1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/spinlock.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/cpumask.h> 21 #include <linux/module.h> 22 #include <linux/sysfs.h> 23 #include <linux/seq_file.h> 24 #include <linux/mnt_namespace.h> 25 #include <linux/namei.h> 26 #include <linux/nsproxy.h> 27 #include <linux/security.h> 28 #include <linux/mount.h> 29 #include <linux/ramfs.h> 30 #include <linux/log2.h> 31 #include <linux/idr.h> 32 #include <linux/fs_struct.h> 33 #include <linux/fsnotify.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include "pnode.h" 37 #include "internal.h" 38 39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 40 #define HASH_SIZE (1UL << HASH_SHIFT) 41 42 static int event; 43 static DEFINE_IDA(mnt_id_ida); 44 static DEFINE_IDA(mnt_group_ida); 45 static DEFINE_SPINLOCK(mnt_id_lock); 46 static int mnt_id_start = 0; 47 static int mnt_group_start = 1; 48 49 static struct list_head *mount_hashtable __read_mostly; 50 static struct kmem_cache *mnt_cache __read_mostly; 51 static struct rw_semaphore namespace_sem; 52 53 /* /sys/fs */ 54 struct kobject *fs_kobj; 55 EXPORT_SYMBOL_GPL(fs_kobj); 56 57 /* 58 * vfsmount lock may be taken for read to prevent changes to the 59 * vfsmount hash, ie. during mountpoint lookups or walking back 60 * up the tree. 61 * 62 * It should be taken for write in all cases where the vfsmount 63 * tree or hash is modified or when a vfsmount structure is modified. 64 */ 65 DEFINE_BRLOCK(vfsmount_lock); 66 67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 68 { 69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 71 tmp = tmp + (tmp >> HASH_SHIFT); 72 return tmp & (HASH_SIZE - 1); 73 } 74 75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 76 77 /* 78 * allocation is serialized by namespace_sem, but we need the spinlock to 79 * serialize with freeing. 80 */ 81 static int mnt_alloc_id(struct vfsmount *mnt) 82 { 83 int res; 84 85 retry: 86 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 87 spin_lock(&mnt_id_lock); 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 89 if (!res) 90 mnt_id_start = mnt->mnt_id + 1; 91 spin_unlock(&mnt_id_lock); 92 if (res == -EAGAIN) 93 goto retry; 94 95 return res; 96 } 97 98 static void mnt_free_id(struct vfsmount *mnt) 99 { 100 int id = mnt->mnt_id; 101 spin_lock(&mnt_id_lock); 102 ida_remove(&mnt_id_ida, id); 103 if (mnt_id_start > id) 104 mnt_id_start = id; 105 spin_unlock(&mnt_id_lock); 106 } 107 108 /* 109 * Allocate a new peer group ID 110 * 111 * mnt_group_ida is protected by namespace_sem 112 */ 113 static int mnt_alloc_group_id(struct vfsmount *mnt) 114 { 115 int res; 116 117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 118 return -ENOMEM; 119 120 res = ida_get_new_above(&mnt_group_ida, 121 mnt_group_start, 122 &mnt->mnt_group_id); 123 if (!res) 124 mnt_group_start = mnt->mnt_group_id + 1; 125 126 return res; 127 } 128 129 /* 130 * Release a peer group ID 131 */ 132 void mnt_release_group_id(struct vfsmount *mnt) 133 { 134 int id = mnt->mnt_group_id; 135 ida_remove(&mnt_group_ida, id); 136 if (mnt_group_start > id) 137 mnt_group_start = id; 138 mnt->mnt_group_id = 0; 139 } 140 141 /* 142 * vfsmount lock must be held for read 143 */ 144 static inline void mnt_add_count(struct vfsmount *mnt, int n) 145 { 146 #ifdef CONFIG_SMP 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 148 #else 149 preempt_disable(); 150 mnt->mnt_count += n; 151 preempt_enable(); 152 #endif 153 } 154 155 static inline void mnt_set_count(struct vfsmount *mnt, int n) 156 { 157 #ifdef CONFIG_SMP 158 this_cpu_write(mnt->mnt_pcp->mnt_count, n); 159 #else 160 mnt->mnt_count = n; 161 #endif 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_inc_count(struct vfsmount *mnt) 168 { 169 mnt_add_count(mnt, 1); 170 } 171 172 /* 173 * vfsmount lock must be held for read 174 */ 175 static inline void mnt_dec_count(struct vfsmount *mnt) 176 { 177 mnt_add_count(mnt, -1); 178 } 179 180 /* 181 * vfsmount lock must be held for write 182 */ 183 unsigned int mnt_get_count(struct vfsmount *mnt) 184 { 185 #ifdef CONFIG_SMP 186 unsigned int count = 0; 187 int cpu; 188 189 for_each_possible_cpu(cpu) { 190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 191 } 192 193 return count; 194 #else 195 return mnt->mnt_count; 196 #endif 197 } 198 199 static struct vfsmount *alloc_vfsmnt(const char *name) 200 { 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 202 if (mnt) { 203 int err; 204 205 err = mnt_alloc_id(mnt); 206 if (err) 207 goto out_free_cache; 208 209 if (name) { 210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 211 if (!mnt->mnt_devname) 212 goto out_free_id; 213 } 214 215 #ifdef CONFIG_SMP 216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 217 if (!mnt->mnt_pcp) 218 goto out_free_devname; 219 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 221 #else 222 mnt->mnt_count = 1; 223 mnt->mnt_writers = 0; 224 #endif 225 226 INIT_LIST_HEAD(&mnt->mnt_hash); 227 INIT_LIST_HEAD(&mnt->mnt_child); 228 INIT_LIST_HEAD(&mnt->mnt_mounts); 229 INIT_LIST_HEAD(&mnt->mnt_list); 230 INIT_LIST_HEAD(&mnt->mnt_expire); 231 INIT_LIST_HEAD(&mnt->mnt_share); 232 INIT_LIST_HEAD(&mnt->mnt_slave_list); 233 INIT_LIST_HEAD(&mnt->mnt_slave); 234 #ifdef CONFIG_FSNOTIFY 235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 236 #endif 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 int __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 if (mnt->mnt_flags & MNT_READONLY) 273 return 1; 274 if (mnt->mnt_sb->s_flags & MS_RDONLY) 275 return 1; 276 return 0; 277 } 278 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 279 280 static inline void mnt_inc_writers(struct vfsmount *mnt) 281 { 282 #ifdef CONFIG_SMP 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 284 #else 285 mnt->mnt_writers++; 286 #endif 287 } 288 289 static inline void mnt_dec_writers(struct vfsmount *mnt) 290 { 291 #ifdef CONFIG_SMP 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 293 #else 294 mnt->mnt_writers--; 295 #endif 296 } 297 298 static unsigned int mnt_get_writers(struct vfsmount *mnt) 299 { 300 #ifdef CONFIG_SMP 301 unsigned int count = 0; 302 int cpu; 303 304 for_each_possible_cpu(cpu) { 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 306 } 307 308 return count; 309 #else 310 return mnt->mnt_writers; 311 #endif 312 } 313 314 /* 315 * Most r/o checks on a fs are for operations that take 316 * discrete amounts of time, like a write() or unlink(). 317 * We must keep track of when those operations start 318 * (for permission checks) and when they end, so that 319 * we can determine when writes are able to occur to 320 * a filesystem. 321 */ 322 /** 323 * mnt_want_write - get write access to a mount 324 * @mnt: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is 327 * about to be performed to it, and makes sure that 328 * writes are allowed before returning success. When 329 * the write operation is finished, mnt_drop_write() 330 * must be called. This is effectively a refcount. 331 */ 332 int mnt_want_write(struct vfsmount *mnt) 333 { 334 int ret = 0; 335 336 preempt_disable(); 337 mnt_inc_writers(mnt); 338 /* 339 * The store to mnt_inc_writers must be visible before we pass 340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 341 * incremented count after it has set MNT_WRITE_HOLD. 342 */ 343 smp_mb(); 344 while (mnt->mnt_flags & MNT_WRITE_HOLD) 345 cpu_relax(); 346 /* 347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 348 * be set to match its requirements. So we must not load that until 349 * MNT_WRITE_HOLD is cleared. 350 */ 351 smp_rmb(); 352 if (__mnt_is_readonly(mnt)) { 353 mnt_dec_writers(mnt); 354 ret = -EROFS; 355 goto out; 356 } 357 out: 358 preempt_enable(); 359 return ret; 360 } 361 EXPORT_SYMBOL_GPL(mnt_want_write); 362 363 /** 364 * mnt_clone_write - get write access to a mount 365 * @mnt: the mount on which to take a write 366 * 367 * This is effectively like mnt_want_write, except 368 * it must only be used to take an extra write reference 369 * on a mountpoint that we already know has a write reference 370 * on it. This allows some optimisation. 371 * 372 * After finished, mnt_drop_write must be called as usual to 373 * drop the reference. 374 */ 375 int mnt_clone_write(struct vfsmount *mnt) 376 { 377 /* superblock may be r/o */ 378 if (__mnt_is_readonly(mnt)) 379 return -EROFS; 380 preempt_disable(); 381 mnt_inc_writers(mnt); 382 preempt_enable(); 383 return 0; 384 } 385 EXPORT_SYMBOL_GPL(mnt_clone_write); 386 387 /** 388 * mnt_want_write_file - get write access to a file's mount 389 * @file: the file who's mount on which to take a write 390 * 391 * This is like mnt_want_write, but it takes a file and can 392 * do some optimisations if the file is open for write already 393 */ 394 int mnt_want_write_file(struct file *file) 395 { 396 struct inode *inode = file->f_dentry->d_inode; 397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 398 return mnt_want_write(file->f_path.mnt); 399 else 400 return mnt_clone_write(file->f_path.mnt); 401 } 402 EXPORT_SYMBOL_GPL(mnt_want_write_file); 403 404 /** 405 * mnt_drop_write - give up write access to a mount 406 * @mnt: the mount on which to give up write access 407 * 408 * Tells the low-level filesystem that we are done 409 * performing writes to it. Must be matched with 410 * mnt_want_write() call above. 