xref: /linux/fs/namespace.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
32 #include "internal.h"
33 
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
36 
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
39 
40 static int event;
41 
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
45 
46 /* /sys/fs */
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
49 
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
51 {
52 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 	tmp = tmp + (tmp >> HASH_SHIFT);
55 	return tmp & (HASH_SIZE - 1);
56 }
57 
58 struct vfsmount *alloc_vfsmnt(const char *name)
59 {
60 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 	if (mnt) {
62 		atomic_set(&mnt->mnt_count, 1);
63 		INIT_LIST_HEAD(&mnt->mnt_hash);
64 		INIT_LIST_HEAD(&mnt->mnt_child);
65 		INIT_LIST_HEAD(&mnt->mnt_mounts);
66 		INIT_LIST_HEAD(&mnt->mnt_list);
67 		INIT_LIST_HEAD(&mnt->mnt_expire);
68 		INIT_LIST_HEAD(&mnt->mnt_share);
69 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 		INIT_LIST_HEAD(&mnt->mnt_slave);
71 		if (name) {
72 			int size = strlen(name) + 1;
73 			char *newname = kmalloc(size, GFP_KERNEL);
74 			if (newname) {
75 				memcpy(newname, name, size);
76 				mnt->mnt_devname = newname;
77 			}
78 		}
79 	}
80 	return mnt;
81 }
82 
83 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
84 {
85 	mnt->mnt_sb = sb;
86 	mnt->mnt_root = dget(sb->s_root);
87 	return 0;
88 }
89 
90 EXPORT_SYMBOL(simple_set_mnt);
91 
92 void free_vfsmnt(struct vfsmount *mnt)
93 {
94 	kfree(mnt->mnt_devname);
95 	kmem_cache_free(mnt_cache, mnt);
96 }
97 
98 /*
99  * find the first or last mount at @dentry on vfsmount @mnt depending on
100  * @dir. If @dir is set return the first mount else return the last mount.
101  */
102 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
103 			      int dir)
104 {
105 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
106 	struct list_head *tmp = head;
107 	struct vfsmount *p, *found = NULL;
108 
109 	for (;;) {
110 		tmp = dir ? tmp->next : tmp->prev;
111 		p = NULL;
112 		if (tmp == head)
113 			break;
114 		p = list_entry(tmp, struct vfsmount, mnt_hash);
115 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
116 			found = p;
117 			break;
118 		}
119 	}
120 	return found;
121 }
122 
123 /*
124  * lookup_mnt increments the ref count before returning
125  * the vfsmount struct.
126  */
127 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
128 {
129 	struct vfsmount *child_mnt;
130 	spin_lock(&vfsmount_lock);
131 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
132 		mntget(child_mnt);
133 	spin_unlock(&vfsmount_lock);
134 	return child_mnt;
135 }
136 
137 static inline int check_mnt(struct vfsmount *mnt)
138 {
139 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
140 }
141 
142 static void touch_mnt_namespace(struct mnt_namespace *ns)
143 {
144 	if (ns) {
145 		ns->event = ++event;
146 		wake_up_interruptible(&ns->poll);
147 	}
148 }
149 
150 static void __touch_mnt_namespace(struct mnt_namespace *ns)
151 {
152 	if (ns && ns->event != event) {
153 		ns->event = event;
154 		wake_up_interruptible(&ns->poll);
155 	}
156 }
157 
158 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
159 {
160 	old_nd->dentry = mnt->mnt_mountpoint;
161 	old_nd->mnt = mnt->mnt_parent;
162 	mnt->mnt_parent = mnt;
163 	mnt->mnt_mountpoint = mnt->mnt_root;
164 	list_del_init(&mnt->mnt_child);
165 	list_del_init(&mnt->mnt_hash);
166 	old_nd->dentry->d_mounted--;
167 }
168 
169 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
170 			struct vfsmount *child_mnt)
171 {
172 	child_mnt->mnt_parent = mntget(mnt);
173 	child_mnt->mnt_mountpoint = dget(dentry);
174 	dentry->d_mounted++;
175 }
176 
177 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
178 {
179 	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
180 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
181 			hash(nd->mnt, nd->dentry));
182 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
183 }
184 
185 /*
186  * the caller must hold vfsmount_lock
187  */
188 static void commit_tree(struct vfsmount *mnt)
189 {
190 	struct vfsmount *parent = mnt->mnt_parent;
191 	struct vfsmount *m;
192 	LIST_HEAD(head);
193 	struct mnt_namespace *n = parent->mnt_ns;
194 
195 	BUG_ON(parent == mnt);
196 
197 	list_add_tail(&head, &mnt->mnt_list);
198 	list_for_each_entry(m, &head, mnt_list)
199 		m->mnt_ns = n;
200 	list_splice(&head, n->list.prev);
201 
202 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
203 				hash(parent, mnt->mnt_mountpoint));
204 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
205 	touch_mnt_namespace(n);
206 }
207 
208 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
209 {
210 	struct list_head *next = p->mnt_mounts.next;
211 	if (next == &p->mnt_mounts) {
212 		while (1) {
213 			if (p == root)
214 				return NULL;
215 			next = p->mnt_child.next;
216 			if (next != &p->mnt_parent->mnt_mounts)
217 				break;
218 			p = p->mnt_parent;
219 		}
220 	}
221 	return list_entry(next, struct vfsmount, mnt_child);
222 }
223 
224 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
225 {
226 	struct list_head *prev = p->mnt_mounts.prev;
227 	while (prev != &p->mnt_mounts) {
228 		p = list_entry(prev, struct vfsmount, mnt_child);
229 		prev = p->mnt_mounts.prev;
230 	}
231 	return p;
232 }
233 
234 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
235 					int flag)
236 {
237 	struct super_block *sb = old->mnt_sb;
238 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
239 
240 	if (mnt) {
241 		mnt->mnt_flags = old->mnt_flags;
242 		atomic_inc(&sb->s_active);
243 		mnt->mnt_sb = sb;
244 		mnt->mnt_root = dget(root);
245 		mnt->mnt_mountpoint = mnt->mnt_root;
246 		mnt->mnt_parent = mnt;
247 
248 		if (flag & CL_SLAVE) {
249 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
250 			mnt->mnt_master = old;
251 			CLEAR_MNT_SHARED(mnt);
252 		} else if (!(flag & CL_PRIVATE)) {
253 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
254 				list_add(&mnt->mnt_share, &old->mnt_share);
255 			if (IS_MNT_SLAVE(old))
256 				list_add(&mnt->mnt_slave, &old->mnt_slave);
257 			mnt->mnt_master = old->mnt_master;
258 		}
259 		if (flag & CL_MAKE_SHARED)
260 			set_mnt_shared(mnt);
261 
262 		/* stick the duplicate mount on the same expiry list
263 		 * as the original if that was on one */
264 		if (flag & CL_EXPIRE) {
265 			spin_lock(&vfsmount_lock);
266 			if (!list_empty(&old->mnt_expire))
267 				list_add(&mnt->mnt_expire, &old->mnt_expire);
268 			spin_unlock(&vfsmount_lock);
269 		}
270 	}
271 	return mnt;
272 }
273 
274 static inline void __mntput(struct vfsmount *mnt)
275 {
276 	struct super_block *sb = mnt->mnt_sb;
277 	dput(mnt->mnt_root);
278 	free_vfsmnt(mnt);
279 	deactivate_super(sb);
280 }
281 
282 void mntput_no_expire(struct vfsmount *mnt)
283 {
284 repeat:
285 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
286 		if (likely(!mnt->mnt_pinned)) {
287 			spin_unlock(&vfsmount_lock);
288 			__mntput(mnt);
289 			return;
290 		}
291 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
292 		mnt->mnt_pinned = 0;
293 		spin_unlock(&vfsmount_lock);
294 		acct_auto_close_mnt(mnt);
295 		security_sb_umount_close(mnt);
296 		goto repeat;
297 	}
298 }
299 
300 EXPORT_SYMBOL(mntput_no_expire);
301 
302 void mnt_pin(struct vfsmount *mnt)
303 {
304 	spin_lock(&vfsmount_lock);
305 	mnt->mnt_pinned++;
306 	spin_unlock(&vfsmount_lock);
307 }
308 
309 EXPORT_SYMBOL(mnt_pin);
310 
311 void mnt_unpin(struct vfsmount *mnt)
312 {
313 	spin_lock(&vfsmount_lock);
314 	if (mnt->mnt_pinned) {
315 		atomic_inc(&mnt->mnt_count);
316 		mnt->mnt_pinned--;
317 	}
318 	spin_unlock(&vfsmount_lock);
319 }
320 
321 EXPORT_SYMBOL(mnt_unpin);
322 
323 static inline void mangle(struct seq_file *m, const char *s)
324 {
325 	seq_escape(m, s, " \t\n\\");
326 }
327 
328 /*
329  * Simple .show_options callback for filesystems which don't want to
330  * implement more complex mount option showing.
