xref: /linux/fs/netfs/buffered_read.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level buffered read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/task_io_accounting_ops.h>
10 #include "internal.h"
11 
12 /*
13  * Unlock the folios in a read operation.  We need to set PG_fscache on any
14  * folios we're going to write back before we unlock them.
15  */
16 void netfs_rreq_unlock_folios(struct netfs_io_request *rreq)
17 {
18 	struct netfs_io_subrequest *subreq;
19 	struct netfs_folio *finfo;
20 	struct folio *folio;
21 	pgoff_t start_page = rreq->start / PAGE_SIZE;
22 	pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
23 	size_t account = 0;
24 	bool subreq_failed = false;
25 
26 	XA_STATE(xas, &rreq->mapping->i_pages, start_page);
27 
28 	if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
29 		__clear_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
30 		list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
31 			__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
32 		}
33 	}
34 
35 	/* Walk through the pagecache and the I/O request lists simultaneously.
36 	 * We may have a mixture of cached and uncached sections and we only
37 	 * really want to write out the uncached sections.  This is slightly
38 	 * complicated by the possibility that we might have huge pages with a
39 	 * mixture inside.
40 	 */
41 	subreq = list_first_entry(&rreq->subrequests,
42 				  struct netfs_io_subrequest, rreq_link);
43 	subreq_failed = (subreq->error < 0);
44 
45 	trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
46 
47 	rcu_read_lock();
48 	xas_for_each(&xas, folio, last_page) {
49 		loff_t pg_end;
50 		bool pg_failed = false;
51 		bool folio_started;
52 
53 		if (xas_retry(&xas, folio))
54 			continue;
55 
56 		pg_end = folio_pos(folio) + folio_size(folio) - 1;
57 
58 		folio_started = false;
59 		for (;;) {
60 			loff_t sreq_end;
61 
62 			if (!subreq) {
63 				pg_failed = true;
64 				break;
65 			}
66 			if (!folio_started && test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
67 				trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
68 				folio_start_fscache(folio);
69 				folio_started = true;
70 			}
71 			pg_failed |= subreq_failed;
72 			sreq_end = subreq->start + subreq->len - 1;
73 			if (pg_end < sreq_end)
74 				break;
75 
76 			account += subreq->transferred;
77 			if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
78 				subreq = list_next_entry(subreq, rreq_link);
79 				subreq_failed = (subreq->error < 0);
80 			} else {
81 				subreq = NULL;
82 				subreq_failed = false;
83 			}
84 
85 			if (pg_end == sreq_end)
86 				break;
87 		}
88 
89 		if (!pg_failed) {
90 			flush_dcache_folio(folio);
91 			finfo = netfs_folio_info(folio);
92 			if (finfo) {
93 				trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
94 				if (finfo->netfs_group)
95 					folio_change_private(folio, finfo->netfs_group);
96 				else
97 					folio_detach_private(folio);
98 				kfree(finfo);
99 			}
100 			folio_mark_uptodate(folio);
101 		}
102 
103 		if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
104 			if (folio_index(folio) == rreq->no_unlock_folio &&
105 			    test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags))
106 				_debug("no unlock");
107 			else
108 				folio_unlock(folio);
109 		}
110 	}
111 	rcu_read_unlock();
112 
113 	task_io_account_read(account);
114 	if (rreq->netfs_ops->done)
115 		rreq->netfs_ops->done(rreq);
116 }
117 
118 static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
119 					 loff_t *_start, size_t *_len, loff_t i_size)
120 {
121 	struct netfs_cache_resources *cres = &rreq->cache_resources;
122 
123 	if (cres->ops && cres->ops->expand_readahead)
124 		cres->ops->expand_readahead(cres, _start, _len, i_size);
125 }
126 
127 static void netfs_rreq_expand(struct netfs_io_request *rreq,
128 			      struct readahead_control *ractl)
129 {
130 	/* Give the cache a chance to change the request parameters.  The
131 	 * resultant request must contain the original region.
132 	 */
133 	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
134 
135 	/* Give the netfs a chance to change the request parameters.  The
136 	 * resultant request must contain the original region.