411 */ 412 void mnt_drop_write(struct vfsmount *mnt) 413 { 414 preempt_disable(); 415 mnt_dec_writers(mnt); 416 preempt_enable(); 417 } 418 EXPORT_SYMBOL_GPL(mnt_drop_write); 419 420 static int mnt_make_readonly(struct vfsmount *mnt) 421 { 422 int ret = 0; 423 424 br_write_lock(vfsmount_lock); 425 mnt->mnt_flags |= MNT_WRITE_HOLD; 426 /* 427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 428 * should be visible before we do. 429 */ 430 smp_mb(); 431 432 /* 433 * With writers on hold, if this value is zero, then there are 434 * definitely no active writers (although held writers may subsequently 435 * increment the count, they'll have to wait, and decrement it after 436 * seeing MNT_READONLY). 437 * 438 * It is OK to have counter incremented on one CPU and decremented on 439 * another: the sum will add up correctly. The danger would be when we 440 * sum up each counter, if we read a counter before it is incremented, 441 * but then read another CPU's count which it has been subsequently 442 * decremented from -- we would see more decrements than we should. 443 * MNT_WRITE_HOLD protects against this scenario, because 444 * mnt_want_write first increments count, then smp_mb, then spins on 445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 446 * we're counting up here. 447 */ 448 if (mnt_get_writers(mnt) > 0) 449 ret = -EBUSY; 450 else 451 mnt->mnt_flags |= MNT_READONLY; 452 /* 453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 454 * that become unheld will see MNT_READONLY. 455 */ 456 smp_wmb(); 457 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 458 br_write_unlock(vfsmount_lock); 459 return ret; 460 } 461 462 static void __mnt_unmake_readonly(struct vfsmount *mnt) 463 { 464 br_write_lock(vfsmount_lock); 465 mnt->mnt_flags &= ~MNT_READONLY; 466 br_write_unlock(vfsmount_lock); 467 } 468 469 static void free_vfsmnt(struct vfsmount *mnt) 470 { 471 kfree(mnt->mnt_devname); 472 mnt_free_id(mnt); 473 #ifdef CONFIG_SMP 474 free_percpu(mnt->mnt_pcp); 475 #endif 476 kmem_cache_free(mnt_cache, mnt); 477 } 478 479 /* 480 * find the first or last mount at @dentry on vfsmount @mnt depending on 481 * @dir. If @dir is set return the first mount else return the last mount. 482 * vfsmount_lock must be held for read or write. 483 */ 484 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 485 int dir) 486 { 487 struct list_head *head = mount_hashtable + hash(mnt, dentry); 488 struct list_head *tmp = head; 489 struct vfsmount *p, *found = NULL; 490 491 for (;;) { 492 tmp = dir ? tmp->next : tmp->prev; 493 p = NULL; 494 if (tmp == head) 495 break; 496 p = list_entry(tmp, struct vfsmount, mnt_hash); 497 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 498 found = p; 499 break; 500 } 501 } 502 return found; 503 } 504 505 /* 506 * lookup_mnt increments the ref count before returning 507 * the vfsmount struct. 508 */ 509 struct vfsmount *lookup_mnt(struct path *path) 510 { 511 struct vfsmount *child_mnt; 512 513 br_read_lock(vfsmount_lock); 514 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 515 mntget(child_mnt); 516 br_read_unlock(vfsmount_lock); 517 return child_mnt; 518 } 519 520 static inline int check_mnt(struct vfsmount *mnt) 521 { 522 return mnt->mnt_ns == current->nsproxy->mnt_ns; 523 } 524 525 /* 526 * vfsmount lock must be held for write 527 */ 528 static void touch_mnt_namespace(struct mnt_namespace *ns) 529 { 530 if (ns) { 531 ns->event = ++event; 532 wake_up_interruptible(&ns->poll); 533 } 534 } 535 536 /* 537 * vfsmount lock must be held for write 538 */ 539 static void __touch_mnt_namespace(struct mnt_namespace *ns) 540 { 541 if (ns && ns->event != event) { 542 ns->event = event; 543 wake_up_interruptible(&ns->poll); 544 } 545 } 546 547 /* 548 * Clear dentry's mounted state if it has no remaining mounts. 549 * vfsmount_lock must be held for write. 550 */ 551 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry) 552 { 553 unsigned u; 554 555 for (u = 0; u < HASH_SIZE; u++) { 556 struct vfsmount *p; 557 558 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 559 if (p->mnt_mountpoint == dentry) 560 return; 561 } 562 } 563 spin_lock(&dentry->d_lock); 564 dentry->d_flags &= ~DCACHE_MOUNTED; 565 spin_unlock(&dentry->d_lock); 566 } 567 568 /* 569 * vfsmount lock must be held for write 570 */ 571 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 572 { 573 old_path->dentry = mnt->mnt_mountpoint; 574 old_path->mnt = mnt->mnt_parent; 575 mnt->mnt_parent = mnt; 576 mnt->mnt_mountpoint = mnt->mnt_root; 577 list_del_init(&mnt->mnt_child); 578 list_del_init(&mnt->mnt_hash); 579 dentry_reset_mounted(old_path->mnt, old_path->dentry); 580 } 581 582 /* 583 * vfsmount lock must be held for write 584 */ 585 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 586 struct vfsmount *child_mnt) 587 { 588 child_mnt->mnt_parent = mntget(mnt); 589 child_mnt->mnt_mountpoint = dget(dentry); 590 spin_lock(&dentry->d_lock); 591 dentry->d_flags |= DCACHE_MOUNTED; 592 spin_unlock(&dentry->d_lock); 593 } 594 595 /* 596 * vfsmount lock must be held for write 597 */ 598 static void attach_mnt(struct vfsmount *mnt, struct path *path) 599 { 600 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 601 list_add_tail(&mnt->mnt_hash, mount_hashtable + 602 hash(path->mnt, path->dentry)); 603 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 604 } 605 606 static inline void __mnt_make_longterm(struct vfsmount *mnt) 607 { 608 #ifdef CONFIG_SMP 609 atomic_inc(&mnt->mnt_longterm); 610 #endif 611 } 612 613 /* needs vfsmount lock for write */ 614 static inline void __mnt_make_shortterm(struct vfsmount *mnt) 615 { 616 #ifdef CONFIG_SMP 617 atomic_dec(&mnt->mnt_longterm); 618 #endif 619 } 620 621 /* 622 * vfsmount lock must be held for write 623 */ 624 static void commit_tree(struct vfsmount *mnt) 625 { 626 struct vfsmount *parent = mnt->mnt_parent; 627 struct vfsmount *m; 628 LIST_HEAD(head); 629 struct mnt_namespace *n = parent->mnt_ns; 630 631 BUG_ON(parent == mnt); 632 633 list_add_tail(&head, &mnt->mnt_list); 634 list_for_each_entry(m, &head, mnt_list) { 635 m->mnt_ns = n; 636 __mnt_make_longterm(m); 637 } 638 639 list_splice(&head, n->list.prev); 640 641 list_add_tail(&mnt->mnt_hash, mount_hashtable + 642 hash(parent, mnt->mnt_mountpoint)); 643 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 644 touch_mnt_namespace(n); 645 } 646 647 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 648 { 649 struct list_head *next = p->mnt_mounts.next; 650 if (next == &p->mnt_mounts) { 651 while (1) { 652 if (p == root) 653 return NULL; 654 next = p->mnt_child.next; 655 if (next != &p->mnt_parent->mnt_mounts) 656 break; 657 p = p->mnt_parent; 658 } 659 } 660 return list_entry(next, struct vfsmount, mnt_child); 661 } 662 663 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 664 { 665 struct list_head *prev = p->mnt_mounts.prev; 666 while (prev != &p->mnt_mounts) { 667 p = list_entry(prev, struct vfsmount, mnt_child); 668 prev = p->mnt_mounts.prev; 669 } 670 return p; 671 } 672 673 struct vfsmount * 674 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 675 { 676 struct vfsmount *mnt; 677 struct dentry *root; 678 679 if (!type) 680 return ERR_PTR(-ENODEV); 681 682 mnt = alloc_vfsmnt(name); 683 if (!mnt) 684 return ERR_PTR(-ENOMEM); 685 686 if (flags & MS_KERNMOUNT) 687 mnt->mnt_flags = MNT_INTERNAL; 688 689 root = mount_fs(type, flags, name, data); 690 if (IS_ERR(root)) { 691 free_vfsmnt(mnt); 692 return ERR_CAST(root); 693 } 694 695 mnt->mnt_root = root; 696 mnt->mnt_sb = root->d_sb; 697 mnt->mnt_mountpoint = mnt->mnt_root; 698 mnt->mnt_parent = mnt; 699 return mnt; 700 } 701 EXPORT_SYMBOL_GPL(vfs_kern_mount); 702 703 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 704 int flag) 705 { 706 struct super_block *sb = old->mnt_sb; 707 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 708 709 if (mnt) { 710 if (flag & (CL_SLAVE | CL_PRIVATE)) 711 mnt->mnt_group_id = 0; /* not a peer of original */ 712 else 713 mnt->mnt_group_id = old->mnt_group_id; 714 715 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 716 int err = mnt_alloc_group_id(mnt); 717 if (err) 718 goto out_free; 719 } 720 721 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD; 722 atomic_inc(&sb->s_active); 723 mnt->mnt_sb = sb; 724 mnt->mnt_root = dget(root); 725 mnt->mnt_mountpoint = mnt->mnt_root; 726 mnt->mnt_parent = mnt; 727 728 if (flag & CL_SLAVE) { 729 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 730 mnt->mnt_master = old; 731 CLEAR_MNT_SHARED(mnt); 732 } else if (!