xref: /linux/fs/namespace.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38 
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 /*
58  * vfsmount lock may be taken for read to prevent changes to the
59  * vfsmount hash, ie. during mountpoint lookups or walking back
60  * up the tree.
61  *
62  * It should be taken for write in all cases where the vfsmount
63  * tree or hash is modified or when a vfsmount structure is modified.
64  */
65 DEFINE_BRLOCK(vfsmount_lock);
66 
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 	tmp = tmp + (tmp >> HASH_SHIFT);
72 	return tmp & (HASH_SIZE - 1);
73 }
74 
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76 
77 /*
78  * allocation is serialized by namespace_sem, but we need the spinlock to
79  * serialize with freeing.
80  */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 	int res;
84 
85 retry:
86 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 	spin_lock(&mnt_id_lock);
88 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 	if (!res)
90 		mnt_id_start = mnt->mnt_id + 1;
91 	spin_unlock(&mnt_id_lock);
92 	if (res == -EAGAIN)
93 		goto retry;
94 
95 	return res;
96 }
97 
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 	int id = mnt->mnt_id;
101 	spin_lock(&mnt_id_lock);
102 	ida_remove(&mnt_id_ida, id);
103 	if (mnt_id_start > id)
104 		mnt_id_start = id;
105 	spin_unlock(&mnt_id_lock);
106 }
107 
108 /*
109  * Allocate a new peer group ID
110  *
111  * mnt_group_ida is protected by namespace_sem
112  */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 	int res;
116 
117 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 		return -ENOMEM;
119 
120 	res = ida_get_new_above(&mnt_group_ida,
121 				mnt_group_start,
122 				&mnt->mnt_group_id);
123 	if (!res)
124 		mnt_group_start = mnt->mnt_group_id + 1;
125 
126 	return res;
127 }
128 
129 /*
130  * Release a peer group ID
131  */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 	int id = mnt->mnt_group_id;
135 	ida_remove(&mnt_group_ida, id);
136 	if (mnt_group_start > id)
137 		mnt_group_start = id;
138 	mnt->mnt_group_id = 0;
139 }
140 
141 /*
142  * vfsmount lock must be held for read
143  */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 	preempt_disable();
150 	mnt->mnt_count += n;
151 	preempt_enable();
152 #endif
153 }
154 
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
156 {
157 #ifdef CONFIG_SMP
158 	this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 	mnt->mnt_count = n;
161 #endif
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_inc_count(struct vfsmount *mnt)
168 {
169 	mnt_add_count(mnt, 1);
170 }
171 
172 /*
173  * vfsmount lock must be held for read
174  */
175 static inline void mnt_dec_count(struct vfsmount *mnt)
176 {
177 	mnt_add_count(mnt, -1);
178 }
179 
180 /*
181  * vfsmount lock must be held for write
182  */
183 unsigned int mnt_get_count(struct vfsmount *mnt)
184 {
185 #ifdef CONFIG_SMP
186 	unsigned int count = 0;
187 	int cpu;
188 
189 	for_each_possible_cpu(cpu) {
190 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 	}
192 
193 	return count;
194 #else
195 	return mnt->mnt_count;
196 #endif
197 }
198 
199 static struct vfsmount *alloc_vfsmnt(const char *name)
200 {
201 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 	if (mnt) {
203 		int err;
204 
205 		err = mnt_alloc_id(mnt);
206 		if (err)
207 			goto out_free_cache;
208 
209 		if (name) {
210 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 			if (!mnt->mnt_devname)
212 				goto out_free_id;
213 		}
214 
215 #ifdef CONFIG_SMP
216 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 		if (!mnt->mnt_pcp)
218 			goto out_free_devname;
219 
220 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 		mnt->mnt_count = 1;
223 		mnt->mnt_writers = 0;
224 #endif
225 
226 		INIT_LIST_HEAD(&mnt->mnt_hash);
227 		INIT_LIST_HEAD(&mnt->mnt_child);
228 		INIT_LIST_HEAD(&mnt->mnt_mounts);
229 		INIT_LIST_HEAD(&mnt->mnt_list);
230 		INIT_LIST_HEAD(&mnt->mnt_expire);
231 		INIT_LIST_HEAD(&mnt->mnt_share);
232 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 		INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 int __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	if (mnt->mnt_flags & MNT_READONLY)
273 		return 1;
274 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 		return 1;
276 	return 0;
277 }
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279 
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
281 {
282 #ifdef CONFIG_SMP
283 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 	mnt->mnt_writers++;
286 #endif
287 }
288 
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 	mnt->mnt_writers--;
295 #endif
296 }
297 
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 	unsigned int count = 0;
302 	int cpu;
303 
304 	for_each_possible_cpu(cpu) {
305 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 	}
307 
308 	return count;
309 #else
310 	return mnt->mnt_writers;
311 #endif
312 }
313 
314 /*
315  * Most r/o checks on a fs are for operations that take
316  * discrete amounts of time, like a write() or unlink().
317  * We must keep track of when those operations start
318  * (for permission checks) and when they end, so that
319  * we can determine when writes are able to occur to
320  * a filesystem.
321  */
322 /**
323  * mnt_want_write - get write access to a mount
324  * @mnt: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is
327  * about to be performed to it, and makes sure that
328  * writes are allowed before returning success.  When
329  * the write operation is finished, mnt_drop_write()
330  * must be called.  This is effectively a refcount.
331  */
332 int mnt_want_write(struct vfsmount *mnt)
333 {
334 	int ret = 0;
335 
336 	preempt_disable();
337 	mnt_inc_writers(mnt);
338 	/*
339 	 * The store to mnt_inc_writers must be visible before we pass
340 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 	 * incremented count after it has set MNT_WRITE_HOLD.
342 	 */
343 	smp_mb();
344 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 		cpu_relax();
346 	/*
347 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 	 * be set to match its requirements. So we must not load that until
349 	 * MNT_WRITE_HOLD is cleared.
350 	 */
351 	smp_rmb();
352 	if (__mnt_is_readonly(mnt)) {
353 		mnt_dec_writers(mnt);
354 		ret = -EROFS;
355 		goto out;
356 	}
357 out:
358 	preempt_enable();
359 	return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362 
363 /**
364  * mnt_clone_write - get write access to a mount
365  * @mnt: the mount on which to take a write
366  *
367  * This is effectively like mnt_want_write, except
368  * it must only be used to take an extra write reference
369  * on a mountpoint that we already know has a write reference
370  * on it. This allows some optimisation.
371  *
372  * After finished, mnt_drop_write must be called as usual to
373  * drop the reference.
374  */
375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 	/* superblock may be r/o */
378 	if (__mnt_is_readonly(mnt))
379 		return -EROFS;
380 	preempt_disable();
381 	mnt_inc_writers(mnt);
382 	preempt_enable();
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386 
387 /**
388  * mnt_want_write_file - get write access to a file's mount
389  * @file: the file who's mount on which to take a write
390  *
391  * This is like mnt_want_write, but it takes a file and can
392  * do some optimisations if the file is open for write already
393  */
394 int mnt_want_write_file(struct file *file)
395 {
396 	struct inode *inode = file->f_dentry->d_inode;
397 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 		return mnt_want_write(file->f_path.mnt);
399 	else
400 		return mnt_clone_write(file->f_path.mnt);
401 }
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
403 
404 /**
405  * mnt_drop_write - give up write access to a mount
406  * @mnt: the mount on which to give up write access
407  *
408  * Tells the low-level filesystem that we are done
409  * performing writes to it.  Must be matched with
410  * mnt_want_write() call above.
411  */
412 void mnt_drop_write(struct vfsmount *mnt)
413 {
414 	preempt_disable();
415 	mnt_dec_writers(mnt);
416 	preempt_enable();
417 }
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
419 
420 static int mnt_make_readonly(struct vfsmount *mnt)
421 {
422 	int ret = 0;
423 
424 	br_write_lock(vfsmount_lock);
425 	mnt->mnt_flags |= MNT_WRITE_HOLD;
426 	/*
427 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 	 * should be visible before we do.
429 	 */
430 	smp_mb();
431 
432 	/*
433 	 * With writers on hold, if this value is zero, then there are
434 	 * definitely no active writers (although held writers may subsequently
435 	 * increment the count, they'll have to wait, and decrement it after
436 	 * seeing MNT_READONLY).
437 	 *
438 	 * It is OK to have counter incremented on one CPU and decremented on
439 	 * another: the sum will add up correctly. The danger would be when we
440 	 * sum up each counter, if we read a counter before it is incremented,
441 	 * but then read another CPU's count which it has been subsequently
442 	 * decremented from -- we would see more decrements than we should.
443 	 * MNT_WRITE_HOLD protects against this scenario, because
444 	 * mnt_want_write first increments count, then smp_mb, then spins on
445 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 	 * we're counting up here.
447 	 */
448 	if (mnt_get_writers(mnt) > 0)
449 		ret = -EBUSY;
450 	else
451 		mnt->mnt_flags |= MNT_READONLY;
452 	/*
453 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 	 * that become unheld will see MNT_READONLY.
455 	 */
456 	smp_wmb();
457 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 	br_write_unlock(vfsmount_lock);
459 	return ret;
460 }
461 
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
463 {
464 	br_write_lock(vfsmount_lock);
465 	mnt->mnt_flags &= ~MNT_READONLY;
466 	br_write_unlock(vfsmount_lock);
467 }
468 
469 static void free_vfsmnt(struct vfsmount *mnt)
470 {
471 	kfree(mnt->mnt_devname);
472 	mnt_free_id(mnt);
473 #ifdef CONFIG_SMP
474 	free_percpu(mnt->mnt_pcp);
475 #endif
476 	kmem_cache_free(mnt_cache, mnt);
477 }
478 
479 /*
480  * find the first or last mount at @dentry on vfsmount @mnt depending on
481  * @dir. If @dir is set return the first mount else return the last mount.
482  * vfsmount_lock must be held for read or write.
