xref: /linux/fs/netfs/buffered_read.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level buffered read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/task_io_accounting_ops.h>
10 #include "internal.h"
11 
12 static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
13 					 unsigned long long *_start,
14 					 unsigned long long *_len,
15 					 unsigned long long i_size)
16 {
17 	struct netfs_cache_resources *cres = &rreq->cache_resources;
18 
19 	if (cres->ops && cres->ops->expand_readahead)
20 		cres->ops->expand_readahead(cres, _start, _len, i_size);
21 }
22 
23 static void netfs_rreq_expand(struct netfs_io_request *rreq,
24 			      struct readahead_control *ractl)
25 {
26 	/* Give the cache a chance to change the request parameters.  The
27 	 * resultant request must contain the original region.
28 	 */
29 	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
30 
31 	/* Give the netfs a chance to change the request parameters.  The
32 	 * resultant request must contain the original region.
33 	 */
34 	if (rreq->netfs_ops->expand_readahead)
35 		rreq->netfs_ops->expand_readahead(rreq);
36 
37 	/* Expand the request if the cache wants it to start earlier.  Note
38 	 * that the expansion may get further extended if the VM wishes to
39 	 * insert THPs and the preferred start and/or end wind up in the middle
40 	 * of THPs.
41 	 *
42 	 * If this is the case, however, the THP size should be an integer
43 	 * multiple of the cache granule size, so we get a whole number of
44 	 * granules to deal with.
45 	 */
46 	if (rreq->start  != readahead_pos(ractl) ||
47 	    rreq->len != readahead_length(ractl)) {
48 		readahead_expand(ractl, rreq->start, rreq->len);
49 		rreq->start  = readahead_pos(ractl);
50 		rreq->len = readahead_length(ractl);
51 
52 		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
53 				 netfs_read_trace_expanded);
54 	}
55 }
56 
57 /*
58  * Begin an operation, and fetch the stored zero point value from the cookie if
59  * available.
60  */
61 static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
62 {
63 	return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
64 }
65 
66 /*
67  * Decant the list of folios to read into a rolling buffer.
68  */
69 static size_t netfs_load_buffer_from_ra(struct netfs_io_request *rreq,
70 					struct folio_queue *folioq,
71 					struct folio_batch *put_batch)
72 {
73 	unsigned int order, nr;
74 	size_t size = 0;
75 
76 	nr = __readahead_batch(rreq->ractl, (struct page **)folioq->vec.folios,
77 			       ARRAY_SIZE(folioq->vec.folios));
78 	folioq->vec.nr = nr;
79 	for (int i = 0; i < nr; i++) {
80 		struct folio *folio = folioq_folio(folioq, i);
81 
82 		trace_netfs_folio(folio, netfs_folio_trace_read);
83 		order = folio_order(folio);
84 		folioq->orders[i] = order;
85 		size += PAGE_SIZE << order;
86 
87 		if (!folio_batch_add(put_batch, folio))
88 			folio_batch_release(put_batch);
89 	}
90 
91 	for (int i = nr; i < folioq_nr_slots(folioq); i++)
92 		folioq_clear(folioq, i);
93 
94 	return size;
95 }
96 
97 /*
98  * netfs_prepare_read_iterator - Prepare the subreq iterator for I/O
99  * @subreq: The subrequest to be set up
100  *
101  * Prepare the I/O iterator representing the read buffer on a subrequest for
102  * the filesystem to use for I/O (it can be passed directly to a socket).  This
103  * is intended to be called from the ->issue_read() method once the filesystem
104  * has trimmed the request to the size it wants.
105  *
106  * Returns the limited size if successful and -ENOMEM if insufficient memory
107  * available.
108  *
109  * [!] NOTE: This must be run in the same thread as ->issue_read() was called
110  * in as we access the readahead_control struct.