(flag & CL_PRIVATE)) { 733 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 734 list_add(&mnt->mnt_share, &old->mnt_share); 735 if (IS_MNT_SLAVE(old)) 736 list_add(&mnt->mnt_slave, &old->mnt_slave); 737 mnt->mnt_master = old->mnt_master; 738 } 739 if (flag & CL_MAKE_SHARED) 740 set_mnt_shared(mnt); 741 742 /* stick the duplicate mount on the same expiry list 743 * as the original if that was on one */ 744 if (flag & CL_EXPIRE) { 745 if (!list_empty(&old->mnt_expire)) 746 list_add(&mnt->mnt_expire, &old->mnt_expire); 747 } 748 } 749 return mnt; 750 751 out_free: 752 free_vfsmnt(mnt); 753 return NULL; 754 } 755 756 static inline void mntfree(struct vfsmount *mnt) 757 { 758 struct super_block *sb = mnt->mnt_sb; 759 760 /* 761 * This probably indicates that somebody messed 762 * up a mnt_want/drop_write() pair. If this 763 * happens, the filesystem was probably unable 764 * to make r/w->r/o transitions. 765 */ 766 /* 767 * The locking used to deal with mnt_count decrement provides barriers, 768 * so mnt_get_writers() below is safe. 769 */ 770 WARN_ON(mnt_get_writers(mnt)); 771 fsnotify_vfsmount_delete(mnt); 772 dput(mnt->mnt_root); 773 free_vfsmnt(mnt); 774 deactivate_super(sb); 775 } 776 777 static void mntput_no_expire(struct vfsmount *mnt) 778 { 779 put_again: 780 #ifdef CONFIG_SMP 781 br_read_lock(vfsmount_lock); 782 if (likely(atomic_read(&mnt->mnt_longterm))) { 783 mnt_dec_count(mnt); 784 br_read_unlock(vfsmount_lock); 785 return; 786 } 787 br_read_unlock(vfsmount_lock); 788 789 br_write_lock(vfsmount_lock); 790 mnt_dec_count(mnt); 791 if (mnt_get_count(mnt)) { 792 br_write_unlock(vfsmount_lock); 793 return; 794 } 795 #else 796 mnt_dec_count(mnt); 797 if (likely(mnt_get_count(mnt))) 798 return; 799 br_write_lock(vfsmount_lock); 800 #endif 801 if (unlikely(mnt->mnt_pinned)) { 802 mnt_add_count(mnt, mnt->mnt_pinned + 1); 803 mnt->mnt_pinned = 0; 804 br_write_unlock(vfsmount_lock); 805 acct_auto_close_mnt(mnt); 806 goto put_again; 807 } 808 br_write_unlock(vfsmount_lock); 809 mntfree(mnt); 810 } 811 812 void mntput(struct vfsmount *mnt) 813 { 814 if (mnt) { 815 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 816 if (unlikely(mnt->mnt_expiry_mark)) 817 mnt->mnt_expiry_mark = 0; 818 mntput_no_expire(mnt); 819 } 820 } 821 EXPORT_SYMBOL(mntput); 822 823 struct vfsmount *mntget(struct vfsmount *mnt) 824 { 825 if (mnt) 826 mnt_inc_count(mnt); 827 return mnt; 828 } 829 EXPORT_SYMBOL(mntget); 830 831 void mnt_pin(struct vfsmount *mnt) 832 { 833 br_write_lock(vfsmount_lock); 834 mnt->mnt_pinned++; 835 br_write_unlock(vfsmount_lock); 836 } 837 EXPORT_SYMBOL(mnt_pin); 838 839 void mnt_unpin(struct vfsmount *mnt) 840 { 841 br_write_lock(vfsmount_lock); 842 if (mnt->mnt_pinned) { 843 mnt_inc_count(mnt); 844 mnt->mnt_pinned--; 845 } 846 br_write_unlock(vfsmount_lock); 847 } 848 EXPORT_SYMBOL(mnt_unpin); 849 850 static inline void mangle(struct seq_file *m, const char *s) 851 { 852 seq_escape(m, s, " \t\n\\"); 853 } 854 855 /* 856 * Simple .show_options callback for filesystems which don't want to 857 * implement more complex mount option showing. 858 * 859 * See also save_mount_options(). 860 */ 861 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 862 { 863 const char *options; 864 865 rcu_read_lock(); 866 options = rcu_dereference(mnt->mnt_sb->s_options); 867 868 if (options != NULL && options[0]) { 869 seq_putc(m, ','); 870 mangle(m, options); 871 } 872 rcu_read_unlock(); 873 874 return 0; 875 } 876 EXPORT_SYMBOL(generic_show_options); 877 878 /* 879 * If filesystem uses generic_show_options(), this function should be 880 * called from the fill_super() callback. 881 * 882 * The .remount_fs callback usually needs to be handled in a special 883 * way, to make sure, that previous options are not overwritten if the 884 * remount fails. 885 * 886 * Also note, that if the filesystem's .remount_fs function doesn't 887 * reset all options to their default value, but changes only newly 888 * given options, then the displayed options will not reflect reality 889 * any more. 890 */ 891 void save_mount_options(struct super_block *sb, char *options) 892 { 893 BUG_ON(sb->s_options); 894 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 895 } 896 EXPORT_SYMBOL(save_mount_options); 897 898 void replace_mount_options(struct super_block *sb, char *options) 899 { 900 char *old = sb->s_options; 901 rcu_assign_pointer(sb->s_options, options); 902 if (old) { 903 synchronize_rcu(); 904 kfree(old); 905 } 906 } 907 EXPORT_SYMBOL(replace_mount_options); 908 909 #ifdef CONFIG_PROC_FS 910 /* iterator */ 911 static void *m_start(struct seq_file *m, loff_t *pos) 912 { 913 struct proc_mounts *p = m->private; 914 915 down_read(&namespace_sem); 916 return seq_list_start(&p->ns->list, *pos); 917 } 918 919 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 920 { 921 struct proc_mounts *p = m->private; 922 923 return seq_list_next(v, &p->ns->list, pos); 924 } 925 926 static void m_stop(struct seq_file *m, void *v) 927 { 928 up_read(&namespace_sem); 929 } 930 931 int mnt_had_events(struct proc_mounts *p) 932 { 933 struct mnt_namespace *ns = p->ns; 934 int res = 0; 935 936 br_read_lock(vfsmount_lock); 937 if (p->m.poll_event != ns->event) { 938 p->m.poll_event = ns->event; 939 res = 1; 940 } 941 br_read_unlock(vfsmount_lock); 942 943 return res; 944 } 945 946 struct proc_fs_info { 947 int flag; 948 const char *str; 949 }; 950 951 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 952 { 953 static const struct proc_fs_info fs_info[] = { 954 { MS_SYNCHRONOUS, ",sync" }, 955 { MS_DIRSYNC, ",dirsync" }, 956 { MS_MANDLOCK, ",mand" }, 957 { 0, NULL } 958 }; 959 const struct proc_fs_info *fs_infop; 960 961 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 962 if (sb->s_flags & fs_infop->flag) 963 seq_puts(m, fs_infop->str); 964 } 965 966 return security_sb_show_options(m, sb); 967 } 968 969 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 970 { 971 static const struct proc_fs_info mnt_info[] = { 972 { MNT_NOSUID, ",nosuid" }, 973 { MNT_NODEV, ",nodev" }, 974 { MNT_NOEXEC, ",noexec" }, 975 { MNT_NOATIME, ",noatime" }, 976 { MNT_NODIRATIME, ",nodiratime" }, 977 { MNT_RELATIME, ",relatime" }, 978 { 0, NULL } 979 }; 980 const struct proc_fs_info *fs_infop; 981 982 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 983 if (mnt->mnt_flags & fs_infop->flag) 984 seq_puts(m, fs_infop->str); 985 } 986 } 987 988 static void show_type(struct seq_file *m, struct super_block *sb) 989 { 990 mangle(m, sb->s_type->name); 991 if (sb->s_subtype && sb->s_subtype[0]) { 992 seq_putc(m, '.'); 993 mangle(m, sb->s_subtype); 994 } 995 } 996 997 static int show_vfsmnt(struct seq_file *m, void *v) 998 { 999 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1000 int err = 0; 1001 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1002 1003 if (mnt->mnt_sb->s_op->show_devname) { 1004 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1005 if (err) 1006 goto out; 1007 } else { 1008 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1009 } 1010 seq_putc(m, ' '); 1011 seq_path(m, &mnt_path, " \t\n\\"); 1012 seq_putc(m, ' '); 1013 show_type(m, mnt->mnt_sb); 1014 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 1015 err = show_sb_opts(m, mnt->mnt_sb); 1016 if (err) 1017 goto out; 1018 show_mnt_opts(m, mnt); 1019 if (mnt->mnt_sb->s_op->show_options) 1020 err = mnt->mnt_sb->s_op->show_options(m, mnt); 1021 seq_puts(m, " 0 0\n"); 1022 out: 1023 return err; 1024 } 1025 1026 const struct seq_operations mounts_op = { 1027 .start = m_start, 1028 .next = m_next, 1029 .stop = m_stop, 1030 .show = show_vfsmnt 1031 }; 1032 1033 static int show_mountinfo(struct seq_file *m, void *v) 1034 { 1035 struct proc_mounts *p = m->private; 1036 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1037 struct super_block *sb = mnt->mnt_sb; 1038 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1039 struct path root = p->root; 1040 int err = 0; 1041 1042 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 1043 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 1044 if (sb->s_op->show_path) 1045 err = sb->s_op->show_path(m, mnt); 1046 else 1047 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 1048 if (err) 1049 goto out; 1050 seq_putc(m, ' '); 1051 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 1052 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 1053 /* 1054 * Mountpoint is outside root, discard that one. Ugly, 1055 * but less so than trying to do that in iterator in a 1056 * race-free way (due to renames). 