_group *group = NULL;
637 	struct folio *folio;
638 	pgoff_t last;
639 	int gcount = 0;
640 
641 	XA_STATE(xas, &mapping->i_pages, wreq->start / PAGE_SIZE);
642 
643 	_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
644 
645 	rcu_read_lock();
646 
647 	last = (wreq->start + wreq->len - 1) / PAGE_SIZE;
648 	xas_for_each(&xas, folio, last) {
649 		WARN(!folio_test_writeback(folio),
650 		     "bad %zx @%llx page %lx %lx\n",
651 		     wreq->len, wreq->start, folio_index(folio), last);
652 
653 		if ((finfo = netfs_folio_info(folio))) {
654 			/* Streaming writes cannot be redirtied whilst under
655 			 * writeback, so discard the streaming record.
656 			 */
657 			folio_detach_private(folio);
658 			group = finfo->netfs_group;
659 			gcount++;
660 			trace_netfs_folio(folio, netfs_folio_trace_clear_s);
661 			kfree(finfo);
662 		} else if ((group = netfs_folio_group(folio))) {
663 			/* Need to detach the group pointer if the page didn't
664 			 * get redirtied.  If it has been redirtied, then it
665 			 * must be within the same group.
666 			 */
667 			if (folio_test_dirty(folio)) {
668 				trace_netfs_folio(folio, netfs_folio_trace_redirtied);
669 				goto end_wb;
670 			}
671 			if (folio_trylock(folio)) {
672 				if (!folio_test_dirty(folio)) {
673 					folio_detach_private(folio);
674 					gcount++;
675 					trace_netfs_folio(folio, netfs_folio_trace_clear_g);
676 				} else {
677 					trace_netfs_folio(folio, netfs_folio_trace_redirtied);
678 				}
679 				folio_unlock(folio);
680 				goto end_wb;
681 			}
682 
683 			xas_pause(&xas);
684 			rcu_read_unlock();
685 			folio_lock(folio);
686 			if (!folio_test_dirty(folio)) {
687 				folio_detach_private(folio);
688 				gcount++;
689 				trace_netfs_folio(folio, netfs_folio_trace_clear_g);
690 			} else {
691 				trace_netfs_folio(folio, netfs_folio_trace_redirtied);
692 			}
693 			folio_unlock(folio);
694 			rcu_read_lock();
695 		} else {
696 			trace_netfs_folio(folio, netfs_folio_trace_clear);
697 		}
698 	end_wb:
699 		if (folio_test_fscache(folio))
700 			folio_end_fscache(folio);
701 		xas_advance(&xas, folio_next_index(folio) - 1);
702 		folio_end_writeback(folio);
703 	}
704 
705 	rcu_read_unlock();
706 	netfs_put_group_many(group, gcount);
707 	_leave("");
708 }
709 
710 /*
711  * Deal with the disposition of the folios that are under writeback to close
712  * out the operation.
713  */
714 static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq)
715 {
716 	struct address_space *mapping = wreq->mapping;
717 
718 	_enter("");
719 
720 	switch (wreq->error) {
721 	case 0:
722 		netfs_pages_written_back(wreq);
723 		break;
724 
725 	default:
726 		pr_notice("R=%08x Unexpected error %d\n", wreq->debug_id, wreq->error);
727 		fallthrough;
728 	case -EACCES:
729 	case -EPERM:
730 	case -ENOKEY:
731 	case -EKEYEXPIRED:
732 	case -EKEYREJECTED:
733 	case -EKEYREVOKED:
734 	case -ENETRESET:
735 	case -EDQUOT:
736 	case -ENOSPC:
737 		netfs_redirty_pages(mapping, wreq->start, wreq->len);
738 		break;
739 
740 	case -EROFS:
741 	case -EIO:
742 	case -EREMOTEIO:
743 	case -EFBIG:
744 	case -ENOENT:
745 	case -ENOMEDIUM:
746 	case -ENXIO:
747 		netfs_kill_pages(mapping, wreq->start, wreq->len);
748 		break;
749 	}
750 
751 	if (wreq->error)
752 		mapping_set_error(mapping, wreq->error);
753 	if (wreq->netfs_ops->done)
754 		wreq->netfs_ops->done(wreq);
755 }
756 
757 /*
758  * Extend the region to be written back to include subsequent contiguously
759  * dirty pages if possible, but don't sleep while doing so.