483  */
484 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
485 			      int dir)
486 {
487 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
488 	struct list_head *tmp = head;
489 	struct vfsmount *p, *found = NULL;
490 
491 	for (;;) {
492 		tmp = dir ? tmp->next : tmp->prev;
493 		p = NULL;
494 		if (tmp == head)
495 			break;
496 		p = list_entry(tmp, struct vfsmount, mnt_hash);
497 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
498 			found = p;
499 			break;
500 		}
501 	}
502 	return found;
503 }
504 
505 /*
506  * lookup_mnt increments the ref count before returning
507  * the vfsmount struct.
508  */
509 struct vfsmount *lookup_mnt(struct path *path)
510 {
511 	struct vfsmount *child_mnt;
512 
513 	br_read_lock(vfsmount_lock);
514 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
515 		mntget(child_mnt);
516 	br_read_unlock(vfsmount_lock);
517 	return child_mnt;
518 }
519 
520 static inline int check_mnt(struct vfsmount *mnt)
521 {
522 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
523 }
524 
525 /*
526  * vfsmount lock must be held for write
527  */
528 static void touch_mnt_namespace(struct mnt_namespace *ns)
529 {
530 	if (ns) {
531 		ns->event = ++event;
532 		wake_up_interruptible(&ns->poll);
533 	}
534 }
535 
536 /*
537  * vfsmount lock must be held for write
538  */
539 static void __touch_mnt_namespace(struct mnt_namespace *ns)
540 {
541 	if (ns && ns->event != event) {
542 		ns->event = event;
543 		wake_up_interruptible(&ns->poll);
544 	}
545 }
546 
547 /*
548  * Clear dentry's mounted state if it has no remaining mounts.
549  * vfsmount_lock must be held for write.
550  */
551 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
552 {
553 	unsigned u;
554 
555 	for (u = 0; u < HASH_SIZE; u++) {
556 		struct vfsmount *p;
557 
558 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
559 			if (p->mnt_mountpoint == dentry)
560 				return;
561 		}
562 	}
563 	spin_lock(&dentry->d_lock);
564 	dentry->d_flags &= ~DCACHE_MOUNTED;
565 	spin_unlock(&dentry->d_lock);
566 }
567 
568 /*
569  * vfsmount lock must be held for write
570  */
571 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
572 {
573 	old_path->dentry = mnt->mnt_mountpoint;
574 	old_path->mnt = mnt->mnt_parent;
575 	mnt->mnt_parent = mnt;
576 	mnt->mnt_mountpoint = mnt->mnt_root;
577 	list_del_init(&mnt->mnt_child);
578 	list_del_init(&mnt->mnt_hash);
579 	dentry_reset_mounted(old_path->mnt, old_path->dentry);
580 }
581 
582 /*
583  * vfsmount lock must be held for write
584  */
585 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
586 			struct vfsmount *child_mnt)
587 {
588 	child_mnt->mnt_parent = mntget(mnt);
589 	child_mnt->mnt_mountpoint = dget(dentry);
590 	spin_lock(&dentry->d_lock);
591 	dentry->d_flags |= DCACHE_MOUNTED;
592 	spin_unlock(&dentry->d_lock);
593 }
594 
595 /*
596  * vfsmount lock must be held for write
597  */
598 static void attach_mnt(struct vfsmount *mnt, struct path *path)
599 {
600 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
601 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
602 			hash(path->mnt, path->dentry));
603 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
604 }
605 
606 static inline void __mnt_make_longterm(struct vfsmount *mnt)
607 {
608 #ifdef CONFIG_SMP
609 	atomic_inc(&mnt->mnt_longterm);
610 #endif
611 }
612 
613 /* needs vfsmount lock for write */
614 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
615 {
616 #ifdef CONFIG_SMP
617 	atomic_dec(&mnt->mnt_longterm);
618 #endif
619 }
620 
621 /*
622  * vfsmount lock must be held for write
623  */
624 static void commit_tree(struct vfsmount *mnt)
625 {
626 	struct vfsmount *parent = mnt->mnt_parent;
627 	struct vfsmount *m;
628 	LIST_HEAD(head);
629 	struct mnt_namespace *n = parent->mnt_ns;
630 
631 	BUG_ON(parent == mnt);
632 
633 	list_add_tail(&head, &mnt->mnt_list);
634 	list_for_each_entry(m, &head, mnt_list) {
635 		m->mnt_ns = n;
636 		__mnt_make_longterm(m);
637 	}
638 
639 	list_splice(&head, n->list.prev);
640 
641 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
642 				hash(parent, mnt->mnt_mountpoint));
643 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
644 	touch_mnt_namespace(n);
645 }
646 
647 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
648 {
649 	struct list_head *next = p->mnt_mounts.next;
650 	if (next == &p->mnt_mounts) {
651 		while (1) {
652 			if (p == root)
653 				return NULL;
654 			next = p->mnt_child.next;
655 			if (next != &p->mnt_parent->mnt_mounts)
656 				break;
657 			p = p->mnt_parent;
658 		}
659 	}
660 	return list_entry(next, struct vfsmount, mnt_child);
661 }
662 
663 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
664 {
665 	struct list_head *prev = p->mnt_mounts.prev;
666 	while (prev != &p->mnt_mounts) {
667 		p = list_entry(prev, struct vfsmount, mnt_child);
668 		prev = p->mnt_mounts.prev;
669 	}
670 	return p;
671 }
672 
673 struct vfsmount *
674 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
675 {
676 	struct vfsmount *mnt;
677 	struct dentry *root;
678 
679 	if (!type)
680 		return ERR_PTR(-ENODEV);
681 
682 	mnt = alloc_vfsmnt(name);
683 	if (!mnt)
684 		return ERR_PTR(-ENOMEM);
685 
686 	if (flags & MS_KERNMOUNT)
687 		mnt->mnt_flags = MNT_INTERNAL;
688 
689 	root = mount_fs(type, flags, name, data);
690 	if (IS_ERR(root)) {
691 		free_vfsmnt(mnt);
692 		return ERR_CAST(root);
693 	}
694 
695 	mnt->mnt_root = root;
696 	mnt->mnt_sb = root->d_sb;
697 	mnt->mnt_mountpoint = mnt->mnt_root;
698 	mnt->mnt_parent = mnt;
699 	return mnt;
700 }
701 EXPORT_SYMBOL_GPL(vfs_kern_mount);
702 
703 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
704 					int flag)
705 {
706 	struct super_block *sb = old->mnt_sb;
707 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
708 
709 	if (mnt) {
710 		if (flag & (CL_SLAVE | CL_PRIVATE))
711 			mnt->mnt_group_id = 0; /* not a peer of original */
712 		else
713 			mnt->mnt_group_id = old->mnt_group_id;
714 
715 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
716 			int err = mnt_alloc_group_id(mnt);
717 			if (err)
718 				goto out_free;
719 		}
720 
721 		mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
722 		atomic_inc(&sb->s_active);
723 		mnt->mnt_sb = sb;
724 		mnt->mnt_root = dget(root);
725 		mnt->mnt_mountpoint = mnt->mnt_root;
726 		mnt->mnt_parent = mnt;
727 
728 		if (flag & CL_SLAVE) {
729 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
730 			mnt->mnt_master = old;
731 			CLEAR_MNT_SHARED(mnt);
732 		} else if (!(flag & CL_PRIVATE)) {
733 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
734 				list_add(&mnt->mnt_share, &old->mnt_share);
735 			if (IS_MNT_SLAVE(old))
736 				list_add(&mnt->mnt_slave, &old->mnt_slave);
737 			mnt->mnt_master = old->mnt_master;
738 		}
739 		if (flag & CL_MAKE_SHARED)
740 			set_mnt_shared(mnt);
741 
742 		/* stick the duplicate mount on the same expiry list
743 		 * as the original if that was on one */
744 		if (flag & CL_EXPIRE) {
745 			if (!list_empty(&old->mnt_expire))
746 				list_add(&mnt->mnt_expire, &old->mnt_expire);
747 		}
748 	}
749 	return mnt;
750 
751  out_free:
752 	free_vfsmnt(mnt);
753 	return NULL;
754 }
755 
756 static inline void mntfree(struct vfsmount *mnt)
757 {
758 	struct super_block *sb = mnt->mnt_sb;
759 
760 	/*
761 	 * This probably indicates that somebody messed
762 	 * up a mnt_want/drop_write() pair.  If this
763 	 * happens, the filesystem was probably unable
764 	 * to make r/w->r/o transitions.
765 	 */
766 	/*
767 	 * The locking used to deal with mnt_count decrement provides barriers,
768 	 * so mnt_get_writers() below is safe.
769 	 */
770 	WARN_ON(mnt_get_writers(mnt));
771 	fsnotify_vfsmount_delete(mnt);
772 	dput(mnt->mnt_root);
773 	free_vfsmnt(mnt);
774 	deactivate_super(sb);
775 }
776 
777 static void mntput_no_expire(struct vfsmount *mnt)
778 {
779 put_again:
780 #ifdef CONFIG_SMP
781 	br_read_lock(vfsmount_lock);
782 	if (likely(atomic_read(&mnt->mnt_longterm))) {
783 		mnt_dec_count(mnt);
784 		br_read_unlock(vfsmount_lock);
785 		return;
786 	}
787 	br_read_unlock(vfsmount_lock);
788 
789 	br_write_lock(vfsmount_lock);
790 	mnt_dec_count(mnt);
791 	if (mnt_get_count(mnt)) {
792 		br_write_unlock(vfsmount_lock);
793 		return;
794 	}
795 #else
796 	mnt_dec_count(mnt);
797 	if (likely(mnt_get_count(mnt)))
798 		return;
799 	br_write_lock(vfsmount_lock);
800 #endif
801 	if (unlikely(mnt->mnt_pinned)) {
802 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
803 		mnt->mnt_pinned = 0;
804 		br_write_unlock(vfsmount_lock);
805 		acct_auto_close_mnt(mnt);
806 		goto put_again;
807 	}
808 	br_write_unlock(vfsmount_lock);
809 	mntfree(mnt);
810 }
811 
812 void mntput(struct vfsmount *mnt)
813 {
814 	if (mnt) {
815 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
816 		if (unlikely(mnt->mnt_expiry_mark))
817 			mnt->mnt_expiry_mark = 0;
818 		mntput_no_expire(mnt);
819 	}
820 }
821 EXPORT_SYMBOL(mntput);
822 
823 struct vfsmount *mntget(struct vfsmount *mnt)
824 {
825 	if (mnt)
826 		mnt_inc_count(mnt);
827 	return mnt;
828 }
829 EXPORT_SYMBOL(mntget);
830 
831 void mnt_pin(struct vfsmount *mnt)
832 {
833 	br_write_lock(vfsmount_lock);
834 	mnt->mnt_pinned++;
835 	br_write_unlock(vfsmount_lock);
836 }
837 EXPORT_SYMBOL(mnt_pin);
838 
839 void mnt_unpin(struct vfsmount *mnt)
840 {
841 	br_write_lock(vfsmount_lock);
842 	if (mnt->mnt_pinned) {
843 		mnt_inc_count(mnt);
844 		mnt->mnt_pinned--;
845 	}
846 	br_write_unlock(vfsmount_lock);
847 }
848 EXPORT_SYMBOL(mnt_unpin);
849 
850 static inline void mangle(struct seq_file *m, const char *s)
851 {
852 	seq_escape(m, s, " \t\n\\");
853 }
854 
855 /*
856  * Simple .show_options callback for filesystems which don't want to
857  * implement more complex mount option showing.
