xref: /linux/fs/namespace.c (revision f99b3917789d83ea89b24b722d784956f8289f45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static char * __initdata initramfs_options;
69 static int __init initramfs_options_setup(char *str)
70 {
71 	initramfs_options = str;
72 	return 1;
73 }
74 
75 __setup("initramfs_options=", initramfs_options_setup);
76 
77 static u64 event;
78 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
79 static DEFINE_IDA(mnt_group_ida);
80 
81 /* Don't allow confusion with old 32bit mount ID */
82 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
83 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
84 
85 static struct hlist_head *mount_hashtable __ro_after_init;
86 static struct hlist_head *mountpoint_hashtable __ro_after_init;
87 static struct kmem_cache *mnt_cache __ro_after_init;
88 static DECLARE_RWSEM(namespace_sem);
89 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
90 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
91 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
92 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
93 
94 #ifdef CONFIG_FSNOTIFY
95 LIST_HEAD(notify_list); /* protected by namespace_sem */
96 #endif
97 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
98 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
99 
100 enum mount_kattr_flags_t {
101 	MOUNT_KATTR_RECURSE		= (1 << 0),
102 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
103 };
104 
105 struct mount_kattr {
106 	unsigned int attr_set;
107 	unsigned int attr_clr;
108 	unsigned int propagation;
109 	unsigned int lookup_flags;
110 	enum mount_kattr_flags_t kflags;
111 	struct user_namespace *mnt_userns;
112 	struct mnt_idmap *mnt_idmap;
113 };
114 
115 /* /sys/fs */
116 struct kobject *fs_kobj __ro_after_init;
117 EXPORT_SYMBOL_GPL(fs_kobj);
118 
119 /*
120  * vfsmount lock may be taken for read to prevent changes to the
121  * vfsmount hash, ie. during mountpoint lookups or walking back
122  * up the tree.
123  *
124  * It should be taken for write in all cases where the vfsmount
125  * tree or hash is modified or when a vfsmount structure is modified.
126  */
127 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
128 
129 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
130 {
131 	if (!node)
132 		return NULL;
133 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
134 }
135 
136 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
137 {
138 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
139 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
140 	u64 seq_a = ns_a->seq;
141 	u64 seq_b = ns_b->seq;
142 
143 	if (seq_a < seq_b)
144 		return -1;
145 	if (seq_a > seq_b)
146 		return 1;
147 	return 0;
148 }
149 
150 static inline void mnt_ns_tree_write_lock(void)
151 {
152 	write_seqlock(&mnt_ns_tree_lock);
153 }
154 
155 static inline void mnt_ns_tree_write_unlock(void)
156 {
157 	write_sequnlock(&mnt_ns_tree_lock);
158 }
159 
160 static void mnt_ns_tree_add(struct mnt_namespace *ns)
161 {
162 	struct rb_node *node, *prev;
163 
164 	mnt_ns_tree_write_lock();
165 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
166 	/*
167 	 * If there's no previous entry simply add it after the
168 	 * head and if there is add it after the previous entry.
169 	 */
170 	prev = rb_prev(&ns->mnt_ns_tree_node);
171 	if (!prev)
172 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
173 	else
174 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
175 	mnt_ns_tree_write_unlock();
176 
177 	WARN_ON_ONCE(node);
178 }
179 
180 static void mnt_ns_release(struct mnt_namespace *ns)
181 {
182 	/* keep alive for {list,stat}mount() */
183 	if (refcount_dec_and_test(&ns->passive)) {
184 		fsnotify_mntns_delete(ns);
185 		put_user_ns(ns->user_ns);
186 		kfree(ns);
187 	}
188 }
189 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
190 
191 static void mnt_ns_release_rcu(struct rcu_head *rcu)
192 {
193 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
194 }
195 
196 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
197 {
198 	/* remove from global mount namespace list */
199 	if (!is_anon_ns(ns)) {
200 		mnt_ns_tree_write_lock();
201 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
202 		list_bidir_del_rcu(&ns->mnt_ns_list);
203 		mnt_ns_tree_write_unlock();
204 	}
205 
206 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
207 }
208 
209 static int mnt_ns_find(const void *key, const struct rb_node *node)
210 {
211 	const u64 mnt_ns_id = *(u64 *)key;
212 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
213 
214 	if (mnt_ns_id < ns->seq)
215 		return -1;
216 	if (mnt_ns_id > ns->seq)
217 		return 1;
218 	return 0;
219 }
220 
221 /*
222  * Lookup a mount namespace by id and take a passive reference count. Taking a
223  * passive reference means the mount namespace can be emptied if e.g., the last
224  * task holding an active reference exits. To access the mounts of the
225  * namespace the @namespace_sem must first be acquired. If the namespace has
226  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
227  * see that the mount rbtree of the namespace is empty.
228  *
229  * Note the lookup is lockless protected by a sequence counter. We only
230  * need to guard against false negatives as false positives aren't
231  * possible. So if we didn't find a mount namespace and the sequence
232  * counter has changed we need to retry. If the sequence counter is
233  * still the same we know the search actually failed.
234  */
235 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
236 {
237 	struct mnt_namespace *ns;
238 	struct rb_node *node;
239 	unsigned int seq;
240 
241 	guard(rcu)();
242 	do {
243 		seq = read_seqbegin(&mnt_ns_tree_lock);
244 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
245 		if (node)
246 			break;
247 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
248 
249 	if (!node)
250 		return NULL;
251 
252 	/*
253 	 * The last reference count is put with RCU delay so we can
254 	 * unconditonally acquire a reference here.
255 	 */
256 	ns = node_to_mnt_ns(node);
257 	refcount_inc(&ns->passive);
258 	return ns;
259 }
260 
261 static inline void lock_mount_hash(void)
262 {
263 	write_seqlock(&mount_lock);
264 }
265 
266 static inline void unlock_mount_hash(void)
267 {
268 	write_sequnlock(&mount_lock);
269 }
270 
271 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
272 {
273 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
274 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
275 	tmp = tmp + (tmp >> m_hash_shift);
276 	return &mount_hashtable[tmp & m_hash_mask];
277 }
278 
279 static inline struct hlist_head *mp_hash(struct dentry *dentry)
280 {
281 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
282 	tmp = tmp + (tmp >> mp_hash_shift);
283 	return &mountpoint_hashtable[tmp & mp_hash_mask];
284 }
285 
286 static int mnt_alloc_id(struct mount *mnt)
287 {
288 	int res;
289 
290 	xa_lock(&mnt_id_xa);
291 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
292 	if (!res)
293 		mnt->mnt_id_unique = ++mnt_id_ctr;
294 	xa_unlock(&mnt_id_xa);
295 	return res;
296 }
297 
298 static void mnt_free_id(struct mount *mnt)
299 {
300 	xa_erase(&mnt_id_xa, mnt->mnt_id);
301 }
302 
303 /*
304  * Allocate a new peer group ID
305  */
306 static int mnt_alloc_group_id(struct mount *mnt)
307 {
308 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
309 
310 	if (res < 0)
311 		return res;
312 	mnt->mnt_group_id = res;
313 	return 0;
314 }
315 
316 /*
317  * Release a peer group ID
318  */
319 void mnt_release_group_id(struct mount *mnt)
320 {
321 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
322 	mnt->mnt_group_id = 0;
323 }
324 
325 /*
326  * vfsmount lock must be held for read
327  */
328 static inline void mnt_add_count(struct mount *mnt, int n)
329 {
330 #ifdef CONFIG_SMP
331 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
332 #else
333 	preempt_disable();
334 	mnt->mnt_count += n;
335 	preempt_enable();
336 #endif
337 }
338 
339 /*
340  * vfsmount lock must be held for write
341  */
342 int mnt_get_count(struct mount *mnt)
343 {
344 #ifdef CONFIG_SMP
345 	int count = 0;
346 	int cpu;
347 
348 	for_each_possible_cpu(cpu) {
349 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
350 	}
351 
352 	return count;
353 #else
354 	return mnt->mnt_count;
355 #endif
356 }
357 
358 static struct mount *alloc_vfsmnt(const char *name)
359 {
360 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
361 	if (mnt) {
362 		int err;
363 
364 		err = mnt_alloc_id(mnt);
365 		if (err)
366 			goto out_free_cache;
367 
368 		if (name)
369 			mnt->mnt_devname = kstrdup_const(name,
370 							 GFP_KERNEL_ACCOUNT);
371 		else
372 			mnt->mnt_devname = "none";
373 		if (!mnt->mnt_devname)
374 			goto out_free_id;
375 
376 #ifdef CONFIG_SMP
377 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
378 		if (!mnt->mnt_pcp)
379 			goto out_free_devname;
380 
381 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
382 #else
383 		mnt->mnt_count = 1;
384 		mnt->mnt_writers = 0;
385 #endif
386 
387 		INIT_HLIST_NODE(&mnt->mnt_hash);
388 		INIT_LIST_HEAD(&mnt->mnt_child);
389 		INIT_LIST_HEAD(&mnt->mnt_mounts);
390 		INIT_LIST_HEAD(&mnt->mnt_list);
391 		INIT_LIST_HEAD(&mnt->mnt_expire);
392 		INIT_LIST_HEAD(&mnt->mnt_share);
393 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
394 		INIT_HLIST_NODE(&mnt->mnt_slave);
395 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
396 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
397 		RB_CLEAR_NODE(&mnt->mnt_node);
398 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
399 	}
400 	return mnt;
401 
402 #ifdef CONFIG_SMP
403 out_free_devname:
404 	kfree_const(mnt->mnt_devname);
405 #endif
406 out_free_id:
407 	mnt_free_id(mnt);
408 out_free_cache:
409 	kmem_cache_free(mnt_cache, mnt);
410 	return NULL;
411 }
412 
413 /*
414  * Most r/o checks on a fs are for operations that take
415  * discrete amounts of time, like a write() or unlink().
416  * We must keep track of when those operations start
417  * (for permission checks) and when they end, so that
418  * we can determine when writes are able to occur to
419  * a filesystem.
420  */
421 /*
422  * __mnt_is_readonly: check whether a mount is read-only
423  * @mnt: the mount to check for its write status
424  *
425  * This shouldn't be used directly ouside of the VFS.
426  * It does not guarantee that the filesystem will stay
427  * r/w, just that it is right *now*.  This can not and
428  * should not be used in place of IS_RDONLY(inode).
429  * mnt_want/drop_write() will _keep_ the filesystem
430  * r/w.
431  */
432 bool __mnt_is_readonly(struct vfsmount *mnt)
433 {
434 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
435 }
436 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
437 
438 static inline void mnt_inc_writers(struct mount *mnt)
439 {
440 #ifdef CONFIG_SMP
441 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
442 #else
443 	mnt->mnt_writers++;
444 #endif
445 }
446 
447 static inline void mnt_dec_writers(struct mount *mnt)
448 {
449 #ifdef CONFIG_SMP
450 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
451 #else
452 	mnt->mnt_writers--;
453 #endif
454 }
455 
456 static unsigned int mnt_get_writers(struct mount *mnt)
457 {
458 #ifdef CONFIG_SMP
459 	unsigned int count = 0;
460 	int cpu;
461 
462 	for_each_possible_cpu(cpu) {
463 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
464 	}
465 
466 	return count;
467 #else
468 	return mnt->mnt_writers;
469 #endif
470 }
471 
472 static int mnt_is_readonly(struct vfsmount *mnt)
473 {
474 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
475 		return 1;
476 	/*
477 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
478 	 * making sure if we don't see s_readonly_remount set yet, we also will
479 	 * not see any superblock / mount flag changes done by remount.
480 	 * It also pairs with the barrier in sb_end_ro_state_change()
481 	 * assuring that if we see s_readonly_remount already cleared, we will
482 	 * see the values of superblock / mount flags updated by remount.
483 	 */
484 	smp_rmb();
485 	return __mnt_is_readonly(mnt);
486 }
487 
488 /*
489  * Most r/o & frozen checks on a fs are for operations that take discrete
490  * amounts of time, like a write() or unlink().  We must keep track of when
491  * those operations start (for permission checks) and when they end, so that we
492  * can determine when writes are able to occur to a filesystem.
493  */
494 /**
495  * mnt_get_write_access - get write access to a mount without freeze protection
496  * @m: the mount on which to take a write
497  *
498  * This tells the low-level filesystem that a write is about to be performed to
499  * it, and makes sure that writes are allowed (mnt it read-write) before
500  * returning success. This operation does not protect against filesystem being
501  * frozen. When the write operation is finished, mnt_put_write_access() must be
502  * called. This is effectively a refcount.
503  */
504 int mnt_get_write_access(struct vfsmount *m)
505 {
506 	struct mount *mnt = real_mount(m);
507 	int ret = 0;
508 
509 	preempt_disable();
510 	mnt_inc_writers(mnt);
511 	/*
512 	 * The store to mnt_inc_writers must be visible before we pass
513 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
514 	 * incremented count after it has set MNT_WRITE_HOLD.
515 	 */
516 	smp_mb();
517 	might_lock(&mount_lock.lock);
518 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
519 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
520 			cpu_relax();
521 		} else {
522 			/*
523 			 * This prevents priority inversion, if the task
524 			 * setting MNT_WRITE_HOLD got preempted on a remote
525 			 * CPU, and it prevents life lock if the task setting
526 			 * MNT_WRITE_HOLD has a lower priority and is bound to
527 			 * the same CPU as the task that is spinning here.
528 			 */
529 			preempt_enable();
530 			lock_mount_hash();
531 			unlock_mount_hash();
532 			preempt_disable();
533 		}
534 	}
535 	/*
536 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
537 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
538 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
539 	 * mnt_is_readonly() and bail in case we are racing with remount
540 	 * read-only.
541 	 */
542 	smp_rmb();
543 	if (mnt_is_readonly(m)) {
544 		mnt_dec_writers(mnt);
545 		ret = -EROFS;
546 	}
547 	preempt_enable();
548 
549 	return ret;
550 }
551 EXPORT_SYMBOL_GPL(mnt_get_write_access);
552 
553 /**
554  * mnt_want_write - get write access to a mount
555  * @m: the mount on which to take a write
556  *
557  * This tells the low-level filesystem that a write is about to be performed to
558  * it, and makes sure that writes are allowed (mount is read-write, filesystem
559  * is not frozen) before returning success.  When the write operation is
560  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
561  */
562 int mnt_want_write(struct vfsmount *m)
563 {
564 	int ret;
565 
566 	sb_start_write(m->mnt_sb);
567 	ret = mnt_get_write_access(m);
568 	if (ret)
569 		sb_end_write(m->mnt_sb);
570 	return ret;
571 }
572 EXPORT_SYMBOL_GPL(mnt_want_write);
573 
574 /**
575  * mnt_get_write_access_file - get write access to a file's mount
576  * @file: the file who's mount on which to take a write
577  *
578  * This is like mnt_get_write_access, but if @file is already open for write it
579  * skips incrementing mnt_writers (since the open file already has a reference)
580  * and instead only does the check for emergency r/o remounts.  This must be
581  * paired with mnt_put_write_access_file.
582  */
583 int mnt_get_write_access_file(struct file *file)
584 {
585 	if (file->f_mode & FMODE_WRITER) {
586 		/*
587 		 * Superblock may have become readonly while there are still
588 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
589 		 */
590 		if (__mnt_is_readonly(file->f_path.mnt))
591 			return -EROFS;
592 		return 0;
593 	}
594 	return mnt_get_write_access(file->f_path.mnt);
595 }
596 
597 /**
598  * mnt_want_write_file - get write access to a file's mount
599  * @file: the file who's mount on which to take a write
600  *
601  * This is like mnt_want_write, but if the file is already open for writing it
602  * skips incrementing mnt_writers (since the open file already has a reference)
603  * and instead only does the freeze protection and the check for emergency r/o
604  * remounts.  This must be paired with mnt_drop_write_file.
605  */
606 int mnt_want_write_file(struct file *file)
607 {
608 	int ret;
609 
610 	sb_start_write(file_inode(file)->i_sb);
611 	ret = mnt_get_write_access_file(file);
612 	if (ret)
613 		sb_end_write(file_inode(file)->i_sb);
614 	return ret;
615 }
616 EXPORT_SYMBOL_GPL(mnt_want_write_file);
617 
618 /**
619  * mnt_put_write_access - give up write access to a mount
620  * @mnt: the mount on which to give up write access
621  *
622  * Tells the low-level filesystem that we are done
623  * performing writes to it.  Must be matched with
624  * mnt_get_write_access() call above.
625  */
626 void mnt_put_write_access(struct vfsmount *mnt)
627 {
628 	preempt_disable();
629 	mnt_dec_writers(real_mount(mnt));
630 	preempt_enable();
631 }
632 EXPORT_SYMBOL_GPL(mnt_put_write_access);
633 
634 /**
635  * mnt_drop_write - give up write access to a mount
636  * @mnt: the mount on which to give up write access
637  *
638  * Tells the low-level filesystem that we are done performing writes to it and
639  * also allows filesystem to be frozen again.  Must be matched with
640  * mnt_want_write() call above.
641  */
642 void mnt_drop_write(struct vfsmount *mnt)
643 {
644 	mnt_put_write_access(mnt);
645 	sb_end_write(mnt->mnt_sb);
646 }
647 EXPORT_SYMBOL_GPL(mnt_drop_write);
648 
649 void mnt_put_write_access_file(struct file *file)
650 {
651 	if (!(file->f_mode & FMODE_WRITER))
652 		mnt_put_write_access(file->f_path.mnt);
653 }
654 
655 void mnt_drop_write_file(struct file *file)
656 {
657 	mnt_put_write_access_file(file);
658 	sb_end_write(file_inode(file)->i_sb);
659 }
660 EXPORT_SYMBOL(mnt_drop_write_file);
661 
662 /**
663  * mnt_hold_writers - prevent write access to the given mount
664  * @mnt: mnt to prevent write access to
665  *
666  * Prevents write access to @mnt if there are no active writers for @mnt.
667  * This function needs to be called and return successfully before changing
668  * properties of @mnt that need to remain stable for callers with write access
669  * to @mnt.
670  *
671  * After this functions has been called successfully callers must pair it with
672  * a call to mnt_unhold_writers() in order to stop preventing write access to
673  * @mnt.
674  *
675  * Context: This function expects lock_mount_hash() to be held serializing
676  *          setting MNT_WRITE_HOLD.
677  * Return: On success 0 is returned.
678  *	   On error, -EBUSY is returned.
679  */
680 static inline int mnt_hold_writers(struct mount *mnt)
681 {
682 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
683 	/*
684 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
685 	 * should be visible before we do.
686 	 */
687 	smp_mb();
688 
689 	/*
690 	 * With writers on hold, if this value is zero, then there are
691 	 * definitely no active writers (although held writers may subsequently
692 	 * increment the count, they'll have to wait, and decrement it after
693 	 * seeing MNT_READONLY).
694 	 *
695 	 * It is OK to have counter incremented on one CPU and decremented on
696 	 * another: the sum will add up correctly. The danger would be when we
697 	 * sum up each counter, if we read a counter before it is incremented,
698 	 * but then read another CPU's count which it has been subsequently
699 	 * decremented from -- we would see more decrements than we should.
700 	 * MNT_WRITE_HOLD protects against this scenario, because
701 	 * mnt_want_write first increments count, then smp_mb, then spins on
702 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
703 	 * we're counting up here.
704 	 */
705 	if (mnt_get_writers(mnt) > 0)
706 		return -EBUSY;
707 
708 	return 0;
709 }
710 
711 /**
712  * mnt_unhold_writers - stop preventing write access to the given mount
713  * @mnt: mnt to stop preventing write access to
714  *
715  * Stop preventing write access to @mnt allowing callers to gain write access
716  * to @mnt again.
717  *
718  * This function can only be called after a successful call to
719  * mnt_hold_writers().
720  *
721  * Context: This function expects lock_mount_hash() to be held.
722  */
723 static inline void mnt_unhold_writers(struct mount *mnt)
724 {
725 	/*
726 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
727 	 * that become unheld will see MNT_READONLY.
728 	 */
729 	smp_wmb();
730 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
731 }
732 
733 static int mnt_make_readonly(struct mount *mnt)
734 {
735 	int ret;
736 
737 	ret = mnt_hold_writers(mnt);
738 	if (!ret)
739 		mnt->mnt.mnt_flags |= MNT_READONLY;
740 	mnt_unhold_writers(mnt);
741 	return ret;
742 }
743 
744 int sb_prepare_remount_readonly(struct super_block *sb)
745 {
746 	struct mount *mnt;
747 	int err = 0;
748 
749 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
750 	if (atomic_long_read(&sb->s_remove_count))
751 		return -EBUSY;
752 
753 	lock_mount_hash();
754 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
755 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
756 			err = mnt_hold_writers(mnt);
757 			if (err)
758 				break;
759 		}
760 	}
761 	if (!err && atomic_long_read(&sb->s_remove_count))
762 		err = -EBUSY;
763 
764 	if (!err)
765 		sb_start_ro_state_change(sb);
766 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
767 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
768 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
769 	}
770 	unlock_mount_hash();
771 
772 	return err;
773 }
774 
775 static void free_vfsmnt(struct mount *mnt)
776 {
777 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
778 	kfree_const(mnt->mnt_devname);
779 #ifdef CONFIG_SMP
780 	free_percpu(mnt->mnt_pcp);
781 #endif
782 	kmem_cache_free(mnt_cache, mnt);
783 }
784 
785 static void delayed_free_vfsmnt(struct rcu_head *head)
786 {
787 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
788 }
789 
790 /* call under rcu_read_lock */
791 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
792 {
793 	struct mount *mnt;
794 	if (read_seqretry(&mount_lock, seq))
795 		return 1;
796 	if (bastard == NULL)
797 		return 0;
798 	mnt = real_mount(bastard);
799 	mnt_add_count(mnt, 1);
800 	smp_mb();		// see mntput_no_expire() and do_umount()
801 	if (likely(!read_seqretry(&mount_lock, seq)))
802 		return 0;
803 	lock_mount_hash();
804 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
805 		mnt_add_count(mnt, -1);
806 		unlock_mount_hash();
807 		return 1;
808 	}
809 	unlock_mount_hash();
810 	/* caller will mntput() */
811 	return -1;
812 }
813 
814 /* call under rcu_read_lock */
815 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
816 {
817 	int res = __legitimize_mnt(bastard, seq);
818 	if (likely(!res))
819 		return true;
820 	if (unlikely(res < 0)) {
821 		rcu_read_unlock();
822 		mntput(bastard);
823 		rcu_read_lock();
824 	}
825 	return false;
826 }
827 
828 /**
829  * __lookup_mnt - find first child mount
830  * @mnt:	parent mount
831  * @dentry:	mountpoint
832  *
833  * If @mnt has a child mount @c mounted @dentry find and return it.
834  *
835  * Note that the child mount @c need not be unique. There are cases
836  * where shadow mounts are created. For example, during mount
837  * propagation when a source mount @mnt whose root got overmounted by a
838  * mount @o after path lookup but before @namespace_sem could be
839  * acquired gets copied and propagated. So @mnt gets copied including
840  * @o. When @mnt is propagated to a destination mount @d that already
841  * has another mount @n mounted at the same mountpoint then the source
842  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
843  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
844  * on @dentry.
845  *
846  * Return: The first child of @mnt mounted @dentry or NULL.
847  */
848 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
849 {
850 	struct hlist_head *head = m_hash(mnt, dentry);
851 	struct mount *p;
852 
853 	hlist_for_each_entry_rcu(p, head, mnt_hash)
854 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
855 			return p;
856 	return NULL;
857 }
858 
859 /*
860  * lookup_mnt - Return the first child mount mounted at path
861  *
862  * "First" means first mounted chronologically.  If you create the
863  * following mounts:
864  *
865  * mount /dev/sda1 /mnt
866  * mount /dev/sda2 /mnt
867  * mount /dev/sda3 /mnt
868  *
869  * Then lookup_mnt() on the base /mnt dentry in the root mount will
870  * return successively the root dentry and vfsmount of /dev/sda1, then
871  * /dev/sda2, then /dev/sda3, then NULL.
872  *
873  * lookup_mnt takes a reference to the found vfsmount.
