1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Network filesystem high-level buffered write support. 3 * 4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/fs.h> 10 #include <linux/mm.h> 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/pagevec.h> 14 #include "internal.h" 15 16 /* 17 * Determined write method. Adjust netfs_folio_traces if this is changed. 18 */ 19 enum netfs_how_to_modify { 20 NETFS_FOLIO_IS_UPTODATE, /* Folio is uptodate already */ 21 NETFS_JUST_PREFETCH, /* We have to read the folio anyway */ 22 NETFS_WHOLE_FOLIO_MODIFY, /* We're going to overwrite the whole folio */ 23 NETFS_MODIFY_AND_CLEAR, /* We can assume there is no data to be downloaded. */ 24 NETFS_STREAMING_WRITE, /* Store incomplete data in non-uptodate page. */ 25 NETFS_STREAMING_WRITE_CONT, /* Continue streaming write. */ 26 NETFS_FLUSH_CONTENT, /* Flush incompatible content. */ 27 }; 28 29 static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group) 30 { 31 void *priv = folio_get_private(folio); 32 33 if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE)) 34 folio_attach_private(folio, netfs_get_group(netfs_group)); 35 else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE) 36 folio_detach_private(folio); 37 } 38 39 /* 40 * Decide how we should modify a folio. We might be attempting to do 41 * write-streaming, in which case we don't want to a local RMW cycle if we can 42 * avoid it. If we're doing local caching or content crypto, we award that 43 * priority over avoiding RMW. If the file is open readably, then we also 44 * assume that we may want to read what we wrote. 45 */ 46 static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx, 47 struct file *file, 48 struct folio *folio, 49 void *netfs_group, 50 size_t flen, 51 size_t offset, 52 size_t len, 53 bool maybe_trouble) 54 { 55 struct netfs_folio *finfo = netfs_folio_info(folio); 56 struct netfs_group *group = netfs_folio_group(folio); 57 loff_t pos = folio_file_pos(folio); 58 59 _enter(""); 60 61 if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) 62 return NETFS_FLUSH_CONTENT; 63 64 if (folio_test_uptodate(folio)) 65 return NETFS_FOLIO_IS_UPTODATE; 66 67 if (pos >= ctx->zero_point) 68 return NETFS_MODIFY_AND_CLEAR; 69 70 if (!maybe_trouble && offset == 0 && len >= flen) 71 return NETFS_WHOLE_FOLIO_MODIFY; 72 73 if (file->f_mode & FMODE_READ) 74 goto no_write_streaming; 75 76 if (netfs_is_cache_enabled(ctx)) { 77 /* We don't want to get a streaming write on a file that loses 78 * caching service temporarily because the backing store got 79 * culled. 80 */ 81 goto no_write_streaming; 82 } 83 84 if (!finfo) 85 return NETFS_STREAMING_WRITE; 86 87 /* We can continue a streaming write only if it continues on from the 88 * previous. If it overlaps, we must flush lest we suffer a partial 89 * copy and disjoint dirty regions. 90 */ 91 if (offset == finfo->dirty_offset + finfo->dirty_len) 92 return NETFS_STREAMING_WRITE_CONT; 93 return NETFS_FLUSH_CONTENT; 94 95 no_write_streaming: 96 if (finfo) { 97 netfs_stat(&netfs_n_wh_wstream_conflict); 98 return NETFS_FLUSH_CONTENT; 99 } 100 return NETFS_JUST_PREFETCH; 101 } 102 103 /* 104 * Grab a folio for writing and lock it. Attempt to allocate as large a folio 105 * as possible to hold as much of the remaining length as possible in one go. 106 */ 107 static struct folio *netfs_grab_folio_for_write(struct address_space *mapping, 108 loff_t pos, size_t part) 109 { 110 pgoff_t index = pos / PAGE_SIZE; 111 fgf_t fgp_flags = FGP_WRITEBEGIN; 112 113 if (mapping_large_folio_support(mapping)) 114 fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part); 115 116 return __filemap_get_folio(mapping, index, fgp_flags, 117 mapping_gfp_mask(mapping)); 118 } 119 120 /* 121 * Update i_size and estimate the update to i_blocks to reflect the additional 122 * data written into the pagecache until we can find out from the server what 123 * the values actually are. 124 */ 125 static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode, 126 loff_t i_size, loff_t pos, size_t copied) 127 { 128 blkcnt_t add; 129 size_t gap; 130 131 if (ctx->ops->update_i_size) { 132 ctx->ops->update_i_size(inode, pos); 133 return; 134 } 135 136 i_size_write(inode, pos); 137 #if IS_ENABLED(CONFIG_FSCACHE) 138 fscache_update_cookie(ctx->cache, NULL, &pos); 139 #endif 140 141 gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1)); 142 if (copied > gap) { 143 add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE); 144 145 inode->i_blocks = min_t(blkcnt_t, 146 DIV_ROUND_UP(pos, SECTOR_SIZE), 147 inode->i_blocks + add); 148 } 149 } 150 151 /** 152 * netfs_perform_write - Copy data into the pagecache. 153 * @iocb: The operation parameters 154 * @iter: The source buffer 155 * @netfs_group: Grouping for dirty pages (eg. ceph snaps). 156 * 157 * Copy data into pagecache pages attached to the inode specified by @iocb. 158 * The caller must hold appropriate inode locks. 159 * 160 * Dirty pages are tagged with a netfs_folio struct if they're not up to date 161 * to indicate the range modified. Dirty pages may also be tagged with a 162 * netfs-specific grouping such that data from an old group gets flushed before 163 * a new one is started. 164 */ 165 ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter, 166 struct netfs_group *netfs_group) 167 { 168 struct file *file = iocb->ki_filp; 169 struct inode *inode = file_inode(file); 170 struct address_space *mapping = inode->i_mapping; 171 struct netfs_inode *ctx = netfs_inode(inode); 172 struct writeback_control wbc = { 173 .sync_mode = WB_SYNC_NONE, 174 .for_sync = true, 175 .nr_to_write = LONG_MAX, 176 .range_start = iocb->ki_pos, 177 .range_end = iocb->ki_pos + iter->count, 178 }; 179 struct netfs_io_request *wreq = NULL; 180 struct netfs_folio *finfo; 181 struct folio *folio, *writethrough = NULL; 182 enum netfs_how_to_modify howto; 183 enum netfs_folio_trace trace; 184 unsigned int bdp_flags = (iocb->ki_flags & IOCB_SYNC) ? 0: BDP_ASYNC; 185 ssize_t written = 0, ret, ret2; 186 loff_t i_size, pos = iocb->ki_pos, from, to; 187 size_t max_chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER; 188 bool maybe_trouble = false; 189 190 if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) || 191 iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) 192 ) { 193 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 194 195 ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count); 196 if (ret < 0) { 197 wbc_detach_inode(&wbc); 198 goto out; 199 } 200 201 wreq = netfs_begin_writethrough(iocb, iter->count); 202 if (IS_ERR(wreq)) { 203 wbc_detach_inode(&wbc); 204 ret = PTR_ERR(wreq); 205 wreq = NULL; 206 goto out; 207 } 208 if (!is_sync_kiocb(iocb)) 209 wreq->iocb = iocb; 210 netfs_stat(&netfs_n_wh_writethrough); 211 } else { 212 netfs_stat(&netfs_n_wh_buffered_write); 213 } 214 215 do { 216 size_t flen; 217 size_t offset; /* Offset into pagecache folio */ 218 size_t part; /* Bytes to write to folio */ 219 size_t copied; /* Bytes copied from user */ 220 221 ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags); 222 if (unlikely(ret < 0)) 223 break; 224 225 offset = pos & (max_chunk - 1); 226 part = min(max_chunk - offset, iov_iter_count(iter)); 227 228 /* Bring in the user pages that we will copy from _first_ lest 229 * we hit a nasty deadlock on copying from the same page as 230 * we're writing to, without it being marked uptodate. 