858  *
859  * See also save_mount_options().
860  */
861 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
862 {
863 	const char *options;
864 
865 	rcu_read_lock();
866 	options = rcu_dereference(mnt->mnt_sb->s_options);
867 
868 	if (options != NULL && options[0]) {
869 		seq_putc(m, ',');
870 		mangle(m, options);
871 	}
872 	rcu_read_unlock();
873 
874 	return 0;
875 }
876 EXPORT_SYMBOL(generic_show_options);
877 
878 /*
879  * If filesystem uses generic_show_options(), this function should be
880  * called from the fill_super() callback.
881  *
882  * The .remount_fs callback usually needs to be handled in a special
883  * way, to make sure, that previous options are not overwritten if the
884  * remount fails.
885  *
886  * Also note, that if the filesystem's .remount_fs function doesn't
887  * reset all options to their default value, but changes only newly
888  * given options, then the displayed options will not reflect reality
889  * any more.
890  */
891 void save_mount_options(struct super_block *sb, char *options)
892 {
893 	BUG_ON(sb->s_options);
894 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
895 }
896 EXPORT_SYMBOL(save_mount_options);
897 
898 void replace_mount_options(struct super_block *sb, char *options)
899 {
900 	char *old = sb->s_options;
901 	rcu_assign_pointer(sb->s_options, options);
902 	if (old) {
903 		synchronize_rcu();
904 		kfree(old);
905 	}
906 }
907 EXPORT_SYMBOL(replace_mount_options);
908 
909 #ifdef CONFIG_PROC_FS
910 /* iterator */
911 static void *m_start(struct seq_file *m, loff_t *pos)
912 {
913 	struct proc_mounts *p = m->private;
914 
915 	down_read(&namespace_sem);
916 	return seq_list_start(&p->ns->list, *pos);
917 }
918 
919 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
920 {
921 	struct proc_mounts *p = m->private;
922 
923 	return seq_list_next(v, &p->ns->list, pos);
924 }
925 
926 static void m_stop(struct seq_file *m, void *v)
927 {
928 	up_read(&namespace_sem);
929 }
930 
931 int mnt_had_events(struct proc_mounts *p)
932 {
933 	struct mnt_namespace *ns = p->ns;
934 	int res = 0;
935 
936 	br_read_lock(vfsmount_lock);
937 	if (p->m.poll_event != ns->event) {
938 		p->m.poll_event = ns->event;
939 		res = 1;
940 	}
941 	br_read_unlock(vfsmount_lock);
942 
943 	return res;
944 }
945 
946 struct proc_fs_info {
947 	int flag;
948 	const char *str;
949 };
950 
951 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
952 {
953 	static const struct proc_fs_info fs_info[] = {
954 		{ MS_SYNCHRONOUS, ",sync" },
955 		{ MS_DIRSYNC, ",dirsync" },
956 		{ MS_MANDLOCK, ",mand" },
957 		{ 0, NULL }
958 	};
959 	const struct proc_fs_info *fs_infop;
960 
961 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
962 		if (sb->s_flags & fs_infop->flag)
963 			seq_puts(m, fs_infop->str);
964 	}
965 
966 	return security_sb_show_options(m, sb);
967 }
968 
969 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
970 {
971 	static const struct proc_fs_info mnt_info[] = {
972 		{ MNT_NOSUID, ",nosuid" },
973 		{ MNT_NODEV, ",nodev" },
974 		{ MNT_NOEXEC, ",noexec" },
975 		{ MNT_NOATIME, ",noatime" },
976 		{ MNT_NODIRATIME, ",nodiratime" },
977 		{ MNT_RELATIME, ",relatime" },
978 		{ 0, NULL }
979 	};
980 	const struct proc_fs_info *fs_infop;
981 
982 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
983 		if (mnt->mnt_flags & fs_infop->flag)
984 			seq_puts(m, fs_infop->str);
985 	}
986 }
987 
988 static void show_type(struct seq_file *m, struct super_block *sb)
989 {
990 	mangle(m, sb->s_type->name);
991 	if (sb->s_subtype && sb->s_subtype[0]) {
992 		seq_putc(m, '.');
993 		mangle(m, sb->s_subtype);
994 	}
995 }
996 
997 static int show_vfsmnt(struct seq_file *m, void *v)
998 {
999 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1000 	int err = 0;
1001 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1002 
1003 	if (mnt->mnt_sb->s_op->show_devname) {
1004 		err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1005 		if (err)
1006 			goto out;
1007 	} else {
1008 		mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1009 	}
1010 	seq_putc(m, ' ');
1011 	seq_path(m, &mnt_path, " \t\n\\");
1012 	seq_putc(m, ' ');
1013 	show_type(m, mnt->mnt_sb);
1014 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1015 	err = show_sb_opts(m, mnt->mnt_sb);
1016 	if (err)
1017 		goto out;
1018 	show_mnt_opts(m, mnt);
1019 	if (mnt->mnt_sb->s_op->show_options)
1020 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
1021 	seq_puts(m, " 0 0\n");
1022 out:
1023 	return err;
1024 }
1025 
1026 const struct seq_operations mounts_op = {
1027 	.start	= m_start,
1028 	.next	= m_next,
1029 	.stop	= m_stop,
1030 	.show	= show_vfsmnt
1031 };
1032 
1033 static int show_mountinfo(struct seq_file *m, void *v)
1034 {
1035 	struct proc_mounts *p = m->private;
1036 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1037 	struct super_block *sb = mnt->mnt_sb;
1038 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1039 	struct path root = p->root;
1040 	int err = 0;
1041 
1042 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1043 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
1044 	if (sb->s_op->show_path)
1045 		err = sb->s_op->show_path(m, mnt);
1046 	else
1047 		seq_dentry(m, mnt->mnt_root, " \t\n\\");
1048 	if (err)
1049 		goto out;
1050 	seq_putc(m, ' ');
1051 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
1052 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1053 		/*
1054 		 * Mountpoint is outside root, discard that one.  Ugly,
1055 		 * but less so than trying to do that in iterator in a
1056 		 * race-free way (due to renames).
1057 		 */
1058 		return SEQ_SKIP;
1059 	}
1060 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1061 	show_mnt_opts(m, mnt);
1062 
1063 	/* Tagged fields ("foo:X" or "bar") */
1064 	if (IS_MNT_SHARED(mnt))
1065 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
1066 	if (IS_MNT_SLAVE(mnt)) {
1067 		int master = mnt->mnt_master->mnt_group_id;
1068 		int dom = get_dominating_id(mnt, &p->root);
1069 		seq_printf(m, " master:%i", master);
1070 		if (dom && dom != master)
1071 			seq_printf(m, " propagate_from:%i", dom);
1072 	}
1073 	if (IS_MNT_UNBINDABLE(mnt))
1074 		seq_puts(m, " unbindable");
1075 
1076 	/* Filesystem specific data */
1077 	seq_puts(m, " - ");
1078 	show_type(m, sb);
1079 	seq_putc(m, ' ');
1080 	if (sb->s_op->show_devname)
1081 		err = sb->s_op->show_devname(m, mnt);
1082 	else
1083 		mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1084 	if (err)
1085 		goto out;
1086 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1087 	err = show_sb_opts(m, sb);
1088 	if (err)
1089 		goto out;
1090 	if (sb->s_op->show_options)
1091 		err = sb->s_op->show_options(m, mnt);
1092 	seq_putc(m, '\n');
1093 out:
1094 	return err;
1095 }
1096 
1097 const struct seq_operations mountinfo_op = {
1098 	.start	= m_start,
1099 	.next	= m_next,
1100 	.stop	= m_stop,
1101 	.show	= show_mountinfo,
1102 };
1103 
1104 static int show_vfsstat(struct seq_file *m, void *v)
1105 {
1106 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1107 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1108 	int err = 0;
1109 
1110 	/* device */
1111 	if (mnt->mnt_sb->s_op->show_devname) {
1112 		seq_puts(m, "device ");
1113 		err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1114 	} else {
1115 		if (mnt->mnt_devname) {
1116 			seq_puts(m, "device ");
1117 			mangle(m, mnt->mnt_devname);
1118 		} else
1119 			seq_puts(m, "no device");
1120 	}
1121 
1122 	/* mount point */
1123 	seq_puts(m, " mounted on ");
1124 	seq_path(m, &mnt_path, " \t\n\\");
1125 	seq_putc(m, ' ');
1126 
1127 	/* file system type */
1128 	seq_puts(m, "with fstype ");
1129 	show_type(m, mnt->mnt_sb);
1130 
1131 	/* optional statistics */
1132 	if (mnt->mnt_sb->s_op->show_stats) {
1133 		seq_putc(m, ' ');
1134 		if (!err)
1135 			err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1136 	}
1137 
1138 	seq_putc(m, '\n');
1139 	return err;
1140 }
1141 
1142 const struct seq_operations mountstats_op = {
1143 	.start	= m_start,
1144 	.next	= m_next,
1145 	.stop	= m_stop,
1146 	.show	= show_vfsstat,
1147 };
1148 #endif  /* CONFIG_PROC_FS */
1149 
1150 /**
1151  * may_umount_tree - check if a mount tree is busy
1152  * @mnt: root of mount tree
1153  *
1154  * This is called to check if a tree of mounts has any
1155  * open files, pwds, chroots or sub mounts that are
1156  * busy.
