xref: /linux/fs/namespace.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
29 
30 extern int __init init_rootfs(void);
31 
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
36 {
37 	return 0;
38 }
39 #endif
40 
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43 
44 static int event;
45 
46 static struct list_head *mount_hashtable __read_mostly;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache __read_mostly;
49 static struct rw_semaphore namespace_sem;
50 
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
54 
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 {
57 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 	tmp = tmp + (tmp >> hash_bits);
60 	return tmp & hash_mask;
61 }
62 
63 struct vfsmount *alloc_vfsmnt(const char *name)
64 {
65 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 	if (mnt) {
67 		memset(mnt, 0, sizeof(struct vfsmount));
68 		atomic_set(&mnt->mnt_count, 1);
69 		INIT_LIST_HEAD(&mnt->mnt_hash);
70 		INIT_LIST_HEAD(&mnt->mnt_child);
71 		INIT_LIST_HEAD(&mnt->mnt_mounts);
72 		INIT_LIST_HEAD(&mnt->mnt_list);
73 		INIT_LIST_HEAD(&mnt->mnt_expire);
74 		INIT_LIST_HEAD(&mnt->mnt_share);
75 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 		INIT_LIST_HEAD(&mnt->mnt_slave);
77 		if (name) {
78 			int size = strlen(name) + 1;
79 			char *newname = kmalloc(size, GFP_KERNEL);
80 			if (newname) {
81 				memcpy(newname, name, size);
82 				mnt->mnt_devname = newname;
83 			}
84 		}
85 	}
86 	return mnt;
87 }
88 
89 void free_vfsmnt(struct vfsmount *mnt)
90 {
91 	kfree(mnt->mnt_devname);
92 	kmem_cache_free(mnt_cache, mnt);
93 }
94 
95 /*
96  * find the first or last mount at @dentry on vfsmount @mnt depending on
97  * @dir. If @dir is set return the first mount else return the last mount.
98  */
99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100 			      int dir)
101 {
102 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
103 	struct list_head *tmp = head;
104 	struct vfsmount *p, *found = NULL;
105 
106 	for (;;) {
107 		tmp = dir ? tmp->next : tmp->prev;
108 		p = NULL;
109 		if (tmp == head)
110 			break;
111 		p = list_entry(tmp, struct vfsmount, mnt_hash);
112 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113 			found = p;
114 			break;
115 		}
116 	}
117 	return found;
118 }
119 
120 /*
121  * lookup_mnt increments the ref count before returning
122  * the vfsmount struct.
123  */
124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 {
126 	struct vfsmount *child_mnt;
127 	spin_lock(&vfsmount_lock);
128 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129 		mntget(child_mnt);
130 	spin_unlock(&vfsmount_lock);
131 	return child_mnt;
132 }
133 
134 static inline int check_mnt(struct vfsmount *mnt)
135 {
136 	return mnt->mnt_namespace == current->namespace;
137 }
138 
139 static void touch_namespace(struct namespace *ns)
140 {
141 	if (ns) {
142 		ns->event = ++event;
143 		wake_up_interruptible(&ns->poll);
144 	}
145 }
146 
147 static void __touch_namespace(struct namespace *ns)
148 {
149 	if (ns && ns->event != event) {
150 		ns->event = event;
151 		wake_up_interruptible(&ns->poll);
152 	}
153 }
154 
155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 {
157 	old_nd->dentry = mnt->mnt_mountpoint;
158 	old_nd->mnt = mnt->mnt_parent;
159 	mnt->mnt_parent = mnt;
160 	mnt->mnt_mountpoint = mnt->mnt_root;
161 	list_del_init(&mnt->mnt_child);
162 	list_del_init(&mnt->mnt_hash);
163 	old_nd->dentry->d_mounted--;
164 }
165 
166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167 			struct vfsmount *child_mnt)
168 {
169 	child_mnt->mnt_parent = mntget(mnt);
170 	child_mnt->mnt_mountpoint = dget(dentry);
171 	dentry->d_mounted++;
172 }
173 
174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 {
176 	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
178 			hash(nd->mnt, nd->dentry));
179 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
180 }
181 
182 /*
183  * the caller must hold vfsmount_lock
184  */
185 static void commit_tree(struct vfsmount *mnt)
186 {
187 	struct vfsmount *parent = mnt->mnt_parent;
188 	struct vfsmount *m;
189 	LIST_HEAD(head);
190 	struct namespace *n = parent->mnt_namespace;
191 
192 	BUG_ON(parent == mnt);
193 
194 	list_add_tail(&head, &mnt->mnt_list);
195 	list_for_each_entry(m, &head, mnt_list)
196 		m->mnt_namespace = n;
197 	list_splice(&head, n->list.prev);
198 
199 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
200 				hash(parent, mnt->mnt_mountpoint));
201 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202 	touch_namespace(n);
203 }
204 
205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 {
207 	struct list_head *next = p->mnt_mounts.next;
208 	if (next == &p->mnt_mounts) {
209 		while (1) {
210 			if (p == root)
211 				return NULL;
212 			next = p->mnt_child.next;
213 			if (next != &p->mnt_parent->mnt_mounts)
214 				break;
215 			p = p->mnt_parent;
216 		}
217 	}
218 	return list_entry(next, struct vfsmount, mnt_child);
219 }
220 
221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 {
223 	struct list_head *prev = p->mnt_mounts.prev;
224 	while (prev != &p->mnt_mounts) {
225 		p = list_entry(prev, struct vfsmount, mnt_child);
226 		prev = p->mnt_mounts.prev;
227 	}
228 	return p;
229 }
230 
231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232 					int flag)
233 {
234 	struct super_block *sb = old->mnt_sb;
235 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236 
237 	if (mnt) {
238 		mnt->mnt_flags = old->mnt_flags;
239 		atomic_inc(&sb->s_active);
240 		mnt->mnt_sb = sb;
241 		mnt->mnt_root = dget(root);
242 		mnt->mnt_mountpoint = mnt->mnt_root;
243 		mnt->mnt_parent = mnt;
244 
245 		if (flag & CL_SLAVE) {
246 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247 			mnt->mnt_master = old;
248 			CLEAR_MNT_SHARED(mnt);
249 		} else {
250 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251 				list_add(&mnt->mnt_share, &old->mnt_share);
252 			if (IS_MNT_SLAVE(old))
253 				list_add(&mnt->mnt_slave, &old->mnt_slave);
