xref: /linux/fs/netfs/buffered_read.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level buffered read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/task_io_accounting_ops.h>
10 #include "internal.h"
11 
12 /*
13  * Unlock the folios in a read operation.  We need to set PG_writeback on any
14  * folios we're going to write back before we unlock them.
15  *
16  * Note that if the deprecated NETFS_RREQ_USE_PGPRIV2 is set then we use
17  * PG_private_2 and do a direct write to the cache from here instead.
18  */
19 void netfs_rreq_unlock_folios(struct netfs_io_request *rreq)
20 {
21 	struct netfs_io_subrequest *subreq;
22 	struct netfs_folio *finfo;
23 	struct folio *folio;
24 	pgoff_t start_page = rreq->start / PAGE_SIZE;
25 	pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
26 	size_t account = 0;
27 	bool subreq_failed = false;
28 
29 	XA_STATE(xas, &rreq->mapping->i_pages, start_page);
30 
31 	if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
32 		__clear_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
33 		list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
34 			__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
35 		}
36 	}
37 
38 	/* Walk through the pagecache and the I/O request lists simultaneously.
39 	 * We may have a mixture of cached and uncached sections and we only
40 	 * really want to write out the uncached sections.  This is slightly
41 	 * complicated by the possibility that we might have huge pages with a
42 	 * mixture inside.
43 	 */
44 	subreq = list_first_entry(&rreq->subrequests,
45 				  struct netfs_io_subrequest, rreq_link);
46 	subreq_failed = (subreq->error < 0);
47 
48 	trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
49 
50 	rcu_read_lock();
51 	xas_for_each(&xas, folio, last_page) {
52 		loff_t pg_end;
53 		bool pg_failed = false;
54 		bool wback_to_cache = false;
55 		bool folio_started = false;
56 
57 		if (xas_retry(&xas, folio))
58 			continue;
59 
60 		pg_end = folio_pos(folio) + folio_size(folio) - 1;
61 
62 		for (;;) {
63 			loff_t sreq_end;
64 
65 			if (!subreq) {
66 				pg_failed = true;
67 				break;
68 			}
69 			if (test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
70 				if (!folio_started && test_bit(NETFS_SREQ_COPY_TO_CACHE,
71 							       &subreq->flags)) {
72 					trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
73 					folio_start_private_2(folio);
74 					folio_started = true;
75 				}
76 			} else {
77 				wback_to_cache |=
78 					test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
79 			}
80 			pg_failed |= subreq_failed;
81 			sreq_end = subreq->start + subreq->len - 1;
82 			if (pg_end < sreq_end)
83 				break;
84 
85 			account += subreq->transferred;
86 			if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
87 				subreq = list_next_entry(subreq, rreq_link);
88 				subreq_failed = (subreq->error < 0);
89 			} else {
90 				subreq = NULL;
91 				subreq_failed = false;
92 			}
93 
94 			if (pg_end == sreq_end)
95 				break;
96 		}
97 
98 		if (!pg_failed) {
99 			flush_dcache_folio(folio);
100 			finfo = netfs_folio_info(folio);
101 			if (finfo) {
102 				trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
103 				if (finfo->netfs_group)
104 					folio_change_private(folio, finfo->netfs_group);
105 				else
106 					folio_detach_private(folio);
107 				kfree(finfo);
108 			}
109 			folio_mark_uptodate(folio);
110 			if (wback_to_cache && !WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
111 				trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
112 				folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
113 				filemap_dirty_folio(folio->mapping, folio);
114 			}
115 		}
116 
117 		if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
118 			if (folio->index == rreq->no_unlock_folio &&
119 			    test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags))
120 				_debug("no unlock");
121 			else
122 				folio_unlock(folio);
123 		}
124 	}
125 	rcu_read_unlock();
126 
127 	task_io_account_read(account);
128 	if (rreq->netfs_ops->done)
129 		rreq->netfs_ops->done(rreq);
130 }
131 
132 static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
133 					 unsigned long long *_start,
134 					 unsigned long long *_len,
135 					 unsigned long long i_size)
136 {
137 	struct netfs_cache_resources *cres = &rreq->cache_resources;
138 
139 	if (cres->ops && cres->ops->expand_readahead)
140 		cres->ops->expand_readahead(cres, _start, _len, i_size);
141 }
142 
143 static void netfs_rreq_expand(struct netfs_io_request *rreq,
144 			      struct readahead_control *ractl)
145 {
146 	/* Give the cache a chance to change the request parameters.  The
147 	 * resultant request must contain the original region.
