1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/config.h> 12 #include <linux/syscalls.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/smp_lock.h> 16 #include <linux/init.h> 17 #include <linux/quotaops.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/module.h> 21 #include <linux/seq_file.h> 22 #include <linux/namespace.h> 23 #include <linux/namei.h> 24 #include <linux/security.h> 25 #include <linux/mount.h> 26 #include <asm/uaccess.h> 27 #include <asm/unistd.h> 28 #include "pnode.h" 29 30 extern int __init init_rootfs(void); 31 32 #ifdef CONFIG_SYSFS 33 extern int __init sysfs_init(void); 34 #else 35 static inline int sysfs_init(void) 36 { 37 return 0; 38 } 39 #endif 40 41 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 43 44 static int event; 45 46 static struct list_head *mount_hashtable __read_mostly; 47 static int hash_mask __read_mostly, hash_bits __read_mostly; 48 static kmem_cache_t *mnt_cache __read_mostly; 49 static struct rw_semaphore namespace_sem; 50 51 /* /sys/fs */ 52 decl_subsys(fs, NULL, NULL); 53 EXPORT_SYMBOL_GPL(fs_subsys); 54 55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 56 { 57 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 58 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 59 tmp = tmp + (tmp >> hash_bits); 60 return tmp & hash_mask; 61 } 62 63 struct vfsmount *alloc_vfsmnt(const char *name) 64 { 65 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL); 66 if (mnt) { 67 memset(mnt, 0, sizeof(struct vfsmount)); 68 atomic_set(&mnt->mnt_count, 1); 69 INIT_LIST_HEAD(&mnt->mnt_hash); 70 INIT_LIST_HEAD(&mnt->mnt_child); 71 INIT_LIST_HEAD(&mnt->mnt_mounts); 72 INIT_LIST_HEAD(&mnt->mnt_list); 73 INIT_LIST_HEAD(&mnt->mnt_expire); 74 INIT_LIST_HEAD(&mnt->mnt_share); 75 INIT_LIST_HEAD(&mnt->mnt_slave_list); 76 INIT_LIST_HEAD(&mnt->mnt_slave); 77 if (name) { 78 int size = strlen(name) + 1; 79 char *newname = kmalloc(size, GFP_KERNEL); 80 if (newname) { 81 memcpy(newname, name, size); 82 mnt->mnt_devname = newname; 83 } 84 } 85 } 86 return mnt; 87 } 88 89 void free_vfsmnt(struct vfsmount *mnt) 90 { 91 kfree(mnt->mnt_devname); 92 kmem_cache_free(mnt_cache, mnt); 93 } 94 95 /* 96 * find the first or last mount at @dentry on vfsmount @mnt depending on 97 * @dir. If @dir is set return the first mount else return the last mount. 98 */ 99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 100 int dir) 101 { 102 struct list_head *head = mount_hashtable + hash(mnt, dentry); 103 struct list_head *tmp = head; 104 struct vfsmount *p, *found = NULL; 105 106 for (;;) { 107 tmp = dir ? tmp->next : tmp->prev; 108 p = NULL; 109 if (tmp == head) 110 break; 111 p = list_entry(tmp, struct vfsmount, mnt_hash); 112 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 113 found = p; 114 break; 115 } 116 } 117 return found; 118 } 119 120 /* 121 * lookup_mnt increments the ref count before returning 122 * the vfsmount struct. 123 */ 124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 125 { 126 struct vfsmount *child_mnt; 127 spin_lock(&vfsmount_lock); 128 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 129 mntget(child_mnt); 130 spin_unlock(&vfsmount_lock); 131 return child_mnt; 132 } 133 134 static inline int check_mnt(struct vfsmount *mnt) 135 { 136 return mnt->mnt_namespace == current->namespace; 137 } 138 139 static void touch_namespace(struct namespace *ns) 140 { 141 if (ns) { 142 ns->event = ++event; 143 wake_up_interruptible(&ns->poll); 144 } 145 } 146 147 static void __touch_namespace(struct namespace *ns) 148 { 149 if (ns && ns->event != event) { 150 ns->event = event; 151 wake_up_interruptible(&ns->poll); 152 } 153 } 154 155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd) 156 { 157 old_nd->dentry = mnt->mnt_mountpoint; 158 old_nd->mnt = mnt->mnt_parent; 159 mnt->mnt_parent = mnt; 160 mnt->mnt_mountpoint = mnt->mnt_root; 161 list_del_init(&mnt->mnt_child); 162 list_del_init(&mnt->mnt_hash); 163 old_nd->dentry->d_mounted--; 164 } 165 166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 167 struct vfsmount *child_mnt) 168 { 169 child_mnt->mnt_parent = mntget(mnt); 170 child_mnt->mnt_mountpoint = dget(dentry); 171 dentry->d_mounted++; 172 } 173 174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd) 175 { 176 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt); 177 list_add_tail(&mnt->mnt_hash, mount_hashtable + 178 hash(nd->mnt, nd->dentry)); 179 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts); 180 } 181 182 /* 183 * the caller must hold vfsmount_lock 184 */ 185 static void commit_tree(struct vfsmount *mnt) 186 { 187 struct vfsmount *parent = mnt->mnt_parent; 188 struct vfsmount *m; 189 LIST_HEAD(head); 190 struct namespace *n = parent->mnt_namespace; 191 192 BUG_ON(parent == mnt); 193 194 list_add_tail(&head, &mnt->mnt_list); 195 list_for_each_entry(m, &head, mnt_list) 196 m->mnt_namespace = n; 197 list_splice(&head, n->list.prev); 198 199 list_add_tail(&mnt->mnt_hash, mount_hashtable + 200 hash(parent, mnt->mnt_mountpoint)); 201 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 202 touch_namespace(n); 203 } 204 205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 206 { 207 struct list_head *next = p->mnt_mounts.next; 208 if (next == &p->mnt_mounts) { 209 while (1) { 210 if (p == root) 211 return NULL; 212 next = p->mnt_child.next; 213 if (next != &p->mnt_parent->mnt_mounts) 214 break; 215 p = p->mnt_parent; 216 } 217 } 218 return list_entry(next, struct vfsmount, mnt_child); 219 } 220 221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 222 { 223 struct list_head *prev = p->mnt_mounts.prev; 224 while (prev != &p->mnt_mounts) { 225 p = list_entry(prev, struct vfsmount, mnt_child); 226 prev = p->mnt_mounts.prev; 227 } 228 return p; 229 } 230 231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 232 int flag) 233 { 234 struct super_block *sb = old->mnt_sb; 235 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 236 237 if (mnt) { 238 mnt->mnt_flags = old->mnt_flags; 239 atomic_inc(&sb->s_active); 240 mnt->mnt_sb = sb; 241 mnt->mnt_root = dget(root); 242 mnt->mnt_mountpoint = mnt->mnt_root; 243 mnt->mnt_parent = mnt; 244 245 if (flag & CL_SLAVE) { 246 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 247 mnt->mnt_master = old; 248 