111  */
112 static ssize_t netfs_prepare_read_iterator(struct netfs_io_subrequest *subreq)
113 {
114 	struct netfs_io_request *rreq = subreq->rreq;
115 	size_t rsize = subreq->len;
116 
117 	if (subreq->source == NETFS_DOWNLOAD_FROM_SERVER)
118 		rsize = umin(rsize, rreq->io_streams[0].sreq_max_len);
119 
120 	if (rreq->ractl) {
121 		/* If we don't have sufficient folios in the rolling buffer,
122 		 * extract a folioq's worth from the readahead region at a time
123 		 * into the buffer.  Note that this acquires a ref on each page
124 		 * that we will need to release later - but we don't want to do
125 		 * that until after we've started the I/O.
126 		 */
127 		struct folio_batch put_batch;
128 
129 		folio_batch_init(&put_batch);
130 		while (rreq->submitted < subreq->start + rsize) {
131 			struct folio_queue *tail = rreq->buffer_tail, *new;
132 			size_t added;
133 
134 			new = kmalloc(sizeof(*new), GFP_NOFS);
135 			if (!new)
136 				return -ENOMEM;
137 			netfs_stat(&netfs_n_folioq);
138 			folioq_init(new);
139 			new->prev = tail;
140 			tail->next = new;
141 			rreq->buffer_tail = new;
142 			added = netfs_load_buffer_from_ra(rreq, new, &put_batch);
143 			rreq->iter.count += added;
144 			rreq->submitted += added;
145 		}
146 		folio_batch_release(&put_batch);
147 	}
148 
149 	subreq->len = rsize;
150 	if (unlikely(rreq->io_streams[0].sreq_max_segs)) {
151 		size_t limit = netfs_limit_iter(&rreq->iter, 0, rsize,
152 						rreq->io_streams[0].sreq_max_segs);
153 
154 		if (limit < rsize) {
155 			subreq->len = limit;
156 			trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
157 		}
158 	}
159 
160 	subreq->io_iter	= rreq->iter;
161 
162 	if (iov_iter_is_folioq(&subreq->io_iter)) {
163 		if (subreq->io_iter.folioq_slot >= folioq_nr_slots(subreq->io_iter.folioq)) {
164 			subreq->io_iter.folioq = subreq->io_iter.folioq->next;
165 			subreq->io_iter.folioq_slot = 0;
166 		}
167 		subreq->curr_folioq = (struct folio_queue *)subreq->io_iter.folioq;
168 		subreq->curr_folioq_slot = subreq->io_iter.folioq_slot;
169 		subreq->curr_folio_order = subreq->curr_folioq->orders[subreq->curr_folioq_slot];
170 	}
171 
172 	iov_iter_truncate(&subreq->io_iter, subreq->len);
173 	iov_iter_advance(&rreq->iter, subreq->len);
174 	return subreq->len;
175 }
176 
177 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_request *rreq,
178 						     struct netfs_io_subrequest *subreq,
179 						     loff_t i_size)
180 {
181 	struct netfs_cache_resources *cres = &rreq->cache_resources;
182 
183 	if (!cres->ops)
184 		return NETFS_DOWNLOAD_FROM_SERVER;
185 	return cres->ops->prepare_read(subreq, i_size);
186 }
187 
188 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
189 					bool was_async)
190 {
191 	struct netfs_io_subrequest *subreq = priv;
192 
193 	if (transferred_or_error < 0) {
194 		netfs_read_subreq_terminated(subreq, transferred_or_error, was_async);
195 		return;
196 	}
197 
198 	if (transferred_or_error > 0)
199 		subreq->transferred += transferred_or_error;
200 	netfs_read_subreq_terminated(subreq, 0, was_async);
201 }
202 
203 /*
204  * Issue a read against the cache.
205  * - Eats the caller's ref on subreq.