254 			mnt->mnt_master = old->mnt_master;
255 		}
256 		if (flag & CL_MAKE_SHARED)
257 			set_mnt_shared(mnt);
258 
259 		/* stick the duplicate mount on the same expiry list
260 		 * as the original if that was on one */
261 		if (flag & CL_EXPIRE) {
262 			spin_lock(&vfsmount_lock);
263 			if (!list_empty(&old->mnt_expire))
264 				list_add(&mnt->mnt_expire, &old->mnt_expire);
265 			spin_unlock(&vfsmount_lock);
266 		}
267 	}
268 	return mnt;
269 }
270 
271 static inline void __mntput(struct vfsmount *mnt)
272 {
273 	struct super_block *sb = mnt->mnt_sb;
274 	dput(mnt->mnt_root);
275 	free_vfsmnt(mnt);
276 	deactivate_super(sb);
277 }
278 
279 void mntput_no_expire(struct vfsmount *mnt)
280 {
281 repeat:
282 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283 		if (likely(!mnt->mnt_pinned)) {
284 			spin_unlock(&vfsmount_lock);
285 			__mntput(mnt);
286 			return;
287 		}
288 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289 		mnt->mnt_pinned = 0;
290 		spin_unlock(&vfsmount_lock);
291 		acct_auto_close_mnt(mnt);
292 		security_sb_umount_close(mnt);
293 		goto repeat;
294 	}
295 }
296 
297 EXPORT_SYMBOL(mntput_no_expire);
298 
299 void mnt_pin(struct vfsmount *mnt)
300 {
301 	spin_lock(&vfsmount_lock);
302 	mnt->mnt_pinned++;
303 	spin_unlock(&vfsmount_lock);
304 }
305 
306 EXPORT_SYMBOL(mnt_pin);
307 
308 void mnt_unpin(struct vfsmount *mnt)
309 {
310 	spin_lock(&vfsmount_lock);
311 	if (mnt->mnt_pinned) {
312 		atomic_inc(&mnt->mnt_count);
313 		mnt->mnt_pinned--;
314 	}
315 	spin_unlock(&vfsmount_lock);
316 }
317 
318 EXPORT_SYMBOL(mnt_unpin);
319 
320 /* iterator */
321 static void *m_start(struct seq_file *m, loff_t *pos)
322 {
323 	struct namespace *n = m->private;
324 	struct list_head *p;
325 	loff_t l = *pos;
326 
327 	down_read(&namespace_sem);
328 	list_for_each(p, &n->list)
329 		if (!l--)
330 			return list_entry(p, struct vfsmount, mnt_list);
331 	return NULL;
332 }
333 
334 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
335 {
336 	struct namespace *n = m->private;
337 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
338 	(*pos)++;
339 	return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
340 }
341 
342 static void m_stop(struct seq_file *m, void *v)
343 {
344 	up_read(&namespace_sem);
345 }
346 
347 static inline void mangle(struct seq_file *m, const char *s)
348 {
349 	seq_escape(m, s, " \t\n\\");
350 }
351 
352 static int show_vfsmnt(struct seq_file *m, void *v)
353 {
354 	struct vfsmount *mnt = v;
355 	int err = 0;
356 	static struct proc_fs_info {
357 		int flag;
358 		char *str;
359 	} fs_info[] = {
360 		{ MS_SYNCHRONOUS, ",sync" },
361 		{ MS_DIRSYNC, ",dirsync" },
362 		{ MS_MANDLOCK, ",mand" },
363 		{ 0, NULL }
364 	};
365 	static struct proc_fs_info mnt_info[] = {
366 		{ MNT_NOSUID, ",nosuid" },
367 		{ MNT_NODEV, ",nodev" },
368 		{ MNT_NOEXEC, ",noexec" },
369 		{ MNT_NOATIME, ",noatime" },
370 		{ MNT_NODIRATIME, ",nodiratime" },
371 		{ 0, NULL }
372 	};
373 	struct proc_fs_info *fs_infop;
374 
375 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
376 	seq_putc(m, ' ');
377 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
378 	seq_putc(m, ' ');
379 	mangle(m, mnt->mnt_sb->s_type->name);
380 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
381 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
382 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
383 			seq_puts(m, fs_infop->str);
384 	}
385 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
386 		if (mnt->mnt_flags & fs_infop->flag)
387 			seq_puts(m, fs_infop->str);
388 	}
389 	if (mnt->mnt_sb->s_op->show_options)
390 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
391 	seq_puts(m, " 0 0\n");
392 	return err;
393 }
394 
395 struct seq_operations mounts_op = {
396 	.start	= m_start,
397 	.next	= m_next,
398 	.stop	= m_stop,
399 	.show	= show_vfsmnt
400 };
401 
402 static int show_vfsstat(struct seq_file *m, void *v)
403 {
404 	struct vfsmount *mnt = v;
405 	int err = 0;
406 
407 	/* device */
408 	if (mnt->mnt_devname) {
409 		seq_puts(m, "device ");
410 		mangle(m, mnt->mnt_devname);
411 	} else
412 		seq_puts(m, "no device");
413 
414 	/* mount point */
415 	seq_puts(m, " mounted on ");
416 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
417 	seq_putc(m, ' ');
418 
419 	/* file system type */
420 	seq_puts(m, "with fstype ");
421 	mangle(m, mnt->mnt_sb->s_type->name);
422 
423 	/* optional statistics */
424 	if (mnt->mnt_sb->s_op->show_stats) {
425 		seq_putc(m, ' ');
426 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
427 	}
428 
429 	seq_putc(m, '\n');
430 	return err;
431 }
432 
433 struct seq_operations mountstats_op = {
434 	.start	= m_start,
435 	.next	= m_next,
436 	.stop	= m_stop,
437 	.show	= show_vfsstat,
438 };
439 
440 /**
441  * may_umount_tree - check if a mount tree is busy
442  * @mnt: root of mount tree
443  *
444  * This is called to check if a tree of mounts has any
445  * open files, pwds, chroots or sub mounts that are
446  * busy.
447  */
448 int may_umount_tree(struct vfsmount *mnt)
449 {
450 	int actual_refs = 0;
451 	int minimum_refs = 0;
452 	struct vfsmount *p;
453 
454 	spin_lock(&vfsmount_lock);
455 	for (p = mnt; p; p = next_mnt(p, mnt)) {
456 		actual_refs += atomic_read(&p->mnt_count);
457 		minimum_refs += 2;
458 	}
459 	spin_unlock(&vfsmount_lock);
460 
461 	if (actual_refs > minimum_refs)
462 		return 0;
463 
464 	return 1;
465 }
466 
467 EXPORT_SYMBOL(may_umount_tree);
468 
469 /**
470  * may_umount - check if a mount point is busy
471  * @mnt: root of mount
472  *
473  * This is called to check if a mount point has any
474  * open files, pwds, chroots or sub mounts. If the
475  * mount has sub mounts this will return busy
476  * regardless of whether the sub mounts are busy.
477  *
478  * Doesn't take quota and stuff into account. IOW, in some cases it will
479  * give false negatives. The main reason why it's here is that we need
480  * a non-destructive way to look for easily umountable filesystems.