331  *
332  * See also save_mount_options().
333  */
334 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
335 {
336 	const char *options = mnt->mnt_sb->s_options;
337 
338 	if (options != NULL && options[0]) {
339 		seq_putc(m, ',');
340 		mangle(m, options);
341 	}
342 
343 	return 0;
344 }
345 EXPORT_SYMBOL(generic_show_options);
346 
347 /*
348  * If filesystem uses generic_show_options(), this function should be
349  * called from the fill_super() callback.
350  *
351  * The .remount_fs callback usually needs to be handled in a special
352  * way, to make sure, that previous options are not overwritten if the
353  * remount fails.
354  *
355  * Also note, that if the filesystem's .remount_fs function doesn't
356  * reset all options to their default value, but changes only newly
357  * given options, then the displayed options will not reflect reality
358  * any more.
359  */
360 void save_mount_options(struct super_block *sb, char *options)
361 {
362 	kfree(sb->s_options);
363 	sb->s_options = kstrdup(options, GFP_KERNEL);
364 }
365 EXPORT_SYMBOL(save_mount_options);
366 
367 /* iterator */
368 static void *m_start(struct seq_file *m, loff_t *pos)
369 {
370 	struct mnt_namespace *n = m->private;
371 
372 	down_read(&namespace_sem);
373 	return seq_list_start(&n->list, *pos);
374 }
375 
376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
377 {
378 	struct mnt_namespace *n = m->private;
379 
380 	return seq_list_next(v, &n->list, pos);
381 }
382 
383 static void m_stop(struct seq_file *m, void *v)
384 {
385 	up_read(&namespace_sem);
386 }
387 
388 static int show_vfsmnt(struct seq_file *m, void *v)
389 {
390 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
391 	int err = 0;
392 	static struct proc_fs_info {
393 		int flag;
394 		char *str;
395 	} fs_info[] = {
396 		{ MS_SYNCHRONOUS, ",sync" },
397 		{ MS_DIRSYNC, ",dirsync" },
398 		{ MS_MANDLOCK, ",mand" },
399 		{ 0, NULL }
400 	};
401 	static struct proc_fs_info mnt_info[] = {
402 		{ MNT_NOSUID, ",nosuid" },
403 		{ MNT_NODEV, ",nodev" },
404 		{ MNT_NOEXEC, ",noexec" },
405 		{ MNT_NOATIME, ",noatime" },
406 		{ MNT_NODIRATIME, ",nodiratime" },
407 		{ MNT_RELATIME, ",relatime" },
408 		{ 0, NULL }
409 	};
410 	struct proc_fs_info *fs_infop;
411 
412 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
413 	seq_putc(m, ' ');
414 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
415 	seq_putc(m, ' ');
416 	mangle(m, mnt->mnt_sb->s_type->name);
417 	if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
418 		seq_putc(m, '.');
419 		mangle(m, mnt->mnt_sb->s_subtype);
420 	}
421 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
422 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
423 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
424 			seq_puts(m, fs_infop->str);
425 	}
426 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
427 		if (mnt->mnt_flags & fs_infop->flag)
428 			seq_puts(m, fs_infop->str);
429 	}
430 	if (mnt->mnt_sb->s_op->show_options)
431 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
432 	seq_puts(m, " 0 0\n");
433 	return err;
434 }
435 
436 struct seq_operations mounts_op = {
437 	.start	= m_start,
438 	.next	= m_next,
439 	.stop	= m_stop,
440 	.show	= show_vfsmnt
441 };
442 
443 static int show_vfsstat(struct seq_file *m, void *v)
444 {
445 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
446 	int err = 0;
447 
448 	/* device */
449 	if (mnt->mnt_devname) {
450 		seq_puts(m, "device ");
451 		mangle(m, mnt->mnt_devname);
452 	} else
453 		seq_puts(m, "no device");
454 
455 	/* mount point */
456 	seq_puts(m, " mounted on ");
457 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
458 	seq_putc(m, ' ');
459 
460 	/* file system type */
461 	seq_puts(m, "with fstype ");
462 	mangle(m, mnt->mnt_sb->s_type->name);
463 
464 	/* optional statistics */
465 	if (mnt->mnt_sb->s_op->show_stats) {
466 		seq_putc(m, ' ');
467 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
468 	}
469 
470 	seq_putc(m, '\n');
471 	return err;
472 }
473 
474 struct seq_operations mountstats_op = {
475 	.start	= m_start,
476 	.next	= m_next,
477 	.stop	= m_stop,
478 	.show	= show_vfsstat,
479 };
480 
481 /**
482  * may_umount_tree - check if a mount tree is busy
483  * @mnt: root of mount tree
484  *
485  * This is called to check if a tree of mounts has any
486  * open files, pwds, chroots or sub mounts that are
487  * busy.
488  */
489 int may_umount_tree(struct vfsmount *mnt)
490 {
491 	int actual_refs = 0;
492 	int minimum_refs = 0;
493 	struct vfsmount *p;
494 
495 	spin_lock(&vfsmount_lock);
496 	for (p = mnt; p; p = next_mnt(p, mnt)) {
497 		actual_refs += atomic_read(&p->mnt_count);
498 		minimum_refs += 2;
499 	}
500 	spin_unlock(&vfsmount_lock);
501 
502 	if (actual_refs > minimum_refs)
503 		return 0;
504 
505 	return 1;
506 }
507 
508 EXPORT_SYMBOL(may_umount_tree);
509 
510 /**
511  * may_umount - check if a mount point is busy
512  * @mnt: root of mount
513  *
514  * This is called to check if a mount point has any
515  * open files, pwds, chroots or sub mounts. If the
516  * mount has sub mounts this will return busy
517  * regardless of whether the sub mounts are busy.