148 	 */
149 	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
150 
151 	/* Give the netfs a chance to change the request parameters.  The
152 	 * resultant request must contain the original region.
153 	 */
154 	if (rreq->netfs_ops->expand_readahead)
155 		rreq->netfs_ops->expand_readahead(rreq);
156 
157 	/* Expand the request if the cache wants it to start earlier.  Note
158 	 * that the expansion may get further extended if the VM wishes to
159 	 * insert THPs and the preferred start and/or end wind up in the middle
160 	 * of THPs.
161 	 *
162 	 * If this is the case, however, the THP size should be an integer
163 	 * multiple of the cache granule size, so we get a whole number of
164 	 * granules to deal with.
165 	 */
166 	if (rreq->start  != readahead_pos(ractl) ||
167 	    rreq->len != readahead_length(ractl)) {
168 		readahead_expand(ractl, rreq->start, rreq->len);
169 		rreq->start  = readahead_pos(ractl);
170 		rreq->len = readahead_length(ractl);
171 
172 		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
173 				 netfs_read_trace_expanded);
174 	}
175 }
176 
177 /*
178  * Begin an operation, and fetch the stored zero point value from the cookie if
179  * available.
180  */
181 static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
182 {
183 	return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
184 }
185 
186 /**
187  * netfs_readahead - Helper to manage a read request
188  * @ractl: The description of the readahead request
189  *
190  * Fulfil a readahead request by drawing data from the cache if possible, or
191  * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
192  * requests from different sources will get munged together.  If necessary, the
193  * readahead window can be expanded in either direction to a more convenient
194  * alighment for RPC efficiency or to make storage in the cache feasible.
195  *
196  * The calling netfs must initialise a netfs context contiguous to the vfs
197  * inode before calling this.
198  *
199  * This is usable whether or not caching is enabled.
200  */
201 void netfs_readahead(struct readahead_control *ractl)
202 {
203 	struct netfs_io_request *rreq;
204 	struct netfs_inode *ctx = netfs_inode(ractl->mapping->host);
205 	int ret;
206 
207 	_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
208 
209 	if (readahead_count(ractl) == 0)
210 		return;
211 
212 	rreq = netfs_alloc_request(ractl->mapping, ractl->file,
213 				   readahead_pos(ractl),
214 				   readahead_length(ractl),
215 				   NETFS_READAHEAD);
216 	if (IS_ERR(rreq))
217 		return;
218 
219 	ret = netfs_begin_cache_read(rreq, ctx);
220 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
221 		goto cleanup_free;
222 
223 	netfs_stat(&netfs_n_rh_readahead);
224 	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
225 			 netfs_read_trace_readahead);
226 
227 	netfs_rreq_expand(rreq, ractl);
228 
229 	/* Set up the output buffer */
230 	iov_iter_xarray(&rreq->iter, ITER_DEST, &ractl->mapping->i_pages,
231 			rreq->start, rreq->len);
232 
233 	/* Drop the refs on the folios here rather than in the cache or
234 	 * filesystem.  The locks will be dropped in netfs_rreq_unlock().
235 	 */
236 	while (readahead_folio(ractl))
237 		;
238 
239 	netfs_begin_read(rreq, false);
240 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
241 	return;
242 
243 cleanup_free:
244 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
245 	return;
246 }
247 EXPORT_SYMBOL(netfs_readahead);
248 
249 /**
250  * netfs_read_folio - Helper to manage a read_folio request
251  * @file: The file to read from
252  * @folio: The folio to read
253  *
254  * Fulfil a read_folio request by drawing data from the cache if
255  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
256  * Multiple I/O requests from different sources will get munged together.
257  *
258  * The calling netfs must initialise a netfs context contiguous to the vfs
259  * inode before calling this.
260  *
261  * This is usable whether or not caching is enabled.