231 * 232 * Not only is this an optimisation, but it is also required to 233 * check that the address is actually valid, when atomic 234 * usercopies are used below. 235 * 236 * We rely on the page being held onto long enough by the LRU 237 * that we can grab it below if this causes it to be read. 238 */ 239 ret = -EFAULT; 240 if (unlikely(fault_in_iov_iter_readable(iter, part) == part)) 241 break; 242 243 folio = netfs_grab_folio_for_write(mapping, pos, part); 244 if (IS_ERR(folio)) { 245 ret = PTR_ERR(folio); 246 break; 247 } 248 249 flen = folio_size(folio); 250 offset = pos & (flen - 1); 251 part = min_t(size_t, flen - offset, part); 252 253 /* Wait for writeback to complete. The writeback engine owns 254 * the info in folio->private and may change it until it 255 * removes the WB mark. 256 */ 257 if (folio_get_private(folio) && 258 folio_wait_writeback_killable(folio)) { 259 ret = written ? -EINTR : -ERESTARTSYS; 260 goto error_folio_unlock; 261 } 262 263 if (signal_pending(current)) { 264 ret = written ? -EINTR : -ERESTARTSYS; 265 goto error_folio_unlock; 266 } 267 268 /* See if we need to prefetch the area we're going to modify. 269 * We need to do this before we get a lock on the folio in case 270 * there's more than one writer competing for the same cache 271 * block. 272 */ 273 howto = netfs_how_to_modify(ctx, file, folio, netfs_group, 274 flen, offset, part, maybe_trouble); 275 _debug("howto %u", howto); 276 switch (howto) { 277 case NETFS_JUST_PREFETCH: 278 ret = netfs_prefetch_for_write(file, folio, offset, part); 279 if (ret < 0) { 280 _debug("prefetch = %zd", ret); 281 goto error_folio_unlock; 282 } 283 break; 284 case NETFS_FOLIO_IS_UPTODATE: 285 case NETFS_WHOLE_FOLIO_MODIFY: 286 case NETFS_STREAMING_WRITE_CONT: 287 break; 288 case NETFS_MODIFY_AND_CLEAR: 289 zero_user_segment(&folio->page, 0, offset); 290 break; 291 case NETFS_STREAMING_WRITE: 292 ret = -EIO; 293 if (WARN_ON(folio_get_private(folio))) 294 goto error_folio_unlock; 295 break; 296 case NETFS_FLUSH_CONTENT: 297 trace_netfs_folio(folio, netfs_flush_content); 298 from = folio_pos(folio); 299 to = from + folio_size(folio) - 1; 300 folio_unlock(folio); 301 folio_put(folio); 302 ret = filemap_write_and_wait_range(mapping, from, to); 303 if (ret < 0) 304 goto error_folio_unlock; 305 continue; 306 } 307 308 if (mapping_writably_mapped(mapping)) 309 flush_dcache_folio(folio); 310 311 copied = copy_folio_from_iter_atomic(folio, offset, part, iter); 312 313 flush_dcache_folio(folio); 314 315 /* Deal with a (partially) failed copy */ 316 if (copied == 0) { 317 ret = -EFAULT; 318 goto error_folio_unlock; 319 } 320 321 trace = (enum netfs_folio_trace)howto; 322 switch (howto) { 323 case NETFS_FOLIO_IS_UPTODATE: 324 case NETFS_JUST_PREFETCH: 325 netfs_set_group(folio, netfs_group); 326 break; 327 case NETFS_MODIFY_AND_CLEAR: 328 zero_user_segment(&folio->page, offset + copied, flen); 329 netfs_set_group(folio, netfs_group); 330 folio_mark_uptodate(folio); 331 break; 332 case NETFS_WHOLE_FOLIO_MODIFY: 333 if (unlikely(copied < part)) { 334 maybe_trouble = true; 335 iov_iter_revert(iter, copied); 336 copied = 0; 337 folio_unlock(folio); 338 goto