1057 */ 1058 return SEQ_SKIP; 1059 } 1060 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 1061 show_mnt_opts(m, mnt); 1062 1063 /* Tagged fields ("foo:X" or "bar") */ 1064 if (IS_MNT_SHARED(mnt)) 1065 seq_printf(m, " shared:%i", mnt->mnt_group_id); 1066 if (IS_MNT_SLAVE(mnt)) { 1067 int master = mnt->mnt_master->mnt_group_id; 1068 int dom = get_dominating_id(mnt, &p->root); 1069 seq_printf(m, " master:%i", master); 1070 if (dom && dom != master) 1071 seq_printf(m, " propagate_from:%i", dom); 1072 } 1073 if (IS_MNT_UNBINDABLE(mnt)) 1074 seq_puts(m, " unbindable"); 1075 1076 /* Filesystem specific data */ 1077 seq_puts(m, " - "); 1078 show_type(m, sb); 1079 seq_putc(m, ' '); 1080 if (sb->s_op->show_devname) 1081 err = sb->s_op->show_devname(m, mnt); 1082 else 1083 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1084 if (err) 1085 goto out; 1086 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 1087 err = show_sb_opts(m, sb); 1088 if (err) 1089 goto out; 1090 if (sb->s_op->show_options) 1091 err = sb->s_op->show_options(m, mnt); 1092 seq_putc(m, '\n'); 1093 out: 1094 return err; 1095 } 1096 1097 const struct seq_operations mountinfo_op = { 1098 .start = m_start, 1099 .next = m_next, 1100 .stop = m_stop, 1101 .show = show_mountinfo, 1102 }; 1103 1104 static int show_vfsstat(struct seq_file *m, void *v) 1105 { 1106 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1107 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1108 int err = 0; 1109 1110 /* device */ 1111 if (mnt->mnt_sb->s_op->show_devname) { 1112 seq_puts(m, "device "); 1113 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1114 } else { 1115 if (mnt->mnt_devname) { 1116 seq_puts(m, "device "); 1117 mangle(m, mnt->mnt_devname); 1118 } else 1119 seq_puts(m, "no device"); 1120 } 1121 1122 /* mount point */ 1123 seq_puts(m, " mounted on "); 1124 seq_path(m, &mnt_path, " \t\n\\"); 1125 seq_putc(m, ' '); 1126 1127 /* file system type */ 1128 seq_puts(m, "with fstype "); 1129 show_type(m, mnt->mnt_sb); 1130 1131 /* optional statistics */ 1132 if (mnt->mnt_sb->s_op->show_stats) { 1133 seq_putc(m, ' '); 1134 if (!err) 1135 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 1136 } 1137 1138 seq_putc(m, '\n'); 1139 return err; 1140 } 1141 1142 const struct seq_operations mountstats_op = { 1143 .start = m_start, 1144 .next = m_next, 1145 .stop = m_stop, 1146 .show = show_vfsstat, 1147 }; 1148 #endif /* CONFIG_PROC_FS */ 1149 1150 /** 1151 * may_umount_tree - check if a mount tree is busy 1152 * @mnt: root of mount tree 1153 * 1154 * This is called to check if a tree of mounts has any 1155 * open files, pwds, chroots or sub mounts that are 1156 * busy. 1157 */ 1158 int may_umount_tree(struct vfsmount *mnt) 1159 { 1160 int actual_refs = 0; 1161 int minimum_refs = 0; 1162 struct vfsmount *p; 1163 1164 /* write lock needed for mnt_get_count */ 1165 br_write_lock(vfsmount_lock); 1166 for (p = mnt; p; p = next_mnt(p, mnt)) { 1167 actual_refs += mnt_get_count(p); 1168 minimum_refs += 2; 1169 } 1170 br_write_unlock(vfsmount_lock); 1171 1172 if (actual_refs > minimum_refs) 1173 return 0; 1174 1175 return 1; 1176 } 1177 1178 EXPORT_SYMBOL(may_umount_tree); 1179 1180 /** 1181 * may_umount - check if a mount point is busy 1182 * @mnt: root of mount 1183 * 1184 * This is called to check if a mount point has any 1185 * open files, pwds, chroots or sub mounts. If the 1186 * mount has sub mounts this will return busy 1187 * regardless of whether the sub mounts are busy. 1188 * 1189 * Doesn't take quota and stuff into account. IOW, in some cases it will 1190 * give false negatives. The main reason why it's here is that we need 1191 * a non-destructive way to look for easily umountable filesystems. 1192 */ 1193 int may_umount(struct vfsmount *mnt) 1194 { 1195 int ret = 1; 1196 down_read(&namespace_sem); 1197 br_write_lock(vfsmount_lock); 1198 if (propagate_mount_busy(mnt, 2)) 1199 ret = 0; 1200 br_write_unlock(vfsmount_lock); 1201 up_read(&namespace_sem); 1202 return ret; 1203 } 1204 1205 EXPORT_SYMBOL(may_umount); 1206 1207 void release_mounts(struct list_head *head) 1208 { 1209 struct vfsmount *mnt; 1210 while (!list_empty(head)) { 1211 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 1212 list_del_init(&mnt->mnt_hash); 1213 if (mnt->mnt_parent != mnt) { 1214 struct dentry *dentry; 1215 struct vfsmount *m; 1216 1217 br_write_lock(vfsmount_lock); 1218 dentry = mnt->mnt_mountpoint; 1219 m = mnt->mnt_parent; 1220 mnt->mnt_mountpoint = mnt->mnt_root; 1221 mnt->mnt_parent = mnt; 1222 m->mnt_ghosts--; 1223 br_write_unlock(vfsmount_lock); 1224 dput(dentry); 1225 mntput(m); 1226 } 1227 mntput(mnt); 1228 } 1229 } 1230 1231 /* 1232 * vfsmount lock must be held for write 1233 * namespace_sem must be held for write 1234 */ 1235 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1236 { 1237 LIST_HEAD(tmp_list); 1238 struct vfsmount *p; 1239 1240 for (p = mnt; p; p = next_mnt(p, mnt)) 1241 list_move(&p->mnt_hash, &tmp_list); 1242 1243 if (propagate) 1244 propagate_umount(&tmp_list); 1245 1246 list_for_each_entry(p, &tmp_list, mnt_hash) { 1247 list_del_init(&p->mnt_expire); 1248 list_del_init(&p->mnt_list); 1249 __touch_mnt_namespace(p->mnt_ns); 1250 p->mnt_ns = NULL; 1251 __mnt_make_shortterm(p); 1252 list_del_init(&p->mnt_child); 1253 if (p->mnt_parent != p) { 1254 p->mnt_parent->mnt_ghosts++; 1255 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint); 1256 } 1257 change_mnt_propagation(p, MS_PRIVATE); 1258 } 1259 list_splice(&tmp_list, kill); 1260 } 1261 1262 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1263 1264 static int do_umount(struct vfsmount *mnt, int flags) 1265 { 1266 struct super_block *sb = mnt->mnt_sb; 1267 int retval; 1268 LIST_HEAD(umount_list); 1269 1270 retval = security_sb_umount(mnt, flags); 1271 if (retval) 1272 return retval; 1273 1274 /* 1275 * Allow userspace to request a mountpoint be expired rather than 1276 * unmounting unconditionally. Unmount only happens if: 1277 * (1) the mark is already set (the mark is cleared by mntput()) 1278 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1279 */ 1280 if (flags & MNT_EXPIRE) { 1281 if (mnt == current->fs->root.mnt || 1282 flags & (MNT_FORCE | MNT_DETACH)) 1283 return -EINVAL; 1284 1285 /* 1286 * probably don't strictly need the lock here if we examined 1287 * all race cases, but it's a slowpath. 1288 */ 1289 br_write_lock(vfsmount_lock); 1290 if (mnt_get_count(mnt) != 2) { 1291 br_write_unlock(vfsmount_lock); 1292 return -EBUSY; 1293 } 1294 br_write_unlock(vfsmount_lock); 1295 1296 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1297 return -EAGAIN; 1298 } 1299 1300 /* 1301 * If we may have to abort operations to get out of this 1302 * mount, and they will themselves hold resources we must 1303 * allow the fs to do things. In the Unix tradition of 1304 * 'Gee thats tricky lets do it in userspace' the umount_begin 1305 * might fail to complete on the first run through as other tasks 1306 * must return, and the like. Thats for the mount program to worry 1307 * about for the moment. 1308 */ 1309 1310 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1311 sb->s_op->umount_begin(sb); 1312 } 1313 1314 /* 1315 * No sense to grab the lock for this test, but test itself looks 1316 * somewhat bogus. Suggestions for better replacement? 1317 * Ho-hum... In principle, we might treat that as umount + switch 1318 * to rootfs. GC would eventually take care of the old vfsmount. 1319 * Actually it makes sense, especially if rootfs would contain a 1320 * /reboot - static binary that would close all descriptors and 1321 * call reboot(9). Then init(8) could umount root and exec /reboot. 1322 */ 1323 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1324 /* 1325 * Special case for "unmounting" root ... 1326 * we just try to remount it readonly. 1327 */ 1328 down_write(&sb->s_umount); 1329 if (!(sb->s_flags & MS_RDONLY)) 1330 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1331 up_write(&sb->s_umount); 1332 return retval; 1333 } 1334 1335 down_write(&namespace_sem); 1336 br_write_lock(vfsmount_lock); 1337 event++; 1338 1339 if (!(flags & MNT_DETACH)) 1340 shrink_submounts(mnt, &umount_list); 1341 1342 retval = -EBUSY; 1343 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1344 if (!list_empty(&mnt->mnt_list)) 1345 umount_tree(mnt, 1, &umount_list); 1346 retval = 0; 1347 } 1348 br_write_unlock(vfsmount_lock); 1349 up_write(&namespace_sem); 1350 release_mounts(&umount_list); 1351 return retval; 1352 } 1353 1354 /* 1355 * Now umount can handle mount points as well as block devices. 1356 * This is important for filesystems which use unnamed block devices. 1357 * 1358 * We now support a flag for forced unmount like the other 'big iron' 1359 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1360 */ 1361 1362 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1363 { 1364 struct path path; 1365 int retval; 1366 int lookup_flags = 0; 1367 1368 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1369 return -EINVAL; 1370 1371 if (!(flags & UMOUNT_NOFOLLOW)) 1372 lookup_flags |= LOOKUP_FOLLOW; 1373 1374 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1375 if (retval) 1376 goto out; 1377 retval = -EINVAL; 1378 if (path.dentry != path.mnt->mnt_root) 1379 goto dput_and_out; 1380 if (!check_mnt(path.mnt)) 1381 goto dput_and_out; 1382 1383 retval = -EPERM; 1384 if (!capable(CAP_SYS_ADMIN)) 1385 goto dput_and_out; 1386 1387 retval = do_umount(path.mnt, flags); 1388 dput_and_out: 1389 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1390 dput(path.dentry); 1391 mntput_no_expire(path.mnt); 1392 out: 1393 return retval; 1394 } 1395 1396 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1397 1398 /* 1399 * The 2.0 compatible umount. No flags. 