xref: /linux/fs/netfs/buffered_read.c (revision fbfd64d25c7af3b8695201ebc85efe90be28c5a3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level buffered read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/task_io_accounting_ops.h>
10 #include "internal.h"
11 
12 static void netfs_cache_expand_readahead(struct netfs_io_request *rreq,
13 					 unsigned long long *_start,
14 					 unsigned long long *_len,
15 					 unsigned long long i_size)
16 {
17 	struct netfs_cache_resources *cres = &rreq->cache_resources;
18 
19 	if (cres->ops && cres->ops->expand_readahead)
20 		cres->ops->expand_readahead(cres, _start, _len, i_size);
21 }
22 
23 static void netfs_rreq_expand(struct netfs_io_request *rreq,
24 			      struct readahead_control *ractl)
25 {
26 	/* Give the cache a chance to change the request parameters.  The
27 	 * resultant request must contain the original region.
28 	 */
29 	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
30 
31 	/* Give the netfs a chance to change the request parameters.  The
32 	 * resultant request must contain the original region.
33 	 */
34 	if (rreq->netfs_ops->expand_readahead)
35 		rreq->netfs_ops->expand_readahead(rreq);
36 
37 	/* Expand the request if the cache wants it to start earlier.  Note
38 	 * that the expansion may get further extended if the VM wishes to
39 	 * insert THPs and the preferred start and/or end wind up in the middle
40 	 * of THPs.
41 	 *
42 	 * If this is the case, however, the THP size should be an integer
43 	 * multiple of the cache granule size, so we get a whole number of
44 	 * granules to deal with.
45 	 */
46 	if (rreq->start  != readahead_pos(ractl) ||
47 	    rreq->len != readahead_length(ractl)) {
48 		readahead_expand(ractl, rreq->start, rreq->len);
49 		rreq->start  = readahead_pos(ractl);
50 		rreq->len = readahead_length(ractl);
51 
52 		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
53 				 netfs_read_trace_expanded);
54 	}
55 }
56 
57 /*
58  * Begin an operation, and fetch the stored zero point value from the cookie if
59  * available.
60  */
61 static int netfs_begin_cache_read(struct netfs_io_request *rreq, struct netfs_inode *ctx)
62 {
63 	return fscache_begin_read_operation(&rreq->cache_resources, netfs_i_cookie(ctx));
64 }
65 
66 /*
67  * Decant the list of folios to read into a rolling buffer.
68  */
69 static size_t netfs_load_buffer_from_ra(struct netfs_io_request *rreq,
70 					struct folio_queue *folioq,
71 					struct folio_batch *put_batch)
72 {
73 	unsigned int order, nr;
74 	size_t size = 0;
75 
76 	nr = __readahead_batch(rreq->ractl, (struct page **)folioq->vec.folios,
77 			       ARRAY_SIZE(folioq->vec.folios));
78 	folioq->vec.nr = nr;
79 	for (int i = 0; i < nr; i++) {
80 		struct folio *folio = folioq_folio(folioq, i);
81 
82 		trace_netfs_folio(folio, netfs_folio_trace_read);
83 		order = folio_order(folio);
84 		folioq->orders[i] = order;
85 		size += PAGE_SIZE << order;
86 
87 		if (!folio_batch_add(put_batch, folio))
88 			folio_batch_release(put_batch);
89 	}
90 
91 	for (int i = nr; i < folioq_nr_slots(folioq); i++)
92 		folioq_clear(folioq, i);
93 
94 	return size;
95 }
96 
97 /*
98  * netfs_prepare_read_iterator - Prepare the subreq iterator for I/O
99  * @subreq: The subrequest to be set up
100  *
101  * Prepare the I/O iterator representing the read buffer on a subrequest for
102  * the filesystem to use for I/O (it can be passed directly to a socket).  This
103  * is intended to be called from the ->issue_read() method once the filesystem
104  * has trimmed the request to the size it wants.
105  *
106  * Returns the limited size if successful and -ENOMEM if insufficient memory
107  * available.
108  *
109  * [!] NOTE: This must be run in the same thread as ->issue_read() was called
110  * in as we access the readahead_control struct.