874  */
875 struct vfsmount *lookup_mnt(const struct path *path)
876 {
877 	struct mount *child_mnt;
878 	struct vfsmount *m;
879 	unsigned seq;
880 
881 	rcu_read_lock();
882 	do {
883 		seq = read_seqbegin(&mount_lock);
884 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
885 		m = child_mnt ? &child_mnt->mnt : NULL;
886 	} while (!legitimize_mnt(m, seq));
887 	rcu_read_unlock();
888 	return m;
889 }
890 
891 /*
892  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
893  *                         current mount namespace.
894  *
895  * The common case is dentries are not mountpoints at all and that
896  * test is handled inline.  For the slow case when we are actually
897  * dealing with a mountpoint of some kind, walk through all of the
898  * mounts in the current mount namespace and test to see if the dentry
899  * is a mountpoint.
900  *
901  * The mount_hashtable is not usable in the context because we
902  * need to identify all mounts that may be in the current mount
903  * namespace not just a mount that happens to have some specified
904  * parent mount.
905  */
906 bool __is_local_mountpoint(const struct dentry *dentry)
907 {
908 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
909 	struct mount *mnt, *n;
910 	bool is_covered = false;
911 
912 	down_read(&namespace_sem);
913 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
914 		is_covered = (mnt->mnt_mountpoint == dentry);
915 		if (is_covered)
916 			break;
917 	}
918 	up_read(&namespace_sem);
919 
920 	return is_covered;
921 }
922 
923 struct pinned_mountpoint {
924 	struct hlist_node node;
925 	struct mountpoint *mp;
926 };
927 
928 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
929 {
930 	struct hlist_head *chain = mp_hash(dentry);
931 	struct mountpoint *mp;
932 
933 	hlist_for_each_entry(mp, chain, m_hash) {
934 		if (mp->m_dentry == dentry) {
935 			hlist_add_head(&m->node, &mp->m_list);
936 			m->mp = mp;
937 			return true;
938 		}
939 	}
940 	return false;
941 }
942 
943 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
944 {
945 	struct mountpoint *mp __free(kfree) = NULL;
946 	bool found;
947 	int ret;
948 
949 	if (d_mountpoint(dentry)) {
950 		/* might be worth a WARN_ON() */
951 		if (d_unlinked(dentry))
952 			return -ENOENT;
953 mountpoint:
954 		read_seqlock_excl(&mount_lock);
955 		found = lookup_mountpoint(dentry, m);
956 		read_sequnlock_excl(&mount_lock);
957 		if (found)
958 			return 0;
959 	}
960 
961 	if (!mp)
962 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
963 	if (!mp)
964 		return -ENOMEM;
965 
966 	/* Exactly one processes may set d_mounted */
967 	ret = d_set_mounted(dentry);
968 
969 	/* Someone else set d_mounted? */
970 	if (ret == -EBUSY)
971 		goto mountpoint;
972 
973 	/* The dentry is not available as a mountpoint? */
974 	if (ret)
975 		return ret;
976 
977 	/* Add the new mountpoint to the hash table */
978 	read_seqlock_excl(&mount_lock);
979 	mp->m_dentry = dget(dentry);
980 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
981 	INIT_HLIST_HEAD(&mp->m_list);
982 	hlist_add_head(&m->node, &mp->m_list);
983 	m->mp = no_free_ptr(mp);
984 	read_sequnlock_excl(&mount_lock);
985 	return 0;
986 }
987 
988 /*
989  * vfsmount lock must be held.  Additionally, the caller is responsible
990  * for serializing calls for given disposal list.
991  */
992 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
993 {
994 	if (hlist_empty(&mp->m_list)) {
995 		struct dentry *dentry = mp->m_dentry;
996 		spin_lock(&dentry->d_lock);
997 		dentry->d_flags &= ~DCACHE_MOUNTED;
998 		spin_unlock(&dentry->d_lock);
999 		dput_to_list(dentry, list);
1000 		hlist_del(&mp->m_hash);
1001 		kfree(mp);
1002 	}
1003 }
1004 
1005 /*
1006  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
1007  */
1008 static void unpin_mountpoint(struct pinned_mountpoint *m)
1009 {
1010 	if (m->mp) {
1011 		hlist_del(&m->node);
1012 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
1013 	}
1014 }
1015 
1016 static inline int check_mnt(struct mount *mnt)
1017 {
1018 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
1019 }
1020 
1021 static inline bool check_anonymous_mnt(struct mount *mnt)
1022 {
1023 	u64 seq;
1024 
1025 	if (!is_anon_ns(mnt->mnt_ns))
1026 		return false;
1027 
1028 	seq = mnt->mnt_ns->seq_origin;
1029 	return !seq || (seq == current->nsproxy->mnt_ns->seq);
1030 }
1031 
1032 /*
1033  * vfsmount lock must be held for write
1034  */
1035 static void touch_mnt_namespace(struct mnt_namespace *ns)
1036 {
1037 	if (ns) {
1038 		ns->event = ++event;
1039 		wake_up_interruptible(&ns->poll);
1040 	}
1041 }
1042 
1043 /*
1044  * vfsmount lock must be held for write
1045  */
1046 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1047 {
1048 	if (ns && ns->event != event) {
1049 		ns->event = event;
1050 		wake_up_interruptible(&ns->poll);
1051 	}
1052 }
1053 
1054 /*
1055  * locks: mount_lock[write_seqlock]
1056  */
1057 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
1058 {
1059 	struct mountpoint *mp;
1060 	struct mount *parent = mnt->mnt_parent;
1061 	if (unlikely(parent->overmount == mnt))
1062 		parent->overmount = NULL;
1063 	mnt->mnt_parent = mnt;
1064 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1065 	list_del_init(&mnt->mnt_child);
1066 	hlist_del_init_rcu(&mnt->mnt_hash);
1067 	hlist_del_init(&mnt->mnt_mp_list);
1068 	mp = mnt->mnt_mp;
1069 	mnt->mnt_mp = NULL;
1070 	maybe_free_mountpoint(mp, shrink_list);
1071 }
1072 
1073 /*
1074  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1075  */
1076 static void umount_mnt(struct mount *mnt)
1077 {
1078 	__umount_mnt(mnt, &ex_mountpoints);
1079 }
1080 
1081 /*
1082  * vfsmount lock must be held for write
1083  */
1084 void mnt_set_mountpoint(struct mount *mnt,
1085 			struct mountpoint *mp,
1086 			struct mount *child_mnt)
1087 {
1088 	child_mnt->mnt_mountpoint = mp->m_dentry;
1089 	child_mnt->mnt_parent = mnt;
1090 	child_mnt->mnt_mp = mp;
1091 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1092 }
1093 
1094 static void make_visible(struct mount *mnt)
1095 {
1096 	struct mount *parent = mnt->mnt_parent;
1097 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1098 		parent->overmount = mnt;
1099 	hlist_add_head_rcu(&mnt->mnt_hash,
1100 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1101 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1102 }
1103 
1104 /**
1105  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1106  *              list of child mounts
1107  * @parent:  the parent
1108  * @mnt:     the new mount
1109  * @mp:      the new mountpoint
1110  *
1111  * Mount @mnt at @mp on @parent. Then attach @mnt
1112  * to @parent's child mount list and to @mount_hashtable.
1113  *
1114  * Note, when make_visible() is called @mnt->mnt_parent already points
1115  * to the correct parent.
1116  *
1117  * Context: This function expects namespace_lock() and lock_mount_hash()
1118  *          to have been acquired in that order.
1119  */
1120 static void attach_mnt(struct mount *mnt, struct mount *parent,
1121 		       struct mountpoint *mp)
1122 {
1123 	mnt_set_mountpoint(parent, mp, mnt);
1124 	make_visible(mnt);
1125 }
1126 
1127 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1128 {
1129 	struct mountpoint *old_mp = mnt->mnt_mp;
1130 
1131 	list_del_init(&mnt->mnt_child);
1132 	hlist_del_init(&mnt->mnt_mp_list);
1133 	hlist_del_init_rcu(&mnt->mnt_hash);
1134 
1135 	attach_mnt(mnt, parent, mp);
1136 
1137 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1138 }
1139 
1140 static inline struct mount *node_to_mount(struct rb_node *node)
1141 {
1142 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1143 }
1144 
1145 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1146 {
1147 	struct rb_node **link = &ns->mounts.rb_node;
1148 	struct rb_node *parent = NULL;
1149 	bool mnt_first_node = true, mnt_last_node = true;
1150 
1151 	WARN_ON(mnt_ns_attached(mnt));
1152 	mnt->mnt_ns = ns;
1153 	while (*link) {
1154 		parent = *link;
1155 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1156 			link = &parent->rb_left;
1157 			mnt_last_node = false;
1158 		} else {
1159 			link = &parent->rb_right;
1160 			mnt_first_node = false;
1161 		}
1162 	}
1163 
1164 	if (mnt_last_node)
1165 		ns->mnt_last_node = &mnt->mnt_node;
1166 	if (mnt_first_node)
1167 		ns->mnt_first_node = &mnt->mnt_node;
1168 	rb_link_node(&mnt->mnt_node, parent, link);
1169 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1170 
1171 	mnt_notify_add(mnt);
1172 }
1173 
1174 static struct mount *next_mnt(struct mount *p, struct mount *root)
1175 {
1176 	struct list_head *next = p->mnt_mounts.next;
1177 	if (next == &p->mnt_mounts) {
1178 		while (1) {
1179 			if (p == root)
1180 				return NULL;
1181 			next = p->mnt_child.next;
1182 			if (next != &p->mnt_parent->mnt_mounts)
1183 				break;
1184 			p = p->mnt_parent;
1185 		}
1186 	}
1187 	return list_entry(next, struct mount, mnt_child);
1188 }
1189 
1190 static struct mount *skip_mnt_tree(struct mount *p)
1191 {
1192 	struct list_head *prev = p->mnt_mounts.prev;
1193 	while (prev != &p->mnt_mounts) {
1194 		p = list_entry(prev, struct mount, mnt_child);
1195 		prev = p->mnt_mounts.prev;
1196 	}
1197 	return p;
1198 }
1199 
1200 /*
1201  * vfsmount lock must be held for write
1202  */
1203 static void commit_tree(struct mount *mnt)
1204 {
1205 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1206 
1207 	if (!mnt_ns_attached(mnt)) {
1208 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1209 			if (unlikely(mnt_ns_attached(m)))
1210 				m = skip_mnt_tree(m);
1211 			else
1212 				mnt_add_to_ns(n, m);
1213 		n->nr_mounts += n->pending_mounts;
1214 		n->pending_mounts = 0;
1215 	}
1216 
1217 	make_visible(mnt);
1218 	touch_mnt_namespace(n);
1219 }
1220 
1221 /**
1222  * vfs_create_mount - Create a mount for a configured superblock
1223  * @fc: The configuration context with the superblock attached
1224  *
1225  * Create a mount to an already configured superblock.  If necessary, the
1226  * caller should invoke vfs_get_tree() before calling this.
1227  *
1228  * Note that this does not attach the mount to anything.
1229  */
1230 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1231 {
1232 	struct mount *mnt;
1233 
1234 	if (!fc->root)
1235 		return ERR_PTR(-EINVAL);
1236 
1237 	mnt = alloc_vfsmnt(fc->source);
1238 	if (!mnt)
1239 		return ERR_PTR(-ENOMEM);
1240 
1241 	if (fc->sb_flags & SB_KERNMOUNT)
1242 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1243 
1244 	atomic_inc(&fc->root->d_sb->s_active);
1245 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1246 	mnt->mnt.mnt_root	= dget(fc->root);
1247 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1248 	mnt->mnt_parent		= mnt;
1249 
1250 	lock_mount_hash();
1251 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1252 	unlock_mount_hash();
1253 	return &mnt->mnt;
1254 }
1255 EXPORT_SYMBOL(vfs_create_mount);
1256 
1257 struct vfsmount *fc_mount(struct fs_context *fc)
1258 {
1259 	int err = vfs_get_tree(fc);
1260 	if (!err) {
1261 		up_write(&fc->root->d_sb->s_umount);
1262 		return vfs_create_mount(fc);
1263 	}
1264 	return ERR_PTR(err);
1265 }
1266 EXPORT_SYMBOL(fc_mount);
1267 
1268 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1269 {
1270 	struct vfsmount *mnt = fc_mount(fc);
1271 	if (!IS_ERR(mnt))
1272 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1273 	return mnt;
1274 }
1275 EXPORT_SYMBOL(fc_mount_longterm);
1276 
1277 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1278 				int flags, const char *name,
1279 				void *data)
1280 {
1281 	struct fs_context *fc;
1282 	struct vfsmount *mnt;
1283 	int ret = 0;
1284 
1285 	if (!type)
1286 		return ERR_PTR(-EINVAL);
1287 
1288 	fc = fs_context_for_mount(type, flags);
1289 	if (IS_ERR(fc))
1290 		return ERR_CAST(fc);
1291 
1292 	if (name)
1293 		ret = vfs_parse_fs_string(fc, "source",
1294 					  name, strlen(name));
1295 	if (!ret)
1296 		ret = parse_monolithic_mount_data(fc, data);
1297 	if (!ret)
1298 		mnt = fc_mount(fc);
1299 	else
1300 		mnt = ERR_PTR(ret);
1301 
1302 	put_fs_context(fc);
1303 	return mnt;
1304 }
1305 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1306 
1307 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1308 					int flag)
1309 {
1310 	struct super_block *sb = old->mnt.mnt_sb;
1311 	struct mount *mnt;
1312 	int err;
1313 
1314 	mnt = alloc_vfsmnt(old->mnt_devname);
1315 	if (!mnt)
1316 		return ERR_PTR(-ENOMEM);
1317 
1318 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1319 			     ~MNT_INTERNAL_FLAGS;
1320 
1321 	if (flag & (CL_SLAVE | CL_PRIVATE))
1322 		mnt->mnt_group_id = 0; /* not a peer of original */
1323 	else
1324 		mnt->mnt_group_id = old->mnt_group_id;
1325 
1326 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1327 		err = mnt_alloc_group_id(mnt);
1328 		if (err)
1329 			goto out_free;
1330 	}
1331 
1332 	if (mnt->mnt_group_id)
1333 		set_mnt_shared(mnt);
1334 
1335 	atomic_inc(&sb->s_active);
1336 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1337 
1338 	mnt->mnt.mnt_sb = sb;
1339 	mnt->mnt.mnt_root = dget(root);
1340 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1341 	mnt->mnt_parent = mnt;
1342 	lock_mount_hash();
1343 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1344 	unlock_mount_hash();
1345 
1346 	if (flag & CL_PRIVATE)	// we are done with it
1347 		return mnt;
1348 
1349 	if (peers(mnt, old))
1350 		list_add(&mnt->mnt_share, &old->mnt_share);
1351 
1352 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1353 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1354 		mnt->mnt_master = old;
1355 	} else if (IS_MNT_SLAVE(old)) {
1356 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1357 		mnt->mnt_master = old->mnt_master;
1358 	}
1359 	return mnt;
1360 
1361  out_free:
1362 	mnt_free_id(mnt);
1363 	free_vfsmnt(mnt);
1364 	return ERR_PTR(err);
1365 }
1366 
1367 static void cleanup_mnt(struct mount *mnt)
1368 {
1369 	struct hlist_node *p;
1370 	struct mount *m;
1371 	/*
1372 	 * The warning here probably indicates that somebody messed
1373 	 * up a mnt_want/drop_write() pair.  If this happens, the
1374 	 * filesystem was probably unable to make r/w->r/o transitions.
1375 	 * The locking used to deal with mnt_count decrement provides barriers,
1376 	 * so mnt_get_writers() below is safe.
1377 	 */
1378 	WARN_ON(mnt_get_writers(mnt));
1379 	if (unlikely(mnt->mnt_pins.first))
1380 		mnt_pin_kill(mnt);
1381 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1382 		hlist_del(&m->mnt_umount);
1383 		mntput(&m->mnt);
1384 	}
1385 	fsnotify_vfsmount_delete(&mnt->mnt);
1386 	dput(mnt->mnt.mnt_root);
1387 	deactivate_super(mnt->mnt.mnt_sb);
1388 	mnt_free_id(mnt);
1389 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1390 }
1391 
1392 static void __cleanup_mnt(struct rcu_head *head)
1393 {
1394 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1395 }
1396 
1397 static LLIST_HEAD(delayed_mntput_list);
1398 static void delayed_mntput(struct work_struct *unused)
1399 {
1400 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1401 	struct mount *m, *t;
1402 
1403 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1404 		cleanup_mnt(m);
1405 }
1406 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1407 
1408 static void mntput_no_expire(struct mount *mnt)
1409 {
1410 	LIST_HEAD(list);
1411 	int count;
1412 
1413 	rcu_read_lock();
1414 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1415 		/*
1416 		 * Since we don't do lock_mount_hash() here,
1417 		 * ->mnt_ns can change under us.  However, if it's
1418 		 * non-NULL, then there's a reference that won't
1419 		 * be dropped until after an RCU delay done after
1420 		 * turning ->mnt_ns NULL.  So if we observe it
1421 		 * non-NULL under rcu_read_lock(), the reference
1422 		 * we are dropping is not the final one.
1423 		 */
1424 		mnt_add_count(mnt, -1);
1425 		rcu_read_unlock();
1426 		return;
1427 	}
1428 	lock_mount_hash();
1429 	/*
1430 	 * make sure that if __legitimize_mnt() has not seen us grab
1431 	 * mount_lock, we'll see their refcount increment here.
1432 	 */
1433 	smp_mb();
1434 	mnt_add_count(mnt, -1);
1435 	count = mnt_get_count(mnt);
1436 	if (count != 0) {
1437 		WARN_ON(count < 0);
1438 		rcu_read_unlock();
1439 		unlock_mount_hash();
1440 		return;
1441 	}
1442 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1443 		rcu_read_unlock();
1444 		unlock_mount_hash();
1445 		return;
1446 	}
1447 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1448 	rcu_read_unlock();
1449 
1450 	list_del(&mnt->mnt_instance);
1451 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1452 		list_del(&mnt->mnt_expire);
1453 
1454 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1455 		struct mount *p, *tmp;
1456 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1457 			__umount_mnt(p, &list);
1458 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1459 		}
1460 	}
1461 	unlock_mount_hash();
1462 	shrink_dentry_list(&list);
1463 
1464 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1465 		struct task_struct *task = current;
1466 		if (likely(!(task->flags & PF_KTHREAD))) {
1467 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1468 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1469 				return;
1470 		}
1471 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1472 			schedule_delayed_work(&delayed_mntput_work, 1);
1473 		return;
1474 	}
1475 	cleanup_mnt(mnt);
1476 }
1477 
1478 void mntput(struct vfsmount *mnt)
1479 {
1480 	if (mnt) {
1481 		struct mount *m = real_mount(mnt);
1482 		/* avoid cacheline pingpong */
1483 		if (unlikely(m->mnt_expiry_mark))
1484 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1485 		mntput_no_expire(m);
1486 	}
1487 }
1488 EXPORT_SYMBOL(mntput);
1489 
1490 struct vfsmount *mntget(struct vfsmount *mnt)
1491 {
1492 	if (mnt)
1493 		mnt_add_count(real_mount(mnt), 1);
1494 	return mnt;
1495 }
1496 EXPORT_SYMBOL(mntget);
1497 
1498 /*
1499  * Make a mount point inaccessible to new lookups.
1500  * Because there may still be current users, the caller MUST WAIT
1501  * for an RCU grace period before destroying the mount point.
1502  */
1503 void mnt_make_shortterm(struct vfsmount *mnt)
1504 {
1505 	if (mnt)
1506 		real_mount(mnt)->mnt_ns = NULL;
1507 }
1508 
1509 /**
1510  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1511  * @path: path to check
1512  *
1513  *  d_mountpoint() can only be used reliably to establish if a dentry is
1514  *  not mounted in any namespace and that common case is handled inline.
1515  *  d_mountpoint() isn't aware of the possibility there may be multiple
1516  *  mounts using a given dentry in a different namespace. This function
1517  *  checks if the passed in path is a mountpoint rather than the dentry
1518  *  alone.
1519  */
1520 bool path_is_mountpoint(const struct path *path)
1521 {
1522 	unsigned seq;
1523 	bool res;
1524 
1525 	if (!d_mountpoint(path->dentry))
1526 		return false;
1527 
1528 	rcu_read_lock();
1529 	do {
1530 		seq = read_seqbegin(&mount_lock);
1531 		res = __path_is_mountpoint(path);
1532 	} while (read_seqretry(&mount_lock, seq));
1533 	rcu_read_unlock();
1534 
1535 	return res;
1536 }
1537 EXPORT_SYMBOL(path_is_mountpoint);
1538 
1539 struct vfsmount *mnt_clone_internal(const struct path *path)
1540 {
1541 	struct mount *p;
1542 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1543 	if (IS_ERR(p))
1544 		return ERR_CAST(p);
1545 	p->mnt.mnt_flags |= MNT_INTERNAL;
1546 	return &p->mnt;
1547 }
1548 
1549 /*
1550  * Returns the mount which either has the specified mnt_id, or has the next
1551  * smallest id afer the specified one.
1552  */
1553 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1554 {
1555 	struct rb_node *node = ns->mounts.rb_node;
1556 	struct mount *ret = NULL;
1557 
1558 	while (node) {
1559 		struct mount *m = node_to_mount(node);
1560 
1561 		if (mnt_id <= m->mnt_id_unique) {
1562 			ret = node_to_mount(node);
1563 			if (mnt_id == m->mnt_id_unique)
1564 				break;
1565 			node = node->rb_left;
1566 		} else {
1567 			node = node->rb_right;
1568 		}
1569 	}
1570 	return ret;
1571 }
1572 
1573 /*
1574  * Returns the mount which either has the specified mnt_id, or has the next
1575  * greater id before the specified one.
1576  */
1577 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1578 {
1579 	struct rb_node *node = ns->mounts.rb_node;
1580 	struct mount *ret = NULL;
1581 
1582 	while (node) {
1583 		struct mount *m = node_to_mount(node);
1584 
1585 		if (mnt_id >= m->mnt_id_unique) {
1586 			ret = node_to_mount(node);
1587 			if (mnt_id == m->mnt_id_unique)
1588 				break;
1589 			node = node->rb_right;
1590 		} else {
1591 			node = node->rb_left;
1592 		}
1593 	}
1594 	return ret;
1595 }
1596 
1597 #ifdef CONFIG_PROC_FS
1598 
1599 /* iterator; we want it to have access to namespace_sem, thus here... */
1600 static void *m_start(struct seq_file *m, loff_t *pos)
1601 {
1602 	struct proc_mounts *p = m->private;
1603 
1604 	down_read(&namespace_sem);
1605 
1606 	return mnt_find_id_at(p->ns, *pos);
1607 }
1608 
1609 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1610 {
1611 	struct mount *next = NULL, *mnt = v;
1612 	struct rb_node *node = rb_next(&mnt->mnt_node);
1613 
1614 	++*pos;
1615 	if (node) {
1616 		next = node_to_mount(node);
1617 		*pos = next->mnt_id_unique;
1618 	}
1619 	return next;
1620 }
1621 
1622 static void m_stop(struct seq_file *m, void *v)
1623 {
1624 	up_read(&namespace_sem);
1625 }
1626 
1627 static int m_show(struct seq_file *m, void *v)
1628 {
1629 	struct proc_mounts *p = m->private;
1630 	struct mount *r = v;
1631 	return p->show(m, &r->mnt);
1632 }
1633 
1634 const struct seq_operations mounts_op = {
1635 	.start	= m_start,
1636 	.next	= m_next,
1637 	.stop	= m_stop,
1638 	.show	= m_show,
1639 };
1640 
1641 #endif  /* CONFIG_PROC_FS */
1642 
1643 /**
1644  * may_umount_tree - check if a mount tree is busy
1645  * @m: root of mount tree
1646  *
1647  * This is called to check if a tree of mounts has any
1648  * open files, pwds, chroots or sub mounts that are
1649  * busy.
1650  */
1651 int may_umount_tree(struct vfsmount *m)
1652 {
1653 	struct mount *mnt = real_mount(m);
1654 	bool busy = false;
1655 
1656 	/* write lock needed for mnt_get_count */
1657 	lock_mount_hash();
1658 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1659 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1660 			busy = true;
1661 			break;
1662 		}
1663 	}
1664 	unlock_mount_hash();
1665 
1666 	return !busy;
1667 }
1668 
1669 EXPORT_SYMBOL(may_umount_tree);
1670 
1671 /**
1672  * may_umount - check if a mount point is busy
1673  * @mnt: root of mount
1674  *
1675  * This is called to check if a mount point has any
1676  * open files, pwds, chroots or sub mounts. If the
1677  * mount has sub mounts this will return busy
1678  * regardless of whether the sub mounts are busy.