262  */
263 int netfs_read_folio(struct file *file, struct folio *folio)
264 {
265 	struct address_space *mapping = folio->mapping;
266 	struct netfs_io_request *rreq;
267 	struct netfs_inode *ctx = netfs_inode(mapping->host);
268 	struct folio *sink = NULL;
269 	int ret;
270 
271 	_enter("%lx", folio->index);
272 
273 	rreq = netfs_alloc_request(mapping, file,
274 				   folio_file_pos(folio), folio_size(folio),
275 				   NETFS_READPAGE);
276 	if (IS_ERR(rreq)) {
277 		ret = PTR_ERR(rreq);
278 		goto alloc_error;
279 	}
280 
281 	ret = netfs_begin_cache_read(rreq, ctx);
282 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
283 		goto discard;
284 
285 	netfs_stat(&netfs_n_rh_read_folio);
286 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
287 
288 	/* Set up the output buffer */
289 	if (folio_test_dirty(folio)) {
290 		/* Handle someone trying to read from an unflushed streaming
291 		 * write.  We fiddle the buffer so that a gap at the beginning
292 		 * and/or a gap at the end get copied to, but the middle is
293 		 * discarded.
294 		 */
295 		struct netfs_folio *finfo = netfs_folio_info(folio);
296 		struct bio_vec *bvec;
297 		unsigned int from = finfo->dirty_offset;
298 		unsigned int to = from + finfo->dirty_len;
299 		unsigned int off = 0, i = 0;
300 		size_t flen = folio_size(folio);
301 		size_t nr_bvec = flen / PAGE_SIZE + 2;
302 		size_t part;
303 
304 		ret = -ENOMEM;
305 		bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
306 		if (!bvec)
307 			goto discard;
308 
309 		sink = folio_alloc(GFP_KERNEL, 0);
310 		if (!sink)
311 			goto discard;
312 
313 		trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
314 
315 		rreq->direct_bv = bvec;
316 		rreq->direct_bv_count = nr_bvec;
317 		if (from > 0) {
318 			bvec_set_folio(&bvec[i++], folio, from, 0);
319 			off = from;
320 		}
321 		while (off < to) {
322 			part = min_t(size_t, to - off, PAGE_SIZE);
323 			bvec_set_folio(&bvec[i++], sink, part, 0);
324 			off += part;
325 		}
326 		if (to < flen)
327 			bvec_set_folio(&bvec[i++], folio, flen - to, to);
328 		iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
329 	} else {
330 		iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
331 				rreq->start, rreq->len);
332 	}
333 
334 	ret = netfs_begin_read(rreq, true);
335 	if (sink)
336 		folio_put(sink);
337 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
338 	return ret < 0 ? ret : 0;
339 
340 discard:
341 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
342 alloc_error:
343 	folio_unlock(folio);
344 	return ret;
345 }
346 EXPORT_SYMBOL(netfs_read_folio);
347 
348 /*
349  * Prepare a folio for writing without reading first
350  * @folio: The folio being prepared
351  * @pos: starting position for the write
352  * @len: length of write
353  * @always_fill: T if the folio should always be completely filled/cleared
354  *
355  * In some cases, write_begin doesn't need to read at all:
356  * - full folio write
357  * - write that lies in a folio that is completely beyond EOF
358  * - write that covers the folio from start to EOF or beyond it
359  *
360  * If any of these criteria are met, then zero out the unwritten parts
361  * of the folio and return true. Otherwise, return false.