137 	 */
138 	if (rreq->netfs_ops->expand_readahead)
139 		rreq->netfs_ops->expand_readahead(rreq);
140 
141 	/* Expand the request if the cache wants it to start earlier.  Note
142 	 * that the expansion may get further extended if the VM wishes to
143 	 * insert THPs and the preferred start and/or end wind up in the middle
144 	 * of THPs.
145 	 *
146 	 * If this is the case, however, the THP size should be an integer
147 	 * multiple of the cache granule size, so we get a whole number of
148 	 * granules to deal with.
149 	 */
150 	if (rreq->start  != readahead_pos(ractl) ||
151 	    rreq->len != readahead_length(ractl)) {
152 		readahead_expand(ractl, rreq->start, rreq->len);
153 		rreq->start  = readahead_pos(ractl);
154 		rreq->len = readahead_length(ractl);
155 
156 		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
157 				 netfs_read_trace_expanded);
158 	}
159 }
160 
161 /*
162  * Begin an operation, and fetch the stored zero point value from the cookie if
163  * available.
164  */
165 static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
166 {
167 	return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
168 }
169 
170 /**
171  * netfs_readahead - Helper to manage a read request
172  * @ractl: The description of the readahead request
173  *
174  * Fulfil a readahead request by drawing data from the cache if possible, or
175  * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
176  * requests from different sources will get munged together.  If necessary, the
177  * readahead window can be expanded in either direction to a more convenient
178  * alighment for RPC efficiency or to make storage in the cache feasible.
179  *
180  * The calling netfs must initialise a netfs context contiguous to the vfs
181  * inode before calling this.
182  *
183  * This is usable whether or not caching is enabled.
184  */
185 void netfs_readahead(struct readahead_control *ractl)
186 {
187 	struct netfs_io_request *rreq;
188 	struct netfs_inode *ctx = netfs_inode(ractl->mapping->host);
189 	int ret;
190 
191 	_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
192 
193 	if (readahead_count(ractl) == 0)
194 		return;
195 
196 	rreq = netfs_alloc_request(ractl->mapping, ractl->file,
197 				   readahead_pos(ractl),
198 				   readahead_length(ractl),
199 				   NETFS_READAHEAD);
200 	if (IS_ERR(rreq))
201 		return;
202 
203 	ret = netfs_begin_cache_read(rreq, ctx);
204 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
205 		goto cleanup_free;
206 
207 	netfs_stat(&netfs_n_rh_readahead);
208 	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
209 			 netfs_read_trace_readahead);
210 
211 	netfs_rreq_expand(rreq, ractl);
212 
213 	/* Set up the output buffer */
214 	iov_iter_xarray(&rreq->iter, ITER_DEST, &ractl->mapping->i_pages,
215 			rreq->start, rreq->len);
216 
217 	/* Drop the refs on the folios here rather than in the cache or
218 	 * filesystem.  The locks will be dropped in netfs_rreq_unlock().
219 	 */
220 	while (readahead_folio(ractl))
221 		;
222 
223 	netfs_begin_read(rreq, false);
224 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
225 	return;
226 
227 cleanup_free:
228 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
229 	return;
230 }
231 EXPORT_SYMBOL(netfs_readahead);
232 
233 /**
234  * netfs_read_folio - Helper to manage a read_folio request
235  * @file: The file to read from
236  * @folio: The folio to read
237  *
238  * Fulfil a read_folio request by drawing data from the cache if
239  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
240  * Multiple I/O requests from different sources will get munged together.
241  *
242  * The calling netfs must initialise a netfs context contiguous to the vfs
243  * inode before calling this.
244  *
245  * This is usable whether or not caching is enabled.