1679  *
1680  * Doesn't take quota and stuff into account. IOW, in some cases it will
1681  * give false negatives. The main reason why it's here is that we need
1682  * a non-destructive way to look for easily umountable filesystems.
1683  */
1684 int may_umount(struct vfsmount *mnt)
1685 {
1686 	int ret = 1;
1687 	down_read(&namespace_sem);
1688 	lock_mount_hash();
1689 	if (propagate_mount_busy(real_mount(mnt), 2))
1690 		ret = 0;
1691 	unlock_mount_hash();
1692 	up_read(&namespace_sem);
1693 	return ret;
1694 }
1695 
1696 EXPORT_SYMBOL(may_umount);
1697 
1698 #ifdef CONFIG_FSNOTIFY
1699 static void mnt_notify(struct mount *p)
1700 {
1701 	if (!p->prev_ns && p->mnt_ns) {
1702 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1703 	} else if (p->prev_ns && !p->mnt_ns) {
1704 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1705 	} else if (p->prev_ns == p->mnt_ns) {
1706 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1707 	} else {
1708 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1709 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1710 	}
1711 	p->prev_ns = p->mnt_ns;
1712 }
1713 
1714 static void notify_mnt_list(void)
1715 {
1716 	struct mount *m, *tmp;
1717 	/*
1718 	 * Notify about mounts that were added/reparented/detached/remain
1719 	 * connected after unmount.
1720 	 */
1721 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1722 		mnt_notify(m);
1723 		list_del_init(&m->to_notify);
1724 	}
1725 }
1726 
1727 static bool need_notify_mnt_list(void)
1728 {
1729 	return !list_empty(&notify_list);
1730 }
1731 #else
1732 static void notify_mnt_list(void)
1733 {
1734 }
1735 
1736 static bool need_notify_mnt_list(void)
1737 {
1738 	return false;
1739 }
1740 #endif
1741 
1742 static void free_mnt_ns(struct mnt_namespace *);
1743 static void namespace_unlock(void)
1744 {
1745 	struct hlist_head head;
1746 	struct hlist_node *p;
1747 	struct mount *m;
1748 	struct mnt_namespace *ns = emptied_ns;
1749 	LIST_HEAD(list);
1750 
1751 	hlist_move_list(&unmounted, &head);
1752 	list_splice_init(&ex_mountpoints, &list);
1753 	emptied_ns = NULL;
1754 
1755 	if (need_notify_mnt_list()) {
1756 		/*
1757 		 * No point blocking out concurrent readers while notifications
1758 		 * are sent. This will also allow statmount()/listmount() to run
1759 		 * concurrently.
1760 		 */
1761 		downgrade_write(&namespace_sem);
1762 		notify_mnt_list();
1763 		up_read(&namespace_sem);
1764 	} else {
1765 		up_write(&namespace_sem);
1766 	}
1767 	if (unlikely(ns)) {
1768 		/* Make sure we notice when we leak mounts. */
1769 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1770 		free_mnt_ns(ns);
1771 	}
1772 
1773 	shrink_dentry_list(&list);
1774 
1775 	if (likely(hlist_empty(&head)))
1776 		return;
1777 
1778 	synchronize_rcu_expedited();
1779 
1780 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1781 		hlist_del(&m->mnt_umount);
1782 		mntput(&m->mnt);
1783 	}
1784 }
1785 
1786 static inline void namespace_lock(void)
1787 {
1788 	down_write(&namespace_sem);
1789 }
1790 
1791 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1792 
1793 enum umount_tree_flags {
1794 	UMOUNT_SYNC = 1,
1795 	UMOUNT_PROPAGATE = 2,
1796 	UMOUNT_CONNECTED = 4,
1797 };
1798 
1799 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1800 {
1801 	/* Leaving mounts connected is only valid for lazy umounts */
1802 	if (how & UMOUNT_SYNC)
1803 		return true;
1804 
1805 	/* A mount without a parent has nothing to be connected to */
1806 	if (!mnt_has_parent(mnt))
1807 		return true;
1808 
1809 	/* Because the reference counting rules change when mounts are
1810 	 * unmounted and connected, umounted mounts may not be
1811 	 * connected to mounted mounts.
1812 	 */
1813 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1814 		return true;
1815 
1816 	/* Has it been requested that the mount remain connected? */
1817 	if (how & UMOUNT_CONNECTED)
1818 		return false;
1819 
1820 	/* Is the mount locked such that it needs to remain connected? */
1821 	if (IS_MNT_LOCKED(mnt))
1822 		return false;
1823 
1824 	/* By default disconnect the mount */
1825 	return true;
1826 }
1827 
1828 /*
1829  * mount_lock must be held
1830  * namespace_sem must be held for write
1831  */
1832 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1833 {
1834 	LIST_HEAD(tmp_list);
1835 	struct mount *p;
1836 
1837 	if (how & UMOUNT_PROPAGATE)
1838 		propagate_mount_unlock(mnt);
1839 
1840 	/* Gather the mounts to umount */
1841 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1842 		p->mnt.mnt_flags |= MNT_UMOUNT;
1843 		if (mnt_ns_attached(p))
1844 			move_from_ns(p);
1845 		list_add_tail(&p->mnt_list, &tmp_list);
1846 	}
1847 
1848 	/* Hide the mounts from mnt_mounts */
1849 	list_for_each_entry(p, &tmp_list, mnt_list) {
1850 		list_del_init(&p->mnt_child);
1851 	}
1852 
1853 	/* Add propagated mounts to the tmp_list */
1854 	if (how & UMOUNT_PROPAGATE)
1855 		propagate_umount(&tmp_list);
1856 
1857 	while (!list_empty(&tmp_list)) {
1858 		struct mnt_namespace *ns;
1859 		bool disconnect;
1860 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1861 		list_del_init(&p->mnt_expire);
1862 		list_del_init(&p->mnt_list);
1863 		ns = p->mnt_ns;
1864 		if (ns) {
1865 			ns->nr_mounts--;
1866 			__touch_mnt_namespace(ns);
1867 		}
1868 		p->mnt_ns = NULL;
1869 		if (how & UMOUNT_SYNC)
1870 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1871 
1872 		disconnect = disconnect_mount(p, how);
1873 		if (mnt_has_parent(p)) {
1874 			if (!disconnect) {
1875 				/* Don't forget about p */
1876 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1877 			} else {
1878 				umount_mnt(p);
1879 			}
1880 		}
1881 		change_mnt_propagation(p, MS_PRIVATE);
1882 		if (disconnect)
1883 			hlist_add_head(&p->mnt_umount, &unmounted);
1884 
1885 		/*
1886 		 * At this point p->mnt_ns is NULL, notification will be queued
1887 		 * only if
1888 		 *
1889 		 *  - p->prev_ns is non-NULL *and*
1890 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1891 		 *
1892 		 * This will preclude queuing the mount if this is a cleanup
1893 		 * after a failed copy_tree() or destruction of an anonymous
1894 		 * namespace, etc.
1895 		 */
1896 		mnt_notify_add(p);
1897 	}
1898 }
1899 
1900 static void shrink_submounts(struct mount *mnt);
1901 
1902 static int do_umount_root(struct super_block *sb)
1903 {
1904 	int ret = 0;
1905 
1906 	down_write(&sb->s_umount);
1907 	if (!sb_rdonly(sb)) {
1908 		struct fs_context *fc;
1909 
1910 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1911 						SB_RDONLY);
1912 		if (IS_ERR(fc)) {
1913 			ret = PTR_ERR(fc);
1914 		} else {
1915 			ret = parse_monolithic_mount_data(fc, NULL);
1916 			if (!ret)
1917 				ret = reconfigure_super(fc);
1918 			put_fs_context(fc);
1919 		}
1920 	}
1921 	up_write(&sb->s_umount);
1922 	return ret;
1923 }
1924 
1925 static int do_umount(struct mount *mnt, int flags)
1926 {
1927 	struct super_block *sb = mnt->mnt.mnt_sb;
1928 	int retval;
1929 
1930 	retval = security_sb_umount(&mnt->mnt, flags);
1931 	if (retval)
1932 		return retval;
1933 
1934 	/*
1935 	 * Allow userspace to request a mountpoint be expired rather than
1936 	 * unmounting unconditionally. Unmount only happens if:
1937 	 *  (1) the mark is already set (the mark is cleared by mntput())
1938 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1939 	 */
1940 	if (flags & MNT_EXPIRE) {
1941 		if (&mnt->mnt == current->fs->root.mnt ||
1942 		    flags & (MNT_FORCE | MNT_DETACH))
1943 			return -EINVAL;
1944 
1945 		/*
1946 		 * probably don't strictly need the lock here if we examined
1947 		 * all race cases, but it's a slowpath.
1948 		 */
1949 		lock_mount_hash();
1950 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1951 			unlock_mount_hash();
1952 			return -EBUSY;
1953 		}
1954 		unlock_mount_hash();
1955 
1956 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1957 			return -EAGAIN;
1958 	}
1959 
1960 	/*
1961 	 * If we may have to abort operations to get out of this
1962 	 * mount, and they will themselves hold resources we must
1963 	 * allow the fs to do things. In the Unix tradition of
1964 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1965 	 * might fail to complete on the first run through as other tasks
1966 	 * must return, and the like. Thats for the mount program to worry
1967 	 * about for the moment.
1968 	 */
1969 
1970 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1971 		sb->s_op->umount_begin(sb);
1972 	}
1973 
1974 	/*
1975 	 * No sense to grab the lock for this test, but test itself looks
1976 	 * somewhat bogus. Suggestions for better replacement?
1977 	 * Ho-hum... In principle, we might treat that as umount + switch
1978 	 * to rootfs. GC would eventually take care of the old vfsmount.
1979 	 * Actually it makes sense, especially if rootfs would contain a
1980 	 * /reboot - static binary that would close all descriptors and
1981 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1982 	 */
1983 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1984 		/*
1985 		 * Special case for "unmounting" root ...
1986 		 * we just try to remount it readonly.
1987 		 */
1988 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1989 			return -EPERM;
1990 		return do_umount_root(sb);
1991 	}
1992 
1993 	namespace_lock();
1994 	lock_mount_hash();
1995 
1996 	/* Repeat the earlier racy checks, now that we are holding the locks */
1997 	retval = -EINVAL;
1998 	if (!check_mnt(mnt))
1999 		goto out;
2000 
2001 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
2002 		goto out;
2003 
2004 	if (!mnt_has_parent(mnt)) /* not the absolute root */
2005 		goto out;
2006 
2007 	event++;
2008 	if (flags & MNT_DETACH) {
2009 		umount_tree(mnt, UMOUNT_PROPAGATE);
2010 		retval = 0;
2011 	} else {
2012 		smp_mb(); // paired with __legitimize_mnt()
2013 		shrink_submounts(mnt);
2014 		retval = -EBUSY;
2015 		if (!propagate_mount_busy(mnt, 2)) {
2016 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2017 			retval = 0;
2018 		}
2019 	}
2020 out:
2021 	unlock_mount_hash();
2022 	namespace_unlock();
2023 	return retval;
2024 }
2025 
2026 /*
2027  * __detach_mounts - lazily unmount all mounts on the specified dentry
2028  *
2029  * During unlink, rmdir, and d_drop it is possible to loose the path
2030  * to an existing mountpoint, and wind up leaking the mount.
2031  * detach_mounts allows lazily unmounting those mounts instead of
2032  * leaking them.
2033  *
2034  * The caller may hold dentry->d_inode->i_rwsem.
2035  */
2036 void __detach_mounts(struct dentry *dentry)
2037 {
2038 	struct pinned_mountpoint mp = {};
2039 	struct mount *mnt;
2040 
2041 	namespace_lock();
2042 	lock_mount_hash();
2043 	if (!lookup_mountpoint(dentry, &mp))
2044 		goto out_unlock;
2045 
2046 	event++;
2047 	while (mp.node.next) {
2048 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
2049 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2050 			umount_mnt(mnt);
2051 			hlist_add_head(&mnt->mnt_umount, &unmounted);
2052 		}
2053 		else umount_tree(mnt, UMOUNT_CONNECTED);
2054 	}
2055 	unpin_mountpoint(&mp);
2056 out_unlock:
2057 	unlock_mount_hash();
2058 	namespace_unlock();
2059 }
2060 
2061 /*
2062  * Is the caller allowed to modify his namespace?
2063  */
2064 bool may_mount(void)
2065 {
2066 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2067 }
2068 
2069 static void warn_mandlock(void)
2070 {
2071 	pr_warn_once("=======================================================\n"
2072 		     "WARNING: The mand mount option has been deprecated and\n"
2073 		     "         and is ignored by this kernel. Remove the mand\n"
2074 		     "         option from the mount to silence this warning.\n"
2075 		     "=======================================================\n");
2076 }
2077 
2078 static int can_umount(const struct path *path, int flags)
2079 {
2080 	struct mount *mnt = real_mount(path->mnt);
2081 	struct super_block *sb = path->dentry->d_sb;
2082 
2083 	if (!may_mount())
2084 		return -EPERM;
2085 	if (!path_mounted(path))
2086 		return -EINVAL;
2087 	if (!check_mnt(mnt))
2088 		return -EINVAL;
2089 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2090 		return -EINVAL;
2091 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2092 		return -EPERM;
2093 	return 0;
2094 }
2095 
2096 // caller is responsible for flags being sane
2097 int path_umount(struct path *path, int flags)
2098 {
2099 	struct mount *mnt = real_mount(path->mnt);
2100 	int ret;
2101 
2102 	ret = can_umount(path, flags);
2103 	if (!ret)
2104 		ret = do_umount(mnt, flags);
2105 
2106 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2107 	dput(path->dentry);
2108 	mntput_no_expire(mnt);
2109 	return ret;
2110 }
2111 
2112 static int ksys_umount(char __user *name, int flags)
2113 {
2114 	int lookup_flags = LOOKUP_MOUNTPOINT;
2115 	struct path path;
2116 	int ret;
2117 
2118 	// basic validity checks done first
2119 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2120 		return -EINVAL;
2121 
2122 	if (!(flags & UMOUNT_NOFOLLOW))
2123 		lookup_flags |= LOOKUP_FOLLOW;
2124 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2125 	if (ret)
2126 		return ret;
2127 	return path_umount(&path, flags);
2128 }
2129 
2130 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2131 {
2132 	return ksys_umount(name, flags);
2133 }
2134 
2135 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2136 
2137 /*
2138  *	The 2.0 compatible umount. No flags.
2139  */
2140 SYSCALL_DEFINE1(oldumount, char __user *, name)
2141 {
2142 	return ksys_umount(name, 0);
2143 }
2144 
2145 #endif
2146 
2147 static bool is_mnt_ns_file(struct dentry *dentry)
2148 {
2149 	struct ns_common *ns;
2150 
2151 	/* Is this a proxy for a mount namespace? */
2152 	if (dentry->d_op != &ns_dentry_operations)
2153 		return false;
2154 
2155 	ns = d_inode(dentry)->i_private;
2156 
2157 	return ns->ops == &mntns_operations;
2158 }
2159 
2160 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2161 {
2162 	return &mnt->ns;
2163 }
2164 
2165 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2166 {
2167 	guard(rcu)();
2168 
2169 	for (;;) {
2170 		struct list_head *list;
2171 
2172 		if (previous)
2173 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2174 		else
2175 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2176 		if (list_is_head(list, &mnt_ns_list))
2177 			return ERR_PTR(-ENOENT);
2178 
2179 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2180 
2181 		/*
2182 		 * The last passive reference count is put with RCU
2183 		 * delay so accessing the mount namespace is not just
2184 		 * safe but all relevant members are still valid.
2185 		 */
2186 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2187 			continue;
2188 
2189 		/*
2190 		 * We need an active reference count as we're persisting
2191 		 * the mount namespace and it might already be on its
2192 		 * deathbed.
2193 		 */
2194 		if (!refcount_inc_not_zero(&mntns->ns.count))
2195 			continue;
2196 
2197 		return mntns;
2198 	}
2199 }
2200 
2201 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2202 {
2203 	if (!is_mnt_ns_file(dentry))
2204 		return NULL;
2205 
2206 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2207 }
2208 
2209 static bool mnt_ns_loop(struct dentry *dentry)
2210 {
2211 	/* Could bind mounting the mount namespace inode cause a
2212 	 * mount namespace loop?
2213 	 */
2214 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2215 
2216 	if (!mnt_ns)
2217 		return false;
2218 
2219 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2220 }
2221 
2222 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2223 					int flag)
2224 {
2225 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2226 		*dst_parent, *dst_mnt;
2227 
2228 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2229 		return ERR_PTR(-EINVAL);
2230 
2231 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2232 		return ERR_PTR(-EINVAL);
2233 
2234 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2235 	if (IS_ERR(dst_mnt))
2236 		return dst_mnt;
2237 
2238 	src_parent = src_root;
2239 
2240 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2241 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2242 			continue;
2243 
2244 		for (src_mnt = src_root_child; src_mnt;
2245 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2246 			if (!(flag & CL_COPY_UNBINDABLE) &&
2247 			    IS_MNT_UNBINDABLE(src_mnt)) {
2248 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2249 					/* Both unbindable and locked. */
2250 					dst_mnt = ERR_PTR(-EPERM);
2251 					goto out;
2252 				} else {
2253 					src_mnt = skip_mnt_tree(src_mnt);
2254 					continue;
2255 				}
2256 			}
2257 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2258 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2259 				src_mnt = skip_mnt_tree(src_mnt);
2260 				continue;
2261 			}
2262 			while (src_parent != src_mnt->mnt_parent) {
2263 				src_parent = src_parent->mnt_parent;
2264 				dst_mnt = dst_mnt->mnt_parent;
2265 			}
2266 
2267 			src_parent = src_mnt;
2268 			dst_parent = dst_mnt;
2269 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2270 			if (IS_ERR(dst_mnt))
2271 				goto out;
2272 			lock_mount_hash();
2273 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2274 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2275 			if (unlikely(flag & CL_EXPIRE)) {
2276 				/* stick the duplicate mount on the same expiry
2277 				 * list as the original if that was on one */
2278 				if (!list_empty(&src_mnt->mnt_expire))
2279 					list_add(&dst_mnt->mnt_expire,
2280 						 &src_mnt->mnt_expire);
2281 			}
2282 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2283 			unlock_mount_hash();
2284 		}
2285 	}
2286 	return res;
2287 
2288 out:
2289 	if (res) {
2290 		lock_mount_hash();
2291 		umount_tree(res, UMOUNT_SYNC);
2292 		unlock_mount_hash();
2293 	}
2294 	return dst_mnt;
2295 }
2296 
2297 static inline bool extend_array(struct path **res, struct path **to_free,
2298 				unsigned n, unsigned *count, unsigned new_count)
2299 {
2300 	struct path *p;
2301 
2302 	if (likely(n < *count))
2303 		return true;
2304 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2305 	if (p && *count)
2306 		memcpy(p, *res, *count * sizeof(struct path));
2307 	*count = new_count;
2308 	kfree(*to_free);
2309 	*to_free = *res = p;
2310 	return p;
2311 }
2312 
2313 struct path *collect_paths(const struct path *path,
2314 			      struct path *prealloc, unsigned count)
2315 {
2316 	struct mount *root = real_mount(path->mnt);
2317 	struct mount *child;
2318 	struct path *res = prealloc, *to_free = NULL;
2319 	unsigned n = 0;
2320 
2321 	guard(rwsem_read)(&namespace_sem);
2322 
2323 	if (!check_mnt(root))
2324 		return ERR_PTR(-EINVAL);
2325 	if (!extend_array(&res, &to_free, 0, &count, 32))
2326 		return ERR_PTR(-ENOMEM);
2327 	res[n++] = *path;
2328 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2329 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2330 			continue;
2331 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2332 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2333 				return ERR_PTR(-ENOMEM);
2334 			res[n].mnt = &m->mnt;
2335 			res[n].dentry = m->mnt.mnt_root;
2336 			n++;
2337 		}
2338 	}
2339 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2340 		return ERR_PTR(-ENOMEM);
2341 	memset(res + n, 0, (count - n) * sizeof(struct path));
2342 	for (struct path *p = res; p->mnt; p++)
2343 		path_get(p);
2344 	return res;
2345 }
2346 
2347 void drop_collected_paths(struct path *paths, struct path *prealloc)
2348 {
2349 	for (struct path *p = paths; p->mnt; p++)
2350 		path_put(p);
2351 	if (paths != prealloc)
2352 		kfree(paths);
2353 }
2354 
2355 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2356 
2357 void dissolve_on_fput(struct vfsmount *mnt)
2358 {
2359 	struct mount *m = real_mount(mnt);
2360 
2361 	/*
2362 	 * m used to be the root of anon namespace; if it still is one,
2363 	 * we need to dissolve the mount tree and free that namespace.
2364 	 * Let's try to avoid taking namespace_sem if we can determine
2365 	 * that there's nothing to do without it - rcu_read_lock() is
2366 	 * enough to make anon_ns_root() memory-safe and once m has
2367 	 * left its namespace, it's no longer our concern, since it will
2368 	 * never become a root of anon ns again.
2369 	 */
2370 
2371 	scoped_guard(rcu) {
2372 		if (!anon_ns_root(m))
2373 			return;
2374 	}
2375 
2376 	scoped_guard(namespace_lock, &namespace_sem) {
2377 		if (!anon_ns_root(m))
2378 			return;
2379 
2380 		emptied_ns = m->mnt_ns;
2381 		lock_mount_hash();
2382 		umount_tree(m, UMOUNT_CONNECTED);
2383 		unlock_mount_hash();
2384 	}
2385 }
2386 
2387 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2388 {
2389 	struct mount *child;
2390 
2391 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2392 		if (!is_subdir(child->mnt_mountpoint, dentry))
2393 			continue;
2394 
2395 		if (child->mnt.mnt_flags & MNT_LOCKED)
2396 			return true;
2397 	}
2398 	return false;
2399 }
2400 
2401 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2402 {
2403 	bool res;
2404 
2405 	read_seqlock_excl(&mount_lock);
2406 	res = __has_locked_children(mnt, dentry);
2407 	read_sequnlock_excl(&mount_lock);
2408 	return res;
2409 }
2410 
2411 /*
2412  * Check that there aren't references to earlier/same mount namespaces in the
2413  * specified subtree.  Such references can act as pins for mount namespaces
2414  * that aren't checked by the mount-cycle checking code, thereby allowing
2415  * cycles to be made.
2416  */
2417 static bool check_for_nsfs_mounts(struct mount *subtree)
2418 {
2419 	struct mount *p;
2420 	bool ret = false;
2421 
2422 	lock_mount_hash();
2423 	for (p = subtree; p; p = next_mnt(p, subtree))
2424 		if (mnt_ns_loop(p->mnt.mnt_root))
2425 			goto out;
2426 
2427 	ret = true;
2428 out:
2429 	unlock_mount_hash();
2430 	return ret;
2431 }
2432 
2433 /**
2434  * clone_private_mount - create a private clone of a path
2435  * @path: path to clone
2436  *
2437  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2438  * will not be attached anywhere in the namespace and will be private (i.e.
2439  * changes to the originating mount won't be propagated into this).
2440  *
2441  * This assumes caller has called or done the equivalent of may_mount().
2442  *
2443  * Release with mntput().
2444  */
2445 struct vfsmount *clone_private_mount(const struct path *path)
2446 {
2447 	struct mount *old_mnt = real_mount(path->mnt);
2448 	struct mount *new_mnt;
2449 
2450 	guard(rwsem_read)(&namespace_sem);
2451 
2452 	if (IS_MNT_UNBINDABLE(old_mnt))
2453 		return ERR_PTR(-EINVAL);
2454 
2455 	/*
2456 	 * Make sure the source mount is acceptable.
2457 	 * Anything mounted in our mount namespace is allowed.
2458 	 * Otherwise, it must be the root of an anonymous mount
2459 	 * namespace, and we need to make sure no namespace
2460 	 * loops get created.