111  */
112 static ssize_t netfs_prepare_read_iterator(struct netfs_io_subrequest *subreq)
113 {
114 	struct netfs_io_request *rreq = subreq->rreq;
115 	size_t rsize = subreq->len;
116 
117 	if (subreq->source == NETFS_DOWNLOAD_FROM_SERVER)
118 		rsize = umin(rsize, rreq->io_streams[0].sreq_max_len);
119 
120 	if (rreq->ractl) {
121 		/* If we don't have sufficient folios in the rolling buffer,
122 		 * extract a folioq's worth from the readahead region at a time
123 		 * into the buffer.  Note that this acquires a ref on each page
124 		 * that we will need to release later - but we don't want to do
125 		 * that until after we've started the I/O.
126 		 */
127 		struct folio_batch put_batch;
128 
129 		folio_batch_init(&put_batch);
130 		while (rreq->submitted < subreq->start + rsize) {
131 			struct folio_queue *tail = rreq->buffer_tail, *new;
132 			size_t added;
133 
134 			new = kmalloc(sizeof(*new), GFP_NOFS);
135 			if (!new)
136 				return -ENOMEM;
137 			netfs_stat(&netfs_n_folioq);
138 			folioq_init(new);
139 			new->prev = tail;
140 			tail->next = new;
141 			rreq->buffer_tail = new;
142 			added = netfs_load_buffer_from_ra(rreq, new, &put_batch);
143 			rreq->iter.count += added;
144 			rreq->submitted += added;
145 		}
146 		folio_batch_release(&put_batch);
147 	}
148 
149 	subreq->len = rsize;
150 	if (unlikely(rreq->io_streams[0].sreq_max_segs)) {
151 		size_t limit = netfs_limit_iter(&rreq->iter, 0, rsize,
152 						rreq->io_streams[0].sreq_max_segs);
153 
154 		if (limit < rsize) {
155 			subreq->len = limit;
156 			trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
157 		}
158 	}
159 
160 	subreq->io_iter	= rreq->iter;
161 
162 	if (iov_iter_is_folioq(&subreq->io_iter)) {
163 		if (subreq->io_iter.folioq_slot >= folioq_nr_slots(subreq->io_iter.folioq)) {
164 			subreq->io_iter.folioq = subreq->io_iter.folioq->next;
165 			subreq->io_iter.folioq_slot = 0;
166 		}
167 		subreq->curr_folioq = (struct folio_queue *)subreq->io_iter.folioq;
168 		subreq->curr_folioq_slot = subreq->io_iter.folioq_slot;
169 		subreq->curr_folio_order = subreq->curr_folioq->orders[subreq->curr_folioq_slot];
170 	}
171 
172 	iov_iter_truncate(&subreq->io_iter, subreq->len);
173 	iov_iter_advance(&rreq->iter, subreq->len);
174 	return subreq->len;
175 }
176 
177 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_request *rreq,
178 						     struct netfs_io_subrequest *subreq,
179 						     loff_t i_size)
180 {
181 	struct netfs_cache_resources *cres = &rreq->cache_resources;
182 
183 	if (!cres->ops)
184 		return NETFS_DOWNLOAD_FROM_SERVER;
185 	return cres->ops->prepare_read(subreq, i_size);
186 }
187 
188 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
189 					bool was_async)
190 {
191 	struct netfs_io_subrequest *subreq = priv;
192 
193 	if (transferred_or_error < 0) {
194 		netfs_read_subreq_terminated(subreq, transferred_or_error, was_async);
195 		return;
196 	}
197 
198 	if (transferred_or_error > 0)
199 		subreq->transferred += transferred_or_error;
200 	netfs_read_subreq_terminated(subreq, 0, was_async);
201 }
202 
203 /*
204  * Issue a read against the cache.
205  * - Eats the caller's ref on subreq.