CLEAR_MNT_SHARED(mnt); 249 } else { 250 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 251 list_add(&mnt->mnt_share, &old->mnt_share); 252 if (IS_MNT_SLAVE(old)) 253 list_add(&mnt->mnt_slave, &old->mnt_slave); 254 mnt->mnt_master = old->mnt_master; 255 } 256 if (flag & CL_MAKE_SHARED) 257 set_mnt_shared(mnt); 258 259 /* stick the duplicate mount on the same expiry list 260 * as the original if that was on one */ 261 if (flag & CL_EXPIRE) { 262 spin_lock(&vfsmount_lock); 263 if (!list_empty(&old->mnt_expire)) 264 list_add(&mnt->mnt_expire, &old->mnt_expire); 265 spin_unlock(&vfsmount_lock); 266 } 267 } 268 return mnt; 269 } 270 271 static inline void __mntput(struct vfsmount *mnt) 272 { 273 struct super_block *sb = mnt->mnt_sb; 274 dput(mnt->mnt_root); 275 free_vfsmnt(mnt); 276 deactivate_super(sb); 277 } 278 279 void mntput_no_expire(struct vfsmount *mnt) 280 { 281 repeat: 282 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 283 if (likely(!mnt->mnt_pinned)) { 284 spin_unlock(&vfsmount_lock); 285 __mntput(mnt); 286 return; 287 } 288 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 289 mnt->mnt_pinned = 0; 290 spin_unlock(&vfsmount_lock); 291 acct_auto_close_mnt(mnt); 292 security_sb_umount_close(mnt); 293 goto repeat; 294 } 295 } 296 297 EXPORT_SYMBOL(mntput_no_expire); 298 299 void mnt_pin(struct vfsmount *mnt) 300 { 301 spin_lock(&vfsmount_lock); 302 mnt->mnt_pinned++; 303 spin_unlock(&vfsmount_lock); 304 } 305 306 EXPORT_SYMBOL(mnt_pin); 307 308 void mnt_unpin(struct vfsmount *mnt) 309 { 310 spin_lock(&vfsmount_lock); 311 if (mnt->mnt_pinned) { 312 atomic_inc(&mnt->mnt_count); 313 mnt->mnt_pinned--; 314 } 315 spin_unlock(&vfsmount_lock); 316 } 317 318 EXPORT_SYMBOL(mnt_unpin); 319 320 /* iterator */ 321 static void *m_start(struct seq_file *m, loff_t *pos) 322 { 323 struct namespace *n = m->private; 324 struct list_head *p; 325 loff_t l = *pos; 326 327 down_read(&namespace_sem); 328 list_for_each(p, &n->list) 329 if (!l--) 330 return list_entry(p, struct vfsmount, mnt_list); 331 return NULL; 332 } 333 334 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 335 { 336 struct namespace *n = m->private; 337 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next; 338 (*pos)++; 339 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list); 340 } 341 342 static void m_stop(struct seq_file *m, void *v) 343 { 344 up_read(&namespace_sem); 345 } 346 347 static inline void mangle(struct seq_file *m, const char *s) 348 { 349 seq_escape(m, s, " \t\n\\"); 350 } 351 352 static int show_vfsmnt(struct seq_file *m, void *v) 353 { 354 struct vfsmount *mnt = v; 355 int err = 0; 356 static struct proc_fs_info { 357 int flag; 358 char *str; 359 } fs_info[] = { 360 { MS_SYNCHRONOUS, ",sync" }, 361 { MS_DIRSYNC, ",dirsync" }, 362 { MS_MANDLOCK, ",mand" }, 363 { 0, NULL } 364 }; 365 static struct proc_fs_info mnt_info[] = { 366 { MNT_NOSUID, ",nosuid" }, 367 { MNT_NODEV, ",nodev" }, 368 { MNT_NOEXEC, ",noexec" }, 369 { MNT_NOATIME, ",noatime" }, 370 { MNT_NODIRATIME, ",nodiratime" }, 371 { 0, NULL } 372 }; 373 struct proc_fs_info *fs_infop; 374 375 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 376 seq_putc(m, ' '); 377 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 378 seq_putc(m, ' '); 379 mangle(m, mnt->mnt_sb->s_type->name); 380 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw"); 381 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 382 if (mnt->mnt_sb->s_flags & fs_infop->flag) 383 seq_puts(m, fs_infop->str); 384 } 385 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 386 if (mnt->mnt_flags & fs_infop->flag) 387 seq_puts(m, fs_infop->str); 388 } 389 if (mnt->mnt_sb->s_op->show_options) 390 err = mnt->mnt_sb->s_op->show_options(m, mnt); 391 seq_puts(m, " 0 0\n"); 392 return err; 393 } 394 395 struct seq_operations mounts_op = { 396 .start = m_start, 397 .next = m_next, 398 .stop = m_stop, 399 .show = show_vfsmnt 400 }; 401 402 static int show_vfsstat(struct seq_file *m, void *v) 403 { 404 struct vfsmount *mnt = v; 405 int err = 0; 406 407 /* device */ 408 if (mnt->mnt_devname) { 409 seq_puts(m, "device "); 410 mangle(m, mnt->mnt_devname); 411 } else 412 seq_puts(m, "no device"); 413 414 /* mount point */ 415 seq_puts(m, " mounted on "); 416 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 417 seq_putc(m, ' '); 418 419 /* file system type */ 420 seq_puts(m, "with fstype "); 421 mangle(m, mnt->mnt_sb->s_type->name); 422 423 /* optional statistics */ 424 if (mnt->mnt_sb->s_op->show_stats) { 425 seq_putc(m, ' '); 426 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 427 } 428 429 seq_putc(m, '\n'); 430 return err; 431 } 432 433 struct seq_operations mountstats_op = { 434 .start = m_start, 435 .next = m_next, 436 .stop = m_stop, 437 .show = show_vfsstat, 438 }; 439 440 /** 441 * may_umount_tree - check if a mount tree is busy 442 * @mnt: root of mount tree 443 * 444 * This is called to check if a tree of mounts has any 445 * open files, pwds, chroots or sub mounts that are 446 * busy. 447 */ 448 int may_umount_tree(struct vfsmount *mnt) 449 { 450 int actual_refs = 0; 451 int minimum_refs = 0; 452 struct vfsmount *p; 453 454 spin_lock(&vfsmount_lock); 455 for (p = mnt; p; p = next_mnt(p, mnt)) { 456 actual_refs += atomic_read(&p->mnt_count); 457 minimum_refs += 2; 458 } 459 spin_unlock(&vfsmount_lock); 460 461 if (actual_refs > minimum_refs) 462 return 0; 463 464 return 1; 465 } 466 467 EXPORT_SYMBOL(may_umount_tree); 468 469 /** 470 * may_umount - check if a mount point is busy 471 * @mnt: root of mount 472 * 473 * This is called to check if a mount point has any 474 * open files, pwds, chroots or sub mounts. If the 475 * mount has sub mounts this will return busy 476 * regardless of whether the sub mounts are busy. 477 * 478 * Doesn't take quota and stuff into account. IOW, in some cases it will 479 * give false negatives. The main reason why it's here is that we need 480 * a non-destructive way to look for easily umountable filesystems. 