2461 	 */
2462 	if (!check_mnt(old_mnt)) {
2463 		if (!anon_ns_root(old_mnt))
2464 			return ERR_PTR(-EINVAL);
2465 
2466 		if (!check_for_nsfs_mounts(old_mnt))
2467 			return ERR_PTR(-EINVAL);
2468 	}
2469 
2470         if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2471 		return ERR_PTR(-EPERM);
2472 
2473 	if (__has_locked_children(old_mnt, path->dentry))
2474 		return ERR_PTR(-EINVAL);
2475 
2476 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2477 	if (IS_ERR(new_mnt))
2478 		return ERR_PTR(-EINVAL);
2479 
2480 	/* Longterm mount to be removed by kern_unmount*() */
2481 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2482 	return &new_mnt->mnt;
2483 }
2484 EXPORT_SYMBOL_GPL(clone_private_mount);
2485 
2486 static void lock_mnt_tree(struct mount *mnt)
2487 {
2488 	struct mount *p;
2489 
2490 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2491 		int flags = p->mnt.mnt_flags;
2492 		/* Don't allow unprivileged users to change mount flags */
2493 		flags |= MNT_LOCK_ATIME;
2494 
2495 		if (flags & MNT_READONLY)
2496 			flags |= MNT_LOCK_READONLY;
2497 
2498 		if (flags & MNT_NODEV)
2499 			flags |= MNT_LOCK_NODEV;
2500 
2501 		if (flags & MNT_NOSUID)
2502 			flags |= MNT_LOCK_NOSUID;
2503 
2504 		if (flags & MNT_NOEXEC)
2505 			flags |= MNT_LOCK_NOEXEC;
2506 		/* Don't allow unprivileged users to reveal what is under a mount */
2507 		if (list_empty(&p->mnt_expire) && p != mnt)
2508 			flags |= MNT_LOCKED;
2509 		p->mnt.mnt_flags = flags;
2510 	}
2511 }
2512 
2513 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2514 {
2515 	struct mount *p;
2516 
2517 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2518 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2519 			mnt_release_group_id(p);
2520 	}
2521 }
2522 
2523 static int invent_group_ids(struct mount *mnt, bool recurse)
2524 {
2525 	struct mount *p;
2526 
2527 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2528 		if (!p->mnt_group_id) {
2529 			int err = mnt_alloc_group_id(p);
2530 			if (err) {
2531 				cleanup_group_ids(mnt, p);
2532 				return err;
2533 			}
2534 		}
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2541 {
2542 	unsigned int max = READ_ONCE(sysctl_mount_max);
2543 	unsigned int mounts = 0;
2544 	struct mount *p;
2545 
2546 	if (ns->nr_mounts >= max)
2547 		return -ENOSPC;
2548 	max -= ns->nr_mounts;
2549 	if (ns->pending_mounts >= max)
2550 		return -ENOSPC;
2551 	max -= ns->pending_mounts;
2552 
2553 	for (p = mnt; p; p = next_mnt(p, mnt))
2554 		mounts++;
2555 
2556 	if (mounts > max)
2557 		return -ENOSPC;
2558 
2559 	ns->pending_mounts += mounts;
2560 	return 0;
2561 }
2562 
2563 enum mnt_tree_flags_t {
2564 	MNT_TREE_BENEATH = BIT(0),
2565 	MNT_TREE_PROPAGATION = BIT(1),
2566 };
2567 
2568 /**
2569  * attach_recursive_mnt - attach a source mount tree
2570  * @source_mnt: mount tree to be attached
2571  * @dest_mnt:   mount that @source_mnt will be mounted on
2572  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2573  *
2574  *  NOTE: in the table below explains the semantics when a source mount
2575  *  of a given type is attached to a destination mount of a given type.
2576  * ---------------------------------------------------------------------------
2577  * |         BIND MOUNT OPERATION                                            |
2578  * |**************************************************************************
2579  * | source-->| shared        |       private  |       slave    | unbindable |
2580  * | dest     |               |                |                |            |
2581  * |   |      |               |                |                |            |
2582  * |   v      |               |                |                |            |
2583  * |**************************************************************************
2584  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2585  * |          |               |                |                |            |
2586  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2587  * ***************************************************************************
2588  * A bind operation clones the source mount and mounts the clone on the
2589  * destination mount.
2590  *
2591  * (++)  the cloned mount is propagated to all the mounts in the propagation
2592  * 	 tree of the destination mount and the cloned mount is added to
2593  * 	 the peer group of the source mount.
2594  * (+)   the cloned mount is created under the destination mount and is marked
2595  *       as shared. The cloned mount is added to the peer group of the source
2596  *       mount.
2597  * (+++) the mount is propagated to all the mounts in the propagation tree
2598  *       of the destination mount and the cloned mount is made slave
2599  *       of the same master as that of the source mount. The cloned mount
2600  *       is marked as 'shared and slave'.
2601  * (*)   the cloned mount is made a slave of the same master as that of the
2602  * 	 source mount.
2603  *
2604  * ---------------------------------------------------------------------------
2605  * |         		MOVE MOUNT OPERATION                                 |
2606  * |**************************************************************************
2607  * | source-->| shared        |       private  |       slave    | unbindable |
2608  * | dest     |               |                |                |            |
2609  * |   |      |               |                |                |            |
2610  * |   v      |               |                |                |            |
2611  * |**************************************************************************
2612  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2613  * |          |               |                |                |            |
2614  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2615  * ***************************************************************************
2616  *
2617  * (+)  the mount is moved to the destination. And is then propagated to
2618  * 	all the mounts in the propagation tree of the destination mount.
2619  * (+*)  the mount is moved to the destination.
2620  * (+++)  the mount is moved to the destination and is then propagated to
2621  * 	all the mounts belonging to the destination mount's propagation tree.
2622  * 	the mount is marked as 'shared and slave'.
2623  * (*)	the mount continues to be a slave at the new location.
2624  *
2625  * if the source mount is a tree, the operations explained above is
2626  * applied to each mount in the tree.
2627  * Must be called without spinlocks held, since this function can sleep
2628  * in allocations.
2629  *
2630  * Context: The function expects namespace_lock() to be held.
2631  * Return: If @source_mnt was successfully attached 0 is returned.
2632  *         Otherwise a negative error code is returned.
2633  */
2634 static int attach_recursive_mnt(struct mount *source_mnt,
2635 				struct mount *dest_mnt,
2636 				struct mountpoint *dest_mp)
2637 {
2638 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2639 	HLIST_HEAD(tree_list);
2640 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2641 	struct pinned_mountpoint root = {};
2642 	struct mountpoint *shorter = NULL;
2643 	struct mount *child, *p;
2644 	struct mount *top;
2645 	struct hlist_node *n;
2646 	int err = 0;
2647 	bool moving = mnt_has_parent(source_mnt);
2648 
2649 	/*
2650 	 * Preallocate a mountpoint in case the new mounts need to be
2651 	 * mounted beneath mounts on the same mountpoint.
2652 	 */
2653 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2654 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2655 			shorter = top->mnt_mp;
2656 	}
2657 	err = get_mountpoint(top->mnt.mnt_root, &root);
2658 	if (err)
2659 		return err;
2660 
2661 	/* Is there space to add these mounts to the mount namespace? */
2662 	if (!moving) {
2663 		err = count_mounts(ns, source_mnt);
2664 		if (err)
2665 			goto out;
2666 	}
2667 
2668 	if (IS_MNT_SHARED(dest_mnt)) {
2669 		err = invent_group_ids(source_mnt, true);
2670 		if (err)
2671 			goto out;
2672 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2673 	}
2674 	lock_mount_hash();
2675 	if (err)
2676 		goto out_cleanup_ids;
2677 
2678 	if (IS_MNT_SHARED(dest_mnt)) {
2679 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2680 			set_mnt_shared(p);
2681 	}
2682 
2683 	if (moving) {
2684 		umount_mnt(source_mnt);
2685 		mnt_notify_add(source_mnt);
2686 		/* if the mount is moved, it should no longer be expired
2687 		 * automatically */
2688 		list_del_init(&source_mnt->mnt_expire);
2689 	} else {
2690 		if (source_mnt->mnt_ns) {
2691 			/* move from anon - the caller will destroy */
2692 			emptied_ns = source_mnt->mnt_ns;
2693 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2694 				move_from_ns(p);
2695 		}
2696 	}
2697 
2698 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2699 	/*
2700 	 * Now the original copy is in the same state as the secondaries -
2701 	 * its root attached to mountpoint, but not hashed and all mounts
2702 	 * in it are either in our namespace or in no namespace at all.
2703 	 * Add the original to the list of copies and deal with the
2704 	 * rest of work for all of them uniformly.
2705 	 */
2706 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2707 
2708 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2709 		struct mount *q;
2710 		hlist_del_init(&child->mnt_hash);
2711 		/* Notice when we are propagating across user namespaces */
2712 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2713 			lock_mnt_tree(child);
2714 		q = __lookup_mnt(&child->mnt_parent->mnt,
2715 				 child->mnt_mountpoint);
2716 		if (q) {
2717 			struct mountpoint *mp = root.mp;
2718 			struct mount *r = child;
2719 			while (unlikely(r->overmount))
2720 				r = r->overmount;
2721 			if (unlikely(shorter) && child != source_mnt)
2722 				mp = shorter;
2723 			mnt_change_mountpoint(r, mp, q);
2724 		}
2725 		commit_tree(child);
2726 	}
2727 	unpin_mountpoint(&root);
2728 	unlock_mount_hash();
2729 
2730 	return 0;
2731 
2732  out_cleanup_ids:
2733 	while (!hlist_empty(&tree_list)) {
2734 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2735 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2736 		umount_tree(child, UMOUNT_SYNC);
2737 	}
2738 	unlock_mount_hash();
2739 	cleanup_group_ids(source_mnt, NULL);
2740  out:
2741 	ns->pending_mounts = 0;
2742 
2743 	read_seqlock_excl(&mount_lock);
2744 	unpin_mountpoint(&root);
2745 	read_sequnlock_excl(&mount_lock);
2746 
2747 	return err;
2748 }
2749 
2750 /**
2751  * do_lock_mount - lock mount and mountpoint
2752  * @path:    target path
2753  * @beneath: whether the intention is to mount beneath @path
2754  *
2755  * Follow the mount stack on @path until the top mount @mnt is found. If
2756  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2757  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2758  * until nothing is stacked on top of it anymore.
2759  *
2760  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2761  * against concurrent removal of the new mountpoint from another mount
2762  * namespace.
2763  *
2764  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2765  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2766  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2767  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2768  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2769  * on top of it for @beneath.
2770  *
2771  * In addition, @beneath needs to make sure that @mnt hasn't been
2772  * unmounted or moved from its current mountpoint in between dropping
2773  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2774  * being unmounted would be detected later by e.g., calling
2775  * check_mnt(mnt) in the function it's called from. For the @beneath
2776  * case however, it's useful to detect it directly in do_lock_mount().
2777  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2778  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2779  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2780  *
2781  * Return: Either the target mountpoint on the top mount or the top
2782  *         mount's mountpoint.
2783  */
2784 static int do_lock_mount(struct path *path, struct pinned_mountpoint *pinned, bool beneath)
2785 {
2786 	struct vfsmount *mnt = path->mnt;
2787 	struct dentry *dentry;
2788 	struct path under = {};
2789 	int err = -ENOENT;
2790 
2791 	for (;;) {
2792 		struct mount *m = real_mount(mnt);
2793 
2794 		if (beneath) {
2795 			path_put(&under);
2796 			read_seqlock_excl(&mount_lock);
2797 			under.mnt = mntget(&m->mnt_parent->mnt);
2798 			under.dentry = dget(m->mnt_mountpoint);
2799 			read_sequnlock_excl(&mount_lock);
2800 			dentry = under.dentry;
2801 		} else {
2802 			dentry = path->dentry;
2803 		}
2804 
2805 		inode_lock(dentry->d_inode);
2806 		namespace_lock();
2807 
2808 		if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2809 			break;		// not to be mounted on
2810 
2811 		if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2812 				        &m->mnt_parent->mnt != under.mnt)) {
2813 			namespace_unlock();
2814 			inode_unlock(dentry->d_inode);
2815 			continue;	// got moved
2816 		}
2817 
2818 		mnt = lookup_mnt(path);
2819 		if (unlikely(mnt)) {
2820 			namespace_unlock();
2821 			inode_unlock(dentry->d_inode);
2822 			path_put(path);
2823 			path->mnt = mnt;
2824 			path->dentry = dget(mnt->mnt_root);
2825 			continue;	// got overmounted
2826 		}
2827 		err = get_mountpoint(dentry, pinned);
2828 		if (err)
2829 			break;
2830 		if (beneath) {
2831 			/*
2832 			 * @under duplicates the references that will stay
2833 			 * at least until namespace_unlock(), so the path_put()
2834 			 * below is safe (and OK to do under namespace_lock -
2835 			 * we are not dropping the final references here).
2836 			 */
2837 			path_put(&under);
2838 		}
2839 		return 0;
2840 	}
2841 	namespace_unlock();
2842 	inode_unlock(dentry->d_inode);
2843 	if (beneath)
2844 		path_put(&under);
2845 	return err;
2846 }
2847 
2848 static inline int lock_mount(struct path *path, struct pinned_mountpoint *m)
2849 {
2850 	return do_lock_mount(path, m, false);
2851 }
2852 
2853 static void unlock_mount(struct pinned_mountpoint *m)
2854 {
2855 	inode_unlock(m->mp->m_dentry->d_inode);
2856 	read_seqlock_excl(&mount_lock);
2857 	unpin_mountpoint(m);
2858 	read_sequnlock_excl(&mount_lock);
2859 	namespace_unlock();
2860 }
2861 
2862 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2863 {
2864 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2865 		return -EINVAL;
2866 
2867 	if (d_is_dir(mp->m_dentry) !=
2868 	      d_is_dir(mnt->mnt.mnt_root))
2869 		return -ENOTDIR;
2870 
2871 	return attach_recursive_mnt(mnt, p, mp);
2872 }
2873 
2874 /*
2875  * Sanity check the flags to change_mnt_propagation.
2876  */
2877 
2878 static int flags_to_propagation_type(int ms_flags)
2879 {
2880 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2881 
2882 	/* Fail if any non-propagation flags are set */
2883 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2884 		return 0;
2885 	/* Only one propagation flag should be set */
2886 	if (!is_power_of_2(type))
2887 		return 0;
2888 	return type;
2889 }
2890 
2891 /*
2892  * recursively change the type of the mountpoint.
2893  */
2894 static int do_change_type(struct path *path, int ms_flags)
2895 {
2896 	struct mount *m;
2897 	struct mount *mnt = real_mount(path->mnt);
2898 	int recurse = ms_flags & MS_REC;
2899 	int type;
2900 	int err = 0;
2901 
2902 	if (!path_mounted(path))
2903 		return -EINVAL;
2904 
2905 	type = flags_to_propagation_type(ms_flags);
2906 	if (!type)
2907 		return -EINVAL;
2908 
2909 	namespace_lock();
2910 	if (!check_mnt(mnt)) {
2911 		err = -EINVAL;
2912 		goto out_unlock;
2913 	}
2914 	if (type == MS_SHARED) {
2915 		err = invent_group_ids(mnt, recurse);
2916 		if (err)
2917 			goto out_unlock;
2918 	}
2919 
2920 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2921 		change_mnt_propagation(m, type);
2922 
2923  out_unlock:
2924 	namespace_unlock();
2925 	return err;
2926 }
2927 
2928 /* may_copy_tree() - check if a mount tree can be copied
2929  * @path: path to the mount tree to be copied
2930  *
2931  * This helper checks if the caller may copy the mount tree starting
2932  * from @path->mnt. The caller may copy the mount tree under the
2933  * following circumstances:
2934  *
2935  * (1) The caller is located in the mount namespace of the mount tree.
2936  *     This also implies that the mount does not belong to an anonymous
2937  *     mount namespace.
2938  * (2) The caller tries to copy an nfs mount referring to a mount
2939  *     namespace, i.e., the caller is trying to copy a mount namespace
2940  *     entry from nsfs.
2941  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2942  * (4) The caller is trying to copy a mount tree that belongs to an
2943  *     anonymous mount namespace.
2944  *
2945  *     For that to be safe, this helper enforces that the origin mount
2946  *     namespace the anonymous mount namespace was created from is the
2947  *     same as the caller's mount namespace by comparing the sequence
2948  *     numbers.
2949  *
2950  *     This is not strictly necessary. The current semantics of the new
2951  *     mount api enforce that the caller must be located in the same
2952  *     mount namespace as the mount tree it interacts with. Using the
2953  *     origin sequence number preserves these semantics even for
2954  *     anonymous mount namespaces. However, one could envision extending
2955  *     the api to directly operate across mount namespace if needed.
2956  *
2957  *     The ownership of a non-anonymous mount namespace such as the
2958  *     caller's cannot change.
2959  *     => We know that the caller's mount namespace is stable.
2960  *
2961  *     If the origin sequence number of the anonymous mount namespace is
2962  *     the same as the sequence number of the caller's mount namespace.
2963  *     => The owning namespaces are the same.
2964  *
2965  *     ==> The earlier capability check on the owning namespace of the
2966  *         caller's mount namespace ensures that the caller has the
2967  *         ability to copy the mount tree.
2968  *
2969  * Returns true if the mount tree can be copied, false otherwise.
2970  */
2971 static inline bool may_copy_tree(struct path *path)
2972 {
2973 	struct mount *mnt = real_mount(path->mnt);
2974 	const struct dentry_operations *d_op;
2975 
2976 	if (check_mnt(mnt))
2977 		return true;
2978 
2979 	d_op = path->dentry->d_op;
2980 	if (d_op == &ns_dentry_operations)
2981 		return true;
2982 
2983 	if (d_op == &pidfs_dentry_operations)
2984 		return true;
2985 
2986 	if (!is_mounted(path->mnt))
2987 		return false;
2988 
2989 	return check_anonymous_mnt(mnt);
2990 }
2991 
2992 
2993 static struct mount *__do_loopback(struct path *old_path, int recurse)
2994 {
2995 	struct mount *old = real_mount(old_path->mnt);
2996 
2997 	if (IS_MNT_UNBINDABLE(old))
2998 		return ERR_PTR(-EINVAL);
2999 
3000 	if (!may_copy_tree(old_path))
3001 		return ERR_PTR(-EINVAL);
3002 
3003 	if (!recurse && __has_locked_children(old, old_path->dentry))
3004 		return ERR_PTR(-EINVAL);
3005 
3006 	if (recurse)
3007 		return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
3008 	else
3009 		return clone_mnt(old, old_path->dentry, 0);
3010 }
3011 
3012 /*
3013  * do loopback mount.
3014  */
3015 static int do_loopback(struct path *path, const char *old_name,
3016 				int recurse)
3017 {
3018 	struct path old_path;
3019 	struct mount *mnt = NULL, *parent;
3020 	struct pinned_mountpoint mp = {};
3021 	int err;
3022 	if (!old_name || !*old_name)
3023 		return -EINVAL;
3024 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3025 	if (err)
3026 		return err;
3027 
3028 	err = -EINVAL;
3029 	if (mnt_ns_loop(old_path.dentry))
3030 		goto out;
3031 
3032 	err = lock_mount(path, &mp);
3033 	if (err)
3034 		goto out;
3035 
3036 	parent = real_mount(path->mnt);
3037 	if (!check_mnt(parent))
3038 		goto out2;
3039 
3040 	mnt = __do_loopback(&old_path, recurse);
3041 	if (IS_ERR(mnt)) {
3042 		err = PTR_ERR(mnt);
3043 		goto out2;
3044 	}
3045 
3046 	err = graft_tree(mnt, parent, mp.mp);
3047 	if (err) {
3048 		lock_mount_hash();
3049 		umount_tree(mnt, UMOUNT_SYNC);
3050 		unlock_mount_hash();
3051 	}
3052 out2:
3053 	unlock_mount(&mp);
3054 out:
3055 	path_put(&old_path);
3056 	return err;
3057 }
3058 
3059 static struct file *open_detached_copy(struct path *path, bool recursive)
3060 {
3061 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3062 	struct user_namespace *user_ns = mnt_ns->user_ns;
3063 	struct mount *mnt, *p;
3064 	struct file *file;
3065 
3066 	ns = alloc_mnt_ns(user_ns, true);
3067 	if (IS_ERR(ns))
3068 		return ERR_CAST(ns);
3069 
3070 	namespace_lock();
3071 
3072 	/*
3073 	 * Record the sequence number of the source mount namespace.
3074 	 * This needs to hold namespace_sem to ensure that the mount
3075 	 * doesn't get attached.
3076 	 */
3077 	if (is_mounted(path->mnt)) {
3078 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3079 		if (is_anon_ns(src_mnt_ns))
3080 			ns->seq_origin = src_mnt_ns->seq_origin;
3081 		else
3082 			ns->seq_origin = src_mnt_ns->seq;
3083 	}
3084 
3085 	mnt = __do_loopback(path, recursive);
3086 	if (IS_ERR(mnt)) {
3087 		namespace_unlock();
3088 		free_mnt_ns(ns);
3089 		return ERR_CAST(mnt);
3090 	}
3091 
3092 	lock_mount_hash();
3093 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3094 		mnt_add_to_ns(ns, p);
3095 		ns->nr_mounts++;
3096 	}
3097 	ns->root = mnt;
3098 	mntget(&mnt->mnt);
3099 	unlock_mount_hash();
3100 	namespace_unlock();
3101 
3102 	mntput(path->mnt);
3103 	path->mnt = &mnt->mnt;
3104 	file = dentry_open(path, O_PATH, current_cred());
3105 	if (IS_ERR(file))
3106 		dissolve_on_fput(path->mnt);
3107 	else
3108 		file->f_mode |= FMODE_NEED_UNMOUNT;
3109 	return file;
3110 }
3111 
3112 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3113 {
3114 	int ret;
3115 	struct path path __free(path_put) = {};
3116 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3117 	bool detached = flags & OPEN_TREE_CLONE;
3118 
3119 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3120 
3121 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3122 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3123 		      OPEN_TREE_CLOEXEC))
3124 		return ERR_PTR(-EINVAL);
3125 
3126 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3127 		return ERR_PTR(-EINVAL);
3128 
3129 	if (flags & AT_NO_AUTOMOUNT)
3130 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3131 	if (flags & AT_SYMLINK_NOFOLLOW)
3132 		lookup_flags &= ~LOOKUP_FOLLOW;
3133 	if (flags & AT_EMPTY_PATH)
3134 		lookup_flags |= LOOKUP_EMPTY;
3135 
3136 	if (detached && !may_mount())
3137 		return ERR_PTR(-EPERM);
3138 
3139 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3140 	if (unlikely(ret))
3141 		return ERR_PTR(ret);
3142 
3143 	if (detached)
3144 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3145 
3146 	return dentry_open(&path, O_PATH, current_cred());
3147 }
3148 
3149 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3150 {
3151 	int fd;
3152 	struct file *file __free(fput) = NULL;
3153 
3154 	file = vfs_open_tree(dfd, filename, flags);
3155 	if (IS_ERR(file))
3156 		return PTR_ERR(file);
3157 
3158 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3159 	if (fd < 0)
3160 		return fd;
3161 
3162 	fd_install(fd, no_free_ptr(file));
3163 	return fd;
3164 }
3165 
3166 /*
3167  * Don't allow locked mount flags to be cleared.
3168  *
3169  * No locks need to be held here while testing the various MNT_LOCK
3170  * flags because those flags can never be cleared once they are set.