206  */
207 static void netfs_read_cache_to_pagecache(struct netfs_io_request *rreq,
208 					  struct netfs_io_subrequest *subreq)
209 {
210 	struct netfs_cache_resources *cres = &rreq->cache_resources;
211 
212 	netfs_stat(&netfs_n_rh_read);
213 	cres->ops->read(cres, subreq->start, &subreq->io_iter, NETFS_READ_HOLE_IGNORE,
214 			netfs_cache_read_terminated, subreq);
215 }
216 
217 /*
218  * Perform a read to the pagecache from a series of sources of different types,
219  * slicing up the region to be read according to available cache blocks and
220  * network rsize.
221  */
222 static void netfs_read_to_pagecache(struct netfs_io_request *rreq)
223 {
224 	struct netfs_inode *ictx = netfs_inode(rreq->inode);
225 	unsigned long long start = rreq->start;
226 	ssize_t size = rreq->len;
227 	int ret = 0;
228 
229 	atomic_inc(&rreq->nr_outstanding);
230 
231 	do {
232 		struct netfs_io_subrequest *subreq;
233 		enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER;
234 		ssize_t slice;
235 
236 		subreq = netfs_alloc_subrequest(rreq);
237 		if (!subreq) {
238 			ret = -ENOMEM;
239 			break;
240 		}
241 
242 		subreq->start	= start;
243 		subreq->len	= size;
244 
245 		atomic_inc(&rreq->nr_outstanding);
246 		spin_lock_bh(&rreq->lock);
247 		list_add_tail(&subreq->rreq_link, &rreq->subrequests);
248 		subreq->prev_donated = rreq->prev_donated;
249 		rreq->prev_donated = 0;
250 		trace_netfs_sreq(subreq, netfs_sreq_trace_added);
251 		spin_unlock_bh(&rreq->lock);
252 
253 		source = netfs_cache_prepare_read(rreq, subreq, rreq->i_size);
254 		subreq->source = source;
255 		if (source == NETFS_DOWNLOAD_FROM_SERVER) {
256 			unsigned long long zp = umin(ictx->zero_point, rreq->i_size);
257 			size_t len = subreq->len;
258 
259 			if (subreq->start >= zp) {
260 				subreq->source = source = NETFS_FILL_WITH_ZEROES;
261 				goto fill_with_zeroes;
262 			}
263 
264 			if (len > zp - subreq->start)
265 				len = zp - subreq->start;
266 			if (len == 0) {
267 				pr_err("ZERO-LEN READ: R=%08x[%x] l=%zx/%zx s=%llx z=%llx i=%llx",
268 				       rreq->debug_id, subreq->debug_index,
269 				       subreq->len, size,
270 				       subreq->start, ictx->zero_point, rreq->i_size);
271 				break;
272 			}
273 			subreq->len = len;
274 
275 			netfs_stat(&netfs_n_rh_download);
276 			if (rreq->netfs_ops->prepare_read) {
277 				ret = rreq->netfs_ops->prepare_read(subreq);
278 				if (ret < 0) {
279 					atomic_dec(&rreq->nr_outstanding);
280 					netfs_put_subrequest(subreq, false,
281 							     netfs_sreq_trace_put_cancel);
282 					break;
283 				}
284 				trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
285 			}
286 
287 			slice = netfs_prepare_read_iterator(subreq);
288 			if (slice < 0) {
289 				atomic_dec(&rreq->nr_outstanding);
290 				netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_cancel);
291 				ret = slice;
292 				break;
293 			}
294 
295 			rreq->netfs_ops->issue_read(subreq);
296 			goto done;
297 		}
298 
299 	fill_with_zeroes:
300 		if (source == NETFS_FILL_WITH_ZEROES) {
301 			subreq->source = NETFS_FILL_WITH_ZEROES;
302 			trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
303 			netfs_stat(&netfs_n_rh_zero);
304 			slice = netfs_prepare_read_iterator(subreq);
305 			__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
306 			netfs_read_subreq_terminated(subreq, 0, false);
307 			goto done;
308 		}
309 
310 		if (source == NETFS_READ_FROM_CACHE) {
311 			trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
312 			slice = netfs_prepare_read_iterator(subreq);
313 			netfs_read_cache_to_pagecache(rreq, subreq);
314 			goto done;
315 		}
316 
317 		pr_err("Unexpected read source %u\n", source);
318 		WARN_ON_ONCE(1);
319 		break;
320 
321 	done:
322 		size -= slice;
323 		start += slice;
324 		cond_resched();
325 	} while (size > 0);
326 
327 	if (atomic_dec_and_test(&rreq->nr_outstanding))
328 		netfs_rreq_terminated(rreq, false);
329 
330 	/* Defer error return as we may need to wait for outstanding I/O. */
331 	cmpxchg(&rreq->error, 0, ret);
332 }
333 
334 /*
335  * Wait for the read operation to complete, successfully or otherwise.