481  */
482 int may_umount(struct vfsmount *mnt)
483 {
484 	int ret = 1;
485 	spin_lock(&vfsmount_lock);
486 	if (propagate_mount_busy(mnt, 2))
487 		ret = 0;
488 	spin_unlock(&vfsmount_lock);
489 	return ret;
490 }
491 
492 EXPORT_SYMBOL(may_umount);
493 
494 void release_mounts(struct list_head *head)
495 {
496 	struct vfsmount *mnt;
497 	while (!list_empty(head)) {
498 		mnt = list_entry(head->next, struct vfsmount, mnt_hash);
499 		list_del_init(&mnt->mnt_hash);
500 		if (mnt->mnt_parent != mnt) {
501 			struct dentry *dentry;
502 			struct vfsmount *m;
503 			spin_lock(&vfsmount_lock);
504 			dentry = mnt->mnt_mountpoint;
505 			m = mnt->mnt_parent;
506 			mnt->mnt_mountpoint = mnt->mnt_root;
507 			mnt->mnt_parent = mnt;
508 			spin_unlock(&vfsmount_lock);
509 			dput(dentry);
510 			mntput(m);
511 		}
512 		mntput(mnt);
513 	}
514 }
515 
516 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
517 {
518 	struct vfsmount *p;
519 
520 	for (p = mnt; p; p = next_mnt(p, mnt)) {
521 		list_del(&p->mnt_hash);
522 		list_add(&p->mnt_hash, kill);
523 	}
524 
525 	if (propagate)
526 		propagate_umount(kill);
527 
528 	list_for_each_entry(p, kill, mnt_hash) {
529 		list_del_init(&p->mnt_expire);
530 		list_del_init(&p->mnt_list);
531 		__touch_namespace(p->mnt_namespace);
532 		p->mnt_namespace = NULL;
533 		list_del_init(&p->mnt_child);
534 		if (p->mnt_parent != p)
535 			p->mnt_mountpoint->d_mounted--;
536 		change_mnt_propagation(p, MS_PRIVATE);
537 	}
538 }
539 
540 static int do_umount(struct vfsmount *mnt, int flags)
541 {
542 	struct super_block *sb = mnt->mnt_sb;
543 	int retval;
544 	LIST_HEAD(umount_list);
545 
546 	retval = security_sb_umount(mnt, flags);
547 	if (retval)
548 		return retval;
549 
550 	/*
551 	 * Allow userspace to request a mountpoint be expired rather than
552 	 * unmounting unconditionally. Unmount only happens if:
553 	 *  (1) the mark is already set (the mark is cleared by mntput())
554 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
555 	 */
556 	if (flags & MNT_EXPIRE) {
557 		if (mnt == current->fs->rootmnt ||
558 		    flags & (MNT_FORCE | MNT_DETACH))
559 			return -EINVAL;
560 
561 		if (atomic_read(&mnt->mnt_count) != 2)
562 			return -EBUSY;
563 
564 		if (!xchg(&mnt->mnt_expiry_mark, 1))
565 			return -EAGAIN;
566 	}
567 
568 	/*
569 	 * If we may have to abort operations to get out of this
570 	 * mount, and they will themselves hold resources we must
571 	 * allow the fs to do things. In the Unix tradition of
572 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
573 	 * might fail to complete on the first run through as other tasks
574 	 * must return, and the like. Thats for the mount program to worry
575 	 * about for the moment.
576 	 */
577 
578 	lock_kernel();
579 	if ((flags & MNT_FORCE) && sb->s_op->umount_begin)
580 		sb->s_op->umount_begin(sb);
581 	unlock_kernel();
582 
583 	/*
584 	 * No sense to grab the lock for this test, but test itself looks
585 	 * somewhat bogus. Suggestions for better replacement?
586 	 * Ho-hum... In principle, we might treat that as umount + switch
587 	 * to rootfs. GC would eventually take care of the old vfsmount.
588 	 * Actually it makes sense, especially if rootfs would contain a
589 	 * /reboot - static binary that would close all descriptors and
590 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
591 	 */
592 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
593 		/*
594 		 * Special case for "unmounting" root ...
595 		 * we just try to remount it readonly.
596 		 */
597 		down_write(&sb->s_umount);
598 		if (!(sb->s_flags & MS_RDONLY)) {
599 			lock_kernel();
600 			DQUOT_OFF(sb);
601 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
602 			unlock_kernel();
603 		}
604 		up_write(&sb->s_umount);
605 		return retval;
606 	}
607 
608 	down_write(&namespace_sem);
609 	spin_lock(&vfsmount_lock);
610 	event++;
611 
612 	retval = -EBUSY;
613 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
614 		if (!list_empty(&mnt->mnt_list))
615 			umount_tree(mnt, 1, &umount_list);
616 		retval = 0;
617 	}
618 	spin_unlock(&vfsmount_lock);
619 	if (retval)
620 		security_sb_umount_busy(mnt);
621 	up_write(&namespace_sem);
622 	release_mounts(&umount_list);
623 	return retval;
624 }
625 
626 /*
627  * Now umount can handle mount points as well as block devices.
628  * This is important for filesystems which use unnamed block devices.
629  *
630  * We now support a flag for forced unmount like the other 'big iron'
631  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
632  */
633 
634 asmlinkage long sys_umount(char __user * name, int flags)
635 {
636 	struct nameidata nd;
637 	int retval;
638 
639 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
640 	if (retval)
641 		goto out;
642 	retval = -EINVAL;
643 	if (nd.dentry != nd.mnt->mnt_root)
644 		goto dput_and_out;
645 	if (!check_mnt(nd.mnt))
646 		goto dput_and_out;
647 
648 	retval = -EPERM;
649 	if (!capable(CAP_SYS_ADMIN))
650 		goto dput_and_out;
651 
652 	retval = do_umount(nd.mnt, flags);
653 dput_and_out:
654 	path_release_on_umount(&nd);
655 out:
656 	return retval;
657 }
658 
659 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
660 
661 /*
662  *	The 2.0 compatible umount. No flags.