3171  */
3172 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3173 {
3174 	unsigned int fl = mnt->mnt.mnt_flags;
3175 
3176 	if ((fl & MNT_LOCK_READONLY) &&
3177 	    !(mnt_flags & MNT_READONLY))
3178 		return false;
3179 
3180 	if ((fl & MNT_LOCK_NODEV) &&
3181 	    !(mnt_flags & MNT_NODEV))
3182 		return false;
3183 
3184 	if ((fl & MNT_LOCK_NOSUID) &&
3185 	    !(mnt_flags & MNT_NOSUID))
3186 		return false;
3187 
3188 	if ((fl & MNT_LOCK_NOEXEC) &&
3189 	    !(mnt_flags & MNT_NOEXEC))
3190 		return false;
3191 
3192 	if ((fl & MNT_LOCK_ATIME) &&
3193 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3194 		return false;
3195 
3196 	return true;
3197 }
3198 
3199 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3200 {
3201 	bool readonly_request = (mnt_flags & MNT_READONLY);
3202 
3203 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3204 		return 0;
3205 
3206 	if (readonly_request)
3207 		return mnt_make_readonly(mnt);
3208 
3209 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3210 	return 0;
3211 }
3212 
3213 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3214 {
3215 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3216 	mnt->mnt.mnt_flags = mnt_flags;
3217 	touch_mnt_namespace(mnt->mnt_ns);
3218 }
3219 
3220 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3221 {
3222 	struct super_block *sb = mnt->mnt_sb;
3223 
3224 	if (!__mnt_is_readonly(mnt) &&
3225 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3226 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3227 		char *buf, *mntpath;
3228 
3229 		buf = (char *)__get_free_page(GFP_KERNEL);
3230 		if (buf)
3231 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3232 		else
3233 			mntpath = ERR_PTR(-ENOMEM);
3234 		if (IS_ERR(mntpath))
3235 			mntpath = "(unknown)";
3236 
3237 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3238 			sb->s_type->name,
3239 			is_mounted(mnt) ? "remounted" : "mounted",
3240 			mntpath, &sb->s_time_max,
3241 			(unsigned long long)sb->s_time_max);
3242 
3243 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3244 		if (buf)
3245 			free_page((unsigned long)buf);
3246 	}
3247 }
3248 
3249 /*
3250  * Handle reconfiguration of the mountpoint only without alteration of the
3251  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3252  * to mount(2).
3253  */
3254 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3255 {
3256 	struct super_block *sb = path->mnt->mnt_sb;
3257 	struct mount *mnt = real_mount(path->mnt);
3258 	int ret;
3259 
3260 	if (!check_mnt(mnt))
3261 		return -EINVAL;
3262 
3263 	if (!path_mounted(path))
3264 		return -EINVAL;
3265 
3266 	if (!can_change_locked_flags(mnt, mnt_flags))
3267 		return -EPERM;
3268 
3269 	/*
3270 	 * We're only checking whether the superblock is read-only not
3271 	 * changing it, so only take down_read(&sb->s_umount).
3272 	 */
3273 	down_read(&sb->s_umount);
3274 	lock_mount_hash();
3275 	ret = change_mount_ro_state(mnt, mnt_flags);
3276 	if (ret == 0)
3277 		set_mount_attributes(mnt, mnt_flags);
3278 	unlock_mount_hash();
3279 	up_read(&sb->s_umount);
3280 
3281 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3282 
3283 	return ret;
3284 }
3285 
3286 /*
3287  * change filesystem flags. dir should be a physical root of filesystem.
3288  * If you've mounted a non-root directory somewhere and want to do remount
3289  * on it - tough luck.
3290  */
3291 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3292 		      int mnt_flags, void *data)
3293 {
3294 	int err;
3295 	struct super_block *sb = path->mnt->mnt_sb;
3296 	struct mount *mnt = real_mount(path->mnt);
3297 	struct fs_context *fc;
3298 
3299 	if (!check_mnt(mnt))
3300 		return -EINVAL;
3301 
3302 	if (!path_mounted(path))
3303 		return -EINVAL;
3304 
3305 	if (!can_change_locked_flags(mnt, mnt_flags))
3306 		return -EPERM;
3307 
3308 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3309 	if (IS_ERR(fc))
3310 		return PTR_ERR(fc);
3311 
3312 	/*
3313 	 * Indicate to the filesystem that the remount request is coming
3314 	 * from the legacy mount system call.
3315 	 */
3316 	fc->oldapi = true;
3317 
3318 	err = parse_monolithic_mount_data(fc, data);
3319 	if (!err) {
3320 		down_write(&sb->s_umount);
3321 		err = -EPERM;
3322 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3323 			err = reconfigure_super(fc);
3324 			if (!err) {
3325 				lock_mount_hash();
3326 				set_mount_attributes(mnt, mnt_flags);
3327 				unlock_mount_hash();
3328 			}
3329 		}
3330 		up_write(&sb->s_umount);
3331 	}
3332 
3333 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3334 
3335 	put_fs_context(fc);
3336 	return err;
3337 }
3338 
3339 static inline int tree_contains_unbindable(struct mount *mnt)
3340 {
3341 	struct mount *p;
3342 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3343 		if (IS_MNT_UNBINDABLE(p))
3344 			return 1;
3345 	}
3346 	return 0;
3347 }
3348 
3349 static int do_set_group(struct path *from_path, struct path *to_path)
3350 {
3351 	struct mount *from, *to;
3352 	int err;
3353 
3354 	from = real_mount(from_path->mnt);
3355 	to = real_mount(to_path->mnt);
3356 
3357 	namespace_lock();
3358 
3359 	err = -EINVAL;
3360 	/* To and From must be mounted */
3361 	if (!is_mounted(&from->mnt))
3362 		goto out;
3363 	if (!is_mounted(&to->mnt))
3364 		goto out;
3365 
3366 	err = -EPERM;
3367 	/* We should be allowed to modify mount namespaces of both mounts */
3368 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3369 		goto out;
3370 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3371 		goto out;
3372 
3373 	err = -EINVAL;
3374 	/* To and From paths should be mount roots */
3375 	if (!path_mounted(from_path))
3376 		goto out;
3377 	if (!path_mounted(to_path))
3378 		goto out;
3379 
3380 	/* Setting sharing groups is only allowed across same superblock */
3381 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3382 		goto out;
3383 
3384 	/* From mount root should be wider than To mount root */
3385 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3386 		goto out;
3387 
3388 	/* From mount should not have locked children in place of To's root */
3389 	if (__has_locked_children(from, to->mnt.mnt_root))
3390 		goto out;
3391 
3392 	/* Setting sharing groups is only allowed on private mounts */
3393 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3394 		goto out;
3395 
3396 	/* From should not be private */
3397 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3398 		goto out;
3399 
3400 	if (IS_MNT_SLAVE(from)) {
3401 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3402 		to->mnt_master = from->mnt_master;
3403 	}
3404 
3405 	if (IS_MNT_SHARED(from)) {
3406 		to->mnt_group_id = from->mnt_group_id;
3407 		list_add(&to->mnt_share, &from->mnt_share);
3408 		set_mnt_shared(to);
3409 	}
3410 
3411 	err = 0;
3412 out:
3413 	namespace_unlock();
3414 	return err;
3415 }
3416 
3417 /**
3418  * path_overmounted - check if path is overmounted
3419  * @path: path to check
3420  *
3421  * Check if path is overmounted, i.e., if there's a mount on top of
3422  * @path->mnt with @path->dentry as mountpoint.
3423  *
3424  * Context: namespace_sem must be held at least shared.
3425  * MUST NOT be called under lock_mount_hash() (there one should just
3426  * call __lookup_mnt() and check if it returns NULL).
3427  * Return: If path is overmounted true is returned, false if not.
3428  */
3429 static inline bool path_overmounted(const struct path *path)
3430 {
3431 	unsigned seq = read_seqbegin(&mount_lock);
3432 	bool no_child;
3433 
3434 	rcu_read_lock();
3435 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3436 	rcu_read_unlock();
3437 	if (need_seqretry(&mount_lock, seq)) {
3438 		read_seqlock_excl(&mount_lock);
3439 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3440 		read_sequnlock_excl(&mount_lock);
3441 	}
3442 	return unlikely(!no_child);
3443 }
3444 
3445 /*
3446  * Check if there is a possibly empty chain of descent from p1 to p2.
3447  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3448  */
3449 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3450 {
3451 	while (p2 != p1 && mnt_has_parent(p2))
3452 		p2 = p2->mnt_parent;
3453 	return p2 == p1;
3454 }
3455 
3456 /**
3457  * can_move_mount_beneath - check that we can mount beneath the top mount
3458  * @from: mount to mount beneath
3459  * @to:   mount under which to mount
3460  * @mp:   mountpoint of @to
3461  *
3462  * - Make sure that @to->dentry is actually the root of a mount under
3463  *   which we can mount another mount.
3464  * - Make sure that nothing can be mounted beneath the caller's current
3465  *   root or the rootfs of the namespace.
3466  * - Make sure that the caller can unmount the topmost mount ensuring
3467  *   that the caller could reveal the underlying mountpoint.
3468  * - Ensure that nothing has been mounted on top of @from before we
3469  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3470  * - Prevent mounting beneath a mount if the propagation relationship
3471  *   between the source mount, parent mount, and top mount would lead to
3472  *   nonsensical mount trees.
3473  *
3474  * Context: This function expects namespace_lock() to be held.
3475  * Return: On success 0, and on error a negative error code is returned.
3476  */
3477 static int can_move_mount_beneath(const struct path *from,
3478 				  const struct path *to,
3479 				  const struct mountpoint *mp)
3480 {
3481 	struct mount *mnt_from = real_mount(from->mnt),
3482 		     *mnt_to = real_mount(to->mnt),
3483 		     *parent_mnt_to = mnt_to->mnt_parent;
3484 
3485 	if (!mnt_has_parent(mnt_to))
3486 		return -EINVAL;
3487 
3488 	if (!path_mounted(to))
3489 		return -EINVAL;
3490 
3491 	if (IS_MNT_LOCKED(mnt_to))
3492 		return -EINVAL;
3493 
3494 	/* Avoid creating shadow mounts during mount propagation. */
3495 	if (path_overmounted(from))
3496 		return -EINVAL;
3497 
3498 	/*
3499 	 * Mounting beneath the rootfs only makes sense when the
3500 	 * semantics of pivot_root(".", ".") are used.
3501 	 */
3502 	if (&mnt_to->mnt == current->fs->root.mnt)
3503 		return -EINVAL;
3504 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3505 		return -EINVAL;
3506 
3507 	if (mount_is_ancestor(mnt_to, mnt_from))
3508 		return -EINVAL;
3509 
3510 	/*
3511 	 * If the parent mount propagates to the child mount this would
3512 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3513 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3514 	 * defeats the whole purpose of mounting beneath another mount.
3515 	 */
3516 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3517 		return -EINVAL;
3518 
3519 	/*
3520 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3521 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3522 	 * Afterwards @mnt_from would be mounted on top of
3523 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3524 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3525 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3526 	 * remounted on top of @c. Afterwards, @mnt_from would be
3527 	 * covered by a copy @c of @mnt_from and @c would be covered by
3528 	 * @mnt_from itself. This defeats the whole purpose of mounting
3529 	 * @mnt_from beneath @mnt_to.
3530 	 */
3531 	if (check_mnt(mnt_from) &&
3532 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3533 		return -EINVAL;
3534 
3535 	return 0;
3536 }
3537 
3538 /* may_use_mount() - check if a mount tree can be used
3539  * @mnt: vfsmount to be used
3540  *
3541  * This helper checks if the caller may use the mount tree starting
3542  * from @path->mnt. The caller may use the mount tree under the
3543  * following circumstances:
3544  *
3545  * (1) The caller is located in the mount namespace of the mount tree.
3546  *     This also implies that the mount does not belong to an anonymous
3547  *     mount namespace.
3548  * (2) The caller is trying to use a mount tree that belongs to an
3549  *     anonymous mount namespace.
3550  *
3551  *     For that to be safe, this helper enforces that the origin mount
3552  *     namespace the anonymous mount namespace was created from is the
3553  *     same as the caller's mount namespace by comparing the sequence
3554  *     numbers.
3555  *
3556  *     The ownership of a non-anonymous mount namespace such as the
3557  *     caller's cannot change.
3558  *     => We know that the caller's mount namespace is stable.
3559  *
3560  *     If the origin sequence number of the anonymous mount namespace is
3561  *     the same as the sequence number of the caller's mount namespace.
3562  *     => The owning namespaces are the same.
3563  *
3564  *     ==> The earlier capability check on the owning namespace of the
3565  *         caller's mount namespace ensures that the caller has the
3566  *         ability to use the mount tree.
3567  *
3568  * Returns true if the mount tree can be used, false otherwise.
3569  */
3570 static inline bool may_use_mount(struct mount *mnt)
3571 {
3572 	if (check_mnt(mnt))
3573 		return true;
3574 
3575 	/*
3576 	 * Make sure that noone unmounted the target path or somehow
3577 	 * managed to get their hands on something purely kernel
3578 	 * internal.
3579 	 */
3580 	if (!is_mounted(&mnt->mnt))
3581 		return false;
3582 
3583 	return check_anonymous_mnt(mnt);
3584 }
3585 
3586 static int do_move_mount(struct path *old_path,
3587 			 struct path *new_path, enum mnt_tree_flags_t flags)
3588 {
3589 	struct mnt_namespace *ns;
3590 	struct mount *p;
3591 	struct mount *old;
3592 	struct mount *parent;
3593 	struct pinned_mountpoint mp;
3594 	int err;
3595 	bool beneath = flags & MNT_TREE_BENEATH;
3596 
3597 	err = do_lock_mount(new_path, &mp, beneath);
3598 	if (err)
3599 		return err;
3600 
3601 	old = real_mount(old_path->mnt);
3602 	p = real_mount(new_path->mnt);
3603 	parent = old->mnt_parent;
3604 	ns = old->mnt_ns;
3605 
3606 	err = -EINVAL;
3607 
3608 	if (check_mnt(old)) {
3609 		/* if the source is in our namespace... */
3610 		/* ... it should be detachable from parent */
3611 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3612 			goto out;
3613 		/* ... and the target should be in our namespace */
3614 		if (!check_mnt(p))
3615 			goto out;
3616 		/* parent of the source should not be shared */
3617 		if (IS_MNT_SHARED(parent))
3618 			goto out;
3619 	} else {
3620 		/*
3621 		 * otherwise the source must be the root of some anon namespace.
3622 		 */
3623 		if (!anon_ns_root(old))
3624 			goto out;
3625 		/*
3626 		 * Bail out early if the target is within the same namespace -
3627 		 * subsequent checks would've rejected that, but they lose
3628 		 * some corner cases if we check it early.
3629 		 */
3630 		if (ns == p->mnt_ns)
3631 			goto out;
3632 		/*
3633 		 * Target should be either in our namespace or in an acceptable
3634 		 * anon namespace, sensu check_anonymous_mnt().
3635 		 */
3636 		if (!may_use_mount(p))
3637 			goto out;
3638 	}
3639 
3640 	if (!path_mounted(old_path))
3641 		goto out;
3642 
3643 	if (d_is_dir(new_path->dentry) !=
3644 	    d_is_dir(old_path->dentry))
3645 		goto out;
3646 
3647 	if (beneath) {
3648 		err = can_move_mount_beneath(old_path, new_path, mp.mp);
3649 		if (err)
3650 			goto out;
3651 
3652 		err = -EINVAL;
3653 		p = p->mnt_parent;
3654 	}
3655 
3656 	/*
3657 	 * Don't move a mount tree containing unbindable mounts to a destination
3658 	 * mount which is shared.
3659 	 */
3660 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3661 		goto out;
3662 	err = -ELOOP;
3663 	if (!check_for_nsfs_mounts(old))
3664 		goto out;
3665 	if (mount_is_ancestor(old, p))
3666 		goto out;
3667 
3668 	err = attach_recursive_mnt(old, p, mp.mp);
3669 out:
3670 	unlock_mount(&mp);
3671 	return err;
3672 }
3673 
3674 static int do_move_mount_old(struct path *path, const char *old_name)
3675 {
3676 	struct path old_path;
3677 	int err;
3678 
3679 	if (!old_name || !*old_name)
3680 		return -EINVAL;
3681 
3682 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3683 	if (err)
3684 		return err;
3685 
3686 	err = do_move_mount(&old_path, path, 0);
3687 	path_put(&old_path);
3688 	return err;
3689 }
3690 
3691 /*
3692  * add a mount into a namespace's mount tree
3693  */
3694 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3695 			const struct path *path, int mnt_flags)
3696 {
3697 	struct mount *parent = real_mount(path->mnt);
3698 
3699 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3700 
3701 	if (unlikely(!check_mnt(parent))) {
3702 		/* that's acceptable only for automounts done in private ns */
3703 		if (!(mnt_flags & MNT_SHRINKABLE))
3704 			return -EINVAL;
3705 		/* ... and for those we'd better have mountpoint still alive */
3706 		if (!parent->mnt_ns)
3707 			return -EINVAL;
3708 	}
3709 
3710 	/* Refuse the same filesystem on the same mount point */
3711 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3712 		return -EBUSY;
3713 
3714 	if (d_is_symlink(newmnt->mnt.mnt_root))
3715 		return -EINVAL;
3716 
3717 	newmnt->mnt.mnt_flags = mnt_flags;
3718 	return graft_tree(newmnt, parent, mp);
3719 }
3720 
3721 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3722 
3723 /*
3724  * Create a new mount using a superblock configuration and request it
3725  * be added to the namespace tree.
3726  */
3727 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3728 			   unsigned int mnt_flags)
3729 {
3730 	struct vfsmount *mnt;
3731 	struct pinned_mountpoint mp = {};
3732 	struct super_block *sb = fc->root->d_sb;
3733 	int error;
3734 
3735 	error = security_sb_kern_mount(sb);
3736 	if (!error && mount_too_revealing(sb, &mnt_flags))
3737 		error = -EPERM;
3738 
3739 	if (unlikely(error)) {
3740 		fc_drop_locked(fc);
3741 		return error;
3742 	}
3743 
3744 	up_write(&sb->s_umount);
3745 
3746 	mnt = vfs_create_mount(fc);
3747 	if (IS_ERR(mnt))
3748 		return PTR_ERR(mnt);
3749 
3750 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3751 
3752 	error = lock_mount(mountpoint, &mp);
3753 	if (!error) {
3754 		error = do_add_mount(real_mount(mnt), mp.mp,
3755 				     mountpoint, mnt_flags);
3756 		unlock_mount(&mp);
3757 	}
3758 	if (error < 0)
3759 		mntput(mnt);
3760 	return error;
3761 }
3762 
3763 /*
3764  * create a new mount for userspace and request it to be added into the
3765  * namespace's tree
3766  */
3767 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3768 			int mnt_flags, const char *name, void *data)
3769 {
3770 	struct file_system_type *type;
3771 	struct fs_context *fc;
3772 	const char *subtype = NULL;
3773 	int err = 0;
3774 
3775 	if (!fstype)
3776 		return -EINVAL;
3777 
3778 	type = get_fs_type(fstype);
3779 	if (!type)
3780 		return -ENODEV;
3781 
3782 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3783 		subtype = strchr(fstype, '.');
3784 		if (subtype) {
3785 			subtype++;
3786 			if (!*subtype) {
3787 				put_filesystem(type);
3788 				return -EINVAL;
3789 			}
3790 		}
3791 	}
3792 
3793 	fc = fs_context_for_mount(type, sb_flags);
3794 	put_filesystem(type);
3795 	if (IS_ERR(fc))
3796 		return PTR_ERR(fc);
3797 
3798 	/*
3799 	 * Indicate to the filesystem that the mount request is coming
3800 	 * from the legacy mount system call.
3801 	 */
3802 	fc->oldapi = true;
3803 
3804 	if (subtype)
3805 		err = vfs_parse_fs_string(fc, "subtype",
3806 					  subtype, strlen(subtype));
3807 	if (!err && name)
3808 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3809 	if (!err)
3810 		err = parse_monolithic_mount_data(fc, data);
3811 	if (!err && !mount_capable(fc))
3812 		err = -EPERM;
3813 	if (!err)
3814 		err = vfs_get_tree(fc);
3815 	if (!err)
3816 		err = do_new_mount_fc(fc, path, mnt_flags);
3817 
3818 	put_fs_context(fc);
3819 	return err;
3820 }
3821 
3822 int finish_automount(struct vfsmount *m, const struct path *path)
3823 {
3824 	struct dentry *dentry = path->dentry;
3825 	struct pinned_mountpoint mp = {};
3826 	struct mount *mnt;
3827 	int err;
3828 
3829 	if (!m)
3830 		return 0;
3831 	if (IS_ERR(m))
3832 		return PTR_ERR(m);
3833 
3834 	mnt = real_mount(m);
3835 
3836 	if (m->mnt_sb == path->mnt->mnt_sb &&
3837 	    m->mnt_root == dentry) {
3838 		err = -ELOOP;
3839 		goto discard;
3840 	}
3841 
3842 	/*
3843 	 * we don't want to use lock_mount() - in this case finding something
3844 	 * that overmounts our mountpoint to be means "quitely drop what we've
3845 	 * got", not "try to mount it on top".
3846 	 */
3847 	inode_lock(dentry->d_inode);
3848 	namespace_lock();
3849 	if (unlikely(cant_mount(dentry))) {
3850 		err = -ENOENT;
3851 		goto discard_locked;
3852 	}
3853 	if (path_overmounted(path)) {
3854 		err = 0;
3855 		goto discard_locked;
3856 	}
3857 	err = get_mountpoint(dentry, &mp);
3858 	if (err)
3859 		goto discard_locked;
3860 
3861 	err = do_add_mount(mnt, mp.mp, path,
3862 			   path->mnt->mnt_flags | MNT_SHRINKABLE);
3863 	unlock_mount(&mp);
3864 	if (unlikely(err))
3865 		goto discard;
3866 	return 0;
3867 
3868 discard_locked:
3869 	namespace_unlock();
3870 	inode_unlock(dentry->d_inode);
3871 discard:
3872 	mntput(m);
3873 	return err;
3874 }
3875 
3876 /**
3877  * mnt_set_expiry - Put a mount on an expiration list
3878  * @mnt: The mount to list.
3879  * @expiry_list: The list to add the mount to.
3880  */
3881 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3882 {
3883 	read_seqlock_excl(&mount_lock);
3884 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3885 	read_sequnlock_excl(&mount_lock);
3886 }
3887 EXPORT_SYMBOL(mnt_set_expiry);
3888 
3889 /*
3890  * process a list of expirable mountpoints with the intent of discarding any
3891  * mountpoints that aren't in use and haven't been touched since last we came
3892  * here
3893  */
3894 void mark_mounts_for_expiry(struct list_head *mounts)
3895 {
3896 	struct mount *mnt, *next;
3897 	LIST_HEAD(graveyard);
3898 
3899 	if (list_empty(mounts))
3900 		return;
3901 
3902 	namespace_lock();
3903 	lock_mount_hash();
3904 
3905 	/* extract from the expiration list every vfsmount that matches the
3906 	 * following criteria:
3907 	 * - already mounted
3908 	 * - only referenced by its parent vfsmount
3909 	 * - still marked for expiry (marked on the last call here; marks are
3910 	 *   cleared by mntput())
3911 	 */
3912 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3913 		if (!is_mounted(&mnt->mnt))
3914 			continue;
3915 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3916 			propagate_mount_busy(mnt, 1))
3917 			continue;
3918 		list_move(&mnt->mnt_expire, &graveyard);
3919 	}
3920 	while (!list_empty(&graveyard)) {
3921 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3922 		touch_mnt_namespace(mnt->mnt_ns);
3923 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3924 	}
3925 	unlock_mount_hash();
3926 	namespace_unlock();
3927 }
3928 
3929 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3930 
3931 /*
3932  * Ripoff of 'select_parent()'
3933  *
3934  * search the list of submounts for a given mountpoint, and move any
3935  * shrinkable submounts to the 'graveyard' list.
3936  */
3937 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3938 {
3939 	struct mount *this_parent = parent;
3940 	struct list_head *next;
3941 	int found = 0;
3942 
3943 repeat:
3944 	next = this_parent->mnt_mounts.next;
3945 resume:
3946 	while (next != &this_parent->mnt_mounts) {
3947 		struct list_head *tmp = next;
3948 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3949 
3950 		next = tmp->next;
3951 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3952 			continue;
3953 		/*
3954 		 * Descend a level if the d_mounts list is non-empty.