1400 */ 1401 SYSCALL_DEFINE1(oldumount, char __user *, name) 1402 { 1403 return sys_umount(name, 0); 1404 } 1405 1406 #endif 1407 1408 static int mount_is_safe(struct path *path) 1409 { 1410 if (capable(CAP_SYS_ADMIN)) 1411 return 0; 1412 return -EPERM; 1413 #ifdef notyet 1414 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1415 return -EPERM; 1416 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1417 if (current_uid() != path->dentry->d_inode->i_uid) 1418 return -EPERM; 1419 } 1420 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1421 return -EPERM; 1422 return 0; 1423 #endif 1424 } 1425 1426 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1427 int flag) 1428 { 1429 struct vfsmount *res, *p, *q, *r, *s; 1430 struct path path; 1431 1432 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1433 return NULL; 1434 1435 res = q = clone_mnt(mnt, dentry, flag); 1436 if (!q) 1437 goto Enomem; 1438 q->mnt_mountpoint = mnt->mnt_mountpoint; 1439 1440 p = mnt; 1441 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1442 if (!is_subdir(r->mnt_mountpoint, dentry)) 1443 continue; 1444 1445 for (s = r; s; s = next_mnt(s, r)) { 1446 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1447 s = skip_mnt_tree(s); 1448 continue; 1449 } 1450 while (p != s->mnt_parent) { 1451 p = p->mnt_parent; 1452 q = q->mnt_parent; 1453 } 1454 p = s; 1455 path.mnt = q; 1456 path.dentry = p->mnt_mountpoint; 1457 q = clone_mnt(p, p->mnt_root, flag); 1458 if (!q) 1459 goto Enomem; 1460 br_write_lock(vfsmount_lock); 1461 list_add_tail(&q->mnt_list, &res->mnt_list); 1462 attach_mnt(q, &path); 1463 br_write_unlock(vfsmount_lock); 1464 } 1465 } 1466 return res; 1467 Enomem: 1468 if (res) { 1469 LIST_HEAD(umount_list); 1470 br_write_lock(vfsmount_lock); 1471 umount_tree(res, 0, &umount_list); 1472 br_write_unlock(vfsmount_lock); 1473 release_mounts(&umount_list); 1474 } 1475 return NULL; 1476 } 1477 1478 struct vfsmount *collect_mounts(struct path *path) 1479 { 1480 struct vfsmount *tree; 1481 down_write(&namespace_sem); 1482 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1483 up_write(&namespace_sem); 1484 return tree; 1485 } 1486 1487 void drop_collected_mounts(struct vfsmount *mnt) 1488 { 1489 LIST_HEAD(umount_list); 1490 down_write(&namespace_sem); 1491 br_write_lock(vfsmount_lock); 1492 umount_tree(mnt, 0, &umount_list); 1493 br_write_unlock(vfsmount_lock); 1494 up_write(&namespace_sem); 1495 release_mounts(&umount_list); 1496 } 1497 1498 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1499 struct vfsmount *root) 1500 { 1501 struct vfsmount *mnt; 1502 int res = f(root, arg); 1503 if (res) 1504 return res; 1505 list_for_each_entry(mnt, &root->mnt_list, mnt_list) { 1506 res = f(mnt, arg); 1507 if (res) 1508 return res; 1509 } 1510 return 0; 1511 } 1512 1513 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1514 { 1515 struct vfsmount *p; 1516 1517 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1518 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1519 mnt_release_group_id(p); 1520 } 1521 } 1522 1523 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1524 { 1525 struct vfsmount *p; 1526 1527 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1528 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1529 int err = mnt_alloc_group_id(p); 1530 if (err) { 1531 cleanup_group_ids(mnt, p); 1532 return err; 1533 } 1534 } 1535 } 1536 1537 return 0; 1538 } 1539 1540 /* 1541 * @source_mnt : mount tree to be attached 1542 * @nd : place the mount tree @source_mnt is attached 1543 * @parent_nd : if non-null, detach the source_mnt from its parent and 1544 * store the parent mount and mountpoint dentry. 1545 * (done when source_mnt is moved) 1546 * 1547 * NOTE: in the table below explains the semantics when a source mount 1548 * of a given type is attached to a destination mount of a given type. 1549 * --------------------------------------------------------------------------- 1550 * | BIND MOUNT OPERATION | 1551 * |************************************************************************** 1552 * | source-->| shared | private | slave | unbindable | 1553 * | dest | | | | | 1554 * | | | | | | | 1555 * | v | | | | | 1556 * |************************************************************************** 1557 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1558 * | | | | | | 1559 * |non-shared| shared (+) | private | slave (*) | invalid | 1560 * *************************************************************************** 1561 * A bind operation clones the source mount and mounts the clone on the 1562 * destination mount. 1563 * 1564 * (++) the cloned mount is propagated to all the mounts in the propagation 1565 * tree of the destination mount and the cloned mount is added to 1566 * the peer group of the source mount. 1567 * (+) the cloned mount is created under the destination mount and is marked 1568 * as shared. The cloned mount is added to the peer group of the source 1569 * mount. 1570 * (+++) the mount is propagated to all the mounts in the propagation tree 1571 * of the destination mount and the cloned mount is made slave 1572 * of the same master as that of the source mount. The cloned mount 1573 * is marked as 'shared and slave'. 1574 * (*) the cloned mount is made a slave of the same master as that of the 1575 * source mount. 1576 * 1577 * --------------------------------------------------------------------------- 1578 * | MOVE MOUNT OPERATION | 1579 * |************************************************************************** 1580 * | source-->| shared | private | slave | unbindable | 1581 * | dest | | | | | 1582 * | | | | | | | 1583 * | v | | | | | 1584 * |************************************************************************** 1585 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1586 * | | | | | | 1587 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1588 * *************************************************************************** 1589 * 1590 * (+) the mount is moved to the destination. And is then propagated to 1591 * all the mounts in the propagation tree of the destination mount. 1592 * (+*) the mount is moved to the destination. 1593 * (+++) the mount is moved to the destination and is then propagated to 1594 * all the mounts belonging to the destination mount's propagation tree. 1595 * the mount is marked as 'shared and slave'. 1596 * (*) the mount continues to be a slave at the new location. 1597 * 1598 * if the source mount is a tree, the operations explained above is 1599 * applied to each mount in the tree. 1600 * Must be called without spinlocks held, since this function can sleep 1601 * in allocations. 1602 */ 1603 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1604 struct path *path, struct path *parent_path) 1605 { 1606 LIST_HEAD(tree_list); 1607 struct vfsmount *dest_mnt = path->mnt; 1608 struct dentry *dest_dentry = path->dentry; 1609 struct vfsmount *child, *p; 1610 int err; 1611 1612 if (IS_MNT_SHARED(dest_mnt)) { 1613 err = invent_group_ids(source_mnt, true); 1614 if (err) 1615 goto out; 1616 } 1617 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1618 if (err) 1619 goto out_cleanup_ids; 1620 1621 br_write_lock(vfsmount_lock); 1622 1623 if (IS_MNT_SHARED(dest_mnt)) { 1624 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1625 set_mnt_shared(p); 1626 } 1627 if (parent_path) { 1628 detach_mnt(source_mnt, parent_path); 1629 attach_mnt(source_mnt, path); 1630 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1631 } else { 1632 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1633 commit_tree(source_mnt); 1634 } 1635 1636 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1637 list_del_init(&child->mnt_hash); 1638 commit_tree(child); 1639 } 1640 br_write_unlock(vfsmount_lock); 1641 1642 return 0; 1643 1644 out_cleanup_ids: 1645 if (IS_MNT_SHARED(dest_mnt)) 1646 cleanup_group_ids(source_mnt, NULL); 1647 out: 1648 return err; 1649 } 1650 1651 static int lock_mount(struct path *path) 1652 { 1653 struct vfsmount *mnt; 1654 retry: 1655 mutex_lock(&path->dentry->d_inode->i_mutex); 1656 if (unlikely(cant_mount(path->dentry))) { 1657 mutex_unlock(&path->dentry->d_inode->i_mutex); 1658 return -ENOENT; 1659 } 1660 down_write(&namespace_sem); 1661 mnt = lookup_mnt(path); 1662 if (likely(!mnt)) 1663 return 0; 1664 up_write(&namespace_sem); 1665 mutex_unlock(&path->dentry->d_inode->i_mutex); 1666 path_put(path); 1667 path->mnt = mnt; 1668 path->dentry = dget(mnt->mnt_root); 1669 goto retry; 1670 } 1671 1672 static void unlock_mount(struct path *path) 1673 { 1674 up_write(&namespace_sem); 1675 mutex_unlock(&path->dentry->d_inode->i_mutex); 1676 } 1677 1678 static int graft_tree(struct vfsmount *mnt, struct path *path) 1679 { 1680 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1681 return -EINVAL; 1682 1683 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1684 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1685 return -ENOTDIR; 1686 1687 if (d_unlinked(path->dentry)) 1688 return -ENOENT; 1689 1690 return attach_recursive_mnt(mnt, path, NULL); 1691 } 1692 1693 /* 1694 * Sanity check the flags to change_mnt_propagation. 1695 */ 1696 1697 static int flags_to_propagation_type(int flags) 1698 { 1699 int type = flags & ~(MS_REC | MS_SILENT); 1700 1701 /* Fail if any non-propagation flags are set */ 1702 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1703 return 0; 1704 /* Only one propagation flag should be set */ 1705 if (!is_power_of_2(type)) 1706 return 0; 1707 return type; 1708 } 1709 1710 /* 1711 * recursively change the type of the mountpoint. 