663  */
664 asmlinkage long sys_oldumount(char __user * name)
665 {
666 	return sys_umount(name, 0);
667 }
668 
669 #endif
670 
671 static int mount_is_safe(struct nameidata *nd)
672 {
673 	if (capable(CAP_SYS_ADMIN))
674 		return 0;
675 	return -EPERM;
676 #ifdef notyet
677 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
678 		return -EPERM;
679 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
680 		if (current->uid != nd->dentry->d_inode->i_uid)
681 			return -EPERM;
682 	}
683 	if (vfs_permission(nd, MAY_WRITE))
684 		return -EPERM;
685 	return 0;
686 #endif
687 }
688 
689 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
690 {
691 	while (1) {
692 		if (d == dentry)
693 			return 1;
694 		if (d == NULL || d == d->d_parent)
695 			return 0;
696 		d = d->d_parent;
697 	}
698 }
699 
700 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
701 					int flag)
702 {
703 	struct vfsmount *res, *p, *q, *r, *s;
704 	struct nameidata nd;
705 
706 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
707 		return NULL;
708 
709 	res = q = clone_mnt(mnt, dentry, flag);
710 	if (!q)
711 		goto Enomem;
712 	q->mnt_mountpoint = mnt->mnt_mountpoint;
713 
714 	p = mnt;
715 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
716 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
717 			continue;
718 
719 		for (s = r; s; s = next_mnt(s, r)) {
720 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
721 				s = skip_mnt_tree(s);
722 				continue;
723 			}
724 			while (p != s->mnt_parent) {
725 				p = p->mnt_parent;
726 				q = q->mnt_parent;
727 			}
728 			p = s;
729 			nd.mnt = q;
730 			nd.dentry = p->mnt_mountpoint;
731 			q = clone_mnt(p, p->mnt_root, flag);
732 			if (!q)
733 				goto Enomem;
734 			spin_lock(&vfsmount_lock);
735 			list_add_tail(&q->mnt_list, &res->mnt_list);
736 			attach_mnt(q, &nd);
737 			spin_unlock(&vfsmount_lock);
738 		}
739 	}
740 	return res;
741 Enomem:
742 	if (res) {
743 		LIST_HEAD(umount_list);
744 		spin_lock(&vfsmount_lock);
745 		umount_tree(res, 0, &umount_list);
746 		spin_unlock(&vfsmount_lock);
747 		release_mounts(&umount_list);
748 	}
749 	return NULL;
750 }
751 
752 /*
753  *  @source_mnt : mount tree to be attached
754  *  @nd         : place the mount tree @source_mnt is attached
755  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
756  *  		   store the parent mount and mountpoint dentry.
757  *  		   (done when source_mnt is moved)
758  *
759  *  NOTE: in the table below explains the semantics when a source mount
760  *  of a given type is attached to a destination mount of a given type.
761  * ---------------------------------------------------------------------------
762  * |         BIND MOUNT OPERATION                                            |
763  * |**************************************************************************
764  * | source-->| shared        |       private  |       slave    | unbindable |
765  * | dest     |               |                |                |            |
766  * |   |      |               |                |                |            |
767  * |   v      |               |                |                |            |
768  * |**************************************************************************
769  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
770  * |          |               |                |                |            |
771  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
772  * ***************************************************************************
773  * A bind operation clones the source mount and mounts the clone on the
774  * destination mount.
775  *
776  * (++)  the cloned mount is propagated to all the mounts in the propagation
777  * 	 tree of the destination mount and the cloned mount is added to
778  * 	 the peer group of the source mount.
779  * (+)   the cloned mount is created under the destination mount and is marked
780  *       as shared. The cloned mount is added to the peer group of the source
781  *       mount.
782  * (+++) the mount is propagated to all the mounts in the propagation tree
783  *       of the destination mount and the cloned mount is made slave
784  *       of the same master as that of the source mount. The cloned mount
785  *       is marked as 'shared and slave'.
786  * (*)   the cloned mount is made a slave of the same master as that of the
787  * 	 source mount.
788  *
789  * ---------------------------------------------------------------------------
790  * |         		MOVE MOUNT OPERATION                                 |
791  * |**************************************************************************
792  * | source-->| shared        |       private  |       slave    | unbindable |
793  * | dest     |               |                |                |            |
794  * |   |      |               |                |                |            |
795  * |   v      |               |                |                |            |
796  * |**************************************************************************
797  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
798  * |          |               |                |                |            |
799  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
800  * ***************************************************************************
801  *
802  * (+)  the mount is moved to the destination. And is then propagated to
803  * 	all the mounts in the propagation tree of the destination mount.
804  * (+*)  the mount is moved to the destination.
805  * (+++)  the mount is moved to the destination and is then propagated to
806  * 	all the mounts belonging to the destination mount's propagation tree.
807  * 	the mount is marked as 'shared and slave'.
808  * (*)	the mount continues to be a slave at the new location.
809  *
810  * if the source mount is a tree, the operations explained above is
811  * applied to each mount in the tree.
812  * Must be called without spinlocks held, since this function can sleep
813  * in allocations.
814  */
815 static int attach_recursive_mnt(struct vfsmount *source_mnt,
816 			struct nameidata *nd, struct nameidata *parent_nd)
817 {
818 	LIST_HEAD(tree_list);
819 	struct vfsmount *dest_mnt = nd->mnt;
820 	struct dentry *dest_dentry = nd->dentry;
821 	struct vfsmount *child, *p;
822 
823 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
824 		return -EINVAL;
825 
826 	if (IS_MNT_SHARED(dest_mnt)) {
827 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
828 			set_mnt_shared(p);
829 	}
830 
831 	spin_lock(&vfsmount_lock);
832 	if (parent_nd) {
833 		detach_mnt(source_mnt, parent_nd);
834 		attach_mnt(source_mnt, nd);
835 		touch_namespace(current->namespace);
836 	} else {
837 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
838 		commit_tree(source_mnt);
839 	}
840 
841 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
842 		list_del_init(&child->mnt_hash);
843 		commit_tree(child);
844 	}
845 	spin_unlock(&vfsmount_lock);
846 	return 0;
847 }
848 
849 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
850 {
851 	int err;
852 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
853 		return -EINVAL;
854 
855 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
856 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
857 		return -ENOTDIR;
858 
859 	err = -ENOENT;
860 	mutex_lock(&nd->dentry->d_inode->i_mutex);
861 	if (IS_DEADDIR(nd->dentry->d_inode))
862 		goto out_unlock;
863 
864 	err = security_sb_check_sb(mnt, nd);
865 	if (err)
866 		goto out_unlock;
867 
868 	err = -ENOENT;
869 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
870 		err = attach_recursive_mnt(mnt, nd, NULL);
871 out_unlock:
872 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
873 	if (!err)
874 		security_sb_post_addmount(mnt, nd);
875 	return err;
876 }
877 
878 /*
879  * recursively change the type of the mountpoint.
880  */
881 static int do_change_type(struct nameidata *nd, int flag)
882 {
883 	struct vfsmount *m, *mnt = nd->mnt;
884 	int recurse = flag & MS_REC;
885 	int type = flag & ~MS_REC;
886 
887 	if (nd->dentry != nd->mnt->mnt_root)
888 		return -EINVAL;
889 
890 	down_write(&namespace_sem);
891 	spin_lock(&vfsmount_lock);
892 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
893 		change_mnt_propagation(m, type);
894 	spin_unlock(&vfsmount_lock);
895 	up_write(&namespace_sem);
896 	return 0;
897 }
898 
899 /*
900  * do loopback mount.