760  *
761  * If this page holds new content, then we can include filler zeros in the
762  * writeback.
763  */
764 static void netfs_extend_writeback(struct address_space *mapping,
765 				   struct netfs_group *group,
766 				   struct xa_state *xas,
767 				   long *_count,
768 				   loff_t start,
769 				   loff_t max_len,
770 				   bool caching,
771 				   size_t *_len,
772 				   size_t *_top)
773 {
774 	struct netfs_folio *finfo;
775 	struct folio_batch fbatch;
776 	struct folio *folio;
777 	unsigned int i;
778 	pgoff_t index = (start + *_len) / PAGE_SIZE;
779 	size_t len;
780 	void *priv;
781 	bool stop = true;
782 
783 	folio_batch_init(&fbatch);
784 
785 	do {
786 		/* Firstly, we gather up a batch of contiguous dirty pages
787 		 * under the RCU read lock - but we can't clear the dirty flags
788 		 * there if any of those pages are mapped.
789 		 */
790 		rcu_read_lock();
791 
792 		xas_for_each(xas, folio, ULONG_MAX) {
793 			stop = true;
794 			if (xas_retry(xas, folio))
795 				continue;
796 			if (xa_is_value(folio))
797 				break;
798 			if (folio_index(folio) != index) {
799 				xas_reset(xas);
800 				break;
801 			}
802 
803 			if (!folio_try_get_rcu(folio)) {
804 				xas_reset(xas);
805 				continue;
806 			}
807 
808 			/* Has the folio moved or been split? */
809 			if (unlikely(folio != xas_reload(xas))) {
810 				folio_put(folio);
811 				xas_reset(xas);
812 				break;
813 			}
814 
815 			if (!folio_trylock(folio)) {
816 				folio_put(folio);
817 				xas_reset(xas);
818 				break;
819 			}
820 			if (!folio_test_dirty(folio) ||
821 			    folio_test_writeback(folio) ||
822 			    folio_test_fscache(folio)) {
823 				folio_unlock(folio);
824 				folio_put(folio);
825 				xas_reset(xas);
826 				break;
827 			}
828 
829 			stop = false;
830 			len = folio_size(folio);
831 			priv = folio_get_private(folio);
832 			if ((const struct netfs_group *)priv != group) {
833 				stop = true;
834 				finfo = netfs_folio_info(folio);
835 				if (finfo->netfs_group != group ||
836 				    finfo->dirty_offset > 0) {
837 					folio_unlock(folio);
838 					folio_put(folio);
839 					xas_reset(xas);
840 					break;
841 				}
842 				len = finfo->dirty_len;
843 			}
844 
845 			*_top += folio_size(folio);
846 			index += folio_nr_pages(folio);
847 			*_count -= folio_nr_pages(folio);
848 			*_len += len;
849 			if (*_len >= max_len || *_count <= 0)
850 				stop = true;
851 
852 			if (!folio_batch_add(&fbatch, folio))
853 				break;
854 			if (stop)
855 				break;
856 		}
857 
858 		xas_pause(xas);
859 		rcu_read_unlock();
860 
861 		/* Now, if we obtained any folios, we can shift them to being
862 		 * writable and mark them for caching.
863 		 */
864 		if (!folio_batch_count(&fbatch))
865 			break;
866 
867 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
868 			folio = fbatch.folios[i];
869 			trace_netfs_folio(folio, netfs_folio_trace_store_plus);
870 
871 			if (!folio_clear_dirty_for_io(folio))
872 				BUG();
873 			folio_start_writeback(folio);
874 			netfs_folio_start_fscache(caching, folio);
875 			folio_unlock(folio);
876 		}
877 
878 		folio_batch_release(&fbatch);
879 		cond_resched();
880 	} while (!stop);
881 }
882 
883 /*
884  * Synchronously write back the locked page and any subsequent non-locked dirty
885  * pages.