206  */
207 static void netfs_read_cache_to_pagecache(struct netfs_io_request *rreq,
208 					  struct netfs_io_subrequest *subreq)
209 {
210 	struct netfs_cache_resources *cres = &rreq->cache_resources;
211 
212 	netfs_stat(&netfs_n_rh_read);
213 	cres->ops->read(cres, subreq->start, &subreq->io_iter, NETFS_READ_HOLE_IGNORE,
214 			netfs_cache_read_terminated, subreq);
215 }
216 
217 /*
218  * Perform a read to the pagecache from a series of sources of different types,
219  * slicing up the region to be read according to available cache blocks and
220  * network rsize.
221  */
222 static void netfs_read_to_pagecache(struct netfs_io_request *rreq)
223 {
224 	struct netfs_inode *ictx = netfs_inode(rreq->inode);
225 	unsigned long long start = rreq->start;
226 	ssize_t size = rreq->len;
227 	int ret = 0;
228 
229 	atomic_inc(&rreq->nr_outstanding);
230 
231 	do {
232 		struct netfs_io_subrequest *subreq;
233 		enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER;
234 		ssize_t slice;
235 
236 		subreq = netfs_alloc_subrequest(rreq);
237 		if (!subreq) {
238 			ret = -ENOMEM;
239 			break;
240 		}
241 
242 		subreq->start	= start;
243 		subreq->len	= size;
244 
245 		atomic_inc(&rreq->nr_outstanding);
246 		spin_lock_bh(&rreq->lock);
247 		list_add_tail(&subreq->rreq_link, &rreq->subrequests);
248 		subreq->prev_donated = rreq->prev_donated;
249 		rreq->prev_donated = 0;
250 		trace_netfs_sreq(subreq, netfs_sreq_trace_added);
251 		spin_unlock_bh(&rreq->lock);
252 
253 		source = netfs_cache_prepare_read(rreq, subreq, rreq->i_size);
254 		subreq->source = source;
255 		if (source == NETFS_DOWNLOAD_FROM_SERVER) {
256 			unsigned long long zp = umin(ictx->zero_point, rreq->i_size);
257 			size_t len = subreq->len;
258 
259 			if (subreq->start >= zp) {
260 				subreq->source = source = NETFS_FILL_WITH_ZEROES;
261 				goto fill_with_zeroes;
262 			}
263 
264 			if (len > zp - subreq->start)
265 				len = zp - subreq->start;
266 			if (len == 0) {
267 				pr_err("ZERO-LEN READ: R=%08x[%x] l=%zx/%zx s=%llx z=%llx i=%llx",
268 				       rreq->debug_id, subreq->debug_index,
269 				       subreq->len, size,
270 				       subreq->start, ictx->zero_point, rreq->i_size);
271 				break;
272 			}
273 			subreq->len = len;
274 
275 			netfs_stat(&netfs_n_rh_download);
276 			if (rreq->netfs_ops->prepare_read) {
277 				ret = rreq->netfs_ops->prepare_read(subreq);
278 				if (ret < 0)
279 					goto prep_failed;
280 				trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
281 			}
282 
283 			slice = netfs_prepare_read_iterator(subreq);
284 			if (slice < 0)
285 				goto prep_iter_failed;
286 
287 			rreq->netfs_ops->issue_read(subreq);
288 			goto done;
289 		}
290 
291 	fill_with_zeroes:
292 		if (source == NETFS_FILL_WITH_ZEROES) {
293 			subreq->source = NETFS_FILL_WITH_ZEROES;
294 			trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
295 			netfs_stat(&netfs_n_rh_zero);
296 			slice = netfs_prepare_read_iterator(subreq);
297 			if (slice < 0)
298 				goto prep_iter_failed;
299 			__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
300 			netfs_read_subreq_terminated(subreq, 0, false);
301 			goto done;
302 		}
303 
304 		if (source == NETFS_READ_FROM_CACHE) {
305 			trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
306 			slice = netfs_prepare_read_iterator(subreq);
307 			if (slice < 0)
308 				goto prep_iter_failed;
309 			netfs_read_cache_to_pagecache(rreq, subreq);
310 			goto done;
311 		}
312 
313 		pr_err("Unexpected read source %u\n", source);
314 		WARN_ON_ONCE(1);
315 		break;
316 
317 	prep_iter_failed:
318 		ret = slice;
319 	prep_failed:
320 		subreq->error = ret;
321 		atomic_dec(&rreq->nr_outstanding);
322 		netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_cancel);
323 		break;
324 
325 	done:
326 		size -= slice;
327 		start += slice;
328 		cond_resched();
329 	} while (size > 0);
330 
331 	if (atomic_dec_and_test(&rreq->nr_outstanding))
332 		netfs_rreq_terminated(rreq, false);
333 
334 	/* Defer error return as we may need to wait for outstanding I/O. */
335 	cmpxchg(&rreq->error, 0, ret);
336 }
337 
338 /*
339  * Wait for the read operation to complete, successfully or otherwise.