518  *
519  * Doesn't take quota and stuff into account. IOW, in some cases it will
520  * give false negatives. The main reason why it's here is that we need
521  * a non-destructive way to look for easily umountable filesystems.
522  */
523 int may_umount(struct vfsmount *mnt)
524 {
525 	int ret = 1;
526 	spin_lock(&vfsmount_lock);
527 	if (propagate_mount_busy(mnt, 2))
528 		ret = 0;
529 	spin_unlock(&vfsmount_lock);
530 	return ret;
531 }
532 
533 EXPORT_SYMBOL(may_umount);
534 
535 void release_mounts(struct list_head *head)
536 {
537 	struct vfsmount *mnt;
538 	while (!list_empty(head)) {
539 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
540 		list_del_init(&mnt->mnt_hash);
541 		if (mnt->mnt_parent != mnt) {
542 			struct dentry *dentry;
543 			struct vfsmount *m;
544 			spin_lock(&vfsmount_lock);
545 			dentry = mnt->mnt_mountpoint;
546 			m = mnt->mnt_parent;
547 			mnt->mnt_mountpoint = mnt->mnt_root;
548 			mnt->mnt_parent = mnt;
549 			spin_unlock(&vfsmount_lock);
550 			dput(dentry);
551 			mntput(m);
552 		}
553 		mntput(mnt);
554 	}
555 }
556 
557 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
558 {
559 	struct vfsmount *p;
560 
561 	for (p = mnt; p; p = next_mnt(p, mnt))
562 		list_move(&p->mnt_hash, kill);
563 
564 	if (propagate)
565 		propagate_umount(kill);
566 
567 	list_for_each_entry(p, kill, mnt_hash) {
568 		list_del_init(&p->mnt_expire);
569 		list_del_init(&p->mnt_list);
570 		__touch_mnt_namespace(p->mnt_ns);
571 		p->mnt_ns = NULL;
572 		list_del_init(&p->mnt_child);
573 		if (p->mnt_parent != p)
574 			p->mnt_mountpoint->d_mounted--;
575 		change_mnt_propagation(p, MS_PRIVATE);
576 	}
577 }
578 
579 static int do_umount(struct vfsmount *mnt, int flags)
580 {
581 	struct super_block *sb = mnt->mnt_sb;
582 	int retval;
583 	LIST_HEAD(umount_list);
584 
585 	retval = security_sb_umount(mnt, flags);
586 	if (retval)
587 		return retval;
588 
589 	/*
590 	 * Allow userspace to request a mountpoint be expired rather than
591 	 * unmounting unconditionally. Unmount only happens if:
592 	 *  (1) the mark is already set (the mark is cleared by mntput())
593 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
594 	 */
595 	if (flags & MNT_EXPIRE) {
596 		if (mnt == current->fs->rootmnt ||
597 		    flags & (MNT_FORCE | MNT_DETACH))
598 			return -EINVAL;
599 
600 		if (atomic_read(&mnt->mnt_count) != 2)
601 			return -EBUSY;
602 
603 		if (!xchg(&mnt->mnt_expiry_mark, 1))
604 			return -EAGAIN;
605 	}
606 
607 	/*
608 	 * If we may have to abort operations to get out of this
609 	 * mount, and they will themselves hold resources we must
610 	 * allow the fs to do things. In the Unix tradition of
611 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
612 	 * might fail to complete on the first run through as other tasks
613 	 * must return, and the like. Thats for the mount program to worry
614 	 * about for the moment.
615 	 */
616 
617 	lock_kernel();
618 	if (sb->s_op->umount_begin)
619 		sb->s_op->umount_begin(mnt, flags);
620 	unlock_kernel();
621 
622 	/*
623 	 * No sense to grab the lock for this test, but test itself looks
624 	 * somewhat bogus. Suggestions for better replacement?
625 	 * Ho-hum... In principle, we might treat that as umount + switch
626 	 * to rootfs. GC would eventually take care of the old vfsmount.
627 	 * Actually it makes sense, especially if rootfs would contain a
628 	 * /reboot - static binary that would close all descriptors and
629 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
630 	 */
631 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
632 		/*
633 		 * Special case for "unmounting" root ...
634 		 * we just try to remount it readonly.
635 		 */
636 		down_write(&sb->s_umount);
637 		if (!(sb->s_flags & MS_RDONLY)) {
638 			lock_kernel();
639 			DQUOT_OFF(sb);
640 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
641 			unlock_kernel();
642 		}
643 		up_write(&sb->s_umount);
644 		return retval;
645 	}
646 
647 	down_write(&namespace_sem);
648 	spin_lock(&vfsmount_lock);
649 	event++;
650 
651 	retval = -EBUSY;
652 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
653 		if (!list_empty(&mnt->mnt_list))
654 			umount_tree(mnt, 1, &umount_list);
655 		retval = 0;
656 	}
657 	spin_unlock(&vfsmount_lock);
658 	if (retval)
659 		security_sb_umount_busy(mnt);
660 	up_write(&namespace_sem);
661 	release_mounts(&umount_list);
662 	return retval;
663 }
664 
665 /*
666  * Now umount can handle mount points as well as block devices.
667  * This is important for filesystems which use unnamed block devices.
668  *
669  * We now support a flag for forced unmount like the other 'big iron'
670  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
671  */
672 
673 asmlinkage long sys_umount(char __user * name, int flags)
674 {
675 	struct nameidata nd;
676 	int retval;
677 
678 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
679 	if (retval)
680 		goto out;
681 	retval = -EINVAL;
682 	if (nd.dentry != nd.mnt->mnt_root)
683 		goto dput_and_out;
684 	if (!check_mnt(nd.mnt))
685 		goto dput_and_out;
686 
687 	retval = -EPERM;
688 	if (!capable(CAP_SYS_ADMIN))
689 		goto dput_and_out;
690 
691 	retval = do_umount(nd.mnt, flags);
692 dput_and_out:
693 	path_release_on_umount(&nd);
694 out:
695 	return retval;
696 }
697 
698 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
699 
700 /*
701  *	The 2.0 compatible umount. No flags.