901  */
902 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
903 {
904 	struct nameidata old_nd;
905 	struct vfsmount *mnt = NULL;
906 	int err = mount_is_safe(nd);
907 	if (err)
908 		return err;
909 	if (!old_name || !*old_name)
910 		return -EINVAL;
911 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
912 	if (err)
913 		return err;
914 
915 	down_write(&namespace_sem);
916 	err = -EINVAL;
917 	if (IS_MNT_UNBINDABLE(old_nd.mnt))
918  		goto out;
919 
920 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
921 		goto out;
922 
923 	err = -ENOMEM;
924 	if (recurse)
925 		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
926 	else
927 		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
928 
929 	if (!mnt)
930 		goto out;
931 
932 	err = graft_tree(mnt, nd);
933 	if (err) {
934 		LIST_HEAD(umount_list);
935 		spin_lock(&vfsmount_lock);
936 		umount_tree(mnt, 0, &umount_list);
937 		spin_unlock(&vfsmount_lock);
938 		release_mounts(&umount_list);
939 	}
940 
941 out:
942 	up_write(&namespace_sem);
943 	path_release(&old_nd);
944 	return err;
945 }
946 
947 /*
948  * change filesystem flags. dir should be a physical root of filesystem.
949  * If you've mounted a non-root directory somewhere and want to do remount
950  * on it - tough luck.
951  */
952 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
953 		      void *data)
954 {
955 	int err;
956 	struct super_block *sb = nd->mnt->mnt_sb;
957 
958 	if (!capable(CAP_SYS_ADMIN))
959 		return -EPERM;
960 
961 	if (!check_mnt(nd->mnt))
962 		return -EINVAL;
963 
964 	if (nd->dentry != nd->mnt->mnt_root)
965 		return -EINVAL;
966 
967 	down_write(&sb->s_umount);
968 	err = do_remount_sb(sb, flags, data, 0);
969 	if (!err)
970 		nd->mnt->mnt_flags = mnt_flags;
971 	up_write(&sb->s_umount);
972 	if (!err)
973 		security_sb_post_remount(nd->mnt, flags, data);
974 	return err;
975 }
976 
977 static inline int tree_contains_unbindable(struct vfsmount *mnt)
978 {
979 	struct vfsmount *p;
980 	for (p = mnt; p; p = next_mnt(p, mnt)) {
981 		if (IS_MNT_UNBINDABLE(p))
982 			return 1;
983 	}
984 	return 0;
985 }
986 
987 static int do_move_mount(struct nameidata *nd, char *old_name)
988 {
989 	struct nameidata old_nd, parent_nd;
990 	struct vfsmount *p;
991 	int err = 0;
992 	if (!capable(CAP_SYS_ADMIN))
993 		return -EPERM;
994 	if (!old_name || !*old_name)
995 		return -EINVAL;
996 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
997 	if (err)
998 		return err;
999 
1000 	down_write(&namespace_sem);
1001 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1002 		;
1003 	err = -EINVAL;
1004 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1005 		goto out;
1006 
1007 	err = -ENOENT;
1008 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1009 	if (IS_DEADDIR(nd->dentry->d_inode))
1010 		goto out1;
1011 
1012 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1013 		goto out1;
1014 
1015 	err = -EINVAL;
1016 	if (old_nd.dentry != old_nd.mnt->mnt_root)
1017 		goto out1;
1018 
1019 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
1020 		goto out1;
1021 
1022 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1023 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
1024 		goto out1;
1025 	/*
1026 	 * Don't move a mount residing in a shared parent.
1027 	 */
1028 	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1029 		goto out1;
1030 	/*
1031 	 * Don't move a mount tree containing unbindable mounts to a destination
1032 	 * mount which is shared.
1033 	 */
1034 	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1035 		goto out1;
1036 	err = -ELOOP;
1037 	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1038 		if (p == old_nd.mnt)
1039 			goto out1;
1040 
1041 	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1042 		goto out1;
1043 
1044 	spin_lock(&vfsmount_lock);
1045 	/* if the mount is moved, it should no longer be expire
1046 	 * automatically */
1047 	list_del_init(&old_nd.mnt->mnt_expire);
1048 	spin_unlock(&vfsmount_lock);
1049 out1:
1050 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1051 out:
1052 	up_write(&namespace_sem);
1053 	if (!err)
1054 		path_release(&parent_nd);
1055 	path_release(&old_nd);
1056 	return err;
1057 }
1058 
1059 /*
1060  * create a new mount for userspace and request it to be added into the
1061  * namespace's tree
1062  */
1063 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1064 			int mnt_flags, char *name, void *data)
1065 {
1066 	struct vfsmount *mnt;
1067 
1068 	if (!type || !memchr(type, 0, PAGE_SIZE))
1069 		return -EINVAL;
1070 
1071 	/* we need capabilities... */
1072 	if (!capable(CAP_SYS_ADMIN))
1073 		return -EPERM;
1074 
1075 	mnt = do_kern_mount(type, flags, name, data);
1076 	if (IS_ERR(mnt))
1077 		return PTR_ERR(mnt);
1078 
1079 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1080 }
1081 
1082 /*
1083  * add a mount into a namespace's mount tree
1084  * - provide the option of adding the new mount to an expiration list
1085  */
1086 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1087 		 int mnt_flags, struct list_head *fslist)
1088 {
1089 	int err;
1090 
1091 	down_write(&namespace_sem);
1092 	/* Something was mounted here while we slept */
1093 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1094 		;
1095 	err = -EINVAL;
1096 	if (!check_mnt(nd->mnt))
1097 		goto unlock;
1098 
1099 	/* Refuse the same filesystem on the same mount point */
1100 	err = -EBUSY;
1101 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1102 	    nd->mnt->mnt_root == nd->dentry)
1103 		goto unlock;
1104 
1105 	err = -EINVAL;
1106 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1107 		goto unlock;
1108 
1109 	newmnt->mnt_flags = mnt_flags;
1110 	if ((err = graft_tree(newmnt, nd)))
1111 		goto unlock;
1112 
1113 	if (fslist) {
1114 		/* add to the specified expiration list */
1115 		spin_lock(&vfsmount_lock);
1116 		list_add_tail(&newmnt->mnt_expire, fslist);
1117 		spin_unlock(&vfsmount_lock);
1118 	}
1119 	up_write(&namespace_sem);
1120 	return 0;
1121 
1122 unlock:
1123 	up_write(&namespace_sem);
1124 	mntput(newmnt);
1125 	return err;
1126 }
1127 
1128 EXPORT_SYMBOL_GPL(do_add_mount);
1129 
1130 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1131 				struct list_head *umounts)
1132 {
1133 	spin_lock(&vfsmount_lock);
1134 
1135 	/*
1136 	 * Check if mount is still attached, if not, let whoever holds it deal
1137 	 * with the sucker
1138 	 */
1139 	if (mnt->mnt_parent == mnt) {
1140 		spin_unlock(&vfsmount_lock);
1141 		return;
1142 	}
1143 
1144 	/*
1145 	 * Check that it is still dead: the count should now be 2 - as
1146 	 * contributed by the vfsmount parent and the mntget above
1147 	 */
1148 	if (!propagate_mount_busy(mnt, 2)) {
1149 		/* delete from the namespace */