481 */ 482 int may_umount(struct vfsmount *mnt) 483 { 484 int ret = 1; 485 spin_lock(&vfsmount_lock); 486 if (propagate_mount_busy(mnt, 2)) 487 ret = 0; 488 spin_unlock(&vfsmount_lock); 489 return ret; 490 } 491 492 EXPORT_SYMBOL(may_umount); 493 494 void release_mounts(struct list_head *head) 495 { 496 struct vfsmount *mnt; 497 while (!list_empty(head)) { 498 mnt = list_entry(head->next, struct vfsmount, mnt_hash); 499 list_del_init(&mnt->mnt_hash); 500 if (mnt->mnt_parent != mnt) { 501 struct dentry *dentry; 502 struct vfsmount *m; 503 spin_lock(&vfsmount_lock); 504 dentry = mnt->mnt_mountpoint; 505 m = mnt->mnt_parent; 506 mnt->mnt_mountpoint = mnt->mnt_root; 507 mnt->mnt_parent = mnt; 508 spin_unlock(&vfsmount_lock); 509 dput(dentry); 510 mntput(m); 511 } 512 mntput(mnt); 513 } 514 } 515 516 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 517 { 518 struct vfsmount *p; 519 520 for (p = mnt; p; p = next_mnt(p, mnt)) { 521 list_del(&p->mnt_hash); 522 list_add(&p->mnt_hash, kill); 523 } 524 525 if (propagate) 526 propagate_umount(kill); 527 528 list_for_each_entry(p, kill, mnt_hash) { 529 list_del_init(&p->mnt_expire); 530 list_del_init(&p->mnt_list); 531 __touch_namespace(p->mnt_namespace); 532 p->mnt_namespace = NULL; 533 list_del_init(&p->mnt_child); 534 if (p->mnt_parent != p) 535 p->mnt_mountpoint->d_mounted--; 536 change_mnt_propagation(p, MS_PRIVATE); 537 } 538 } 539 540 static int do_umount(struct vfsmount *mnt, int flags) 541 { 542 struct super_block *sb = mnt->mnt_sb; 543 int retval; 544 LIST_HEAD(umount_list); 545 546 retval = security_sb_umount(mnt, flags); 547 if (retval) 548 return retval; 549 550 /* 551 * Allow userspace to request a mountpoint be expired rather than 552 * unmounting unconditionally. Unmount only happens if: 553 * (1) the mark is already set (the mark is cleared by mntput()) 554 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 555 */ 556 if (flags & MNT_EXPIRE) { 557 if (mnt == current->fs->rootmnt || 558 flags & (MNT_FORCE | MNT_DETACH)) 559 return -EINVAL; 560 561 if (atomic_read(&mnt->mnt_count) != 2) 562 return -EBUSY; 563 564 if (!xchg(&mnt->mnt_expiry_mark, 1)) 565 return -EAGAIN; 566 } 567 568 /* 569 * If we may have to abort operations to get out of this 570 * mount, and they will themselves hold resources we must 571 * allow the fs to do things. In the Unix tradition of 572 * 'Gee thats tricky lets do it in userspace' the umount_begin 573 * might fail to complete on the first run through as other tasks 574 * must return, and the like. Thats for the mount program to worry 575 * about for the moment. 576 */ 577 578 lock_kernel(); 579 if ((flags & MNT_FORCE) && sb->s_op->umount_begin) 580 sb->s_op->umount_begin(sb); 581 unlock_kernel(); 582 583 /* 584 * No sense to grab the lock for this test, but test itself looks 585 * somewhat bogus. Suggestions for better replacement? 586 * Ho-hum... In principle, we might treat that as umount + switch 587 * to rootfs. GC would eventually take care of the old vfsmount. 588 * Actually it makes sense, especially if rootfs would contain a 589 * /reboot - static binary that would close all descriptors and 590 * call reboot(9). Then init(8) could umount root and exec /reboot. 591 */ 592 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) { 593 /* 594 * Special case for "unmounting" root ... 595 * we just try to remount it readonly. 596 */ 597 down_write(&sb->s_umount); 598 if (!(sb->s_flags & MS_RDONLY)) { 599 lock_kernel(); 600 DQUOT_OFF(sb); 601 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 602 unlock_kernel(); 603 } 604 up_write(&sb->s_umount); 605 return retval; 606 } 607 608 down_write(&namespace_sem); 609 spin_lock(&vfsmount_lock); 610 event++; 611 612 retval = -EBUSY; 613 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 614 if (!list_empty(&mnt->mnt_list)) 615 umount_tree(mnt, 1, &umount_list); 616 retval = 0; 617 } 618 spin_unlock(&vfsmount_lock); 619 if (retval) 620 security_sb_umount_busy(mnt); 621 up_write(&namespace_sem); 622 release_mounts(&umount_list); 623 return retval; 624 } 625 626 /* 627 * Now umount can handle mount points as well as block devices. 628 * This is important for filesystems which use unnamed block devices. 629 * 630 * We now support a flag for forced unmount like the other 'big iron' 631 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 632 */ 633 634 asmlinkage long sys_umount(char __user * name, int flags) 635 { 636 struct nameidata nd; 637 int retval; 638 639 retval = __user_walk(name, LOOKUP_FOLLOW, &nd); 640 if (retval) 641 goto out; 642 retval = -EINVAL; 643 if (nd.dentry != nd.mnt->mnt_root) 644 goto dput_and_out; 645 if (!check_mnt(nd.mnt)) 646 goto dput_and_out; 647 648 retval = -EPERM; 649 if (!capable(CAP_SYS_ADMIN)) 650 goto dput_and_out; 651 652 retval = do_umount(nd.mnt, flags); 653 dput_and_out: 654 path_release_on_umount(&nd); 655 out: 656 return retval; 657 } 658 659 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 660 661 /* 662 * The 2.0 compatible umount. No flags. 663 */ 664 asmlinkage long sys_oldumount(char __user * name) 665 { 666 return sys_umount(name, 0); 667 } 668 669 #endif 670 671 static int mount_is_safe(struct nameidata *nd) 672 { 673 if (capable(CAP_SYS_ADMIN)) 674 return 0; 675 return -EPERM; 676 #ifdef notyet 677 if (S_ISLNK(nd->dentry->d_inode->i_mode)) 678 return -EPERM; 679 if (nd->dentry->d_inode->i_mode & S_ISVTX) { 680 if (current->uid != nd->dentry->d_inode->i_uid) 681 return -EPERM; 682 } 683 if (vfs_permission(nd, MAY_WRITE)) 684 return -EPERM; 685 return 0; 686 #endif 687 } 688 689 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry) 690 { 691 while (1) { 692 if (d == dentry) 693 return 1; 694 if (d == NULL || d == d->d_parent) 695 return 0; 696 d = d->d_parent; 697 } 698 } 699 700 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 701 int flag) 702 { 703 struct vfsmount *res, *p, *q, *r, *s; 704 struct nameidata nd; 705 706 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 707 return NULL; 708 709 res = q = clone_mnt(mnt, dentry, flag); 710 if (!q) 711 goto Enomem; 712 q->mnt_mountpoint = mnt->mnt_mountpoint; 713 714 p = mnt; 715 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 716 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry)) 717 continue; 718 719 for (s = r; s; s = next_mnt(s, r)) { 720 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 721 s = skip_mnt_tree(s); 722 continue; 723 } 724 while (p != s->mnt_parent) { 725 p = p->mnt_parent; 726 q = q->mnt_parent; 727 } 728 p = s; 729 nd.mnt = q; 730 nd.dentry = p->mnt_mountpoint; 731 q = clone_mnt(p, p->mnt_root, flag); 732 if (!q) 733 goto Enomem; 734 spin_lock(&vfsmount_lock); 735 list_add_tail(&q->mnt_list, &res->mnt_list); 736 attach_mnt(q, &nd); 737 spin_unlock(&vfsmount_lock); 738 } 739 } 740 return res; 741 Enomem: 742 if (res) { 743 LIST_HEAD(umount_list); 744 spin_lock(&vfsmount_lock); 745 umount_tree(res, 0, &umount_list); 746 spin_unlock(&vfsmount_lock); 747 release_mounts(&umount_list); 748 } 749 return NULL; 750 } 751 752 /* 753 * @source_mnt : mount tree to be attached 754 * @nd : place the mount tree @source_mnt is attached 755 * @parent_nd : if non-null, detach the source_mnt from its parent and 756 * store the parent mount and mountpoint dentry. 