1712 */ 1713 static int do_change_type(struct path *path, int flag) 1714 { 1715 struct vfsmount *m, *mnt = path->mnt; 1716 int recurse = flag & MS_REC; 1717 int type; 1718 int err = 0; 1719 1720 if (!capable(CAP_SYS_ADMIN)) 1721 return -EPERM; 1722 1723 if (path->dentry != path->mnt->mnt_root) 1724 return -EINVAL; 1725 1726 type = flags_to_propagation_type(flag); 1727 if (!type) 1728 return -EINVAL; 1729 1730 down_write(&namespace_sem); 1731 if (type == MS_SHARED) { 1732 err = invent_group_ids(mnt, recurse); 1733 if (err) 1734 goto out_unlock; 1735 } 1736 1737 br_write_lock(vfsmount_lock); 1738 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1739 change_mnt_propagation(m, type); 1740 br_write_unlock(vfsmount_lock); 1741 1742 out_unlock: 1743 up_write(&namespace_sem); 1744 return err; 1745 } 1746 1747 /* 1748 * do loopback mount. 1749 */ 1750 static int do_loopback(struct path *path, char *old_name, 1751 int recurse) 1752 { 1753 LIST_HEAD(umount_list); 1754 struct path old_path; 1755 struct vfsmount *mnt = NULL; 1756 int err = mount_is_safe(path); 1757 if (err) 1758 return err; 1759 if (!old_name || !*old_name) 1760 return -EINVAL; 1761 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1762 if (err) 1763 return err; 1764 1765 err = lock_mount(path); 1766 if (err) 1767 goto out; 1768 1769 err = -EINVAL; 1770 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1771 goto out2; 1772 1773 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1774 goto out2; 1775 1776 err = -ENOMEM; 1777 if (recurse) 1778 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1779 else 1780 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1781 1782 if (!mnt) 1783 goto out2; 1784 1785 err = graft_tree(mnt, path); 1786 if (err) { 1787 br_write_lock(vfsmount_lock); 1788 umount_tree(mnt, 0, &umount_list); 1789 br_write_unlock(vfsmount_lock); 1790 } 1791 out2: 1792 unlock_mount(path); 1793 release_mounts(&umount_list); 1794 out: 1795 path_put(&old_path); 1796 return err; 1797 } 1798 1799 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1800 { 1801 int error = 0; 1802 int readonly_request = 0; 1803 1804 if (ms_flags & MS_RDONLY) 1805 readonly_request = 1; 1806 if (readonly_request == __mnt_is_readonly(mnt)) 1807 return 0; 1808 1809 if (readonly_request) 1810 error = mnt_make_readonly(mnt); 1811 else 1812 __mnt_unmake_readonly(mnt); 1813 return error; 1814 } 1815 1816 /* 1817 * change filesystem flags. dir should be a physical root of filesystem. 1818 * If you've mounted a non-root directory somewhere and want to do remount 1819 * on it - tough luck. 1820 */ 1821 static int do_remount(struct path *path, int flags, int mnt_flags, 1822 void *data) 1823 { 1824 int err; 1825 struct super_block *sb = path->mnt->mnt_sb; 1826 1827 if (!capable(CAP_SYS_ADMIN)) 1828 return -EPERM; 1829 1830 if (!check_mnt(path->mnt)) 1831 return -EINVAL; 1832 1833 if (path->dentry != path->mnt->mnt_root) 1834 return -EINVAL; 1835 1836 err = security_sb_remount(sb, data); 1837 if (err) 1838 return err; 1839 1840 down_write(&sb->s_umount); 1841 if (flags & MS_BIND) 1842 err = change_mount_flags(path->mnt, flags); 1843 else 1844 err = do_remount_sb(sb, flags, data, 0); 1845 if (!err) { 1846 br_write_lock(vfsmount_lock); 1847 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK; 1848 path->mnt->mnt_flags = mnt_flags; 1849 br_write_unlock(vfsmount_lock); 1850 } 1851 up_write(&sb->s_umount); 1852 if (!err) { 1853 br_write_lock(vfsmount_lock); 1854 touch_mnt_namespace(path->mnt->mnt_ns); 1855 br_write_unlock(vfsmount_lock); 1856 } 1857 return err; 1858 } 1859 1860 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1861 { 1862 struct vfsmount *p; 1863 for (p = mnt; p; p = next_mnt(p, mnt)) { 1864 if (IS_MNT_UNBINDABLE(p)) 1865 return 1; 1866 } 1867 return 0; 1868 } 1869 1870 static int do_move_mount(struct path *path, char *old_name) 1871 { 1872 struct path old_path, parent_path; 1873 struct vfsmount *p; 1874 int err = 0; 1875 if (!capable(CAP_SYS_ADMIN)) 1876 return -EPERM; 1877 if (!old_name || !*old_name) 1878 return -EINVAL; 1879 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1880 if (err) 1881 return err; 1882 1883 err = lock_mount(path); 1884 if (err < 0) 1885 goto out; 1886 1887 err = -EINVAL; 1888 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1889 goto out1; 1890 1891 if (d_unlinked(path->dentry)) 1892 goto out1; 1893 1894 err = -EINVAL; 1895 if (old_path.dentry != old_path.mnt->mnt_root) 1896 goto out1; 1897 1898 if (old_path.mnt == old_path.mnt->mnt_parent) 1899 goto out1; 1900 1901 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1902 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1903 goto out1; 1904 /* 1905 * Don't move a mount residing in a shared parent. 1906 */ 1907 if (old_path.mnt->mnt_parent && 1908 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1909 goto out1; 1910 /* 1911 * Don't move a mount tree containing unbindable mounts to a destination 1912 * mount which is shared. 1913 */ 1914 if (IS_MNT_SHARED(path->mnt) && 1915 tree_contains_unbindable(old_path.mnt)) 1916 goto out1; 1917 err = -ELOOP; 1918 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1919 if (p == old_path.mnt) 1920 goto out1; 1921 1922 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1923 if (err) 1924 goto out1; 1925 1926 /* if the mount is moved, it should no longer be expire 1927 * automatically */ 1928 list_del_init(&old_path.mnt->mnt_expire); 1929 out1: 1930 unlock_mount(path); 1931 out: 1932 if (!err) 1933 path_put(&parent_path); 1934 path_put(&old_path); 1935 return err; 1936 } 1937 1938 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1939 { 1940 int err; 1941 const char *subtype = strchr(fstype, '.'); 1942 if (subtype) { 1943 subtype++; 1944 err = -EINVAL; 1945 if (!subtype[0]) 1946 goto err; 1947 } else 1948 subtype = ""; 1949 1950 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1951 err = -ENOMEM; 1952 if (!mnt->mnt_sb->s_subtype) 1953 goto err; 1954 return mnt; 1955 1956 err: 1957 mntput(mnt); 1958 return ERR_PTR(err); 1959 } 1960 1961 struct vfsmount * 1962 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1963 { 1964 struct file_system_type *type = get_fs_type(fstype); 1965 struct vfsmount *mnt; 1966 if (!type) 1967 return ERR_PTR(-ENODEV); 1968 mnt = vfs_kern_mount(type, flags, name, data); 1969 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1970 !mnt->mnt_sb->s_subtype) 1971 mnt = fs_set_subtype(mnt, fstype); 1972 put_filesystem(type); 1973 return mnt; 1974 } 1975 EXPORT_SYMBOL_GPL(do_kern_mount); 1976 1977 /* 1978 * add a mount into a namespace's mount tree 1979 */ 1980 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags) 1981 { 1982 int err; 1983 1984 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1985 1986 err = lock_mount(path); 1987 if (err) 1988 return err; 1989 1990 err = -EINVAL; 1991 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1992 goto unlock; 1993 1994 /* Refuse the same filesystem on the same mount point */ 1995 err = -EBUSY; 1996 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1997 path->mnt->mnt_root == path->dentry) 1998 goto unlock; 1999 2000 err = -EINVAL; 2001 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 2002 goto unlock; 2003 2004 newmnt->mnt_flags = mnt_flags; 2005 err = graft_tree(newmnt, path); 2006 2007 unlock: 2008 unlock_mount(path); 2009 return err; 2010 } 2011 2012 /* 2013 * create a new mount for userspace and request it to be added into the 2014 * namespace's tree 2015 */ 2016 static int do_new_mount(struct path *path, char *type, int flags, 2017 int mnt_flags, char *name, void *data) 2018 { 2019 struct vfsmount *mnt; 2020 int err; 2021 2022 if (!type) 2023 return -EINVAL; 2024 2025 /* we need capabilities... */ 2026 if (!capable(CAP_SYS_ADMIN)) 2027 return -EPERM; 2028 2029 mnt = do_kern_mount(type, flags, name, data); 2030 if (IS_ERR(mnt)) 2031 return PTR_ERR(mnt); 2032 2033 err = do_add_mount(mnt, path, mnt_flags); 2034 if (err) 2035 mntput(mnt); 2036 return err; 2037 } 2038 2039 int finish_automount(struct vfsmount *m, struct path *path) 2040 { 2041 int err; 2042 /* The new mount record should have at least 2 refs to prevent it being 2043 * expired before we get a chance to add it 2044 */ 2045 BUG_ON(mnt_get_count(m) < 2); 2046 2047 if (m->mnt_sb == path->mnt->mnt_sb && 2048 m->mnt_root == path->dentry) { 2049 err = -ELOOP; 2050 goto fail; 2051 } 2052 2053 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2054 if (!err) 2055 return 0; 2056 fail: 2057 /* remove m from any expiration list it may be on */ 2058 if (!list_empty(&m->mnt_expire)) { 2059 down_write(&namespace_sem); 2060 br_write_lock(vfsmount_lock); 2061 list_del_init(&m->mnt_expire); 2062 br_write_unlock(vfsmount_lock); 2063 up_write(&namespace_sem); 2064 } 2065 mntput(m); 2066 mntput(m); 2067 return err; 2068 } 2069 2070 /** 2071 * mnt_set_expiry - Put a mount on an expiration list 2072 * @mnt: The mount to list. 2073 * @expiry_list: The list to add the mount to. 2074 */ 2075 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2076 { 2077 down_write(&namespace_sem); 2078 br_write_lock(vfsmount_lock); 2079 2080 list_add_tail(&mnt->mnt_expire, expiry_list); 2081 2082 