1157  */
1158 int may_umount_tree(struct vfsmount *mnt)
1159 {
1160 	int actual_refs = 0;
1161 	int minimum_refs = 0;
1162 	struct vfsmount *p;
1163 
1164 	/* write lock needed for mnt_get_count */
1165 	br_write_lock(vfsmount_lock);
1166 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1167 		actual_refs += mnt_get_count(p);
1168 		minimum_refs += 2;
1169 	}
1170 	br_write_unlock(vfsmount_lock);
1171 
1172 	if (actual_refs > minimum_refs)
1173 		return 0;
1174 
1175 	return 1;
1176 }
1177 
1178 EXPORT_SYMBOL(may_umount_tree);
1179 
1180 /**
1181  * may_umount - check if a mount point is busy
1182  * @mnt: root of mount
1183  *
1184  * This is called to check if a mount point has any
1185  * open files, pwds, chroots or sub mounts. If the
1186  * mount has sub mounts this will return busy
1187  * regardless of whether the sub mounts are busy.
1188  *
1189  * Doesn't take quota and stuff into account. IOW, in some cases it will
1190  * give false negatives. The main reason why it's here is that we need
1191  * a non-destructive way to look for easily umountable filesystems.
1192  */
1193 int may_umount(struct vfsmount *mnt)
1194 {
1195 	int ret = 1;
1196 	down_read(&namespace_sem);
1197 	br_write_lock(vfsmount_lock);
1198 	if (propagate_mount_busy(mnt, 2))
1199 		ret = 0;
1200 	br_write_unlock(vfsmount_lock);
1201 	up_read(&namespace_sem);
1202 	return ret;
1203 }
1204 
1205 EXPORT_SYMBOL(may_umount);
1206 
1207 void release_mounts(struct list_head *head)
1208 {
1209 	struct vfsmount *mnt;
1210 	while (!list_empty(head)) {
1211 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1212 		list_del_init(&mnt->mnt_hash);
1213 		if (mnt->mnt_parent != mnt) {
1214 			struct dentry *dentry;
1215 			struct vfsmount *m;
1216 
1217 			br_write_lock(vfsmount_lock);
1218 			dentry = mnt->mnt_mountpoint;
1219 			m = mnt->mnt_parent;
1220 			mnt->mnt_mountpoint = mnt->mnt_root;
1221 			mnt->mnt_parent = mnt;
1222 			m->mnt_ghosts--;
1223 			br_write_unlock(vfsmount_lock);
1224 			dput(dentry);
1225 			mntput(m);
1226 		}
1227 		mntput(mnt);
1228 	}
1229 }
1230 
1231 /*
1232  * vfsmount lock must be held for write
1233  * namespace_sem must be held for write
1234  */
1235 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1236 {
1237 	LIST_HEAD(tmp_list);
1238 	struct vfsmount *p;
1239 
1240 	for (p = mnt; p; p = next_mnt(p, mnt))
1241 		list_move(&p->mnt_hash, &tmp_list);
1242 
1243 	if (propagate)
1244 		propagate_umount(&tmp_list);
1245 
1246 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1247 		list_del_init(&p->mnt_expire);
1248 		list_del_init(&p->mnt_list);
1249 		__touch_mnt_namespace(p->mnt_ns);
1250 		p->mnt_ns = NULL;
1251 		__mnt_make_shortterm(p);
1252 		list_del_init(&p->mnt_child);
1253 		if (p->mnt_parent != p) {
1254 			p->mnt_parent->mnt_ghosts++;
1255 			dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1256 		}
1257 		change_mnt_propagation(p, MS_PRIVATE);
1258 	}
1259 	list_splice(&tmp_list, kill);
1260 }
1261 
1262 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1263 
1264 static int do_umount(struct vfsmount *mnt, int flags)
1265 {
1266 	struct super_block *sb = mnt->mnt_sb;
1267 	int retval;
1268 	LIST_HEAD(umount_list);
1269 
1270 	retval = security_sb_umount(mnt, flags);
1271 	if (retval)
1272 		return retval;
1273 
1274 	/*
1275 	 * Allow userspace to request a mountpoint be expired rather than
1276 	 * unmounting unconditionally. Unmount only happens if:
1277 	 *  (1) the mark is already set (the mark is cleared by mntput())
1278 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1279 	 */
1280 	if (flags & MNT_EXPIRE) {
1281 		if (mnt == current->fs->root.mnt ||
1282 		    flags & (MNT_FORCE | MNT_DETACH))
1283 			return -EINVAL;
1284 
1285 		/*
1286 		 * probably don't strictly need the lock here if we examined
1287 		 * all race cases, but it's a slowpath.
1288 		 */
1289 		br_write_lock(vfsmount_lock);
1290 		if (mnt_get_count(mnt) != 2) {
1291 			br_write_unlock(vfsmount_lock);
1292 			return -EBUSY;
1293 		}
1294 		br_write_unlock(vfsmount_lock);
1295 
1296 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1297 			return -EAGAIN;
1298 	}
1299 
1300 	/*
1301 	 * If we may have to abort operations to get out of this
1302 	 * mount, and they will themselves hold resources we must
1303 	 * allow the fs to do things. In the Unix tradition of
1304 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1305 	 * might fail to complete on the first run through as other tasks
1306 	 * must return, and the like. Thats for the mount program to worry
1307 	 * about for the moment.
1308 	 */
1309 
1310 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1311 		sb->s_op->umount_begin(sb);
1312 	}
1313 
1314 	/*
1315 	 * No sense to grab the lock for this test, but test itself looks
1316 	 * somewhat bogus. Suggestions for better replacement?
1317 	 * Ho-hum... In principle, we might treat that as umount + switch
1318 	 * to rootfs. GC would eventually take care of the old vfsmount.
1319 	 * Actually it makes sense, especially if rootfs would contain a
1320 	 * /reboot - static binary that would close all descriptors and
1321 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1322 	 */
1323 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1324 		/*
1325 		 * Special case for "unmounting" root ...
1326 		 * we just try to remount it readonly.
1327 		 */
1328 		down_write(&sb->s_umount);
1329 		if (!(sb->s_flags & MS_RDONLY))
1330 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1331 		up_write(&sb->s_umount);
1332 		return retval;
1333 	}
1334 
1335 	down_write(&namespace_sem);
1336 	br_write_lock(vfsmount_lock);
1337 	event++;
1338 
1339 	if (!(flags & MNT_DETACH))
1340 		shrink_submounts(mnt, &umount_list);
1341 
1342 	retval = -EBUSY;
1343 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1344 		if (!list_empty(&mnt->mnt_list))
1345 			umount_tree(mnt, 1, &umount_list);
1346 		retval = 0;
1347 	}
1348 	br_write_unlock(vfsmount_lock);
1349 	up_write(&namespace_sem);
1350 	release_mounts(&umount_list);
1351 	return retval;
1352 }
1353 
1354 /*
1355  * Now umount can handle mount points as well as block devices.
1356  * This is important for filesystems which use unnamed block devices.
1357  *
1358  * We now support a flag for forced unmount like the other 'big iron'
1359  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1360  */
1361 
1362 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1363 {
1364 	struct path path;
1365 	int retval;
1366 	int lookup_flags = 0;
1367 
1368 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1369 		return -EINVAL;
1370 
1371 	if (!(flags & UMOUNT_NOFOLLOW))
1372 		lookup_flags |= LOOKUP_FOLLOW;
1373 
1374 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1375 	if (retval)
1376 		goto out;
1377 	retval = -EINVAL;
1378 	if (path.dentry != path.mnt->mnt_root)
1379 		goto dput_and_out;
1380 	if (!check_mnt(path.mnt))
1381 		goto dput_and_out;
1382 
1383 	retval = -EPERM;
1384 	if (!capable(CAP_SYS_ADMIN))
1385 		goto dput_and_out;
1386 
1387 	retval = do_umount(path.mnt, flags);
1388 dput_and_out:
1389 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1390 	dput(path.dentry);
1391 	mntput_no_expire(path.mnt);
1392 out:
1393 	return retval;
1394 }
1395 
1396 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1397 
1398 /*
1399  *	The 2.0 compatible umount. No flags.
