1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static DEFINE_SEQLOCK(mnt_ns_tree_lock); 83 84 #ifdef CONFIG_FSNOTIFY 85 LIST_HEAD(notify_list); /* protected by namespace_sem */ 86 #endif 87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */ 89 90 enum mount_kattr_flags_t { 91 MOUNT_KATTR_RECURSE = (1 << 0), 92 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 93 }; 94 95 struct mount_kattr { 96 unsigned int attr_set; 97 unsigned int attr_clr; 98 unsigned int propagation; 99 unsigned int lookup_flags; 100 enum mount_kattr_flags_t kflags; 101 struct user_namespace *mnt_userns; 102 struct mnt_idmap *mnt_idmap; 103 }; 104 105 /* /sys/fs */ 106 struct kobject *fs_kobj __ro_after_init; 107 EXPORT_SYMBOL_GPL(fs_kobj); 108 109 /* 110 * vfsmount lock may be taken for read to prevent changes to the 111 * vfsmount hash, ie. during mountpoint lookups or walking back 112 * up the tree. 113 * 114 * It should be taken for write in all cases where the vfsmount 115 * tree or hash is modified or when a vfsmount structure is modified. 116 */ 117 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 118 119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 120 { 121 if (!node) 122 return NULL; 123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 124 } 125 126 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b) 127 { 128 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 129 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 130 u64 seq_a = ns_a->seq; 131 u64 seq_b = ns_b->seq; 132 133 if (seq_a < seq_b) 134 return -1; 135 if (seq_a > seq_b) 136 return 1; 137 return 0; 138 } 139 140 static inline void mnt_ns_tree_write_lock(void) 141 { 142 write_seqlock(&mnt_ns_tree_lock); 143 } 144 145 static inline void mnt_ns_tree_write_unlock(void) 146 { 147 write_sequnlock(&mnt_ns_tree_lock); 148 } 149 150 static void mnt_ns_tree_add(struct mnt_namespace *ns) 151 { 152 struct rb_node *node, *prev; 153 154 mnt_ns_tree_write_lock(); 155 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp); 156 /* 157 * If there's no previous entry simply add it after the 158 * head and if there is add it after the previous entry. 159 */ 160 prev = rb_prev(&ns->mnt_ns_tree_node); 161 if (!prev) 162 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list); 163 else 164 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list); 165 mnt_ns_tree_write_unlock(); 166 167 WARN_ON_ONCE(node); 168 } 169 170 static void mnt_ns_release(struct mnt_namespace *ns) 171 { 172 /* keep alive for {list,stat}mount() */ 173 if (refcount_dec_and_test(&ns->passive)) { 174 fsnotify_mntns_delete(ns); 175 put_user_ns(ns->user_ns); 176 kfree(ns); 177 } 178 } 179 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 180 181 static void mnt_ns_release_rcu(struct rcu_head *rcu) 182 { 183 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu)); 184 } 185 186 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 187 { 188 /* remove from global mount namespace list */ 189 if (!is_anon_ns(ns)) { 190 mnt_ns_tree_write_lock(); 191 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 192 list_bidir_del_rcu(&ns->mnt_ns_list); 193 mnt_ns_tree_write_unlock(); 194 } 195 196 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu); 197 } 198 199 static int mnt_ns_find(const void *key, const struct rb_node *node) 200 { 201 const u64 mnt_ns_id = *(u64 *)key; 202 const struct mnt_namespace *ns = node_to_mnt_ns(node); 203 204 if (mnt_ns_id < ns->seq) 205 return -1; 206 if (mnt_ns_id > ns->seq) 207 return 1; 208 return 0; 209 } 210 211 /* 212 * Lookup a mount namespace by id and take a passive reference count. Taking a 213 * passive reference means the mount namespace can be emptied if e.g., the last 214 * task holding an active reference exits. To access the mounts of the 215 * namespace the @namespace_sem must first be acquired. If the namespace has 216 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 217 * see that the mount rbtree of the namespace is empty. 218 * 219 * Note the lookup is lockless protected by a sequence counter. We only 220 * need to guard against false negatives as false positives aren't 221 * possible. So if we didn't find a mount namespace and the sequence 222 * counter has changed we need to retry. If the sequence counter is 223 * still the same we know the search actually failed. 224 */ 225 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 226 { 227 struct mnt_namespace *ns; 228 struct rb_node *node; 229 unsigned int seq; 230 231 guard(rcu)(); 232 do { 233 seq = read_seqbegin(&mnt_ns_tree_lock); 234 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find); 235 if (node) 236 break; 237 } while (read_seqretry(&mnt_ns_tree_lock, seq)); 238 239 if (!node) 240 return NULL; 241 242 /* 243 * The last reference count is put with RCU delay so we can 244 * unconditonally acquire a reference here. 245 */ 246 ns = node_to_mnt_ns(node); 247 refcount_inc(&ns->passive); 248 return ns; 249 } 250 251 static inline void lock_mount_hash(void) 252 { 253 write_seqlock(&mount_lock); 254 } 255 256 static inline void unlock_mount_hash(void) 257 { 258 write_sequnlock(&mount_lock); 259 } 260 261 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 262 { 263 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 264 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 265 tmp = tmp + (tmp >> m_hash_shift); 266 return &mount_hashtable[tmp & m_hash_mask]; 267 } 268 269 static inline struct hlist_head *mp_hash(struct dentry *dentry) 270 { 271 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 272 tmp = tmp + (tmp >> mp_hash_shift); 273 return &mountpoint_hashtable[tmp & mp_hash_mask]; 274 } 275 276 static int mnt_alloc_id(struct mount *mnt) 277 { 278 int res; 279 280 xa_lock(&mnt_id_xa); 281 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 282 if (!res) 283 mnt->mnt_id_unique = ++mnt_id_ctr; 284 xa_unlock(&mnt_id_xa); 285 return res; 286 } 287 288 static void mnt_free_id(struct mount *mnt) 289 { 290 xa_erase(&mnt_id_xa, mnt->mnt_id); 291 } 292 293 /* 294 * Allocate a new peer group ID 295 */ 296 static int mnt_alloc_group_id(struct mount *mnt) 297 { 298 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 299 300 if (res < 0) 301 return res; 302 mnt->mnt_group_id = res; 303 return 0; 304 } 305 306 /* 307 * Release a peer group ID 308 */ 309 void mnt_release_group_id(struct mount *mnt) 310 { 311 ida_free(&mnt_group_ida, mnt->mnt_group_id); 312 mnt->mnt_group_id = 0; 313 } 314 315 /* 316 * vfsmount lock must be held for read 317 */ 318 static inline void mnt_add_count(struct mount *mnt, int n) 319 { 320 #ifdef CONFIG_SMP 321 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 322 #else 323 preempt_disable(); 324 mnt->mnt_count += n; 325 preempt_enable(); 326 #endif 327 } 328 329 /* 330 * vfsmount lock must be held for write 331 */ 332 int mnt_get_count(struct mount *mnt) 333 { 334 #ifdef CONFIG_SMP 335 int count = 0; 336 int cpu; 337 338 for_each_possible_cpu(cpu) { 339 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 340 } 341 342 return count; 343 #else 344 return mnt->mnt_count; 345 #endif 346 } 347 348 static struct mount *alloc_vfsmnt(const char *name) 349 { 350 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 351 if (mnt) { 352 int err; 353 354 err = mnt_alloc_id(mnt); 355 if (err) 356 goto out_free_cache; 357 358 if (name) { 359 mnt->mnt_devname = kstrdup_const(name, 360 GFP_KERNEL_ACCOUNT); 361 if (!mnt->mnt_devname) 362 goto out_free_id; 363 } 364 365 #ifdef CONFIG_SMP 366 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 367 if (!mnt->mnt_pcp) 368 goto out_free_devname; 369 370 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 371 #else 372 mnt->mnt_count = 1; 373 mnt->mnt_writers = 0; 374 #endif 375 376 INIT_HLIST_NODE(&mnt->mnt_hash); 377 INIT_LIST_HEAD(&mnt->mnt_child); 378 INIT_LIST_HEAD(&mnt->mnt_mounts); 379 INIT_LIST_HEAD(&mnt->mnt_list); 380 INIT_LIST_HEAD(&mnt->mnt_expire); 381 INIT_LIST_HEAD(&mnt->mnt_share); 382 INIT_LIST_HEAD(&mnt->mnt_slave_list); 383 INIT_LIST_HEAD(&mnt->mnt_slave); 384 INIT_HLIST_NODE(&mnt->mnt_mp_list); 385 INIT_LIST_HEAD(&mnt->mnt_umounting); 386 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 387 RB_CLEAR_NODE(&mnt->mnt_node); 388 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 389 } 390 return mnt; 391 392 #ifdef CONFIG_SMP 393 out_free_devname: 394 kfree_const(mnt->mnt_devname); 395 #endif 396 out_free_id: 397 mnt_free_id(mnt); 398 out_free_cache: 399 kmem_cache_free(mnt_cache, mnt); 400 return NULL; 401 } 402 403 /* 404 * Most r/o checks on a fs are for operations that take 405 * discrete amounts of time, like a write() or unlink(). 406 * We must keep track of when those operations start 407 * (for permission checks) and when they end, so that 408 * we can determine when writes are able to occur to 409 * a filesystem. 410 */ 411 /* 412 * __mnt_is_readonly: check whether a mount is read-only 413 * @mnt: the mount to check for its write status 414 * 415 * This shouldn't be used directly ouside of the VFS. 416 * It does not guarantee that the filesystem will stay 417 * r/w, just that it is right *now*. This can not and 418 * should not be used in place of IS_RDONLY(inode). 419 * mnt_want/drop_write() will _keep_ the filesystem 420 * r/w. 421 */ 422 bool __mnt_is_readonly(struct vfsmount *mnt) 423 { 424 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 425 } 426 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 427 428 static inline void mnt_inc_writers(struct mount *mnt) 429 { 430 #ifdef CONFIG_SMP 431 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 432 #else 433 mnt->mnt_writers++; 434 #endif 435 } 436 437 static inline void mnt_dec_writers(struct mount *mnt) 438 { 439 #ifdef CONFIG_SMP 440 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 441 #else 442 mnt->mnt_writers--; 443 #endif 444 } 445 446 static unsigned int mnt_get_writers(struct mount *mnt) 447 { 448 #ifdef CONFIG_SMP 449 unsigned int count = 0; 450 int cpu; 451 452 for_each_possible_cpu(cpu) { 453 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 454 } 455 456 return count; 457 #else 458 return mnt->mnt_writers; 459 #endif 460 } 461 462 static int mnt_is_readonly(struct vfsmount *mnt) 463 { 464 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 465 return 1; 466 /* 467 * The barrier pairs with the barrier in sb_start_ro_state_change() 468 * making sure if we don't see s_readonly_remount set yet, we also will 469 * not see any superblock / mount flag changes done by remount. 470 * It also pairs with the barrier in sb_end_ro_state_change() 471 * assuring that if we see s_readonly_remount already cleared, we will 472 * see the values of superblock / mount flags updated by remount. 473 */ 474 smp_rmb(); 475 return __mnt_is_readonly(mnt); 476 } 477 478 /* 479 * Most r/o & frozen checks on a fs are for operations that take discrete 480 * amounts of time, like a write() or unlink(). We must keep track of when 481 * those operations start (for permission checks) and when they end, so that we 482 * can determine when writes are able to occur to a filesystem. 483 */ 484 /** 485 * mnt_get_write_access - get write access to a mount without freeze protection 486 * @m: the mount on which to take a write 487 * 488 * This tells the low-level filesystem that a write is about to be performed to 489 * it, and makes sure that writes are allowed (mnt it read-write) before 490 * returning success. This operation does not protect against filesystem being 491 * frozen. When the write operation is finished, mnt_put_write_access() must be 492 * called. This is effectively a refcount. 493 */ 494 int mnt_get_write_access(struct vfsmount *m) 495 { 496 struct mount *mnt = real_mount(m); 497 int ret = 0; 498 499 preempt_disable(); 500 mnt_inc_writers(mnt); 501 /* 502 * The store to mnt_inc_writers must be visible before we pass 503 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 504 * incremented count after it has set MNT_WRITE_HOLD. 505 */ 506 smp_mb(); 507 might_lock(&mount_lock.lock); 508 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 509 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 510 cpu_relax(); 511 } else { 512 /* 513 * This prevents priority inversion, if the task 514 * setting MNT_WRITE_HOLD got preempted on a remote 515 * CPU, and it prevents life lock if the task setting 516 * MNT_WRITE_HOLD has a lower priority and is bound to 517 * the same CPU as the task that is spinning here. 518 */ 519 preempt_enable(); 520 lock_mount_hash(); 521 unlock_mount_hash(); 522 preempt_disable(); 523 } 524 } 525 /* 526 * The barrier pairs with the barrier sb_start_ro_state_change() making 527 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 528 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 529 * mnt_is_readonly() and bail in case we are racing with remount 530 * read-only. 531 */ 532 smp_rmb(); 533 if (mnt_is_readonly(m)) { 534 mnt_dec_writers(mnt); 535 ret = -EROFS; 536 } 537 preempt_enable(); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(mnt_get_write_access); 542 543 /** 544 * mnt_want_write - get write access to a mount 545 * @m: the mount on which to take a write 546 * 547 * This tells the low-level filesystem that a write is about to be performed to 548 * it, and makes sure that writes are allowed (mount is read-write, filesystem 549 * is not frozen) before returning success. When the write operation is 550 * finished, mnt_drop_write() must be called. This is effectively a refcount. 551 */ 552 int mnt_want_write(struct vfsmount *m) 553 { 554 int ret; 555 556 sb_start_write(m->mnt_sb); 557 ret = mnt_get_write_access(m); 558 if (ret) 559 sb_end_write(m->mnt_sb); 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(mnt_want_write); 563 564 /** 565 * mnt_get_write_access_file - get write access to a file's mount 566 * @file: the file who's mount on which to take a write 567 * 568 * This is like mnt_get_write_access, but if @file is already open for write it 569 * skips incrementing mnt_writers (since the open file already has a reference) 570 * and instead only does the check for emergency r/o remounts. This must be 571 * paired with mnt_put_write_access_file. 572 */ 573 int mnt_get_write_access_file(struct file *file) 574 { 575 if (file->f_mode & FMODE_WRITER) { 576 /* 577 * Superblock may have become readonly while there are still 578 * writable fd's, e.g. due to a fs error with errors=remount-ro 579 */ 580 if (__mnt_is_readonly(file->f_path.mnt)) 581 return -EROFS; 582 return 0; 583 } 584 return mnt_get_write_access(file->f_path.mnt); 585 } 586 587 /** 588 * mnt_want_write_file - get write access to a file's mount 589 * @file: the file who's mount on which to take a write 590 * 591 * This is like mnt_want_write, but if the file is already open for writing it 592 * skips incrementing mnt_writers (since the open file already has a reference) 593 * and instead only does the freeze protection and the check for emergency r/o 594 * remounts. This must be paired with mnt_drop_write_file. 595 */ 596 int mnt_want_write_file(struct file *file) 597 { 598 int ret; 599 600 sb_start_write(file_inode(file)->i_sb); 601 ret = mnt_get_write_access_file(file); 602 if (ret) 603 sb_end_write(file_inode(file)->i_sb); 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(mnt_want_write_file); 607 608 /** 609 * mnt_put_write_access - give up write access to a mount 610 * @mnt: the mount on which to give up write access 611 * 612 * Tells the low-level filesystem that we are done 613 * performing writes to it. Must be matched with 614 * mnt_get_write_access() call above. 615 */ 616 void mnt_put_write_access(struct vfsmount *mnt) 617 { 618 preempt_disable(); 619 mnt_dec_writers(real_mount(mnt)); 620 preempt_enable(); 621 } 622 EXPORT_SYMBOL_GPL(mnt_put_write_access); 623 624 /** 625 * mnt_drop_write - give up write access to a mount 626 * @mnt: the mount on which to give up write access 627 * 628 * Tells the low-level filesystem that we are done performing writes to it and 629 * also allows filesystem to be frozen again. Must be matched with 630 * mnt_want_write() call above. 631 */ 632 void mnt_drop_write(struct vfsmount *mnt) 633 { 634 mnt_put_write_access(mnt); 635 sb_end_write(mnt->mnt_sb); 636 } 637 EXPORT_SYMBOL_GPL(mnt_drop_write); 638 639 void mnt_put_write_access_file(struct file *file) 640 { 641 if (!(file->f_mode & FMODE_WRITER)) 642 mnt_put_write_access(file->f_path.mnt); 643 } 644 645 void mnt_drop_write_file(struct file *file) 646 { 647 mnt_put_write_access_file(file); 648 sb_end_write(file_inode(file)->i_sb); 649 } 650 EXPORT_SYMBOL(mnt_drop_write_file); 651 652 /** 653 * mnt_hold_writers - prevent write access to the given mount 654 * @mnt: mnt to prevent write access to 655 * 656 * Prevents write access to @mnt if there are no active writers for @mnt. 657 * This function needs to be called and return successfully before changing 658 * properties of @mnt that need to remain stable for callers with write access 659 * to @mnt. 660 * 661 * After this functions has been called successfully callers must pair it with 662 * a call to mnt_unhold_writers() in order to stop preventing write access to 663 * @mnt. 664 * 665 * Context: This function expects lock_mount_hash() to be held serializing 666 * setting MNT_WRITE_HOLD. 667 * Return: On success 0 is returned. 668 * On error, -EBUSY is returned. 669 */ 670 static inline int mnt_hold_writers(struct mount *mnt) 671 { 672 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 673 /* 674 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 675 * should be visible before we do. 676 */ 677 smp_mb(); 678 679 /* 680 * With writers on hold, if this value is zero, then there are 681 * definitely no active writers (although held writers may subsequently 682 * increment the count, they'll have to wait, and decrement it after 683 * seeing MNT_READONLY). 684 * 685 * It is OK to have counter incremented on one CPU and decremented on 686 * another: the sum will add up correctly. The danger would be when we 687 * sum up each counter, if we read a counter before it is incremented, 688 * but then read another CPU's count which it has been subsequently 689 * decremented from -- we would see more decrements than we should. 690 * MNT_WRITE_HOLD protects against this scenario, because 691 * mnt_want_write first increments count, then smp_mb, then spins on 692 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 693 * we're counting up here. 694 */ 695 if (mnt_get_writers(mnt) > 0) 696 return -EBUSY; 697 698 return 0; 699 } 700 701 /** 702 * mnt_unhold_writers - stop preventing write access to the given mount 703 * @mnt: mnt to stop preventing write access to 704 * 705 * Stop preventing write access to @mnt allowing callers to gain write access 706 * to @mnt again. 707 * 708 * This function can only be called after a successful call to 709 * mnt_hold_writers(). 710 * 711 * Context: This function expects lock_mount_hash() to be held. 712 */ 713 static inline void mnt_unhold_writers(struct mount *mnt) 714 { 715 /* 716 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 717 * that become unheld will see MNT_READONLY. 718 */ 719 smp_wmb(); 720 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 721 } 722 723 static int mnt_make_readonly(struct mount *mnt) 724 { 725 int ret; 726 727 ret = mnt_hold_writers(mnt); 728 if (!ret) 729 mnt->mnt.mnt_flags |= MNT_READONLY; 730 mnt_unhold_writers(mnt); 731 return ret; 732 } 733 734 int sb_prepare_remount_readonly(struct super_block *sb) 735 { 736 struct mount *mnt; 737 int err = 0; 738 739 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 740 if (atomic_long_read(&sb->s_remove_count)) 741 return -EBUSY; 742 743 lock_mount_hash(); 744 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 745 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 746 err = mnt_hold_writers(mnt); 747 if (err) 748 break; 749 } 750 } 751 if (!err && atomic_long_read(&sb->s_remove_count)) 752 err = -EBUSY; 753 754 if (!err) 755 sb_start_ro_state_change(sb); 756 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 757 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 758 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 759 } 760 unlock_mount_hash(); 761 762 return err; 763 } 764 765 static void free_vfsmnt(struct mount *mnt) 766 { 767 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 768 kfree_const(mnt->mnt_devname); 769 #ifdef CONFIG_SMP 770 free_percpu(mnt->mnt_pcp); 771 #endif 772 kmem_cache_free(mnt_cache, mnt); 773 } 774 775 static void delayed_free_vfsmnt(struct rcu_head *head) 776 { 777 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 778 } 779 780 /* call under rcu_read_lock */ 781 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 782 { 783 struct mount *mnt; 784 if (read_seqretry(&mount_lock, seq)) 785 return 1; 786 if (bastard == NULL) 787 return 0; 788 mnt = real_mount(bastard); 789 mnt_add_count(mnt, 1); 790 smp_mb(); // see mntput_no_expire() 791 if (likely(!read_seqretry(&mount_lock, seq))) 792 return 0; 793 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 794 mnt_add_count(mnt, -1); 795 return 1; 796 } 797 lock_mount_hash(); 798 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 799 mnt_add_count(mnt, -1); 800 unlock_mount_hash(); 801 return 1; 802 } 803 unlock_mount_hash(); 804 /* caller will mntput() */ 805 return -1; 806 } 807 808 /* call under rcu_read_lock */ 809 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 810 { 811 int res = __legitimize_mnt(bastard, seq); 812 if (likely(!res)) 813 return true; 814 if (unlikely(res < 0)) { 815 rcu_read_unlock(); 816 mntput(bastard); 817 rcu_read_lock(); 818 } 819 return false; 820 } 821 822 /** 823 * __lookup_mnt - find first child mount 824 * @mnt: parent mount 825 * @dentry: mountpoint 826 * 827 * If @mnt has a child mount @c mounted @dentry find and return it. 828 * 829 * Note that the child mount @c need not be unique. There are cases 830 * where shadow mounts are created. For example, during mount 831 * propagation when a source mount @mnt whose root got overmounted by a 832 * mount @o after path lookup but before @namespace_sem could be 833 * acquired gets copied and propagated. So @mnt gets copied including 834 * @o. When @mnt is propagated to a destination mount @d that already 835 * has another mount @n mounted at the same mountpoint then the source 836 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 837 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 838 * on @dentry. 