246  */
247 int netfs_read_folio(struct file *file, struct folio *folio)
248 {
249 	struct address_space *mapping = folio_file_mapping(folio);
250 	struct netfs_io_request *rreq;
251 	struct netfs_inode *ctx = netfs_inode(mapping->host);
252 	struct folio *sink = NULL;
253 	int ret;
254 
255 	_enter("%lx", folio_index(folio));
256 
257 	rreq = netfs_alloc_request(mapping, file,
258 				   folio_file_pos(folio), folio_size(folio),
259 				   NETFS_READPAGE);
260 	if (IS_ERR(rreq)) {
261 		ret = PTR_ERR(rreq);
262 		goto alloc_error;
263 	}
264 
265 	ret = netfs_begin_cache_read(rreq, ctx);
266 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
267 		goto discard;
268 
269 	netfs_stat(&netfs_n_rh_readpage);
270 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
271 
272 	/* Set up the output buffer */
273 	if (folio_test_dirty(folio)) {
274 		/* Handle someone trying to read from an unflushed streaming
275 		 * write.  We fiddle the buffer so that a gap at the beginning
276 		 * and/or a gap at the end get copied to, but the middle is
277 		 * discarded.
278 		 */
279 		struct netfs_folio *finfo = netfs_folio_info(folio);
280 		struct bio_vec *bvec;
281 		unsigned int from = finfo->dirty_offset;
282 		unsigned int to = from + finfo->dirty_len;
283 		unsigned int off = 0, i = 0;
284 		size_t flen = folio_size(folio);
285 		size_t nr_bvec = flen / PAGE_SIZE + 2;
286 		size_t part;
287 
288 		ret = -ENOMEM;
289 		bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
290 		if (!bvec)
291 			goto discard;
292 
293 		sink = folio_alloc(GFP_KERNEL, 0);
294 		if (!sink)
295 			goto discard;
296 
297 		trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
298 
299 		rreq->direct_bv = bvec;
300 		rreq->direct_bv_count = nr_bvec;
301 		if (from > 0) {
302 			bvec_set_folio(&bvec[i++], folio, from, 0);
303 			off = from;
304 		}
305 		while (off < to) {
306 			part = min_t(size_t, to - off, PAGE_SIZE);
307 			bvec_set_folio(&bvec[i++], sink, part, 0);
308 			off += part;
309 		}
310 		if (to < flen)
311 			bvec_set_folio(&bvec[i++], folio, flen - to, to);
312 		iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
313 	} else {
314 		iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
315 				rreq->start, rreq->len);
316 	}
317 
318 	ret = netfs_begin_read(rreq, true);
319 	if (sink)
320 		folio_put(sink);
321 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
322 	return ret < 0 ? ret : 0;
323 
324 discard:
325 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
326 alloc_error:
327 	folio_unlock(folio);
328 	return ret;
329 }
330 EXPORT_SYMBOL(netfs_read_folio);
331 
332 /*
333  * Prepare a folio for writing without reading first
334  * @folio: The folio being prepared
335  * @pos: starting position for the write
336  * @len: length of write
337  * @always_fill: T if the folio should always be completely filled/cleared
338  *
339  * In some cases, write_begin doesn't need to read at all:
340  * - full folio write
341  * - write that lies in a folio that is completely beyond EOF
342  * - write that covers the folio from start to EOF or beyond it
343  *
344  * If any of these criteria are met, then zero out the unwritten parts
345  * of the folio and return true. Otherwise, return false.
346  */
347 static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
348 				 bool always_fill)
349 {
350 	struct inode *inode = folio_inode(folio);
351 	loff_t i_size = i_size_read(inode);
352 	size_t offset = offset_in_folio(folio, pos);
353 	size_t plen = folio_size(folio);
354 
355 	if (unlikely(always_fill)) {
356 		if (pos - offset + len <= i_size)
357 			return false; /* Page entirely before EOF */
358 		zero_user_segment(&folio->page, 0, plen);
359 		folio_mark_uptodate(folio);
360 		return true;
361 	}
362 
363 	/* Full folio write */
364 	if (offset == 0 && len >= plen)
365 		return true;
366 
367 	/* Page entirely beyond the end of the file */
368 	if (pos - offset >= i_size)
369 		goto zero_out;
370 
371 	/* Write that covers from the start of the folio to EOF or beyond */
372 	if (offset == 0 && (pos + len) >= i_size)
373 		goto zero_out;
374 
375 	return false;
376 zero_out:
377 	zero_user_segments(&folio->page, 0, offset, offset + len, plen);
378 	return true;
379 }
380 
381 /**
382  * netfs_write_begin - Helper to prepare for writing
383  * @ctx: The netfs context
384  * @file: The file to read from
385  * @mapping: The mapping to read from
386  * @pos: File position at which the write will begin
387  * @len: The length of the write (may extend beyond the end of the folio chosen)
388  * @_folio: Where to put the resultant folio
389  * @_fsdata: Place for the netfs to store a cookie
390  *
391  * Pre-read data for a write-begin request by drawing data from the cache if
392  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
393  * Multiple I/O requests from different sources will get munged together.  If
394  * necessary, the readahead window can be expanded in either direction to a
395  * more convenient alighment for RPC efficiency or to make storage in the cache
396  * feasible.