336  */
337 static int netfs_wait_for_read(struct netfs_io_request *rreq)
338 {
339 	int ret;
340 
341 	trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
342 	wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
343 	ret = rreq->error;
344 	if (ret == 0 && rreq->submitted < rreq->len) {
345 		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
346 		ret = -EIO;
347 	}
348 
349 	return ret;
350 }
351 
352 /*
353  * Set up the initial folioq of buffer folios in the rolling buffer and set the
354  * iterator to refer to it.
355  */
356 static int netfs_prime_buffer(struct netfs_io_request *rreq)
357 {
358 	struct folio_queue *folioq;
359 	struct folio_batch put_batch;
360 	size_t added;
361 
362 	folioq = kmalloc(sizeof(*folioq), GFP_KERNEL);
363 	if (!folioq)
364 		return -ENOMEM;
365 	netfs_stat(&netfs_n_folioq);
366 	folioq_init(folioq);
367 	rreq->buffer = folioq;
368 	rreq->buffer_tail = folioq;
369 	rreq->submitted = rreq->start;
370 	iov_iter_folio_queue(&rreq->iter, ITER_DEST, folioq, 0, 0, 0);
371 
372 	folio_batch_init(&put_batch);
373 	added = netfs_load_buffer_from_ra(rreq, folioq, &put_batch);
374 	folio_batch_release(&put_batch);
375 	rreq->iter.count += added;
376 	rreq->submitted += added;
377 	return 0;
378 }
379 
380 /**
381  * netfs_readahead - Helper to manage a read request
382  * @ractl: The description of the readahead request
383  *
384  * Fulfil a readahead request by drawing data from the cache if possible, or
385  * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
386  * requests from different sources will get munged together.  If necessary, the
387  * readahead window can be expanded in either direction to a more convenient
388  * alighment for RPC efficiency or to make storage in the cache feasible.
389  *
390  * The calling netfs must initialise a netfs context contiguous to the vfs
391  * inode before calling this.
392  *
393  * This is usable whether or not caching is enabled.
394  */
395 void netfs_readahead(struct readahead_control *ractl)
396 {
397 	struct netfs_io_request *rreq;
398 	struct netfs_inode *ictx = netfs_inode(ractl->mapping->host);
399 	unsigned long long start = readahead_pos(ractl);
400 	size_t size = readahead_length(ractl);
401 	int ret;
402 
403 	rreq = netfs_alloc_request(ractl->mapping, ractl->file, start, size,
404 				   NETFS_READAHEAD);
405 	if (IS_ERR(rreq))
406 		return;
407 
408 	ret = netfs_begin_cache_read(rreq, ictx);
409 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
410 		goto cleanup_free;
411 
412 	netfs_stat(&netfs_n_rh_readahead);
413 	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
414 			 netfs_read_trace_readahead);
415 
416 	netfs_rreq_expand(rreq, ractl);
417 
418 	rreq->ractl = ractl;
419 	if (netfs_prime_buffer(rreq) < 0)
420 		goto cleanup_free;
421 	netfs_read_to_pagecache(rreq);
422 
423 	netfs_put_request(rreq, true, netfs_rreq_trace_put_return);
424 	return;
425 
426 cleanup_free:
427 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
428 	return;
429 }
430 EXPORT_SYMBOL(netfs_readahead);
431 
432 /*
433  * Create a rolling buffer with a single occupying folio.