839 * 840 * Return: The first child of @mnt mounted @dentry or NULL. 841 */ 842 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 843 { 844 struct hlist_head *head = m_hash(mnt, dentry); 845 struct mount *p; 846 847 hlist_for_each_entry_rcu(p, head, mnt_hash) 848 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 849 return p; 850 return NULL; 851 } 852 853 /* 854 * lookup_mnt - Return the first child mount mounted at path 855 * 856 * "First" means first mounted chronologically. If you create the 857 * following mounts: 858 * 859 * mount /dev/sda1 /mnt 860 * mount /dev/sda2 /mnt 861 * mount /dev/sda3 /mnt 862 * 863 * Then lookup_mnt() on the base /mnt dentry in the root mount will 864 * return successively the root dentry and vfsmount of /dev/sda1, then 865 * /dev/sda2, then /dev/sda3, then NULL. 866 * 867 * lookup_mnt takes a reference to the found vfsmount. 868 */ 869 struct vfsmount *lookup_mnt(const struct path *path) 870 { 871 struct mount *child_mnt; 872 struct vfsmount *m; 873 unsigned seq; 874 875 rcu_read_lock(); 876 do { 877 seq = read_seqbegin(&mount_lock); 878 child_mnt = __lookup_mnt(path->mnt, path->dentry); 879 m = child_mnt ? &child_mnt->mnt : NULL; 880 } while (!legitimize_mnt(m, seq)); 881 rcu_read_unlock(); 882 return m; 883 } 884 885 /* 886 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 887 * current mount namespace. 888 * 889 * The common case is dentries are not mountpoints at all and that 890 * test is handled inline. For the slow case when we are actually 891 * dealing with a mountpoint of some kind, walk through all of the 892 * mounts in the current mount namespace and test to see if the dentry 893 * is a mountpoint. 894 * 895 * The mount_hashtable is not usable in the context because we 896 * need to identify all mounts that may be in the current mount 897 * namespace not just a mount that happens to have some specified 898 * parent mount. 899 */ 900 bool __is_local_mountpoint(struct dentry *dentry) 901 { 902 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 903 struct mount *mnt, *n; 904 bool is_covered = false; 905 906 down_read(&namespace_sem); 907 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 908 is_covered = (mnt->mnt_mountpoint == dentry); 909 if (is_covered) 910 break; 911 } 912 up_read(&namespace_sem); 913 914 return is_covered; 915 } 916 917 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 918 { 919 struct hlist_head *chain = mp_hash(dentry); 920 struct mountpoint *mp; 921 922 hlist_for_each_entry(mp, chain, m_hash) { 923 if (mp->m_dentry == dentry) { 924 mp->m_count++; 925 return mp; 926 } 927 } 928 return NULL; 929 } 930 931 static struct mountpoint *get_mountpoint(struct dentry *dentry) 932 { 933 struct mountpoint *mp, *new = NULL; 934 int ret; 935 936 if (d_mountpoint(dentry)) { 937 /* might be worth a WARN_ON() */ 938 if (d_unlinked(dentry)) 939 return ERR_PTR(-ENOENT); 940 mountpoint: 941 read_seqlock_excl(&mount_lock); 942 mp = lookup_mountpoint(dentry); 943 read_sequnlock_excl(&mount_lock); 944 if (mp) 945 goto done; 946 } 947 948 if (!new) 949 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 950 if (!new) 951 return ERR_PTR(-ENOMEM); 952 953 954 /* Exactly one processes may set d_mounted */ 955 ret = d_set_mounted(dentry); 956 957 /* Someone else set d_mounted? */ 958 if (ret == -EBUSY) 959 goto mountpoint; 960 961 /* The dentry is not available as a mountpoint? */ 962 mp = ERR_PTR(ret); 963 if (ret) 964 goto done; 965 966 /* Add the new mountpoint to the hash table */ 967 read_seqlock_excl(&mount_lock); 968 new->m_dentry = dget(dentry); 969 new->m_count = 1; 970 hlist_add_head(&new->m_hash, mp_hash(dentry)); 971 INIT_HLIST_HEAD(&new->m_list); 972 read_sequnlock_excl(&mount_lock); 973 974 mp = new; 975 new = NULL; 976 done: 977 kfree(new); 978 return mp; 979 } 980 981 /* 982 * vfsmount lock must be held. Additionally, the caller is responsible 983 * for serializing calls for given disposal list. 984 */ 985 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 986 { 987 if (!--mp->m_count) { 988 struct dentry *dentry = mp->m_dentry; 989 BUG_ON(!hlist_empty(&mp->m_list)); 990 spin_lock(&dentry->d_lock); 991 dentry->d_flags &= ~DCACHE_MOUNTED; 992 spin_unlock(&dentry->d_lock); 993 dput_to_list(dentry, list); 994 hlist_del(&mp->m_hash); 995 kfree(mp); 996 } 997 } 998 999 /* called with namespace_lock and vfsmount lock */ 1000 static void put_mountpoint(struct mountpoint *mp) 1001 { 1002 __put_mountpoint(mp, &ex_mountpoints); 1003 } 1004 1005 static inline int check_mnt(struct mount *mnt) 1006 { 1007 return mnt->mnt_ns == current->nsproxy->mnt_ns; 1008 } 1009 1010 static inline bool check_anonymous_mnt(struct mount *mnt) 1011 { 1012 u64 seq; 1013 1014 if (!is_anon_ns(mnt->mnt_ns)) 1015 return false; 1016 1017 seq = mnt->mnt_ns->seq_origin; 1018 return !seq || (seq == current->nsproxy->mnt_ns->seq); 1019 } 1020 1021 /* 1022 * vfsmount lock must be held for write 1023 */ 1024 static void touch_mnt_namespace(struct mnt_namespace *ns) 1025 { 1026 if (ns) { 1027 ns->event = ++event; 1028 wake_up_interruptible(&ns->poll); 1029 } 1030 } 1031 1032 /* 1033 * vfsmount lock must be held for write 1034 */ 1035 static void __touch_mnt_namespace(struct mnt_namespace *ns) 1036 { 1037 if (ns && ns->event != event) { 1038 ns->event = event; 1039 wake_up_interruptible(&ns->poll); 1040 } 1041 } 1042 1043 /* 1044 * vfsmount lock must be held for write 1045 */ 1046 static struct mountpoint *unhash_mnt(struct mount *mnt) 1047 { 1048 struct mountpoint *mp; 1049 mnt->mnt_parent = mnt; 1050 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1051 list_del_init(&mnt->mnt_child); 1052 hlist_del_init_rcu(&mnt->mnt_hash); 1053 hlist_del_init(&mnt->mnt_mp_list); 1054 mp = mnt->mnt_mp; 1055 mnt->mnt_mp = NULL; 1056 return mp; 1057 } 1058 1059 /* 1060 * vfsmount lock must be held for write 1061 */ 1062 static void umount_mnt(struct mount *mnt) 1063 { 1064 put_mountpoint(unhash_mnt(mnt)); 1065 } 1066 1067 /* 1068 * vfsmount lock must be held for write 1069 */ 1070 void mnt_set_mountpoint(struct mount *mnt, 1071 struct mountpoint *mp, 1072 struct mount *child_mnt) 1073 { 1074 mp->m_count++; 1075 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1076 child_mnt->mnt_mountpoint = mp->m_dentry; 1077 child_mnt->mnt_parent = mnt; 1078 child_mnt->mnt_mp = mp; 1079 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1080 } 1081 1082 /** 1083 * mnt_set_mountpoint_beneath - mount a mount beneath another one 1084 * 1085 * @new_parent: the source mount 1086 * @top_mnt: the mount beneath which @new_parent is mounted 1087 * @new_mp: the new mountpoint of @top_mnt on @new_parent 1088 * 1089 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 1090 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 1091 * @new_mp. And mount @new_parent on the old parent and old 1092 * mountpoint of @top_mnt. 1093 * 1094 * Context: This function expects namespace_lock() and lock_mount_hash() 1095 * to have been acquired in that order. 1096 */ 1097 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 1098 struct mount *top_mnt, 1099 struct mountpoint *new_mp) 1100 { 1101 struct mount *old_top_parent = top_mnt->mnt_parent; 1102 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 1103 1104 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 1105 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 1106 } 1107 1108 1109 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1110 { 1111 hlist_add_head_rcu(&mnt->mnt_hash, 1112 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1113 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1114 } 1115 1116 /** 1117 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1118 * list of child mounts 1119 * @parent: the parent 1120 * @mnt: the new mount 1121 * @mp: the new mountpoint 1122 * @beneath: whether to mount @mnt beneath or on top of @parent 1123 * 1124 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 1125 * to @parent's child mount list and to @mount_hashtable. 1126 * 1127 * If @beneath is true, remove @mnt from its current parent and 1128 * mountpoint and mount it on @mp on @parent, and mount @parent on the 1129 * old parent and old mountpoint of @mnt. Finally, attach @parent to 1130 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 1131 * 1132 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 1133 * to the correct parent. 1134 * 1135 * Context: This function expects namespace_lock() and lock_mount_hash() 1136 * to have been acquired in that order. 1137 */ 1138 static void attach_mnt(struct mount *mnt, struct mount *parent, 1139 struct mountpoint *mp, bool beneath) 1140 { 1141 if (beneath) 1142 mnt_set_mountpoint_beneath(mnt, parent, mp); 1143 else 1144 mnt_set_mountpoint(parent, mp, mnt); 1145 /* 1146 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1147 * beneath @parent then @mnt will need to be attached to 1148 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1149 * isn't the same mount as @parent. 1150 */ 1151 __attach_mnt(mnt, mnt->mnt_parent); 1152 } 1153 1154 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1155 { 1156 struct mountpoint *old_mp = mnt->mnt_mp; 1157 struct mount *old_parent = mnt->mnt_parent; 1158 1159 list_del_init(&mnt->mnt_child); 1160 hlist_del_init(&mnt->mnt_mp_list); 1161 hlist_del_init_rcu(&mnt->mnt_hash); 1162 1163 attach_mnt(mnt, parent, mp, false); 1164 1165 put_mountpoint(old_mp); 1166 mnt_add_count(old_parent, -1); 1167 } 1168 1169 static inline struct mount *node_to_mount(struct rb_node *node) 1170 { 1171 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1172 } 1173 1174 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1175 { 1176 struct rb_node **link = &ns->mounts.rb_node; 1177 struct rb_node *parent = NULL; 1178 bool mnt_first_node = true, mnt_last_node = true; 1179 1180 WARN_ON(mnt_ns_attached(mnt)); 1181 mnt->mnt_ns = ns; 1182 while (*link) { 1183 parent = *link; 1184 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1185 link = &parent->rb_left; 1186 mnt_last_node = false; 1187 } else { 1188 link = &parent->rb_right; 1189 mnt_first_node = false; 1190 } 1191 } 1192 1193 if (mnt_last_node) 1194 ns->mnt_last_node = &mnt->mnt_node; 1195 if (mnt_first_node) 1196 ns->mnt_first_node = &mnt->mnt_node; 1197 rb_link_node(&mnt->mnt_node, parent, link); 1198 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1199 1200 mnt_notify_add(mnt); 1201 } 1202 1203 /* 1204 * vfsmount lock must be held for write 1205 */ 1206 static void commit_tree(struct mount *mnt) 1207 { 1208 struct mount *parent = mnt->mnt_parent; 1209 struct mount *m; 1210 LIST_HEAD(head); 1211 struct mnt_namespace *n = parent->mnt_ns; 1212 1213 BUG_ON(parent == mnt); 1214 1215 list_add_tail(&head, &mnt->mnt_list); 1216 while (!list_empty(&head)) { 1217 m = list_first_entry(&head, typeof(*m), mnt_list); 1218 list_del(&m->mnt_list); 1219 1220 mnt_add_to_ns(n, m); 1221 } 1222 n->nr_mounts += n->pending_mounts; 1223 n->pending_mounts = 0; 1224 1225 __attach_mnt(mnt, parent); 1226 touch_mnt_namespace(n); 1227 } 1228 1229 static struct mount *next_mnt(struct mount *p, struct mount *root) 1230 { 1231 struct list_head *next = p->mnt_mounts.next; 1232 if (next == &p->mnt_mounts) { 1233 while (1) { 1234 if (p == root) 1235 return NULL; 1236 next = p->mnt_child.next; 1237 if (next != &p->mnt_parent->mnt_mounts) 1238 break; 1239 p = p->mnt_parent; 1240 } 1241 } 1242 return list_entry(next, struct mount, mnt_child); 1243 } 1244 1245 static struct mount *skip_mnt_tree(struct mount *p) 1246 { 1247 struct list_head *prev = p->mnt_mounts.prev; 1248 while (prev != &p->mnt_mounts) { 1249 p = list_entry(prev, struct mount, mnt_child); 1250 prev = p->mnt_mounts.prev; 1251 } 1252 return p; 1253 } 1254 1255 /** 1256 * vfs_create_mount - Create a mount for a configured superblock 1257 * @fc: The configuration context with the superblock attached 1258 * 1259 * Create a mount to an already configured superblock. If necessary, the 1260 * caller should invoke vfs_get_tree() before calling this. 1261 * 1262 * Note that this does not attach the mount to anything. 1263 */ 1264 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1265 { 1266 struct mount *mnt; 1267 1268 if (!fc->root) 1269 return ERR_PTR(-EINVAL); 1270 1271 mnt = alloc_vfsmnt(fc->source ?: "none"); 1272 if (!mnt) 1273 return ERR_PTR(-ENOMEM); 1274 1275 if (fc->sb_flags & SB_KERNMOUNT) 1276 mnt->mnt.mnt_flags = MNT_INTERNAL; 1277 1278 atomic_inc(&fc->root->d_sb->s_active); 1279 mnt->mnt.mnt_sb = fc->root->d_sb; 1280 mnt->mnt.mnt_root = dget(fc->root); 1281 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1282 mnt->mnt_parent = mnt; 1283 1284 lock_mount_hash(); 1285 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1286 unlock_mount_hash(); 1287 return &mnt->mnt; 1288 } 1289 EXPORT_SYMBOL(vfs_create_mount); 1290 1291 struct vfsmount *fc_mount(struct fs_context *fc) 1292 { 1293 int err = vfs_get_tree(fc); 1294 if (!err) { 1295 up_write(&fc->root->d_sb->s_umount); 1296 return vfs_create_mount(fc); 1297 } 1298 return ERR_PTR(err); 1299 } 1300 EXPORT_SYMBOL(fc_mount); 1301 1302 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1303 int flags, const char *name, 1304 void *data) 1305 { 1306 struct fs_context *fc; 1307 struct vfsmount *mnt; 1308 int ret = 0; 1309 1310 if (!type) 1311 return ERR_PTR(-EINVAL); 1312 1313 fc = fs_context_for_mount(type, flags); 1314 if (IS_ERR(fc)) 1315 return ERR_CAST(fc); 1316 1317 if (name) 1318 ret = vfs_parse_fs_string(fc, "source", 1319 name, strlen(name)); 1320 if (!ret) 1321 ret = parse_monolithic_mount_data(fc, data); 1322 if (!ret) 1323 mnt = fc_mount(fc); 1324 else 1325 mnt = ERR_PTR(ret); 1326 1327 put_fs_context(fc); 1328 return mnt; 1329 } 1330 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1331 1332 struct vfsmount * 1333 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1334 const char *name, void *data) 1335 { 1336 /* Until it is worked out how to pass the user namespace 1337 * through from the parent mount to the submount don't support 1338 * unprivileged mounts with submounts. 1339 */ 1340 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1341 return ERR_PTR(-EPERM); 1342 1343 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1344 } 1345 EXPORT_SYMBOL_GPL(vfs_submount); 1346 1347 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1348 int flag) 1349 { 1350 struct super_block *sb = old->mnt.mnt_sb; 1351 struct mount *mnt; 1352 int err; 1353 1354 mnt = alloc_vfsmnt(old->mnt_devname); 1355 if (!mnt) 1356 return ERR_PTR(-ENOMEM); 1357 1358 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1359 mnt->mnt_group_id = 0; /* not a peer of original */ 1360 else 1361 mnt->mnt_group_id = old->mnt_group_id; 1362 1363 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1364 err = mnt_alloc_group_id(mnt); 1365 if (err) 1366 goto out_free; 1367 } 1368 1369 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1370 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1371 1372 atomic_inc(&sb->s_active); 1373 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1374 1375 mnt->mnt.mnt_sb = sb; 1376 mnt->mnt.mnt_root = dget(root); 1377 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1378 mnt->mnt_parent = mnt; 1379 lock_mount_hash(); 1380 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1381 unlock_mount_hash(); 1382 1383 if ((flag & CL_SLAVE) || 1384 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1385 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1386 mnt->mnt_master = old; 1387 CLEAR_MNT_SHARED(mnt); 1388 } else if (!(flag & CL_PRIVATE)) { 1389 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1390 list_add(&mnt->mnt_share, &old->mnt_share); 1391 if (IS_MNT_SLAVE(old)) 1392 list_add(&mnt->mnt_slave, &old->mnt_slave); 1393 mnt->mnt_master = old->mnt_master; 1394 } else { 1395 CLEAR_MNT_SHARED(mnt); 1396 } 1397 if (flag & CL_MAKE_SHARED) 1398 set_mnt_shared(mnt); 1399 1400 /* stick the duplicate mount on the same expiry list 1401 * as the original if that was on one */ 1402 if (flag & CL_EXPIRE) { 1403 if (!list_empty(&old->mnt_expire)) 1404 list_add(&mnt->mnt_expire, &old->mnt_expire); 1405 } 1406 1407 return mnt; 1408 1409 out_free: 1410 mnt_free_id(mnt); 1411 free_vfsmnt(mnt); 1412 return ERR_PTR(err); 1413 } 1414 1415 static void cleanup_mnt(struct mount *mnt) 1416 { 1417 struct hlist_node *p; 1418 struct mount *m; 1419 /* 1420 * The warning here probably indicates that somebody messed 1421 * up a mnt_want/drop_write() pair. If this happens, the 1422 * filesystem was probably unable to make r/w->r/o transitions. 1423 * The locking used to deal with mnt_count decrement provides barriers, 1424 * so mnt_get_writers() below is safe. 1425 */ 1426 WARN_ON(mnt_get_writers(mnt)); 1427 if (unlikely(mnt->mnt_pins.first)) 1428 mnt_pin_kill(mnt); 1429 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1430 hlist_del(&m->mnt_umount); 1431 mntput(&m->mnt); 1432 } 1433 fsnotify_vfsmount_delete(&mnt->mnt); 1434 dput(mnt->mnt.mnt_root); 1435 deactivate_super(mnt->mnt.mnt_sb); 1436 mnt_free_id(mnt); 1437 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1438 } 1439 1440 static void __cleanup_mnt(struct rcu_head *head) 1441 { 1442 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1443 } 1444 1445 static LLIST_HEAD(delayed_mntput_list); 1446 static void delayed_mntput(struct work_struct *unused) 1447 { 1448 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1449 struct mount *m, *t; 1450 1451 llist_for_each_entry_safe(m, t, node, mnt_llist) 1452 cleanup_mnt(m); 1453 } 1454 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1455 1456 static void mntput_no_expire(struct mount *mnt) 1457 { 1458 LIST_HEAD(list); 1459 int count; 1460 1461 rcu_read_lock(); 1462 if (likely(READ_ONCE(mnt->mnt_ns))) { 1463 /* 1464 * Since we don't do lock_mount_hash() here, 1465 * ->mnt_ns can change under us. However, if it's 1466 * non-NULL, then there's a reference that won't 1467 * be dropped until after an RCU delay done after 1468 * turning ->mnt_ns NULL. So if we observe it 1469 * non-NULL under rcu_read_lock(), the reference 1470 * we are dropping is not the final one. 1471 */ 1472 mnt_add_count(mnt, -1); 1473 rcu_read_unlock(); 1474 return; 1475 } 1476 lock_mount_hash(); 1477 /* 1478 * make sure that if __legitimize_mnt() has not seen us grab 1479 * mount_lock, we'll see their refcount increment here. 1480 */ 1481 smp_mb(); 1482 mnt_add_count(mnt, -1); 1483 count = mnt_get_count(mnt); 1484 if (count != 0) { 1485 WARN_ON(count < 0); 1486 rcu_read_unlock(); 1487 unlock_mount_hash(); 1488 return; 1489 } 1490 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1491 rcu_read_unlock(); 1492 unlock_mount_hash(); 1493 return; 1494 } 1495 mnt->mnt.mnt_flags |= MNT_DOOMED; 1496 rcu_read_unlock(); 1497 1498 list_del(&mnt->mnt_instance); 1499 1500 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1501 struct mount *p, *tmp; 1502 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1503 __put_mountpoint(unhash_mnt(p), &list); 1504 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1505 } 1506 } 1507 unlock_mount_hash(); 1508 shrink_dentry_list(&list); 1509 1510 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1511 struct task_struct *task = current; 1512 if (likely(!(task->flags & PF_KTHREAD))) { 1513 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1514 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1515 return; 1516 } 1517 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1518 schedule_delayed_work(&delayed_mntput_work, 1); 1519 return; 1520 } 1521 cleanup_mnt(mnt); 1522 } 1523 1524 void mntput(struct vfsmount *mnt) 1525 { 1526 if (mnt) { 1527 struct mount *m = real_mount(mnt); 1528 /* avoid cacheline pingpong */ 1529 if (unlikely(m->mnt_expiry_mark)) 1530 WRITE_ONCE(m->mnt_expiry_mark, 0); 1531 mntput_no_expire(m); 1532 } 1533 } 1534 EXPORT_SYMBOL(mntput); 1535 1536 struct vfsmount *mntget(struct vfsmount *mnt) 1537 { 1538 if (mnt) 1539 mnt_add_count(real_mount(mnt), 1); 1540 return mnt; 1541 } 1542 EXPORT_SYMBOL(mntget); 1543 1544 /* 1545 * Make a mount point inaccessible to new lookups. 1546 * Because there may still be current users, the caller MUST WAIT 1547 * for an RCU grace period before destroying the mount point. 1548 */ 1549 void mnt_make_shortterm(struct vfsmount *mnt) 1550 { 1551 if (mnt) 1552 real_mount(mnt)->mnt_ns = NULL; 1553 } 1554 1555 /** 1556 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1557 * @path: path to check 1558 * 1559 * d_mountpoint() can only be used reliably to establish if a dentry is 1560 * not mounted in any namespace and that common case is handled inline. 1561 * d_mountpoint() isn't aware of the possibility there may be multiple 1562 * mounts using a given dentry in a different namespace. This function 1563 * checks if the passed in path is a mountpoint rather than the dentry 1564 * alone. 1565 */ 1566 bool path_is_mountpoint(const struct path *path) 1567 { 1568 unsigned seq; 1569 bool res; 1570 1571 if (!d_mountpoint(path->dentry)) 1572 return false; 1573 1574 rcu_read_lock(); 1575 do { 1576 seq = read_seqbegin(&mount_lock); 1577 res = __path_is_mountpoint(path); 1578 } while (read_seqretry(&mount_lock, seq)); 1579 rcu_read_unlock(); 1580 1581 return res; 1582 } 1583 EXPORT_SYMBOL(path_is_mountpoint); 1584 1585 struct vfsmount *mnt_clone_internal(const struct path *path) 1586 { 1587 struct mount *p; 1588 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1589 if (IS_ERR(p)) 1590 return ERR_CAST(p); 1591 p->mnt.mnt_flags |= MNT_INTERNAL; 1592 return &p->mnt; 1593 } 1594 1595 /* 1596 * Returns the mount which either has the specified mnt_id, or has the next 1597 * smallest id afer the specified one. 1598 */ 1599 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1600 { 1601 struct rb_node *node = ns->mounts.rb_node; 1602 struct mount *ret = NULL; 1603 1604 while (node) { 1605 struct mount *m = node_to_mount(node); 1606 1607 if (mnt_id <= m->mnt_id_unique) { 1608 ret = node_to_mount(node); 1609 if (mnt_id == m->mnt_id_unique) 1610 break; 1611 node = node->rb_left; 1612 } else { 1613 node = node->rb_right; 1614 } 1615 } 1616 return ret; 1617 } 1618 1619 /* 1620 * Returns the mount which either has the specified mnt_id, or has the next 1621 * greater id before the specified one. 1622 */ 1623 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1624 { 1625 struct rb_node *node = ns->mounts.rb_node; 1626 struct mount *ret = NULL; 1627 1628 while (node) { 1629 struct mount *m = node_to_mount(node); 1630 1631 if (mnt_id >= m->mnt_id_unique) { 1632 ret = node_to_mount(node); 1633 if (mnt_id == m->mnt_id_unique) 1634 break; 1635 node = node->rb_right; 1636 } else { 1637 node = node->rb_left; 1638 } 1639 } 1640 return ret; 1641 } 1642 1643 #ifdef CONFIG_PROC_FS 1644 1645 /* iterator; we want it to have access to namespace_sem, thus here... */ 1646 static void *m_start(struct seq_file *m, loff_t *pos) 1647 { 1648 struct proc_mounts *p = m->private; 1649 1650 down_read(&namespace_sem); 1651 1652 return mnt_find_id_at(p->ns, *pos); 1653 } 1654 1655 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1656 { 1657 struct mount *next = NULL, *mnt = v; 1658 struct rb_node *node = rb_next(&mnt->mnt_node); 1659 1660 ++*pos; 1661 if (node) { 1662 next = node_to_mount(node); 1663 *pos = next->mnt_id_unique; 1664 } 1665 return next; 1666 } 1667 1668 static void m_stop(struct seq_file *m, void *v) 1669 { 1670 up_read(&namespace_sem); 1671 } 1672 1673 static int m_show(struct seq_file *m, void *v) 1674 { 1675 struct proc_mounts *p = m->private; 1676 struct mount *r = v; 1677 return p->show(m, &r->mnt); 1678 } 1679 1680 const struct seq_operations mounts_op = { 1681 .start = m_start, 1682 .next = m_next, 1683 .stop = m_stop, 1684 .show = m_show, 1685 }; 1686 1687 #endif /* CONFIG_PROC_FS */ 1688 1689 /** 1690 * may_umount_tree - check if a mount tree is busy 1691 * @m: root of mount tree 1692 * 1693 * This is called to check if a tree of mounts has any 1694 * open files, pwds, chroots or sub mounts that are 1695 * busy. 1696 */ 1697 int may_umount_tree(struct vfsmount *m) 1698 { 1699 struct mount *mnt = real_mount(m); 1700 int actual_refs = 0; 1701 int minimum_refs = 0; 1702 struct mount *p; 1703 BUG_ON(!m); 1704 1705 /* write lock needed for mnt_get_count */ 1706 lock_mount_hash(); 1707 for (p = mnt; p; p = next_mnt(p, mnt)) { 1708 actual_refs += mnt_get_count(p); 1709 minimum_refs += 2; 1710 } 1711 unlock_mount_hash(); 1712 1713 if (actual_refs > minimum_refs) 1714 return 0; 1715 1716 return 1; 1717 } 1718 1719 EXPORT_SYMBOL(may_umount_tree); 1720 1721 /** 1722 * may_umount - check if a mount point is busy 1723 * @mnt: root of mount 1724 * 1725 * This is called to check if a mount point has any 1726 * open files, pwds, chroots or sub mounts. If the 1727 * mount has sub mounts this will return busy 1728 * regardless of whether the sub mounts are busy. 1729 * 1730 * Doesn't take quota and stuff into account. IOW, in some cases it will 1731 * give false negatives. The main reason why it's here is that we need 1732 * a non-destructive way to look for easily umountable filesystems. 