1400  */
1401 SYSCALL_DEFINE1(oldumount, char __user *, name)
1402 {
1403 	return sys_umount(name, 0);
1404 }
1405 
1406 #endif
1407 
1408 static int mount_is_safe(struct path *path)
1409 {
1410 	if (capable(CAP_SYS_ADMIN))
1411 		return 0;
1412 	return -EPERM;
1413 #ifdef notyet
1414 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1415 		return -EPERM;
1416 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1417 		if (current_uid() != path->dentry->d_inode->i_uid)
1418 			return -EPERM;
1419 	}
1420 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1421 		return -EPERM;
1422 	return 0;
1423 #endif
1424 }
1425 
1426 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1427 					int flag)
1428 {
1429 	struct vfsmount *res, *p, *q, *r, *s;
1430 	struct path path;
1431 
1432 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1433 		return NULL;
1434 
1435 	res = q = clone_mnt(mnt, dentry, flag);
1436 	if (!q)
1437 		goto Enomem;
1438 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1439 
1440 	p = mnt;
1441 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1442 		if (!is_subdir(r->mnt_mountpoint, dentry))
1443 			continue;
1444 
1445 		for (s = r; s; s = next_mnt(s, r)) {
1446 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1447 				s = skip_mnt_tree(s);
1448 				continue;
1449 			}
1450 			while (p != s->mnt_parent) {
1451 				p = p->mnt_parent;
1452 				q = q->mnt_parent;
1453 			}
1454 			p = s;
1455 			path.mnt = q;
1456 			path.dentry = p->mnt_mountpoint;
1457 			q = clone_mnt(p, p->mnt_root, flag);
1458 			if (!q)
1459 				goto Enomem;
1460 			br_write_lock(vfsmount_lock);
1461 			list_add_tail(&q->mnt_list, &res->mnt_list);
1462 			attach_mnt(q, &path);
1463 			br_write_unlock(vfsmount_lock);
1464 		}
1465 	}
1466 	return res;
1467 Enomem:
1468 	if (res) {
1469 		LIST_HEAD(umount_list);
1470 		br_write_lock(vfsmount_lock);
1471 		umount_tree(res, 0, &umount_list);
1472 		br_write_unlock(vfsmount_lock);
1473 		release_mounts(&umount_list);
1474 	}
1475 	return NULL;
1476 }
1477 
1478 struct vfsmount *collect_mounts(struct path *path)
1479 {
1480 	struct vfsmount *tree;
1481 	down_write(&namespace_sem);
1482 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1483 	up_write(&namespace_sem);
1484 	return tree;
1485 }
1486 
1487 void drop_collected_mounts(struct vfsmount *mnt)
1488 {
1489 	LIST_HEAD(umount_list);
1490 	down_write(&namespace_sem);
1491 	br_write_lock(vfsmount_lock);
1492 	umount_tree(mnt, 0, &umount_list);
1493 	br_write_unlock(vfsmount_lock);
1494 	up_write(&namespace_sem);
1495 	release_mounts(&umount_list);
1496 }
1497 
1498 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1499 		   struct vfsmount *root)
1500 {
1501 	struct vfsmount *mnt;
1502 	int res = f(root, arg);
1503 	if (res)
1504 		return res;
1505 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1506 		res = f(mnt, arg);
1507 		if (res)
1508 			return res;
1509 	}
1510 	return 0;
1511 }
1512 
1513 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1514 {
1515 	struct vfsmount *p;
1516 
1517 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1518 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1519 			mnt_release_group_id(p);
1520 	}
1521 }
1522 
1523 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1524 {
1525 	struct vfsmount *p;
1526 
1527 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1528 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1529 			int err = mnt_alloc_group_id(p);
1530 			if (err) {
1531 				cleanup_group_ids(mnt, p);
1532 				return err;
1533 			}
1534 		}
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /*
1541  *  @source_mnt : mount tree to be attached
1542  *  @nd         : place the mount tree @source_mnt is attached
1543  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1544  *  		   store the parent mount and mountpoint dentry.
1545  *  		   (done when source_mnt is moved)
1546  *
1547  *  NOTE: in the table below explains the semantics when a source mount
1548  *  of a given type is attached to a destination mount of a given type.
1549  * ---------------------------------------------------------------------------
1550  * |         BIND MOUNT OPERATION                                            |
1551  * |**************************************************************************
1552  * | source-->| shared        |       private  |       slave    | unbindable |
1553  * | dest     |               |                |                |            |
1554  * |   |      |               |                |                |            |
1555  * |   v      |               |                |                |            |
1556  * |**************************************************************************
1557  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1558  * |          |               |                |                |            |
1559  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1560  * ***************************************************************************
1561  * A bind operation clones the source mount and mounts the clone on the
1562  * destination mount.
1563  *
1564  * (++)  the cloned mount is propagated to all the mounts in the propagation
1565  * 	 tree of the destination mount and the cloned mount is added to
1566  * 	 the peer group of the source mount.
1567  * (+)   the cloned mount is created under the destination mount and is marked
1568  *       as shared. The cloned mount is added to the peer group of the source
1569  *       mount.
1570  * (+++) the mount is propagated to all the mounts in the propagation tree
1571  *       of the destination mount and the cloned mount is made slave
1572  *       of the same master as that of the source mount. The cloned mount
1573  *       is marked as 'shared and slave'.
1574  * (*)   the cloned mount is made a slave of the same master as that of the
1575  * 	 source mount.
1576  *
1577  * ---------------------------------------------------------------------------
1578  * |         		MOVE MOUNT OPERATION                                 |
1579  * |**************************************************************************
1580  * | source-->| shared        |       private  |       slave    | unbindable |
1581  * | dest     |               |                |                |            |
1582  * |   |      |               |                |                |            |
1583  * |   v      |               |                |                |            |
1584  * |**************************************************************************
1585  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1586  * |          |               |                |                |            |
1587  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1588  * ***************************************************************************
1589  *
1590  * (+)  the mount is moved to the destination. And is then propagated to
1591  * 	all the mounts in the propagation tree of the destination mount.
1592  * (+*)  the mount is moved to the destination.
1593  * (+++)  the mount is moved to the destination and is then propagated to
1594  * 	all the mounts belonging to the destination mount's propagation tree.
1595  * 	the mount is marked as 'shared and slave'.
1596  * (*)	the mount continues to be a slave at the new location.
1597  *
1598  * if the source mount is a tree, the operations explained above is
1599  * applied to each mount in the tree.
1600  * Must be called without spinlocks held, since this function can sleep
1601  * in allocations.
1602  */
1603 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1604 			struct path *path, struct path *parent_path)
1605 {
1606 	LIST_HEAD(tree_list);
1607 	struct vfsmount *dest_mnt = path->mnt;
1608 	struct dentry *dest_dentry = path->dentry;
1609 	struct vfsmount *child, *p;
1610 	int err;
1611 
1612 	if (IS_MNT_SHARED(dest_mnt)) {
1613 		err = invent_group_ids(source_mnt, true);
1614 		if (err)
1615 			goto out;
1616 	}
1617 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1618 	if (err)
1619 		goto out_cleanup_ids;
1620 
1621 	br_write_lock(vfsmount_lock);
1622 
1623 	if (IS_MNT_SHARED(dest_mnt)) {
1624 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1625 			set_mnt_shared(p);
1626 	}
1627 	if (parent_path) {
1628 		detach_mnt(source_mnt, parent_path);
1629 		attach_mnt(source_mnt, path);
1630 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1631 	} else {
1632 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1633 		commit_tree(source_mnt);
1634 	}
1635 
1636 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1637 		list_del_init(&child->mnt_hash);
1638 		commit_tree(child);
1639 	}
1640 	br_write_unlock(vfsmount_lock);
1641 
1642 	return 0;
1643 
1644  out_cleanup_ids:
1645 	if (IS_MNT_SHARED(dest_mnt))
1646 		cleanup_group_ids(source_mnt, NULL);
1647  out:
1648 	return err;
1649 }
1650 
1651 static int lock_mount(struct path *path)
1652 {
1653 	struct vfsmount *mnt;
1654 retry:
1655 	mutex_lock(&path->dentry->d_inode->i_mutex);
1656 	if (unlikely(cant_mount(path->dentry))) {
1657 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1658 		return -ENOENT;
1659 	}
1660 	down_write(&namespace_sem);
1661 	mnt = lookup_mnt(path);
1662 	if (likely(!mnt))
1663 		return 0;
1664 	up_write(&namespace_sem);
1665 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1666 	path_put(path);
1667 	path->mnt = mnt;
1668 	path->dentry = dget(mnt->mnt_root);
1669 	goto retry;
1670 }
1671 
1672 static void unlock_mount(struct path *path)
1673 {
1674 	up_write(&namespace_sem);
1675 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1676 }
1677 
1678 static int graft_tree(struct vfsmount *mnt, struct path *path)
1679 {
1680 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1681 		return -EINVAL;
1682 
1683 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1684 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1685 		return -ENOTDIR;
1686 
1687 	if (d_unlinked(path->dentry))
1688 		return -ENOENT;
1689 
1690 	return attach_recursive_mnt(mnt, path, NULL);
1691 }
1692 
1693 /*
1694  * Sanity check the flags to change_mnt_propagation.
1695  */
1696 
1697 static int flags_to_propagation_type(int flags)
1698 {
1699 	int type = flags & ~(MS_REC | MS_SILENT);
1700 
1701 	/* Fail if any non-propagation flags are set */
1702 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1703 		return 0;
1704 	/* Only one propagation flag should be set */
1705 	if (!is_power_of_2(type))
1706 		return 0;
1707 	return type;
1708 }
1709 
1710 /*
1711  * recursively change the type of the mountpoint.
1712  */
1713 static int do_change_type(struct path *path, int flag)
1714 {
1715 	struct vfsmount *m, *mnt = path->mnt;
1716 	int recurse = flag & MS_REC;
1717 	int type;
1718 	int err = 0;
1719 
1720 	if (!capable(CAP_SYS_ADMIN))
1721 		return -EPERM;
1722 
1723 	if (path->dentry != path->mnt->mnt_root)
1724 		return -EINVAL;
1725 
1726 	type = flags_to_propagation_type(flag);
1727 	if (!type)
1728 		return -EINVAL;
1729 
1730 	down_write(&namespace_sem);
1731 	if (type == MS_SHARED) {
1732 		err = invent_group_ids(mnt, recurse);
1733 		if (err)
1734 			goto out_unlock;
1735 	}
1736 
1737 	br_write_lock(vfsmount_lock);
1738 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1739 		change_mnt_propagation(m, type);
1740 	br_write_unlock(vfsmount_lock);
1741 
1742  out_unlock:
1743 	up_write(&namespace_sem);
1744 	return err;
1745 }
1746 
1747 /*
1748  * do loopback mount.