397  *
398  * The calling netfs must provide a table of operations, only one of which,
399  * issue_op, is mandatory.
400  *
401  * The check_write_begin() operation can be provided to check for and flush
402  * conflicting writes once the folio is grabbed and locked.  It is passed a
403  * pointer to the fsdata cookie that gets returned to the VM to be passed to
404  * write_end.  It is permitted to sleep.  It should return 0 if the request
405  * should go ahead or it may return an error.  It may also unlock and put the
406  * folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
407  * will cause the folio to be re-got and the process to be retried.
408  *
409  * The calling netfs must initialise a netfs context contiguous to the vfs
410  * inode before calling this.
411  *
412  * This is usable whether or not caching is enabled.
413  */
414 int netfs_write_begin(struct netfs_inode *ctx,
415 		      struct file *file, struct address_space *mapping,
416 		      loff_t pos, unsigned int len, struct folio **_folio,
417 		      void **_fsdata)
418 {
419 	struct netfs_io_request *rreq;
420 	struct folio *folio;
421 	pgoff_t index = pos >> PAGE_SHIFT;
422 	int ret;
423 
424 	DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
425 
426 retry:
427 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
428 				    mapping_gfp_mask(mapping));
429 	if (IS_ERR(folio))
430 		return PTR_ERR(folio);
431 
432 	if (ctx->ops->check_write_begin) {
433 		/* Allow the netfs (eg. ceph) to flush conflicts. */
434 		ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
435 		if (ret < 0) {
436 			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
437 			goto error;
438 		}
439 		if (!folio)
440 			goto retry;
441 	}
442 
443 	if (folio_test_uptodate(folio))
444 		goto have_folio;
445 
446 	/* If the page is beyond the EOF, we want to clear it - unless it's
447 	 * within the cache granule containing the EOF, in which case we need
448 	 * to preload the granule.
449 	 */
450 	if (!netfs_is_cache_enabled(ctx) &&
451 	    netfs_skip_folio_read(folio, pos, len, false)) {
452 		netfs_stat(&netfs_n_rh_write_zskip);
453 		goto have_folio_no_wait;
454 	}
455 
456 	rreq = netfs_alloc_request(mapping, file,
457 				   folio_file_pos(folio), folio_size(folio),
458 				   NETFS_READ_FOR_WRITE);
459 	if (IS_ERR(rreq)) {
460 		ret = PTR_ERR(rreq);
461 		goto error;
462 	}
463 	rreq->no_unlock_folio	= folio_index(folio);
464 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
465 
466 	ret = netfs_begin_cache_read(rreq, ctx);
467 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
468 		goto error_put;
469 
470 	netfs_stat(&netfs_n_rh_write_begin);
471 	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
472 
473 	/* Expand the request to meet caching requirements and download
474 	 * preferences.
475 	 */
476 	ractl._nr_pages = folio_nr_pages(folio);
477 	netfs_rreq_expand(rreq, &ractl);
478 
479 	/* Set up the output buffer */
480 	iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
481 			rreq->start, rreq->len);
482 
483 	/* We hold the folio locks, so we can drop the references */
484 	folio_get(folio);
485 	while (readahead_folio(&ractl))
486 		;
487 
488 	ret = netfs_begin_read(rreq, true);
489 	if (ret < 0)
490 		goto error;
491 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
492 
493 have_folio:
494 	ret = folio_wait_fscache_killable(folio);
495 	if (ret < 0)
496 		goto error;
497 have_folio_no_wait:
498 	*_folio = folio;
499 	_leave(" = 0");
500 	return 0;
501 
502 error_put:
503 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
504 error:
505 	if (folio) {
506 		folio_unlock(folio);
507 		folio_put(folio);
508 	}
509 	_leave(" = %d", ret);
510 	return ret;
511 }
512 EXPORT_SYMBOL(netfs_write_begin);
513 
514 /*
515  * Preload the data into a page we're proposing to write into.