1733 */ 1734 int may_umount(struct vfsmount *mnt) 1735 { 1736 int ret = 1; 1737 down_read(&namespace_sem); 1738 lock_mount_hash(); 1739 if (propagate_mount_busy(real_mount(mnt), 2)) 1740 ret = 0; 1741 unlock_mount_hash(); 1742 up_read(&namespace_sem); 1743 return ret; 1744 } 1745 1746 EXPORT_SYMBOL(may_umount); 1747 1748 #ifdef CONFIG_FSNOTIFY 1749 static void mnt_notify(struct mount *p) 1750 { 1751 if (!p->prev_ns && p->mnt_ns) { 1752 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1753 } else if (p->prev_ns && !p->mnt_ns) { 1754 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1755 } else if (p->prev_ns == p->mnt_ns) { 1756 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1757 } else { 1758 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1759 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1760 } 1761 p->prev_ns = p->mnt_ns; 1762 } 1763 1764 static void notify_mnt_list(void) 1765 { 1766 struct mount *m, *tmp; 1767 /* 1768 * Notify about mounts that were added/reparented/detached/remain 1769 * connected after unmount. 1770 */ 1771 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1772 mnt_notify(m); 1773 list_del_init(&m->to_notify); 1774 } 1775 } 1776 1777 static bool need_notify_mnt_list(void) 1778 { 1779 return !list_empty(¬ify_list); 1780 } 1781 #else 1782 static void notify_mnt_list(void) 1783 { 1784 } 1785 1786 static bool need_notify_mnt_list(void) 1787 { 1788 return false; 1789 } 1790 #endif 1791 1792 static void namespace_unlock(void) 1793 { 1794 struct hlist_head head; 1795 struct hlist_node *p; 1796 struct mount *m; 1797 LIST_HEAD(list); 1798 1799 hlist_move_list(&unmounted, &head); 1800 list_splice_init(&ex_mountpoints, &list); 1801 1802 if (need_notify_mnt_list()) { 1803 /* 1804 * No point blocking out concurrent readers while notifications 1805 * are sent. This will also allow statmount()/listmount() to run 1806 * concurrently. 1807 */ 1808 downgrade_write(&namespace_sem); 1809 notify_mnt_list(); 1810 up_read(&namespace_sem); 1811 } else { 1812 up_write(&namespace_sem); 1813 } 1814 1815 shrink_dentry_list(&list); 1816 1817 if (likely(hlist_empty(&head))) 1818 return; 1819 1820 synchronize_rcu_expedited(); 1821 1822 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1823 hlist_del(&m->mnt_umount); 1824 mntput(&m->mnt); 1825 } 1826 } 1827 1828 static inline void namespace_lock(void) 1829 { 1830 down_write(&namespace_sem); 1831 } 1832 1833 enum umount_tree_flags { 1834 UMOUNT_SYNC = 1, 1835 UMOUNT_PROPAGATE = 2, 1836 UMOUNT_CONNECTED = 4, 1837 }; 1838 1839 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1840 { 1841 /* Leaving mounts connected is only valid for lazy umounts */ 1842 if (how & UMOUNT_SYNC) 1843 return true; 1844 1845 /* A mount without a parent has nothing to be connected to */ 1846 if (!mnt_has_parent(mnt)) 1847 return true; 1848 1849 /* Because the reference counting rules change when mounts are 1850 * unmounted and connected, umounted mounts may not be 1851 * connected to mounted mounts. 1852 */ 1853 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1854 return true; 1855 1856 /* Has it been requested that the mount remain connected? */ 1857 if (how & UMOUNT_CONNECTED) 1858 return false; 1859 1860 /* Is the mount locked such that it needs to remain connected? */ 1861 if (IS_MNT_LOCKED(mnt)) 1862 return false; 1863 1864 /* By default disconnect the mount */ 1865 return true; 1866 } 1867 1868 /* 1869 * mount_lock must be held 1870 * namespace_sem must be held for write 1871 */ 1872 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1873 { 1874 LIST_HEAD(tmp_list); 1875 struct mount *p; 1876 1877 if (how & UMOUNT_PROPAGATE) 1878 propagate_mount_unlock(mnt); 1879 1880 /* Gather the mounts to umount */ 1881 for (p = mnt; p; p = next_mnt(p, mnt)) { 1882 p->mnt.mnt_flags |= MNT_UMOUNT; 1883 if (mnt_ns_attached(p)) 1884 move_from_ns(p, &tmp_list); 1885 else 1886 list_move(&p->mnt_list, &tmp_list); 1887 } 1888 1889 /* Hide the mounts from mnt_mounts */ 1890 list_for_each_entry(p, &tmp_list, mnt_list) { 1891 list_del_init(&p->mnt_child); 1892 } 1893 1894 /* Add propagated mounts to the tmp_list */ 1895 if (how & UMOUNT_PROPAGATE) 1896 propagate_umount(&tmp_list); 1897 1898 while (!list_empty(&tmp_list)) { 1899 struct mnt_namespace *ns; 1900 bool disconnect; 1901 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1902 list_del_init(&p->mnt_expire); 1903 list_del_init(&p->mnt_list); 1904 ns = p->mnt_ns; 1905 if (ns) { 1906 ns->nr_mounts--; 1907 __touch_mnt_namespace(ns); 1908 } 1909 p->mnt_ns = NULL; 1910 if (how & UMOUNT_SYNC) 1911 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1912 1913 disconnect = disconnect_mount(p, how); 1914 if (mnt_has_parent(p)) { 1915 mnt_add_count(p->mnt_parent, -1); 1916 if (!disconnect) { 1917 /* Don't forget about p */ 1918 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1919 } else { 1920 umount_mnt(p); 1921 } 1922 } 1923 change_mnt_propagation(p, MS_PRIVATE); 1924 if (disconnect) 1925 hlist_add_head(&p->mnt_umount, &unmounted); 1926 1927 /* 1928 * At this point p->mnt_ns is NULL, notification will be queued 1929 * only if 1930 * 1931 * - p->prev_ns is non-NULL *and* 1932 * - p->prev_ns->n_fsnotify_marks is non-NULL 1933 * 1934 * This will preclude queuing the mount if this is a cleanup 1935 * after a failed copy_tree() or destruction of an anonymous 1936 * namespace, etc. 1937 */ 1938 mnt_notify_add(p); 1939 } 1940 } 1941 1942 static void shrink_submounts(struct mount *mnt); 1943 1944 static int do_umount_root(struct super_block *sb) 1945 { 1946 int ret = 0; 1947 1948 down_write(&sb->s_umount); 1949 if (!sb_rdonly(sb)) { 1950 struct fs_context *fc; 1951 1952 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1953 SB_RDONLY); 1954 if (IS_ERR(fc)) { 1955 ret = PTR_ERR(fc); 1956 } else { 1957 ret = parse_monolithic_mount_data(fc, NULL); 1958 if (!ret) 1959 ret = reconfigure_super(fc); 1960 put_fs_context(fc); 1961 } 1962 } 1963 up_write(&sb->s_umount); 1964 return ret; 1965 } 1966 1967 static int do_umount(struct mount *mnt, int flags) 1968 { 1969 struct super_block *sb = mnt->mnt.mnt_sb; 1970 int retval; 1971 1972 retval = security_sb_umount(&mnt->mnt, flags); 1973 if (retval) 1974 return retval; 1975 1976 /* 1977 * Allow userspace to request a mountpoint be expired rather than 1978 * unmounting unconditionally. Unmount only happens if: 1979 * (1) the mark is already set (the mark is cleared by mntput()) 1980 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1981 */ 1982 if (flags & MNT_EXPIRE) { 1983 if (&mnt->mnt == current->fs->root.mnt || 1984 flags & (MNT_FORCE | MNT_DETACH)) 1985 return -EINVAL; 1986 1987 /* 1988 * probably don't strictly need the lock here if we examined 1989 * all race cases, but it's a slowpath. 1990 */ 1991 lock_mount_hash(); 1992 if (mnt_get_count(mnt) != 2) { 1993 unlock_mount_hash(); 1994 return -EBUSY; 1995 } 1996 unlock_mount_hash(); 1997 1998 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1999 return -EAGAIN; 2000 } 2001 2002 /* 2003 * If we may have to abort operations to get out of this 2004 * mount, and they will themselves hold resources we must 2005 * allow the fs to do things. In the Unix tradition of 2006 * 'Gee thats tricky lets do it in userspace' the umount_begin 2007 * might fail to complete on the first run through as other tasks 2008 * must return, and the like. Thats for the mount program to worry 2009 * about for the moment. 2010 */ 2011 2012 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 2013 sb->s_op->umount_begin(sb); 2014 } 2015 2016 /* 2017 * No sense to grab the lock for this test, but test itself looks 2018 * somewhat bogus. Suggestions for better replacement? 2019 * Ho-hum... In principle, we might treat that as umount + switch 2020 * to rootfs. GC would eventually take care of the old vfsmount. 2021 * Actually it makes sense, especially if rootfs would contain a 2022 * /reboot - static binary that would close all descriptors and 2023 * call reboot(9). Then init(8) could umount root and exec /reboot. 2024 */ 2025 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 2026 /* 2027 * Special case for "unmounting" root ... 2028 * we just try to remount it readonly. 2029 */ 2030 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2031 return -EPERM; 2032 return do_umount_root(sb); 2033 } 2034 2035 namespace_lock(); 2036 lock_mount_hash(); 2037 2038 /* Recheck MNT_LOCKED with the locks held */ 2039 retval = -EINVAL; 2040 if (mnt->mnt.mnt_flags & MNT_LOCKED) 2041 goto out; 2042 2043 event++; 2044 if (flags & MNT_DETACH) { 2045 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2046 umount_tree(mnt, UMOUNT_PROPAGATE); 2047 retval = 0; 2048 } else { 2049 shrink_submounts(mnt); 2050 retval = -EBUSY; 2051 if (!propagate_mount_busy(mnt, 2)) { 2052 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2053 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2054 retval = 0; 2055 } 2056 } 2057 out: 2058 unlock_mount_hash(); 2059 namespace_unlock(); 2060 return retval; 2061 } 2062 2063 /* 2064 * __detach_mounts - lazily unmount all mounts on the specified dentry 2065 * 2066 * During unlink, rmdir, and d_drop it is possible to loose the path 2067 * to an existing mountpoint, and wind up leaking the mount. 2068 * detach_mounts allows lazily unmounting those mounts instead of 2069 * leaking them. 2070 * 2071 * The caller may hold dentry->d_inode->i_mutex. 2072 */ 2073 void __detach_mounts(struct dentry *dentry) 2074 { 2075 struct mountpoint *mp; 2076 struct mount *mnt; 2077 2078 namespace_lock(); 2079 lock_mount_hash(); 2080 mp = lookup_mountpoint(dentry); 2081 if (!mp) 2082 goto out_unlock; 2083 2084 event++; 2085 while (!hlist_empty(&mp->m_list)) { 2086 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 2087 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 2088 umount_mnt(mnt); 2089 hlist_add_head(&mnt->mnt_umount, &unmounted); 2090 } 2091 else umount_tree(mnt, UMOUNT_CONNECTED); 2092 } 2093 put_mountpoint(mp); 2094 out_unlock: 2095 unlock_mount_hash(); 2096 namespace_unlock(); 2097 } 2098 2099 /* 2100 * Is the caller allowed to modify his namespace? 2101 */ 2102 bool may_mount(void) 2103 { 2104 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 2105 } 2106 2107 static void warn_mandlock(void) 2108 { 2109 pr_warn_once("=======================================================\n" 2110 "WARNING: The mand mount option has been deprecated and\n" 2111 " and is ignored by this kernel. Remove the mand\n" 2112 " option from the mount to silence this warning.\n" 2113 "=======================================================\n"); 2114 } 2115 2116 static int can_umount(const struct path *path, int flags) 2117 { 2118 struct mount *mnt = real_mount(path->mnt); 2119 struct super_block *sb = path->dentry->d_sb; 2120 2121 if (!may_mount()) 2122 return -EPERM; 2123 if (!path_mounted(path)) 2124 return -EINVAL; 2125 if (!check_mnt(mnt)) 2126 return -EINVAL; 2127 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2128 return -EINVAL; 2129 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2130 return -EPERM; 2131 return 0; 2132 } 2133 2134 // caller is responsible for flags being sane 2135 int path_umount(struct path *path, int flags) 2136 { 2137 struct mount *mnt = real_mount(path->mnt); 2138 int ret; 2139 2140 ret = can_umount(path, flags); 2141 if (!ret) 2142 ret = do_umount(mnt, flags); 2143 2144 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2145 dput(path->dentry); 2146 mntput_no_expire(mnt); 2147 return ret; 2148 } 2149 2150 static int ksys_umount(char __user *name, int flags) 2151 { 2152 int lookup_flags = LOOKUP_MOUNTPOINT; 2153 struct path path; 2154 int ret; 2155 2156 // basic validity checks done first 2157 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2158 return -EINVAL; 2159 2160 if (!(flags & UMOUNT_NOFOLLOW)) 2161 lookup_flags |= LOOKUP_FOLLOW; 2162 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2163 if (ret) 2164 return ret; 2165 return path_umount(&path, flags); 2166 } 2167 2168 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2169 { 2170 return ksys_umount(name, flags); 2171 } 2172 2173 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2174 2175 /* 2176 * The 2.0 compatible umount. No flags. 2177 */ 2178 SYSCALL_DEFINE1(oldumount, char __user *, name) 2179 { 2180 return ksys_umount(name, 0); 2181 } 2182 2183 #endif 2184 2185 static bool is_mnt_ns_file(struct dentry *dentry) 2186 { 2187 struct ns_common *ns; 2188 2189 /* Is this a proxy for a mount namespace? */ 2190 if (dentry->d_op != &ns_dentry_operations) 2191 return false; 2192 2193 ns = d_inode(dentry)->i_private; 2194 2195 return ns->ops == &mntns_operations; 2196 } 2197 2198 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2199 { 2200 return &mnt->ns; 2201 } 2202 2203 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2204 { 2205 guard(rcu)(); 2206 2207 for (;;) { 2208 struct list_head *list; 2209 2210 if (previous) 2211 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list)); 2212 else 2213 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list)); 2214 if (list_is_head(list, &mnt_ns_list)) 2215 return ERR_PTR(-ENOENT); 2216 2217 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list); 2218 2219 /* 2220 * The last passive reference count is put with RCU 2221 * delay so accessing the mount namespace is not just 2222 * safe but all relevant members are still valid. 2223 */ 2224 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2225 continue; 2226 2227 /* 2228 * We need an active reference count as we're persisting 2229 * the mount namespace and it might already be on its 2230 * deathbed. 2231 */ 2232 if (!refcount_inc_not_zero(&mntns->ns.count)) 2233 continue; 2234 2235 return mntns; 2236 } 2237 } 2238 2239 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2240 { 2241 if (!is_mnt_ns_file(dentry)) 2242 return NULL; 2243 2244 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2245 } 2246 2247 static bool mnt_ns_loop(struct dentry *dentry) 2248 { 2249 /* Could bind mounting the mount namespace inode cause a 2250 * mount namespace loop? 2251 */ 2252 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2253 2254 if (!mnt_ns) 2255 return false; 2256 2257 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2258 } 2259 2260 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2261 int flag) 2262 { 2263 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2264 *dst_parent, *dst_mnt; 2265 2266 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2267 return ERR_PTR(-EINVAL); 2268 2269 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2270 return ERR_PTR(-EINVAL); 2271 2272 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2273 if (IS_ERR(dst_mnt)) 2274 return dst_mnt; 2275 2276 src_parent = src_root; 2277 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; 2278 2279 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2280 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2281 continue; 2282 2283 for (src_mnt = src_root_child; src_mnt; 2284 src_mnt = next_mnt(src_mnt, src_root_child)) { 2285 if (!(flag & CL_COPY_UNBINDABLE) && 2286 IS_MNT_UNBINDABLE(src_mnt)) { 2287 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2288 /* Both unbindable and locked. */ 2289 dst_mnt = ERR_PTR(-EPERM); 2290 goto out; 2291 } else { 2292 src_mnt = skip_mnt_tree(src_mnt); 2293 continue; 2294 } 2295 } 2296 if (!(flag & CL_COPY_MNT_NS_FILE) && 2297 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2298 src_mnt = skip_mnt_tree(src_mnt); 2299 continue; 2300 } 2301 while (src_parent != src_mnt->mnt_parent) { 2302 src_parent = src_parent->mnt_parent; 2303 dst_mnt = dst_mnt->mnt_parent; 2304 } 2305 2306 src_parent = src_mnt; 2307 dst_parent = dst_mnt; 2308 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2309 if (IS_ERR(dst_mnt)) 2310 goto out; 2311 lock_mount_hash(); 2312 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); 2313 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); 2314 unlock_mount_hash(); 2315 } 2316 } 2317 return res; 2318 2319 out: 2320 if (res) { 2321 lock_mount_hash(); 2322 umount_tree(res, UMOUNT_SYNC); 2323 unlock_mount_hash(); 2324 } 2325 return dst_mnt; 2326 } 2327 2328 /* Caller should check returned pointer for errors */ 2329 2330 struct vfsmount *collect_mounts(const struct path *path) 2331 { 2332 struct mount *tree; 2333 namespace_lock(); 2334 if (!check_mnt(real_mount(path->mnt))) 2335 tree = ERR_PTR(-EINVAL); 2336 else 2337 tree = copy_tree(real_mount(path->mnt), path->dentry, 2338 CL_COPY_ALL | CL_PRIVATE); 2339 namespace_unlock(); 2340 if (IS_ERR(tree)) 2341 return ERR_CAST(tree); 2342 return &tree->mnt; 2343 } 2344 2345 static void free_mnt_ns(struct mnt_namespace *); 2346 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2347 2348 static inline bool must_dissolve(struct mnt_namespace *mnt_ns) 2349 { 2350 /* 2351 * This mount belonged to an anonymous mount namespace 2352 * but was moved to a non-anonymous mount namespace and 2353 * then unmounted. 2354 */ 2355 if (unlikely(!mnt_ns)) 2356 return false; 2357 2358 /* 2359 * This mount belongs to a non-anonymous mount namespace 2360 * and we know that such a mount can never transition to 2361 * an anonymous mount namespace again. 2362 */ 2363 if (!is_anon_ns(mnt_ns)) { 2364 /* 2365 * A detached mount either belongs to an anonymous mount 2366 * namespace or a non-anonymous mount namespace. It 2367 * should never belong to something purely internal. 2368 */ 2369 VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL); 2370 return false; 2371 } 2372 2373 return true; 2374 } 2375 2376 void dissolve_on_fput(struct vfsmount *mnt) 2377 { 2378 struct mnt_namespace *ns; 2379 struct mount *m = real_mount(mnt); 2380 2381 scoped_guard(rcu) { 2382 if (!must_dissolve(READ_ONCE(m->mnt_ns))) 2383 return; 2384 } 2385 2386 scoped_guard(rwsem_write, &namespace_sem) { 2387 ns = m->mnt_ns; 2388 if (!must_dissolve(ns)) 2389 return; 2390 2391 /* 2392 * After must_dissolve() we know that this is a detached 2393 * mount in an anonymous mount namespace. 2394 * 2395 * Now when mnt_has_parent() reports that this mount 2396 * tree has a parent, we know that this anonymous mount 2397 * tree has been moved to another anonymous mount 2398 * namespace. 2399 * 2400 * So when closing this file we cannot unmount the mount 2401 * tree. This will be done when the file referring to 2402 * the root of the anonymous mount namespace will be 2403 * closed (It could already be closed but it would sync 2404 * on @namespace_sem and wait for us to finish.). 2405 */ 2406 if (mnt_has_parent(m)) 2407 return; 2408 2409 lock_mount_hash(); 2410 umount_tree(m, UMOUNT_CONNECTED); 2411 unlock_mount_hash(); 2412 } 2413 2414 /* Make sure we notice when we leak mounts. */ 2415 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 2416 free_mnt_ns(ns); 2417 } 2418 2419 void drop_collected_mounts(struct vfsmount *mnt) 2420 { 2421 namespace_lock(); 2422 lock_mount_hash(); 2423 umount_tree(real_mount(mnt), 0); 2424 unlock_mount_hash(); 2425 namespace_unlock(); 2426 } 2427 2428 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2429 { 2430 struct mount *child; 2431 2432 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2433 if (!is_subdir(child->mnt_mountpoint, dentry)) 2434 continue; 2435 2436 if (child->mnt.mnt_flags & MNT_LOCKED) 2437 return true; 2438 } 2439 return false; 2440 } 2441 2442 /* 2443 * Check that there aren't references to earlier/same mount namespaces in the 2444 * specified subtree. Such references can act as pins for mount namespaces 2445 * that aren't checked by the mount-cycle checking code, thereby allowing 2446 * cycles to be made. 2447 */ 2448 static bool check_for_nsfs_mounts(struct mount *subtree) 2449 { 2450 struct mount *p; 2451 bool ret = false; 2452 2453 lock_mount_hash(); 2454 for (p = subtree; p; p = next_mnt(p, subtree)) 2455 if (mnt_ns_loop(p->mnt.mnt_root)) 2456 goto out; 2457 2458 ret = true; 2459 out: 2460 unlock_mount_hash(); 2461 return ret; 2462 } 2463 2464 /** 2465 * clone_private_mount - create a private clone of a path 2466 * @path: path to clone 2467 * 2468 * This creates a new vfsmount, which will be the clone of @path. The new mount 2469 * will not be attached anywhere in the namespace and will be private (i.e. 2470 * changes to the originating mount won't be propagated into this). 2471 * 2472 * This assumes caller has called or done the equivalent of may_mount(). 2473 * 2474 * Release with mntput(). 