1749  */
1750 static int do_loopback(struct path *path, char *old_name,
1751 				int recurse)
1752 {
1753 	LIST_HEAD(umount_list);
1754 	struct path old_path;
1755 	struct vfsmount *mnt = NULL;
1756 	int err = mount_is_safe(path);
1757 	if (err)
1758 		return err;
1759 	if (!old_name || !*old_name)
1760 		return -EINVAL;
1761 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1762 	if (err)
1763 		return err;
1764 
1765 	err = lock_mount(path);
1766 	if (err)
1767 		goto out;
1768 
1769 	err = -EINVAL;
1770 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1771 		goto out2;
1772 
1773 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1774 		goto out2;
1775 
1776 	err = -ENOMEM;
1777 	if (recurse)
1778 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1779 	else
1780 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1781 
1782 	if (!mnt)
1783 		goto out2;
1784 
1785 	err = graft_tree(mnt, path);
1786 	if (err) {
1787 		br_write_lock(vfsmount_lock);
1788 		umount_tree(mnt, 0, &umount_list);
1789 		br_write_unlock(vfsmount_lock);
1790 	}
1791 out2:
1792 	unlock_mount(path);
1793 	release_mounts(&umount_list);
1794 out:
1795 	path_put(&old_path);
1796 	return err;
1797 }
1798 
1799 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1800 {
1801 	int error = 0;
1802 	int readonly_request = 0;
1803 
1804 	if (ms_flags & MS_RDONLY)
1805 		readonly_request = 1;
1806 	if (readonly_request == __mnt_is_readonly(mnt))
1807 		return 0;
1808 
1809 	if (readonly_request)
1810 		error = mnt_make_readonly(mnt);
1811 	else
1812 		__mnt_unmake_readonly(mnt);
1813 	return error;
1814 }
1815 
1816 /*
1817  * change filesystem flags. dir should be a physical root of filesystem.
1818  * If you've mounted a non-root directory somewhere and want to do remount
1819  * on it - tough luck.
1820  */
1821 static int do_remount(struct path *path, int flags, int mnt_flags,
1822 		      void *data)
1823 {
1824 	int err;
1825 	struct super_block *sb = path->mnt->mnt_sb;
1826 
1827 	if (!capable(CAP_SYS_ADMIN))
1828 		return -EPERM;
1829 
1830 	if (!check_mnt(path->mnt))
1831 		return -EINVAL;
1832 
1833 	if (path->dentry != path->mnt->mnt_root)
1834 		return -EINVAL;
1835 
1836 	err = security_sb_remount(sb, data);
1837 	if (err)
1838 		return err;
1839 
1840 	down_write(&sb->s_umount);
1841 	if (flags & MS_BIND)
1842 		err = change_mount_flags(path->mnt, flags);
1843 	else
1844 		err = do_remount_sb(sb, flags, data, 0);
1845 	if (!err) {
1846 		br_write_lock(vfsmount_lock);
1847 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1848 		path->mnt->mnt_flags = mnt_flags;
1849 		br_write_unlock(vfsmount_lock);
1850 	}
1851 	up_write(&sb->s_umount);
1852 	if (!err) {
1853 		br_write_lock(vfsmount_lock);
1854 		touch_mnt_namespace(path->mnt->mnt_ns);
1855 		br_write_unlock(vfsmount_lock);
1856 	}
1857 	return err;
1858 }
1859 
1860 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1861 {
1862 	struct vfsmount *p;
1863 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1864 		if (IS_MNT_UNBINDABLE(p))
1865 			return 1;
1866 	}
1867 	return 0;
1868 }
1869 
1870 static int do_move_mount(struct path *path, char *old_name)
1871 {
1872 	struct path old_path, parent_path;
1873 	struct vfsmount *p;
1874 	int err = 0;
1875 	if (!capable(CAP_SYS_ADMIN))
1876 		return -EPERM;
1877 	if (!old_name || !*old_name)
1878 		return -EINVAL;
1879 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1880 	if (err)
1881 		return err;
1882 
1883 	err = lock_mount(path);
1884 	if (err < 0)
1885 		goto out;
1886 
1887 	err = -EINVAL;
1888 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1889 		goto out1;
1890 
1891 	if (d_unlinked(path->dentry))
1892 		goto out1;
1893 
1894 	err = -EINVAL;
1895 	if (old_path.dentry != old_path.mnt->mnt_root)
1896 		goto out1;
1897 
1898 	if (old_path.mnt == old_path.mnt->mnt_parent)
1899 		goto out1;
1900 
1901 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1902 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1903 		goto out1;
1904 	/*
1905 	 * Don't move a mount residing in a shared parent.
1906 	 */
1907 	if (old_path.mnt->mnt_parent &&
1908 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1909 		goto out1;
1910 	/*
1911 	 * Don't move a mount tree containing unbindable mounts to a destination
1912 	 * mount which is shared.
1913 	 */
1914 	if (IS_MNT_SHARED(path->mnt) &&
1915 	    tree_contains_unbindable(old_path.mnt))
1916 		goto out1;
1917 	err = -ELOOP;
1918 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1919 		if (p == old_path.mnt)
1920 			goto out1;
1921 
1922 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1923 	if (err)
1924 		goto out1;
1925 
1926 	/* if the mount is moved, it should no longer be expire
1927 	 * automatically */
1928 	list_del_init(&old_path.mnt->mnt_expire);
1929 out1:
1930 	unlock_mount(path);
1931 out:
1932 	if (!err)
1933 		path_put(&parent_path);
1934 	path_put(&old_path);
1935 	return err;
1936 }
1937 
1938 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1939 {
1940 	int err;
1941 	const char *subtype = strchr(fstype, '.');
1942 	if (subtype) {
1943 		subtype++;
1944 		err = -EINVAL;
1945 		if (!subtype[0])
1946 			goto err;
1947 	} else
1948 		subtype = "";
1949 
1950 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1951 	err = -ENOMEM;
1952 	if (!mnt->mnt_sb->s_subtype)
1953 		goto err;
1954 	return mnt;
1955 
1956  err:
1957 	mntput(mnt);
1958 	return ERR_PTR(err);
1959 }
1960 
1961 struct vfsmount *
1962 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1963 {
1964 	struct file_system_type *type = get_fs_type(fstype);
1965 	struct vfsmount *mnt;
1966 	if (!type)
1967 		return ERR_PTR(-ENODEV);
1968 	mnt = vfs_kern_mount(type, flags, name, data);
1969 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1970 	    !mnt->mnt_sb->s_subtype)
1971 		mnt = fs_set_subtype(mnt, fstype);
1972 	put_filesystem(type);
1973 	return mnt;
1974 }
1975 EXPORT_SYMBOL_GPL(do_kern_mount);
1976 
1977 /*
1978  * add a mount into a namespace's mount tree
1979  */
1980 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1981 {
1982 	int err;
1983 
1984 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1985 
1986 	err = lock_mount(path);
1987 	if (err)
1988 		return err;
1989 
1990 	err = -EINVAL;
1991 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1992 		goto unlock;
1993 
1994 	/* Refuse the same filesystem on the same mount point */
1995 	err = -EBUSY;
1996 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1997 	    path->mnt->mnt_root == path->dentry)
1998 		goto unlock;
1999 
2000 	err = -EINVAL;
2001 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
2002 		goto unlock;
2003 
2004 	newmnt->mnt_flags = mnt_flags;
2005 	err = graft_tree(newmnt, path);
2006 
2007 unlock:
2008 	unlock_mount(path);
2009 	return err;
2010 }
2011 
2012 /*
2013  * create a new mount for userspace and request it to be added into the
2014  * namespace's tree
2015  */
2016 static int do_new_mount(struct path *path, char *type, int flags,
2017 			int mnt_flags, char *name, void *data)
2018 {
2019 	struct vfsmount *mnt;
2020 	int err;
2021 
2022 	if (!type)
2023 		return -EINVAL;
2024 
2025 	/* we need capabilities... */
2026 	if (!capable(CAP_SYS_ADMIN))
2027 		return -EPERM;
2028 
2029 	mnt = do_kern_mount(type, flags, name, data);
2030 	if (IS_ERR(mnt))
2031 		return PTR_ERR(mnt);
2032 
2033 	err = do_add_mount(mnt, path, mnt_flags);
2034 	if (err)
2035 		mntput(mnt);
2036 	return err;
2037 }
2038 
2039 int finish_automount(struct vfsmount *m, struct path *path)
2040 {
2041 	int err;
2042 	/* The new mount record should have at least 2 refs to prevent it being
2043 	 * expired before we get a chance to add it
2044 	 */
2045 	BUG_ON(mnt_get_count(m) < 2);
2046 
2047 	if (m->mnt_sb == path->mnt->mnt_sb &&
2048 	    m->mnt_root == path->dentry) {
2049 		err = -ELOOP;
2050 		goto fail;
2051 	}
2052 
2053 	err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2054 	if (!err)
2055 		return 0;
2056 fail:
2057 	/* remove m from any expiration list it may be on */
2058 	if (!list_empty(&m->mnt_expire)) {
2059 		down_write(&namespace_sem);
2060 		br_write_lock(vfsmount_lock);
2061 		list_del_init(&m->mnt_expire);
2062 		br_write_unlock(vfsmount_lock);
2063 		up_write(&namespace_sem);
2064 	}
2065 	mntput(m);
2066 	mntput(m);
2067 	return err;
2068 }
2069 
2070 /**
2071  * mnt_set_expiry - Put a mount on an expiration list
2072  * @mnt: The mount to list.
2073  * @expiry_list: The list to add the mount to.
2074  */
2075 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2076 {
2077 	down_write(&namespace_sem);
2078 	br_write_lock(vfsmount_lock);
2079 
2080 	list_add_tail(&mnt->mnt_expire, expiry_list);
2081 
2082 	br_write_unlock(vfsmount_lock);
2083 	up_write(&namespace_sem);
2084 }
2085 EXPORT_SYMBOL(mnt_set_expiry);
2086 
2087 /*
2088  * process a list of expirable mountpoints with the intent of discarding any
2089  * mountpoints that aren't in use and haven't been touched since last we came
2090  * here
2091  */
2092 void mark_mounts_for_expiry(struct list_head *mounts)
2093 {
2094 	struct vfsmount *mnt, *next;
2095 	LIST_HEAD(graveyard);
2096 	LIST_HEAD(umounts);
2097 
2098 	if (list_empty(mounts))
2099 		return;
2100 
2101 	down_write(&namespace_sem);
2102 	br_write_lock(vfsmount_lock);
2103 
2104 	/* extract from the expiration list every vfsmount that matches the
2105 	 * following criteria:
2106 	 * - only referenced by its parent vfsmount
2107 	 * - still marked for expiry (marked on the last call here; marks are
2108 	 *   cleared by mntput())
2109 	 */
2110 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2111 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2112 			propagate_mount_busy(mnt, 1))
2113 			continue;
2114 		list_move(&mnt->mnt_expire, &graveyard);
2115 	}
2116 	while (!list_empty(&graveyard)) {
2117 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2118 		touch_mnt_namespace(mnt->mnt_ns);
2119 		umount_tree(mnt, 1, &umounts);
2120 	}
2121 	br_write_unlock(vfsmount_lock);
2122 	up_write(&namespace_sem);
2123 
2124 	release_mounts(&umounts);
2125 }
2126 
2127 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2128 
2129 /*
2130  * Ripoff of 'select_parent()'
2131  *
2132  * search the list of submounts for a given mountpoint, and move any
2133  * shrinkable submounts to the 'graveyard' list.