340  */
341 static int netfs_wait_for_read(struct netfs_io_request *rreq)
342 {
343 	int ret;
344 
345 	trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
346 	wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
347 	ret = rreq->error;
348 	if (ret == 0 && rreq->submitted < rreq->len) {
349 		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
350 		ret = -EIO;
351 	}
352 
353 	return ret;
354 }
355 
356 /*
357  * Set up the initial folioq of buffer folios in the rolling buffer and set the
358  * iterator to refer to it.
359  */
360 static int netfs_prime_buffer(struct netfs_io_request *rreq)
361 {
362 	struct folio_queue *folioq;
363 	struct folio_batch put_batch;
364 	size_t added;
365 
366 	folioq = kmalloc(sizeof(*folioq), GFP_KERNEL);
367 	if (!folioq)
368 		return -ENOMEM;
369 	netfs_stat(&netfs_n_folioq);
370 	folioq_init(folioq);
371 	rreq->buffer = folioq;
372 	rreq->buffer_tail = folioq;
373 	rreq->submitted = rreq->start;
374 	iov_iter_folio_queue(&rreq->iter, ITER_DEST, folioq, 0, 0, 0);
375 
376 	folio_batch_init(&put_batch);
377 	added = netfs_load_buffer_from_ra(rreq, folioq, &put_batch);
378 	folio_batch_release(&put_batch);
379 	rreq->iter.count += added;
380 	rreq->submitted += added;
381 	return 0;
382 }
383 
384 /**
385  * netfs_readahead - Helper to manage a read request
386  * @ractl: The description of the readahead request
387  *
388  * Fulfil a readahead request by drawing data from the cache if possible, or
389  * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
390  * requests from different sources will get munged together.  If necessary, the
391  * readahead window can be expanded in either direction to a more convenient
392  * alighment for RPC efficiency or to make storage in the cache feasible.
393  *
394  * The calling netfs must initialise a netfs context contiguous to the vfs
395  * inode before calling this.
396  *
397  * This is usable whether or not caching is enabled.
398  */
399 void netfs_readahead(struct readahead_control *ractl)
400 {
401 	struct netfs_io_request *rreq;
402 	struct netfs_inode *ictx = netfs_inode(ractl->mapping->host);
403 	unsigned long long start = readahead_pos(ractl);
404 	size_t size = readahead_length(ractl);
405 	int ret;
406 
407 	rreq = netfs_alloc_request(ractl->mapping, ractl->file, start, size,
408 				   NETFS_READAHEAD);
409 	if (IS_ERR(rreq))
410 		return;
411 
412 	ret = netfs_begin_cache_read(rreq, ictx);
413 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
414 		goto cleanup_free;
415 
416 	netfs_stat(&netfs_n_rh_readahead);
417 	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
418 			 netfs_read_trace_readahead);
419 
420 	netfs_rreq_expand(rreq, ractl);
421 
422 	rreq->ractl = ractl;
423 	if (netfs_prime_buffer(rreq) < 0)
424 		goto cleanup_free;
425 	netfs_read_to_pagecache(rreq);
426 
427 	netfs_put_request(rreq, true, netfs_rreq_trace_put_return);
428 	return;
429 
430 cleanup_free:
431 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
432 	return;
433 }
434 EXPORT_SYMBOL(netfs_readahead);
435 
436 /*
437  * Create a rolling buffer with a single occupying folio.