2475 */ 2476 struct vfsmount *clone_private_mount(const struct path *path) 2477 { 2478 struct mount *old_mnt = real_mount(path->mnt); 2479 struct mount *new_mnt; 2480 2481 guard(rwsem_read)(&namespace_sem); 2482 2483 if (IS_MNT_UNBINDABLE(old_mnt)) 2484 return ERR_PTR(-EINVAL); 2485 2486 if (mnt_has_parent(old_mnt)) { 2487 if (!check_mnt(old_mnt)) 2488 return ERR_PTR(-EINVAL); 2489 } else { 2490 if (!is_mounted(&old_mnt->mnt)) 2491 return ERR_PTR(-EINVAL); 2492 2493 /* Make sure this isn't something purely kernel internal. */ 2494 if (!is_anon_ns(old_mnt->mnt_ns)) 2495 return ERR_PTR(-EINVAL); 2496 2497 /* Make sure we don't create mount namespace loops. */ 2498 if (!check_for_nsfs_mounts(old_mnt)) 2499 return ERR_PTR(-EINVAL); 2500 } 2501 2502 if (has_locked_children(old_mnt, path->dentry)) 2503 return ERR_PTR(-EINVAL); 2504 2505 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2506 if (IS_ERR(new_mnt)) 2507 return ERR_PTR(-EINVAL); 2508 2509 /* Longterm mount to be removed by kern_unmount*() */ 2510 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2511 return &new_mnt->mnt; 2512 } 2513 EXPORT_SYMBOL_GPL(clone_private_mount); 2514 2515 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2516 struct vfsmount *root) 2517 { 2518 struct mount *mnt; 2519 int res = f(root, arg); 2520 if (res) 2521 return res; 2522 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2523 res = f(&mnt->mnt, arg); 2524 if (res) 2525 return res; 2526 } 2527 return 0; 2528 } 2529 2530 static void lock_mnt_tree(struct mount *mnt) 2531 { 2532 struct mount *p; 2533 2534 for (p = mnt; p; p = next_mnt(p, mnt)) { 2535 int flags = p->mnt.mnt_flags; 2536 /* Don't allow unprivileged users to change mount flags */ 2537 flags |= MNT_LOCK_ATIME; 2538 2539 if (flags & MNT_READONLY) 2540 flags |= MNT_LOCK_READONLY; 2541 2542 if (flags & MNT_NODEV) 2543 flags |= MNT_LOCK_NODEV; 2544 2545 if (flags & MNT_NOSUID) 2546 flags |= MNT_LOCK_NOSUID; 2547 2548 if (flags & MNT_NOEXEC) 2549 flags |= MNT_LOCK_NOEXEC; 2550 /* Don't allow unprivileged users to reveal what is under a mount */ 2551 if (list_empty(&p->mnt_expire)) 2552 flags |= MNT_LOCKED; 2553 p->mnt.mnt_flags = flags; 2554 } 2555 } 2556 2557 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2558 { 2559 struct mount *p; 2560 2561 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2562 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2563 mnt_release_group_id(p); 2564 } 2565 } 2566 2567 static int invent_group_ids(struct mount *mnt, bool recurse) 2568 { 2569 struct mount *p; 2570 2571 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2572 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2573 int err = mnt_alloc_group_id(p); 2574 if (err) { 2575 cleanup_group_ids(mnt, p); 2576 return err; 2577 } 2578 } 2579 } 2580 2581 return 0; 2582 } 2583 2584 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2585 { 2586 unsigned int max = READ_ONCE(sysctl_mount_max); 2587 unsigned int mounts = 0; 2588 struct mount *p; 2589 2590 if (ns->nr_mounts >= max) 2591 return -ENOSPC; 2592 max -= ns->nr_mounts; 2593 if (ns->pending_mounts >= max) 2594 return -ENOSPC; 2595 max -= ns->pending_mounts; 2596 2597 for (p = mnt; p; p = next_mnt(p, mnt)) 2598 mounts++; 2599 2600 if (mounts > max) 2601 return -ENOSPC; 2602 2603 ns->pending_mounts += mounts; 2604 return 0; 2605 } 2606 2607 enum mnt_tree_flags_t { 2608 MNT_TREE_MOVE = BIT(0), 2609 MNT_TREE_BENEATH = BIT(1), 2610 MNT_TREE_PROPAGATION = BIT(2), 2611 }; 2612 2613 /** 2614 * attach_recursive_mnt - attach a source mount tree 2615 * @source_mnt: mount tree to be attached 2616 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2617 * @dest_mp: the mountpoint @source_mnt will be mounted at 2618 * @flags: modify how @source_mnt is supposed to be attached 2619 * 2620 * NOTE: in the table below explains the semantics when a source mount 2621 * of a given type is attached to a destination mount of a given type. 2622 * --------------------------------------------------------------------------- 2623 * | BIND MOUNT OPERATION | 2624 * |************************************************************************** 2625 * | source-->| shared | private | slave | unbindable | 2626 * | dest | | | | | 2627 * | | | | | | | 2628 * | v | | | | | 2629 * |************************************************************************** 2630 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2631 * | | | | | | 2632 * |non-shared| shared (+) | private | slave (*) | invalid | 2633 * *************************************************************************** 2634 * A bind operation clones the source mount and mounts the clone on the 2635 * destination mount. 2636 * 2637 * (++) the cloned mount is propagated to all the mounts in the propagation 2638 * tree of the destination mount and the cloned mount is added to 2639 * the peer group of the source mount. 2640 * (+) the cloned mount is created under the destination mount and is marked 2641 * as shared. The cloned mount is added to the peer group of the source 2642 * mount. 2643 * (+++) the mount is propagated to all the mounts in the propagation tree 2644 * of the destination mount and the cloned mount is made slave 2645 * of the same master as that of the source mount. The cloned mount 2646 * is marked as 'shared and slave'. 2647 * (*) the cloned mount is made a slave of the same master as that of the 2648 * source mount. 2649 * 2650 * --------------------------------------------------------------------------- 2651 * | MOVE MOUNT OPERATION | 2652 * |************************************************************************** 2653 * | source-->| shared | private | slave | unbindable | 2654 * | dest | | | | | 2655 * | | | | | | | 2656 * | v | | | | | 2657 * |************************************************************************** 2658 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2659 * | | | | | | 2660 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2661 * *************************************************************************** 2662 * 2663 * (+) the mount is moved to the destination. And is then propagated to 2664 * all the mounts in the propagation tree of the destination mount. 2665 * (+*) the mount is moved to the destination. 2666 * (+++) the mount is moved to the destination and is then propagated to 2667 * all the mounts belonging to the destination mount's propagation tree. 2668 * the mount is marked as 'shared and slave'. 2669 * (*) the mount continues to be a slave at the new location. 2670 * 2671 * if the source mount is a tree, the operations explained above is 2672 * applied to each mount in the tree. 2673 * Must be called without spinlocks held, since this function can sleep 2674 * in allocations. 2675 * 2676 * Context: The function expects namespace_lock() to be held. 2677 * Return: If @source_mnt was successfully attached 0 is returned. 2678 * Otherwise a negative error code is returned. 2679 */ 2680 static int attach_recursive_mnt(struct mount *source_mnt, 2681 struct mount *top_mnt, 2682 struct mountpoint *dest_mp, 2683 enum mnt_tree_flags_t flags) 2684 { 2685 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2686 HLIST_HEAD(tree_list); 2687 struct mnt_namespace *ns = top_mnt->mnt_ns; 2688 struct mountpoint *smp; 2689 struct mount *child, *dest_mnt, *p; 2690 struct hlist_node *n; 2691 int err = 0; 2692 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2693 2694 /* 2695 * Preallocate a mountpoint in case the new mounts need to be 2696 * mounted beneath mounts on the same mountpoint. 2697 */ 2698 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2699 if (IS_ERR(smp)) 2700 return PTR_ERR(smp); 2701 2702 /* Is there space to add these mounts to the mount namespace? */ 2703 if (!moving) { 2704 err = count_mounts(ns, source_mnt); 2705 if (err) 2706 goto out; 2707 } 2708 2709 if (beneath) 2710 dest_mnt = top_mnt->mnt_parent; 2711 else 2712 dest_mnt = top_mnt; 2713 2714 if (IS_MNT_SHARED(dest_mnt)) { 2715 err = invent_group_ids(source_mnt, true); 2716 if (err) 2717 goto out; 2718 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2719 } 2720 lock_mount_hash(); 2721 if (err) 2722 goto out_cleanup_ids; 2723 2724 if (IS_MNT_SHARED(dest_mnt)) { 2725 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2726 set_mnt_shared(p); 2727 } 2728 2729 if (moving) { 2730 if (beneath) 2731 dest_mp = smp; 2732 unhash_mnt(source_mnt); 2733 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2734 mnt_notify_add(source_mnt); 2735 touch_mnt_namespace(source_mnt->mnt_ns); 2736 } else { 2737 if (source_mnt->mnt_ns) { 2738 LIST_HEAD(head); 2739 2740 /* move from anon - the caller will destroy */ 2741 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2742 move_from_ns(p, &head); 2743 list_del_init(&head); 2744 } 2745 if (beneath) 2746 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2747 else 2748 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2749 commit_tree(source_mnt); 2750 } 2751 2752 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2753 struct mount *q; 2754 hlist_del_init(&child->mnt_hash); 2755 q = __lookup_mnt(&child->mnt_parent->mnt, 2756 child->mnt_mountpoint); 2757 if (q) 2758 mnt_change_mountpoint(child, smp, q); 2759 /* Notice when we are propagating across user namespaces */ 2760 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2761 lock_mnt_tree(child); 2762 child->mnt.mnt_flags &= ~MNT_LOCKED; 2763 commit_tree(child); 2764 } 2765 put_mountpoint(smp); 2766 unlock_mount_hash(); 2767 2768 return 0; 2769 2770 out_cleanup_ids: 2771 while (!hlist_empty(&tree_list)) { 2772 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2773 child->mnt_parent->mnt_ns->pending_mounts = 0; 2774 umount_tree(child, UMOUNT_SYNC); 2775 } 2776 unlock_mount_hash(); 2777 cleanup_group_ids(source_mnt, NULL); 2778 out: 2779 ns->pending_mounts = 0; 2780 2781 read_seqlock_excl(&mount_lock); 2782 put_mountpoint(smp); 2783 read_sequnlock_excl(&mount_lock); 2784 2785 return err; 2786 } 2787 2788 /** 2789 * do_lock_mount - lock mount and mountpoint 2790 * @path: target path 2791 * @beneath: whether the intention is to mount beneath @path 2792 * 2793 * Follow the mount stack on @path until the top mount @mnt is found. If 2794 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2795 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2796 * until nothing is stacked on top of it anymore. 2797 * 2798 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2799 * against concurrent removal of the new mountpoint from another mount 2800 * namespace. 2801 * 2802 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2803 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2804 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2805 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2806 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2807 * on top of it for @beneath. 2808 * 2809 * In addition, @beneath needs to make sure that @mnt hasn't been 2810 * unmounted or moved from its current mountpoint in between dropping 2811 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2812 * being unmounted would be detected later by e.g., calling 2813 * check_mnt(mnt) in the function it's called from. For the @beneath 2814 * case however, it's useful to detect it directly in do_lock_mount(). 2815 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2816 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2817 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2818 * 2819 * Return: Either the target mountpoint on the top mount or the top 2820 * mount's mountpoint. 2821 */ 2822 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2823 { 2824 struct vfsmount *mnt = path->mnt; 2825 struct dentry *dentry; 2826 struct mountpoint *mp = ERR_PTR(-ENOENT); 2827 2828 for (;;) { 2829 struct mount *m; 2830 2831 if (beneath) { 2832 m = real_mount(mnt); 2833 read_seqlock_excl(&mount_lock); 2834 dentry = dget(m->mnt_mountpoint); 2835 read_sequnlock_excl(&mount_lock); 2836 } else { 2837 dentry = path->dentry; 2838 } 2839 2840 inode_lock(dentry->d_inode); 2841 if (unlikely(cant_mount(dentry))) { 2842 inode_unlock(dentry->d_inode); 2843 goto out; 2844 } 2845 2846 namespace_lock(); 2847 2848 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2849 namespace_unlock(); 2850 inode_unlock(dentry->d_inode); 2851 goto out; 2852 } 2853 2854 mnt = lookup_mnt(path); 2855 if (likely(!mnt)) 2856 break; 2857 2858 namespace_unlock(); 2859 inode_unlock(dentry->d_inode); 2860 if (beneath) 2861 dput(dentry); 2862 path_put(path); 2863 path->mnt = mnt; 2864 path->dentry = dget(mnt->mnt_root); 2865 } 2866 2867 mp = get_mountpoint(dentry); 2868 if (IS_ERR(mp)) { 2869 namespace_unlock(); 2870 inode_unlock(dentry->d_inode); 2871 } 2872 2873 out: 2874 if (beneath) 2875 dput(dentry); 2876 2877 return mp; 2878 } 2879 2880 static inline struct mountpoint *lock_mount(struct path *path) 2881 { 2882 return do_lock_mount(path, false); 2883 } 2884 2885 static void unlock_mount(struct mountpoint *where) 2886 { 2887 struct dentry *dentry = where->m_dentry; 2888 2889 read_seqlock_excl(&mount_lock); 2890 put_mountpoint(where); 2891 read_sequnlock_excl(&mount_lock); 2892 2893 namespace_unlock(); 2894 inode_unlock(dentry->d_inode); 2895 } 2896 2897 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2898 { 2899 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2900 return -EINVAL; 2901 2902 if (d_is_dir(mp->m_dentry) != 2903 d_is_dir(mnt->mnt.mnt_root)) 2904 return -ENOTDIR; 2905 2906 return attach_recursive_mnt(mnt, p, mp, 0); 2907 } 2908 2909 /* 2910 * Sanity check the flags to change_mnt_propagation. 2911 */ 2912 2913 static int flags_to_propagation_type(int ms_flags) 2914 { 2915 int type = ms_flags & ~(MS_REC | MS_SILENT); 2916 2917 /* Fail if any non-propagation flags are set */ 2918 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2919 return 0; 2920 /* Only one propagation flag should be set */ 2921 if (!is_power_of_2(type)) 2922 return 0; 2923 return type; 2924 } 2925 2926 /* 2927 * recursively change the type of the mountpoint. 2928 */ 2929 static int do_change_type(struct path *path, int ms_flags) 2930 { 2931 struct mount *m; 2932 struct mount *mnt = real_mount(path->mnt); 2933 int recurse = ms_flags & MS_REC; 2934 int type; 2935 int err = 0; 2936 2937 if (!path_mounted(path)) 2938 return -EINVAL; 2939 2940 type = flags_to_propagation_type(ms_flags); 2941 if (!type) 2942 return -EINVAL; 2943 2944 namespace_lock(); 2945 if (type == MS_SHARED) { 2946 err = invent_group_ids(mnt, recurse); 2947 if (err) 2948 goto out_unlock; 2949 } 2950 2951 lock_mount_hash(); 2952 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2953 change_mnt_propagation(m, type); 2954 unlock_mount_hash(); 2955 2956 out_unlock: 2957 namespace_unlock(); 2958 return err; 2959 } 2960 2961 /* may_copy_tree() - check if a mount tree can be copied 2962 * @path: path to the mount tree to be copied 2963 * 2964 * This helper checks if the caller may copy the mount tree starting 2965 * from @path->mnt. The caller may copy the mount tree under the 2966 * following circumstances: 2967 * 2968 * (1) The caller is located in the mount namespace of the mount tree. 2969 * This also implies that the mount does not belong to an anonymous 2970 * mount namespace. 2971 * (2) The caller tries to copy an nfs mount referring to a mount 2972 * namespace, i.e., the caller is trying to copy a mount namespace 2973 * entry from nsfs. 2974 * (3) The caller tries to copy a pidfs mount referring to a pidfd. 2975 * (4) The caller is trying to copy a mount tree that belongs to an 2976 * anonymous mount namespace. 2977 * 2978 * For that to be safe, this helper enforces that the origin mount 2979 * namespace the anonymous mount namespace was created from is the 2980 * same as the caller's mount namespace by comparing the sequence 2981 * numbers. 2982 * 2983 * This is not strictly necessary. The current semantics of the new 2984 * mount api enforce that the caller must be located in the same 2985 * mount namespace as the mount tree it interacts with. Using the 2986 * origin sequence number preserves these semantics even for 2987 * anonymous mount namespaces. However, one could envision extending 2988 * the api to directly operate across mount namespace if needed. 2989 * 2990 * The ownership of a non-anonymous mount namespace such as the 2991 * caller's cannot change. 2992 * => We know that the caller's mount namespace is stable. 2993 * 2994 * If the origin sequence number of the anonymous mount namespace is 2995 * the same as the sequence number of the caller's mount namespace. 2996 * => The owning namespaces are the same. 2997 * 2998 * ==> The earlier capability check on the owning namespace of the 2999 * caller's mount namespace ensures that the caller has the 3000 * ability to copy the mount tree. 3001 * 3002 * Returns true if the mount tree can be copied, false otherwise. 3003 */ 3004 static inline bool may_copy_tree(struct path *path) 3005 { 3006 struct mount *mnt = real_mount(path->mnt); 3007 const struct dentry_operations *d_op; 3008 3009 if (check_mnt(mnt)) 3010 return true; 3011 3012 d_op = path->dentry->d_op; 3013 if (d_op == &ns_dentry_operations) 3014 return true; 3015 3016 if (d_op == &pidfs_dentry_operations) 3017 return true; 3018 3019 if (!is_mounted(path->mnt)) 3020 return false; 3021 3022 return check_anonymous_mnt(mnt); 3023 } 3024 3025 3026 static struct mount *__do_loopback(struct path *old_path, int recurse) 3027 { 3028 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 3029 3030 if (IS_MNT_UNBINDABLE(old)) 3031 return mnt; 3032 3033 if (!may_copy_tree(old_path)) 3034 return mnt; 3035 3036 if (!recurse && has_locked_children(old, old_path->dentry)) 3037 return mnt; 3038 3039 if (recurse) 3040 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 3041 else 3042 mnt = clone_mnt(old, old_path->dentry, 0); 3043 3044 if (!IS_ERR(mnt)) 3045 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3046 3047 return mnt; 3048 } 3049 3050 /* 3051 * do loopback mount. 3052 */ 3053 static int do_loopback(struct path *path, const char *old_name, 3054 int recurse) 3055 { 3056 struct path old_path; 3057 struct mount *mnt = NULL, *parent; 3058 struct mountpoint *mp; 3059 int err; 3060 if (!old_name || !*old_name) 3061 return -EINVAL; 3062 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 3063 if (err) 3064 return err; 3065 3066 err = -EINVAL; 3067 if (mnt_ns_loop(old_path.dentry)) 3068 goto out; 3069 3070 mp = lock_mount(path); 3071 if (IS_ERR(mp)) { 3072 err = PTR_ERR(mp); 3073 goto out; 3074 } 3075 3076 parent = real_mount(path->mnt); 3077 if (!check_mnt(parent)) 3078 goto out2; 3079 3080 mnt = __do_loopback(&old_path, recurse); 3081 if (IS_ERR(mnt)) { 3082 err = PTR_ERR(mnt); 3083 goto out2; 3084 } 3085 3086 err = graft_tree(mnt, parent, mp); 3087 if (err) { 3088 lock_mount_hash(); 3089 umount_tree(mnt, UMOUNT_SYNC); 3090 unlock_mount_hash(); 3091 } 3092 out2: 3093 unlock_mount(mp); 3094 out: 3095 path_put(&old_path); 3096 return err; 3097 } 3098 3099 static struct file *open_detached_copy(struct path *path, bool recursive) 3100 { 3101 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; 3102 struct user_namespace *user_ns = mnt_ns->user_ns; 3103 struct mount *mnt, *p; 3104 struct file *file; 3105 3106 ns = alloc_mnt_ns(user_ns, true); 3107 if (IS_ERR(ns)) 3108 return ERR_CAST(ns); 3109 3110 namespace_lock(); 3111 3112 /* 3113 * Record the sequence number of the source mount namespace. 3114 * This needs to hold namespace_sem to ensure that the mount 3115 * doesn't get attached. 3116 */ 3117 if (is_mounted(path->mnt)) { 3118 src_mnt_ns = real_mount(path->mnt)->mnt_ns; 3119 if (is_anon_ns(src_mnt_ns)) 3120 ns->seq_origin = src_mnt_ns->seq_origin; 3121 else 3122 ns->seq_origin = src_mnt_ns->seq; 3123 } 3124 3125 mnt = __do_loopback(path, recursive); 3126 if (IS_ERR(mnt)) { 3127 namespace_unlock(); 3128 free_mnt_ns(ns); 3129 return ERR_CAST(mnt); 3130 } 3131 3132 lock_mount_hash(); 3133 for (p = mnt; p; p = next_mnt(p, mnt)) { 3134 mnt_add_to_ns(ns, p); 3135 ns->nr_mounts++; 3136 } 3137 ns->root = mnt; 3138 mntget(&mnt->mnt); 3139 unlock_mount_hash(); 3140 namespace_unlock(); 3141 3142 mntput(path->mnt); 3143 path->mnt = &mnt->mnt; 3144 file = dentry_open(path, O_PATH, current_cred()); 3145 if (IS_ERR(file)) 3146 dissolve_on_fput(path->mnt); 3147 else 3148 file->f_mode |= FMODE_NEED_UNMOUNT; 3149 return file; 3150 } 3151 3152 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3153 { 3154 int ret; 3155 struct path path __free(path_put) = {}; 3156 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3157 bool detached = flags & OPEN_TREE_CLONE; 3158 3159 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3160 3161 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3162 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3163 OPEN_TREE_CLOEXEC)) 3164 return ERR_PTR(-EINVAL); 3165 3166 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3167 return ERR_PTR(-EINVAL); 3168 3169 if (flags & AT_NO_AUTOMOUNT) 3170 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3171 if (flags & AT_SYMLINK_NOFOLLOW) 3172 lookup_flags &= ~LOOKUP_FOLLOW; 3173 if (flags & AT_EMPTY_PATH) 3174 lookup_flags |= LOOKUP_EMPTY; 3175 3176 if (detached && !may_mount()) 3177 return ERR_PTR(-EPERM); 3178 3179 ret = user_path_at(dfd, filename, lookup_flags, &path); 3180 if (unlikely(ret)) 3181 return ERR_PTR(ret); 3182 3183 if (detached) 3184 return open_detached_copy(&path, flags & AT_RECURSIVE); 3185 3186 return dentry_open(&path, O_PATH, current_cred()); 3187 } 3188 3189 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3190 { 3191 int fd; 3192 struct file *file __free(fput) = NULL; 3193 3194 file = vfs_open_tree(dfd, filename, flags); 3195 if (IS_ERR(file)) 3196 return PTR_ERR(file); 3197 3198 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3199 if (fd < 0) 3200 return fd; 3201 3202 fd_install(fd, no_free_ptr(file)); 3203 return fd; 3204 } 3205 3206 /* 3207 * Don't allow locked mount flags to be cleared. 3208 * 3209 * No locks need to be held here while testing the various MNT_LOCK 3210 * flags because those flags can never be cleared once they are set. 3211 */ 3212 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3213 { 3214 unsigned int fl = mnt->mnt.mnt_flags; 3215 3216 if ((fl & MNT_LOCK_READONLY) && 3217 !(mnt_flags & MNT_READONLY)) 3218 return false; 3219 3220 if ((fl & MNT_LOCK_NODEV) && 3221 !(mnt_flags & MNT_NODEV)) 3222 return false; 3223 3224 if ((fl & MNT_LOCK_NOSUID) && 3225 !(mnt_flags & MNT_NOSUID)) 3226 return false; 3227 3228 if ((fl & MNT_LOCK_NOEXEC) && 3229 !