886  */
887 static ssize_t netfs_write_back_from_locked_folio(struct address_space *mapping,
888 						  struct writeback_control *wbc,
889 						  struct netfs_group *group,
890 						  struct xa_state *xas,
891 						  struct folio *folio,
892 						  unsigned long long start,
893 						  unsigned long long end)
894 {
895 	struct netfs_io_request *wreq;
896 	struct netfs_folio *finfo;
897 	struct netfs_inode *ctx = netfs_inode(mapping->host);
898 	unsigned long long i_size = i_size_read(&ctx->inode);
899 	size_t len, max_len;
900 	bool caching = netfs_is_cache_enabled(ctx);
901 	long count = wbc->nr_to_write;
902 	int ret;
903 
904 	_enter(",%lx,%llx-%llx,%u", folio_index(folio), start, end, caching);
905 
906 	wreq = netfs_alloc_request(mapping, NULL, start, folio_size(folio),
907 				   NETFS_WRITEBACK);
908 	if (IS_ERR(wreq)) {
909 		folio_unlock(folio);
910 		return PTR_ERR(wreq);
911 	}
912 
913 	if (!folio_clear_dirty_for_io(folio))
914 		BUG();
915 	folio_start_writeback(folio);
916 	netfs_folio_start_fscache(caching, folio);
917 
918 	count -= folio_nr_pages(folio);
919 
920 	/* Find all consecutive lockable dirty pages that have contiguous
921 	 * written regions, stopping when we find a page that is not
922 	 * immediately lockable, is not dirty or is missing, or we reach the
923 	 * end of the range.
924 	 */
925 	trace_netfs_folio(folio, netfs_folio_trace_store);
926 
927 	len = wreq->len;
928 	finfo = netfs_folio_info(folio);
929 	if (finfo) {
930 		start += finfo->dirty_offset;
931 		if (finfo->dirty_offset + finfo->dirty_len != len) {
932 			len = finfo->dirty_len;
933 			goto cant_expand;
934 		}
935 		len = finfo->dirty_len;
936 	}
937 
938 	if (start < i_size) {
939 		/* Trim the write to the EOF; the extra data is ignored.  Also
940 		 * put an upper limit on the size of a single storedata op.
941 		 */
942 		max_len = 65536 * 4096;
943 		max_len = min_t(unsigned long long, max_len, end - start + 1);
944 		max_len = min_t(unsigned long long, max_len, i_size - start);
945 
946 		if (len < max_len)
947 			netfs_extend_writeback(mapping, group, xas, &count, start,
948 					       max_len, caching, &len, &wreq->upper_len);
949 	}
950 
951 cant_expand:
952 	len = min_t(unsigned long long, len, i_size - start);
953 
954 	/* We now have a contiguous set of dirty pages, each with writeback
955 	 * set; the first page is still locked at this point, but all the rest
956 	 * have been unlocked.
957 	 */
958 	folio_unlock(folio);
959 	wreq->start = start;
960 	wreq->len = len;
961 
962 	if (start < i_size) {
963 		_debug("write back %zx @%llx [%llx]", len, start, i_size);
964 
965 		/* Speculatively write to the cache.  We have to fix this up
966 		 * later if the store fails.
967 		 */
968 		wreq->cleanup = netfs_cleanup_buffered_write;
969 
970 		iov_iter_xarray(&wreq->iter, ITER_SOURCE, &mapping->i_pages, start,
971 				wreq->upper_len);
972 		__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
973 		ret = netfs_begin_write(wreq, true, netfs_write_trace_writeback);
974 		if (ret == 0 || ret == -EIOCBQUEUED)
975 			wbc->nr_to_write -= len / PAGE_SIZE;
976 	} else {
977 		_debug("write discard %zx @%llx [%llx]", len, start, i_size);
978 
979 		/* The dirty region was entirely beyond the EOF. */
980 		fscache_clear_page_bits(mapping, start, len, caching);
981 		netfs_pages_written_back(wreq);
982 		ret = 0;
983 	}
984 
985 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
986 	_leave(" = 1");
987 	return 1;
988 }
989 
990 /*
991  * Write a region of pages back to the server
992  */
993 static ssize_t netfs_writepages_begin(struct address_space *mapping,
994 				      struct writeback_control *wbc,
995 				      struct netfs_group *group,
996 				      struct xa_state *xas,
997 				      unsigned long long *_start,
998 				      unsigned long long end)
999 {