757 * (done when source_mnt is moved) 758 * 759 * NOTE: in the table below explains the semantics when a source mount 760 * of a given type is attached to a destination mount of a given type. 761 * --------------------------------------------------------------------------- 762 * | BIND MOUNT OPERATION | 763 * |************************************************************************** 764 * | source-->| shared | private | slave | unbindable | 765 * | dest | | | | | 766 * | | | | | | | 767 * | v | | | | | 768 * |************************************************************************** 769 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 770 * | | | | | | 771 * |non-shared| shared (+) | private | slave (*) | invalid | 772 * *************************************************************************** 773 * A bind operation clones the source mount and mounts the clone on the 774 * destination mount. 775 * 776 * (++) the cloned mount is propagated to all the mounts in the propagation 777 * tree of the destination mount and the cloned mount is added to 778 * the peer group of the source mount. 779 * (+) the cloned mount is created under the destination mount and is marked 780 * as shared. The cloned mount is added to the peer group of the source 781 * mount. 782 * (+++) the mount is propagated to all the mounts in the propagation tree 783 * of the destination mount and the cloned mount is made slave 784 * of the same master as that of the source mount. The cloned mount 785 * is marked as 'shared and slave'. 786 * (*) the cloned mount is made a slave of the same master as that of the 787 * source mount. 788 * 789 * --------------------------------------------------------------------------- 790 * | MOVE MOUNT OPERATION | 791 * |************************************************************************** 792 * | source-->| shared | private | slave | unbindable | 793 * | dest | | | | | 794 * | | | | | | | 795 * | v | | | | | 796 * |************************************************************************** 797 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 798 * | | | | | | 799 * |non-shared| shared (+*) | private | slave (*) | unbindable | 800 * *************************************************************************** 801 * 802 * (+) the mount is moved to the destination. And is then propagated to 803 * all the mounts in the propagation tree of the destination mount. 804 * (+*) the mount is moved to the destination. 805 * (+++) the mount is moved to the destination and is then propagated to 806 * all the mounts belonging to the destination mount's propagation tree. 807 * the mount is marked as 'shared and slave'. 808 * (*) the mount continues to be a slave at the new location. 809 * 810 * if the source mount is a tree, the operations explained above is 811 * applied to each mount in the tree. 812 * Must be called without spinlocks held, since this function can sleep 813 * in allocations. 814 */ 815 static int attach_recursive_mnt(struct vfsmount *source_mnt, 816 struct nameidata *nd, struct nameidata *parent_nd) 817 { 818 LIST_HEAD(tree_list); 819 struct vfsmount *dest_mnt = nd->mnt; 820 struct dentry *dest_dentry = nd->dentry; 821 struct vfsmount *child, *p; 822 823 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list)) 824 return -EINVAL; 825 826 if (IS_MNT_SHARED(dest_mnt)) { 827 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 828 set_mnt_shared(p); 829 } 830 831 spin_lock(&vfsmount_lock); 832 if (parent_nd) { 833 detach_mnt(source_mnt, parent_nd); 834 attach_mnt(source_mnt, nd); 835 touch_namespace(current->namespace); 836 } else { 837 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 838 commit_tree(source_mnt); 839 } 840 841 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 842 list_del_init(&child->mnt_hash); 843 commit_tree(child); 844 } 845 spin_unlock(&vfsmount_lock); 846 return 0; 847 } 848 849 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) 850 { 851 int err; 852 if (mnt->mnt_sb->s_flags & MS_NOUSER) 853 return -EINVAL; 854 855 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 856 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 857 return -ENOTDIR; 858 859 err = -ENOENT; 860 mutex_lock(&nd->dentry->d_inode->i_mutex); 861 if (IS_DEADDIR(nd->dentry->d_inode)) 862 goto out_unlock; 863 864 err = security_sb_check_sb(mnt, nd); 865 if (err) 866 goto out_unlock; 867 868 err = -ENOENT; 869 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) 870 err = attach_recursive_mnt(mnt, nd, NULL); 871 out_unlock: 872 mutex_unlock(&nd->dentry->d_inode->i_mutex); 873 if (!err) 874 security_sb_post_addmount(mnt, nd); 875 return err; 876 } 877 878 /* 879 * recursively change the type of the mountpoint. 880 */ 881 static int do_change_type(struct nameidata *nd, int flag) 882 { 883 struct vfsmount *m, *mnt = nd->mnt; 884 int recurse = flag & MS_REC; 885 int type = flag & ~MS_REC; 886 887 if (nd->dentry != nd->mnt->mnt_root) 888 return -EINVAL; 889 890 down_write(&namespace_sem); 891 spin_lock(&vfsmount_lock); 892 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 893 change_mnt_propagation(m, type); 894 spin_unlock(&vfsmount_lock); 895 up_write(&namespace_sem); 896 return 0; 897 } 898 899 /* 900 * do loopback mount. 901 */ 902 static int do_loopback(struct nameidata *nd, char *old_name, int recurse) 903 { 904 struct nameidata old_nd; 905 struct vfsmount *mnt = NULL; 906 int err = mount_is_safe(nd); 907 if (err) 908 return err; 909 if (!old_name || !