(mnt_flags & MNT_NOEXEC)) 3230 return false; 3231 3232 if ((fl & MNT_LOCK_ATIME) && 3233 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3234 return false; 3235 3236 return true; 3237 } 3238 3239 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3240 { 3241 bool readonly_request = (mnt_flags & MNT_READONLY); 3242 3243 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3244 return 0; 3245 3246 if (readonly_request) 3247 return mnt_make_readonly(mnt); 3248 3249 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3250 return 0; 3251 } 3252 3253 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3254 { 3255 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3256 mnt->mnt.mnt_flags = mnt_flags; 3257 touch_mnt_namespace(mnt->mnt_ns); 3258 } 3259 3260 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 3261 { 3262 struct super_block *sb = mnt->mnt_sb; 3263 3264 if (!__mnt_is_readonly(mnt) && 3265 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3266 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3267 char *buf, *mntpath; 3268 3269 buf = (char *)__get_free_page(GFP_KERNEL); 3270 if (buf) 3271 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3272 else 3273 mntpath = ERR_PTR(-ENOMEM); 3274 if (IS_ERR(mntpath)) 3275 mntpath = "(unknown)"; 3276 3277 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3278 sb->s_type->name, 3279 is_mounted(mnt) ? "remounted" : "mounted", 3280 mntpath, &sb->s_time_max, 3281 (unsigned long long)sb->s_time_max); 3282 3283 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3284 if (buf) 3285 free_page((unsigned long)buf); 3286 } 3287 } 3288 3289 /* 3290 * Handle reconfiguration of the mountpoint only without alteration of the 3291 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3292 * to mount(2). 3293 */ 3294 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 3295 { 3296 struct super_block *sb = path->mnt->mnt_sb; 3297 struct mount *mnt = real_mount(path->mnt); 3298 int ret; 3299 3300 if (!check_mnt(mnt)) 3301 return -EINVAL; 3302 3303 if (!path_mounted(path)) 3304 return -EINVAL; 3305 3306 if (!can_change_locked_flags(mnt, mnt_flags)) 3307 return -EPERM; 3308 3309 /* 3310 * We're only checking whether the superblock is read-only not 3311 * changing it, so only take down_read(&sb->s_umount). 3312 */ 3313 down_read(&sb->s_umount); 3314 lock_mount_hash(); 3315 ret = change_mount_ro_state(mnt, mnt_flags); 3316 if (ret == 0) 3317 set_mount_attributes(mnt, mnt_flags); 3318 unlock_mount_hash(); 3319 up_read(&sb->s_umount); 3320 3321 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3322 3323 return ret; 3324 } 3325 3326 /* 3327 * change filesystem flags. dir should be a physical root of filesystem. 3328 * If you've mounted a non-root directory somewhere and want to do remount 3329 * on it - tough luck. 3330 */ 3331 static int do_remount(struct path *path, int ms_flags, int sb_flags, 3332 int mnt_flags, void *data) 3333 { 3334 int err; 3335 struct super_block *sb = path->mnt->mnt_sb; 3336 struct mount *mnt = real_mount(path->mnt); 3337 struct fs_context *fc; 3338 3339 if (!check_mnt(mnt)) 3340 return -EINVAL; 3341 3342 if (!path_mounted(path)) 3343 return -EINVAL; 3344 3345 if (!can_change_locked_flags(mnt, mnt_flags)) 3346 return -EPERM; 3347 3348 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3349 if (IS_ERR(fc)) 3350 return PTR_ERR(fc); 3351 3352 /* 3353 * Indicate to the filesystem that the remount request is coming 3354 * from the legacy mount system call. 3355 */ 3356 fc->oldapi = true; 3357 3358 err = parse_monolithic_mount_data(fc, data); 3359 if (!err) { 3360 down_write(&sb->s_umount); 3361 err = -EPERM; 3362 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3363 err = reconfigure_super(fc); 3364 if (!err) { 3365 lock_mount_hash(); 3366 set_mount_attributes(mnt, mnt_flags); 3367 unlock_mount_hash(); 3368 } 3369 } 3370 up_write(&sb->s_umount); 3371 } 3372 3373 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3374 3375 put_fs_context(fc); 3376 return err; 3377 } 3378 3379 static inline int tree_contains_unbindable(struct mount *mnt) 3380 { 3381 struct mount *p; 3382 for (p = mnt; p; p = next_mnt(p, mnt)) { 3383 if (IS_MNT_UNBINDABLE(p)) 3384 return 1; 3385 } 3386 return 0; 3387 } 3388 3389 static int do_set_group(struct path *from_path, struct path *to_path) 3390 { 3391 struct mount *from, *to; 3392 int err; 3393 3394 from = real_mount(from_path->mnt); 3395 to = real_mount(to_path->mnt); 3396 3397 namespace_lock(); 3398 3399 err = -EINVAL; 3400 /* To and From must be mounted */ 3401 if (!is_mounted(&from->mnt)) 3402 goto out; 3403 if (!is_mounted(&to->mnt)) 3404 goto out; 3405 3406 err = -EPERM; 3407 /* We should be allowed to modify mount namespaces of both mounts */ 3408 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3409 goto out; 3410 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3411 goto out; 3412 3413 err = -EINVAL; 3414 /* To and From paths should be mount roots */ 3415 if (!path_mounted(from_path)) 3416 goto out; 3417 if (!path_mounted(to_path)) 3418 goto out; 3419 3420 /* Setting sharing groups is only allowed across same superblock */ 3421 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3422 goto out; 3423 3424 /* From mount root should be wider than To mount root */ 3425 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3426 goto out; 3427 3428 /* From mount should not have locked children in place of To's root */ 3429 if (has_locked_children(from, to->mnt.mnt_root)) 3430 goto out; 3431 3432 /* Setting sharing groups is only allowed on private mounts */ 3433 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3434 goto out; 3435 3436 /* From should not be private */ 3437 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3438 goto out; 3439 3440 if (IS_MNT_SLAVE(from)) { 3441 struct mount *m = from->mnt_master; 3442 3443 list_add(&to->mnt_slave, &m->mnt_slave_list); 3444 to->mnt_master = m; 3445 } 3446 3447 if (IS_MNT_SHARED(from)) { 3448 to->mnt_group_id = from->mnt_group_id; 3449 list_add(&to->mnt_share, &from->mnt_share); 3450 lock_mount_hash(); 3451 set_mnt_shared(to); 3452 unlock_mount_hash(); 3453 } 3454 3455 err = 0; 3456 out: 3457 namespace_unlock(); 3458 return err; 3459 } 3460 3461 /** 3462 * path_overmounted - check if path is overmounted 3463 * @path: path to check 3464 * 3465 * Check if path is overmounted, i.e., if there's a mount on top of 3466 * @path->mnt with @path->dentry as mountpoint. 3467 * 3468 * Context: This function expects namespace_lock() to be held. 3469 * Return: If path is overmounted true is returned, false if not. 3470 */ 3471 static inline bool path_overmounted(const struct path *path) 3472 { 3473 rcu_read_lock(); 3474 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3475 rcu_read_unlock(); 3476 return true; 3477 } 3478 rcu_read_unlock(); 3479 return false; 3480 } 3481 3482 /** 3483 * can_move_mount_beneath - check that we can mount beneath the top mount 3484 * @from: mount to mount beneath 3485 * @to: mount under which to mount 3486 * @mp: mountpoint of @to 3487 * 3488 * - Make sure that @to->dentry is actually the root of a mount under 3489 * which we can mount another mount. 3490 * - Make sure that nothing can be mounted beneath the caller's current 3491 * root or the rootfs of the namespace. 3492 * - Make sure that the caller can unmount the topmost mount ensuring 3493 * that the caller could reveal the underlying mountpoint. 3494 * - Ensure that nothing has been mounted on top of @from before we 3495 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3496 * - Prevent mounting beneath a mount if the propagation relationship 3497 * between the source mount, parent mount, and top mount would lead to 3498 * nonsensical mount trees. 3499 * 3500 * Context: This function expects namespace_lock() to be held. 3501 * Return: On success 0, and on error a negative error code is returned. 3502 */ 3503 static int can_move_mount_beneath(const struct path *from, 3504 const struct path *to, 3505 const struct mountpoint *mp) 3506 { 3507 struct mount *mnt_from = real_mount(from->mnt), 3508 *mnt_to = real_mount(to->mnt), 3509 *parent_mnt_to = mnt_to->mnt_parent; 3510 3511 if (!mnt_has_parent(mnt_to)) 3512 return -EINVAL; 3513 3514 if (!path_mounted(to)) 3515 return -EINVAL; 3516 3517 if (IS_MNT_LOCKED(mnt_to)) 3518 return -EINVAL; 3519 3520 /* Avoid creating shadow mounts during mount propagation. */ 3521 if (path_overmounted(from)) 3522 return -EINVAL; 3523 3524 /* 3525 * Mounting beneath the rootfs only makes sense when the 3526 * semantics of pivot_root(".", ".") are used. 3527 */ 3528 if (&mnt_to->mnt == current->fs->root.mnt) 3529 return -EINVAL; 3530 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3531 return -EINVAL; 3532 3533 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3534 if (p == mnt_to) 3535 return -EINVAL; 3536 3537 /* 3538 * If the parent mount propagates to the child mount this would 3539 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3540 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3541 * defeats the whole purpose of mounting beneath another mount. 3542 */ 3543 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3544 return -EINVAL; 3545 3546 /* 3547 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3548 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3549 * Afterwards @mnt_from would be mounted on top of 3550 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3551 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3552 * already mounted on @mnt_from, @mnt_to would ultimately be 3553 * remounted on top of @c. Afterwards, @mnt_from would be 3554 * covered by a copy @c of @mnt_from and @c would be covered by 3555 * @mnt_from itself. This defeats the whole purpose of mounting 3556 * @mnt_from beneath @mnt_to. 3557 */ 3558 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3559 return -EINVAL; 3560 3561 return 0; 3562 } 3563 3564 /* may_use_mount() - check if a mount tree can be used 3565 * @mnt: vfsmount to be used 3566 * 3567 * This helper checks if the caller may use the mount tree starting 3568 * from @path->mnt. The caller may use the mount tree under the 3569 * following circumstances: 3570 * 3571 * (1) The caller is located in the mount namespace of the mount tree. 3572 * This also implies that the mount does not belong to an anonymous 3573 * mount namespace. 3574 * (2) The caller is trying to use a mount tree that belongs to an 3575 * anonymous mount namespace. 3576 * 3577 * For that to be safe, this helper enforces that the origin mount 3578 * namespace the anonymous mount namespace was created from is the 3579 * same as the caller's mount namespace by comparing the sequence 3580 * numbers. 3581 * 3582 * The ownership of a non-anonymous mount namespace such as the 3583 * caller's cannot change. 3584 * => We know that the caller's mount namespace is stable. 3585 * 3586 * If the origin sequence number of the anonymous mount namespace is 3587 * the same as the sequence number of the caller's mount namespace. 3588 * => The owning namespaces are the same. 3589 * 3590 * ==> The earlier capability check on the owning namespace of the 3591 * caller's mount namespace ensures that the caller has the 3592 * ability to use the mount tree. 3593 * 3594 * Returns true if the mount tree can be used, false otherwise. 3595 */ 3596 static inline bool may_use_mount(struct mount *mnt) 3597 { 3598 if (check_mnt(mnt)) 3599 return true; 3600 3601 /* 3602 * Make sure that noone unmounted the target path or somehow 3603 * managed to get their hands on something purely kernel 3604 * internal. 3605 */ 3606 if (!is_mounted(&mnt->mnt)) 3607 return false; 3608 3609 return check_anonymous_mnt(mnt); 3610 } 3611 3612 static int do_move_mount(struct path *old_path, 3613 struct path *new_path, enum mnt_tree_flags_t flags) 3614 { 3615 struct mnt_namespace *ns; 3616 struct mount *p; 3617 struct mount *old; 3618 struct mount *parent; 3619 struct mountpoint *mp, *old_mp; 3620 int err; 3621 bool attached, beneath = flags & MNT_TREE_BENEATH; 3622 3623 mp = do_lock_mount(new_path, beneath); 3624 if (IS_ERR(mp)) 3625 return PTR_ERR(mp); 3626 3627 old = real_mount(old_path->mnt); 3628 p = real_mount(new_path->mnt); 3629 parent = old->mnt_parent; 3630 attached = mnt_has_parent(old); 3631 if (attached) 3632 flags |= MNT_TREE_MOVE; 3633 old_mp = old->mnt_mp; 3634 ns = old->mnt_ns; 3635 3636 err = -EINVAL; 3637 if (!may_use_mount(p)) 3638 goto out; 3639 3640 /* The thing moved must be mounted... */ 3641 if (!is_mounted(&old->mnt)) 3642 goto out; 3643 3644 /* ... and either ours or the root of anon namespace */ 3645 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3646 goto out; 3647 3648 if (is_anon_ns(ns)) { 3649 /* 3650 * Ending up with two files referring to the root of the 3651 * same anonymous mount namespace would cause an error 3652 * as this would mean trying to move the same mount 3653 * twice into the mount tree which would be rejected 3654 * later. But be explicit about it right here. 3655 */ 3656 if ((is_anon_ns(p->mnt_ns) && ns == p->mnt_ns)) 3657 goto out; 3658 3659 /* 3660 * If this is an anonymous mount tree ensure that mount 3661 * propagation can detect mounts that were just 3662 * propagated to the target mount tree so we don't 3663 * propagate onto them. 3664 */ 3665 ns->mntns_flags |= MNTNS_PROPAGATING; 3666 } else if (is_anon_ns(p->mnt_ns)) { 3667 /* 3668 * Don't allow moving an attached mount tree to an 3669 * anonymous mount tree. 3670 */ 3671 goto out; 3672 } 3673 3674 if (old->mnt.mnt_flags & MNT_LOCKED) 3675 goto out; 3676 3677 if (!path_mounted(old_path)) 3678 goto out; 3679 3680 if (d_is_dir(new_path->dentry) != 3681 d_is_dir(old_path->dentry)) 3682 goto out; 3683 /* 3684 * Don't move a mount residing in a shared parent. 3685 */ 3686 if (attached && IS_MNT_SHARED(parent)) 3687 goto out; 3688 3689 if (beneath) { 3690 err = can_move_mount_beneath(old_path, new_path, mp); 3691 if (err) 3692 goto out; 3693 3694 err = -EINVAL; 3695 p = p->mnt_parent; 3696 flags |= MNT_TREE_BENEATH; 3697 } 3698 3699 /* 3700 * Don't move a mount tree containing unbindable mounts to a destination 3701 * mount which is shared. 3702 */ 3703 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3704 goto out; 3705 err = -ELOOP; 3706 if (!check_for_nsfs_mounts(old)) 3707 goto out; 3708 for (; mnt_has_parent(p); p = p->mnt_parent) 3709 if (p == old) 3710 goto out; 3711 3712 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3713 if (err) 3714 goto out; 3715 3716 if (is_anon_ns(ns)) 3717 ns->mntns_flags &= ~MNTNS_PROPAGATING; 3718 3719 /* if the mount is moved, it should no longer be expire 3720 * automatically */ 3721 list_del_init(&old->mnt_expire); 3722 if (attached) 3723 put_mountpoint(old_mp); 3724 out: 3725 unlock_mount(mp); 3726 if (!err) { 3727 if (attached) { 3728 mntput_no_expire(parent); 3729 } else { 3730 /* Make sure we notice when we leak mounts. */ 3731 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 3732 free_mnt_ns(ns); 3733 } 3734 } 3735 return err; 3736 } 3737 3738 static int do_move_mount_old(struct path *path, const char *old_name) 3739 { 3740 struct path old_path; 3741 int err; 3742 3743 if (!old_name || !*old_name) 3744 return -EINVAL; 3745 3746 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3747 if (err) 3748 return err; 3749 3750 err = do_move_mount(&old_path, path, 0); 3751 path_put(&old_path); 3752 return err; 3753 } 3754 3755 /* 3756 * add a mount into a namespace's mount tree 3757 */ 3758 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3759 const struct path *path, int mnt_flags) 3760 { 3761 struct mount *parent = real_mount(path->mnt); 3762 3763 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3764 3765 if (unlikely(!check_mnt(parent))) { 3766 /* that's acceptable only for automounts done in private ns */ 3767 if (!(mnt_flags & MNT_SHRINKABLE)) 3768 return -EINVAL; 3769 /* ... and for those we'd better have mountpoint still alive */ 3770 if (!parent->mnt_ns) 3771 return -EINVAL; 3772 } 3773 3774 /* Refuse the same filesystem on the same mount point */ 3775 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3776 return -EBUSY; 3777 3778 if (d_is_symlink(newmnt->mnt.mnt_root)) 3779 return -EINVAL; 3780 3781 newmnt->mnt.mnt_flags = mnt_flags; 3782 return graft_tree(newmnt, parent, mp); 3783 } 3784 3785 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3786 3787 /* 3788 * Create a new mount using a superblock configuration and request it 3789 * be added to the namespace tree. 3790 */ 3791 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3792 unsigned int mnt_flags) 3793 { 3794 struct vfsmount *mnt; 3795 struct mountpoint *mp; 3796 struct super_block *sb = fc->root->d_sb; 3797 int error; 3798 3799 error = security_sb_kern_mount(sb); 3800 if (!error && mount_too_revealing(sb, &mnt_flags)) 3801 error = -EPERM; 3802 3803 if (unlikely(error)) { 3804 fc_drop_locked(fc); 3805 return error; 3806 } 3807 3808 up_write(&sb->s_umount); 3809 3810 mnt = vfs_create_mount(fc); 3811 if (IS_ERR(mnt)) 3812 return PTR_ERR(mnt); 3813 3814 mnt_warn_timestamp_expiry(mountpoint, mnt); 3815 3816 mp = lock_mount(mountpoint); 3817 if (IS_ERR(mp)) { 3818 mntput(mnt); 3819 return PTR_ERR(mp); 3820 } 3821 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3822 unlock_mount(mp); 3823 if (error < 0) 3824 mntput(mnt); 3825 return error; 3826 } 3827 3828 /* 3829 * create a new mount for userspace and request it to be added into the 3830 * namespace's tree 3831 */ 3832 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3833 int mnt_flags, const char *name, void *data) 3834 { 3835 struct file_system_type *type; 3836 struct fs_context *fc; 3837 const char *subtype = NULL; 3838 int err = 0; 3839 3840 if (!fstype) 3841 return -EINVAL; 3842 3843 type = get_fs_type(fstype); 3844 if (!type) 3845 return -ENODEV; 3846 3847 if (type->fs_flags & FS_HAS_SUBTYPE) { 3848 subtype = strchr(fstype, '.'); 3849 if (subtype) { 3850 subtype++; 3851 if (!*subtype) { 3852 put_filesystem(type); 3853 return -EINVAL; 3854 } 3855 } 3856 } 3857 3858 fc = fs_context_for_mount(type, sb_flags); 3859 put_filesystem(type); 3860 if (IS_ERR(fc)) 3861 return PTR_ERR(fc); 3862 3863 /* 3864 * Indicate to the filesystem that the mount request is coming 3865 * from the legacy mount system call. 3866 */ 3867 fc->oldapi = true; 3868 3869 if (subtype) 3870 err = vfs_parse_fs_string(fc, "subtype", 3871 subtype, strlen(subtype)); 3872 if (!err && name) 3873 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3874 if (!err) 3875 err = parse_monolithic_mount_data(fc, data); 3876 if (!err && !mount_capable(fc)) 3877 err = -EPERM; 3878 if (!err) 3879 err = vfs_get_tree(fc); 3880 if (!err) 3881 err = do_new_mount_fc(fc, path, mnt_flags); 3882 3883 put_fs_context(fc); 3884 return err; 3885 } 3886 3887 int finish_automount(struct vfsmount *m, const struct path *path) 3888 { 3889 struct dentry *dentry = path->dentry; 3890 struct mountpoint *mp; 3891 struct mount *mnt; 3892 int err; 3893 3894 if (!m) 3895 return 0; 3896 if (IS_ERR(m)) 3897 return PTR_ERR(m); 3898 3899 mnt = real_mount(m); 3900 /* The new mount record should have at least 2 refs to prevent it being 3901 * expired before we get a chance to add it 3902 */ 3903 BUG_ON(mnt_get_count(mnt) < 2); 3904 3905 if (m->mnt_sb == path->mnt->mnt_sb && 3906 m->mnt_root == dentry) { 3907 err = -ELOOP; 3908 goto discard; 3909 } 3910 3911 /* 3912 * we don't want to use lock_mount() - in this case finding something 3913 * that overmounts our mountpoint to be means "quitely drop what we've 3914 * got", not "try to mount it on top". 3915 */ 3916 inode_lock(dentry->d_inode); 3917 namespace_lock(); 3918 if (unlikely(cant_mount(dentry))) { 3919 err = -ENOENT; 3920 goto discard_locked; 3921 } 3922 if (path_overmounted(path)) { 3923 err = 0; 3924 goto discard_locked; 3925 } 3926 mp = get_mountpoint(dentry); 3927 if (IS_ERR(mp)) { 3928 err = PTR_ERR(mp); 3929 goto discard_locked; 3930 } 3931 3932 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3933 unlock_mount(mp); 3934 if (unlikely(err)) 3935 goto discard; 3936 mntput(m); 3937 return 0; 3938 3939 discard_locked: 3940 namespace_unlock(); 3941 inode_unlock(dentry->d_inode); 3942 discard: 3943 /* remove m from any expiration list it may be on */ 3944 if (!list_empty(&mnt->mnt_expire)) { 3945 namespace_lock(); 3946 list_del_init(&mnt->mnt_expire); 3947 namespace_unlock(); 3948 } 3949 mntput(m); 3950 mntput(m); 3951 return err; 3952 } 3953 3954 /** 3955 * mnt_set_expiry - Put a mount on an expiration list 3956 * @mnt: The mount to list. 3957 * @expiry_list: The list to add the mount to. 3958 */ 3959 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3960 { 3961 namespace_lock(); 3962 3963 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3964 3965 namespace_unlock(); 3966 } 3967 EXPORT_SYMBOL(mnt_set_expiry); 3968 3969 /* 3970 * process a list of expirable mountpoints with the intent of discarding any 3971 * mountpoints that aren't in use and haven't been touched since last we came 3972 * here 3973 */ 3974 void mark_mounts_for_expiry(struct list_head *mounts) 3975 { 3976 struct mount *mnt, *next; 3977 LIST_HEAD(graveyard); 3978 3979 if (list_empty(mounts)) 3980 return; 3981 3982 namespace_lock(); 3983 lock_mount_hash(); 3984 3985 /* extract from the expiration list every vfsmount that matches the 3986 * following criteria: 3987 * - only referenced by its parent vfsmount 3988 * - still marked for expiry (marked on the last call here; marks are 3989 * cleared by mntput()) 3990 */ 3991 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3992 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3993 propagate_mount_busy(mnt, 1)) 3994 continue; 3995 list_move(&mnt->mnt_expire, &graveyard); 3996 } 3997 while (!list_empty(&graveyard)) { 3998 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3999 touch_mnt_namespace(mnt->mnt_ns); 4000 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 4001 } 4002 unlock_mount_hash(); 4003 namespace_unlock(); 4004 } 4005 4006 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 4007 4008 /* 4009 * Ripoff of 'select_parent()' 4010 * 4011 * search the list of submounts for a given mountpoint, and move any 4012 * shrinkable submounts to the 'graveyard' list. 4013 */ 4014 static int select_submounts(struct mount *parent, struct list_head *graveyard) 4015 { 4016 struct mount *this_parent = parent; 4017 struct list_head *next; 4018 int found = 0; 4019 4020 repeat: 4021 next = this_parent->mnt_mounts.next; 4022 resume: 4023 while (next != &this_parent->mnt_mounts) { 4024 struct list_head *tmp = next; 4025 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 4026 4027 next = tmp->next; 4028 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 4029 continue; 4030 /* 4031 * Descend a level if the d_mounts list is non-empty. 