362  */
363 static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
364 				 bool always_fill)
365 {
366 	struct inode *inode = folio_inode(folio);
367 	loff_t i_size = i_size_read(inode);
368 	size_t offset = offset_in_folio(folio, pos);
369 	size_t plen = folio_size(folio);
370 
371 	if (unlikely(always_fill)) {
372 		if (pos - offset + len <= i_size)
373 			return false; /* Page entirely before EOF */
374 		zero_user_segment(&folio->page, 0, plen);
375 		folio_mark_uptodate(folio);
376 		return true;
377 	}
378 
379 	/* Full folio write */
380 	if (offset == 0 && len >= plen)
381 		return true;
382 
383 	/* Page entirely beyond the end of the file */
384 	if (pos - offset >= i_size)
385 		goto zero_out;
386 
387 	/* Write that covers from the start of the folio to EOF or beyond */
388 	if (offset == 0 && (pos + len) >= i_size)
389 		goto zero_out;
390 
391 	return false;
392 zero_out:
393 	zero_user_segments(&folio->page, 0, offset, offset + len, plen);
394 	return true;
395 }
396 
397 /**
398  * netfs_write_begin - Helper to prepare for writing
399  * @ctx: The netfs context
400  * @file: The file to read from
401  * @mapping: The mapping to read from
402  * @pos: File position at which the write will begin
403  * @len: The length of the write (may extend beyond the end of the folio chosen)
404  * @_folio: Where to put the resultant folio
405  * @_fsdata: Place for the netfs to store a cookie
406  *
407  * Pre-read data for a write-begin request by drawing data from the cache if
408  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
409  * Multiple I/O requests from different sources will get munged together.  If
410  * necessary, the readahead window can be expanded in either direction to a
411  * more convenient alighment for RPC efficiency or to make storage in the cache
412  * feasible.
413  *
414  * The calling netfs must provide a table of operations, only one of which,
415  * issue_op, is mandatory.
416  *
417  * The check_write_begin() operation can be provided to check for and flush
418  * conflicting writes once the folio is grabbed and locked.  It is passed a
419  * pointer to the fsdata cookie that gets returned to the VM to be passed to
420  * write_end.  It is permitted to sleep.  It should return 0 if the request
421  * should go ahead or it may return an error.  It may also unlock and put the
422  * folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
423  * will cause the folio to be re-got and the process to be retried.
424  *
425  * The calling netfs must initialise a netfs context contiguous to the vfs
426  * inode before calling this.
427  *
428  * This is usable whether or not caching is enabled.
429  */
430 int netfs_write_begin(struct netfs_inode *ctx,
431 		      struct file *file, struct address_space *mapping,
432 		      loff_t pos, unsigned int len, struct folio **_folio,
433 		      void **_fsdata)
434 {
435 	struct netfs_io_request *rreq;
436 	struct folio *folio;
437 	pgoff_t index = pos >> PAGE_SHIFT;
438 	int ret;
439 
440 	DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
441 
442 retry:
443 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
444 				    mapping_gfp_mask(mapping));
445 	if (IS_ERR(folio))
446 		return PTR_ERR(folio);
447 
448 	if (ctx->ops->check_write_begin) {
449 		/* Allow the netfs (eg. ceph) to flush conflicts. */
450 		ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
451 		if (ret < 0) {
452 			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
453 			goto error;
454 		}
455 		if (!folio)
456 			goto retry;
457 	}
458 
459 	if (folio_test_uptodate(folio))
460 		goto have_folio;
461 
462 	/* If the page is beyond the EOF, we want to clear it - unless it's
463 	 * within the cache granule containing the EOF, in which case we need
464 	 * to preload the granule.
465 	 */
466 	if (!netfs_is_cache_enabled(ctx) &&
467 	    netfs_skip_folio_read(folio, pos, len, false)) {
468 		netfs_stat(&netfs_n_rh_write_zskip);
469 		goto have_folio;
470 	}
471 
472 	rreq = netfs_alloc_request(mapping, file,
473 				   folio_file_pos(folio), folio_size(folio),
474 				   NETFS_READ_FOR_WRITE);
475 	if (IS_ERR(rreq)) {
476 		ret = PTR_ERR(rreq);
477 		goto error;
478 	}
479 	rreq->no_unlock_folio	= folio->index;
480 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
481 
482 	ret = netfs_begin_cache_read(rreq, ctx);
483 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
484 		goto error_put;
485 
486 	netfs_stat(&netfs_n_rh_write_begin);
487 	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
488 
489 	/* Expand the request to meet caching requirements and download
490 	 * preferences.