434  */
435 static int netfs_create_singular_buffer(struct netfs_io_request *rreq, struct folio *folio)
436 {
437 	struct folio_queue *folioq;
438 
439 	folioq = kmalloc(sizeof(*folioq), GFP_KERNEL);
440 	if (!folioq)
441 		return -ENOMEM;
442 
443 	netfs_stat(&netfs_n_folioq);
444 	folioq_init(folioq);
445 	folioq_append(folioq, folio);
446 	BUG_ON(folioq_folio(folioq, 0) != folio);
447 	BUG_ON(folioq_folio_order(folioq, 0) != folio_order(folio));
448 	rreq->buffer = folioq;
449 	rreq->buffer_tail = folioq;
450 	rreq->submitted = rreq->start + rreq->len;
451 	iov_iter_folio_queue(&rreq->iter, ITER_DEST, folioq, 0, 0, rreq->len);
452 	rreq->ractl = (struct readahead_control *)1UL;
453 	return 0;
454 }
455 
456 /*
457  * Read into gaps in a folio partially filled by a streaming write.
458  */
459 static int netfs_read_gaps(struct file *file, struct folio *folio)
460 {
461 	struct netfs_io_request *rreq;
462 	struct address_space *mapping = folio->mapping;
463 	struct netfs_folio *finfo = netfs_folio_info(folio);
464 	struct netfs_inode *ctx = netfs_inode(mapping->host);
465 	struct folio *sink = NULL;
466 	struct bio_vec *bvec;
467 	unsigned int from = finfo->dirty_offset;
468 	unsigned int to = from + finfo->dirty_len;
469 	unsigned int off = 0, i = 0;
470 	size_t flen = folio_size(folio);
471 	size_t nr_bvec = flen / PAGE_SIZE + 2;
472 	size_t part;
473 	int ret;
474 
475 	_enter("%lx", folio->index);
476 
477 	rreq = netfs_alloc_request(mapping, file, folio_pos(folio), flen, NETFS_READ_GAPS);
478 	if (IS_ERR(rreq)) {
479 		ret = PTR_ERR(rreq);
480 		goto alloc_error;
481 	}
482 
483 	ret = netfs_begin_cache_read(rreq, ctx);
484 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
485 		goto discard;
486 
487 	netfs_stat(&netfs_n_rh_read_folio);
488 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_read_gaps);
489 
490 	/* Fiddle the buffer so that a gap at the beginning and/or a gap at the
491 	 * end get copied to, but the middle is discarded.
492 	 */
493 	ret = -ENOMEM;
494 	bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
495 	if (!bvec)
496 		goto discard;
497 
498 	sink = folio_alloc(GFP_KERNEL, 0);
499 	if (!sink) {
500 		kfree(bvec);
501 		goto discard;
502 	}
503 
504 	trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
505 
506 	rreq->direct_bv = bvec;
507 	rreq->direct_bv_count = nr_bvec;
508 	if (from > 0) {
509 		bvec_set_folio(&bvec[i++], folio, from, 0);
510 		off = from;
511 	}
512 	while (off < to) {
513 		part = min_t(size_t, to - off, PAGE_SIZE);
514 		bvec_set_folio(&bvec[i++], sink, part, 0);
515 		off += part;
516 	}
517 	if (to < flen)
518 		bvec_set_folio(&bvec[i++], folio, flen - to, to);
519 	iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
520 	rreq->submitted = rreq->start + flen;
521 
522 	netfs_read_to_pagecache(rreq);
523 
524 	if (sink)
525 		folio_put(sink);
526 
527 	ret = netfs_wait_for_read(rreq);
528 	if (ret == 0) {
529 		flush_dcache_folio(folio);
530 		folio_mark_uptodate(folio);
531 	}
532 	folio_unlock(folio);
533 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
534 	return ret < 0 ? ret : 0;
535 
536 discard:
537 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
538 alloc_error:
539 	folio_unlock(folio);
540 	return ret;
541 }
542 
543 /**
544  * netfs_read_folio - Helper to manage a read_folio request
545  * @file: The file to read from
546  * @folio: The folio to read
547  *
548  * Fulfil a read_folio request by drawing data from the cache if
549  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
550  * Multiple I/O requests from different sources will get munged together.