702  */
703 asmlinkage long sys_oldumount(char __user * name)
704 {
705 	return sys_umount(name, 0);
706 }
707 
708 #endif
709 
710 static int mount_is_safe(struct nameidata *nd)
711 {
712 	if (capable(CAP_SYS_ADMIN))
713 		return 0;
714 	return -EPERM;
715 #ifdef notyet
716 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
717 		return -EPERM;
718 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
719 		if (current->uid != nd->dentry->d_inode->i_uid)
720 			return -EPERM;
721 	}
722 	if (vfs_permission(nd, MAY_WRITE))
723 		return -EPERM;
724 	return 0;
725 #endif
726 }
727 
728 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
729 {
730 	while (1) {
731 		if (d == dentry)
732 			return 1;
733 		if (d == NULL || d == d->d_parent)
734 			return 0;
735 		d = d->d_parent;
736 	}
737 }
738 
739 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
740 					int flag)
741 {
742 	struct vfsmount *res, *p, *q, *r, *s;
743 	struct nameidata nd;
744 
745 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
746 		return NULL;
747 
748 	res = q = clone_mnt(mnt, dentry, flag);
749 	if (!q)
750 		goto Enomem;
751 	q->mnt_mountpoint = mnt->mnt_mountpoint;
752 
753 	p = mnt;
754 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
755 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
756 			continue;
757 
758 		for (s = r; s; s = next_mnt(s, r)) {
759 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
760 				s = skip_mnt_tree(s);
761 				continue;
762 			}
763 			while (p != s->mnt_parent) {
764 				p = p->mnt_parent;
765 				q = q->mnt_parent;
766 			}
767 			p = s;
768 			nd.mnt = q;
769 			nd.dentry = p->mnt_mountpoint;
770 			q = clone_mnt(p, p->mnt_root, flag);
771 			if (!q)
772 				goto Enomem;
773 			spin_lock(&vfsmount_lock);
774 			list_add_tail(&q->mnt_list, &res->mnt_list);
775 			attach_mnt(q, &nd);
776 			spin_unlock(&vfsmount_lock);
777 		}
778 	}
779 	return res;
780 Enomem:
781 	if (res) {
782 		LIST_HEAD(umount_list);
783 		spin_lock(&vfsmount_lock);
784 		umount_tree(res, 0, &umount_list);
785 		spin_unlock(&vfsmount_lock);
786 		release_mounts(&umount_list);
787 	}
788 	return NULL;
789 }
790 
791 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
792 {
793 	struct vfsmount *tree;
794 	down_read(&namespace_sem);
795 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
796 	up_read(&namespace_sem);
797 	return tree;
798 }
799 
800 void drop_collected_mounts(struct vfsmount *mnt)
801 {
802 	LIST_HEAD(umount_list);
803 	down_read(&namespace_sem);
804 	spin_lock(&vfsmount_lock);
805 	umount_tree(mnt, 0, &umount_list);
806 	spin_unlock(&vfsmount_lock);
807 	up_read(&namespace_sem);
808 	release_mounts(&umount_list);
809 }
810 
811 /*
812  *  @source_mnt : mount tree to be attached
813  *  @nd         : place the mount tree @source_mnt is attached
814  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
815  *  		   store the parent mount and mountpoint dentry.
816  *  		   (done when source_mnt is moved)
817  *
818  *  NOTE: in the table below explains the semantics when a source mount
819  *  of a given type is attached to a destination mount of a given type.
820  * ---------------------------------------------------------------------------
821  * |         BIND MOUNT OPERATION                                            |
822  * |**************************************************************************
823  * | source-->| shared        |       private  |       slave    | unbindable |
824  * | dest     |               |                |                |            |
825  * |   |      |               |                |                |            |
826  * |   v      |               |                |                |            |
827  * |**************************************************************************
828  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
829  * |          |               |                |                |            |
830  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
831  * ***************************************************************************
832  * A bind operation clones the source mount and mounts the clone on the
833  * destination mount.
834  *
835  * (++)  the cloned mount is propagated to all the mounts in the propagation
836  * 	 tree of the destination mount and the cloned mount is added to
837  * 	 the peer group of the source mount.
838  * (+)   the cloned mount is created under the destination mount and is marked
839  *       as shared. The cloned mount is added to the peer group of the source
840  *       mount.
841  * (+++) the mount is propagated to all the mounts in the propagation tree
842  *       of the destination mount and the cloned mount is made slave
843  *       of the same master as that of the source mount. The cloned mount
844  *       is marked as 'shared and slave'.
845  * (*)   the cloned mount is made a slave of the same master as that of the
846  * 	 source mount.
847  *
848  * ---------------------------------------------------------------------------
849  * |         		MOVE MOUNT OPERATION                                 |
850  * |**************************************************************************
851  * | source-->| shared        |       private  |       slave    | unbindable |
852  * | dest     |               |                |                |            |
853  * |   |      |               |                |                |            |
854  * |   v      |               |                |                |            |
855  * |**************************************************************************
856  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
857  * |          |               |                |                |            |
858  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
859  * ***************************************************************************
860  *
861  * (+)  the mount is moved to the destination. And is then propagated to
862  * 	all the mounts in the propagation tree of the destination mount.
863  * (+*)  the mount is moved to the destination.
864  * (+++)  the mount is moved to the destination and is then propagated to
865  * 	all the mounts belonging to the destination mount's propagation tree.
866  * 	the mount is marked as 'shared and slave'.
867  * (*)	the mount continues to be a slave at the new location.
868  *
869  * if the source mount is a tree, the operations explained above is
870  * applied to each mount in the tree.
871  * Must be called without spinlocks held, since this function can sleep
872  * in allocations.
873  */
874 static int attach_recursive_mnt(struct vfsmount *source_mnt,
875 			struct nameidata *nd, struct nameidata *parent_nd)
876 {
877 	LIST_HEAD(tree_list);
878 	struct vfsmount *dest_mnt = nd->mnt;
879 	struct dentry *dest_dentry = nd->dentry;
880 	struct vfsmount *child, *p;
881 
882 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
883 		return -EINVAL;
884 
885 	if (IS_MNT_SHARED(dest_mnt)) {
886 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
887 			set_mnt_shared(p);
888 	}
889 
890 	spin_lock(&vfsmount_lock);
891 	if (parent_nd) {
892 		detach_mnt(source_mnt, parent_nd);
893 		attach_mnt(source_mnt, nd);
894 		touch_mnt_namespace(current->nsproxy->mnt_ns);
895 	} else {
896 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
897 		commit_tree(source_mnt);
898 	}
899 
900 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
901 		list_del_init(&child->mnt_hash);
902 		commit_tree(child);
903 	}
904 	spin_unlock(&vfsmount_lock);
905 	return 0;
906 }
907 
908 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
909 {
910 	int err;
911 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
912 		return -EINVAL;
913 
914 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
915 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
916 		return -ENOTDIR;
917 
918 	err = -ENOENT;
919 	mutex_lock(&nd->dentry->d_inode->i_mutex);
920 	if (IS_DEADDIR(nd->dentry->d_inode))
921 		goto out_unlock;
922 
923 	err = security_sb_check_sb(mnt, nd);
924 	if (err)
925 		goto out_unlock;
926 
927 	err = -ENOENT;
928 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
929 		err = attach_recursive_mnt(mnt, nd, NULL);
930 out_unlock:
931 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
932 	if (!err)
933 		security_sb_post_addmount(mnt, nd);
934 	return err;
935 }
936 
937 /*
938  * recursively change the type of the mountpoint.
939  * noinline this do_mount helper to save do_mount stack space.
940  */
941 static noinline int do_change_type(struct nameidata *nd, int flag)
942 {
943 	struct vfsmount *m, *mnt = nd->mnt;
944 	int recurse = flag & MS_REC;
945 	int type = flag & ~MS_REC;
946 
947 	if (!capable(CAP_SYS_ADMIN))
948 		return -EPERM;
949 
950 	if (nd->dentry != nd->mnt->mnt_root)
951 		return -EINVAL;
952 
953 	down_write(&namespace_sem);
954 	spin_lock(&vfsmount_lock);
955 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
956 		change_mnt_propagation(m, type);
957 	spin_unlock(&vfsmount_lock);
958 	up_write(&namespace_sem);
959 	return 0;
960 }
961 
962 /*
963  * do loopback mount.
964  * noinline this do_mount helper to save do_mount stack space.