1150 		touch_namespace(mnt->mnt_namespace);
1151 		list_del_init(&mnt->mnt_list);
1152 		mnt->mnt_namespace = NULL;
1153 		umount_tree(mnt, 1, umounts);
1154 		spin_unlock(&vfsmount_lock);
1155 	} else {
1156 		/*
1157 		 * Someone brought it back to life whilst we didn't have any
1158 		 * locks held so return it to the expiration list
1159 		 */
1160 		list_add_tail(&mnt->mnt_expire, mounts);
1161 		spin_unlock(&vfsmount_lock);
1162 	}
1163 }
1164 
1165 /*
1166  * process a list of expirable mountpoints with the intent of discarding any
1167  * mountpoints that aren't in use and haven't been touched since last we came
1168  * here
1169  */
1170 void mark_mounts_for_expiry(struct list_head *mounts)
1171 {
1172 	struct namespace *namespace;
1173 	struct vfsmount *mnt, *next;
1174 	LIST_HEAD(graveyard);
1175 
1176 	if (list_empty(mounts))
1177 		return;
1178 
1179 	spin_lock(&vfsmount_lock);
1180 
1181 	/* extract from the expiration list every vfsmount that matches the
1182 	 * following criteria:
1183 	 * - only referenced by its parent vfsmount
1184 	 * - still marked for expiry (marked on the last call here; marks are
1185 	 *   cleared by mntput())
1186 	 */
1187 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1188 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1189 		    atomic_read(&mnt->mnt_count) != 1)
1190 			continue;
1191 
1192 		mntget(mnt);
1193 		list_move(&mnt->mnt_expire, &graveyard);
1194 	}
1195 
1196 	/*
1197 	 * go through the vfsmounts we've just consigned to the graveyard to
1198 	 * - check that they're still dead
1199 	 * - delete the vfsmount from the appropriate namespace under lock
1200 	 * - dispose of the corpse
1201 	 */
1202 	while (!list_empty(&graveyard)) {
1203 		LIST_HEAD(umounts);
1204 		mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
1205 		list_del_init(&mnt->mnt_expire);
1206 
1207 		/* don't do anything if the namespace is dead - all the
1208 		 * vfsmounts from it are going away anyway */
1209 		namespace = mnt->mnt_namespace;
1210 		if (!namespace || !namespace->root)
1211 			continue;
1212 		get_namespace(namespace);
1213 
1214 		spin_unlock(&vfsmount_lock);
1215 		down_write(&namespace_sem);
1216 		expire_mount(mnt, mounts, &umounts);
1217 		up_write(&namespace_sem);
1218 		release_mounts(&umounts);
1219 		mntput(mnt);
1220 		put_namespace(namespace);
1221 		spin_lock(&vfsmount_lock);
1222 	}
1223 
1224 	spin_unlock(&vfsmount_lock);
1225 }
1226 
1227 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1228 
1229 /*
1230  * Some copy_from_user() implementations do not return the exact number of
1231  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1232  * Note that this function differs from copy_from_user() in that it will oops
1233  * on bad values of `to', rather than returning a short copy.
1234  */
1235 static long exact_copy_from_user(void *to, const void __user * from,
1236 				 unsigned long n)
1237 {
1238 	char *t = to;
1239 	const char __user *f = from;
1240 	char c;
1241 
1242 	if (!access_ok(VERIFY_READ, from, n))
1243 		return n;
1244 
1245 	while (n) {
1246 		if (__get_user(c, f)) {
1247 			memset(t, 0, n);
1248 			break;
1249 		}
1250 		*t++ = c;
1251 		f++;
1252 		n--;
1253 	}
1254 	return n;
1255 }
1256 
1257 int copy_mount_options(const void __user * data, unsigned long *where)
1258 {
1259 	int i;
1260 	unsigned long page;
1261 	unsigned long size;
1262 
1263 	*where = 0;
1264 	if (!data)
1265 		return 0;
1266 
1267 	if (!(page = __get_free_page(GFP_KERNEL)))
1268 		return -ENOMEM;
1269 
1270 	/* We only care that *some* data at the address the user
1271 	 * gave us is valid.  Just in case, we'll zero
1272 	 * the remainder of the page.
1273 	 */
1274 	/* copy_from_user cannot cross TASK_SIZE ! */
1275 	size = TASK_SIZE - (unsigned long)data;
1276 	if (size > PAGE_SIZE)
1277 		size = PAGE_SIZE;
1278 
1279 	i = size - exact_copy_from_user((void *)page, data, size);
1280 	if (!i) {
1281 		free_page(page);
1282 		return -EFAULT;
1283 	}
1284 	if (i != PAGE_SIZE)
1285 		memset((char *)page + i, 0, PAGE_SIZE - i);
1286 	*where = page;
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1292  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1293  *
1294  * data is a (void *) that can point to any structure up to
1295  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1296  * information (or be NULL).
1297  *
1298  * Pre-0.97 versions of mount() didn't have a flags word.
1299  * When the flags word was introduced its top half was required
1300  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1301  * Therefore, if this magic number is present, it carries no information
1302  * and must be discarded.
1303  */
1304 long do_mount(char *dev_name, char *dir_name, char *type_page,
1305 		  unsigned long flags, void *data_page)
1306 {
1307 	struct nameidata nd;
1308 	int retval = 0;
1309 	int mnt_flags = 0;
1310 
1311 	/* Discard magic */
1312 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1313 		flags &= ~MS_MGC_MSK;
1314 
1315 	/* Basic sanity checks */
1316 
1317 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1318 		return -EINVAL;
1319 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1320 		return -EINVAL;
1321 
1322 	if (data_page)
1323 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1324 
1325 	/* Separate the per-mountpoint flags */
1326 	if (flags & MS_NOSUID)
1327 		mnt_flags |= MNT_NOSUID;
1328 	if (flags & MS_NODEV)
1329 		mnt_flags |= MNT_NODEV;
1330 	if (flags & MS_NOEXEC)
1331 		mnt_flags |= MNT_NOEXEC;
1332 	if (flags & MS_NOATIME)
1333 		mnt_flags |= MNT_NOATIME;
1334 	if (flags & MS_NODIRATIME)
1335 		mnt_flags |= MNT_NODIRATIME;
1336 
1337 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1338 		   MS_NOATIME | MS_NODIRATIME);
1339 
1340 	/* ... and get the mountpoint */
1341 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1342 	if (retval)
1343 		return retval;
1344 
1345 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1346 	if (retval)
1347 		goto dput_out;
1348 
1349 	if (flags & MS_REMOUNT)
1350 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1351 				    data_page);
1352 	else if (flags & MS_BIND)
1353 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1354 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1355 		retval = do_change_type(&nd, flags);
1356 	else if (flags & MS_MOVE)
1357 		retval = do_move_mount(&nd, dev_name);
1358 	else
1359 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1360 				      dev_name, data_page);
1361 dput_out:
1362 	path_release(&nd);
1363 	return retval;
1364 }
1365 
1366 /*
1367  * Allocate a new namespace structure and populate it with contents
1368  * copied from the namespace of the passed in task structure.