438  */
439 static int netfs_create_singular_buffer(struct netfs_io_request *rreq, struct folio *folio)
440 {
441 	struct folio_queue *folioq;
442 
443 	folioq = kmalloc(sizeof(*folioq), GFP_KERNEL);
444 	if (!folioq)
445 		return -ENOMEM;
446 
447 	netfs_stat(&netfs_n_folioq);
448 	folioq_init(folioq);
449 	folioq_append(folioq, folio);
450 	BUG_ON(folioq_folio(folioq, 0) != folio);
451 	BUG_ON(folioq_folio_order(folioq, 0) != folio_order(folio));
452 	rreq->buffer = folioq;
453 	rreq->buffer_tail = folioq;
454 	rreq->submitted = rreq->start + rreq->len;
455 	iov_iter_folio_queue(&rreq->iter, ITER_DEST, folioq, 0, 0, rreq->len);
456 	rreq->ractl = (struct readahead_control *)1UL;
457 	return 0;
458 }
459 
460 /*
461  * Read into gaps in a folio partially filled by a streaming write.
462  */
463 static int netfs_read_gaps(struct file *file, struct folio *folio)
464 {
465 	struct netfs_io_request *rreq;
466 	struct address_space *mapping = folio->mapping;
467 	struct netfs_folio *finfo = netfs_folio_info(folio);
468 	struct netfs_inode *ctx = netfs_inode(mapping->host);
469 	struct folio *sink = NULL;
470 	struct bio_vec *bvec;
471 	unsigned int from = finfo->dirty_offset;
472 	unsigned int to = from + finfo->dirty_len;
473 	unsigned int off = 0, i = 0;
474 	size_t flen = folio_size(folio);
475 	size_t nr_bvec = flen / PAGE_SIZE + 2;
476 	size_t part;
477 	int ret;
478 
479 	_enter("%lx", folio->index);
480 
481 	rreq = netfs_alloc_request(mapping, file, folio_pos(folio), flen, NETFS_READ_GAPS);
482 	if (IS_ERR(rreq)) {
483 		ret = PTR_ERR(rreq);
484 		goto alloc_error;
485 	}
486 
487 	ret = netfs_begin_cache_read(rreq, ctx);
488 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
489 		goto discard;
490 
491 	netfs_stat(&netfs_n_rh_read_folio);
492 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_read_gaps);
493 
494 	/* Fiddle the buffer so that a gap at the beginning and/or a gap at the
495 	 * end get copied to, but the middle is discarded.
496 	 */
497 	ret = -ENOMEM;
498 	bvec = kmalloc_array(nr_bvec, sizeof(*bvec), GFP_KERNEL);
499 	if (!bvec)
500 		goto discard;
501 
502 	sink = folio_alloc(GFP_KERNEL, 0);
503 	if (!sink) {
504 		kfree(bvec);
505 		goto discard;
506 	}
507 
508 	trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
509 
510 	rreq->direct_bv = bvec;
511 	rreq->direct_bv_count = nr_bvec;
512 	if (from > 0) {
513 		bvec_set_folio(&bvec[i++], folio, from, 0);
514 		off = from;
515 	}
516 	while (off < to) {
517 		part = min_t(size_t, to - off, PAGE_SIZE);
518 		bvec_set_folio(&bvec[i++], sink, part, 0);
519 		off += part;
520 	}
521 	if (to < flen)
522 		bvec_set_folio(&bvec[i++], folio, flen - to, to);
523 	iov_iter_bvec(&rreq->iter, ITER_DEST, bvec, i, rreq->len);
524 	rreq->submitted = rreq->start + flen;
525 
526 	netfs_read_to_pagecache(rreq);
527 
528 	if (sink)
529 		folio_put(sink);
530 
531 	ret = netfs_wait_for_read(rreq);
532 	if (ret == 0) {
533 		flush_dcache_folio(folio);
534 		folio_mark_uptodate(folio);
535 	}
536 	folio_unlock(folio);
537 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
538 	return ret < 0 ? ret : 0;
539 
540 discard:
541 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
542 alloc_error:
543 	folio_unlock(folio);
544 	return ret;
545 }
546 
547 /**
548  * netfs_read_folio - Helper to manage a read_folio request
549  * @file: The file to read from
550  * @folio: The folio to read
551  *
552  * Fulfil a read_folio request by drawing data from the cache if
553  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
554  * Multiple I/O requests from different sources will get munged together.