965  */
966 static noinline int do_loopback(struct nameidata *nd, char *old_name,
967 				int recurse)
968 {
969 	struct nameidata old_nd;
970 	struct vfsmount *mnt = NULL;
971 	int err = mount_is_safe(nd);
972 	if (err)
973 		return err;
974 	if (!old_name || !*old_name)
975 		return -EINVAL;
976 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
977 	if (err)
978 		return err;
979 
980 	down_write(&namespace_sem);
981 	err = -EINVAL;
982 	if (IS_MNT_UNBINDABLE(old_nd.mnt))
983  		goto out;
984 
985 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
986 		goto out;
987 
988 	err = -ENOMEM;
989 	if (recurse)
990 		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
991 	else
992 		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
993 
994 	if (!mnt)
995 		goto out;
996 
997 	err = graft_tree(mnt, nd);
998 	if (err) {
999 		LIST_HEAD(umount_list);
1000 		spin_lock(&vfsmount_lock);
1001 		umount_tree(mnt, 0, &umount_list);
1002 		spin_unlock(&vfsmount_lock);
1003 		release_mounts(&umount_list);
1004 	}
1005 
1006 out:
1007 	up_write(&namespace_sem);
1008 	path_release(&old_nd);
1009 	return err;
1010 }
1011 
1012 /*
1013  * change filesystem flags. dir should be a physical root of filesystem.
1014  * If you've mounted a non-root directory somewhere and want to do remount
1015  * on it - tough luck.
1016  * noinline this do_mount helper to save do_mount stack space.
1017  */
1018 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1019 		      void *data)
1020 {
1021 	int err;
1022 	struct super_block *sb = nd->mnt->mnt_sb;
1023 
1024 	if (!capable(CAP_SYS_ADMIN))
1025 		return -EPERM;
1026 
1027 	if (!check_mnt(nd->mnt))
1028 		return -EINVAL;
1029 
1030 	if (nd->dentry != nd->mnt->mnt_root)
1031 		return -EINVAL;
1032 
1033 	down_write(&sb->s_umount);
1034 	err = do_remount_sb(sb, flags, data, 0);
1035 	if (!err)
1036 		nd->mnt->mnt_flags = mnt_flags;
1037 	up_write(&sb->s_umount);
1038 	if (!err)
1039 		security_sb_post_remount(nd->mnt, flags, data);
1040 	return err;
1041 }
1042 
1043 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1044 {
1045 	struct vfsmount *p;
1046 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1047 		if (IS_MNT_UNBINDABLE(p))
1048 			return 1;
1049 	}
1050 	return 0;
1051 }
1052 
1053 /*
1054  * noinline this do_mount helper to save do_mount stack space.
1055  */
1056 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1057 {
1058 	struct nameidata old_nd, parent_nd;
1059 	struct vfsmount *p;
1060 	int err = 0;
1061 	if (!capable(CAP_SYS_ADMIN))
1062 		return -EPERM;
1063 	if (!old_name || !*old_name)
1064 		return -EINVAL;
1065 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1066 	if (err)
1067 		return err;
1068 
1069 	down_write(&namespace_sem);
1070 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1071 		;
1072 	err = -EINVAL;
1073 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1074 		goto out;
1075 
1076 	err = -ENOENT;
1077 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1078 	if (IS_DEADDIR(nd->dentry->d_inode))
1079 		goto out1;
1080 
1081 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1082 		goto out1;
1083 
1084 	err = -EINVAL;
1085 	if (old_nd.dentry != old_nd.mnt->mnt_root)
1086 		goto out1;
1087 
1088 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
1089 		goto out1;
1090 
1091 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1092 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
1093 		goto out1;
1094 	/*
1095 	 * Don't move a mount residing in a shared parent.
1096 	 */
1097 	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1098 		goto out1;
1099 	/*
1100 	 * Don't move a mount tree containing unbindable mounts to a destination
1101 	 * mount which is shared.
1102 	 */
1103 	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1104 		goto out1;
1105 	err = -ELOOP;
1106 	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1107 		if (p == old_nd.mnt)
1108 			goto out1;
1109 
1110 	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1111 		goto out1;
1112 
1113 	spin_lock(&vfsmount_lock);
1114 	/* if the mount is moved, it should no longer be expire
1115 	 * automatically */
1116 	list_del_init(&old_nd.mnt->mnt_expire);
1117 	spin_unlock(&vfsmount_lock);
1118 out1:
1119 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1120 out:
1121 	up_write(&namespace_sem);
1122 	if (!err)
1123 		path_release(&parent_nd);
1124 	path_release(&old_nd);
1125 	return err;
1126 }
1127 
1128 /*
1129  * create a new mount for userspace and request it to be added into the
1130  * namespace's tree
1131  * noinline this do_mount helper to save do_mount stack space.
1132  */
1133 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1134 			int mnt_flags, char *name, void *data)
1135 {
1136 	struct vfsmount *mnt;
1137 
1138 	if (!type || !memchr(type, 0, PAGE_SIZE))
1139 		return -EINVAL;
1140 
1141 	/* we need capabilities... */
1142 	if (!capable(CAP_SYS_ADMIN))
1143 		return -EPERM;
1144 
1145 	mnt = do_kern_mount(type, flags, name, data);
1146 	if (IS_ERR(mnt))
1147 		return PTR_ERR(mnt);
1148 
1149 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1150 }
1151 
1152 /*
1153  * add a mount into a namespace's mount tree
1154  * - provide the option of adding the new mount to an expiration list
1155  */
1156 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1157 		 int mnt_flags, struct list_head *fslist)
1158 {
1159 	int err;
1160 
1161 	down_write(&namespace_sem);
1162 	/* Something was mounted here while we slept */
1163 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1164 		;
1165 	err = -EINVAL;
1166 	if (!check_mnt(nd->mnt))
1167 		goto unlock;
1168 
1169 	/* Refuse the same filesystem on the same mount point */
1170 	err = -EBUSY;
1171 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1172 	    nd->mnt->mnt_root == nd->dentry)
1173 		goto unlock;
1174 
1175 	err = -EINVAL;
1176 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1177 		goto unlock;
1178 
1179 	newmnt->mnt_flags = mnt_flags;
1180 	if ((err = graft_tree(newmnt, nd)))
1181 		goto unlock;
1182 
1183 	if (fslist) {
1184 		/* add to the specified expiration list */
1185 		spin_lock(&vfsmount_lock);
1186 		list_add_tail(&newmnt->mnt_expire, fslist);
1187 		spin_unlock(&vfsmount_lock);
1188 	}
1189 	up_write(&namespace_sem);
1190 	return 0;
1191 
1192 unlock:
1193 	up_write(&namespace_sem);
1194 	mntput(newmnt);
1195 	return err;
1196 }
1197 
1198 EXPORT_SYMBOL_GPL(do_add_mount);
1199 
1200 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1201 				struct list_head *umounts)
1202 {
1203 	spin_lock(&vfsmount_lock);
1204 
1205 	/*
1206 	 * Check if mount is still attached, if not, let whoever holds it deal
1207 	 * with the sucker
1208 	 */
1209 	if (mnt->mnt_parent == mnt) {