br_write_unlock(vfsmount_lock); 2083 up_write(&namespace_sem); 2084 } 2085 EXPORT_SYMBOL(mnt_set_expiry); 2086 2087 /* 2088 * process a list of expirable mountpoints with the intent of discarding any 2089 * mountpoints that aren't in use and haven't been touched since last we came 2090 * here 2091 */ 2092 void mark_mounts_for_expiry(struct list_head *mounts) 2093 { 2094 struct vfsmount *mnt, *next; 2095 LIST_HEAD(graveyard); 2096 LIST_HEAD(umounts); 2097 2098 if (list_empty(mounts)) 2099 return; 2100 2101 down_write(&namespace_sem); 2102 br_write_lock(vfsmount_lock); 2103 2104 /* extract from the expiration list every vfsmount that matches the 2105 * following criteria: 2106 * - only referenced by its parent vfsmount 2107 * - still marked for expiry (marked on the last call here; marks are 2108 * cleared by mntput()) 2109 */ 2110 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2111 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2112 propagate_mount_busy(mnt, 1)) 2113 continue; 2114 list_move(&mnt->mnt_expire, &graveyard); 2115 } 2116 while (!list_empty(&graveyard)) { 2117 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 2118 touch_mnt_namespace(mnt->mnt_ns); 2119 umount_tree(mnt, 1, &umounts); 2120 } 2121 br_write_unlock(vfsmount_lock); 2122 up_write(&namespace_sem); 2123 2124 release_mounts(&umounts); 2125 } 2126 2127 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2128 2129 /* 2130 * Ripoff of 'select_parent()' 2131 * 2132 * search the list of submounts for a given mountpoint, and move any 2133 * shrinkable submounts to the 'graveyard' list. 2134 */ 2135 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 2136 { 2137 struct vfsmount *this_parent = parent; 2138 struct list_head *next; 2139 int found = 0; 2140 2141 repeat: 2142 next = this_parent->mnt_mounts.next; 2143 resume: 2144 while (next != &this_parent->mnt_mounts) { 2145 struct list_head *tmp = next; 2146 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 2147 2148 next = tmp->next; 2149 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 2150 continue; 2151 /* 2152 * Descend a level if the d_mounts list is non-empty. 2153 */ 2154 if (!list_empty(&mnt->mnt_mounts)) { 2155 this_parent = mnt; 2156 goto repeat; 2157 } 2158 2159 if (!propagate_mount_busy(mnt, 1)) { 2160 list_move_tail(&mnt->mnt_expire, graveyard); 2161 found++; 2162 } 2163 } 2164 /* 2165 * All done at this level ... ascend and resume the search 2166 */ 2167 if (this_parent != parent) { 2168 next = this_parent->mnt_child.next; 2169 this_parent = this_parent->mnt_parent; 2170 goto resume; 2171 } 2172 return found; 2173 } 2174 2175 /* 2176 * process a list of expirable mountpoints with the intent of discarding any 2177 * submounts of a specific parent mountpoint 2178 * 2179 * vfsmount_lock must be held for write 2180 */ 2181 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 2182 { 2183 LIST_HEAD(graveyard); 2184 struct vfsmount *m; 2185 2186 /* extract submounts of 'mountpoint' from the expiration list */ 2187 while (select_submounts(mnt, &graveyard)) { 2188 while (!list_empty(&graveyard)) { 2189 m = list_first_entry(&graveyard, struct vfsmount, 2190 mnt_expire); 2191 touch_mnt_namespace(m->mnt_ns); 2192 umount_tree(m, 1, umounts); 2193 } 2194 } 2195 } 2196 2197 /* 2198 * Some copy_from_user() implementations do not return the exact number of 2199 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2200 * Note that this function differs from copy_from_user() in that it will oops 2201 * on bad values of `to', rather than returning a short copy. 2202 */ 2203 static long exact_copy_from_user(void *to, const void __user * from, 2204 unsigned long n) 2205 { 2206 char *t = to; 2207 const char __user *f = from; 2208 char c; 2209 2210 if (!access_ok(VERIFY_READ, from, n)) 2211 return n; 2212 2213 while (n) { 2214 if (__get_user(c, f)) { 2215 memset(t, 0, n); 2216 break; 2217 } 2218 *t++ = c; 2219 f++; 2220 n--; 2221 } 2222 return n; 2223 } 2224 2225 int copy_mount_options(const void __user * data, unsigned long *where) 2226 { 2227 int i; 2228 unsigned long page; 2229 unsigned long size; 2230 2231 *where = 0; 2232 if (!data) 2233 return 0; 2234 2235 if (!(page = __get_free_page(GFP_KERNEL))) 2236 return -ENOMEM; 2237 2238 /* We only care that *some* data at the address the user 2239 * gave us is valid. Just in case, we'll zero 2240 * the remainder of the page. 2241 */ 2242 /* copy_from_user cannot cross TASK_SIZE ! */ 2243 size = TASK_SIZE - (unsigned long)data; 2244 if (size > PAGE_SIZE) 2245 size = PAGE_SIZE; 2246 2247 i = size - exact_copy_from_user((void *)page, data, size); 2248 if (!i) { 2249 free_page(page); 2250 return -EFAULT; 2251 } 2252 if (i != PAGE_SIZE) 2253 memset((char *)page + i, 0, PAGE_SIZE - i); 2254 *where = page; 2255 return 0; 2256 } 2257 2258 int copy_mount_string(const void __user *data, char **where) 2259 { 2260 char *tmp; 2261 2262 if (!data) { 2263 *where = NULL; 2264 return 0; 2265 } 2266 2267 tmp = strndup_user(data, PAGE_SIZE); 2268 if (IS_ERR(tmp)) 2269 return PTR_ERR(tmp); 2270 2271 *where = tmp; 2272 return 0; 2273 } 2274 2275 /* 2276 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2277 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2278 * 2279 * data is a (void *) that can point to any structure up to 2280 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2281 * information (or be NULL). 2282 * 2283 * Pre-0.97 versions of mount() didn't have a flags word. 2284 * When the flags word was introduced its top half was required 2285 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2286 * Therefore, if this magic number is present, it carries no information 2287 * and must be discarded. 2288 */ 2289 long do_mount(char *dev_name, char *dir_name, char *type_page, 2290 unsigned long flags, void *data_page) 2291 { 2292 struct path path; 2293 int retval = 0; 2294 int mnt_flags = 0; 2295 2296 /* Discard magic */ 2297 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2298 flags &= ~MS_MGC_MSK; 2299 2300 /* Basic sanity checks */ 2301 2302 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2303 return -EINVAL; 2304 2305 if (data_page) 2306 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2307 2308 /* ... and get the mountpoint */ 2309 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2310 if (retval) 2311 return retval; 2312 2313 retval = security_sb_mount(dev_name, &path, 2314 type_page, flags, data_page); 2315 if (retval) 2316 goto dput_out; 2317 2318 /* Default to relatime unless overriden */ 2319 if (!(flags & MS_NOATIME)) 2320 mnt_flags |= MNT_RELATIME; 2321 2322 /* Separate the per-mountpoint flags */ 2323 if (flags & MS_NOSUID) 2324 mnt_flags |= MNT_NOSUID; 2325 if (flags & MS_NODEV) 2326 mnt_flags |= MNT_NODEV; 2327 if (flags & MS_NOEXEC) 2328 mnt_flags |= MNT_NOEXEC; 2329 if (flags & MS_NOATIME) 2330 mnt_flags |= MNT_NOATIME; 2331 if (flags & MS_NODIRATIME) 2332 mnt_flags |= MNT_NODIRATIME; 2333 if (flags & MS_STRICTATIME) 2334 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2335 if (flags & MS_RDONLY) 2336 mnt_flags |= MNT_READONLY; 2337 2338 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2339 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2340 MS_STRICTATIME); 2341 2342 if (flags & MS_REMOUNT) 2343 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2344 data_page); 2345 else if (flags & MS_BIND) 2346 retval = do_loopback(&path, dev_name, flags & MS_REC); 2347 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2348 retval = do_change_type(&path, flags); 2349 else if (flags & MS_MOVE) 2350 retval = do_move_mount(&path, dev_name); 2351 else 2352 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2353 dev_name, data_page); 2354 dput_out: 2355 path_put(&path); 2356 return retval; 2357 } 2358 2359 static struct mnt_namespace *alloc_mnt_ns(void) 2360 { 2361 struct mnt_namespace *new_ns; 2362 2363 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2364 if (!new_ns) 2365 return ERR_PTR(-ENOMEM); 2366 atomic_set(&new_ns->count, 1); 2367 new_ns->root = NULL; 2368 INIT_LIST_HEAD(&new_ns->list); 2369 init_waitqueue_head(&new_ns->poll); 2370 new_ns->event = 0; 2371 return new_ns; 2372 } 2373 2374 void mnt_make_longterm(struct vfsmount *mnt) 2375 { 2376 __mnt_make_longterm(mnt); 2377 } 2378 2379 void mnt_make_shortterm(struct vfsmount *mnt) 2380 { 2381 #ifdef CONFIG_SMP 2382 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) 2383 return; 2384 br_write_lock(vfsmount_lock); 2385 atomic_dec(&mnt->mnt_longterm); 2386 br_write_unlock(vfsmount_lock); 2387 #endif 2388 } 2389 2390 /* 2391 * Allocate a new namespace structure and populate it with contents 2392 * copied from the namespace of the passed in task structure. 2393 */ 2394 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2395 struct fs_struct *fs) 2396 { 2397 struct mnt_namespace *new_ns; 2398 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2399 struct vfsmount *p, *q; 2400 2401 new_ns = alloc_mnt_ns(); 2402 if (IS_ERR(new_ns)) 2403 return new_ns; 2404 2405 down_write(&namespace_sem); 2406 /* First pass: copy the tree topology */ 2407 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 2408 CL_COPY_ALL | CL_EXPIRE); 2409 if (!new_ns->root) { 2410 up_write(&namespace_sem); 2411 kfree(new_ns); 2412 return ERR_PTR(-ENOMEM); 2413 } 2414 br_write_lock(vfsmount_lock); 2415 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2416 br_write_unlock(vfsmount_lock); 2417 2418 /* 2419 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2420 * as belonging to new namespace. We have already acquired a private 2421 * fs_struct, so tsk->fs->lock is not needed. 