2134  */
2135 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2136 {
2137 	struct vfsmount *this_parent = parent;
2138 	struct list_head *next;
2139 	int found = 0;
2140 
2141 repeat:
2142 	next = this_parent->mnt_mounts.next;
2143 resume:
2144 	while (next != &this_parent->mnt_mounts) {
2145 		struct list_head *tmp = next;
2146 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2147 
2148 		next = tmp->next;
2149 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2150 			continue;
2151 		/*
2152 		 * Descend a level if the d_mounts list is non-empty.
2153 		 */
2154 		if (!list_empty(&mnt->mnt_mounts)) {
2155 			this_parent = mnt;
2156 			goto repeat;
2157 		}
2158 
2159 		if (!propagate_mount_busy(mnt, 1)) {
2160 			list_move_tail(&mnt->mnt_expire, graveyard);
2161 			found++;
2162 		}
2163 	}
2164 	/*
2165 	 * All done at this level ... ascend and resume the search
2166 	 */
2167 	if (this_parent != parent) {
2168 		next = this_parent->mnt_child.next;
2169 		this_parent = this_parent->mnt_parent;
2170 		goto resume;
2171 	}
2172 	return found;
2173 }
2174 
2175 /*
2176  * process a list of expirable mountpoints with the intent of discarding any
2177  * submounts of a specific parent mountpoint
2178  *
2179  * vfsmount_lock must be held for write
2180  */
2181 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2182 {
2183 	LIST_HEAD(graveyard);
2184 	struct vfsmount *m;
2185 
2186 	/* extract submounts of 'mountpoint' from the expiration list */
2187 	while (select_submounts(mnt, &graveyard)) {
2188 		while (!list_empty(&graveyard)) {
2189 			m = list_first_entry(&graveyard, struct vfsmount,
2190 						mnt_expire);
2191 			touch_mnt_namespace(m->mnt_ns);
2192 			umount_tree(m, 1, umounts);
2193 		}
2194 	}
2195 }
2196 
2197 /*
2198  * Some copy_from_user() implementations do not return the exact number of
2199  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2200  * Note that this function differs from copy_from_user() in that it will oops
2201  * on bad values of `to', rather than returning a short copy.
2202  */
2203 static long exact_copy_from_user(void *to, const void __user * from,
2204 				 unsigned long n)
2205 {
2206 	char *t = to;
2207 	const char __user *f = from;
2208 	char c;
2209 
2210 	if (!access_ok(VERIFY_READ, from, n))
2211 		return n;
2212 
2213 	while (n) {
2214 		if (__get_user(c, f)) {
2215 			memset(t, 0, n);
2216 			break;
2217 		}
2218 		*t++ = c;
2219 		f++;
2220 		n--;
2221 	}
2222 	return n;
2223 }
2224 
2225 int copy_mount_options(const void __user * data, unsigned long *where)
2226 {
2227 	int i;
2228 	unsigned long page;
2229 	unsigned long size;
2230 
2231 	*where = 0;
2232 	if (!data)
2233 		return 0;
2234 
2235 	if (!(page = __get_free_page(GFP_KERNEL)))
2236 		return -ENOMEM;
2237 
2238 	/* We only care that *some* data at the address the user
2239 	 * gave us is valid.  Just in case, we'll zero
2240 	 * the remainder of the page.
2241 	 */
2242 	/* copy_from_user cannot cross TASK_SIZE ! */
2243 	size = TASK_SIZE - (unsigned long)data;
2244 	if (size > PAGE_SIZE)
2245 		size = PAGE_SIZE;
2246 
2247 	i = size - exact_copy_from_user((void *)page, data, size);
2248 	if (!i) {
2249 		free_page(page);
2250 		return -EFAULT;
2251 	}
2252 	if (i != PAGE_SIZE)
2253 		memset((char *)page + i, 0, PAGE_SIZE - i);
2254 	*where = page;
2255 	return 0;
2256 }
2257 
2258 int copy_mount_string(const void __user *data, char **where)
2259 {
2260 	char *tmp;
2261 
2262 	if (!data) {
2263 		*where = NULL;
2264 		return 0;
2265 	}
2266 
2267 	tmp = strndup_user(data, PAGE_SIZE);
2268 	if (IS_ERR(tmp))
2269 		return PTR_ERR(tmp);
2270 
2271 	*where = tmp;
2272 	return 0;
2273 }
2274 
2275 /*
2276  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2277  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2278  *
2279  * data is a (void *) that can point to any structure up to
2280  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2281  * information (or be NULL).
2282  *
2283  * Pre-0.97 versions of mount() didn't have a flags word.
2284  * When the flags word was introduced its top half was required
2285  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2286  * Therefore, if this magic number is present, it carries no information
2287  * and must be discarded.
2288  */
2289 long do_mount(char *dev_name, char *dir_name, char *type_page,
2290 		  unsigned long flags, void *data_page)
2291 {
2292 	struct path path;
2293 	int retval = 0;
2294 	int mnt_flags = 0;
2295 
2296 	/* Discard magic */
2297 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2298 		flags &= ~MS_MGC_MSK;
2299 
2300 	/* Basic sanity checks */
2301 
2302 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2303 		return -EINVAL;
2304 
2305 	if (data_page)
2306 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2307 
2308 	/* ... and get the mountpoint */
2309 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2310 	if (retval)
2311 		return retval;
2312 
2313 	retval = security_sb_mount(dev_name, &path,
2314 				   type_page, flags, data_page);
2315 	if (retval)
2316 		goto dput_out;
2317 
2318 	/* Default to relatime unless overriden */
2319 	if (!(flags & MS_NOATIME))
2320 		mnt_flags |= MNT_RELATIME;
2321 
2322 	/* Separate the per-mountpoint flags */
2323 	if (flags & MS_NOSUID)
2324 		mnt_flags |= MNT_NOSUID;
2325 	if (flags & MS_NODEV)
2326 		mnt_flags |= MNT_NODEV;
2327 	if (flags & MS_NOEXEC)
2328 		mnt_flags |= MNT_NOEXEC;
2329 	if (flags & MS_NOATIME)
2330 		mnt_flags |= MNT_NOATIME;
2331 	if (flags & MS_NODIRATIME)
2332 		mnt_flags |= MNT_NODIRATIME;
2333 	if (flags & MS_STRICTATIME)
2334 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2335 	if (flags & MS_RDONLY)
2336 		mnt_flags |= MNT_READONLY;
2337 
2338 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2339 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2340 		   MS_STRICTATIME);
2341 
2342 	if (flags & MS_REMOUNT)
2343 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2344 				    data_page);
2345 	else if (flags & MS_BIND)
2346 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2347 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2348 		retval = do_change_type(&path, flags);
2349 	else if (flags & MS_MOVE)
2350 		retval = do_move_mount(&path, dev_name);
2351 	else
2352 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2353 				      dev_name, data_page);
2354 dput_out:
2355 	path_put(&path);
2356 	return retval;
2357 }
2358 
2359 static struct mnt_namespace *alloc_mnt_ns(void)
2360 {
2361 	struct mnt_namespace *new_ns;
2362 
2363 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2364 	if (!new_ns)
2365 		return ERR_PTR(-ENOMEM);
2366 	atomic_set(&new_ns->count, 1);
2367 	new_ns->root = NULL;
2368 	INIT_LIST_HEAD(&new_ns->list);
2369 	init_waitqueue_head(&new_ns->poll);
2370 	new_ns->event = 0;
2371 	return new_ns;
2372 }
2373 
2374 void mnt_make_longterm(struct vfsmount *mnt)
2375 {
2376 	__mnt_make_longterm(mnt);
2377 }
2378 
2379 void mnt_make_shortterm(struct vfsmount *mnt)
2380 {
2381 #ifdef CONFIG_SMP
2382 	if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2383 		return;
2384 	br_write_lock(vfsmount_lock);
2385 	atomic_dec(&mnt->mnt_longterm);
2386 	br_write_unlock(vfsmount_lock);
2387 #endif
2388 }
2389 
2390 /*
2391  * Allocate a new namespace structure and populate it with contents
2392  * copied from the namespace of the passed in task structure.
2393  */
2394 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2395 		struct fs_struct *fs)
2396 {
2397 	struct mnt_namespace *new_ns;
2398 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2399 	struct vfsmount *p, *q;
2400 
2401 	new_ns = alloc_mnt_ns();
2402 	if (IS_ERR(new_ns))
2403 		return new_ns;
2404 
2405 	down_write(&namespace_sem);
2406 	/* First pass: copy the tree topology */
2407 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2408 					CL_COPY_ALL | CL_EXPIRE);
2409 	if (!new_ns->root) {
2410 		up_write(&namespace_sem);
2411 		kfree(new_ns);
2412 		return ERR_PTR(-ENOMEM);
2413 	}
2414 	br_write_lock(vfsmount_lock);
2415 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2416 	br_write_unlock(vfsmount_lock);
2417 
2418 	/*
2419 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2420 	 * as belonging to new namespace.  We have already acquired a private
2421 	 * fs_struct, so tsk->fs->lock is not needed.