1210 		spin_unlock(&vfsmount_lock);
1211 		return;
1212 	}
1213 
1214 	/*
1215 	 * Check that it is still dead: the count should now be 2 - as
1216 	 * contributed by the vfsmount parent and the mntget above
1217 	 */
1218 	if (!propagate_mount_busy(mnt, 2)) {
1219 		/* delete from the namespace */
1220 		touch_mnt_namespace(mnt->mnt_ns);
1221 		list_del_init(&mnt->mnt_list);
1222 		mnt->mnt_ns = NULL;
1223 		umount_tree(mnt, 1, umounts);
1224 		spin_unlock(&vfsmount_lock);
1225 	} else {
1226 		/*
1227 		 * Someone brought it back to life whilst we didn't have any
1228 		 * locks held so return it to the expiration list
1229 		 */
1230 		list_add_tail(&mnt->mnt_expire, mounts);
1231 		spin_unlock(&vfsmount_lock);
1232 	}
1233 }
1234 
1235 /*
1236  * go through the vfsmounts we've just consigned to the graveyard to
1237  * - check that they're still dead
1238  * - delete the vfsmount from the appropriate namespace under lock
1239  * - dispose of the corpse
1240  */
1241 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1242 {
1243 	struct mnt_namespace *ns;
1244 	struct vfsmount *mnt;
1245 
1246 	while (!list_empty(graveyard)) {
1247 		LIST_HEAD(umounts);
1248 		mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1249 		list_del_init(&mnt->mnt_expire);
1250 
1251 		/* don't do anything if the namespace is dead - all the
1252 		 * vfsmounts from it are going away anyway */
1253 		ns = mnt->mnt_ns;
1254 		if (!ns || !ns->root)
1255 			continue;
1256 		get_mnt_ns(ns);
1257 
1258 		spin_unlock(&vfsmount_lock);
1259 		down_write(&namespace_sem);
1260 		expire_mount(mnt, mounts, &umounts);
1261 		up_write(&namespace_sem);
1262 		release_mounts(&umounts);
1263 		mntput(mnt);
1264 		put_mnt_ns(ns);
1265 		spin_lock(&vfsmount_lock);
1266 	}
1267 }
1268 
1269 /*
1270  * process a list of expirable mountpoints with the intent of discarding any
1271  * mountpoints that aren't in use and haven't been touched since last we came
1272  * here
1273  */
1274 void mark_mounts_for_expiry(struct list_head *mounts)
1275 {
1276 	struct vfsmount *mnt, *next;
1277 	LIST_HEAD(graveyard);
1278 
1279 	if (list_empty(mounts))
1280 		return;
1281 
1282 	spin_lock(&vfsmount_lock);
1283 
1284 	/* extract from the expiration list every vfsmount that matches the
1285 	 * following criteria:
1286 	 * - only referenced by its parent vfsmount
1287 	 * - still marked for expiry (marked on the last call here; marks are
1288 	 *   cleared by mntput())
1289 	 */
1290 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1291 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1292 		    atomic_read(&mnt->mnt_count) != 1)
1293 			continue;
1294 
1295 		mntget(mnt);
1296 		list_move(&mnt->mnt_expire, &graveyard);
1297 	}
1298 
1299 	expire_mount_list(&graveyard, mounts);
1300 
1301 	spin_unlock(&vfsmount_lock);
1302 }
1303 
1304 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1305 
1306 /*
1307  * Ripoff of 'select_parent()'
1308  *
1309  * search the list of submounts for a given mountpoint, and move any
1310  * shrinkable submounts to the 'graveyard' list.
1311  */
1312 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1313 {
1314 	struct vfsmount *this_parent = parent;
1315 	struct list_head *next;
1316 	int found = 0;
1317 
1318 repeat:
1319 	next = this_parent->mnt_mounts.next;
1320 resume:
1321 	while (next != &this_parent->mnt_mounts) {
1322 		struct list_head *tmp = next;
1323 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1324 
1325 		next = tmp->next;
1326 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1327 			continue;
1328 		/*
1329 		 * Descend a level if the d_mounts list is non-empty.
1330 		 */
1331 		if (!list_empty(&mnt->mnt_mounts)) {
1332 			this_parent = mnt;
1333 			goto repeat;
1334 		}
1335 
1336 		if (!propagate_mount_busy(mnt, 1)) {
1337 			mntget(mnt);
1338 			list_move_tail(&mnt->mnt_expire, graveyard);
1339 			found++;
1340 		}
1341 	}
1342 	/*
1343 	 * All done at this level ... ascend and resume the search
1344 	 */
1345 	if (this_parent != parent) {
1346 		next = this_parent->mnt_child.next;
1347 		this_parent = this_parent->mnt_parent;
1348 		goto resume;
1349 	}
1350 	return found;
1351 }
1352 
1353 /*
1354  * process a list of expirable mountpoints with the intent of discarding any
1355  * submounts of a specific parent mountpoint
1356  */
1357 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1358 {
1359 	LIST_HEAD(graveyard);
1360 	int found;
1361 
1362 	spin_lock(&vfsmount_lock);
1363 
1364 	/* extract submounts of 'mountpoint' from the expiration list */
1365 	while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1366 		expire_mount_list(&graveyard, mounts);
1367 
1368 	spin_unlock(&vfsmount_lock);
1369 }
1370 
1371 EXPORT_SYMBOL_GPL(shrink_submounts);
1372 
1373 /*
1374  * Some copy_from_user() implementations do not return the exact number of
1375  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1376  * Note that this function differs from copy_from_user() in that it will oops
1377  * on bad values of `to', rather than returning a short copy.
1378  */
1379 static long exact_copy_from_user(void *to, const void __user * from,
1380 				 unsigned long n)
1381 {
1382 	char *t = to;
1383 	const char __user *f = from;
1384 	char c;
1385 
1386 	if (!access_ok(VERIFY_READ, from, n))
1387 		return n;
1388 
1389 	while (n) {
1390 		if (__get_user(c, f)) {
1391 			memset(t, 0, n);
1392 			break;
1393 		}
1394 		*t++ = c;
1395 		f++;
1396 		n--;
1397 	}
1398 	return n;
1399 }
1400 
1401 int copy_mount_options(const void __user * data, unsigned long *where)
1402 {
1403 	int i;
1404 	unsigned long page;
1405 	unsigned long size;
1406 
1407 	*where = 0;
1408 	if (!data)
1409 		return 0;
1410 
1411 	if (!(page = __get_free_page(GFP_KERNEL)))
1412 		return -ENOMEM;
1413 
1414 	/* We only care that *some* data at the address the user
1415 	 * gave us is valid.  Just in case, we'll zero
1416 	 * the remainder of the page.
1417 	 */
1418 	/* copy_from_user cannot cross TASK_SIZE ! */
1419 	size = TASK_SIZE - (unsigned long)data;
1420 	if (size > PAGE_SIZE)
1421 		size = PAGE_SIZE;
1422 
1423 	i = size - exact_copy_from_user((void *)page, data, size);
1424 	if (!i) {
1425 		free_page(page);
1426 		return -EFAULT;
1427 	}
1428 	if (i != PAGE_SIZE)
1429 		memset((char *)page + i, 0, PAGE_SIZE - i);
1430 	*where = page;
1431 	return 0;
1432 }
1433 
1434 /*
1435  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1436  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1437  *
1438  * data is a (void *) that can point to any structure up to
1439  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1440  * information (or be NULL).
1441  *
1442  * Pre-0.97 versions of mount() didn't have a flags word.