*old_name) 910 return -EINVAL; 911 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 912 if (err) 913 return err; 914 915 down_write(&namespace_sem); 916 err = -EINVAL; 917 if (IS_MNT_UNBINDABLE(old_nd.mnt)) 918 goto out; 919 920 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 921 goto out; 922 923 err = -ENOMEM; 924 if (recurse) 925 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0); 926 else 927 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0); 928 929 if (!mnt) 930 goto out; 931 932 err = graft_tree(mnt, nd); 933 if (err) { 934 LIST_HEAD(umount_list); 935 spin_lock(&vfsmount_lock); 936 umount_tree(mnt, 0, &umount_list); 937 spin_unlock(&vfsmount_lock); 938 release_mounts(&umount_list); 939 } 940 941 out: 942 up_write(&namespace_sem); 943 path_release(&old_nd); 944 return err; 945 } 946 947 /* 948 * change filesystem flags. dir should be a physical root of filesystem. 949 * If you've mounted a non-root directory somewhere and want to do remount 950 * on it - tough luck. 951 */ 952 static int do_remount(struct nameidata *nd, int flags, int mnt_flags, 953 void *data) 954 { 955 int err; 956 struct super_block *sb = nd->mnt->mnt_sb; 957 958 if (!capable(CAP_SYS_ADMIN)) 959 return -EPERM; 960 961 if (!check_mnt(nd->mnt)) 962 return -EINVAL; 963 964 if (nd->dentry != nd->mnt->mnt_root) 965 return -EINVAL; 966 967 down_write(&sb->s_umount); 968 err = do_remount_sb(sb, flags, data, 0); 969 if (!err) 970 nd->mnt->mnt_flags = mnt_flags; 971 up_write(&sb->s_umount); 972 if (!err) 973 security_sb_post_remount(nd->mnt, flags, data); 974 return err; 975 } 976 977 static inline int tree_contains_unbindable(struct vfsmount *mnt) 978 { 979 struct vfsmount *p; 980 for (p = mnt; p; p = next_mnt(p, mnt)) { 981 if (IS_MNT_UNBINDABLE(p)) 982 return 1; 983 } 984 return 0; 985 } 986 987 static int do_move_mount(struct nameidata *nd, char *old_name) 988 { 989 struct nameidata old_nd, parent_nd; 990 struct vfsmount *p; 991 int err = 0; 992 if (!capable(CAP_SYS_ADMIN)) 993 return -EPERM; 994 if (!old_name || !*old_name) 995 return -EINVAL; 996 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 997 if (err) 998 return err; 999 1000 down_write(&namespace_sem); 1001 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1002 ; 1003 err = -EINVAL; 1004 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 1005 goto out; 1006 1007 err = -ENOENT; 1008 mutex_lock(&nd->dentry->d_inode->i_mutex); 1009 if (IS_DEADDIR(nd->dentry->d_inode)) 1010 goto out1; 1011 1012 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry)) 1013 goto out1; 1014 1015 err = -EINVAL; 1016 if (old_nd.dentry != old_nd.mnt->mnt_root) 1017 goto out1; 1018 1019 if (old_nd.mnt == old_nd.mnt->mnt_parent) 1020 goto out1; 1021 1022 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 1023 S_ISDIR(old_nd.dentry->d_inode->i_mode)) 1024 goto out1; 1025 /* 1026 * Don't move a mount residing in a shared parent. 1027 */ 1028 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent)) 1029 goto out1; 1030 /* 1031 * Don't move a mount tree containing unbindable mounts to a destination 1032 * mount which is shared. 1033 */ 1034 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt)) 1035 goto out1; 1036 err = -ELOOP; 1037 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent) 1038 if (p == old_nd.mnt) 1039 goto out1; 1040 1041 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd))) 1042 goto out1; 1043 1044 spin_lock(&vfsmount_lock); 1045 /* if the mount is moved, it should no longer be expire 1046 * automatically */ 1047 list_del_init(&old_nd.mnt->mnt_expire); 1048 spin_unlock(&vfsmount_lock); 1049 out1: 1050 mutex_unlock(&nd->dentry->d_inode->i_mutex); 1051 out: 1052 up_write(&namespace_sem); 1053 if (!err) 1054 path_release(&parent_nd); 1055 path_release(&old_nd); 1056 return err; 1057 } 1058 1059 /* 1060 * create a new mount for userspace and request it to be added into the 1061 * namespace's tree 1062 */ 1063 static int do_new_mount(struct nameidata *nd, char *type, int flags, 1064 int mnt_flags, char *name, void *data) 1065 { 1066 struct vfsmount *mnt; 1067 1068 if (!type || !memchr(type, 0, PAGE_SIZE)) 1069 return -EINVAL; 1070 1071 /* we need capabilities... */ 1072 if (!capable(CAP_SYS_ADMIN)) 1073 return -EPERM; 1074 1075 mnt = do_kern_mount(type, flags, name, data); 1076 if (IS_ERR(mnt)) 1077 return PTR_ERR(mnt); 1078 1079 return do_add_mount(mnt, nd, mnt_flags, NULL); 1080 } 1081 1082 /* 1083 * add a mount into a namespace's mount tree 1084 * - provide the option of adding the new mount to an expiration list 1085 */ 1086 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, 1087 int mnt_flags, struct list_head *fslist) 1088 { 1089 int err; 1090 1091 down_write(&namespace_sem); 1092 /* Something was mounted here while we slept */ 1093 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1094 ; 1095 err = -EINVAL; 1096 if (!check_mnt(nd->mnt)) 1097 goto unlock; 1098 1099 /* Refuse the same filesystem on the same mount point */ 1100 err = -EBUSY; 1101 if (nd->mnt->mnt_sb == newmnt->mnt_sb && 1102 nd->mnt->mnt_root == nd->dentry) 1103 goto unlock; 1104 1105 err = -EINVAL; 1106 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1107 goto unlock; 1108 1109 newmnt->mnt_flags = mnt_flags; 1110 if ((err = graft_tree(newmnt, nd))) 1111 goto unlock; 1112 1113 if (fslist) { 1114 /* add to the specified expiration list */ 1115 spin_lock(&vfsmount_lock); 1116 list_add_tail(&newmnt->mnt_expire, fslist); 1117 spin_unlock(&vfsmount_lock); 1118 } 1119 up_write(&namespace_sem); 1120 return 0; 1121 1122 unlock: 1123 up_write(&namespace_sem); 1124 mntput(newmnt); 1125 return err; 1126 } 1127 1128 EXPORT_SYMBOL_GPL(do_add_mount); 1129 1130 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts, 1131 struct list_head *umounts) 1132 { 1133 spin_lock(&vfsmount_lock); 1134 1135 /* 1136 * Check if mount is still attached, if not, let whoever holds it deal 1137 * with the sucker 1138 */ 1139 if (mnt->mnt_parent == mnt) { 1140 spin_unlock(&vfsmount_lock); 1141 return; 1142 } 1143 1144 /* 1145 * Check that it is still dead: the count should now be 2 - as 1146 * contributed by the vfsmount parent and the mntget above 1147 */ 1148 if (!propagate_mount_busy(mnt, 2)) { 1149 /* delete from the namespace */ 1150 touch_namespace(mnt->mnt_namespace); 