4032 */ 4033 if (!list_empty(&mnt->mnt_mounts)) { 4034 this_parent = mnt; 4035 goto repeat; 4036 } 4037 4038 if (!propagate_mount_busy(mnt, 1)) { 4039 list_move_tail(&mnt->mnt_expire, graveyard); 4040 found++; 4041 } 4042 } 4043 /* 4044 * All done at this level ... ascend and resume the search 4045 */ 4046 if (this_parent != parent) { 4047 next = this_parent->mnt_child.next; 4048 this_parent = this_parent->mnt_parent; 4049 goto resume; 4050 } 4051 return found; 4052 } 4053 4054 /* 4055 * process a list of expirable mountpoints with the intent of discarding any 4056 * submounts of a specific parent mountpoint 4057 * 4058 * mount_lock must be held for write 4059 */ 4060 static void shrink_submounts(struct mount *mnt) 4061 { 4062 LIST_HEAD(graveyard); 4063 struct mount *m; 4064 4065 /* extract submounts of 'mountpoint' from the expiration list */ 4066 while (select_submounts(mnt, &graveyard)) { 4067 while (!list_empty(&graveyard)) { 4068 m = list_first_entry(&graveyard, struct mount, 4069 mnt_expire); 4070 touch_mnt_namespace(m->mnt_ns); 4071 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 4072 } 4073 } 4074 } 4075 4076 static void *copy_mount_options(const void __user * data) 4077 { 4078 char *copy; 4079 unsigned left, offset; 4080 4081 if (!data) 4082 return NULL; 4083 4084 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 4085 if (!copy) 4086 return ERR_PTR(-ENOMEM); 4087 4088 left = copy_from_user(copy, data, PAGE_SIZE); 4089 4090 /* 4091 * Not all architectures have an exact copy_from_user(). Resort to 4092 * byte at a time. 4093 */ 4094 offset = PAGE_SIZE - left; 4095 while (left) { 4096 char c; 4097 if (get_user(c, (const char __user *)data + offset)) 4098 break; 4099 copy[offset] = c; 4100 left--; 4101 offset++; 4102 } 4103 4104 if (left == PAGE_SIZE) { 4105 kfree(copy); 4106 return ERR_PTR(-EFAULT); 4107 } 4108 4109 return copy; 4110 } 4111 4112 static char *copy_mount_string(const void __user *data) 4113 { 4114 return data ? strndup_user(data, PATH_MAX) : NULL; 4115 } 4116 4117 /* 4118 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 4119 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 4120 * 4121 * data is a (void *) that can point to any structure up to 4122 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 4123 * information (or be NULL). 4124 * 4125 * Pre-0.97 versions of mount() didn't have a flags word. 4126 * When the flags word was introduced its top half was required 4127 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 4128 * Therefore, if this magic number is present, it carries no information 4129 * and must be discarded. 4130 */ 4131 int path_mount(const char *dev_name, struct path *path, 4132 const char *type_page, unsigned long flags, void *data_page) 4133 { 4134 unsigned int mnt_flags = 0, sb_flags; 4135 int ret; 4136 4137 /* Discard magic */ 4138 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 4139 flags &= ~MS_MGC_MSK; 4140 4141 /* Basic sanity checks */ 4142 if (data_page) 4143 ((char *)data_page)[PAGE_SIZE - 1] = 0; 4144 4145 if (flags & MS_NOUSER) 4146 return -EINVAL; 4147 4148 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 4149 if (ret) 4150 return ret; 4151 if (!may_mount()) 4152 return -EPERM; 4153 if (flags & SB_MANDLOCK) 4154 warn_mandlock(); 4155 4156 /* Default to relatime unless overriden */ 4157 if (!(flags & MS_NOATIME)) 4158 mnt_flags |= MNT_RELATIME; 4159 4160 /* Separate the per-mountpoint flags */ 4161 if (flags & MS_NOSUID) 4162 mnt_flags |= MNT_NOSUID; 4163 if (flags & MS_NODEV) 4164 mnt_flags |= MNT_NODEV; 4165 if (flags & MS_NOEXEC) 4166 mnt_flags |= MNT_NOEXEC; 4167 if (flags & MS_NOATIME) 4168 mnt_flags |= MNT_NOATIME; 4169 if (flags & MS_NODIRATIME) 4170 mnt_flags |= MNT_NODIRATIME; 4171 if (flags & MS_STRICTATIME) 4172 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 4173 if (flags & MS_RDONLY) 4174 mnt_flags |= MNT_READONLY; 4175 if (flags & MS_NOSYMFOLLOW) 4176 mnt_flags |= MNT_NOSYMFOLLOW; 4177 4178 /* The default atime for remount is preservation */ 4179 if ((flags & MS_REMOUNT) && 4180 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 4181 MS_STRICTATIME)) == 0)) { 4182 mnt_flags &= ~MNT_ATIME_MASK; 4183 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 4184 } 4185 4186 sb_flags = flags & (SB_RDONLY | 4187 SB_SYNCHRONOUS | 4188 SB_MANDLOCK | 4189 SB_DIRSYNC | 4190 SB_SILENT | 4191 SB_POSIXACL | 4192 SB_LAZYTIME | 4193 SB_I_VERSION); 4194 4195 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 4196 return do_reconfigure_mnt(path, mnt_flags); 4197 if (flags & MS_REMOUNT) 4198 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 4199 if (flags & MS_BIND) 4200 return do_loopback(path, dev_name, flags & MS_REC); 4201 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 4202 return do_change_type(path, flags); 4203 if (flags & MS_MOVE) 4204 return do_move_mount_old(path, dev_name); 4205 4206 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 4207 data_page); 4208 } 4209 4210 int do_mount(const char *dev_name, const char __user *dir_name, 4211 const char *type_page, unsigned long flags, void *data_page) 4212 { 4213 struct path path; 4214 int ret; 4215 4216 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 4217 if (ret) 4218 return ret; 4219 ret = path_mount(dev_name, &path, type_page, flags, data_page); 4220 path_put(&path); 4221 return ret; 4222 } 4223 4224 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4225 { 4226 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4227 } 4228 4229 static void dec_mnt_namespaces(struct ucounts *ucounts) 4230 { 4231 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4232 } 4233 4234 static void free_mnt_ns(struct mnt_namespace *ns) 4235 { 4236 if (!is_anon_ns(ns)) 4237 ns_free_inum(&ns->ns); 4238 dec_mnt_namespaces(ns->ucounts); 4239 mnt_ns_tree_remove(ns); 4240 } 4241 4242 /* 4243 * Assign a sequence number so we can detect when we attempt to bind 4244 * mount a reference to an older mount namespace into the current 4245 * mount namespace, preventing reference counting loops. A 64bit 4246 * number incrementing at 10Ghz will take 12,427 years to wrap which 4247 * is effectively never, so we can ignore the possibility. 4248 */ 4249 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 4250 4251 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4252 { 4253 struct mnt_namespace *new_ns; 4254 struct ucounts *ucounts; 4255 int ret; 4256 4257 ucounts = inc_mnt_namespaces(user_ns); 4258 if (!ucounts) 4259 return ERR_PTR(-ENOSPC); 4260 4261 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4262 if (!new_ns) { 4263 dec_mnt_namespaces(ucounts); 4264 return ERR_PTR(-ENOMEM); 4265 } 4266 if (!anon) { 4267 ret = ns_alloc_inum(&new_ns->ns); 4268 if (ret) { 4269 kfree(new_ns); 4270 dec_mnt_namespaces(ucounts); 4271 return ERR_PTR(ret); 4272 } 4273 } 4274 new_ns->ns.ops = &mntns_operations; 4275 if (!anon) 4276 new_ns->seq = atomic64_inc_return(&mnt_ns_seq); 4277 refcount_set(&new_ns->ns.count, 1); 4278 refcount_set(&new_ns->passive, 1); 4279 new_ns->mounts = RB_ROOT; 4280 INIT_LIST_HEAD(&new_ns->mnt_ns_list); 4281 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 4282 init_waitqueue_head(&new_ns->poll); 4283 new_ns->user_ns = get_user_ns(user_ns); 4284 new_ns->ucounts = ucounts; 4285 return new_ns; 4286 } 4287 4288 __latent_entropy 4289 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 4290 struct user_namespace *user_ns, struct fs_struct *new_fs) 4291 { 4292 struct mnt_namespace *new_ns; 4293 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 4294 struct mount *p, *q; 4295 struct mount *old; 4296 struct mount *new; 4297 int copy_flags; 4298 4299 BUG_ON(!ns); 4300 4301 if (likely(!(flags & CLONE_NEWNS))) { 4302 get_mnt_ns(ns); 4303 return ns; 4304 } 4305 4306 old = ns->root; 4307 4308 new_ns = alloc_mnt_ns(user_ns, false); 4309 if (IS_ERR(new_ns)) 4310 return new_ns; 4311 4312 namespace_lock(); 4313 /* First pass: copy the tree topology */ 4314 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4315 if (user_ns != ns->user_ns) 4316 copy_flags |= CL_SHARED_TO_SLAVE; 4317 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4318 if (IS_ERR(new)) { 4319 namespace_unlock(); 4320 ns_free_inum(&new_ns->ns); 4321 dec_mnt_namespaces(new_ns->ucounts); 4322 mnt_ns_release(new_ns); 4323 return ERR_CAST(new); 4324 } 4325 if (user_ns != ns->user_ns) { 4326 lock_mount_hash(); 4327 lock_mnt_tree(new); 4328 unlock_mount_hash(); 4329 } 4330 new_ns->root = new; 4331 4332 /* 4333 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4334 * as belonging to new namespace. We have already acquired a private 4335 * fs_struct, so tsk->fs->lock is not needed. 4336 */ 4337 p = old; 4338 q = new; 4339 while (p) { 4340 mnt_add_to_ns(new_ns, q); 4341 new_ns->nr_mounts++; 4342 if (new_fs) { 4343 if (&p->mnt == new_fs->root.mnt) { 4344 new_fs->root.mnt = mntget(&q->mnt); 4345 rootmnt = &p->mnt; 4346 } 4347 if (&p->mnt == new_fs->pwd.mnt) { 4348 new_fs->pwd.mnt = mntget(&q->mnt); 4349 pwdmnt = &p->mnt; 4350 } 4351 } 4352 p = next_mnt(p, old); 4353 q = next_mnt(q, new); 4354 if (!q) 4355 break; 4356 // an mntns binding we'd skipped? 4357 while (p->mnt.mnt_root != q->mnt.mnt_root) 4358 p = next_mnt(skip_mnt_tree(p), old); 4359 } 4360 namespace_unlock(); 4361 4362 if (rootmnt) 4363 mntput(rootmnt); 4364 if (pwdmnt) 4365 mntput(pwdmnt); 4366 4367 mnt_ns_tree_add(new_ns); 4368 return new_ns; 4369 } 4370 4371 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4372 { 4373 struct mount *mnt = real_mount(m); 4374 struct mnt_namespace *ns; 4375 struct super_block *s; 4376 struct path path; 4377 int err; 4378 4379 ns = alloc_mnt_ns(&init_user_ns, true); 4380 if (IS_ERR(ns)) { 4381 mntput(m); 4382 return ERR_CAST(ns); 4383 } 4384 ns->root = mnt; 4385 ns->nr_mounts++; 4386 mnt_add_to_ns(ns, mnt); 4387 4388 err = vfs_path_lookup(m->mnt_root, m, 4389 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4390 4391 put_mnt_ns(ns); 4392 4393 if (err) 4394 return ERR_PTR(err); 4395 4396 /* trade a vfsmount reference for active sb one */ 4397 s = path.mnt->mnt_sb; 4398 atomic_inc(&s->s_active); 4399 mntput(path.mnt); 4400 /* lock the sucker */ 4401 down_write(&s->s_umount); 4402 /* ... and return the root of (sub)tree on it */ 4403 return path.dentry; 4404 } 4405 EXPORT_SYMBOL(mount_subtree); 4406 4407 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4408 char __user *, type, unsigned long, flags, void __user *, data) 4409 { 4410 int ret; 4411 char *kernel_type; 4412 char *kernel_dev; 4413 void *options; 4414 4415 kernel_type = copy_mount_string(type); 4416 ret = PTR_ERR(kernel_type); 4417 if (IS_ERR(kernel_type)) 4418 goto out_type; 4419 4420 kernel_dev = copy_mount_string(dev_name); 4421 ret = PTR_ERR(kernel_dev); 4422 if (IS_ERR(kernel_dev)) 4423 goto out_dev; 4424 4425 options = copy_mount_options(data); 4426 ret = PTR_ERR(options); 4427 if (IS_ERR(options)) 4428 goto out_data; 4429 4430 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4431 4432 kfree(options); 4433 out_data: 4434 kfree(kernel_dev); 4435 out_dev: 4436 kfree(kernel_type); 4437 out_type: 4438 return ret; 4439 } 4440 4441 #define FSMOUNT_VALID_FLAGS \ 4442 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4443 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4444 MOUNT_ATTR_NOSYMFOLLOW) 4445 4446 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4447 4448 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4449 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4450 4451 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4452 { 4453 unsigned int mnt_flags = 0; 4454 4455 if (attr_flags & MOUNT_ATTR_RDONLY) 4456 mnt_flags |= MNT_READONLY; 4457 if (attr_flags & MOUNT_ATTR_NOSUID) 4458 mnt_flags |= MNT_NOSUID; 4459 if (attr_flags & MOUNT_ATTR_NODEV) 4460 mnt_flags |= MNT_NODEV; 4461 if (attr_flags & MOUNT_ATTR_NOEXEC) 4462 mnt_flags |= MNT_NOEXEC; 4463 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4464 mnt_flags |= MNT_NODIRATIME; 4465 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4466 mnt_flags |= MNT_NOSYMFOLLOW; 4467 4468 return mnt_flags; 4469 } 4470 4471 /* 4472 * Create a kernel mount representation for a new, prepared superblock 4473 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4474 */ 4475 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4476 unsigned int, attr_flags) 4477 { 4478 struct mnt_namespace *ns; 4479 struct fs_context *fc; 4480 struct file *file; 4481 struct path newmount; 4482 struct mount *mnt; 4483 unsigned int mnt_flags = 0; 4484 long ret; 4485 4486 if (!may_mount()) 4487 return -EPERM; 4488 4489 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4490 return -EINVAL; 4491 4492 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4493 return -EINVAL; 4494 4495 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4496 4497 switch (attr_flags & MOUNT_ATTR__ATIME) { 4498 case MOUNT_ATTR_STRICTATIME: 4499 break; 4500 case MOUNT_ATTR_NOATIME: 4501 mnt_flags |= MNT_NOATIME; 4502 break; 4503 case MOUNT_ATTR_RELATIME: 4504 mnt_flags |= MNT_RELATIME; 4505 break; 4506 default: 4507 return -EINVAL; 4508 } 4509 4510 CLASS(fd, f)(fs_fd); 4511 if (fd_empty(f)) 4512 return -EBADF; 4513 4514 if (fd_file(f)->f_op != &fscontext_fops) 4515 return -EINVAL; 4516 4517 fc = fd_file(f)->private_data; 4518 4519 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4520 if (ret < 0) 4521 return ret; 4522 4523 /* There must be a valid superblock or we can't mount it */ 4524 ret = -EINVAL; 4525 if (!fc->root) 4526 goto err_unlock; 4527 4528 ret = -EPERM; 4529 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4530 pr_warn("VFS: Mount too revealing\n"); 4531 goto err_unlock; 4532 } 4533 4534 ret = -EBUSY; 4535 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4536 goto err_unlock; 4537 4538 if (fc->sb_flags & SB_MANDLOCK) 4539 warn_mandlock(); 4540 4541 newmount.mnt = vfs_create_mount(fc); 4542 if (IS_ERR(newmount.mnt)) { 4543 ret = PTR_ERR(newmount.mnt); 4544 goto err_unlock; 4545 } 4546 newmount.dentry = dget(fc->root); 4547 newmount.mnt->mnt_flags = mnt_flags; 4548 4549 /* We've done the mount bit - now move the file context into more or 4550 * less the same state as if we'd done an fspick(). We don't want to 4551 * do any memory allocation or anything like that at this point as we 4552 * don't want to have to handle any errors incurred. 4553 */ 4554 vfs_clean_context(fc); 4555 4556 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4557 if (IS_ERR(ns)) { 4558 ret = PTR_ERR(ns); 4559 goto err_path; 4560 } 4561 mnt = real_mount(newmount.mnt); 4562 ns->root = mnt; 4563 ns->nr_mounts = 1; 4564 mnt_add_to_ns(ns, mnt); 4565 mntget(newmount.mnt); 4566 4567 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4568 * it, not just simply put it. 4569 */ 4570 file = dentry_open(&newmount, O_PATH, fc->cred); 4571 if (IS_ERR(file)) { 4572 dissolve_on_fput(newmount.mnt); 4573 ret = PTR_ERR(file); 4574 goto err_path; 4575 } 4576 file->f_mode |= FMODE_NEED_UNMOUNT; 4577 4578 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4579 if (ret >= 0) 4580 fd_install(ret, file); 4581 else 4582 fput(file); 4583 4584 err_path: 4585 path_put(&newmount); 4586 err_unlock: 4587 mutex_unlock(&fc->uapi_mutex); 4588 return ret; 4589 } 4590 4591 static inline int vfs_move_mount(struct path *from_path, struct path *to_path, 4592 enum mnt_tree_flags_t mflags) 4593 { 4594 int ret; 4595 4596 ret = security_move_mount(from_path, to_path); 4597 if (ret) 4598 return ret; 4599 4600 if (mflags & MNT_TREE_PROPAGATION) 4601 return do_set_group(from_path, to_path); 4602 4603 return do_move_mount(from_path, to_path, mflags); 4604 } 4605 4606 /* 4607 * Move a mount from one place to another. In combination with 4608 * fsopen()/fsmount() this is used to install a new mount and in combination 4609 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4610 * a mount subtree. 4611 * 4612 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4613 */ 4614 SYSCALL_DEFINE5(move_mount, 4615 int, from_dfd, const char __user *, from_pathname, 4616 int, to_dfd, const char __user *, to_pathname, 4617 unsigned int, flags) 4618 { 4619 struct path to_path __free(path_put) = {}; 4620 struct path from_path __free(path_put) = {}; 4621 struct filename *to_name __free(putname) = NULL; 4622 struct filename *from_name __free(putname) = NULL; 4623 unsigned int lflags, uflags; 4624 enum mnt_tree_flags_t mflags = 0; 4625 int ret = 0; 4626 4627 if (!may_mount()) 4628 return -EPERM; 4629 4630 if (flags & ~MOVE_MOUNT__MASK) 4631 return -EINVAL; 4632 4633 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4634 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4635 return -EINVAL; 4636 4637 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; 4638 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; 4639 4640 lflags = 0; 4641 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4642 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4643 uflags = 0; 4644 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4645 from_name = getname_maybe_null(from_pathname, uflags); 4646 if (IS_ERR(from_name)) 4647 return PTR_ERR(from_name); 4648 4649 lflags = 0; 4650 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4651 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4652 uflags = 0; 4653 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4654 to_name = getname_maybe_null(to_pathname, uflags); 4655 if (IS_ERR(to_name)) 4656 return PTR_ERR(to_name); 4657 4658 if (!to_name && to_dfd >= 0) { 4659 CLASS(fd_raw, f_to)(to_dfd); 4660 if (fd_empty(f_to)) 4661 return -EBADF; 4662 4663 to_path = fd_file(f_to)->f_path; 4664 path_get(&to_path); 4665 } else { 4666 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); 4667 if (ret) 4668 return ret; 4669 } 4670 4671 if (!from_name && from_dfd >= 0) { 4672 CLASS(fd_raw, f_from)(from_dfd); 4673 if (fd_empty(f_from)) 4674 return -EBADF; 4675 4676 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); 4677 } 4678 4679 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); 4680 if (ret) 4681 return ret; 4682 4683 return vfs_move_mount(&from_path, &to_path, mflags); 4684 } 4685 4686 /* 4687 * Return true if path is reachable from root 4688 * 4689 * namespace_sem or mount_lock is held 4690 */ 4691 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4692 const struct path *root) 4693 { 4694 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4695 dentry = mnt->mnt_mountpoint; 4696 mnt = mnt->mnt_parent; 4697 } 4698 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4699 } 4700 4701 bool path_is_under(const struct path *path1, const struct path *path2) 4702 { 4703 bool res; 4704 read_seqlock_excl(&mount_lock); 4705 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4706 read_sequnlock_excl(&mount_lock); 4707 return res; 4708 } 4709 EXPORT_SYMBOL(path_is_under); 4710 4711 /* 4712 * pivot_root Semantics: 4713 * Moves the root file system of the current process to the directory put_old, 4714 * makes new_root as the new root file system of the current process, and sets 4715 * root/cwd of all processes which had them on the current root to new_root. 4716 * 4717 * Restrictions: 4718 * The new_root and put_old must be directories, and must not be on the 4719 * same file system as the current process root. The put_old must be 4720 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4721 * pointed to by put_old must yield the same directory as new_root. No other 4722 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4723 * 4724 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4725 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4726 * in this situation. 4727 * 4728 * Notes: 4729 * - we don't move root/cwd if they are not at the root (reason: if something 4730 * cared enough to change them, it's probably wrong to force them elsewhere) 4731 * - it's okay to pick a root that isn't the root of a file system, e.g. 4732 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4733 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4734 * first. 4735 */ 4736 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4737 const char __user *, put_old) 4738 { 4739 struct path new, old, root; 4740 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4741 struct mountpoint *old_mp, *root_mp; 4742 int error; 4743 4744 if (!may_mount()) 4745 return -EPERM; 4746 4747 error = user_path_at(AT_FDCWD, new_root, 4748 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4749 if (error) 4750 goto out0; 4751 4752 error = user_path_at(AT_FDCWD, put_old, 4753 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4754 if (error) 4755 goto out1; 4756 4757 error = security_sb_pivotroot(&old, &new); 4758 if (error) 4759 goto out2; 4760 4761 get_fs_root(current->fs, &root); 4762 old_mp = lock_mount(&old); 4763 error = PTR_ERR(old_mp); 4764 if (IS_ERR(old_mp)) 4765 goto out3; 4766 4767 error = -EINVAL; 4768 new_mnt = real_mount(new.mnt); 4769 root_mnt = real_mount(root.mnt); 4770 old_mnt = real_mount(old.mnt); 4771 ex_parent = new_mnt->mnt_parent; 4772 root_parent = root_mnt->mnt_parent; 4773 if (IS_MNT_SHARED(old_mnt) || 4774 IS_MNT_SHARED(ex_parent) || 4775 IS_MNT_SHARED(root_parent)) 4776 goto out4; 4777 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4778 goto out4; 4779 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4780 goto out4; 4781 error = -ENOENT; 4782 if (d_unlinked(new.dentry)) 4783 goto out4; 4784 error = -EBUSY; 4785 if (new_mnt == root_mnt || old_mnt == root_mnt) 4786 goto out4; /* loop, on the same file system */ 4787 error = -EINVAL; 4788 if (!path_mounted(&root)) 4789 goto out4; /* not a mountpoint */ 4790 if (!mnt_has_parent(root_mnt)) 4791 goto out4; /* not attached */ 4792 if (!path_mounted(&new)) 4793 goto out4; /* not a mountpoint */ 4794 if (!mnt_has_parent(new_mnt)) 4795 goto out4; /* not attached */ 4796 /* make sure we can reach put_old from new_root */ 4797 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4798 goto out4; 4799 /* make certain new is below the root */ 4800 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4801 goto out4; 4802 lock_mount_hash(); 4803 umount_mnt(new_mnt); 4804 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4805 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4806 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4807 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4808 } 4809 /* mount old root on put_old */ 4810 attach_mnt(root_mnt, old_mnt, old_mp, false); 4811 /* mount new_root on / */ 4812 attach_mnt(new_mnt, root_parent, root_mp, false); 4813 mnt_add_count(root_parent, -1); 4814 touch_mnt_namespace(current->nsproxy->mnt_ns); 4815 /* A moved mount should not expire automatically */ 4816 list_del_init(&new_mnt->mnt_expire); 4817 put_mountpoint(root_mp); 4818 unlock_mount_hash(); 4819 mnt_notify_add(root_mnt); 4820 mnt_notify_add(new_mnt); 4821 chroot_fs_refs(&root, &new); 4822 error = 0; 4823 out4: 4824 unlock_mount(old_mp); 4825 if (!error) 4826 mntput_no_expire(ex_parent); 4827 out3: 4828 path_put(&root); 4829 out2: 4830 path_put(&old); 4831 out1: 4832 path_put(&new); 4833 out0: 4834 return error; 4835 } 4836 4837 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4838 { 4839 unsigned int flags = mnt->mnt.mnt_flags; 4840 4841 /* flags to clear */ 4842 flags &= ~kattr->attr_clr; 4843 /* flags to raise */ 4844 flags |= kattr->attr_set; 4845 4846 return flags; 4847 } 4848 4849 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4850 { 4851 struct vfsmount *m = &mnt->mnt; 4852 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4853 4854 if (!kattr->mnt_idmap) 4855 return 0; 4856 4857 /* 4858 * Creating an idmapped mount with the filesystem wide idmapping 4859 * doesn't make sense so block that. We don't allow mushy semantics. 