1443  * When the flags word was introduced its top half was required
1444  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1445  * Therefore, if this magic number is present, it carries no information
1446  * and must be discarded.
1447  */
1448 long do_mount(char *dev_name, char *dir_name, char *type_page,
1449 		  unsigned long flags, void *data_page)
1450 {
1451 	struct nameidata nd;
1452 	int retval = 0;
1453 	int mnt_flags = 0;
1454 
1455 	/* Discard magic */
1456 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1457 		flags &= ~MS_MGC_MSK;
1458 
1459 	/* Basic sanity checks */
1460 
1461 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1462 		return -EINVAL;
1463 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1464 		return -EINVAL;
1465 
1466 	if (data_page)
1467 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1468 
1469 	/* Separate the per-mountpoint flags */
1470 	if (flags & MS_NOSUID)
1471 		mnt_flags |= MNT_NOSUID;
1472 	if (flags & MS_NODEV)
1473 		mnt_flags |= MNT_NODEV;
1474 	if (flags & MS_NOEXEC)
1475 		mnt_flags |= MNT_NOEXEC;
1476 	if (flags & MS_NOATIME)
1477 		mnt_flags |= MNT_NOATIME;
1478 	if (flags & MS_NODIRATIME)
1479 		mnt_flags |= MNT_NODIRATIME;
1480 	if (flags & MS_RELATIME)
1481 		mnt_flags |= MNT_RELATIME;
1482 
1483 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1484 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1485 
1486 	/* ... and get the mountpoint */
1487 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1488 	if (retval)
1489 		return retval;
1490 
1491 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1492 	if (retval)
1493 		goto dput_out;
1494 
1495 	if (flags & MS_REMOUNT)
1496 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1497 				    data_page);
1498 	else if (flags & MS_BIND)
1499 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1500 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1501 		retval = do_change_type(&nd, flags);
1502 	else if (flags & MS_MOVE)
1503 		retval = do_move_mount(&nd, dev_name);
1504 	else
1505 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1506 				      dev_name, data_page);
1507 dput_out:
1508 	path_release(&nd);
1509 	return retval;
1510 }
1511 
1512 /*
1513  * Allocate a new namespace structure and populate it with contents
1514  * copied from the namespace of the passed in task structure.
1515  */
1516 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1517 		struct fs_struct *fs)
1518 {
1519 	struct mnt_namespace *new_ns;
1520 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1521 	struct vfsmount *p, *q;
1522 
1523 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1524 	if (!new_ns)
1525 		return ERR_PTR(-ENOMEM);
1526 
1527 	atomic_set(&new_ns->count, 1);
1528 	INIT_LIST_HEAD(&new_ns->list);
1529 	init_waitqueue_head(&new_ns->poll);
1530 	new_ns->event = 0;
1531 
1532 	down_write(&namespace_sem);
1533 	/* First pass: copy the tree topology */
1534 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1535 					CL_COPY_ALL | CL_EXPIRE);
1536 	if (!new_ns->root) {
1537 		up_write(&namespace_sem);
1538 		kfree(new_ns);
1539 		return ERR_PTR(-ENOMEM);;
1540 	}
1541 	spin_lock(&vfsmount_lock);
1542 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1543 	spin_unlock(&vfsmount_lock);
1544 
1545 	/*
1546 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1547 	 * as belonging to new namespace.  We have already acquired a private
1548 	 * fs_struct, so tsk->fs->lock is not needed.
1549 	 */
1550 	p = mnt_ns->root;
1551 	q = new_ns->root;
1552 	while (p) {
1553 		q->mnt_ns = new_ns;
1554 		if (fs) {
1555 			if (p == fs->rootmnt) {
1556 				rootmnt = p;
1557 				fs->rootmnt = mntget(q);
1558 			}
1559 			if (p == fs->pwdmnt) {
1560 				pwdmnt = p;
1561 				fs->pwdmnt = mntget(q);
1562 			}
1563 			if (p == fs->altrootmnt) {
1564 				altrootmnt = p;
1565 				fs->altrootmnt = mntget(q);
1566 			}
1567 		}
1568 		p = next_mnt(p, mnt_ns->root);
1569 		q = next_mnt(q, new_ns->root);
1570 	}
1571 	up_write(&namespace_sem);
1572 
1573 	if (rootmnt)
1574 		mntput(rootmnt);
1575 	if (pwdmnt)
1576 		mntput(pwdmnt);
1577 	if (altrootmnt)
1578 		mntput(altrootmnt);
1579 
1580 	return new_ns;
1581 }
1582 
1583 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1584 		struct fs_struct *new_fs)
1585 {
1586 	struct mnt_namespace *new_ns;
1587 
1588 	BUG_ON(!ns);
1589 	get_mnt_ns(ns);
1590 
1591 	if (!(flags & CLONE_NEWNS))
1592 		return ns;
1593 
1594 	new_ns = dup_mnt_ns(ns, new_fs);
1595 
1596 	put_mnt_ns(ns);
1597 	return new_ns;
1598 }
1599 
1600 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1601 			  char __user * type, unsigned long flags,
1602 			  void __user * data)
1603 {
1604 	int retval;
1605 	unsigned long data_page;
1606 	unsigned long type_page;
1607 	unsigned long dev_page;
1608 	char *dir_page;
1609 
1610 	retval = copy_mount_options(type, &type_page);
1611 	if (retval < 0)
1612 		return retval;
1613 
1614 	dir_page = getname(dir_name);
1615 	retval = PTR_ERR(dir_page);
1616 	if (IS_ERR(dir_page))
1617 		goto out1;
1618 
1619 	retval = copy_mount_options(dev_name, &dev_page);
1620 	if (retval < 0)
1621 		goto out2;
1622 
1623 	retval = copy_mount_options(data, &data_page);
1624 	if (retval < 0)
1625 		goto out3;
1626 
1627 	lock_kernel();
1628 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1629 			  flags, (void *)data_page);
1630 	unlock_kernel();
1631 	free_page(data_page);
1632 
1633 out3:
1634 	free_page(dev_page);
1635 out2:
1636 	putname(dir_page);
1637 out1:
1638 	free_page(type_page);
1639 	return retval;
1640 }
1641 
1642 /*
1643  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1644  * It can block. Requires the big lock held.
1645  */
1646 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1647 		 struct dentry *dentry)
1648 {
1649 	struct dentry *old_root;
1650 	struct vfsmount *old_rootmnt;
1651 	write_lock(&fs->lock);
1652 	old_root = fs->root;
1653 	old_rootmnt = fs->rootmnt;
1654 	fs->rootmnt = mntget(mnt);
1655 	fs->root = dget(dentry);
1656 	write_unlock(&fs->lock);
1657 	if (old_root) {
1658 		dput(old_root);
1659 		mntput(old_rootmnt);
1660 	}
1661 }
1662 
1663 /*
1664  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1665  * It can block. Requires the big lock held.