551  *
552  * The calling netfs must initialise a netfs context contiguous to the vfs
553  * inode before calling this.
554  *
555  * This is usable whether or not caching is enabled.
556  */
557 int netfs_read_folio(struct file *file, struct folio *folio)
558 {
559 	struct address_space *mapping = folio->mapping;
560 	struct netfs_io_request *rreq;
561 	struct netfs_inode *ctx = netfs_inode(mapping->host);
562 	int ret;
563 
564 	if (folio_test_dirty(folio)) {
565 		trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
566 		return netfs_read_gaps(file, folio);
567 	}
568 
569 	_enter("%lx", folio->index);
570 
571 	rreq = netfs_alloc_request(mapping, file,
572 				   folio_pos(folio), folio_size(folio),
573 				   NETFS_READPAGE);
574 	if (IS_ERR(rreq)) {
575 		ret = PTR_ERR(rreq);
576 		goto alloc_error;
577 	}
578 
579 	ret = netfs_begin_cache_read(rreq, ctx);
580 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
581 		goto discard;
582 
583 	netfs_stat(&netfs_n_rh_read_folio);
584 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
585 
586 	/* Set up the output buffer */
587 	ret = netfs_create_singular_buffer(rreq, folio);
588 	if (ret < 0)
589 		goto discard;
590 
591 	netfs_read_to_pagecache(rreq);
592 	ret = netfs_wait_for_read(rreq);
593 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
594 	return ret < 0 ? ret : 0;
595 
596 discard:
597 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
598 alloc_error:
599 	folio_unlock(folio);
600 	return ret;
601 }
602 EXPORT_SYMBOL(netfs_read_folio);
603 
604 /*
605  * Prepare a folio for writing without reading first
606  * @folio: The folio being prepared
607  * @pos: starting position for the write
608  * @len: length of write
609  * @always_fill: T if the folio should always be completely filled/cleared
610  *
611  * In some cases, write_begin doesn't need to read at all:
612  * - full folio write
613  * - write that lies in a folio that is completely beyond EOF
614  * - write that covers the folio from start to EOF or beyond it
615  *
616  * If any of these criteria are met, then zero out the unwritten parts
617  * of the folio and return true. Otherwise, return false.
618  */
619 static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
620 				 bool always_fill)
621 {
622 	struct inode *inode = folio_inode(folio);
623 	loff_t i_size = i_size_read(inode);
624 	size_t offset = offset_in_folio(folio, pos);
625 	size_t plen = folio_size(folio);
626 
627 	if (unlikely(always_fill)) {
628 		if (pos - offset + len <= i_size)
629 			return false; /* Page entirely before EOF */
630 		zero_user_segment(&folio->page, 0, plen);
631 		folio_mark_uptodate(folio);
632 		return true;
633 	}
634 
635 	/* Full folio write */
636 	if (offset == 0 && len >= plen)
637 		return true;
638 
639 	/* Page entirely beyond the end of the file */
640 	if (pos - offset >= i_size)
641 		goto zero_out;
642 
643 	/* Write that covers from the start of the folio to EOF or beyond */
644 	if (offset == 0 && (pos + len) >= i_size)
645 		goto zero_out;
646 
647 	return false;
648 zero_out:
649 	zero_user_segments(&folio->page, 0, offset, offset + len, plen);
650 	return true;
651 }
652 
653 /**
654  * netfs_write_begin - Helper to prepare for writing [DEPRECATED]
655  * @ctx: The netfs context
656  * @file: The file to read from
657  * @mapping: The mapping to read from
658  * @pos: File position at which the write will begin
659  * @len: The length of the write (may extend beyond the end of the folio chosen)
660  * @_folio: Where to put the resultant folio
661  * @_fsdata: Place for the netfs to store a cookie
662  *
663  * Pre-read data for a write-begin request by drawing data from the cache if
664  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
665  * Multiple I/O requests from different sources will get munged together.