555  *
556  * The calling netfs must initialise a netfs context contiguous to the vfs
557  * inode before calling this.
558  *
559  * This is usable whether or not caching is enabled.
560  */
561 int netfs_read_folio(struct file *file, struct folio *folio)
562 {
563 	struct address_space *mapping = folio->mapping;
564 	struct netfs_io_request *rreq;
565 	struct netfs_inode *ctx = netfs_inode(mapping->host);
566 	int ret;
567 
568 	if (folio_test_dirty(folio)) {
569 		trace_netfs_folio(folio, netfs_folio_trace_read_gaps);
570 		return netfs_read_gaps(file, folio);
571 	}
572 
573 	_enter("%lx", folio->index);
574 
575 	rreq = netfs_alloc_request(mapping, file,
576 				   folio_pos(folio), folio_size(folio),
577 				   NETFS_READPAGE);
578 	if (IS_ERR(rreq)) {
579 		ret = PTR_ERR(rreq);
580 		goto alloc_error;
581 	}
582 
583 	ret = netfs_begin_cache_read(rreq, ctx);
584 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
585 		goto discard;
586 
587 	netfs_stat(&netfs_n_rh_read_folio);
588 	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
589 
590 	/* Set up the output buffer */
591 	ret = netfs_create_singular_buffer(rreq, folio);
592 	if (ret < 0)
593 		goto discard;
594 
595 	netfs_read_to_pagecache(rreq);
596 	ret = netfs_wait_for_read(rreq);
597 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
598 	return ret < 0 ? ret : 0;
599 
600 discard:
601 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
602 alloc_error:
603 	folio_unlock(folio);
604 	return ret;
605 }
606 EXPORT_SYMBOL(netfs_read_folio);
607 
608 /*
609  * Prepare a folio for writing without reading first
610  * @folio: The folio being prepared
611  * @pos: starting position for the write
612  * @len: length of write
613  * @always_fill: T if the folio should always be completely filled/cleared
614  *
615  * In some cases, write_begin doesn't need to read at all:
616  * - full folio write
617  * - write that lies in a folio that is completely beyond EOF
618  * - write that covers the folio from start to EOF or beyond it
619  *
620  * If any of these criteria are met, then zero out the unwritten parts
621  * of the folio and return true. Otherwise, return false.
622  */
623 static bool netfs_skip_folio_read(struct folio *folio, loff_t pos, size_t len,
624 				 bool always_fill)
625 {
626 	struct inode *inode = folio_inode(folio);
627 	loff_t i_size = i_size_read(inode);
628 	size_t offset = offset_in_folio(folio, pos);
629 	size_t plen = folio_size(folio);
630 
631 	if (unlikely(always_fill)) {
632 		if (pos - offset + len <= i_size)
633 			return false; /* Page entirely before EOF */
634 		folio_zero_segment(folio, 0, plen);
635 		folio_mark_uptodate(folio);
636 		return true;
637 	}
638 
639 	/* Full folio write */
640 	if (offset == 0 && len >= plen)
641 		return true;
642 
643 	/* Page entirely beyond the end of the file */
644 	if (pos - offset >= i_size)
645 		goto zero_out;
646 
647 	/* Write that covers from the start of the folio to EOF or beyond */
648 	if (offset == 0 && (pos + len) >= i_size)
649 		goto zero_out;
650 
651 	return false;
652 zero_out:
653 	folio_zero_segments(folio, 0, offset, offset + len, plen);
654 	return true;
655 }
656 
657 /**
658  * netfs_write_begin - Helper to prepare for writing [DEPRECATED]
659  * @ctx: The netfs context
660  * @file: The file to read from
661  * @mapping: The mapping to read from
662  * @pos: File position at which the write will begin
663  * @len: The length of the write (may extend beyond the end of the folio chosen)
664  * @_folio: Where to put the resultant folio
665  * @_fsdata: Place for the netfs to store a cookie
666  *
667  * Pre-read data for a write-begin request by drawing data from the cache if
668  * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
669  * Multiple I/O requests from different sources will get munged together.