2422 */ 2423 p = mnt_ns->root; 2424 q = new_ns->root; 2425 while (p) { 2426 q->mnt_ns = new_ns; 2427 __mnt_make_longterm(q); 2428 if (fs) { 2429 if (p == fs->root.mnt) { 2430 fs->root.mnt = mntget(q); 2431 __mnt_make_longterm(q); 2432 mnt_make_shortterm(p); 2433 rootmnt = p; 2434 } 2435 if (p == fs->pwd.mnt) { 2436 fs->pwd.mnt = mntget(q); 2437 __mnt_make_longterm(q); 2438 mnt_make_shortterm(p); 2439 pwdmnt = p; 2440 } 2441 } 2442 p = next_mnt(p, mnt_ns->root); 2443 q = next_mnt(q, new_ns->root); 2444 } 2445 up_write(&namespace_sem); 2446 2447 if (rootmnt) 2448 mntput(rootmnt); 2449 if (pwdmnt) 2450 mntput(pwdmnt); 2451 2452 return new_ns; 2453 } 2454 2455 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2456 struct fs_struct *new_fs) 2457 { 2458 struct mnt_namespace *new_ns; 2459 2460 BUG_ON(!ns); 2461 get_mnt_ns(ns); 2462 2463 if (!(flags & CLONE_NEWNS)) 2464 return ns; 2465 2466 new_ns = dup_mnt_ns(ns, new_fs); 2467 2468 put_mnt_ns(ns); 2469 return new_ns; 2470 } 2471 2472 /** 2473 * create_mnt_ns - creates a private namespace and adds a root filesystem 2474 * @mnt: pointer to the new root filesystem mountpoint 2475 */ 2476 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2477 { 2478 struct mnt_namespace *new_ns; 2479 2480 new_ns = alloc_mnt_ns(); 2481 if (!IS_ERR(new_ns)) { 2482 mnt->mnt_ns = new_ns; 2483 __mnt_make_longterm(mnt); 2484 new_ns->root = mnt; 2485 list_add(&new_ns->list, &new_ns->root->mnt_list); 2486 } 2487 return new_ns; 2488 } 2489 EXPORT_SYMBOL(create_mnt_ns); 2490 2491 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2492 char __user *, type, unsigned long, flags, void __user *, data) 2493 { 2494 int ret; 2495 char *kernel_type; 2496 char *kernel_dir; 2497 char *kernel_dev; 2498 unsigned long data_page; 2499 2500 ret = copy_mount_string(type, &kernel_type); 2501 if (ret < 0) 2502 goto out_type; 2503 2504 kernel_dir = getname(dir_name); 2505 if (IS_ERR(kernel_dir)) { 2506 ret = PTR_ERR(kernel_dir); 2507 goto out_dir; 2508 } 2509 2510 ret = copy_mount_string(dev_name, &kernel_dev); 2511 if (ret < 0) 2512 goto out_dev; 2513 2514 ret = copy_mount_options(data, &data_page); 2515 if (ret < 0) 2516 goto out_data; 2517 2518 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2519 (void *) data_page); 2520 2521 free_page(data_page); 2522 out_data: 2523 kfree(kernel_dev); 2524 out_dev: 2525 putname(kernel_dir); 2526 out_dir: 2527 kfree(kernel_type); 2528 out_type: 2529 return ret; 2530 } 2531 2532 /* 2533 * pivot_root Semantics: 2534 * Moves the root file system of the current process to the directory put_old, 2535 * makes new_root as the new root file system of the current process, and sets 2536 * root/cwd of all processes which had them on the current root to new_root. 2537 * 2538 * Restrictions: 2539 * The new_root and put_old must be directories, and must not be on the 2540 * same file system as the current process root. The put_old must be 2541 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2542 * pointed to by put_old must yield the same directory as new_root. No other 2543 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2544 * 2545 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2546 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2547 * in this situation. 2548 * 2549 * Notes: 2550 * - we don't move root/cwd if they are not at the root (reason: if something 2551 * cared enough to change them, it's probably wrong to force them elsewhere) 2552 * - it's okay to pick a root that isn't the root of a file system, e.g. 2553 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2554 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2555 * first. 2556 */ 2557 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2558 const char __user *, put_old) 2559 { 2560 struct vfsmount *tmp; 2561 struct path new, old, parent_path, root_parent, root; 2562 int error; 2563 2564 if (!capable(CAP_SYS_ADMIN)) 2565 return -EPERM; 2566 2567 error = user_path_dir(new_root, &new); 2568 if (error) 2569 goto out0; 2570 2571 error = user_path_dir(put_old, &old); 2572 if (error) 2573 goto out1; 2574 2575 error = security_sb_pivotroot(&old, &new); 2576 if (error) 2577 goto out2; 2578 2579 get_fs_root(current->fs, &root); 2580 error = lock_mount(&old); 2581 if (error) 2582 goto out3; 2583 2584 error = -EINVAL; 2585 if (IS_MNT_SHARED(old.mnt) || 2586 IS_MNT_SHARED(new.mnt->mnt_parent) || 2587 IS_MNT_SHARED(root.mnt->mnt_parent)) 2588 goto out4; 2589 if (!check_mnt(root.mnt) || !check_mnt(new.mnt)) 2590 goto out4; 2591 error = -ENOENT; 2592 if (d_unlinked(new.dentry)) 2593 goto out4; 2594 if (d_unlinked(old.dentry)) 2595 goto out4; 2596 error = -EBUSY; 2597 if (new.mnt == root.mnt || 2598 old.mnt == root.mnt) 2599 goto out4; /* loop, on the same file system */ 2600 error = -EINVAL; 2601 if (root.mnt->mnt_root != root.dentry) 2602 goto out4; /* not a mountpoint */ 2603 if (root.mnt->mnt_parent == root.mnt) 2604 goto out4; /* not attached */ 2605 if (new.mnt->mnt_root != new.dentry) 2606 goto out4; /* not a mountpoint */ 2607 if (new.mnt->mnt_parent == new.mnt) 2608 goto out4; /* not attached */ 2609 /* make sure we can reach put_old from new_root */ 2610 tmp = old.mnt; 2611 if (tmp != new.mnt) { 2612 for (;;) { 2613 if (tmp->mnt_parent == tmp) 2614 goto out4; /* already mounted on put_old */ 2615 if (tmp->mnt_parent == new.mnt) 2616 break; 2617 tmp = tmp->mnt_parent; 2618 } 2619 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2620 goto out4; 2621 } else if (!is_subdir(old.dentry, new.dentry)) 2622 goto out4; 2623 br_write_lock(vfsmount_lock); 2624 detach_mnt(new.mnt, &parent_path); 2625 detach_mnt(root.mnt, &root_parent); 2626 /* mount old root on put_old */ 2627 attach_mnt(root.mnt, &old); 2628 /* mount new_root on / */ 2629 attach_mnt(new.mnt, &root_parent); 2630 touch_mnt_namespace(current->nsproxy->mnt_ns); 2631 br_write_unlock(vfsmount_lock); 2632 chroot_fs_refs(&root, &new); 2633 error = 0; 2634 out4: 2635 unlock_mount(&old); 2636 if (!error) { 2637 path_put(&root_parent); 2638 path_put(&parent_path); 2639 } 2640 out3: 2641 path_put(&root); 2642 out2: 2643 path_put(&old); 2644 out1: 2645 path_put(&new); 2646 out0: 2647 return error; 2648 } 2649 2650 static void __init init_mount_tree(void) 2651 { 2652 struct vfsmount *mnt; 2653 struct mnt_namespace *ns; 2654 struct path root; 2655 2656 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2657 if (IS_ERR(mnt)) 2658 panic("Can't create rootfs"); 2659 2660 ns = create_mnt_ns(mnt); 2661 if (IS_ERR(ns)) 2662 panic("Can't allocate initial namespace"); 2663 2664 init_task.nsproxy->mnt_ns = ns; 2665 get_mnt_ns(ns); 2666 2667 root.mnt = ns->root; 2668 root.dentry = ns->root->mnt_root; 2669 2670 set_fs_pwd(current->fs, &root); 2671 set_fs_root(current->fs, &root); 2672 } 2673 2674 void __init mnt_init(void) 2675 { 2676 unsigned u; 2677 int err; 2678 2679 init_rwsem(&namespace_sem); 2680 2681 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2682 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2683 2684 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2685 2686 if (!mount_hashtable) 2687 panic("Failed to allocate mount hash table\n"); 2688 2689 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2690 2691 for (u = 0; u < HASH_SIZE; u++) 2692 INIT_LIST_HEAD(&mount_hashtable[u]); 2693 2694 br_lock_init(vfsmount_lock); 2695 2696 err = sysfs_init(); 2697 if (err) 2698 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2699 __func__, err); 2700 fs_kobj = kobject_create_and_add("fs", NULL); 2701 if (!fs_kobj) 2702 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2703 init_rootfs(); 2704 init_mount_tree(); 2705 } 2706 2707 void put_mnt_ns(struct mnt_namespace *ns) 2708 { 2709 LIST_HEAD(umount_list); 2710 2711 if (!atomic_dec_and_test(&ns->count)) 2712 return; 2713 down_write(&namespace_sem); 2714 br_write_lock(vfsmount_lock); 2715 umount_tree(ns->root, 0, &umount_list); 2716 br_write_unlock(vfsmount_lock); 2717 up_write(&namespace_sem); 2718 release_mounts(&umount_list); 2719 kfree(ns); 2720 } 2721 EXPORT_SYMBOL(put_mnt_ns); 2722 2723 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2724 { 2725 struct vfsmount *mnt; 2726 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2727 if (!IS_ERR(mnt)) { 2728 /* 2729 * it is a longterm mount, don't release mnt until 2730 * we unmount before file sys is unregistered 2731 */ 2732 mnt_make_longterm(mnt); 2733 } 2734 return mnt; 2735 } 2736 EXPORT_SYMBOL_GPL(kern_mount_data); 2737 2738 void kern_unmount(struct vfsmount *mnt) 2739 { 2740 /* release long term mount so mount point can be released */ 2741 if (!IS_ERR_OR_NULL(mnt)) { 2742 mnt_make_shortterm(mnt); 2743 mntput(mnt); 2744 } 2745 } 2746 EXPORT_SYMBOL(kern_unmount); 2747