491 	 */
492 	ractl._nr_pages = folio_nr_pages(folio);
493 	netfs_rreq_expand(rreq, &ractl);
494 
495 	/* Set up the output buffer */
496 	iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
497 			rreq->start, rreq->len);
498 
499 	/* We hold the folio locks, so we can drop the references */
500 	folio_get(folio);
501 	while (readahead_folio(&ractl))
502 		;
503 
504 	ret = netfs_begin_read(rreq, true);
505 	if (ret < 0)
506 		goto error;
507 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
508 
509 have_folio:
510 	*_folio = folio;
511 	_leave(" = 0");
512 	return 0;
513 
514 error_put:
515 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
516 error:
517 	if (folio) {
518 		folio_unlock(folio);
519 		folio_put(folio);
520 	}
521 	_leave(" = %d", ret);
522 	return ret;
523 }
524 EXPORT_SYMBOL(netfs_write_begin);
525 
526 /*
527  * Preload the data into a page we're proposing to write into.
528  */
529 int netfs_prefetch_for_write(struct file *file, struct folio *folio,
530 			     size_t offset, size_t len)
531 {
532 	struct netfs_io_request *rreq;
533 	struct address_space *mapping = folio->mapping;
534 	struct netfs_inode *ctx = netfs_inode(mapping->host);
535 	unsigned long long start = folio_pos(folio);
536 	size_t flen = folio_size(folio);
537 	int ret;
538 
539 	_enter("%zx @%llx", flen, start);
540 
541 	ret = -ENOMEM;
542 
543 	rreq = netfs_alloc_request(mapping, file, start, flen,
544 				   NETFS_READ_FOR_WRITE);
545 	if (IS_ERR(rreq)) {
546 		ret = PTR_ERR(rreq);
547 		goto error;
548 	}
549 
550 	rreq->no_unlock_folio = folio->index;
551 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
552 	ret = netfs_begin_cache_read(rreq, ctx);
553 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
554 		goto error_put;
555 
556 	netfs_stat(&netfs_n_rh_write_begin);
557 	trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);
558 
559 	/* Set up the output buffer */
560 	iov_iter_xarray(&rreq->iter, ITER_DEST, &mapping->i_pages,
561 			rreq->start, rreq->len);
562 
563 	ret = netfs_begin_read(rreq, true);
564 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
565 	return ret;
566 
567 error_put:
568 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
569 error:
570 	_leave(" = %d", ret);
571 	return ret;
572 }
573 
574 /**
575  * netfs_buffered_read_iter - Filesystem buffered I/O read routine
576  * @iocb: kernel I/O control block
577  * @iter: destination for the data read
578  *
579  * This is the ->read_iter() routine for all filesystems that can use the page
580  * cache directly.
581  *
582  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
583  * returned when no data can be read without waiting for I/O requests to
584  * complete; it doesn't prevent readahead.
585  *
586  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
587  * shall be made for the read or for readahead.  When no data can be read,
588  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
589  * possibly empty read shall be returned.
590  *
591  * Return:
592  * * number of bytes copied, even for partial reads
593  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
594  */
595 ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
596 {
597 	struct inode *inode = file_inode(iocb->ki_filp);
598 	struct netfs_inode *ictx = netfs_inode(inode);
599 	ssize_t ret;
600 
601 	if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
602 			 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
603 		return -EINVAL;
604 
605 	ret = netfs_start_io_read(inode);
606 	if (ret == 0) {
607 		ret = filemap_read(iocb, iter, 0);
608 		netfs_end_io_read(inode);
609 	}
610 	return ret;
611 }
612 EXPORT_SYMBOL(netfs_buffered_read_iter);
613 
614 /**
615  * netfs_file_read_iter - Generic filesystem read routine
616  * @iocb: kernel I/O control block
617  * @iter: destination for the data read
618  *
619  * This is the ->read_iter() routine for all filesystems that can use the page
620  * cache directly.
621  *
622  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
623  * returned when no data can be read without waiting for I/O requests to
624  * complete; it doesn't prevent readahead.
625  *
626  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
627  * shall be made for the read or for readahead.  When no data can be read,
628  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
629  * possibly empty read shall be returned.
630  *
631  * Return:
632  * * number of bytes copied, even for partial reads
633  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
634  */
635 ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
636 {
637 	struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);
638 
639 	if ((iocb->ki_flags & IOCB_DIRECT) ||
640 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
641 		return netfs_unbuffered_read_iter(iocb, iter);
642 
643 	return netfs_buffered_read_iter(iocb, iter);
644 }
645 EXPORT_SYMBOL(netfs_file_read_iter);
646