1151 list_del_init(&mnt->mnt_list); 1152 mnt->mnt_namespace = NULL; 1153 umount_tree(mnt, 1, umounts); 1154 spin_unlock(&vfsmount_lock); 1155 } else { 1156 /* 1157 * Someone brought it back to life whilst we didn't have any 1158 * locks held so return it to the expiration list 1159 */ 1160 list_add_tail(&mnt->mnt_expire, mounts); 1161 spin_unlock(&vfsmount_lock); 1162 } 1163 } 1164 1165 /* 1166 * process a list of expirable mountpoints with the intent of discarding any 1167 * mountpoints that aren't in use and haven't been touched since last we came 1168 * here 1169 */ 1170 void mark_mounts_for_expiry(struct list_head *mounts) 1171 { 1172 struct namespace *namespace; 1173 struct vfsmount *mnt, *next; 1174 LIST_HEAD(graveyard); 1175 1176 if (list_empty(mounts)) 1177 return; 1178 1179 spin_lock(&vfsmount_lock); 1180 1181 /* extract from the expiration list every vfsmount that matches the 1182 * following criteria: 1183 * - only referenced by its parent vfsmount 1184 * - still marked for expiry (marked on the last call here; marks are 1185 * cleared by mntput()) 1186 */ 1187 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1188 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1189 atomic_read(&mnt->mnt_count) != 1) 1190 continue; 1191 1192 mntget(mnt); 1193 list_move(&mnt->mnt_expire, &graveyard); 1194 } 1195 1196 /* 1197 * go through the vfsmounts we've just consigned to the graveyard to 1198 * - check that they're still dead 1199 * - delete the vfsmount from the appropriate namespace under lock 1200 * - dispose of the corpse 1201 */ 1202 while (!list_empty(&graveyard)) { 1203 LIST_HEAD(umounts); 1204 mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire); 1205 list_del_init(&mnt->mnt_expire); 1206 1207 /* don't do anything if the namespace is dead - all the 1208 * vfsmounts from it are going away anyway */ 1209 namespace = mnt->mnt_namespace; 1210 if (!namespace || !namespace->root) 1211 continue; 1212 get_namespace(namespace); 1213 1214 spin_unlock(&vfsmount_lock); 1215 down_write(&namespace_sem); 1216 expire_mount(mnt, mounts, &umounts); 1217 up_write(&namespace_sem); 1218 release_mounts(&umounts); 1219 mntput(mnt); 1220 put_namespace(namespace); 1221 spin_lock(&vfsmount_lock); 1222 } 1223 1224 spin_unlock(&vfsmount_lock); 1225 } 1226 1227 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1228 1229 /* 1230 * Some copy_from_user() implementations do not return the exact number of 1231 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1232 * Note that this function differs from copy_from_user() in that it will oops 1233 * on bad values of `to', rather than returning a short copy. 1234 */ 1235 static long exact_copy_from_user(void *to, const void __user * from, 1236 unsigned long n) 1237 { 1238 char *t = to; 1239 const char __user *f = from; 1240 char c; 1241 1242 if (!access_ok(VERIFY_READ, from, n)) 1243 return n; 1244 1245 while (n) { 1246 if (__get_user(c, f)) { 1247 memset(t, 0, n); 1248 break; 1249 } 1250 *t++ = c; 1251 f++; 1252 n--; 1253 } 1254 return n; 1255 } 1256 1257 int copy_mount_options(const void __user * data, unsigned long *where) 1258 { 1259 int i; 1260 unsigned long page; 1261 unsigned long size; 1262 1263 *where = 0; 1264 if (!data) 1265 return 0; 1266 1267 if (!(page = __get_free_page(GFP_KERNEL))) 1268 return -ENOMEM; 1269 1270 /* We only care that *some* data at the address the user 1271 * gave us is valid. Just in case, we'll zero 1272 * the remainder of the page. 1273 */ 1274 /* copy_from_user cannot cross TASK_SIZE ! */ 1275 size = TASK_SIZE - (unsigned long)data; 1276 if (size > PAGE_SIZE) 1277 size = PAGE_SIZE; 1278 1279 i = size - exact_copy_from_user((void *)page, data, size); 1280 if (!i) { 1281 free_page(page); 1282 return -EFAULT; 1283 } 1284 if (i != PAGE_SIZE) 1285 memset((char *)page + i, 0, PAGE_SIZE - i); 1286 *where = page; 1287 return 0; 1288 } 1289 1290 /* 1291 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1292 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1293 * 1294 * data is a (void *) that can point to any structure up to 1295 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1296 * information (or be NULL). 1297 * 1298 * Pre-0.97 versions of mount() didn't have a flags word. 1299 * When the flags word was introduced its top half was required 1300 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1301 * Therefore, if this magic number is present, it carries no information 1302 * and must be discarded. 1303 */ 1304 long do_mount(char *dev_name, char *dir_name, char *type_page, 1305 unsigned long flags, void *data_page) 1306 { 1307 struct nameidata nd; 1308 int retval = 0; 1309 int mnt_flags = 0; 1310 1311 /* Discard magic */ 1312 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1313 flags &= ~MS_MGC_MSK; 1314 1315 /* Basic sanity checks */ 1316 1317 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1318 return -EINVAL; 1319 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1320 return -EINVAL; 1321 1322 if (data_page) 1323 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1324 1325 /* Separate the per-mountpoint flags */ 1326 if (flags & MS_NOSUID) 1327 mnt_flags |= MNT_NOSUID; 1328 if (flags & MS_NODEV) 1329 mnt_flags |= MNT_NODEV; 1330 if (flags & MS_NOEXEC) 1331 mnt_flags |= MNT_NOEXEC; 1332 if (flags & MS_NOATIME) 1333 mnt_flags |= MNT_NOATIME; 1334 if (flags & MS_NODIRATIME) 1335 mnt_flags |= MNT_NODIRATIME; 1336 1337 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1338 MS_NOATIME | MS_NODIRATIME); 1339 1340 /* ... and get the mountpoint */ 1341 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); 1342 if (retval) 1343 return retval; 1344 1345 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); 1346 if (retval) 1347 goto dput_out; 1348 1349 if (flags & MS_REMOUNT) 1350 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, 1351 data_page); 1352 else if (flags & MS_BIND) 1353 retval = do_loopback(&nd, dev_name, flags & MS_REC); 1354 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1355 retval = do_change_type(&nd, flags); 1356 else if (flags & MS_MOVE) 1357 retval = do_move_mount(&nd, dev_name); 1358 else 1359 retval = do_new_mount(&nd, type_page, flags, mnt_flags, 1360 dev_name, data_page); 1361 dput_out: 1362 path_release(&nd); 1363 return retval; 1364 } 1365 1366 /* 1367 * Allocate a new namespace structure and populate it with contents 1368 * copied from the namespace of the passed in task structure. 