3955 		 */
3956 		if (!list_empty(&mnt->mnt_mounts)) {
3957 			this_parent = mnt;
3958 			goto repeat;
3959 		}
3960 
3961 		if (!propagate_mount_busy(mnt, 1)) {
3962 			list_move_tail(&mnt->mnt_expire, graveyard);
3963 			found++;
3964 		}
3965 	}
3966 	/*
3967 	 * All done at this level ... ascend and resume the search
3968 	 */
3969 	if (this_parent != parent) {
3970 		next = this_parent->mnt_child.next;
3971 		this_parent = this_parent->mnt_parent;
3972 		goto resume;
3973 	}
3974 	return found;
3975 }
3976 
3977 /*
3978  * process a list of expirable mountpoints with the intent of discarding any
3979  * submounts of a specific parent mountpoint
3980  *
3981  * mount_lock must be held for write
3982  */
3983 static void shrink_submounts(struct mount *mnt)
3984 {
3985 	LIST_HEAD(graveyard);
3986 	struct mount *m;
3987 
3988 	/* extract submounts of 'mountpoint' from the expiration list */
3989 	while (select_submounts(mnt, &graveyard)) {
3990 		while (!list_empty(&graveyard)) {
3991 			m = list_first_entry(&graveyard, struct mount,
3992 						mnt_expire);
3993 			touch_mnt_namespace(m->mnt_ns);
3994 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3995 		}
3996 	}
3997 }
3998 
3999 static void *copy_mount_options(const void __user * data)
4000 {
4001 	char *copy;
4002 	unsigned left, offset;
4003 
4004 	if (!data)
4005 		return NULL;
4006 
4007 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4008 	if (!copy)
4009 		return ERR_PTR(-ENOMEM);
4010 
4011 	left = copy_from_user(copy, data, PAGE_SIZE);
4012 
4013 	/*
4014 	 * Not all architectures have an exact copy_from_user(). Resort to
4015 	 * byte at a time.
4016 	 */
4017 	offset = PAGE_SIZE - left;
4018 	while (left) {
4019 		char c;
4020 		if (get_user(c, (const char __user *)data + offset))
4021 			break;
4022 		copy[offset] = c;
4023 		left--;
4024 		offset++;
4025 	}
4026 
4027 	if (left == PAGE_SIZE) {
4028 		kfree(copy);
4029 		return ERR_PTR(-EFAULT);
4030 	}
4031 
4032 	return copy;
4033 }
4034 
4035 static char *copy_mount_string(const void __user *data)
4036 {
4037 	return data ? strndup_user(data, PATH_MAX) : NULL;
4038 }
4039 
4040 /*
4041  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4042  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4043  *
4044  * data is a (void *) that can point to any structure up to
4045  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4046  * information (or be NULL).
4047  *
4048  * Pre-0.97 versions of mount() didn't have a flags word.
4049  * When the flags word was introduced its top half was required
4050  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4051  * Therefore, if this magic number is present, it carries no information
4052  * and must be discarded.
4053  */
4054 int path_mount(const char *dev_name, struct path *path,
4055 		const char *type_page, unsigned long flags, void *data_page)
4056 {
4057 	unsigned int mnt_flags = 0, sb_flags;
4058 	int ret;
4059 
4060 	/* Discard magic */
4061 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4062 		flags &= ~MS_MGC_MSK;
4063 
4064 	/* Basic sanity checks */
4065 	if (data_page)
4066 		((char *)data_page)[PAGE_SIZE - 1] = 0;
4067 
4068 	if (flags & MS_NOUSER)
4069 		return -EINVAL;
4070 
4071 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4072 	if (ret)
4073 		return ret;
4074 	if (!may_mount())
4075 		return -EPERM;
4076 	if (flags & SB_MANDLOCK)
4077 		warn_mandlock();
4078 
4079 	/* Default to relatime unless overriden */
4080 	if (!(flags & MS_NOATIME))
4081 		mnt_flags |= MNT_RELATIME;
4082 
4083 	/* Separate the per-mountpoint flags */
4084 	if (flags & MS_NOSUID)
4085 		mnt_flags |= MNT_NOSUID;
4086 	if (flags & MS_NODEV)
4087 		mnt_flags |= MNT_NODEV;
4088 	if (flags & MS_NOEXEC)
4089 		mnt_flags |= MNT_NOEXEC;
4090 	if (flags & MS_NOATIME)
4091 		mnt_flags |= MNT_NOATIME;
4092 	if (flags & MS_NODIRATIME)
4093 		mnt_flags |= MNT_NODIRATIME;
4094 	if (flags & MS_STRICTATIME)
4095 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4096 	if (flags & MS_RDONLY)
4097 		mnt_flags |= MNT_READONLY;
4098 	if (flags & MS_NOSYMFOLLOW)
4099 		mnt_flags |= MNT_NOSYMFOLLOW;
4100 
4101 	/* The default atime for remount is preservation */
4102 	if ((flags & MS_REMOUNT) &&
4103 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4104 		       MS_STRICTATIME)) == 0)) {
4105 		mnt_flags &= ~MNT_ATIME_MASK;
4106 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4107 	}
4108 
4109 	sb_flags = flags & (SB_RDONLY |
4110 			    SB_SYNCHRONOUS |
4111 			    SB_MANDLOCK |
4112 			    SB_DIRSYNC |
4113 			    SB_SILENT |
4114 			    SB_POSIXACL |
4115 			    SB_LAZYTIME |
4116 			    SB_I_VERSION);
4117 
4118 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4119 		return do_reconfigure_mnt(path, mnt_flags);
4120 	if (flags & MS_REMOUNT)
4121 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4122 	if (flags & MS_BIND)
4123 		return do_loopback(path, dev_name, flags & MS_REC);
4124 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4125 		return do_change_type(path, flags);
4126 	if (flags & MS_MOVE)
4127 		return do_move_mount_old(path, dev_name);
4128 
4129 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4130 			    data_page);
4131 }
4132 
4133 int do_mount(const char *dev_name, const char __user *dir_name,
4134 		const char *type_page, unsigned long flags, void *data_page)
4135 {
4136 	struct path path;
4137 	int ret;
4138 
4139 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4140 	if (ret)
4141 		return ret;
4142 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
4143 	path_put(&path);
4144 	return ret;
4145 }
4146 
4147 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4148 {
4149 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4150 }
4151 
4152 static void dec_mnt_namespaces(struct ucounts *ucounts)
4153 {
4154 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4155 }
4156 
4157 static void free_mnt_ns(struct mnt_namespace *ns)
4158 {
4159 	if (!is_anon_ns(ns))
4160 		ns_free_inum(&ns->ns);
4161 	dec_mnt_namespaces(ns->ucounts);
4162 	mnt_ns_tree_remove(ns);
4163 }
4164 
4165 /*
4166  * Assign a sequence number so we can detect when we attempt to bind
4167  * mount a reference to an older mount namespace into the current
4168  * mount namespace, preventing reference counting loops.  A 64bit
4169  * number incrementing at 10Ghz will take 12,427 years to wrap which
4170  * is effectively never, so we can ignore the possibility.
4171  */
4172 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4173 
4174 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4175 {
4176 	struct mnt_namespace *new_ns;
4177 	struct ucounts *ucounts;
4178 	int ret;
4179 
4180 	ucounts = inc_mnt_namespaces(user_ns);
4181 	if (!ucounts)
4182 		return ERR_PTR(-ENOSPC);
4183 
4184 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4185 	if (!new_ns) {
4186 		dec_mnt_namespaces(ucounts);
4187 		return ERR_PTR(-ENOMEM);
4188 	}
4189 	if (!anon) {
4190 		ret = ns_alloc_inum(&new_ns->ns);
4191 		if (ret) {
4192 			kfree(new_ns);
4193 			dec_mnt_namespaces(ucounts);
4194 			return ERR_PTR(ret);
4195 		}
4196 	}
4197 	new_ns->ns.ops = &mntns_operations;
4198 	if (!anon)
4199 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4200 	refcount_set(&new_ns->ns.count, 1);
4201 	refcount_set(&new_ns->passive, 1);
4202 	new_ns->mounts = RB_ROOT;
4203 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4204 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4205 	init_waitqueue_head(&new_ns->poll);
4206 	new_ns->user_ns = get_user_ns(user_ns);
4207 	new_ns->ucounts = ucounts;
4208 	return new_ns;
4209 }
4210 
4211 __latent_entropy
4212 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4213 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4214 {
4215 	struct mnt_namespace *new_ns;
4216 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4217 	struct mount *p, *q;
4218 	struct mount *old;
4219 	struct mount *new;
4220 	int copy_flags;
4221 
4222 	BUG_ON(!ns);
4223 
4224 	if (likely(!(flags & CLONE_NEWNS))) {
4225 		get_mnt_ns(ns);
4226 		return ns;
4227 	}
4228 
4229 	old = ns->root;
4230 
4231 	new_ns = alloc_mnt_ns(user_ns, false);
4232 	if (IS_ERR(new_ns))
4233 		return new_ns;
4234 
4235 	namespace_lock();
4236 	/* First pass: copy the tree topology */
4237 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4238 	if (user_ns != ns->user_ns)
4239 		copy_flags |= CL_SLAVE;
4240 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4241 	if (IS_ERR(new)) {
4242 		namespace_unlock();
4243 		ns_free_inum(&new_ns->ns);
4244 		dec_mnt_namespaces(new_ns->ucounts);
4245 		mnt_ns_release(new_ns);
4246 		return ERR_CAST(new);
4247 	}
4248 	if (user_ns != ns->user_ns) {
4249 		lock_mount_hash();
4250 		lock_mnt_tree(new);
4251 		unlock_mount_hash();
4252 	}
4253 	new_ns->root = new;
4254 
4255 	/*
4256 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4257 	 * as belonging to new namespace.  We have already acquired a private
4258 	 * fs_struct, so tsk->fs->lock is not needed.
4259 	 */
4260 	p = old;
4261 	q = new;
4262 	while (p) {
4263 		mnt_add_to_ns(new_ns, q);
4264 		new_ns->nr_mounts++;
4265 		if (new_fs) {
4266 			if (&p->mnt == new_fs->root.mnt) {
4267 				new_fs->root.mnt = mntget(&q->mnt);
4268 				rootmnt = &p->mnt;
4269 			}
4270 			if (&p->mnt == new_fs->pwd.mnt) {
4271 				new_fs->pwd.mnt = mntget(&q->mnt);
4272 				pwdmnt = &p->mnt;
4273 			}
4274 		}
4275 		p = next_mnt(p, old);
4276 		q = next_mnt(q, new);
4277 		if (!q)
4278 			break;
4279 		// an mntns binding we'd skipped?
4280 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4281 			p = next_mnt(skip_mnt_tree(p), old);
4282 	}
4283 	namespace_unlock();
4284 
4285 	if (rootmnt)
4286 		mntput(rootmnt);
4287 	if (pwdmnt)
4288 		mntput(pwdmnt);
4289 
4290 	mnt_ns_tree_add(new_ns);
4291 	return new_ns;
4292 }
4293 
4294 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4295 {
4296 	struct mount *mnt = real_mount(m);
4297 	struct mnt_namespace *ns;
4298 	struct super_block *s;
4299 	struct path path;
4300 	int err;
4301 
4302 	ns = alloc_mnt_ns(&init_user_ns, true);
4303 	if (IS_ERR(ns)) {
4304 		mntput(m);
4305 		return ERR_CAST(ns);
4306 	}
4307 	ns->root = mnt;
4308 	ns->nr_mounts++;
4309 	mnt_add_to_ns(ns, mnt);
4310 
4311 	err = vfs_path_lookup(m->mnt_root, m,
4312 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4313 
4314 	put_mnt_ns(ns);
4315 
4316 	if (err)
4317 		return ERR_PTR(err);
4318 
4319 	/* trade a vfsmount reference for active sb one */
4320 	s = path.mnt->mnt_sb;
4321 	atomic_inc(&s->s_active);
4322 	mntput(path.mnt);
4323 	/* lock the sucker */
4324 	down_write(&s->s_umount);
4325 	/* ... and return the root of (sub)tree on it */
4326 	return path.dentry;
4327 }
4328 EXPORT_SYMBOL(mount_subtree);
4329 
4330 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4331 		char __user *, type, unsigned long, flags, void __user *, data)
4332 {
4333 	int ret;
4334 	char *kernel_type;
4335 	char *kernel_dev;
4336 	void *options;
4337 
4338 	kernel_type = copy_mount_string(type);
4339 	ret = PTR_ERR(kernel_type);
4340 	if (IS_ERR(kernel_type))
4341 		goto out_type;
4342 
4343 	kernel_dev = copy_mount_string(dev_name);
4344 	ret = PTR_ERR(kernel_dev);
4345 	if (IS_ERR(kernel_dev))
4346 		goto out_dev;
4347 
4348 	options = copy_mount_options(data);
4349 	ret = PTR_ERR(options);
4350 	if (IS_ERR(options))
4351 		goto out_data;
4352 
4353 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4354 
4355 	kfree(options);
4356 out_data:
4357 	kfree(kernel_dev);
4358 out_dev:
4359 	kfree(kernel_type);
4360 out_type:
4361 	return ret;
4362 }
4363 
4364 #define FSMOUNT_VALID_FLAGS                                                    \
4365 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4366 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4367 	 MOUNT_ATTR_NOSYMFOLLOW)
4368 
4369 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4370 
4371 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4372 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4373 
4374 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4375 {
4376 	unsigned int mnt_flags = 0;
4377 
4378 	if (attr_flags & MOUNT_ATTR_RDONLY)
4379 		mnt_flags |= MNT_READONLY;
4380 	if (attr_flags & MOUNT_ATTR_NOSUID)
4381 		mnt_flags |= MNT_NOSUID;
4382 	if (attr_flags & MOUNT_ATTR_NODEV)
4383 		mnt_flags |= MNT_NODEV;
4384 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4385 		mnt_flags |= MNT_NOEXEC;
4386 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4387 		mnt_flags |= MNT_NODIRATIME;
4388 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4389 		mnt_flags |= MNT_NOSYMFOLLOW;
4390 
4391 	return mnt_flags;
4392 }
4393 
4394 /*
4395  * Create a kernel mount representation for a new, prepared superblock
4396  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4397  */
4398 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4399 		unsigned int, attr_flags)
4400 {
4401 	struct mnt_namespace *ns;
4402 	struct fs_context *fc;
4403 	struct file *file;
4404 	struct path newmount;
4405 	struct mount *mnt;
4406 	unsigned int mnt_flags = 0;
4407 	long ret;
4408 
4409 	if (!may_mount())
4410 		return -EPERM;
4411 
4412 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4413 		return -EINVAL;
4414 
4415 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4416 		return -EINVAL;
4417 
4418 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4419 
4420 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4421 	case MOUNT_ATTR_STRICTATIME:
4422 		break;
4423 	case MOUNT_ATTR_NOATIME:
4424 		mnt_flags |= MNT_NOATIME;
4425 		break;
4426 	case MOUNT_ATTR_RELATIME:
4427 		mnt_flags |= MNT_RELATIME;
4428 		break;
4429 	default:
4430 		return -EINVAL;
4431 	}
4432 
4433 	CLASS(fd, f)(fs_fd);
4434 	if (fd_empty(f))
4435 		return -EBADF;
4436 
4437 	if (fd_file(f)->f_op != &fscontext_fops)
4438 		return -EINVAL;
4439 
4440 	fc = fd_file(f)->private_data;
4441 
4442 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4443 	if (ret < 0)
4444 		return ret;
4445 
4446 	/* There must be a valid superblock or we can't mount it */
4447 	ret = -EINVAL;
4448 	if (!fc->root)
4449 		goto err_unlock;
4450 
4451 	ret = -EPERM;
4452 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4453 		pr_warn("VFS: Mount too revealing\n");
4454 		goto err_unlock;
4455 	}
4456 
4457 	ret = -EBUSY;
4458 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4459 		goto err_unlock;
4460 
4461 	if (fc->sb_flags & SB_MANDLOCK)
4462 		warn_mandlock();
4463 
4464 	newmount.mnt = vfs_create_mount(fc);
4465 	if (IS_ERR(newmount.mnt)) {
4466 		ret = PTR_ERR(newmount.mnt);
4467 		goto err_unlock;
4468 	}
4469 	newmount.dentry = dget(fc->root);
4470 	newmount.mnt->mnt_flags = mnt_flags;
4471 
4472 	/* We've done the mount bit - now move the file context into more or
4473 	 * less the same state as if we'd done an fspick().  We don't want to
4474 	 * do any memory allocation or anything like that at this point as we
4475 	 * don't want to have to handle any errors incurred.
4476 	 */
4477 	vfs_clean_context(fc);
4478 
4479 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4480 	if (IS_ERR(ns)) {
4481 		ret = PTR_ERR(ns);
4482 		goto err_path;
4483 	}
4484 	mnt = real_mount(newmount.mnt);
4485 	ns->root = mnt;
4486 	ns->nr_mounts = 1;
4487 	mnt_add_to_ns(ns, mnt);
4488 	mntget(newmount.mnt);
4489 
4490 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4491 	 * it, not just simply put it.
4492 	 */
4493 	file = dentry_open(&newmount, O_PATH, fc->cred);
4494 	if (IS_ERR(file)) {
4495 		dissolve_on_fput(newmount.mnt);
4496 		ret = PTR_ERR(file);
4497 		goto err_path;
4498 	}
4499 	file->f_mode |= FMODE_NEED_UNMOUNT;
4500 
4501 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4502 	if (ret >= 0)
4503 		fd_install(ret, file);
4504 	else
4505 		fput(file);
4506 
4507 err_path:
4508 	path_put(&newmount);
4509 err_unlock:
4510 	mutex_unlock(&fc->uapi_mutex);
4511 	return ret;
4512 }
4513 
4514 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4515 				 enum mnt_tree_flags_t mflags)
4516 {
4517 	int ret;
4518 
4519 	ret = security_move_mount(from_path, to_path);
4520 	if (ret)
4521 		return ret;
4522 
4523 	if (mflags & MNT_TREE_PROPAGATION)
4524 		return do_set_group(from_path, to_path);
4525 
4526 	return do_move_mount(from_path, to_path, mflags);
4527 }
4528 
4529 /*
4530  * Move a mount from one place to another.  In combination with
4531  * fsopen()/fsmount() this is used to install a new mount and in combination
4532  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4533  * a mount subtree.
4534  *
4535  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4536  */
4537 SYSCALL_DEFINE5(move_mount,
4538 		int, from_dfd, const char __user *, from_pathname,
4539 		int, to_dfd, const char __user *, to_pathname,
4540 		unsigned int, flags)
4541 {
4542 	struct path to_path __free(path_put) = {};
4543 	struct path from_path __free(path_put) = {};
4544 	struct filename *to_name __free(putname) = NULL;
4545 	struct filename *from_name __free(putname) = NULL;
4546 	unsigned int lflags, uflags;
4547 	enum mnt_tree_flags_t mflags = 0;
4548 	int ret = 0;
4549 
4550 	if (!may_mount())
4551 		return -EPERM;
4552 
4553 	if (flags & ~MOVE_MOUNT__MASK)
4554 		return -EINVAL;
4555 
4556 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4557 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4558 		return -EINVAL;
4559 
4560 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4561 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4562 
4563 	lflags = 0;
4564 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4565 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4566 	uflags = 0;
4567 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	uflags = AT_EMPTY_PATH;
4568 	from_name = getname_maybe_null(from_pathname, uflags);
4569 	if (IS_ERR(from_name))
4570 		return PTR_ERR(from_name);
4571 
4572 	lflags = 0;
4573 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4574 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4575 	uflags = 0;
4576 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	uflags = AT_EMPTY_PATH;
4577 	to_name = getname_maybe_null(to_pathname, uflags);
4578 	if (IS_ERR(to_name))
4579 		return PTR_ERR(to_name);
4580 
4581 	if (!to_name && to_dfd >= 0) {
4582 		CLASS(fd_raw, f_to)(to_dfd);
4583 		if (fd_empty(f_to))
4584 			return -EBADF;
4585 
4586 		to_path = fd_file(f_to)->f_path;
4587 		path_get(&to_path);
4588 	} else {
4589 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4590 		if (ret)
4591 			return ret;
4592 	}
4593 
4594 	if (!from_name && from_dfd >= 0) {
4595 		CLASS(fd_raw, f_from)(from_dfd);
4596 		if (fd_empty(f_from))
4597 			return -EBADF;
4598 
4599 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4600 	}
4601 
4602 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4603 	if (ret)
4604 		return ret;
4605 
4606 	return vfs_move_mount(&from_path, &to_path, mflags);
4607 }
4608 
4609 /*
4610  * Return true if path is reachable from root
4611  *
4612  * namespace_sem or mount_lock is held
4613  */
4614 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4615 			 const struct path *root)
4616 {
4617 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4618 		dentry = mnt->mnt_mountpoint;
4619 		mnt = mnt->mnt_parent;
4620 	}
4621 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4622 }
4623 
4624 bool path_is_under(const struct path *path1, const struct path *path2)
4625 {
4626 	bool res;
4627 	read_seqlock_excl(&mount_lock);
4628 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4629 	read_sequnlock_excl(&mount_lock);
4630 	return res;
4631 }
4632 EXPORT_SYMBOL(path_is_under);
4633 
4634 /*
4635  * pivot_root Semantics:
4636  * Moves the root file system of the current process to the directory put_old,
4637  * makes new_root as the new root file system of the current process, and sets
4638  * root/cwd of all processes which had them on the current root to new_root.
4639  *
4640  * Restrictions:
4641  * The new_root and put_old must be directories, and  must not be on the
4642  * same file  system as the current process root. The put_old  must  be
4643  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4644  * pointed to by put_old must yield the same directory as new_root. No other
4645  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4646  *
4647  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4648  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4649  * in this situation.
4650  *
4651  * Notes:
4652  *  - we don't move root/cwd if they are not at the root (reason: if something
4653  *    cared enough to change them, it's probably wrong to force them elsewhere)
4654  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4655  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4656  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4657  *    first.
4658  */
4659 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4660 		const char __user *, put_old)
4661 {
4662 	struct path new, old, root;
4663 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4664 	struct pinned_mountpoint old_mp = {};
4665 	int error;
4666 
4667 	if (!may_mount())
4668 		return -EPERM;
4669 
4670 	error = user_path_at(AT_FDCWD, new_root,
4671 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4672 	if (error)
4673 		goto out0;
4674 
4675 	error = user_path_at(AT_FDCWD, put_old,
4676 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4677 	if (error)
4678 		goto out1;
4679 
4680 	error = security_sb_pivotroot(&old, &new);
4681 	if (error)
4682 		goto out2;
4683 
4684 	get_fs_root(current->fs, &root);
4685 	error = lock_mount(&old, &old_mp);
4686 	if (error)
4687 		goto out3;
4688 
4689 	error = -EINVAL;
4690 	new_mnt = real_mount(new.mnt);
4691 	root_mnt = real_mount(root.mnt);
4692 	old_mnt = real_mount(old.mnt);
4693 	ex_parent = new_mnt->mnt_parent;
4694 	root_parent = root_mnt->mnt_parent;
4695 	if (IS_MNT_SHARED(old_mnt) ||
4696 		IS_MNT_SHARED(ex_parent) ||
4697 		IS_MNT_SHARED(root_parent))
4698 		goto out4;
4699 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4700 		goto out4;
4701 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4702 		goto out4;
4703 	error = -ENOENT;
4704 	if (d_unlinked(new.dentry))
4705 		goto out4;
4706 	error = -EBUSY;
4707 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4708 		goto out4; /* loop, on the same file system  */
4709 	error = -EINVAL;
4710 	if (!path_mounted(&root))
4711 		goto out4; /* not a mountpoint */
4712 	if (!mnt_has_parent(root_mnt))
4713 		goto out4; /* absolute root */
4714 	if (!path_mounted(&new))
4715 		goto out4; /* not a mountpoint */
4716 	if (!mnt_has_parent(new_mnt))
4717 		goto out4; /* absolute root */
4718 	/* make sure we can reach put_old from new_root */
4719 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4720 		goto out4;
4721 	/* make certain new is below the root */
4722 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4723 		goto out4;
4724 	lock_mount_hash();
4725 	umount_mnt(new_mnt);
4726 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4727 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4728 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4729 	}
4730 	/* mount new_root on / */
4731 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4732 	umount_mnt(root_mnt);
4733 	/* mount old root on put_old */
4734 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4735 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4736 	/* A moved mount should not expire automatically */
4737 	list_del_init(&new_mnt->mnt_expire);
4738 	unlock_mount_hash();
4739 	mnt_notify_add(root_mnt);
4740 	mnt_notify_add(new_mnt);
4741 	chroot_fs_refs(&root, &new);
4742 	error = 0;
4743 out4:
4744 	unlock_mount(&old_mp);
4745 out3:
4746 	path_put(&root);
4747 out2:
4748 	path_put(&old);
4749 out1:
4750 	path_put(&new);
4751 out0:
4752 	return error;
4753 }
4754 
4755 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4756 {
4757 	unsigned int flags = mnt->mnt.mnt_flags;
4758 
4759 	/*  flags to clear */
4760 	flags &= ~kattr->attr_clr;
4761 	/* flags to raise */
4762 	flags |= kattr->attr_set;
4763 
4764 	return flags;
4765 }
4766 
4767 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4768 {
4769 	struct vfsmount *m = &mnt->mnt;
4770 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4771 
4772 	if (!kattr->mnt_idmap)
4773 		return 0;
4774 
4775 	/*
4776 	 * Creating an idmapped mount with the filesystem wide idmapping
4777 	 * doesn't make sense so block that. We don't allow mushy semantics.