516  */
517 int netfs_prefetch_for_write(struct file *file, struct folio *folio,
518 			     size_t offset, size_t len)
519 {
520 	struct netfs_io_request *rreq;
521 	struct address_space *mapping = folio_file_mapping(folio);
522 	struct netfs_inode *ctx = netfs_inode(mapping->host);
523 	unsigned long long start = folio_pos(folio);
524 	size_t flen = folio_size(folio);
525 	int ret;
526 
527 	_enter("%zx @%llx", flen, start);
528 
529 	ret = -ENOMEM;
530 
531 	rreq = netfs_alloc_request(mapping, file, start, flen,
532 				   NETFS_READ_FOR_WRITE);
533 	if (IS_ERR(rreq)) {
534 		ret = PTR_ERR(rreq);
535 		goto error;
536 	}
537 
538 	rreq->no_unlock_folio = folio_index(folio);
539 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
540 	ret = netfs_begin_cache_read(rreq, ctx);
541 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
542 		goto error_put;
543 
544 	netfs_stat(&netfs_n_rh_write_begin);
545 	trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);
546 
547 	/* Set up the output buffer */
548 	iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
549 			rreq->start, rreq->len);
550 
551 	ret = netfs_begin_read(rreq, true);
552 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
553 	return ret;
554 
555 error_put:
556 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
557 error:
558 	_leave(" = %d", ret);
559 	return ret;
560 }
561 
562 /**
563  * netfs_buffered_read_iter - Filesystem buffered I/O read routine
564  * @iocb: kernel I/O control block
565  * @iter: destination for the data read
566  *
567  * This is the ->read_iter() routine for all filesystems that can use the page
568  * cache directly.
569  *
570  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
571  * returned when no data can be read without waiting for I/O requests to
572  * complete; it doesn't prevent readahead.
573  *
574  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
575  * shall be made for the read or for readahead.  When no data can be read,
576  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
577  * possibly empty read shall be returned.
578  *
579  * Return:
580  * * number of bytes copied, even for partial reads
581  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
582  */
583 ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
584 {
585 	struct inode *inode = file_inode(iocb->ki_filp);
586 	struct netfs_inode *ictx = netfs_inode(inode);
587 	ssize_t ret;
588 
589 	if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
590 			 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
591 		return -EINVAL;
592 
593 	ret = netfs_start_io_read(inode);
594 	if (ret == 0) {
595 		ret = filemap_read(iocb, iter, 0);
596 		netfs_end_io_read(inode);
597 	}
598 	return ret;
599 }
600 EXPORT_SYMBOL(netfs_buffered_read_iter);
601 
602 /**
603  * netfs_file_read_iter - Generic filesystem read routine
604  * @iocb: kernel I/O control block
605  * @iter: destination for the data read
606  *
607  * This is the ->read_iter() routine for all filesystems that can use the page
608  * cache directly.
609  *
610  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
611  * returned when no data can be read without waiting for I/O requests to
612  * complete; it doesn't prevent readahead.
613  *
614  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
615  * shall be made for the read or for readahead.  When no data can be read,
616  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
617  * possibly empty read shall be returned.
618  *
619  * Return:
620  * * number of bytes copied, even for partial reads
621  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
622  */
623 ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
624 {
625 	struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);
626 
627 	if ((iocb->ki_flags & IOCB_DIRECT) ||
628 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
629 		return netfs_unbuffered_read_iter(iocb, iter);
630 
631 	return netfs_buffered_read_iter(iocb, iter);
632 }
633 EXPORT_SYMBOL(netfs_file_read_iter);
634