retry; 339 } 340 netfs_set_group(folio, netfs_group); 341 folio_mark_uptodate(folio); 342 break; 343 case NETFS_STREAMING_WRITE: 344 if (offset == 0 && copied == flen) { 345 netfs_set_group(folio, netfs_group); 346 folio_mark_uptodate(folio); 347 trace = netfs_streaming_filled_page; 348 break; 349 } 350 finfo = kzalloc(sizeof(*finfo), GFP_KERNEL); 351 if (!finfo) { 352 iov_iter_revert(iter, copied); 353 ret = -ENOMEM; 354 goto error_folio_unlock; 355 } 356 finfo->netfs_group = netfs_get_group(netfs_group); 357 finfo->dirty_offset = offset; 358 finfo->dirty_len = copied; 359 folio_attach_private(folio, (void *)((unsigned long)finfo | 360 NETFS_FOLIO_INFO)); 361 break; 362 case NETFS_STREAMING_WRITE_CONT: 363 finfo = netfs_folio_info(folio); 364 finfo->dirty_len += copied; 365 if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) { 366 if (finfo->netfs_group) 367 folio_change_private(folio, finfo->netfs_group); 368 else 369 folio_detach_private(folio); 370 folio_mark_uptodate(folio); 371 kfree(finfo); 372 trace = netfs_streaming_cont_filled_page; 373 } 374 break; 375 default: 376 WARN(true, "Unexpected modify type %u ix=%lx\n", 377 howto, folio->index); 378 ret = -EIO; 379 goto error_folio_unlock; 380 } 381 382 trace_netfs_folio(folio, trace); 383 384 /* Update the inode size if we moved the EOF marker */ 385 pos += copied; 386 i_size = i_size_read(inode); 387 if (pos > i_size) 388 netfs_update_i_size(ctx, inode, i_size, pos, copied); 389 written += copied; 390 391 if (likely(!wreq)) { 392 folio_mark_dirty(folio); 393 folio_unlock(folio); 394 } else { 395 netfs_advance_writethrough(wreq, &wbc, folio, copied, 396 offset + copied == flen, 397 &writethrough); 398 /* Folio unlocked */ 399 } 400 retry: 401 folio_put(folio); 402 folio = NULL; 403 404 cond_resched(); 405 } while (iov_iter_count(iter)); 406 407 out: 408 if (likely(written) && ctx->ops->post_modify) 409 ctx->ops->post_modify(inode); 410 411 if (unlikely(wreq)) { 412 ret2 = netfs_end_writethrough(wreq, &wbc, writethrough); 413 wbc_detach_inode(&wbc); 414 if (ret2 == -EIOCBQUEUED) 415 return ret2; 416 if (ret == 0) 417 ret = ret2; 418 } 419 420 iocb->ki_pos += written; 421 _leave(" = %zd [%zd]", written, ret); 422 return written ? written : ret; 423 424 error_folio_unlock: 425 folio_unlock(folio); 426 folio_put(folio); 427 goto out; 428 } 429 EXPORT_SYMBOL(netfs_perform_write); 430 431 /** 432 * netfs_buffered_write_iter_locked - write data to a file 433 * @iocb: IO state structure (file, offset, etc.) 434 * @from: iov_iter with data to write 435 * @netfs_group: Grouping for dirty pages (eg. ceph snaps). 436 * 437 * This function does all the work needed for actually writing data to a 438 * file. It does all basic checks, removes SUID from the file, updates 439 * modification times and calls proper subroutines depending on whether we 440 * do direct IO or a standard buffered write. 441 * 442 * The caller must hold appropriate locks around this function and have called 443 * generic_write_checks() already. The caller is also responsible for doing 444 * any necessary syncing afterwards. 445 * 446 * This function does *not* take care of syncing data in case of O_SYNC write. 447 * A caller has to handle it. This is mainly due to the fact that we want to 448 * avoid syncing under i_rwsem. 