666  *
667  * The calling netfs must provide a table of operations, only one of which,
668  * issue_read, is mandatory.
669  *
670  * The check_write_begin() operation can be provided to check for and flush
671  * conflicting writes once the folio is grabbed and locked.  It is passed a
672  * pointer to the fsdata cookie that gets returned to the VM to be passed to
673  * write_end.  It is permitted to sleep.  It should return 0 if the request
674  * should go ahead or it may return an error.  It may also unlock and put the
675  * folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
676  * will cause the folio to be re-got and the process to be retried.
677  *
678  * The calling netfs must initialise a netfs context contiguous to the vfs
679  * inode before calling this.
680  *
681  * This is usable whether or not caching is enabled.
682  *
683  * Note that this should be considered deprecated and netfs_perform_write()
684  * used instead.
685  */
686 int netfs_write_begin(struct netfs_inode *ctx,
687 		      struct file *file, struct address_space *mapping,
688 		      loff_t pos, unsigned int len, struct folio **_folio,
689 		      void **_fsdata)
690 {
691 	struct netfs_io_request *rreq;
692 	struct folio *folio;
693 	pgoff_t index = pos >> PAGE_SHIFT;
694 	int ret;
695 
696 retry:
697 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
698 				    mapping_gfp_mask(mapping));
699 	if (IS_ERR(folio))
700 		return PTR_ERR(folio);
701 
702 	if (ctx->ops->check_write_begin) {
703 		/* Allow the netfs (eg. ceph) to flush conflicts. */
704 		ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
705 		if (ret < 0) {
706 			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
707 			goto error;
708 		}
709 		if (!folio)
710 			goto retry;
711 	}
712 
713 	if (folio_test_uptodate(folio))
714 		goto have_folio;
715 
716 	/* If the page is beyond the EOF, we want to clear it - unless it's
717 	 * within the cache granule containing the EOF, in which case we need
718 	 * to preload the granule.
719 	 */
720 	if (!netfs_is_cache_enabled(ctx) &&
721 	    netfs_skip_folio_read(folio, pos, len, false)) {
722 		netfs_stat(&netfs_n_rh_write_zskip);
723 		goto have_folio_no_wait;
724 	}
725 
726 	rreq = netfs_alloc_request(mapping, file,
727 				   folio_pos(folio), folio_size(folio),
728 				   NETFS_READ_FOR_WRITE);
729 	if (IS_ERR(rreq)) {
730 		ret = PTR_ERR(rreq);
731 		goto error;
732 	}
733 	rreq->no_unlock_folio	= folio->index;
734 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
735 
736 	ret = netfs_begin_cache_read(rreq, ctx);
737 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
738 		goto error_put;
739 
740 	netfs_stat(&netfs_n_rh_write_begin);
741 	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
742 
743 	/* Set up the output buffer */
744 	ret = netfs_create_singular_buffer(rreq, folio);
745 	if (ret < 0)
746 		goto error_put;
747 
748 	netfs_read_to_pagecache(rreq);
749 	ret = netfs_wait_for_read(rreq);
750 	if (ret < 0)
751 		goto error;
752 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
753 
754 have_folio:
755 	ret = folio_wait_private_2_killable(folio);
756 	if (ret < 0)
757 		goto error;
758 have_folio_no_wait:
759 	*_folio = folio;
760 	_leave(" = 0");
761 	return 0;
762 
763 error_put:
764 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
765 error:
766 	if (folio) {
767 		folio_unlock(folio);
768 		folio_put(folio);
769 	}
770 	_leave(" = %d", ret);
771 	return ret;
772 }
773 EXPORT_SYMBOL(netfs_write_begin);
774 
775 /*
776  * Preload the data into a page we're proposing to write into.