1666  */
1667 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1668 		struct dentry *dentry)
1669 {
1670 	struct dentry *old_pwd;
1671 	struct vfsmount *old_pwdmnt;
1672 
1673 	write_lock(&fs->lock);
1674 	old_pwd = fs->pwd;
1675 	old_pwdmnt = fs->pwdmnt;
1676 	fs->pwdmnt = mntget(mnt);
1677 	fs->pwd = dget(dentry);
1678 	write_unlock(&fs->lock);
1679 
1680 	if (old_pwd) {
1681 		dput(old_pwd);
1682 		mntput(old_pwdmnt);
1683 	}
1684 }
1685 
1686 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1687 {
1688 	struct task_struct *g, *p;
1689 	struct fs_struct *fs;
1690 
1691 	read_lock(&tasklist_lock);
1692 	do_each_thread(g, p) {
1693 		task_lock(p);
1694 		fs = p->fs;
1695 		if (fs) {
1696 			atomic_inc(&fs->count);
1697 			task_unlock(p);
1698 			if (fs->root == old_nd->dentry
1699 			    && fs->rootmnt == old_nd->mnt)
1700 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1701 			if (fs->pwd == old_nd->dentry
1702 			    && fs->pwdmnt == old_nd->mnt)
1703 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1704 			put_fs_struct(fs);
1705 		} else
1706 			task_unlock(p);
1707 	} while_each_thread(g, p);
1708 	read_unlock(&tasklist_lock);
1709 }
1710 
1711 /*
1712  * pivot_root Semantics:
1713  * Moves the root file system of the current process to the directory put_old,
1714  * makes new_root as the new root file system of the current process, and sets
1715  * root/cwd of all processes which had them on the current root to new_root.
1716  *
1717  * Restrictions:
1718  * The new_root and put_old must be directories, and  must not be on the
1719  * same file  system as the current process root. The put_old  must  be
1720  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1721  * pointed to by put_old must yield the same directory as new_root. No other
1722  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1723  *
1724  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1725  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1726  * in this situation.
1727  *
1728  * Notes:
1729  *  - we don't move root/cwd if they are not at the root (reason: if something
1730  *    cared enough to change them, it's probably wrong to force them elsewhere)
1731  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1732  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1733  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1734  *    first.
1735  */
1736 asmlinkage long sys_pivot_root(const char __user * new_root,
1737 			       const char __user * put_old)
1738 {
1739 	struct vfsmount *tmp;
1740 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1741 	int error;
1742 
1743 	if (!capable(CAP_SYS_ADMIN))
1744 		return -EPERM;
1745 
1746 	lock_kernel();
1747 
1748 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1749 			    &new_nd);
1750 	if (error)
1751 		goto out0;
1752 	error = -EINVAL;
1753 	if (!check_mnt(new_nd.mnt))
1754 		goto out1;
1755 
1756 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1757 	if (error)
1758 		goto out1;
1759 
1760 	error = security_sb_pivotroot(&old_nd, &new_nd);
1761 	if (error) {
1762 		path_release(&old_nd);
1763 		goto out1;
1764 	}
1765 
1766 	read_lock(&current->fs->lock);
1767 	user_nd.mnt = mntget(current->fs->rootmnt);
1768 	user_nd.dentry = dget(current->fs->root);
1769 	read_unlock(&current->fs->lock);
1770 	down_write(&namespace_sem);
1771 	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1772 	error = -EINVAL;
1773 	if (IS_MNT_SHARED(old_nd.mnt) ||
1774 		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1775 		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1776 		goto out2;
1777 	if (!check_mnt(user_nd.mnt))
1778 		goto out2;
1779 	error = -ENOENT;
1780 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1781 		goto out2;
1782 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1783 		goto out2;
1784 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1785 		goto out2;
1786 	error = -EBUSY;
1787 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1788 		goto out2; /* loop, on the same file system  */
1789 	error = -EINVAL;
1790 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1791 		goto out2; /* not a mountpoint */
1792 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1793 		goto out2; /* not attached */
1794 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1795 		goto out2; /* not a mountpoint */
1796 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1797 		goto out2; /* not attached */
1798 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1799 	spin_lock(&vfsmount_lock);
1800 	if (tmp != new_nd.mnt) {
1801 		for (;;) {
1802 			if (tmp->mnt_parent == tmp)
1803 				goto out3; /* already mounted on put_old */
1804 			if (tmp->mnt_parent == new_nd.mnt)
1805 				break;
1806 			tmp = tmp->mnt_parent;
1807 		}
1808 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1809 			goto out3;
1810 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1811 		goto out3;
1812 	detach_mnt(new_nd.mnt, &parent_nd);
1813 	detach_mnt(user_nd.mnt, &root_parent);
1814 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1815 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1816 	touch_mnt_namespace(current->nsproxy->mnt_ns);
1817 	spin_unlock(&vfsmount_lock);
1818 	chroot_fs_refs(&user_nd, &new_nd);
1819 	security_sb_post_pivotroot(&user_nd, &new_nd);
1820 	error = 0;
1821 	path_release(&root_parent);
1822 	path_release(&parent_nd);
1823 out2:
1824 	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1825 	up_write(&namespace_sem);
1826 	path_release(&user_nd);
1827 	path_release(&old_nd);
1828 out1:
1829 	path_release(&new_nd);
1830 out0:
1831 	unlock_kernel();
1832 	return error;
1833 out3:
1834 	spin_unlock(&vfsmount_lock);
1835 	goto out2;
1836 }
1837 
1838 static void __init init_mount_tree(void)
1839 {
1840 	struct vfsmount *mnt;
1841 	struct mnt_namespace *ns;
1842 
1843 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1844 	if (IS_ERR(mnt))
1845 		panic("Can't create rootfs");
1846 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1847 	if (!ns)
1848 		panic("Can't allocate initial namespace");
1849 	atomic_set(&ns->count, 1);
1850 	INIT_LIST_HEAD(&ns->list);
1851 	init_waitqueue_head(&ns->poll);
1852 	ns->event = 0;
1853 	list_add(&mnt->mnt_list, &ns->list);
1854 	ns->root = mnt;
1855 	mnt->mnt_ns = ns;
1856 
1857 	init_task.nsproxy->mnt_ns = ns;
1858 	get_mnt_ns(ns);
1859 
1860 	set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1861 	set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1862 }
1863 
1864 void __init mnt_init(void)
1865 {
1866 	unsigned u;
1867 	int err;
1868 
1869 	init_rwsem(&namespace_sem);
1870 
1871 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1872 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1873 
1874 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1875 
1876 	if (!mount_hashtable)
1877 		panic("Failed to allocate mount hash table\n");
1878 
1879 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1880 
1881 	for (u = 0; u < HASH_SIZE; u++)
1882 		INIT_LIST_HEAD(&mount_hashtable[u]);
1883 
1884 	err = sysfs_init();
1885 	if (err)
1886 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1887 			__FUNCTION__, err);
1888 	fs_kobj = kobject_create_and_add("fs", NULL);
1889 	if (!fs_kobj)
1890 		printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1891 	init_rootfs();
1892 	init_mount_tree();
1893 }
1894 
1895 void __put_mnt_ns(struct mnt_namespace *ns)
1896 {
1897 	struct vfsmount *root = ns->root;
1898 	LIST_HEAD(umount_list);
1899 	ns->root = NULL;
1900 	spin_unlock(&vfsmount_lock);
1901 	down_write(&namespace_sem);
1902 	spin_lock(&vfsmount_lock);
1903 	umount_tree(root, 0, &umount_list);
1904 	spin_unlock(&vfsmount_lock);
1905 	up_write(&namespace_sem);
1906 	release_mounts(&umount_list);
1907 	kfree(ns);
1908 }
1909