1369  */
1370 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1371 {
1372 	struct namespace *namespace = tsk->namespace;
1373 	struct namespace *new_ns;
1374 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1375 	struct vfsmount *p, *q;
1376 
1377 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1378 	if (!new_ns)
1379 		return NULL;
1380 
1381 	atomic_set(&new_ns->count, 1);
1382 	INIT_LIST_HEAD(&new_ns->list);
1383 	init_waitqueue_head(&new_ns->poll);
1384 	new_ns->event = 0;
1385 
1386 	down_write(&namespace_sem);
1387 	/* First pass: copy the tree topology */
1388 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1389 					CL_COPY_ALL | CL_EXPIRE);
1390 	if (!new_ns->root) {
1391 		up_write(&namespace_sem);
1392 		kfree(new_ns);
1393 		return NULL;
1394 	}
1395 	spin_lock(&vfsmount_lock);
1396 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1397 	spin_unlock(&vfsmount_lock);
1398 
1399 	/*
1400 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1401 	 * as belonging to new namespace.  We have already acquired a private
1402 	 * fs_struct, so tsk->fs->lock is not needed.
1403 	 */
1404 	p = namespace->root;
1405 	q = new_ns->root;
1406 	while (p) {
1407 		q->mnt_namespace = new_ns;
1408 		if (fs) {
1409 			if (p == fs->rootmnt) {
1410 				rootmnt = p;
1411 				fs->rootmnt = mntget(q);
1412 			}
1413 			if (p == fs->pwdmnt) {
1414 				pwdmnt = p;
1415 				fs->pwdmnt = mntget(q);
1416 			}
1417 			if (p == fs->altrootmnt) {
1418 				altrootmnt = p;
1419 				fs->altrootmnt = mntget(q);
1420 			}
1421 		}
1422 		p = next_mnt(p, namespace->root);
1423 		q = next_mnt(q, new_ns->root);
1424 	}
1425 	up_write(&namespace_sem);
1426 
1427 	if (rootmnt)
1428 		mntput(rootmnt);
1429 	if (pwdmnt)
1430 		mntput(pwdmnt);
1431 	if (altrootmnt)
1432 		mntput(altrootmnt);
1433 
1434 	return new_ns;
1435 }
1436 
1437 int copy_namespace(int flags, struct task_struct *tsk)
1438 {
1439 	struct namespace *namespace = tsk->namespace;
1440 	struct namespace *new_ns;
1441 	int err = 0;
1442 
1443 	if (!namespace)
1444 		return 0;
1445 
1446 	get_namespace(namespace);
1447 
1448 	if (!(flags & CLONE_NEWNS))
1449 		return 0;
1450 
1451 	if (!capable(CAP_SYS_ADMIN)) {
1452 		err = -EPERM;
1453 		goto out;
1454 	}
1455 
1456 	new_ns = dup_namespace(tsk, tsk->fs);
1457 	if (!new_ns) {
1458 		err = -ENOMEM;
1459 		goto out;
1460 	}
1461 
1462 	tsk->namespace = new_ns;
1463 
1464 out:
1465 	put_namespace(namespace);
1466 	return err;
1467 }
1468 
1469 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1470 			  char __user * type, unsigned long flags,
1471 			  void __user * data)
1472 {
1473 	int retval;
1474 	unsigned long data_page;
1475 	unsigned long type_page;
1476 	unsigned long dev_page;
1477 	char *dir_page;
1478 
1479 	retval = copy_mount_options(type, &type_page);
1480 	if (retval < 0)
1481 		return retval;
1482 
1483 	dir_page = getname(dir_name);
1484 	retval = PTR_ERR(dir_page);
1485 	if (IS_ERR(dir_page))
1486 		goto out1;
1487 
1488 	retval = copy_mount_options(dev_name, &dev_page);
1489 	if (retval < 0)
1490 		goto out2;
1491 
1492 	retval = copy_mount_options(data, &data_page);
1493 	if (retval < 0)
1494 		goto out3;
1495 
1496 	lock_kernel();
1497 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1498 			  flags, (void *)data_page);
1499 	unlock_kernel();
1500 	free_page(data_page);
1501 
1502 out3:
1503 	free_page(dev_page);
1504 out2:
1505 	putname(dir_page);
1506 out1:
1507 	free_page(type_page);
1508 	return retval;
1509 }
1510 
1511 /*
1512  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1513  * It can block. Requires the big lock held.
1514  */
1515 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1516 		 struct dentry *dentry)
1517 {
1518 	struct dentry *old_root;
1519 	struct vfsmount *old_rootmnt;
1520 	write_lock(&fs->lock);
1521 	old_root = fs->root;
1522 	old_rootmnt = fs->rootmnt;
1523 	fs->rootmnt = mntget(mnt);
1524 	fs->root = dget(dentry);
1525 	write_unlock(&fs->lock);
1526 	if (old_root) {
1527 		dput(old_root);
1528 		mntput(old_rootmnt);
1529 	}
1530 }
1531 
1532 /*
1533  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1534  * It can block. Requires the big lock held.
1535  */
1536 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1537 		struct dentry *dentry)
1538 {
1539 	struct dentry *old_pwd;
1540 	struct vfsmount *old_pwdmnt;
1541 
1542 	write_lock(&fs->lock);
1543 	old_pwd = fs->pwd;
1544 	old_pwdmnt = fs->pwdmnt;
1545 	fs->pwdmnt = mntget(mnt);
1546 	fs->pwd = dget(dentry);
1547 	write_unlock(&fs->lock);
1548 
1549 	if (old_pwd) {
1550 		dput(old_pwd);
1551 		mntput(old_pwdmnt);
1552 	}
1553 }
1554 
1555 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1556 {
1557 	struct task_struct *g, *p;
1558 	struct fs_struct *fs;
1559 
1560 	read_lock(&tasklist_lock);
1561 	do_each_thread(g, p) {
1562 		task_lock(p);
1563 		fs = p->fs;
1564 		if (fs) {
1565 			atomic_inc(&fs->count);
1566 			task_unlock(p);
1567 			if (fs->root == old_nd->dentry
1568 			    && fs->rootmnt == old_nd->mnt)
1569 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1570 			if (fs->pwd == old_nd->dentry
1571 			    && fs->pwdmnt == old_nd->mnt)
1572 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1573 			put_fs_struct(fs);
1574 		} else
1575 			task_unlock(p);
1576 	} while_each_thread(g, p);
1577 	read_unlock(&tasklist_lock);
1578 }
1579 
1580 /*
1581  * pivot_root Semantics:
1582  * Moves the root file system of the current process to the directory put_old,
1583  * makes new_root as the new root file system of the current process, and sets
1584  * root/cwd of all processes which had them on the current root to new_root.