670  *
671  * The calling netfs must provide a table of operations, only one of which,
672  * issue_read, is mandatory.
673  *
674  * The check_write_begin() operation can be provided to check for and flush
675  * conflicting writes once the folio is grabbed and locked.  It is passed a
676  * pointer to the fsdata cookie that gets returned to the VM to be passed to
677  * write_end.  It is permitted to sleep.  It should return 0 if the request
678  * should go ahead or it may return an error.  It may also unlock and put the
679  * folio, provided it sets ``*foliop`` to NULL, in which case a return of 0
680  * will cause the folio to be re-got and the process to be retried.
681  *
682  * The calling netfs must initialise a netfs context contiguous to the vfs
683  * inode before calling this.
684  *
685  * This is usable whether or not caching is enabled.
686  *
687  * Note that this should be considered deprecated and netfs_perform_write()
688  * used instead.
689  */
690 int netfs_write_begin(struct netfs_inode *ctx,
691 		      struct file *file, struct address_space *mapping,
692 		      loff_t pos, unsigned int len, struct folio **_folio,
693 		      void **_fsdata)
694 {
695 	struct netfs_io_request *rreq;
696 	struct folio *folio;
697 	pgoff_t index = pos >> PAGE_SHIFT;
698 	int ret;
699 
700 retry:
701 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
702 				    mapping_gfp_mask(mapping));
703 	if (IS_ERR(folio))
704 		return PTR_ERR(folio);
705 
706 	if (ctx->ops->check_write_begin) {
707 		/* Allow the netfs (eg. ceph) to flush conflicts. */
708 		ret = ctx->ops->check_write_begin(file, pos, len, &folio, _fsdata);
709 		if (ret < 0) {
710 			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
711 			goto error;
712 		}
713 		if (!folio)
714 			goto retry;
715 	}
716 
717 	if (folio_test_uptodate(folio))
718 		goto have_folio;
719 
720 	/* If the folio is beyond the EOF, we want to clear it - unless it's
721 	 * within the cache granule containing the EOF, in which case we need
722 	 * to preload the granule.
723 	 */
724 	if (!netfs_is_cache_enabled(ctx) &&
725 	    netfs_skip_folio_read(folio, pos, len, false)) {
726 		netfs_stat(&netfs_n_rh_write_zskip);
727 		goto have_folio_no_wait;
728 	}
729 
730 	rreq = netfs_alloc_request(mapping, file,
731 				   folio_pos(folio), folio_size(folio),
732 				   NETFS_READ_FOR_WRITE);
733 	if (IS_ERR(rreq)) {
734 		ret = PTR_ERR(rreq);
735 		goto error;
736 	}
737 	rreq->no_unlock_folio	= folio->index;
738 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
739 
740 	ret = netfs_begin_cache_read(rreq, ctx);
741 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
742 		goto error_put;
743 
744 	netfs_stat(&netfs_n_rh_write_begin);
745 	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
746 
747 	/* Set up the output buffer */
748 	ret = netfs_create_singular_buffer(rreq, folio);
749 	if (ret < 0)
750 		goto error_put;
751 
752 	netfs_read_to_pagecache(rreq);
753 	ret = netfs_wait_for_read(rreq);
754 	if (ret < 0)
755 		goto error;
756 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
757 
758 have_folio:
759 	ret = folio_wait_private_2_killable(folio);
760 	if (ret < 0)
761 		goto error;
762 have_folio_no_wait:
763 	*_folio = folio;
764 	_leave(" = 0");
765 	return 0;
766 
767 error_put:
768 	netfs_put_request(rreq, false, netfs_rreq_trace_put_failed);
769 error:
770 	if (folio) {
771 		folio_unlock(folio);
772 		folio_put(folio);
773 	}
774 	_leave(" = %d", ret);
775 	return ret;
776 }
777 EXPORT_SYMBOL(netfs_write_begin);
778 
779 /*
780  * Preload the data into a folio we're proposing to write into.