4778 	 */
4779 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4780 		return -EINVAL;
4781 
4782 	/*
4783 	 * We only allow an mount to change it's idmapping if it has
4784 	 * never been accessible to userspace.
4785 	 */
4786 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4787 		return -EPERM;
4788 
4789 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4790 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4791 		return -EINVAL;
4792 
4793 	/* The filesystem has turned off idmapped mounts. */
4794 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4795 		return -EINVAL;
4796 
4797 	/* We're not controlling the superblock. */
4798 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4799 		return -EPERM;
4800 
4801 	/* Mount has already been visible in the filesystem hierarchy. */
4802 	if (!is_anon_ns(mnt->mnt_ns))
4803 		return -EINVAL;
4804 
4805 	return 0;
4806 }
4807 
4808 /**
4809  * mnt_allow_writers() - check whether the attribute change allows writers
4810  * @kattr: the new mount attributes
4811  * @mnt: the mount to which @kattr will be applied
4812  *
4813  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4814  *
4815  * Return: true if writers need to be held, false if not
4816  */
4817 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4818 				     const struct mount *mnt)
4819 {
4820 	return (!(kattr->attr_set & MNT_READONLY) ||
4821 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4822 	       !kattr->mnt_idmap;
4823 }
4824 
4825 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4826 {
4827 	struct mount *m;
4828 	int err;
4829 
4830 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4831 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4832 			err = -EPERM;
4833 			break;
4834 		}
4835 
4836 		err = can_idmap_mount(kattr, m);
4837 		if (err)
4838 			break;
4839 
4840 		if (!mnt_allow_writers(kattr, m)) {
4841 			err = mnt_hold_writers(m);
4842 			if (err)
4843 				break;
4844 		}
4845 
4846 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4847 			return 0;
4848 	}
4849 
4850 	if (err) {
4851 		struct mount *p;
4852 
4853 		/*
4854 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4855 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4856 		 * mounts and needs to take care to include the first mount.
4857 		 */
4858 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4859 			/* If we had to hold writers unblock them. */
4860 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4861 				mnt_unhold_writers(p);
4862 
4863 			/*
4864 			 * We're done once the first mount we changed got
4865 			 * MNT_WRITE_HOLD unset.
4866 			 */
4867 			if (p == m)
4868 				break;
4869 		}
4870 	}
4871 	return err;
4872 }
4873 
4874 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4875 {
4876 	struct mnt_idmap *old_idmap;
4877 
4878 	if (!kattr->mnt_idmap)
4879 		return;
4880 
4881 	old_idmap = mnt_idmap(&mnt->mnt);
4882 
4883 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4884 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4885 	mnt_idmap_put(old_idmap);
4886 }
4887 
4888 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4889 {
4890 	struct mount *m;
4891 
4892 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4893 		unsigned int flags;
4894 
4895 		do_idmap_mount(kattr, m);
4896 		flags = recalc_flags(kattr, m);
4897 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4898 
4899 		/* If we had to hold writers unblock them. */
4900 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4901 			mnt_unhold_writers(m);
4902 
4903 		if (kattr->propagation)
4904 			change_mnt_propagation(m, kattr->propagation);
4905 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4906 			break;
4907 	}
4908 	touch_mnt_namespace(mnt->mnt_ns);
4909 }
4910 
4911 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4912 {
4913 	struct mount *mnt = real_mount(path->mnt);
4914 	int err = 0;
4915 
4916 	if (!path_mounted(path))
4917 		return -EINVAL;
4918 
4919 	if (kattr->mnt_userns) {
4920 		struct mnt_idmap *mnt_idmap;
4921 
4922 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4923 		if (IS_ERR(mnt_idmap))
4924 			return PTR_ERR(mnt_idmap);
4925 		kattr->mnt_idmap = mnt_idmap;
4926 	}
4927 
4928 	if (kattr->propagation) {
4929 		/*
4930 		 * Only take namespace_lock() if we're actually changing
4931 		 * propagation.
4932 		 */
4933 		namespace_lock();
4934 		if (kattr->propagation == MS_SHARED) {
4935 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4936 			if (err) {
4937 				namespace_unlock();
4938 				return err;
4939 			}
4940 		}
4941 	}
4942 
4943 	err = -EINVAL;
4944 	lock_mount_hash();
4945 
4946 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4947 		goto out;
4948 
4949 	/*
4950 	 * First, we get the mount tree in a shape where we can change mount
4951 	 * properties without failure. If we succeeded to do so we commit all
4952 	 * changes and if we failed we clean up.
4953 	 */
4954 	err = mount_setattr_prepare(kattr, mnt);
4955 	if (!err)
4956 		mount_setattr_commit(kattr, mnt);
4957 
4958 out:
4959 	unlock_mount_hash();
4960 
4961 	if (kattr->propagation) {
4962 		if (err)
4963 			cleanup_group_ids(mnt, NULL);
4964 		namespace_unlock();
4965 	}
4966 
4967 	return err;
4968 }
4969 
4970 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4971 				struct mount_kattr *kattr)
4972 {
4973 	struct ns_common *ns;
4974 	struct user_namespace *mnt_userns;
4975 
4976 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4977 		return 0;
4978 
4979 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4980 		/*
4981 		 * We can only remove an idmapping if it's never been
4982 		 * exposed to userspace.
4983 		 */
4984 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4985 			return -EINVAL;
4986 
4987 		/*
4988 		 * Removal of idmappings is equivalent to setting
4989 		 * nop_mnt_idmap.
4990 		 */
4991 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4992 			kattr->mnt_idmap = &nop_mnt_idmap;
4993 			return 0;
4994 		}
4995 	}
4996 
4997 	if (attr->userns_fd > INT_MAX)
4998 		return -EINVAL;
4999 
5000 	CLASS(fd, f)(attr->userns_fd);
5001 	if (fd_empty(f))
5002 		return -EBADF;
5003 
5004 	if (!proc_ns_file(fd_file(f)))
5005 		return -EINVAL;
5006 
5007 	ns = get_proc_ns(file_inode(fd_file(f)));
5008 	if (ns->ops->type != CLONE_NEWUSER)
5009 		return -EINVAL;
5010 
5011 	/*
5012 	 * The initial idmapping cannot be used to create an idmapped
5013 	 * mount. We use the initial idmapping as an indicator of a mount
5014 	 * that is not idmapped. It can simply be passed into helpers that
5015 	 * are aware of idmapped mounts as a convenient shortcut. A user
5016 	 * can just create a dedicated identity mapping to achieve the same
5017 	 * result.
5018 	 */
5019 	mnt_userns = container_of(ns, struct user_namespace, ns);
5020 	if (mnt_userns == &init_user_ns)
5021 		return -EPERM;
5022 
5023 	/* We're not controlling the target namespace. */
5024 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5025 		return -EPERM;
5026 
5027 	kattr->mnt_userns = get_user_ns(mnt_userns);
5028 	return 0;
5029 }
5030 
5031 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5032 			     struct mount_kattr *kattr)
5033 {
5034 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5035 		return -EINVAL;
5036 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5037 		return -EINVAL;
5038 	kattr->propagation = attr->propagation;
5039 
5040 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5041 		return -EINVAL;
5042 
5043 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5044 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5045 
5046 	/*
5047 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5048 	 * users wanting to transition to a different atime setting cannot
5049 	 * simply specify the atime setting in @attr_set, but must also
5050 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5051 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5052 	 * @attr_clr and that @attr_set can't have any atime bits set if
5053 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5054 	 */
5055 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5056 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5057 			return -EINVAL;
5058 
5059 		/*
5060 		 * Clear all previous time settings as they are mutually
5061 		 * exclusive.
5062 		 */
5063 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5064 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5065 		case MOUNT_ATTR_RELATIME:
5066 			kattr->attr_set |= MNT_RELATIME;
5067 			break;
5068 		case MOUNT_ATTR_NOATIME:
5069 			kattr->attr_set |= MNT_NOATIME;
5070 			break;
5071 		case MOUNT_ATTR_STRICTATIME:
5072 			break;
5073 		default:
5074 			return -EINVAL;
5075 		}
5076 	} else {
5077 		if (attr->attr_set & MOUNT_ATTR__ATIME)
5078 			return -EINVAL;
5079 	}
5080 
5081 	return build_mount_idmapped(attr, usize, kattr);
5082 }
5083 
5084 static void finish_mount_kattr(struct mount_kattr *kattr)
5085 {
5086 	if (kattr->mnt_userns) {
5087 		put_user_ns(kattr->mnt_userns);
5088 		kattr->mnt_userns = NULL;
5089 	}
5090 
5091 	if (kattr->mnt_idmap)
5092 		mnt_idmap_put(kattr->mnt_idmap);
5093 }
5094 
5095 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5096 			       struct mount_kattr *kattr)
5097 {
5098 	int ret;
5099 	struct mount_attr attr;
5100 
5101 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5102 
5103 	if (unlikely(usize > PAGE_SIZE))
5104 		return -E2BIG;
5105 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5106 		return -EINVAL;
5107 
5108 	if (!may_mount())
5109 		return -EPERM;
5110 
5111 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5112 	if (ret)
5113 		return ret;
5114 
5115 	/* Don't bother walking through the mounts if this is a nop. */
5116 	if (attr.attr_set == 0 &&
5117 	    attr.attr_clr == 0 &&
5118 	    attr.propagation == 0)
5119 		return 0; /* Tell caller to not bother. */
5120 
5121 	ret = build_mount_kattr(&attr, usize, kattr);
5122 	if (ret < 0)
5123 		return ret;
5124 
5125 	return 1;
5126 }
5127 
5128 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5129 		unsigned int, flags, struct mount_attr __user *, uattr,
5130 		size_t, usize)
5131 {
5132 	int err;
5133 	struct path target;
5134 	struct mount_kattr kattr;
5135 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5136 
5137 	if (flags & ~(AT_EMPTY_PATH |
5138 		      AT_RECURSIVE |
5139 		      AT_SYMLINK_NOFOLLOW |
5140 		      AT_NO_AUTOMOUNT))
5141 		return -EINVAL;
5142 
5143 	if (flags & AT_NO_AUTOMOUNT)
5144 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5145 	if (flags & AT_SYMLINK_NOFOLLOW)
5146 		lookup_flags &= ~LOOKUP_FOLLOW;
5147 	if (flags & AT_EMPTY_PATH)
5148 		lookup_flags |= LOOKUP_EMPTY;
5149 
5150 	kattr = (struct mount_kattr) {
5151 		.lookup_flags	= lookup_flags,
5152 	};
5153 
5154 	if (flags & AT_RECURSIVE)
5155 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5156 
5157 	err = wants_mount_setattr(uattr, usize, &kattr);
5158 	if (err <= 0)
5159 		return err;
5160 
5161 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5162 	if (!err) {
5163 		err = do_mount_setattr(&target, &kattr);
5164 		path_put(&target);
5165 	}
5166 	finish_mount_kattr(&kattr);
5167 	return err;
5168 }
5169 
5170 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5171 		unsigned, flags, struct mount_attr __user *, uattr,
5172 		size_t, usize)
5173 {
5174 	struct file __free(fput) *file = NULL;
5175 	int fd;
5176 
5177 	if (!uattr && usize)
5178 		return -EINVAL;
5179 
5180 	file = vfs_open_tree(dfd, filename, flags);
5181 	if (IS_ERR(file))
5182 		return PTR_ERR(file);
5183 
5184 	if (uattr) {
5185 		int ret;
5186 		struct mount_kattr kattr = {};
5187 
5188 		kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5189 		if (flags & AT_RECURSIVE)
5190 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5191 
5192 		ret = wants_mount_setattr(uattr, usize, &kattr);
5193 		if (ret > 0) {
5194 			ret = do_mount_setattr(&file->f_path, &kattr);
5195 			finish_mount_kattr(&kattr);
5196 		}
5197 		if (ret)
5198 			return ret;
5199 	}
5200 
5201 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
5202 	if (fd < 0)
5203 		return fd;
5204 
5205 	fd_install(fd, no_free_ptr(file));
5206 	return fd;
5207 }
5208 
5209 int show_path(struct seq_file *m, struct dentry *root)
5210 {
5211 	if (root->d_sb->s_op->show_path)
5212 		return root->d_sb->s_op->show_path(m, root);
5213 
5214 	seq_dentry(m, root, " \t\n\\");
5215 	return 0;
5216 }
5217 
5218 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5219 {
5220 	struct mount *mnt = mnt_find_id_at(ns, id);
5221 
5222 	if (!mnt || mnt->mnt_id_unique != id)
5223 		return NULL;
5224 
5225 	return &mnt->mnt;
5226 }
5227 
5228 struct kstatmount {
5229 	struct statmount __user *buf;
5230 	size_t bufsize;
5231 	struct vfsmount *mnt;
5232 	struct mnt_idmap *idmap;
5233 	u64 mask;
5234 	struct path root;
5235 	struct seq_file seq;
5236 
5237 	/* Must be last --ends in a flexible-array member. */
5238 	struct statmount sm;
5239 };
5240 
5241 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5242 {
5243 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5244 	u64 attr_flags = 0;
5245 
5246 	if (mnt_flags & MNT_READONLY)
5247 		attr_flags |= MOUNT_ATTR_RDONLY;
5248 	if (mnt_flags & MNT_NOSUID)
5249 		attr_flags |= MOUNT_ATTR_NOSUID;
5250 	if (mnt_flags & MNT_NODEV)
5251 		attr_flags |= MOUNT_ATTR_NODEV;
5252 	if (mnt_flags & MNT_NOEXEC)
5253 		attr_flags |= MOUNT_ATTR_NOEXEC;
5254 	if (mnt_flags & MNT_NODIRATIME)
5255 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5256 	if (mnt_flags & MNT_NOSYMFOLLOW)
5257 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5258 
5259 	if (mnt_flags & MNT_NOATIME)
5260 		attr_flags |= MOUNT_ATTR_NOATIME;
5261 	else if (mnt_flags & MNT_RELATIME)
5262 		attr_flags |= MOUNT_ATTR_RELATIME;
5263 	else
5264 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5265 
5266 	if (is_idmapped_mnt(mnt))
5267 		attr_flags |= MOUNT_ATTR_IDMAP;
5268 
5269 	return attr_flags;
5270 }
5271 
5272 static u64 mnt_to_propagation_flags(struct mount *m)
5273 {
5274 	u64 propagation = 0;
5275 
5276 	if (IS_MNT_SHARED(m))
5277 		propagation |= MS_SHARED;
5278 	if (IS_MNT_SLAVE(m))
5279 		propagation |= MS_SLAVE;
5280 	if (IS_MNT_UNBINDABLE(m))
5281 		propagation |= MS_UNBINDABLE;
5282 	if (!propagation)
5283 		propagation |= MS_PRIVATE;
5284 
5285 	return propagation;
5286 }
5287 
5288 static void statmount_sb_basic(struct kstatmount *s)
5289 {
5290 	struct super_block *sb = s->mnt->mnt_sb;
5291 
5292 	s->sm.mask |= STATMOUNT_SB_BASIC;
5293 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5294 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5295 	s->sm.sb_magic = sb->s_magic;
5296 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5297 }
5298 
5299 static void statmount_mnt_basic(struct kstatmount *s)
5300 {
5301 	struct mount *m = real_mount(s->mnt);
5302 
5303 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5304 	s->sm.mnt_id = m->mnt_id_unique;
5305 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5306 	s->sm.mnt_id_old = m->mnt_id;
5307 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5308 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5309 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5310 	s->sm.mnt_peer_group = m->mnt_group_id;
5311 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5312 }
5313 
5314 static void statmount_propagate_from(struct kstatmount *s)
5315 {
5316 	struct mount *m = real_mount(s->mnt);
5317 
5318 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5319 	if (IS_MNT_SLAVE(m))
5320 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5321 }
5322 
5323 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5324 {
5325 	int ret;
5326 	size_t start = seq->count;
5327 
5328 	ret = show_path(seq, s->mnt->mnt_root);
5329 	if (ret)
5330 		return ret;
5331 
5332 	if (unlikely(seq_has_overflowed(seq)))
5333 		return -EAGAIN;
5334 
5335 	/*
5336          * Unescape the result. It would be better if supplied string was not
5337          * escaped in the first place, but that's a pretty invasive change.
5338          */
5339 	seq->buf[seq->count] = '\0';
5340 	seq->count = start;
5341 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5342 	return 0;
5343 }
5344 
5345 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5346 {
5347 	struct vfsmount *mnt = s->mnt;
5348 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5349 	int err;
5350 
5351 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5352 	return err == SEQ_SKIP ? 0 : err;
5353 }
5354 
5355 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5356 {
5357 	struct super_block *sb = s->mnt->mnt_sb;
5358 
5359 	seq_puts(seq, sb->s_type->name);
5360 	return 0;
5361 }
5362 
5363 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5364 {
5365 	struct super_block *sb = s->mnt->mnt_sb;
5366 
5367 	if (sb->s_subtype)
5368 		seq_puts(seq, sb->s_subtype);
5369 }
5370 
5371 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5372 {
5373 	struct super_block *sb = s->mnt->mnt_sb;
5374 	struct mount *r = real_mount(s->mnt);
5375 
5376 	if (sb->s_op->show_devname) {
5377 		size_t start = seq->count;
5378 		int ret;
5379 
5380 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5381 		if (ret)
5382 			return ret;
5383 
5384 		if (unlikely(seq_has_overflowed(seq)))
5385 			return -EAGAIN;
5386 
5387 		/* Unescape the result */
5388 		seq->buf[seq->count] = '\0';
5389 		seq->count = start;
5390 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5391 	} else {
5392 		seq_puts(seq, r->mnt_devname);
5393 	}
5394 	return 0;
5395 }
5396 
5397 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5398 {
5399 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5400 	s->sm.mnt_ns_id = ns->seq;
5401 }
5402 
5403 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5404 {
5405 	struct vfsmount *mnt = s->mnt;
5406 	struct super_block *sb = mnt->mnt_sb;
5407 	size_t start = seq->count;
5408 	int err;
5409 
5410 	err = security_sb_show_options(seq, sb);
5411 	if (err)
5412 		return err;
5413 
5414 	if (sb->s_op->show_options) {
5415 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5416 		if (err)
5417 			return err;
5418 	}
5419 
5420 	if (unlikely(seq_has_overflowed(seq)))
5421 		return -EAGAIN;
5422 
5423 	if (seq->count == start)
5424 		return 0;
5425 
5426 	/* skip leading comma */
5427 	memmove(seq->buf + start, seq->buf + start + 1,
5428 		seq->count - start - 1);
5429 	seq->count--;
5430 
5431 	return 0;
5432 }
5433 
5434 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5435 {
5436 	char *buf_end, *opt_end, *src, *dst;
5437 	int count = 0;
5438 
5439 	if (unlikely(seq_has_overflowed(seq)))
5440 		return -EAGAIN;
5441 
5442 	buf_end = seq->buf + seq->count;
5443 	dst = seq->buf + start;
5444 	src = dst + 1;	/* skip initial comma */
5445 
5446 	if (src >= buf_end) {
5447 		seq->count = start;
5448 		return 0;
5449 	}
5450 
5451 	*buf_end = '\0';
5452 	for (; src < buf_end; src = opt_end + 1) {
5453 		opt_end = strchrnul(src, ',');
5454 		*opt_end = '\0';
5455 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5456 		if (WARN_ON_ONCE(++count == INT_MAX))
5457 			return -EOVERFLOW;
5458 	}
5459 	seq->count = dst - 1 - seq->buf;
5460 	return count;
5461 }
5462 
5463 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5464 {
5465 	struct vfsmount *mnt = s->mnt;
5466 	struct super_block *sb = mnt->mnt_sb;
5467 	size_t start = seq->count;
5468 	int err;
5469 
5470 	if (!sb->s_op->show_options)
5471 		return 0;
5472 
5473 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5474 	if (err)
5475 		return err;
5476 
5477 	err = statmount_opt_process(seq, start);
5478 	if (err < 0)
5479 		return err;
5480 
5481 	s->sm.opt_num = err;
5482 	return 0;
5483 }
5484 
5485 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5486 {
5487 	struct vfsmount *mnt = s->mnt;
5488 	struct super_block *sb = mnt->mnt_sb;
5489 	size_t start = seq->count;
5490 	int err;
5491 
5492 	err = security_sb_show_options(seq, sb);
5493 	if (err)
5494 		return err;
5495 
5496 	err = statmount_opt_process(seq, start);
5497 	if (err < 0)
5498 		return err;
5499 
5500 	s->sm.opt_sec_num = err;
5501 	return 0;
5502 }
5503 
5504 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5505 {
5506 	int ret;
5507 
5508 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5509 	if (ret < 0)
5510 		return ret;
5511 
5512 	s->sm.mnt_uidmap_num = ret;
5513 	/*
5514 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5515 	 * mappings. This allows userspace to distinguish between a
5516 	 * non-idmapped mount and an idmapped mount where none of the
5517 	 * individual mappings are valid in the caller's idmapping.
5518 	 */
5519 	if (is_valid_mnt_idmap(s->idmap))
5520 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5521 	return 0;
5522 }
5523 
5524 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5525 {
5526 	int ret;
5527 
5528 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5529 	if (ret < 0)
5530 		return ret;
5531 
5532 	s->sm.mnt_gidmap_num = ret;
5533 	/*
5534 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5535 	 * mappings. This allows userspace to distinguish between a
5536 	 * non-idmapped mount and an idmapped mount where none of the
5537 	 * individual mappings are valid in the caller's idmapping.
5538 	 */
5539 	if (is_valid_mnt_idmap(s->idmap))
5540 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5541 	return 0;
5542 }
5543 
5544 static int statmount_string(struct kstatmount *s, u64 flag)
5545 {
5546 	int ret = 0;
5547 	size_t kbufsize;
5548 	struct seq_file *seq = &s->seq;
5549 	struct statmount *sm = &s->sm;
5550 	u32 start, *offp;
5551 
5552 	/* Reserve an empty string at the beginning for any unset offsets */
5553 	if (!seq->count)
5554 		seq_putc(seq, 0);
5555 
5556 	start = seq->count;
5557 
5558 	switch (flag) {
5559 	case STATMOUNT_FS_TYPE:
5560 		offp = &sm->fs_type;
5561 		ret = statmount_fs_type(s, seq);
5562 		break;
5563 	case STATMOUNT_MNT_ROOT:
5564 		offp = &sm->mnt_root;
5565 		ret = statmount_mnt_root(s, seq);
5566 		break;
5567 	case STATMOUNT_MNT_POINT:
5568 		offp = &sm->mnt_point;
5569 		ret = statmount_mnt_point(s, seq);
5570 		break;
5571 	case STATMOUNT_MNT_OPTS:
5572 		offp = &sm->mnt_opts;
5573 		ret = statmount_mnt_opts(s, seq);
5574 		break;
5575 	case STATMOUNT_OPT_ARRAY:
5576 		offp = &sm->opt_array;
5577 		ret = statmount_opt_array(s, seq);
5578 		break;
5579 	case STATMOUNT_OPT_SEC_ARRAY:
5580 		offp = &sm->opt_sec_array;
5581 		ret = statmount_opt_sec_array(s, seq);
5582 		break;
5583 	case STATMOUNT_FS_SUBTYPE:
5584 		offp = &sm->fs_subtype;
5585 		statmount_fs_subtype(s, seq);
5586 		break;
5587 	case STATMOUNT_SB_SOURCE:
5588 		offp = &sm->sb_source;
5589 		ret = statmount_sb_source(s, seq);
5590 		break;
5591 	case STATMOUNT_MNT_UIDMAP:
5592 		sm->mnt_uidmap = start;
5593 		ret = statmount_mnt_uidmap(s, seq);
5594 		break;
5595 	case STATMOUNT_MNT_GIDMAP:
5596 		sm->mnt_gidmap = start;
5597 		ret = statmount_mnt_gidmap(s, seq);
5598 		break;
5599 	default:
5600 		WARN_ON_ONCE(true);
5601 		return -EINVAL;
5602 	}
5603 
5604 	/*
5605 	 * If nothing was emitted, return to avoid setting the flag
5606 	 * and terminating the buffer.