1585  *
1586  * Restrictions:
1587  * The new_root and put_old must be directories, and  must not be on the
1588  * same file  system as the current process root. The put_old  must  be
1589  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1590  * pointed to by put_old must yield the same directory as new_root. No other
1591  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1592  *
1593  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1594  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1595  * in this situation.
1596  *
1597  * Notes:
1598  *  - we don't move root/cwd if they are not at the root (reason: if something
1599  *    cared enough to change them, it's probably wrong to force them elsewhere)
1600  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1601  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1602  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1603  *    first.
1604  */
1605 asmlinkage long sys_pivot_root(const char __user * new_root,
1606 			       const char __user * put_old)
1607 {
1608 	struct vfsmount *tmp;
1609 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1610 	int error;
1611 
1612 	if (!capable(CAP_SYS_ADMIN))
1613 		return -EPERM;
1614 
1615 	lock_kernel();
1616 
1617 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1618 			    &new_nd);
1619 	if (error)
1620 		goto out0;
1621 	error = -EINVAL;
1622 	if (!check_mnt(new_nd.mnt))
1623 		goto out1;
1624 
1625 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1626 	if (error)
1627 		goto out1;
1628 
1629 	error = security_sb_pivotroot(&old_nd, &new_nd);
1630 	if (error) {
1631 		path_release(&old_nd);
1632 		goto out1;
1633 	}
1634 
1635 	read_lock(&current->fs->lock);
1636 	user_nd.mnt = mntget(current->fs->rootmnt);
1637 	user_nd.dentry = dget(current->fs->root);
1638 	read_unlock(&current->fs->lock);
1639 	down_write(&namespace_sem);
1640 	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1641 	error = -EINVAL;
1642 	if (IS_MNT_SHARED(old_nd.mnt) ||
1643 		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1644 		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1645 		goto out2;
1646 	if (!check_mnt(user_nd.mnt))
1647 		goto out2;
1648 	error = -ENOENT;
1649 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1650 		goto out2;
1651 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1652 		goto out2;
1653 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1654 		goto out2;
1655 	error = -EBUSY;
1656 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1657 		goto out2; /* loop, on the same file system  */
1658 	error = -EINVAL;
1659 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1660 		goto out2; /* not a mountpoint */
1661 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1662 		goto out2; /* not attached */
1663 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1664 		goto out2; /* not a mountpoint */
1665 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1666 		goto out2; /* not attached */
1667 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1668 	spin_lock(&vfsmount_lock);
1669 	if (tmp != new_nd.mnt) {
1670 		for (;;) {
1671 			if (tmp->mnt_parent == tmp)
1672 				goto out3; /* already mounted on put_old */
1673 			if (tmp->mnt_parent == new_nd.mnt)
1674 				break;
1675 			tmp = tmp->mnt_parent;
1676 		}
1677 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1678 			goto out3;
1679 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1680 		goto out3;
1681 	detach_mnt(new_nd.mnt, &parent_nd);
1682 	detach_mnt(user_nd.mnt, &root_parent);
1683 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1684 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1685 	touch_namespace(current->namespace);
1686 	spin_unlock(&vfsmount_lock);
1687 	chroot_fs_refs(&user_nd, &new_nd);
1688 	security_sb_post_pivotroot(&user_nd, &new_nd);
1689 	error = 0;
1690 	path_release(&root_parent);
1691 	path_release(&parent_nd);
1692 out2:
1693 	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1694 	up_write(&namespace_sem);
1695 	path_release(&user_nd);
1696 	path_release(&old_nd);
1697 out1:
1698 	path_release(&new_nd);
1699 out0:
1700 	unlock_kernel();
1701 	return error;
1702 out3:
1703 	spin_unlock(&vfsmount_lock);
1704 	goto out2;
1705 }
1706 
1707 static void __init init_mount_tree(void)
1708 {
1709 	struct vfsmount *mnt;
1710 	struct namespace *namespace;
1711 	struct task_struct *g, *p;
1712 
1713 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1714 	if (IS_ERR(mnt))
1715 		panic("Can't create rootfs");
1716 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1717 	if (!namespace)
1718 		panic("Can't allocate initial namespace");
1719 	atomic_set(&namespace->count, 1);
1720 	INIT_LIST_HEAD(&namespace->list);
1721 	init_waitqueue_head(&namespace->poll);
1722 	namespace->event = 0;
1723 	list_add(&mnt->mnt_list, &namespace->list);
1724 	namespace->root = mnt;
1725 	mnt->mnt_namespace = namespace;
1726 
1727 	init_task.namespace = namespace;
1728 	read_lock(&tasklist_lock);
1729 	do_each_thread(g, p) {
1730 		get_namespace(namespace);
1731 		p->namespace = namespace;
1732 	} while_each_thread(g, p);
1733 	read_unlock(&tasklist_lock);
1734 
1735 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1736 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1737 }
1738 
1739 void __init mnt_init(unsigned long mempages)
1740 {
1741 	struct list_head *d;
1742 	unsigned int nr_hash;
1743 	int i;
1744 
1745 	init_rwsem(&namespace_sem);
1746 
1747 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1748 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1749 
1750 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1751 
1752 	if (!mount_hashtable)
1753 		panic("Failed to allocate mount hash table\n");
1754 
1755 	/*
1756 	 * Find the power-of-two list-heads that can fit into the allocation..
1757 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1758 	 * a power-of-two.
1759 	 */
1760 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1761 	hash_bits = 0;
1762 	do {
1763 		hash_bits++;
1764 	} while ((nr_hash >> hash_bits) != 0);
1765 	hash_bits--;
1766 
1767 	/*
1768 	 * Re-calculate the actual number of entries and the mask
1769 	 * from the number of bits we can fit.
1770 	 */
1771 	nr_hash = 1UL << hash_bits;
1772 	hash_mask = nr_hash - 1;
1773 
1774 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1775 
1776 	/* And initialize the newly allocated array */
1777 	d = mount_hashtable;
1778 	i = nr_hash;
1779 	do {
1780 		INIT_LIST_HEAD(d);
1781 		d++;
1782 		i--;
1783 	} while (i);
1784 	sysfs_init();
1785 	subsystem_register(&fs_subsys);
1786 	init_rootfs();
1787 	init_mount_tree();
1788 }
1789 
1790 void __put_namespace(struct namespace *namespace)
1791 {
1792 	struct vfsmount *root = namespace->root;
1793 	LIST_HEAD(umount_list);
1794 	namespace->root = NULL;
1795 	spin_unlock(&vfsmount_lock);
1796 	down_write(&namespace_sem);
1797 	spin_lock(&vfsmount_lock);
1798 	umount_tree(root, 0, &umount_list);
1799 	spin_unlock(&vfsmount_lock);
1800 	up_write(&namespace_sem);
1801 	release_mounts(&umount_list);
1802 	kfree(namespace);
1803 }
1804