4860 */ 4861 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4862 return -EINVAL; 4863 4864 /* 4865 * We only allow an mount to change it's idmapping if it has 4866 * never been accessible to userspace. 4867 */ 4868 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4869 return -EPERM; 4870 4871 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4872 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4873 return -EINVAL; 4874 4875 /* The filesystem has turned off idmapped mounts. */ 4876 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4877 return -EINVAL; 4878 4879 /* We're not controlling the superblock. */ 4880 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4881 return -EPERM; 4882 4883 /* Mount has already been visible in the filesystem hierarchy. */ 4884 if (!is_anon_ns(mnt->mnt_ns)) 4885 return -EINVAL; 4886 4887 return 0; 4888 } 4889 4890 /** 4891 * mnt_allow_writers() - check whether the attribute change allows writers 4892 * @kattr: the new mount attributes 4893 * @mnt: the mount to which @kattr will be applied 4894 * 4895 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4896 * 4897 * Return: true if writers need to be held, false if not 4898 */ 4899 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4900 const struct mount *mnt) 4901 { 4902 return (!(kattr->attr_set & MNT_READONLY) || 4903 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4904 !kattr->mnt_idmap; 4905 } 4906 4907 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4908 { 4909 struct mount *m; 4910 int err; 4911 4912 for (m = mnt; m; m = next_mnt(m, mnt)) { 4913 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4914 err = -EPERM; 4915 break; 4916 } 4917 4918 err = can_idmap_mount(kattr, m); 4919 if (err) 4920 break; 4921 4922 if (!mnt_allow_writers(kattr, m)) { 4923 err = mnt_hold_writers(m); 4924 if (err) 4925 break; 4926 } 4927 4928 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4929 return 0; 4930 } 4931 4932 if (err) { 4933 struct mount *p; 4934 4935 /* 4936 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4937 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4938 * mounts and needs to take care to include the first mount. 4939 */ 4940 for (p = mnt; p; p = next_mnt(p, mnt)) { 4941 /* If we had to hold writers unblock them. */ 4942 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4943 mnt_unhold_writers(p); 4944 4945 /* 4946 * We're done once the first mount we changed got 4947 * MNT_WRITE_HOLD unset. 4948 */ 4949 if (p == m) 4950 break; 4951 } 4952 } 4953 return err; 4954 } 4955 4956 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4957 { 4958 struct mnt_idmap *old_idmap; 4959 4960 if (!kattr->mnt_idmap) 4961 return; 4962 4963 old_idmap = mnt_idmap(&mnt->mnt); 4964 4965 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4966 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4967 mnt_idmap_put(old_idmap); 4968 } 4969 4970 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4971 { 4972 struct mount *m; 4973 4974 for (m = mnt; m; m = next_mnt(m, mnt)) { 4975 unsigned int flags; 4976 4977 do_idmap_mount(kattr, m); 4978 flags = recalc_flags(kattr, m); 4979 WRITE_ONCE(m->mnt.mnt_flags, flags); 4980 4981 /* If we had to hold writers unblock them. */ 4982 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4983 mnt_unhold_writers(m); 4984 4985 if (kattr->propagation) 4986 change_mnt_propagation(m, kattr->propagation); 4987 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4988 break; 4989 } 4990 touch_mnt_namespace(mnt->mnt_ns); 4991 } 4992 4993 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4994 { 4995 struct mount *mnt = real_mount(path->mnt); 4996 int err = 0; 4997 4998 if (!path_mounted(path)) 4999 return -EINVAL; 5000 5001 if (kattr->mnt_userns) { 5002 struct mnt_idmap *mnt_idmap; 5003 5004 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 5005 if (IS_ERR(mnt_idmap)) 5006 return PTR_ERR(mnt_idmap); 5007 kattr->mnt_idmap = mnt_idmap; 5008 } 5009 5010 if (kattr->propagation) { 5011 /* 5012 * Only take namespace_lock() if we're actually changing 5013 * propagation. 5014 */ 5015 namespace_lock(); 5016 if (kattr->propagation == MS_SHARED) { 5017 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 5018 if (err) { 5019 namespace_unlock(); 5020 return err; 5021 } 5022 } 5023 } 5024 5025 err = -EINVAL; 5026 lock_mount_hash(); 5027 5028 /* Ensure that this isn't anything purely vfs internal. */ 5029 if (!is_mounted(&mnt->mnt)) 5030 goto out; 5031 5032 /* 5033 * If this is an attached mount make sure it's located in the callers 5034 * mount namespace. If it's not don't let the caller interact with it. 5035 * 5036 * If this mount doesn't have a parent it's most often simply a 5037 * detached mount with an anonymous mount namespace. IOW, something 5038 * that's simply not attached yet. But there are apparently also users 5039 * that do change mount properties on the rootfs itself. That obviously 5040 * neither has a parent nor is it a detached mount so we cannot 5041 * unconditionally check for detached mounts. 5042 */ 5043 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 5044 goto out; 5045 5046 /* 5047 * First, we get the mount tree in a shape where we can change mount 5048 * properties without failure. If we succeeded to do so we commit all 5049 * changes and if we failed we clean up. 5050 */ 5051 err = mount_setattr_prepare(kattr, mnt); 5052 if (!err) 5053 mount_setattr_commit(kattr, mnt); 5054 5055 out: 5056 unlock_mount_hash(); 5057 5058 if (kattr->propagation) { 5059 if (err) 5060 cleanup_group_ids(mnt, NULL); 5061 namespace_unlock(); 5062 } 5063 5064 return err; 5065 } 5066 5067 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 5068 struct mount_kattr *kattr) 5069 { 5070 struct ns_common *ns; 5071 struct user_namespace *mnt_userns; 5072 5073 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 5074 return 0; 5075 5076 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 5077 /* 5078 * We can only remove an idmapping if it's never been 5079 * exposed to userspace. 5080 */ 5081 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 5082 return -EINVAL; 5083 5084 /* 5085 * Removal of idmappings is equivalent to setting 5086 * nop_mnt_idmap. 5087 */ 5088 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 5089 kattr->mnt_idmap = &nop_mnt_idmap; 5090 return 0; 5091 } 5092 } 5093 5094 if (attr->userns_fd > INT_MAX) 5095 return -EINVAL; 5096 5097 CLASS(fd, f)(attr->userns_fd); 5098 if (fd_empty(f)) 5099 return -EBADF; 5100 5101 if (!proc_ns_file(fd_file(f))) 5102 return -EINVAL; 5103 5104 ns = get_proc_ns(file_inode(fd_file(f))); 5105 if (ns->ops->type != CLONE_NEWUSER) 5106 return -EINVAL; 5107 5108 /* 5109 * The initial idmapping cannot be used to create an idmapped 5110 * mount. We use the initial idmapping as an indicator of a mount 5111 * that is not idmapped. It can simply be passed into helpers that 5112 * are aware of idmapped mounts as a convenient shortcut. A user 5113 * can just create a dedicated identity mapping to achieve the same 5114 * result. 5115 */ 5116 mnt_userns = container_of(ns, struct user_namespace, ns); 5117 if (mnt_userns == &init_user_ns) 5118 return -EPERM; 5119 5120 /* We're not controlling the target namespace. */ 5121 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 5122 return -EPERM; 5123 5124 kattr->mnt_userns = get_user_ns(mnt_userns); 5125 return 0; 5126 } 5127 5128 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 5129 struct mount_kattr *kattr) 5130 { 5131 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 5132 return -EINVAL; 5133 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 5134 return -EINVAL; 5135 kattr->propagation = attr->propagation; 5136 5137 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 5138 return -EINVAL; 5139 5140 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 5141 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 5142 5143 /* 5144 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 5145 * users wanting to transition to a different atime setting cannot 5146 * simply specify the atime setting in @attr_set, but must also 5147 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 5148 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 5149 * @attr_clr and that @attr_set can't have any atime bits set if 5150 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 5151 */ 5152 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 5153 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 5154 return -EINVAL; 5155 5156 /* 5157 * Clear all previous time settings as they are mutually 5158 * exclusive. 5159 */ 5160 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 5161 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 5162 case MOUNT_ATTR_RELATIME: 5163 kattr->attr_set |= MNT_RELATIME; 5164 break; 5165 case MOUNT_ATTR_NOATIME: 5166 kattr->attr_set |= MNT_NOATIME; 5167 break; 5168 case MOUNT_ATTR_STRICTATIME: 5169 break; 5170 default: 5171 return -EINVAL; 5172 } 5173 } else { 5174 if (attr->attr_set & MOUNT_ATTR__ATIME) 5175 return -EINVAL; 5176 } 5177 5178 return build_mount_idmapped(attr, usize, kattr); 5179 } 5180 5181 static void finish_mount_kattr(struct mount_kattr *kattr) 5182 { 5183 if (kattr->mnt_userns) { 5184 put_user_ns(kattr->mnt_userns); 5185 kattr->mnt_userns = NULL; 5186 } 5187 5188 if (kattr->mnt_idmap) 5189 mnt_idmap_put(kattr->mnt_idmap); 5190 } 5191 5192 static int copy_mount_setattr(struct mount_attr __user *uattr, size_t usize, 5193 struct mount_kattr *kattr) 5194 { 5195 int ret; 5196 struct mount_attr attr; 5197 5198 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 5199 5200 if (unlikely(usize > PAGE_SIZE)) 5201 return -E2BIG; 5202 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 5203 return -EINVAL; 5204 5205 if (!may_mount()) 5206 return -EPERM; 5207 5208 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 5209 if (ret) 5210 return ret; 5211 5212 /* Don't bother walking through the mounts if this is a nop. */ 5213 if (attr.attr_set == 0 && 5214 attr.attr_clr == 0 && 5215 attr.propagation == 0) 5216 return 0; 5217 5218 return build_mount_kattr(&attr, usize, kattr); 5219 } 5220 5221 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 5222 unsigned int, flags, struct mount_attr __user *, uattr, 5223 size_t, usize) 5224 { 5225 int err; 5226 struct path target; 5227 struct mount_kattr kattr; 5228 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 5229 5230 if (flags & ~(AT_EMPTY_PATH | 5231 AT_RECURSIVE | 5232 AT_SYMLINK_NOFOLLOW | 5233 AT_NO_AUTOMOUNT)) 5234 return -EINVAL; 5235 5236 if (flags & AT_NO_AUTOMOUNT) 5237 lookup_flags &= ~LOOKUP_AUTOMOUNT; 5238 if (flags & AT_SYMLINK_NOFOLLOW) 5239 lookup_flags &= ~LOOKUP_FOLLOW; 5240 if (flags & AT_EMPTY_PATH) 5241 lookup_flags |= LOOKUP_EMPTY; 5242 5243 kattr = (struct mount_kattr) { 5244 .lookup_flags = lookup_flags, 5245 }; 5246 5247 if (flags & AT_RECURSIVE) 5248 kattr.kflags |= MOUNT_KATTR_RECURSE; 5249 5250 err = copy_mount_setattr(uattr, usize, &kattr); 5251 if (err) 5252 return err; 5253 5254 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5255 if (!err) { 5256 err = do_mount_setattr(&target, &kattr); 5257 path_put(&target); 5258 } 5259 finish_mount_kattr(&kattr); 5260 return err; 5261 } 5262 5263 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5264 unsigned, flags, struct mount_attr __user *, uattr, 5265 size_t, usize) 5266 { 5267 struct file __free(fput) *file = NULL; 5268 int fd; 5269 5270 if (!uattr && usize) 5271 return -EINVAL; 5272 5273 file = vfs_open_tree(dfd, filename, flags); 5274 if (IS_ERR(file)) 5275 return PTR_ERR(file); 5276 5277 if (uattr) { 5278 int ret; 5279 struct mount_kattr kattr = {}; 5280 5281 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5282 if (flags & AT_RECURSIVE) 5283 kattr.kflags |= MOUNT_KATTR_RECURSE; 5284 5285 ret = copy_mount_setattr(uattr, usize, &kattr); 5286 if (ret) 5287 return ret; 5288 5289 ret = do_mount_setattr(&file->f_path, &kattr); 5290 if (ret) 5291 return ret; 5292 5293 finish_mount_kattr(&kattr); 5294 } 5295 5296 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5297 if (fd < 0) 5298 return fd; 5299 5300 fd_install(fd, no_free_ptr(file)); 5301 return fd; 5302 } 5303 5304 int show_path(struct seq_file *m, struct dentry *root) 5305 { 5306 if (root->d_sb->s_op->show_path) 5307 return root->d_sb->s_op->show_path(m, root); 5308 5309 seq_dentry(m, root, " \t\n\\"); 5310 return 0; 5311 } 5312 5313 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5314 { 5315 struct mount *mnt = mnt_find_id_at(ns, id); 5316 5317 if (!mnt || mnt->mnt_id_unique != id) 5318 return NULL; 5319 5320 return &mnt->mnt; 5321 } 5322 5323 struct kstatmount { 5324 struct statmount __user *buf; 5325 size_t bufsize; 5326 struct vfsmount *mnt; 5327 struct mnt_idmap *idmap; 5328 u64 mask; 5329 struct path root; 5330 struct seq_file seq; 5331 5332 /* Must be last --ends in a flexible-array member. */ 5333 struct statmount sm; 5334 }; 5335 5336 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5337 { 5338 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5339 u64 attr_flags = 0; 5340 5341 if (mnt_flags & MNT_READONLY) 5342 attr_flags |= MOUNT_ATTR_RDONLY; 5343 if (mnt_flags & MNT_NOSUID) 5344 attr_flags |= MOUNT_ATTR_NOSUID; 5345 if (mnt_flags & MNT_NODEV) 5346 attr_flags |= MOUNT_ATTR_NODEV; 5347 if (mnt_flags & MNT_NOEXEC) 5348 attr_flags |= MOUNT_ATTR_NOEXEC; 5349 if (mnt_flags & MNT_NODIRATIME) 5350 attr_flags |= MOUNT_ATTR_NODIRATIME; 5351 if (mnt_flags & MNT_NOSYMFOLLOW) 5352 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5353 5354 if (mnt_flags & MNT_NOATIME) 5355 attr_flags |= MOUNT_ATTR_NOATIME; 5356 else if (mnt_flags & MNT_RELATIME) 5357 attr_flags |= MOUNT_ATTR_RELATIME; 5358 else 5359 attr_flags |= MOUNT_ATTR_STRICTATIME; 5360 5361 if (is_idmapped_mnt(mnt)) 5362 attr_flags |= MOUNT_ATTR_IDMAP; 5363 5364 return attr_flags; 5365 } 5366 5367 static u64 mnt_to_propagation_flags(struct mount *m) 5368 { 5369 u64 propagation = 0; 5370 5371 if (IS_MNT_SHARED(m)) 5372 propagation |= MS_SHARED; 5373 if (IS_MNT_SLAVE(m)) 5374 propagation |= MS_SLAVE; 5375 if (IS_MNT_UNBINDABLE(m)) 5376 propagation |= MS_UNBINDABLE; 5377 if (!propagation) 5378 propagation |= MS_PRIVATE; 5379 5380 return propagation; 5381 } 5382 5383 static void statmount_sb_basic(struct kstatmount *s) 5384 { 5385 struct super_block *sb = s->mnt->mnt_sb; 5386 5387 s->sm.mask |= STATMOUNT_SB_BASIC; 5388 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5389 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5390 s->sm.sb_magic = sb->s_magic; 5391 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5392 } 5393 5394 static void statmount_mnt_basic(struct kstatmount *s) 5395 { 5396 struct mount *m = real_mount(s->mnt); 5397 5398 s->sm.mask |= STATMOUNT_MNT_BASIC; 5399 s->sm.mnt_id = m->mnt_id_unique; 5400 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5401 s->sm.mnt_id_old = m->mnt_id; 5402 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5403 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5404 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5405 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 5406 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5407 } 5408 5409 static void statmount_propagate_from(struct kstatmount *s) 5410 { 5411 struct mount *m = real_mount(s->mnt); 5412 5413 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5414 if (IS_MNT_SLAVE(m)) 5415 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5416 } 5417 5418 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5419 { 5420 int ret; 5421 size_t start = seq->count; 5422 5423 ret = show_path(seq, s->mnt->mnt_root); 5424 if (ret) 5425 return ret; 5426 5427 if (unlikely(seq_has_overflowed(seq))) 5428 return -EAGAIN; 5429 5430 /* 5431 * Unescape the result. It would be better if supplied string was not 5432 * escaped in the first place, but that's a pretty invasive change. 5433 */ 5434 seq->buf[seq->count] = '\0'; 5435 seq->count = start; 5436 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5437 return 0; 5438 } 5439 5440 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5441 { 5442 struct vfsmount *mnt = s->mnt; 5443 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5444 int err; 5445 5446 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5447 return err == SEQ_SKIP ? 0 : err; 5448 } 5449 5450 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5451 { 5452 struct super_block *sb = s->mnt->mnt_sb; 5453 5454 seq_puts(seq, sb->s_type->name); 5455 return 0; 5456 } 5457 5458 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5459 { 5460 struct super_block *sb = s->mnt->mnt_sb; 5461 5462 if (sb->s_subtype) 5463 seq_puts(seq, sb->s_subtype); 5464 } 5465 5466 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5467 { 5468 struct super_block *sb = s->mnt->mnt_sb; 5469 struct mount *r = real_mount(s->mnt); 5470 5471 if (sb->s_op->show_devname) { 5472 size_t start = seq->count; 5473 int ret; 5474 5475 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5476 if (ret) 5477 return ret; 5478 5479 if (unlikely(seq_has_overflowed(seq))) 5480 return -EAGAIN; 5481 5482 /* Unescape the result */ 5483 seq->buf[seq->count] = '\0'; 5484 seq->count = start; 5485 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5486 } else if (r->mnt_devname) { 5487 seq_puts(seq, r->mnt_devname); 5488 } 5489 return 0; 5490 } 5491 5492 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5493 { 5494 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5495 s->sm.mnt_ns_id = ns->seq; 5496 } 5497 5498 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5499 { 5500 struct vfsmount *mnt = s->mnt; 5501 struct super_block *sb = mnt->mnt_sb; 5502 size_t start = seq->count; 5503 int err; 5504 5505 err = security_sb_show_options(seq, sb); 5506 if (err) 5507 return err; 5508 5509 if (sb->s_op->show_options) { 5510 err = sb->s_op->show_options(seq, mnt->mnt_root); 5511 if (err) 5512 return err; 5513 } 5514 5515 if (unlikely(seq_has_overflowed(seq))) 5516 return -EAGAIN; 5517 5518 if (seq->count == start) 5519 return 0; 5520 5521 /* skip leading comma */ 5522 memmove(seq->buf + start, seq->buf + start + 1, 5523 seq->count - start - 1); 5524 seq->count--; 5525 5526 return 0; 5527 } 5528 5529 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5530 { 5531 char *buf_end, *opt_end, *src, *dst; 5532 int count = 0; 5533 5534 if (unlikely(seq_has_overflowed(seq))) 5535 return -EAGAIN; 5536 5537 buf_end = seq->buf + seq->count; 5538 dst = seq->buf + start; 5539 src = dst + 1; /* skip initial comma */ 5540 5541 if (src >= buf_end) { 5542 seq->count = start; 5543 return 0; 5544 } 5545 5546 *buf_end = '\0'; 5547 for (; src < buf_end; src = opt_end + 1) { 5548 opt_end = strchrnul(src, ','); 5549 *opt_end = '\0'; 5550 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5551 if (WARN_ON_ONCE(++count == INT_MAX)) 5552 return -EOVERFLOW; 5553 } 5554 seq->count = dst - 1 - seq->buf; 5555 return count; 5556 } 5557 5558 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5559 { 5560 struct vfsmount *mnt = s->mnt; 5561 struct super_block *sb = mnt->mnt_sb; 5562 size_t start = seq->count; 5563 int err; 5564 5565 if (!sb->s_op->show_options) 5566 return 0; 5567 5568 err = sb->s_op->show_options(seq, mnt->mnt_root); 5569 if (err) 5570 return err; 5571 5572 err = statmount_opt_process(seq, start); 5573 if (err < 0) 5574 return err; 5575 5576 s->sm.opt_num = err; 5577 return 0; 5578 } 5579 5580 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5581 { 5582 struct vfsmount *mnt = s->mnt; 5583 struct super_block *sb = mnt->mnt_sb; 5584 size_t start = seq->count; 5585 int err; 5586 5587 err = security_sb_show_options(seq, sb); 5588 if (err) 5589 return err; 5590 5591 err = statmount_opt_process(seq, start); 5592 if (err < 0) 5593 return err; 5594 5595 s->sm.opt_sec_num = err; 5596 return 0; 5597 } 5598 5599 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5600 { 5601 int ret; 5602 5603 ret = statmount_mnt_idmap(s->idmap, seq, true); 5604 if (ret < 0) 5605 return ret; 5606 5607 s->sm.mnt_uidmap_num = ret; 5608 /* 5609 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5610 * mappings. This allows userspace to distinguish between a 5611 * non-idmapped mount and an idmapped mount where none of the 5612 * individual mappings are valid in the caller's idmapping. 5613 */ 5614 if (is_valid_mnt_idmap(s->idmap)) 5615 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5616 return 0; 5617 } 5618 5619 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5620 { 5621 int ret; 5622 5623 ret = statmount_mnt_idmap(s->idmap, seq, false); 5624 if (ret < 0) 5625 return ret; 5626 5627 s->sm.mnt_gidmap_num = ret; 5628 /* 5629 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5630 * mappings. This allows userspace to distinguish between a 5631 * non-idmapped mount and an idmapped mount where none of the 5632 * individual mappings are valid in the caller's idmapping. 5633 */ 5634 if (is_valid_mnt_idmap(s->idmap)) 5635 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5636 return 0; 5637 } 5638 5639 static int statmount_string(struct kstatmount *s, u64 flag) 5640 { 5641 int ret = 0; 5642 size_t kbufsize; 5643 struct seq_file *seq = &s->seq; 5644 struct statmount *sm = &s->sm; 5645 u32 start, *offp; 5646 5647 /* Reserve an empty string at the beginning for any unset offsets */ 5648 if (!seq->count) 5649 seq_putc(seq, 0); 5650 5651 start = seq->count; 5652 5653 switch (flag) { 5654 case STATMOUNT_FS_TYPE: 5655 offp = &sm->fs_type; 5656 ret = statmount_fs_type(s, seq); 5657 break; 5658 case STATMOUNT_MNT_ROOT: 5659 offp = &sm->mnt_root; 5660 ret = statmount_mnt_root(s, seq); 5661 break; 5662 case STATMOUNT_MNT_POINT: 5663 offp = &sm->mnt_point; 5664 ret = statmount_mnt_point(s, seq); 5665 break; 5666 case STATMOUNT_MNT_OPTS: 5667 offp = &sm->mnt_opts; 5668 ret = statmount_mnt_opts(s, seq); 5669 break; 5670 case STATMOUNT_OPT_ARRAY: 5671 offp = &sm->opt_array; 5672 ret = statmount_opt_array(s, seq); 5673 break; 5674 case STATMOUNT_OPT_SEC_ARRAY: 5675 offp = &sm->opt_sec_array; 5676 ret = statmount_opt_sec_array(s, seq); 5677 break; 5678 case STATMOUNT_FS_SUBTYPE: 5679 offp = &sm->fs_subtype; 5680 statmount_fs_subtype(s, seq); 5681 break; 5682 case STATMOUNT_SB_SOURCE: 5683 offp = &sm->sb_source; 5684 ret = statmount_sb_source(s, seq); 5685 break; 5686 case STATMOUNT_MNT_UIDMAP: 5687 sm->mnt_uidmap = start; 5688 ret = statmount_mnt_uidmap(s, seq); 5689 break; 5690 case STATMOUNT_MNT_GIDMAP: 5691 sm->mnt_gidmap = start; 5692 ret = statmount_mnt_gidmap(s, seq); 5693 break; 5694 default: 5695 WARN_ON_ONCE(true); 5696 return -EINVAL; 5697 } 5698 5699 /* 5700 * If nothing was emitted, return to avoid setting the flag 5701 * and terminating the buffer. 