1369 */ 1370 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs) 1371 { 1372 struct namespace *namespace = tsk->namespace; 1373 struct namespace *new_ns; 1374 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; 1375 struct vfsmount *p, *q; 1376 1377 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL); 1378 if (!new_ns) 1379 return NULL; 1380 1381 atomic_set(&new_ns->count, 1); 1382 INIT_LIST_HEAD(&new_ns->list); 1383 init_waitqueue_head(&new_ns->poll); 1384 new_ns->event = 0; 1385 1386 down_write(&namespace_sem); 1387 /* First pass: copy the tree topology */ 1388 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root, 1389 CL_COPY_ALL | CL_EXPIRE); 1390 if (!new_ns->root) { 1391 up_write(&namespace_sem); 1392 kfree(new_ns); 1393 return NULL; 1394 } 1395 spin_lock(&vfsmount_lock); 1396 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 1397 spin_unlock(&vfsmount_lock); 1398 1399 /* 1400 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 1401 * as belonging to new namespace. We have already acquired a private 1402 * fs_struct, so tsk->fs->lock is not needed. 1403 */ 1404 p = namespace->root; 1405 q = new_ns->root; 1406 while (p) { 1407 q->mnt_namespace = new_ns; 1408 if (fs) { 1409 if (p == fs->rootmnt) { 1410 rootmnt = p; 1411 fs->rootmnt = mntget(q); 1412 } 1413 if (p == fs->pwdmnt) { 1414 pwdmnt = p; 1415 fs->pwdmnt = mntget(q); 1416 } 1417 if (p == fs->altrootmnt) { 1418 altrootmnt = p; 1419 fs->altrootmnt = mntget(q); 1420 } 1421 } 1422 p = next_mnt(p, namespace->root); 1423 q = next_mnt(q, new_ns->root); 1424 } 1425 up_write(&namespace_sem); 1426 1427 if (rootmnt) 1428 mntput(rootmnt); 1429 if (pwdmnt) 1430 mntput(pwdmnt); 1431 if (altrootmnt) 1432 mntput(altrootmnt); 1433 1434 return new_ns; 1435 } 1436 1437 int copy_namespace(int flags, struct task_struct *tsk) 1438 { 1439 struct namespace *namespace = tsk->namespace; 1440 struct namespace *new_ns; 1441 int err = 0; 1442 1443 if (!namespace) 1444 return 0; 1445 1446 get_namespace(namespace); 1447 1448 if (!(flags & CLONE_NEWNS)) 1449 return 0; 1450 1451 if (!capable(CAP_SYS_ADMIN)) { 1452 err = -EPERM; 1453 goto out; 1454 } 1455 1456 new_ns = dup_namespace(tsk, tsk->fs); 1457 if (!new_ns) { 1458 err = -ENOMEM; 1459 goto out; 1460 } 1461 1462 tsk->namespace = new_ns; 1463 1464 out: 1465 put_namespace(namespace); 1466 return err; 1467 } 1468 1469 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, 1470 char __user * type, unsigned long flags, 1471 void __user * data) 1472 { 1473 int retval; 1474 unsigned long data_page; 1475 unsigned long type_page; 1476 unsigned long dev_page; 1477 char *dir_page; 1478 1479 retval = copy_mount_options(type, &type_page); 1480 if (retval < 0) 1481 return retval; 1482 1483 dir_page = getname(dir_name); 1484 retval = PTR_ERR(dir_page); 1485 if (IS_ERR(dir_page)) 1486 goto out1; 1487 1488 retval = copy_mount_options(dev_name, &dev_page); 1489 if (retval < 0) 1490 goto out2; 1491 1492 retval = copy_mount_options(data, &data_page); 1493 if (retval < 0) 1494 goto out3; 1495 1496 lock_kernel(); 1497 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 1498 flags, (void *)data_page); 1499 unlock_kernel(); 1500 free_page(data_page); 1501 1502 out3: 1503 free_page(dev_page); 1504 out2: 1505 putname(dir_page); 1506 out1: 1507 free_page(type_page); 1508 return retval; 1509 } 1510 1511 /* 1512 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 1513 * It can block. Requires the big lock held. 1514 */ 1515 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt, 1516 struct dentry *dentry) 1517 { 1518 struct dentry *old_root; 1519 struct vfsmount *old_rootmnt; 1520 write_lock(&fs->lock); 1521 old_root = fs->root; 1522 old_rootmnt = fs->rootmnt; 1523 fs->rootmnt = mntget(mnt); 1524 fs->root = dget(dentry); 1525 write_unlock(&fs->lock); 1526 if (old_root) { 1527 dput(old_root); 1528 mntput(old_rootmnt); 1529 } 1530 } 1531 1532 /* 1533 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 1534 * It can block. Requires the big lock held. 1535 */ 1536 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt, 1537 struct dentry *dentry) 1538 { 1539 struct dentry *old_pwd; 1540 struct vfsmount *old_pwdmnt; 1541 1542 write_lock(&fs->lock); 1543 old_pwd = fs->pwd; 1544 old_pwdmnt = fs->pwdmnt; 1545 fs->pwdmnt = mntget(mnt); 1546 fs->pwd = dget(dentry); 1547 write_unlock(&fs->lock); 1548 1549 if (old_pwd) { 1550 dput(old_pwd); 1551 mntput(old_pwdmnt); 1552 } 1553 } 1554 1555 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd) 1556 { 1557 struct task_struct *g, *p; 1558 struct fs_struct *fs; 1559 1560 read_lock(&tasklist_lock); 1561 do_each_thread(g, p) { 1562 task_lock(p); 1563 fs = p->fs; 1564 if (fs) { 1565 atomic_inc(&fs->count); 1566 task_unlock(p); 1567 if (fs->root == old_nd->dentry 1568 && fs->rootmnt == old_nd->mnt) 1569 set_fs_root(fs, new_nd->mnt, new_nd->dentry); 1570 if (fs->pwd == old_nd->dentry 1571 && fs->pwdmnt == old_nd->mnt) 1572 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry); 1573 put_fs_struct(fs); 1574 } else 1575 task_unlock(p); 1576 } while_each_thread(g, p); 1577 read_unlock(&tasklist_lock); 1578 } 1579 1580 /* 1581 * pivot_root Semantics: 1582 * Moves the root file system of the current process to the directory put_old, 1583 * makes new_root as the new root file system of the current process, and sets 1584 * root/cwd of all processes which had them on the current root to new_root. 1585 * 1586 * Restrictions: 1587 * The new_root and put_old must be directories, and must not be on the 1588 * same file system as the current process root. The put_old must be 1589 * underneath new_root, i.e. adding a non-zero number of /.. to the string 1590 * pointed to by put_old must yield the same directory as new_root. No other 1591 * file system may be mounted on put_old. After all, new_root is a mountpoint. 1592 * 1593 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 1594 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 1595 * in this situation. 