5607 	 */
5608 	if (seq->count == start)
5609 		return ret;
5610 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5611 		return -EOVERFLOW;
5612 	if (kbufsize >= s->bufsize)
5613 		return -EOVERFLOW;
5614 
5615 	/* signal a retry */
5616 	if (unlikely(seq_has_overflowed(seq)))
5617 		return -EAGAIN;
5618 
5619 	if (ret)
5620 		return ret;
5621 
5622 	seq->buf[seq->count++] = '\0';
5623 	sm->mask |= flag;
5624 	*offp = start;
5625 	return 0;
5626 }
5627 
5628 static int copy_statmount_to_user(struct kstatmount *s)
5629 {
5630 	struct statmount *sm = &s->sm;
5631 	struct seq_file *seq = &s->seq;
5632 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5633 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5634 
5635 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5636 		return -EFAULT;
5637 
5638 	/* Return the number of bytes copied to the buffer */
5639 	sm->size = copysize + seq->count;
5640 	if (copy_to_user(s->buf, sm, copysize))
5641 		return -EFAULT;
5642 
5643 	return 0;
5644 }
5645 
5646 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5647 {
5648 	struct rb_node *node;
5649 
5650 	if (reverse)
5651 		node = rb_prev(&curr->mnt_node);
5652 	else
5653 		node = rb_next(&curr->mnt_node);
5654 
5655 	return node_to_mount(node);
5656 }
5657 
5658 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5659 {
5660 	struct mount *first, *child;
5661 
5662 	rwsem_assert_held(&namespace_sem);
5663 
5664 	/* We're looking at our own ns, just use get_fs_root. */
5665 	if (ns == current->nsproxy->mnt_ns) {
5666 		get_fs_root(current->fs, root);
5667 		return 0;
5668 	}
5669 
5670 	/*
5671 	 * We have to find the first mount in our ns and use that, however it
5672 	 * may not exist, so handle that properly.
5673 	 */
5674 	if (mnt_ns_empty(ns))
5675 		return -ENOENT;
5676 
5677 	first = child = ns->root;
5678 	for (;;) {
5679 		child = listmnt_next(child, false);
5680 		if (!child)
5681 			return -ENOENT;
5682 		if (child->mnt_parent == first)
5683 			break;
5684 	}
5685 
5686 	root->mnt = mntget(&child->mnt);
5687 	root->dentry = dget(root->mnt->mnt_root);
5688 	return 0;
5689 }
5690 
5691 /* This must be updated whenever a new flag is added */
5692 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5693 			     STATMOUNT_MNT_BASIC | \
5694 			     STATMOUNT_PROPAGATE_FROM | \
5695 			     STATMOUNT_MNT_ROOT | \
5696 			     STATMOUNT_MNT_POINT | \
5697 			     STATMOUNT_FS_TYPE | \
5698 			     STATMOUNT_MNT_NS_ID | \
5699 			     STATMOUNT_MNT_OPTS | \
5700 			     STATMOUNT_FS_SUBTYPE | \
5701 			     STATMOUNT_SB_SOURCE | \
5702 			     STATMOUNT_OPT_ARRAY | \
5703 			     STATMOUNT_OPT_SEC_ARRAY | \
5704 			     STATMOUNT_SUPPORTED_MASK | \
5705 			     STATMOUNT_MNT_UIDMAP | \
5706 			     STATMOUNT_MNT_GIDMAP)
5707 
5708 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5709 			struct mnt_namespace *ns)
5710 {
5711 	struct path root __free(path_put) = {};
5712 	struct mount *m;
5713 	int err;
5714 
5715 	/* Has the namespace already been emptied? */
5716 	if (mnt_ns_id && mnt_ns_empty(ns))
5717 		return -ENOENT;
5718 
5719 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5720 	if (!s->mnt)
5721 		return -ENOENT;
5722 
5723 	err = grab_requested_root(ns, &root);
5724 	if (err)
5725 		return err;
5726 
5727 	/*
5728 	 * Don't trigger audit denials. We just want to determine what
5729 	 * mounts to show users.
5730 	 */
5731 	m = real_mount(s->mnt);
5732 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5733 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5734 		return -EPERM;
5735 
5736 	err = security_sb_statfs(s->mnt->mnt_root);
5737 	if (err)
5738 		return err;
5739 
5740 	s->root = root;
5741 
5742 	/*
5743 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5744 	 * can change concurrently as we only hold the read-side of the
5745 	 * namespace semaphore and mount properties may change with only
5746 	 * the mount lock held.
5747 	 *
5748 	 * We could sample the mount lock sequence counter to detect
5749 	 * those changes and retry. But it's not worth it. Worst that
5750 	 * happens is that the mnt->mnt_idmap pointer is already changed
5751 	 * while mnt->mnt_flags isn't or vica versa. So what.
5752 	 *
5753 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5754 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5755 	 * torn read/write. That's all we care about right now.
5756 	 */
5757 	s->idmap = mnt_idmap(s->mnt);
5758 	if (s->mask & STATMOUNT_MNT_BASIC)
5759 		statmount_mnt_basic(s);
5760 
5761 	if (s->mask & STATMOUNT_SB_BASIC)
5762 		statmount_sb_basic(s);
5763 
5764 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5765 		statmount_propagate_from(s);
5766 
5767 	if (s->mask & STATMOUNT_FS_TYPE)
5768 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5769 
5770 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5771 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5772 
5773 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5774 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5775 
5776 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5777 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5778 
5779 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5780 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5781 
5782 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5783 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5784 
5785 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5786 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5787 
5788 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5789 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5790 
5791 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5792 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5793 
5794 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5795 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5796 
5797 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5798 		statmount_mnt_ns_id(s, ns);
5799 
5800 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5801 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5802 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5803 	}
5804 
5805 	if (err)
5806 		return err;
5807 
5808 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5809 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5810 
5811 	return 0;
5812 }
5813 
5814 static inline bool retry_statmount(const long ret, size_t *seq_size)
5815 {
5816 	if (likely(ret != -EAGAIN))
5817 		return false;
5818 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5819 		return false;
5820 	if (unlikely(*seq_size > MAX_RW_COUNT))
5821 		return false;
5822 	return true;
5823 }
5824 
5825 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5826 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5827 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5828 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5829 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5830 
5831 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5832 			      struct statmount __user *buf, size_t bufsize,
5833 			      size_t seq_size)
5834 {
5835 	if (!access_ok(buf, bufsize))
5836 		return -EFAULT;
5837 
5838 	memset(ks, 0, sizeof(*ks));
5839 	ks->mask = kreq->param;
5840 	ks->buf = buf;
5841 	ks->bufsize = bufsize;
5842 
5843 	if (ks->mask & STATMOUNT_STRING_REQ) {
5844 		if (bufsize == sizeof(ks->sm))
5845 			return -EOVERFLOW;
5846 
5847 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5848 		if (!ks->seq.buf)
5849 			return -ENOMEM;
5850 
5851 		ks->seq.size = seq_size;
5852 	}
5853 
5854 	return 0;
5855 }
5856 
5857 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5858 			   struct mnt_id_req *kreq)
5859 {
5860 	int ret;
5861 	size_t usize;
5862 
5863 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5864 
5865 	ret = get_user(usize, &req->size);
5866 	if (ret)
5867 		return -EFAULT;
5868 	if (unlikely(usize > PAGE_SIZE))
5869 		return -E2BIG;
5870 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5871 		return -EINVAL;
5872 	memset(kreq, 0, sizeof(*kreq));
5873 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5874 	if (ret)
5875 		return ret;
5876 	if (kreq->spare != 0)
5877 		return -EINVAL;
5878 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5879 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5880 		return -EINVAL;
5881 	return 0;
5882 }
5883 
5884 /*
5885  * If the user requested a specific mount namespace id, look that up and return
5886  * that, or if not simply grab a passive reference on our mount namespace and
5887  * return that.
5888  */
5889 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5890 {
5891 	struct mnt_namespace *mnt_ns;
5892 
5893 	if (kreq->mnt_ns_id && kreq->spare)
5894 		return ERR_PTR(-EINVAL);
5895 
5896 	if (kreq->mnt_ns_id)
5897 		return lookup_mnt_ns(kreq->mnt_ns_id);
5898 
5899 	if (kreq->spare) {
5900 		struct ns_common *ns;
5901 
5902 		CLASS(fd, f)(kreq->spare);
5903 		if (fd_empty(f))
5904 			return ERR_PTR(-EBADF);
5905 
5906 		if (!proc_ns_file(fd_file(f)))
5907 			return ERR_PTR(-EINVAL);
5908 
5909 		ns = get_proc_ns(file_inode(fd_file(f)));
5910 		if (ns->ops->type != CLONE_NEWNS)
5911 			return ERR_PTR(-EINVAL);
5912 
5913 		mnt_ns = to_mnt_ns(ns);
5914 	} else {
5915 		mnt_ns = current->nsproxy->mnt_ns;
5916 	}
5917 
5918 	refcount_inc(&mnt_ns->passive);
5919 	return mnt_ns;
5920 }
5921 
5922 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5923 		struct statmount __user *, buf, size_t, bufsize,
5924 		unsigned int, flags)
5925 {
5926 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5927 	struct kstatmount *ks __free(kfree) = NULL;
5928 	struct mnt_id_req kreq;
5929 	/* We currently support retrieval of 3 strings. */
5930 	size_t seq_size = 3 * PATH_MAX;
5931 	int ret;
5932 
5933 	if (flags)
5934 		return -EINVAL;
5935 
5936 	ret = copy_mnt_id_req(req, &kreq);
5937 	if (ret)
5938 		return ret;
5939 
5940 	ns = grab_requested_mnt_ns(&kreq);
5941 	if (!ns)
5942 		return -ENOENT;
5943 
5944 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5945 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5946 		return -ENOENT;
5947 
5948 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5949 	if (!ks)
5950 		return -ENOMEM;
5951 
5952 retry:
5953 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5954 	if (ret)
5955 		return ret;
5956 
5957 	scoped_guard(rwsem_read, &namespace_sem)
5958 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5959 
5960 	if (!ret)
5961 		ret = copy_statmount_to_user(ks);
5962 	kvfree(ks->seq.buf);
5963 	if (retry_statmount(ret, &seq_size))
5964 		goto retry;
5965 	return ret;
5966 }
5967 
5968 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5969 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5970 			    bool reverse)
5971 {
5972 	struct path root __free(path_put) = {};
5973 	struct path orig;
5974 	struct mount *r, *first;
5975 	ssize_t ret;
5976 
5977 	rwsem_assert_held(&namespace_sem);
5978 
5979 	ret = grab_requested_root(ns, &root);
5980 	if (ret)
5981 		return ret;
5982 
5983 	if (mnt_parent_id == LSMT_ROOT) {
5984 		orig = root;
5985 	} else {
5986 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5987 		if (!orig.mnt)
5988 			return -ENOENT;
5989 		orig.dentry = orig.mnt->mnt_root;
5990 	}
5991 
5992 	/*
5993 	 * Don't trigger audit denials. We just want to determine what
5994 	 * mounts to show users.
5995 	 */
5996 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5997 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5998 		return -EPERM;
5999 
6000 	ret = security_sb_statfs(orig.dentry);
6001 	if (ret)
6002 		return ret;
6003 
6004 	if (!last_mnt_id) {
6005 		if (reverse)
6006 			first = node_to_mount(ns->mnt_last_node);
6007 		else
6008 			first = node_to_mount(ns->mnt_first_node);
6009 	} else {
6010 		if (reverse)
6011 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6012 		else
6013 			first = mnt_find_id_at(ns, last_mnt_id + 1);
6014 	}
6015 
6016 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6017 		if (r->mnt_id_unique == mnt_parent_id)
6018 			continue;
6019 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6020 			continue;
6021 		*mnt_ids = r->mnt_id_unique;
6022 		mnt_ids++;
6023 		nr_mnt_ids--;
6024 		ret++;
6025 	}
6026 	return ret;
6027 }
6028 
6029 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6030 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6031 {
6032 	u64 *kmnt_ids __free(kvfree) = NULL;
6033 	const size_t maxcount = 1000000;
6034 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6035 	struct mnt_id_req kreq;
6036 	u64 last_mnt_id;
6037 	ssize_t ret;
6038 
6039 	if (flags & ~LISTMOUNT_REVERSE)
6040 		return -EINVAL;
6041 
6042 	/*
6043 	 * If the mount namespace really has more than 1 million mounts the
6044 	 * caller must iterate over the mount namespace (and reconsider their
6045 	 * system design...).
6046 	 */
6047 	if (unlikely(nr_mnt_ids > maxcount))
6048 		return -EOVERFLOW;
6049 
6050 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6051 		return -EFAULT;
6052 
6053 	ret = copy_mnt_id_req(req, &kreq);
6054 	if (ret)
6055 		return ret;
6056 
6057 	last_mnt_id = kreq.param;
6058 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6059 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6060 		return -EINVAL;
6061 
6062 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6063 				  GFP_KERNEL_ACCOUNT);
6064 	if (!kmnt_ids)
6065 		return -ENOMEM;
6066 
6067 	ns = grab_requested_mnt_ns(&kreq);
6068 	if (!ns)
6069 		return -ENOENT;
6070 
6071 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6072 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6073 		return -ENOENT;
6074 
6075 	/*
6076 	 * We only need to guard against mount topology changes as
6077 	 * listmount() doesn't care about any mount properties.
6078 	 */
6079 	scoped_guard(rwsem_read, &namespace_sem)
6080 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6081 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6082 	if (ret <= 0)
6083 		return ret;
6084 
6085 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6086 		return -EFAULT;
6087 
6088 	return ret;
6089 }
6090 
6091 static void __init init_mount_tree(void)
6092 {
6093 	struct vfsmount *mnt;
6094 	struct mount *m;
6095 	struct mnt_namespace *ns;
6096 	struct path root;
6097 
6098 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
6099 	if (IS_ERR(mnt))
6100 		panic("Can't create rootfs");
6101 
6102 	ns = alloc_mnt_ns(&init_user_ns, true);
6103 	if (IS_ERR(ns))
6104 		panic("Can't allocate initial namespace");
6105 	ns->seq = atomic64_inc_return(&mnt_ns_seq);
6106 	ns->ns.inum = PROC_MNT_INIT_INO;
6107 	m = real_mount(mnt);
6108 	ns->root = m;
6109 	ns->nr_mounts = 1;
6110 	mnt_add_to_ns(ns, m);
6111 	init_task.nsproxy->mnt_ns = ns;
6112 	get_mnt_ns(ns);
6113 
6114 	root.mnt = mnt;
6115 	root.dentry = mnt->mnt_root;
6116 
6117 	set_fs_pwd(current->fs, &root);
6118 	set_fs_root(current->fs, &root);
6119 
6120 	mnt_ns_tree_add(ns);
6121 }
6122 
6123 void __init mnt_init(void)
6124 {
6125 	int err;
6126 
6127 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6128 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6129 
6130 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6131 				sizeof(struct hlist_head),
6132 				mhash_entries, 19,
6133 				HASH_ZERO,
6134 				&m_hash_shift, &m_hash_mask, 0, 0);
6135 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6136 				sizeof(struct hlist_head),
6137 				mphash_entries, 19,
6138 				HASH_ZERO,
6139 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6140 
6141 	if (!mount_hashtable || !mountpoint_hashtable)
6142 		panic("Failed to allocate mount hash table\n");
6143 
6144 	kernfs_init();
6145 
6146 	err = sysfs_init();
6147 	if (err)
6148 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6149 			__func__, err);
6150 	fs_kobj = kobject_create_and_add("fs", NULL);
6151 	if (!fs_kobj)
6152 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6153 	shmem_init();
6154 	init_rootfs();
6155 	init_mount_tree();
6156 }
6157 
6158 void put_mnt_ns(struct mnt_namespace *ns)
6159 {
6160 	if (!refcount_dec_and_test(&ns->ns.count))
6161 		return;
6162 	namespace_lock();
6163 	emptied_ns = ns;
6164 	lock_mount_hash();
6165 	umount_tree(ns->root, 0);
6166 	unlock_mount_hash();
6167 	namespace_unlock();
6168 }
6169 
6170 struct vfsmount *kern_mount(struct file_system_type *type)
6171 {
6172 	struct vfsmount *mnt;
6173 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6174 	if (!IS_ERR(mnt)) {
6175 		/*
6176 		 * it is a longterm mount, don't release mnt until
6177 		 * we unmount before file sys is unregistered
6178 		*/
6179 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6180 	}
6181 	return mnt;
6182 }
6183 EXPORT_SYMBOL_GPL(kern_mount);
6184 
6185 void kern_unmount(struct vfsmount *mnt)
6186 {
6187 	/* release long term mount so mount point can be released */
6188 	if (!IS_ERR(mnt)) {
6189 		mnt_make_shortterm(mnt);
6190 		synchronize_rcu();	/* yecchhh... */
6191 		mntput(mnt);
6192 	}
6193 }
6194 EXPORT_SYMBOL(kern_unmount);
6195 
6196 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6197 {
6198 	unsigned int i;
6199 
6200 	for (i = 0; i < num; i++)
6201 		mnt_make_shortterm(mnt[i]);
6202 	synchronize_rcu_expedited();
6203 	for (i = 0; i < num; i++)
6204 		mntput(mnt[i]);
6205 }
6206 EXPORT_SYMBOL(kern_unmount_array);
6207 
6208 bool our_mnt(struct vfsmount *mnt)
6209 {
6210 	return check_mnt(real_mount(mnt));
6211 }
6212 
6213 bool current_chrooted(void)
6214 {
6215 	/* Does the current process have a non-standard root */
6216 	struct path ns_root;
6217 	struct path fs_root;
6218 	bool chrooted;
6219 
6220 	/* Find the namespace root */
6221 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
6222 	ns_root.dentry = ns_root.mnt->mnt_root;
6223 	path_get(&ns_root);
6224 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6225 		;
6226 
6227 	get_fs_root(current->fs, &fs_root);
6228 
6229 	chrooted = !path_equal(&fs_root, &ns_root);
6230 
6231 	path_put(&fs_root);
6232 	path_put(&ns_root);
6233 
6234 	return chrooted;
6235 }
6236 
6237 static bool mnt_already_visible(struct mnt_namespace *ns,
6238 				const struct super_block *sb,
6239 				int *new_mnt_flags)
6240 {
6241 	int new_flags = *new_mnt_flags;
6242 	struct mount *mnt, *n;
6243 	bool visible = false;
6244 
6245 	down_read(&namespace_sem);
6246 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6247 		struct mount *child;
6248 		int mnt_flags;
6249 
6250 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6251 			continue;
6252 
6253 		/* This mount is not fully visible if it's root directory
6254 		 * is not the root directory of the filesystem.
6255 		 */
6256 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6257 			continue;
6258 
6259 		/* A local view of the mount flags */
6260 		mnt_flags = mnt->mnt.mnt_flags;
6261 
6262 		/* Don't miss readonly hidden in the superblock flags */
6263 		if (sb_rdonly(mnt->mnt.mnt_sb))
6264 			mnt_flags |= MNT_LOCK_READONLY;
6265 
6266 		/* Verify the mount flags are equal to or more permissive
6267 		 * than the proposed new mount.
6268 		 */
6269 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6270 		    !(new_flags & MNT_READONLY))
6271 			continue;
6272 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6273 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6274 			continue;
6275 
6276 		/* This mount is not fully visible if there are any
6277 		 * locked child mounts that cover anything except for
6278 		 * empty directories.
6279 		 */
6280 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6281 			struct inode *inode = child->mnt_mountpoint->d_inode;
6282 			/* Only worry about locked mounts */
6283 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6284 				continue;
6285 			/* Is the directory permanently empty? */
6286 			if (!is_empty_dir_inode(inode))
6287 				goto next;
6288 		}
6289 		/* Preserve the locked attributes */
6290 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6291 					       MNT_LOCK_ATIME);
6292 		visible = true;
6293 		goto found;
6294 	next:	;
6295 	}
6296 found:
6297 	up_read(&namespace_sem);
6298 	return visible;
6299 }
6300 
6301 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6302 {
6303 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6304 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6305 	unsigned long s_iflags;
6306 
6307 	if (ns->user_ns == &init_user_ns)
6308 		return false;
6309 
6310 	/* Can this filesystem be too revealing? */
6311 	s_iflags = sb->s_iflags;
6312 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6313 		return false;
6314 
6315 	if ((s_iflags & required_iflags) != required_iflags) {
6316 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6317 			  required_iflags);
6318 		return true;
6319 	}
6320 
6321 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6322 }
6323 
6324 bool mnt_may_suid(struct vfsmount *mnt)
6325 {
6326 	/*
6327 	 * Foreign mounts (accessed via fchdir or through /proc
6328 	 * symlinks) are always treated as if they are nosuid.  This
6329 	 * prevents namespaces from trusting potentially unsafe
6330 	 * suid/sgid bits, file caps, or security labels that originate
6331 	 * in other namespaces.
6332 	 */
6333 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6334 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6335 }
6336 
6337 static struct ns_common *mntns_get(struct task_struct *task)
6338 {
6339 	struct ns_common *ns = NULL;
6340 	struct nsproxy *nsproxy;
6341 
6342 	task_lock(task);
6343 	nsproxy = task->nsproxy;
6344 	if (nsproxy) {
6345 		ns = &nsproxy->mnt_ns->ns;
6346 		get_mnt_ns(to_mnt_ns(ns));
6347 	}
6348 	task_unlock(task);
6349 
6350 	return ns;
6351 }
6352 
6353 static void mntns_put(struct ns_common *ns)
6354 {
6355 	put_mnt_ns(to_mnt_ns(ns));
6356 }
6357 
6358 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6359 {
6360 	struct nsproxy *nsproxy = nsset->nsproxy;
6361 	struct fs_struct *fs = nsset->fs;
6362 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6363 	struct user_namespace *user_ns = nsset->cred->user_ns;
6364 	struct path root;
6365 	int err;
6366 
6367 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6368 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6369 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6370 		return -EPERM;
6371 
6372 	if (is_anon_ns(mnt_ns))
6373 		return -EINVAL;
6374 
6375 	if (fs->users != 1)
6376 		return -EINVAL;
6377 
6378 	get_mnt_ns(mnt_ns);
6379 	old_mnt_ns = nsproxy->mnt_ns;
6380 	nsproxy->mnt_ns = mnt_ns;
6381 
6382 	/* Find the root */
6383 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6384 				"/", LOOKUP_DOWN, &root);
6385 	if (err) {
6386 		/* revert to old namespace */
6387 		nsproxy->mnt_ns = old_mnt_ns;
6388 		put_mnt_ns(mnt_ns);
6389 		return err;
6390 	}
6391 
6392 	put_mnt_ns(old_mnt_ns);
6393 
6394 	/* Update the pwd and root */
6395 	set_fs_pwd(fs, &root);
6396 	set_fs_root(fs, &root);
6397 
6398 	path_put(&root);
6399 	return 0;
6400 }
6401 
6402 static struct user_namespace *mntns_owner(struct ns_common *ns)
6403 {
6404 	return to_mnt_ns(ns)->user_ns;
6405 }
6406 
6407 const struct proc_ns_operations mntns_operations = {
6408 	.name		= "mnt",
6409 	.type		= CLONE_NEWNS,
6410 	.get		= mntns_get,
6411 	.put		= mntns_put,
6412 	.install	= mntns_install,
6413 	.owner		= mntns_owner,
6414 };
6415 
6416 #ifdef CONFIG_SYSCTL
6417 static const struct ctl_table fs_namespace_sysctls[] = {
6418 	{
6419 		.procname	= "mount-max",
6420 		.data		= &sysctl_mount_max,
6421 		.maxlen		= sizeof(unsigned int),
6422 		.mode		= 0644,
6423 		.proc_handler	= proc_dointvec_minmax,
6424 		.extra1		= SYSCTL_ONE,
6425 	},
6426 };
6427 
6428 static int __init init_fs_namespace_sysctls(void)
6429 {
6430 	register_sysctl_init("fs", fs_namespace_sysctls);
6431 	return 0;
6432 }
6433 fs_initcall(init_fs_namespace_sysctls);
6434 
6435 #endif /* CONFIG_SYSCTL */
6436