777  */
778 int netfs_prefetch_for_write(struct file *file, struct folio *folio,
779 			     size_t offset, size_t len)
780 {
781 	struct netfs_io_request *rreq;
782 	struct address_space *mapping = folio->mapping;
783 	struct netfs_inode *ctx = netfs_inode(mapping->host);
784 	unsigned long long start = folio_pos(folio);
785 	size_t flen = folio_size(folio);
786 	int ret;
787 
788 	_enter("%zx @%llx", flen, start);
789 
790 	ret = -ENOMEM;
791 
792 	rreq = netfs_alloc_request(mapping, file, start, flen,
793 				   NETFS_READ_FOR_WRITE);
794 	if (IS_ERR(rreq)) {
795 		ret = PTR_ERR(rreq);
796 		goto error;
797 	}
798 
799 	rreq->no_unlock_folio = folio->index;
800 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
801 	ret = netfs_begin_cache_read(rreq, ctx);
802 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
803 		goto error_put;
804 
805 	netfs_stat(&netfs_n_rh_write_begin);
806 	trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);
807 
808 	/* Set up the output buffer */
809 	ret = netfs_create_singular_buffer(rreq, folio);
810 	if (ret < 0)
811 		goto error_put;
812 
813 	folioq_mark2(rreq->buffer, 0);
814 	netfs_read_to_pagecache(rreq);
815 	ret = netfs_wait_for_read(rreq);
816 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
817 	return ret;
818 
819 error_put:
820 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
821 error:
822 	_leave(" = %d", ret);
823 	return ret;
824 }
825 
826 /**
827  * netfs_buffered_read_iter - Filesystem buffered I/O read routine
828  * @iocb: kernel I/O control block
829  * @iter: destination for the data read
830  *
831  * This is the ->read_iter() routine for all filesystems that can use the page
832  * cache directly.
833  *
834  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
835  * returned when no data can be read without waiting for I/O requests to
836  * complete; it doesn't prevent readahead.
837  *
838  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
839  * shall be made for the read or for readahead.  When no data can be read,
840  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
841  * possibly empty read shall be returned.
842  *
843  * Return:
844  * * number of bytes copied, even for partial reads
845  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
846  */
847 ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
848 {
849 	struct inode *inode = file_inode(iocb->ki_filp);
850 	struct netfs_inode *ictx = netfs_inode(inode);
851 	ssize_t ret;
852 
853 	if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
854 			 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
855 		return -EINVAL;
856 
857 	ret = netfs_start_io_read(inode);
858 	if (ret == 0) {
859 		ret = filemap_read(iocb, iter, 0);
860 		netfs_end_io_read(inode);
861 	}
862 	return ret;
863 }
864 EXPORT_SYMBOL(netfs_buffered_read_iter);
865 
866 /**
867  * netfs_file_read_iter - Generic filesystem read routine
868  * @iocb: kernel I/O control block
869  * @iter: destination for the data read
870  *
871  * This is the ->read_iter() routine for all filesystems that can use the page
872  * cache directly.
873  *
874  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
875  * returned when no data can be read without waiting for I/O requests to
876  * complete; it doesn't prevent readahead.
877  *
878  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
879  * shall be made for the read or for readahead.  When no data can be read,
880  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
881  * possibly empty read shall be returned.
882  *
883  * Return:
884  * * number of bytes copied, even for partial reads
885  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
886  */
887 ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
888 {
889 	struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);
890 
891 	if ((iocb->ki_flags & IOCB_DIRECT) ||
892 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
893 		return netfs_unbuffered_read_iter(iocb, iter);
894 
895 	return netfs_buffered_read_iter(iocb, iter);
896 }
897 EXPORT_SYMBOL(netfs_file_read_iter);
898