1000 	const struct netfs_folio *finfo;
1001 	struct folio *folio;
1002 	unsigned long long start = *_start;
1003 	ssize_t ret;
1004 	void *priv;
1005 	int skips = 0;
1006 
1007 	_enter("%llx,%llx,", start, end);
1008 
1009 search_again:
1010 	/* Find the first dirty page in the group. */
1011 	rcu_read_lock();
1012 
1013 	for (;;) {
1014 		folio = xas_find_marked(xas, end / PAGE_SIZE, PAGECACHE_TAG_DIRTY);
1015 		if (xas_retry(xas, folio) || xa_is_value(folio))
1016 			continue;
1017 		if (!folio)
1018 			break;
1019 
1020 		if (!folio_try_get_rcu(folio)) {
1021 			xas_reset(xas);
1022 			continue;
1023 		}
1024 
1025 		if (unlikely(folio != xas_reload(xas))) {
1026 			folio_put(folio);
1027 			xas_reset(xas);
1028 			continue;
1029 		}
1030 
1031 		/* Skip any dirty folio that's not in the group of interest. */
1032 		priv = folio_get_private(folio);
1033 		if ((const struct netfs_group *)priv != group) {
1034 			finfo = netfs_folio_info(folio);
1035 			if (finfo->netfs_group != group) {
1036 				folio_put(folio);
1037 				continue;
1038 			}
1039 		}
1040 
1041 		xas_pause(xas);
1042 		break;
1043 	}
1044 	rcu_read_unlock();
1045 	if (!folio)
1046 		return 0;
1047 
1048 	start = folio_pos(folio); /* May regress with THPs */
1049 
1050 	_debug("wback %lx", folio_index(folio));
1051 
1052 	/* At this point we hold neither the i_pages lock nor the page lock:
1053 	 * the page may be truncated or invalidated (changing page->mapping to
1054 	 * NULL), or even swizzled back from swapper_space to tmpfs file
1055 	 * mapping
1056 	 */
1057 lock_again:
1058 	if (wbc->sync_mode != WB_SYNC_NONE) {
1059 		ret = folio_lock_killable(folio);
1060 		if (ret < 0)
1061 			return ret;
1062 	} else {
1063 		if (!folio_trylock(folio))
1064 			goto search_again;
1065 	}
1066 
1067 	if (folio->mapping != mapping ||
1068 	    !folio_test_dirty(folio)) {
1069 		start += folio_size(folio);
1070 		folio_unlock(folio);
1071 		goto search_again;
1072 	}
1073 
1074 	if (folio_test_writeback(folio) ||
1075 	    folio_test_fscache(folio)) {
1076 		folio_unlock(folio);
1077 		if (wbc->sync_mode != WB_SYNC_NONE) {
1078 			folio_wait_writeback(folio);
1079 #ifdef CONFIG_FSCACHE
1080 			folio_wait_fscache(folio);
1081 #endif
1082 			goto lock_again;
1083 		}
1084 
1085 		start += folio_size(folio);
1086 		if (wbc->sync_mode == WB_SYNC_NONE) {
1087 			if (skips >= 5 || need_resched()) {
1088 				ret = 0;
1089 				goto out;
1090 			}
1091 			skips++;
1092 		}
1093 		goto search_again;
1094 	}
1095 
1096 	ret = netfs_write_back_from_locked_folio(mapping, wbc, group, xas,
1097 						 folio, start, end);
1098 out:
1099 	if (ret > 0)
1100 		*_start = start + ret;
1101 	_leave(" = %zd [%llx]", ret, *_start);
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Write a region of pages back to the server
1107  */
1108 static int netfs_writepages_region(struct address_space *mapping,
1109 				   struct writeback_control *wbc,
1110 				   struct netfs_group *group,
1111 				   unsigned long long *_start,
1112 				   unsigned long long end)
1113 {
1114 	ssize_t ret;
1115 
1116 	XA_STATE(xas, &mapping->i_pages, *_start / PAGE_SIZE);
1117 
1118 	do {
1119 		ret = netfs_writepages_begin(mapping, wbc, group, &xas,
1120 					     _start, end);
1121 		if (ret > 0 && wbc->nr_to_write > 0)
1122 			cond_resched();
1123 	} while (ret > 0 && wbc->nr_to_write > 0);
1124 
1125 	return ret > 0 ? 0 : ret;
1126 }
1127 
1128 /*
1129  * write some of the pending data back to the server
1130  */
1131 int netfs_writepages(struct address_space *mapping,
1132 		     struct writeback_control *wbc)
1133 {
1134 	struct netfs_group *group = NULL;
1135 	loff_t start, end;
1136 	int ret;
1137 
1138 	_enter("");
1139 
1140 	/* We have to be careful as we can end up racing with setattr()
1141 	 * truncating the pagecache since the caller doesn't take a lock here
1142 	 * to prevent it.