449 * 450 * Return: 451 * * number of bytes written, even for truncated writes 452 * * negative error code if no data has been written at all 453 */ 454 ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from, 455 struct netfs_group *netfs_group) 456 { 457 struct file *file = iocb->ki_filp; 458 ssize_t ret; 459 460 trace_netfs_write_iter(iocb, from); 461 462 ret = file_remove_privs(file); 463 if (ret) 464 return ret; 465 466 ret = file_update_time(file); 467 if (ret) 468 return ret; 469 470 return netfs_perform_write(iocb, from, netfs_group); 471 } 472 EXPORT_SYMBOL(netfs_buffered_write_iter_locked); 473 474 /** 475 * netfs_file_write_iter - write data to a file 476 * @iocb: IO state structure 477 * @from: iov_iter with data to write 478 * 479 * Perform a write to a file, writing into the pagecache if possible and doing 480 * an unbuffered write instead if not. 481 * 482 * Return: 483 * * Negative error code if no data has been written at all of 484 * vfs_fsync_range() failed for a synchronous write 485 * * Number of bytes written, even for truncated writes 486 */ 487 ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 488 { 489 struct file *file = iocb->ki_filp; 490 struct inode *inode = file->f_mapping->host; 491 struct netfs_inode *ictx = netfs_inode(inode); 492 ssize_t ret; 493 494 _enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode)); 495 496 if (!iov_iter_count(from)) 497 return 0; 498 499 if ((iocb->ki_flags & IOCB_DIRECT) || 500 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)) 501 return netfs_unbuffered_write_iter(iocb, from); 502 503 ret = netfs_start_io_write(inode); 504 if (ret < 0) 505 return ret; 506 507 ret = generic_write_checks(iocb, from); 508 if (ret > 0) 509 ret = netfs_buffered_write_iter_locked(iocb, from, NULL); 510 netfs_end_io_write(inode); 511 if (ret > 0) 512 ret = generic_write_sync(iocb, ret); 513 return ret; 514 } 515 EXPORT_SYMBOL(netfs_file_write_iter); 516 517 /* 518 * Notification that a previously read-only page is about to become writable. 519 * Note that the caller indicates a single page of a multipage folio. 520 */ 521 vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group) 522 { 523 struct netfs_group *group; 524 struct folio *folio = page_folio(vmf->page); 525 struct file *file = vmf->vma->vm_file; 526 struct inode *inode = file_inode(file); 527 struct netfs_inode *ictx = netfs_inode(inode); 528 vm_fault_t ret = VM_FAULT_RETRY; 529 int err; 530 531 _enter("%lx", folio->index); 532 533 sb_start_pagefault(inode->i_sb); 534 535 if (folio_lock_killable(folio) < 0) 536 goto out; 537 538 if (folio_wait_writeback_killable(folio)) { 539 ret = VM_FAULT_LOCKED; 540 goto out; 541 } 542 543 /* Can we see a streaming write here? */ 544 if (WARN_ON(!folio_test_uptodate(folio))) { 545 ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED; 546 goto out; 547 } 548 549 group = netfs_folio_group(folio); 550 if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) { 551 folio_unlock(folio); 552 err = filemap_fdatawait_range(inode->i_mapping, 553 folio_pos(folio), 554 folio_pos(folio) + folio_size(folio)); 555 switch (err) { 556 case 0: 557 ret = VM_FAULT_RETRY; 558 goto out; 559 case -ENOMEM: 560 ret = VM_FAULT_OOM; 561 goto out; 562 default: 563 ret = VM_FAULT_SIGBUS; 564 goto out; 565 } 566 } 567 568 if (folio_test_dirty(folio)) 569 trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus); 570 else 571 trace_netfs_folio(folio, netfs_folio_trace_mkwrite); 572 netfs_set_group(folio, netfs_group); 573 file_update_time(file); 574 if (ictx->ops->post_modify) 575 ictx->ops->post_modify(inode); 576 ret = VM_FAULT_LOCKED; 577 out: 578 sb_end_pagefault(inode->i_sb); 579 return ret; 580 } 581 EXPORT_SYMBOL(netfs_page_mkwrite); 582