5702 */ 5703 if (seq->count == start) 5704 return ret; 5705 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5706 return -EOVERFLOW; 5707 if (kbufsize >= s->bufsize) 5708 return -EOVERFLOW; 5709 5710 /* signal a retry */ 5711 if (unlikely(seq_has_overflowed(seq))) 5712 return -EAGAIN; 5713 5714 if (ret) 5715 return ret; 5716 5717 seq->buf[seq->count++] = '\0'; 5718 sm->mask |= flag; 5719 *offp = start; 5720 return 0; 5721 } 5722 5723 static int copy_statmount_to_user(struct kstatmount *s) 5724 { 5725 struct statmount *sm = &s->sm; 5726 struct seq_file *seq = &s->seq; 5727 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5728 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5729 5730 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5731 return -EFAULT; 5732 5733 /* Return the number of bytes copied to the buffer */ 5734 sm->size = copysize + seq->count; 5735 if (copy_to_user(s->buf, sm, copysize)) 5736 return -EFAULT; 5737 5738 return 0; 5739 } 5740 5741 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5742 { 5743 struct rb_node *node; 5744 5745 if (reverse) 5746 node = rb_prev(&curr->mnt_node); 5747 else 5748 node = rb_next(&curr->mnt_node); 5749 5750 return node_to_mount(node); 5751 } 5752 5753 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5754 { 5755 struct mount *first, *child; 5756 5757 rwsem_assert_held(&namespace_sem); 5758 5759 /* We're looking at our own ns, just use get_fs_root. */ 5760 if (ns == current->nsproxy->mnt_ns) { 5761 get_fs_root(current->fs, root); 5762 return 0; 5763 } 5764 5765 /* 5766 * We have to find the first mount in our ns and use that, however it 5767 * may not exist, so handle that properly. 5768 */ 5769 if (mnt_ns_empty(ns)) 5770 return -ENOENT; 5771 5772 first = child = ns->root; 5773 for (;;) { 5774 child = listmnt_next(child, false); 5775 if (!child) 5776 return -ENOENT; 5777 if (child->mnt_parent == first) 5778 break; 5779 } 5780 5781 root->mnt = mntget(&child->mnt); 5782 root->dentry = dget(root->mnt->mnt_root); 5783 return 0; 5784 } 5785 5786 /* This must be updated whenever a new flag is added */ 5787 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5788 STATMOUNT_MNT_BASIC | \ 5789 STATMOUNT_PROPAGATE_FROM | \ 5790 STATMOUNT_MNT_ROOT | \ 5791 STATMOUNT_MNT_POINT | \ 5792 STATMOUNT_FS_TYPE | \ 5793 STATMOUNT_MNT_NS_ID | \ 5794 STATMOUNT_MNT_OPTS | \ 5795 STATMOUNT_FS_SUBTYPE | \ 5796 STATMOUNT_SB_SOURCE | \ 5797 STATMOUNT_OPT_ARRAY | \ 5798 STATMOUNT_OPT_SEC_ARRAY | \ 5799 STATMOUNT_SUPPORTED_MASK) 5800 5801 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5802 struct mnt_namespace *ns) 5803 { 5804 struct path root __free(path_put) = {}; 5805 struct mount *m; 5806 int err; 5807 5808 /* Has the namespace already been emptied? */ 5809 if (mnt_ns_id && mnt_ns_empty(ns)) 5810 return -ENOENT; 5811 5812 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5813 if (!s->mnt) 5814 return -ENOENT; 5815 5816 err = grab_requested_root(ns, &root); 5817 if (err) 5818 return err; 5819 5820 /* 5821 * Don't trigger audit denials. We just want to determine what 5822 * mounts to show users. 5823 */ 5824 m = real_mount(s->mnt); 5825 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5826 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5827 return -EPERM; 5828 5829 err = security_sb_statfs(s->mnt->mnt_root); 5830 if (err) 5831 return err; 5832 5833 s->root = root; 5834 s->idmap = mnt_idmap(s->mnt); 5835 if (s->mask & STATMOUNT_SB_BASIC) 5836 statmount_sb_basic(s); 5837 5838 if (s->mask & STATMOUNT_MNT_BASIC) 5839 statmount_mnt_basic(s); 5840 5841 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5842 statmount_propagate_from(s); 5843 5844 if (s->mask & STATMOUNT_FS_TYPE) 5845 err = statmount_string(s, STATMOUNT_FS_TYPE); 5846 5847 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5848 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5849 5850 if (!err && s->mask & STATMOUNT_MNT_POINT) 5851 err = statmount_string(s, STATMOUNT_MNT_POINT); 5852 5853 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5854 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5855 5856 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5857 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5858 5859 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5860 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5861 5862 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5863 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5864 5865 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5866 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5867 5868 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5869 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5870 5871 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5872 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5873 5874 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5875 statmount_mnt_ns_id(s, ns); 5876 5877 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5878 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5879 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5880 } 5881 5882 if (err) 5883 return err; 5884 5885 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5886 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5887 5888 return 0; 5889 } 5890 5891 static inline bool retry_statmount(const long ret, size_t *seq_size) 5892 { 5893 if (likely(ret != -EAGAIN)) 5894 return false; 5895 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5896 return false; 5897 if (unlikely(*seq_size > MAX_RW_COUNT)) 5898 return false; 5899 return true; 5900 } 5901 5902 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5903 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5904 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5905 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5906 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5907 5908 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5909 struct statmount __user *buf, size_t bufsize, 5910 size_t seq_size) 5911 { 5912 if (!access_ok(buf, bufsize)) 5913 return -EFAULT; 5914 5915 memset(ks, 0, sizeof(*ks)); 5916 ks->mask = kreq->param; 5917 ks->buf = buf; 5918 ks->bufsize = bufsize; 5919 5920 if (ks->mask & STATMOUNT_STRING_REQ) { 5921 if (bufsize == sizeof(ks->sm)) 5922 return -EOVERFLOW; 5923 5924 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5925 if (!ks->seq.buf) 5926 return -ENOMEM; 5927 5928 ks->seq.size = seq_size; 5929 } 5930 5931 return 0; 5932 } 5933 5934 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5935 struct mnt_id_req *kreq) 5936 { 5937 int ret; 5938 size_t usize; 5939 5940 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5941 5942 ret = get_user(usize, &req->size); 5943 if (ret) 5944 return -EFAULT; 5945 if (unlikely(usize > PAGE_SIZE)) 5946 return -E2BIG; 5947 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5948 return -EINVAL; 5949 memset(kreq, 0, sizeof(*kreq)); 5950 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5951 if (ret) 5952 return ret; 5953 if (kreq->spare != 0) 5954 return -EINVAL; 5955 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5956 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5957 return -EINVAL; 5958 return 0; 5959 } 5960 5961 /* 5962 * If the user requested a specific mount namespace id, look that up and return 5963 * that, or if not simply grab a passive reference on our mount namespace and 5964 * return that. 5965 */ 5966 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5967 { 5968 struct mnt_namespace *mnt_ns; 5969 5970 if (kreq->mnt_ns_id && kreq->spare) 5971 return ERR_PTR(-EINVAL); 5972 5973 if (kreq->mnt_ns_id) 5974 return lookup_mnt_ns(kreq->mnt_ns_id); 5975 5976 if (kreq->spare) { 5977 struct ns_common *ns; 5978 5979 CLASS(fd, f)(kreq->spare); 5980 if (fd_empty(f)) 5981 return ERR_PTR(-EBADF); 5982 5983 if (!proc_ns_file(fd_file(f))) 5984 return ERR_PTR(-EINVAL); 5985 5986 ns = get_proc_ns(file_inode(fd_file(f))); 5987 if (ns->ops->type != CLONE_NEWNS) 5988 return ERR_PTR(-EINVAL); 5989 5990 mnt_ns = to_mnt_ns(ns); 5991 } else { 5992 mnt_ns = current->nsproxy->mnt_ns; 5993 } 5994 5995 refcount_inc(&mnt_ns->passive); 5996 return mnt_ns; 5997 } 5998 5999 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 6000 struct statmount __user *, buf, size_t, bufsize, 6001 unsigned int, flags) 6002 { 6003 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6004 struct kstatmount *ks __free(kfree) = NULL; 6005 struct mnt_id_req kreq; 6006 /* We currently support retrieval of 3 strings. */ 6007 size_t seq_size = 3 * PATH_MAX; 6008 int ret; 6009 6010 if (flags) 6011 return -EINVAL; 6012 6013 ret = copy_mnt_id_req(req, &kreq); 6014 if (ret) 6015 return ret; 6016 6017 ns = grab_requested_mnt_ns(&kreq); 6018 if (!ns) 6019 return -ENOENT; 6020 6021 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6022 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6023 return -ENOENT; 6024 6025 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 6026 if (!ks) 6027 return -ENOMEM; 6028 6029 retry: 6030 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 6031 if (ret) 6032 return ret; 6033 6034 scoped_guard(rwsem_read, &namespace_sem) 6035 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 6036 6037 if (!ret) 6038 ret = copy_statmount_to_user(ks); 6039 kvfree(ks->seq.buf); 6040 if (retry_statmount(ret, &seq_size)) 6041 goto retry; 6042 return ret; 6043 } 6044 6045 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 6046 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 6047 bool reverse) 6048 { 6049 struct path root __free(path_put) = {}; 6050 struct path orig; 6051 struct mount *r, *first; 6052 ssize_t ret; 6053 6054 rwsem_assert_held(&namespace_sem); 6055 6056 ret = grab_requested_root(ns, &root); 6057 if (ret) 6058 return ret; 6059 6060 if (mnt_parent_id == LSMT_ROOT) { 6061 orig = root; 6062 } else { 6063 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 6064 if (!orig.mnt) 6065 return -ENOENT; 6066 orig.dentry = orig.mnt->mnt_root; 6067 } 6068 6069 /* 6070 * Don't trigger audit denials. We just want to determine what 6071 * mounts to show users. 6072 */ 6073 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 6074 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6075 return -EPERM; 6076 6077 ret = security_sb_statfs(orig.dentry); 6078 if (ret) 6079 return ret; 6080 6081 if (!last_mnt_id) { 6082 if (reverse) 6083 first = node_to_mount(ns->mnt_last_node); 6084 else 6085 first = node_to_mount(ns->mnt_first_node); 6086 } else { 6087 if (reverse) 6088 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 6089 else 6090 first = mnt_find_id_at(ns, last_mnt_id + 1); 6091 } 6092 6093 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 6094 if (r->mnt_id_unique == mnt_parent_id) 6095 continue; 6096 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 6097 continue; 6098 *mnt_ids = r->mnt_id_unique; 6099 mnt_ids++; 6100 nr_mnt_ids--; 6101 ret++; 6102 } 6103 return ret; 6104 } 6105 6106 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 6107 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 6108 { 6109 u64 *kmnt_ids __free(kvfree) = NULL; 6110 const size_t maxcount = 1000000; 6111 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6112 struct mnt_id_req kreq; 6113 u64 last_mnt_id; 6114 ssize_t ret; 6115 6116 if (flags & ~LISTMOUNT_REVERSE) 6117 return -EINVAL; 6118 6119 /* 6120 * If the mount namespace really has more than 1 million mounts the 6121 * caller must iterate over the mount namespace (and reconsider their 6122 * system design...). 6123 */ 6124 if (unlikely(nr_mnt_ids > maxcount)) 6125 return -EOVERFLOW; 6126 6127 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 6128 return -EFAULT; 6129 6130 ret = copy_mnt_id_req(req, &kreq); 6131 if (ret) 6132 return ret; 6133 6134 last_mnt_id = kreq.param; 6135 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 6136 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 6137 return -EINVAL; 6138 6139 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 6140 GFP_KERNEL_ACCOUNT); 6141 if (!kmnt_ids) 6142 return -ENOMEM; 6143 6144 ns = grab_requested_mnt_ns(&kreq); 6145 if (!ns) 6146 return -ENOENT; 6147 6148 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6149 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6150 return -ENOENT; 6151 6152 scoped_guard(rwsem_read, &namespace_sem) 6153 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 6154 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 6155 if (ret <= 0) 6156 return ret; 6157 6158 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 6159 return -EFAULT; 6160 6161 return ret; 6162 } 6163 6164 static void __init init_mount_tree(void) 6165 { 6166 struct vfsmount *mnt; 6167 struct mount *m; 6168 struct mnt_namespace *ns; 6169 struct path root; 6170 6171 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 6172 if (IS_ERR(mnt)) 6173 panic("Can't create rootfs"); 6174 6175 ns = alloc_mnt_ns(&init_user_ns, false); 6176 if (IS_ERR(ns)) 6177 panic("Can't allocate initial namespace"); 6178 m = real_mount(mnt); 6179 ns->root = m; 6180 ns->nr_mounts = 1; 6181 mnt_add_to_ns(ns, m); 6182 init_task.nsproxy->mnt_ns = ns; 6183 get_mnt_ns(ns); 6184 6185 root.mnt = mnt; 6186 root.dentry = mnt->mnt_root; 6187 mnt->mnt_flags |= MNT_LOCKED; 6188 6189 set_fs_pwd(current->fs, &root); 6190 set_fs_root(current->fs, &root); 6191 6192 mnt_ns_tree_add(ns); 6193 } 6194 6195 void __init mnt_init(void) 6196 { 6197 int err; 6198 6199 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 6200 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 6201 6202 mount_hashtable = alloc_large_system_hash("Mount-cache", 6203 sizeof(struct hlist_head), 6204 mhash_entries, 19, 6205 HASH_ZERO, 6206 &m_hash_shift, &m_hash_mask, 0, 0); 6207 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 6208 sizeof(struct hlist_head), 6209 mphash_entries, 19, 6210 HASH_ZERO, 6211 &mp_hash_shift, &mp_hash_mask, 0, 0); 6212 6213 if (!mount_hashtable || !mountpoint_hashtable) 6214 panic("Failed to allocate mount hash table\n"); 6215 6216 kernfs_init(); 6217 6218 err = sysfs_init(); 6219 if (err) 6220 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 6221 __func__, err); 6222 fs_kobj = kobject_create_and_add("fs", NULL); 6223 if (!fs_kobj) 6224 printk(KERN_WARNING "%s: kobj create error\n", __func__); 6225 shmem_init(); 6226 init_rootfs(); 6227 init_mount_tree(); 6228 } 6229 6230 void put_mnt_ns(struct mnt_namespace *ns) 6231 { 6232 if (!refcount_dec_and_test(&ns->ns.count)) 6233 return; 6234 drop_collected_mounts(&ns->root->mnt); 6235 free_mnt_ns(ns); 6236 } 6237 6238 struct vfsmount *kern_mount(struct file_system_type *type) 6239 { 6240 struct vfsmount *mnt; 6241 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 6242 if (!IS_ERR(mnt)) { 6243 /* 6244 * it is a longterm mount, don't release mnt until 6245 * we unmount before file sys is unregistered 6246 */ 6247 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 6248 } 6249 return mnt; 6250 } 6251 EXPORT_SYMBOL_GPL(kern_mount); 6252 6253 void kern_unmount(struct vfsmount *mnt) 6254 { 6255 /* release long term mount so mount point can be released */ 6256 if (!IS_ERR(mnt)) { 6257 mnt_make_shortterm(mnt); 6258 synchronize_rcu(); /* yecchhh... */ 6259 mntput(mnt); 6260 } 6261 } 6262 EXPORT_SYMBOL(kern_unmount); 6263 6264 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6265 { 6266 unsigned int i; 6267 6268 for (i = 0; i < num; i++) 6269 mnt_make_shortterm(mnt[i]); 6270 synchronize_rcu_expedited(); 6271 for (i = 0; i < num; i++) 6272 mntput(mnt[i]); 6273 } 6274 EXPORT_SYMBOL(kern_unmount_array); 6275 6276 bool our_mnt(struct vfsmount *mnt) 6277 { 6278 return check_mnt(real_mount(mnt)); 6279 } 6280 6281 bool current_chrooted(void) 6282 { 6283 /* Does the current process have a non-standard root */ 6284 struct path ns_root; 6285 struct path fs_root; 6286 bool chrooted; 6287 6288 /* Find the namespace root */ 6289 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 6290 ns_root.dentry = ns_root.mnt->mnt_root; 6291 path_get(&ns_root); 6292 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 6293 ; 6294 6295 get_fs_root(current->fs, &fs_root); 6296 6297 chrooted = !path_equal(&fs_root, &ns_root); 6298 6299 path_put(&fs_root); 6300 path_put(&ns_root); 6301 6302 return chrooted; 6303 } 6304 6305 static bool mnt_already_visible(struct mnt_namespace *ns, 6306 const struct super_block *sb, 6307 int *new_mnt_flags) 6308 { 6309 int new_flags = *new_mnt_flags; 6310 struct mount *mnt, *n; 6311 bool visible = false; 6312 6313 down_read(&namespace_sem); 6314 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6315 struct mount *child; 6316 int mnt_flags; 6317 6318 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6319 continue; 6320 6321 /* This mount is not fully visible if it's root directory 6322 * is not the root directory of the filesystem. 6323 */ 6324 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6325 continue; 6326 6327 /* A local view of the mount flags */ 6328 mnt_flags = mnt->mnt.mnt_flags; 6329 6330 /* Don't miss readonly hidden in the superblock flags */ 6331 if (sb_rdonly(mnt->mnt.mnt_sb)) 6332 mnt_flags |= MNT_LOCK_READONLY; 6333 6334 /* Verify the mount flags are equal to or more permissive 6335 * than the proposed new mount. 6336 */ 6337 if ((mnt_flags & MNT_LOCK_READONLY) && 6338 !(new_flags & MNT_READONLY)) 6339 continue; 6340 if ((mnt_flags & MNT_LOCK_ATIME) && 6341 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6342 continue; 6343 6344 /* This mount is not fully visible if there are any 6345 * locked child mounts that cover anything except for 6346 * empty directories. 6347 */ 6348 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6349 struct inode *inode = child->mnt_mountpoint->d_inode; 6350 /* Only worry about locked mounts */ 6351 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6352 continue; 6353 /* Is the directory permanently empty? */ 6354 if (!is_empty_dir_inode(inode)) 6355 goto next; 6356 } 6357 /* Preserve the locked attributes */ 6358 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6359 MNT_LOCK_ATIME); 6360 visible = true; 6361 goto found; 6362 next: ; 6363 } 6364 found: 6365 up_read(&namespace_sem); 6366 return visible; 6367 } 6368 6369 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6370 { 6371 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6372 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6373 unsigned long s_iflags; 6374 6375 if (ns->user_ns == &init_user_ns) 6376 return false; 6377 6378 /* Can this filesystem be too revealing? */ 6379 s_iflags = sb->s_iflags; 6380 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6381 return false; 6382 6383 if ((s_iflags & required_iflags) != required_iflags) { 6384 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6385 required_iflags); 6386 return true; 6387 } 6388 6389 return !mnt_already_visible(ns, sb, new_mnt_flags); 6390 } 6391 6392 bool mnt_may_suid(struct vfsmount *mnt) 6393 { 6394 /* 6395 * Foreign mounts (accessed via fchdir or through /proc 6396 * symlinks) are always treated as if they are nosuid. This 6397 * prevents namespaces from trusting potentially unsafe 6398 * suid/sgid bits, file caps, or security labels that originate 6399 * in other namespaces. 6400 */ 6401 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6402 current_in_userns(mnt->mnt_sb->s_user_ns); 6403 } 6404 6405 static struct ns_common *mntns_get(struct task_struct *task) 6406 { 6407 struct ns_common *ns = NULL; 6408 struct nsproxy *nsproxy; 6409 6410 task_lock(task); 6411 nsproxy = task->nsproxy; 6412 if (nsproxy) { 6413 ns = &nsproxy->mnt_ns->ns; 6414 get_mnt_ns(to_mnt_ns(ns)); 6415 } 6416 task_unlock(task); 6417 6418 return ns; 6419 } 6420 6421 static void mntns_put(struct ns_common *ns) 6422 { 6423 put_mnt_ns(to_mnt_ns(ns)); 6424 } 6425 6426 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6427 { 6428 struct nsproxy *nsproxy = nsset->nsproxy; 6429 struct fs_struct *fs = nsset->fs; 6430 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6431 struct user_namespace *user_ns = nsset->cred->user_ns; 6432 struct path root; 6433 int err; 6434 6435 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6436 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6437 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6438 return -EPERM; 6439 6440 if (is_anon_ns(mnt_ns)) 6441 return -EINVAL; 6442 6443 if (fs->users != 1) 6444 return -EINVAL; 6445 6446 get_mnt_ns(mnt_ns); 6447 old_mnt_ns = nsproxy->mnt_ns; 6448 nsproxy->mnt_ns = mnt_ns; 6449 6450 /* Find the root */ 6451 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6452 "/", LOOKUP_DOWN, &root); 6453 if (err) { 6454 /* revert to old namespace */ 6455 nsproxy->mnt_ns = old_mnt_ns; 6456 put_mnt_ns(mnt_ns); 6457 return err; 6458 } 6459 6460 put_mnt_ns(old_mnt_ns); 6461 6462 /* Update the pwd and root */ 6463 set_fs_pwd(fs, &root); 6464 set_fs_root(fs, &root); 6465 6466 path_put(&root); 6467 return 0; 6468 } 6469 6470 static struct user_namespace *mntns_owner(struct ns_common *ns) 6471 { 6472 return to_mnt_ns(ns)->user_ns; 6473 } 6474 6475 const struct proc_ns_operations mntns_operations = { 6476 .name = "mnt", 6477 .type = CLONE_NEWNS, 6478 .get = mntns_get, 6479 .put = mntns_put, 6480 .install = mntns_install, 6481 .owner = mntns_owner, 6482 }; 6483 6484 #ifdef CONFIG_SYSCTL 6485 static const struct ctl_table fs_namespace_sysctls[] = { 6486 { 6487 .procname = "mount-max", 6488 .data = &sysctl_mount_max, 6489 .maxlen = sizeof(unsigned int), 6490 .mode = 0644, 6491 .proc_handler = proc_dointvec_minmax, 6492 .extra1 = SYSCTL_ONE, 6493 }, 6494 }; 6495 6496 static int __init init_fs_namespace_sysctls(void) 6497 { 6498 register_sysctl_init("fs", fs_namespace_sysctls); 6499 return 0; 6500 } 6501 fs_initcall(init_fs_namespace_sysctls); 6502 6503 #endif /* CONFIG_SYSCTL */ 6504