1143 	 */
1144 
1145 	if (wbc->range_cyclic && mapping->writeback_index) {
1146 		start = mapping->writeback_index * PAGE_SIZE;
1147 		ret = netfs_writepages_region(mapping, wbc, group,
1148 					      &start, LLONG_MAX);
1149 		if (ret < 0)
1150 			goto out;
1151 
1152 		if (wbc->nr_to_write <= 0) {
1153 			mapping->writeback_index = start / PAGE_SIZE;
1154 			goto out;
1155 		}
1156 
1157 		start = 0;
1158 		end = mapping->writeback_index * PAGE_SIZE;
1159 		mapping->writeback_index = 0;
1160 		ret = netfs_writepages_region(mapping, wbc, group, &start, end);
1161 		if (ret == 0)
1162 			mapping->writeback_index = start / PAGE_SIZE;
1163 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
1164 		start = 0;
1165 		ret = netfs_writepages_region(mapping, wbc, group,
1166 					      &start, LLONG_MAX);
1167 		if (wbc->nr_to_write > 0 && ret == 0)
1168 			mapping->writeback_index = start / PAGE_SIZE;
1169 	} else {
1170 		start = wbc->range_start;
1171 		ret = netfs_writepages_region(mapping, wbc, group,
1172 					      &start, wbc->range_end);
1173 	}
1174 
1175 out:
1176 	_leave(" = %d", ret);
1177 	return ret;
1178 }
1179 EXPORT_SYMBOL(netfs_writepages);
1180 
1181 /*
1182  * Deal with the disposition of a laundered folio.
1183  */
1184 static void netfs_cleanup_launder_folio(struct netfs_io_request *wreq)
1185 {
1186 	if (wreq->error) {
1187 		pr_notice("R=%08x Laundering error %d\n", wreq->debug_id, wreq->error);
1188 		mapping_set_error(wreq->mapping, wreq->error);
1189 	}
1190 }
1191 
1192 /**
1193  * netfs_launder_folio - Clean up a dirty folio that's being invalidated
1194  * @folio: The folio to clean
1195  *
1196  * This is called to write back a folio that's being invalidated when an inode
1197  * is getting torn down.  Ideally, writepages would be used instead.
1198  */
1199 int netfs_launder_folio(struct folio *folio)
1200 {
1201 	struct netfs_io_request *wreq;
1202 	struct address_space *mapping = folio->mapping;
1203 	struct netfs_folio *finfo = netfs_folio_info(folio);
1204 	struct netfs_group *group = netfs_folio_group(folio);
1205 	struct bio_vec bvec;
1206 	unsigned long long i_size = i_size_read(mapping->host);
1207 	unsigned long long start = folio_pos(folio);
1208 	size_t offset = 0, len;
1209 	int ret = 0;
1210 
1211 	if (finfo) {
1212 		offset = finfo->dirty_offset;
1213 		start += offset;
1214 		len = finfo->dirty_len;
1215 	} else {
1216 		len = folio_size(folio);
1217 	}
1218 	len = min_t(unsigned long long, len, i_size - start);
1219 
1220 	wreq = netfs_alloc_request(mapping, NULL, start, len, NETFS_LAUNDER_WRITE);
1221 	if (IS_ERR(wreq)) {
1222 		ret = PTR_ERR(wreq);
1223 		goto out;
1224 	}
1225 
1226 	if (!folio_clear_dirty_for_io(folio))
1227 		goto out_put;
1228 
1229 	trace_netfs_folio(folio, netfs_folio_trace_launder);
1230 
1231 	_debug("launder %llx-%llx", start, start + len - 1);
1232 
1233 	/* Speculatively write to the cache.  We have to fix this up later if
1234 	 * the store fails.
1235 	 */
1236 	wreq->cleanup = netfs_cleanup_launder_folio;
1237 
1238 	bvec_set_folio(&bvec, folio, len, offset);
1239 	iov_iter_bvec(&wreq->iter, ITER_SOURCE, &bvec, 1, len);
1240 	__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
1241 	ret = netfs_begin_write(wreq, true, netfs_write_trace_launder);
1242 
1243 out_put:
1244 	folio_detach_private(folio);
1245 	netfs_put_group(group);
1246 	kfree(finfo);
1247 	netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
1248 out:
1249 	folio_wait_fscache(folio);
1250 	_leave(" = %d", ret);
1251 	return ret;
1252 }
1253 EXPORT_SYMBOL(netfs_launder_folio);
1254