1596 * 1597 * Notes: 1598 * - we don't move root/cwd if they are not at the root (reason: if something 1599 * cared enough to change them, it's probably wrong to force them elsewhere) 1600 * - it's okay to pick a root that isn't the root of a file system, e.g. 1601 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 1602 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 1603 * first. 1604 */ 1605 asmlinkage long sys_pivot_root(const char __user * new_root, 1606 const char __user * put_old) 1607 { 1608 struct vfsmount *tmp; 1609 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd; 1610 int error; 1611 1612 if (!capable(CAP_SYS_ADMIN)) 1613 return -EPERM; 1614 1615 lock_kernel(); 1616 1617 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, 1618 &new_nd); 1619 if (error) 1620 goto out0; 1621 error = -EINVAL; 1622 if (!check_mnt(new_nd.mnt)) 1623 goto out1; 1624 1625 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd); 1626 if (error) 1627 goto out1; 1628 1629 error = security_sb_pivotroot(&old_nd, &new_nd); 1630 if (error) { 1631 path_release(&old_nd); 1632 goto out1; 1633 } 1634 1635 read_lock(¤t->fs->lock); 1636 user_nd.mnt = mntget(current->fs->rootmnt); 1637 user_nd.dentry = dget(current->fs->root); 1638 read_unlock(¤t->fs->lock); 1639 down_write(&namespace_sem); 1640 mutex_lock(&old_nd.dentry->d_inode->i_mutex); 1641 error = -EINVAL; 1642 if (IS_MNT_SHARED(old_nd.mnt) || 1643 IS_MNT_SHARED(new_nd.mnt->mnt_parent) || 1644 IS_MNT_SHARED(user_nd.mnt->mnt_parent)) 1645 goto out2; 1646 if (!check_mnt(user_nd.mnt)) 1647 goto out2; 1648 error = -ENOENT; 1649 if (IS_DEADDIR(new_nd.dentry->d_inode)) 1650 goto out2; 1651 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry)) 1652 goto out2; 1653 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry)) 1654 goto out2; 1655 error = -EBUSY; 1656 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt) 1657 goto out2; /* loop, on the same file system */ 1658 error = -EINVAL; 1659 if (user_nd.mnt->mnt_root != user_nd.dentry) 1660 goto out2; /* not a mountpoint */ 1661 if (user_nd.mnt->mnt_parent == user_nd.mnt) 1662 goto out2; /* not attached */ 1663 if (new_nd.mnt->mnt_root != new_nd.dentry) 1664 goto out2; /* not a mountpoint */ 1665 if (new_nd.mnt->mnt_parent == new_nd.mnt) 1666 goto out2; /* not attached */ 1667 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */ 1668 spin_lock(&vfsmount_lock); 1669 if (tmp != new_nd.mnt) { 1670 for (;;) { 1671 if (tmp->mnt_parent == tmp) 1672 goto out3; /* already mounted on put_old */ 1673 if (tmp->mnt_parent == new_nd.mnt) 1674 break; 1675 tmp = tmp->mnt_parent; 1676 } 1677 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry)) 1678 goto out3; 1679 } else if (!is_subdir(old_nd.dentry, new_nd.dentry)) 1680 goto out3; 1681 detach_mnt(new_nd.mnt, &parent_nd); 1682 detach_mnt(user_nd.mnt, &root_parent); 1683 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */ 1684 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */ 1685 touch_namespace(current->namespace); 1686 spin_unlock(&vfsmount_lock); 1687 chroot_fs_refs(&user_nd, &new_nd); 1688 security_sb_post_pivotroot(&user_nd, &new_nd); 1689 error = 0; 1690 path_release(&root_parent); 1691 path_release(&parent_nd); 1692 out2: 1693 mutex_unlock(&old_nd.dentry->d_inode->i_mutex); 1694 up_write(&namespace_sem); 1695 path_release(&user_nd); 1696 path_release(&old_nd); 1697 out1: 1698 path_release(&new_nd); 1699 out0: 1700 unlock_kernel(); 1701 return error; 1702 out3: 1703 spin_unlock(&vfsmount_lock); 1704 goto out2; 1705 } 1706 1707 static void __init init_mount_tree(void) 1708 { 1709 struct vfsmount *mnt; 1710 struct namespace *namespace; 1711 struct task_struct *g, *p; 1712 1713 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 1714 if (IS_ERR(mnt)) 1715 panic("Can't create rootfs"); 1716 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL); 1717 if (!namespace) 1718 panic("Can't allocate initial namespace"); 1719 atomic_set(&namespace->count, 1); 1720 INIT_LIST_HEAD(&namespace->list); 1721 init_waitqueue_head(&namespace->poll); 1722 namespace->event = 0; 1723 list_add(&mnt->mnt_list, &namespace->list); 1724 namespace->root = mnt; 1725 mnt->mnt_namespace = namespace; 1726 1727 init_task.namespace = namespace; 1728 read_lock(&tasklist_lock); 1729 do_each_thread(g, p) { 1730 get_namespace(namespace); 1731 p->namespace = namespace; 1732 } while_each_thread(g, p); 1733 read_unlock(&tasklist_lock); 1734 1735 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root); 1736 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root); 1737 } 1738 1739 void __init mnt_init(unsigned long mempages) 1740 { 1741 struct list_head *d; 1742 unsigned int nr_hash; 1743 int i; 1744 1745 init_rwsem(&namespace_sem); 1746 1747 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 1748 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL); 1749 1750 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 1751 1752 if (!mount_hashtable) 1753 panic("Failed to allocate mount hash table\n"); 1754 1755 /* 1756 * Find the power-of-two list-heads that can fit into the allocation.. 1757 * We don't guarantee that "sizeof(struct list_head)" is necessarily 1758 * a power-of-two. 1759 */ 1760 nr_hash = PAGE_SIZE / sizeof(struct list_head); 1761 hash_bits = 0; 1762 do { 1763 hash_bits++; 1764 } while ((nr_hash >> hash_bits) != 0); 1765 hash_bits--; 1766 1767 /* 1768 * Re-calculate the actual number of entries and the mask 1769 * from the number of bits we can fit. 1770 */ 1771 nr_hash = 1UL << hash_bits; 1772 hash_mask = nr_hash - 1; 1773 1774 printk("Mount-cache hash table entries: %d\n", nr_hash); 1775 1776 /* And initialize the newly allocated array */ 1777 d = mount_hashtable; 1778 i = nr_hash; 1779 do { 1780 INIT_LIST_HEAD(d); 1781 d++; 1782 i--; 1783 } while (i); 1784 sysfs_init(); 1785 subsystem_register(&fs_subsys); 1786 init_rootfs(); 1787 init_mount_tree(); 1788 } 1789 1790 void __put_namespace(struct namespace *namespace) 1791 { 1792 struct vfsmount *root = namespace->root; 1793 LIST_HEAD(umount_list); 1794 namespace->root = NULL; 1795 spin_unlock(&vfsmount_lock); 1796 down_write(&namespace_sem); 1797 spin_lock(&vfsmount_lock); 1798 umount_tree(root, 0, &umount_list); 1799 spin_unlock(&vfsmount_lock); 1800 up_write(&namespace_sem); 1801 release_mounts(&umount_list); 1802 kfree(namespace); 1803 } 1804