781  */
782 int netfs_prefetch_for_write(struct file *file, struct folio *folio,
783 			     size_t offset, size_t len)
784 {
785 	struct netfs_io_request *rreq;
786 	struct address_space *mapping = folio->mapping;
787 	struct netfs_inode *ctx = netfs_inode(mapping->host);
788 	unsigned long long start = folio_pos(folio);
789 	size_t flen = folio_size(folio);
790 	int ret;
791 
792 	_enter("%zx @%llx", flen, start);
793 
794 	ret = -ENOMEM;
795 
796 	rreq = netfs_alloc_request(mapping, file, start, flen,
797 				   NETFS_READ_FOR_WRITE);
798 	if (IS_ERR(rreq)) {
799 		ret = PTR_ERR(rreq);
800 		goto error;
801 	}
802 
803 	rreq->no_unlock_folio = folio->index;
804 	__set_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags);
805 	ret = netfs_begin_cache_read(rreq, ctx);
806 	if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
807 		goto error_put;
808 
809 	netfs_stat(&netfs_n_rh_write_begin);
810 	trace_netfs_read(rreq, start, flen, netfs_read_trace_prefetch_for_write);
811 
812 	/* Set up the output buffer */
813 	ret = netfs_create_singular_buffer(rreq, folio);
814 	if (ret < 0)
815 		goto error_put;
816 
817 	folioq_mark2(rreq->buffer, 0);
818 	netfs_read_to_pagecache(rreq);
819 	ret = netfs_wait_for_read(rreq);
820 	netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
821 	return ret;
822 
823 error_put:
824 	netfs_put_request(rreq, false, netfs_rreq_trace_put_discard);
825 error:
826 	_leave(" = %d", ret);
827 	return ret;
828 }
829 
830 /**
831  * netfs_buffered_read_iter - Filesystem buffered I/O read routine
832  * @iocb: kernel I/O control block
833  * @iter: destination for the data read
834  *
835  * This is the ->read_iter() routine for all filesystems that can use the page
836  * cache directly.
837  *
838  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
839  * returned when no data can be read without waiting for I/O requests to
840  * complete; it doesn't prevent readahead.
841  *
842  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
843  * shall be made for the read or for readahead.  When no data can be read,
844  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
845  * possibly empty read shall be returned.
846  *
847  * Return:
848  * * number of bytes copied, even for partial reads
849  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
850  */
851 ssize_t netfs_buffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
852 {
853 	struct inode *inode = file_inode(iocb->ki_filp);
854 	struct netfs_inode *ictx = netfs_inode(inode);
855 	ssize_t ret;
856 
857 	if (WARN_ON_ONCE((iocb->ki_flags & IOCB_DIRECT) ||
858 			 test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)))
859 		return -EINVAL;
860 
861 	ret = netfs_start_io_read(inode);
862 	if (ret == 0) {
863 		ret = filemap_read(iocb, iter, 0);
864 		netfs_end_io_read(inode);
865 	}
866 	return ret;
867 }
868 EXPORT_SYMBOL(netfs_buffered_read_iter);
869 
870 /**
871  * netfs_file_read_iter - Generic filesystem read routine
872  * @iocb: kernel I/O control block
873  * @iter: destination for the data read
874  *
875  * This is the ->read_iter() routine for all filesystems that can use the page
876  * cache directly.
877  *
878  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be
879  * returned when no data can be read without waiting for I/O requests to
880  * complete; it doesn't prevent readahead.
881  *
882  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests
883  * shall be made for the read or for readahead.  When no data can be read,
884  * -EAGAIN shall be returned.  When readahead would be triggered, a partial,
885  * possibly empty read shall be returned.
886  *
887  * Return:
888  * * number of bytes copied, even for partial reads
889  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
890  */
891 ssize_t netfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
892 {
893 	struct netfs_inode *ictx = netfs_inode(iocb->ki_filp->f_mapping->host);
894 
895 	if ((iocb->ki_flags & IOCB_DIRECT) ||
896 	    test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
897 		return netfs_unbuffered_read_iter(iocb, iter);
898 
899 	return netfs_buffered_read_iter(iocb, iter);
900 }
901 EXPORT_SYMBOL(netfs_file_read_iter);
902