2422 	 */
2423 	p = mnt_ns->root;
2424 	q = new_ns->root;
2425 	while (p) {
2426 		q->mnt_ns = new_ns;
2427 		__mnt_make_longterm(q);
2428 		if (fs) {
2429 			if (p == fs->root.mnt) {
2430 				fs->root.mnt = mntget(q);
2431 				__mnt_make_longterm(q);
2432 				mnt_make_shortterm(p);
2433 				rootmnt = p;
2434 			}
2435 			if (p == fs->pwd.mnt) {
2436 				fs->pwd.mnt = mntget(q);
2437 				__mnt_make_longterm(q);
2438 				mnt_make_shortterm(p);
2439 				pwdmnt = p;
2440 			}
2441 		}
2442 		p = next_mnt(p, mnt_ns->root);
2443 		q = next_mnt(q, new_ns->root);
2444 	}
2445 	up_write(&namespace_sem);
2446 
2447 	if (rootmnt)
2448 		mntput(rootmnt);
2449 	if (pwdmnt)
2450 		mntput(pwdmnt);
2451 
2452 	return new_ns;
2453 }
2454 
2455 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2456 		struct fs_struct *new_fs)
2457 {
2458 	struct mnt_namespace *new_ns;
2459 
2460 	BUG_ON(!ns);
2461 	get_mnt_ns(ns);
2462 
2463 	if (!(flags & CLONE_NEWNS))
2464 		return ns;
2465 
2466 	new_ns = dup_mnt_ns(ns, new_fs);
2467 
2468 	put_mnt_ns(ns);
2469 	return new_ns;
2470 }
2471 
2472 /**
2473  * create_mnt_ns - creates a private namespace and adds a root filesystem
2474  * @mnt: pointer to the new root filesystem mountpoint
2475  */
2476 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2477 {
2478 	struct mnt_namespace *new_ns;
2479 
2480 	new_ns = alloc_mnt_ns();
2481 	if (!IS_ERR(new_ns)) {
2482 		mnt->mnt_ns = new_ns;
2483 		__mnt_make_longterm(mnt);
2484 		new_ns->root = mnt;
2485 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2486 	}
2487 	return new_ns;
2488 }
2489 EXPORT_SYMBOL(create_mnt_ns);
2490 
2491 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2492 		char __user *, type, unsigned long, flags, void __user *, data)
2493 {
2494 	int ret;
2495 	char *kernel_type;
2496 	char *kernel_dir;
2497 	char *kernel_dev;
2498 	unsigned long data_page;
2499 
2500 	ret = copy_mount_string(type, &kernel_type);
2501 	if (ret < 0)
2502 		goto out_type;
2503 
2504 	kernel_dir = getname(dir_name);
2505 	if (IS_ERR(kernel_dir)) {
2506 		ret = PTR_ERR(kernel_dir);
2507 		goto out_dir;
2508 	}
2509 
2510 	ret = copy_mount_string(dev_name, &kernel_dev);
2511 	if (ret < 0)
2512 		goto out_dev;
2513 
2514 	ret = copy_mount_options(data, &data_page);
2515 	if (ret < 0)
2516 		goto out_data;
2517 
2518 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2519 		(void *) data_page);
2520 
2521 	free_page(data_page);
2522 out_data:
2523 	kfree(kernel_dev);
2524 out_dev:
2525 	putname(kernel_dir);
2526 out_dir:
2527 	kfree(kernel_type);
2528 out_type:
2529 	return ret;
2530 }
2531 
2532 /*
2533  * pivot_root Semantics:
2534  * Moves the root file system of the current process to the directory put_old,
2535  * makes new_root as the new root file system of the current process, and sets
2536  * root/cwd of all processes which had them on the current root to new_root.
2537  *
2538  * Restrictions:
2539  * The new_root and put_old must be directories, and  must not be on the
2540  * same file  system as the current process root. The put_old  must  be
2541  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2542  * pointed to by put_old must yield the same directory as new_root. No other
2543  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2544  *
2545  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2546  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2547  * in this situation.
2548  *
2549  * Notes:
2550  *  - we don't move root/cwd if they are not at the root (reason: if something
2551  *    cared enough to change them, it's probably wrong to force them elsewhere)
2552  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2553  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2554  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2555  *    first.
2556  */
2557 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2558 		const char __user *, put_old)
2559 {
2560 	struct vfsmount *tmp;
2561 	struct path new, old, parent_path, root_parent, root;
2562 	int error;
2563 
2564 	if (!capable(CAP_SYS_ADMIN))
2565 		return -EPERM;
2566 
2567 	error = user_path_dir(new_root, &new);
2568 	if (error)
2569 		goto out0;
2570 
2571 	error = user_path_dir(put_old, &old);
2572 	if (error)
2573 		goto out1;
2574 
2575 	error = security_sb_pivotroot(&old, &new);
2576 	if (error)
2577 		goto out2;
2578 
2579 	get_fs_root(current->fs, &root);
2580 	error = lock_mount(&old);
2581 	if (error)
2582 		goto out3;
2583 
2584 	error = -EINVAL;
2585 	if (IS_MNT_SHARED(old.mnt) ||
2586 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2587 		IS_MNT_SHARED(root.mnt->mnt_parent))
2588 		goto out4;
2589 	if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2590 		goto out4;
2591 	error = -ENOENT;
2592 	if (d_unlinked(new.dentry))
2593 		goto out4;
2594 	if (d_unlinked(old.dentry))
2595 		goto out4;
2596 	error = -EBUSY;
2597 	if (new.mnt == root.mnt ||
2598 	    old.mnt == root.mnt)
2599 		goto out4; /* loop, on the same file system  */
2600 	error = -EINVAL;
2601 	if (root.mnt->mnt_root != root.dentry)
2602 		goto out4; /* not a mountpoint */
2603 	if (root.mnt->mnt_parent == root.mnt)
2604 		goto out4; /* not attached */
2605 	if (new.mnt->mnt_root != new.dentry)
2606 		goto out4; /* not a mountpoint */
2607 	if (new.mnt->mnt_parent == new.mnt)
2608 		goto out4; /* not attached */
2609 	/* make sure we can reach put_old from new_root */
2610 	tmp = old.mnt;
2611 	if (tmp != new.mnt) {
2612 		for (;;) {
2613 			if (tmp->mnt_parent == tmp)
2614 				goto out4; /* already mounted on put_old */
2615 			if (tmp->mnt_parent == new.mnt)
2616 				break;
2617 			tmp = tmp->mnt_parent;
2618 		}
2619 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2620 			goto out4;
2621 	} else if (!is_subdir(old.dentry, new.dentry))
2622 		goto out4;
2623 	br_write_lock(vfsmount_lock);
2624 	detach_mnt(new.mnt, &parent_path);
2625 	detach_mnt(root.mnt, &root_parent);
2626 	/* mount old root on put_old */
2627 	attach_mnt(root.mnt, &old);
2628 	/* mount new_root on / */
2629 	attach_mnt(new.mnt, &root_parent);
2630 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2631 	br_write_unlock(vfsmount_lock);
2632 	chroot_fs_refs(&root, &new);
2633 	error = 0;
2634 out4:
2635 	unlock_mount(&old);
2636 	if (!error) {
2637 		path_put(&root_parent);
2638 		path_put(&parent_path);
2639 	}
2640 out3:
2641 	path_put(&root);
2642 out2:
2643 	path_put(&old);
2644 out1:
2645 	path_put(&new);
2646 out0:
2647 	return error;
2648 }
2649 
2650 static void __init init_mount_tree(void)
2651 {
2652 	struct vfsmount *mnt;
2653 	struct mnt_namespace *ns;
2654 	struct path root;
2655 
2656 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2657 	if (IS_ERR(mnt))
2658 		panic("Can't create rootfs");
2659 
2660 	ns = create_mnt_ns(mnt);
2661 	if (IS_ERR(ns))
2662 		panic("Can't allocate initial namespace");
2663 
2664 	init_task.nsproxy->mnt_ns = ns;
2665 	get_mnt_ns(ns);
2666 
2667 	root.mnt = ns->root;
2668 	root.dentry = ns->root->mnt_root;
2669 
2670 	set_fs_pwd(current->fs, &root);
2671 	set_fs_root(current->fs, &root);
2672 }
2673 
2674 void __init mnt_init(void)
2675 {
2676 	unsigned u;
2677 	int err;
2678 
2679 	init_rwsem(&namespace_sem);
2680 
2681 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2682 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2683 
2684 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2685 
2686 	if (!mount_hashtable)
2687 		panic("Failed to allocate mount hash table\n");
2688 
2689 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2690 
2691 	for (u = 0; u < HASH_SIZE; u++)
2692 		INIT_LIST_HEAD(&mount_hashtable[u]);
2693 
2694 	br_lock_init(vfsmount_lock);
2695 
2696 	err = sysfs_init();
2697 	if (err)
2698 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2699 			__func__, err);
2700 	fs_kobj = kobject_create_and_add("fs", NULL);
2701 	if (!fs_kobj)
2702 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2703 	init_rootfs();
2704 	init_mount_tree();
2705 }
2706 
2707 void put_mnt_ns(struct mnt_namespace *ns)
2708 {
2709 	LIST_HEAD(umount_list);
2710 
2711 	if (!atomic_dec_and_test(&ns->count))
2712 		return;
2713 	down_write(&namespace_sem);
2714 	br_write_lock(vfsmount_lock);
2715 	umount_tree(ns->root, 0, &umount_list);
2716 	br_write_unlock(vfsmount_lock);
2717 	up_write(&namespace_sem);
2718 	release_mounts(&umount_list);
2719 	kfree(ns);
2720 }
2721 EXPORT_SYMBOL(put_mnt_ns);
2722 
2723 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2724 {
2725 	struct vfsmount *mnt;
2726 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2727 	if (!IS_ERR(mnt)) {
2728 		/*
2729 		 * it is a longterm mount, don't release mnt until
2730 		 * we unmount before file sys is unregistered
2731 		*/
2732 		mnt_make_longterm(mnt);
2733 	}
2734 	return mnt;
2735 }
2736 EXPORT_SYMBOL_GPL(kern_mount_data);
2737 
2738 void kern_unmount(struct vfsmount *mnt)
2739 {
2740 	/* release long term mount so mount point can be released */
2741 	if (!IS_ERR_OR_NULL(mnt)) {
2742 		mnt_make_shortterm(mnt);
2743 		mntput(mnt);
2744 	}
2745 }
2746 EXPORT_SYMBOL(kern_unmount);
2747