1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 #include <linux/shmem_fs.h> 33 34 #include "pnode.h" 35 #include "internal.h" 36 37 /* Maximum number of mounts in a mount namespace */ 38 unsigned int sysctl_mount_max __read_mostly = 100000; 39 40 static unsigned int m_hash_mask __read_mostly; 41 static unsigned int m_hash_shift __read_mostly; 42 static unsigned int mp_hash_mask __read_mostly; 43 static unsigned int mp_hash_shift __read_mostly; 44 45 static __initdata unsigned long mhash_entries; 46 static int __init set_mhash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mhash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mhash_entries=", set_mhash_entries); 54 55 static __initdata unsigned long mphash_entries; 56 static int __init set_mphash_entries(char *str) 57 { 58 if (!str) 59 return 0; 60 mphash_entries = simple_strtoul(str, &str, 0); 61 return 1; 62 } 63 __setup("mphash_entries=", set_mphash_entries); 64 65 static u64 event; 66 static DEFINE_IDA(mnt_id_ida); 67 static DEFINE_IDA(mnt_group_ida); 68 69 static struct hlist_head *mount_hashtable __read_mostly; 70 static struct hlist_head *mountpoint_hashtable __read_mostly; 71 static struct kmem_cache *mnt_cache __read_mostly; 72 static DECLARE_RWSEM(namespace_sem); 73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 75 76 /* /sys/fs */ 77 struct kobject *fs_kobj; 78 EXPORT_SYMBOL_GPL(fs_kobj); 79 80 /* 81 * vfsmount lock may be taken for read to prevent changes to the 82 * vfsmount hash, ie. during mountpoint lookups or walking back 83 * up the tree. 84 * 85 * It should be taken for write in all cases where the vfsmount 86 * tree or hash is modified or when a vfsmount structure is modified. 87 */ 88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 89 90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 91 { 92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 94 tmp = tmp + (tmp >> m_hash_shift); 95 return &mount_hashtable[tmp & m_hash_mask]; 96 } 97 98 static inline struct hlist_head *mp_hash(struct dentry *dentry) 99 { 100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 101 tmp = tmp + (tmp >> mp_hash_shift); 102 return &mountpoint_hashtable[tmp & mp_hash_mask]; 103 } 104 105 static int mnt_alloc_id(struct mount *mnt) 106 { 107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 108 109 if (res < 0) 110 return res; 111 mnt->mnt_id = res; 112 return 0; 113 } 114 115 static void mnt_free_id(struct mount *mnt) 116 { 117 ida_free(&mnt_id_ida, mnt->mnt_id); 118 } 119 120 /* 121 * Allocate a new peer group ID 122 */ 123 static int mnt_alloc_group_id(struct mount *mnt) 124 { 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 126 127 if (res < 0) 128 return res; 129 mnt->mnt_group_id = res; 130 return 0; 131 } 132 133 /* 134 * Release a peer group ID 135 */ 136 void mnt_release_group_id(struct mount *mnt) 137 { 138 ida_free(&mnt_group_ida, mnt->mnt_group_id); 139 mnt->mnt_group_id = 0; 140 } 141 142 /* 143 * vfsmount lock must be held for read 144 */ 145 static inline void mnt_add_count(struct mount *mnt, int n) 146 { 147 #ifdef CONFIG_SMP 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 149 #else 150 preempt_disable(); 151 mnt->mnt_count += n; 152 preempt_enable(); 153 #endif 154 } 155 156 /* 157 * vfsmount lock must be held for write 158 */ 159 unsigned int mnt_get_count(struct mount *mnt) 160 { 161 #ifdef CONFIG_SMP 162 unsigned int count = 0; 163 int cpu; 164 165 for_each_possible_cpu(cpu) { 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 167 } 168 169 return count; 170 #else 171 return mnt->mnt_count; 172 #endif 173 } 174 175 static struct mount *alloc_vfsmnt(const char *name) 176 { 177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 178 if (mnt) { 179 int err; 180 181 err = mnt_alloc_id(mnt); 182 if (err) 183 goto out_free_cache; 184 185 if (name) { 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 187 if (!mnt->mnt_devname) 188 goto out_free_id; 189 } 190 191 #ifdef CONFIG_SMP 192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 193 if (!mnt->mnt_pcp) 194 goto out_free_devname; 195 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 197 #else 198 mnt->mnt_count = 1; 199 mnt->mnt_writers = 0; 200 #endif 201 202 INIT_HLIST_NODE(&mnt->mnt_hash); 203 INIT_LIST_HEAD(&mnt->mnt_child); 204 INIT_LIST_HEAD(&mnt->mnt_mounts); 205 INIT_LIST_HEAD(&mnt->mnt_list); 206 INIT_LIST_HEAD(&mnt->mnt_expire); 207 INIT_LIST_HEAD(&mnt->mnt_share); 208 INIT_LIST_HEAD(&mnt->mnt_slave_list); 209 INIT_LIST_HEAD(&mnt->mnt_slave); 210 INIT_HLIST_NODE(&mnt->mnt_mp_list); 211 INIT_LIST_HEAD(&mnt->mnt_umounting); 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 213 } 214 return mnt; 215 216 #ifdef CONFIG_SMP 217 out_free_devname: 218 kfree_const(mnt->mnt_devname); 219 #endif 220 out_free_id: 221 mnt_free_id(mnt); 222 out_free_cache: 223 kmem_cache_free(mnt_cache, mnt); 224 return NULL; 225 } 226 227 /* 228 * Most r/o checks on a fs are for operations that take 229 * discrete amounts of time, like a write() or unlink(). 230 * We must keep track of when those operations start 231 * (for permission checks) and when they end, so that 232 * we can determine when writes are able to occur to 233 * a filesystem. 234 */ 235 /* 236 * __mnt_is_readonly: check whether a mount is read-only 237 * @mnt: the mount to check for its write status 238 * 239 * This shouldn't be used directly ouside of the VFS. 240 * It does not guarantee that the filesystem will stay 241 * r/w, just that it is right *now*. This can not and 242 * should not be used in place of IS_RDONLY(inode). 243 * mnt_want/drop_write() will _keep_ the filesystem 244 * r/w. 245 */ 246 bool __mnt_is_readonly(struct vfsmount *mnt) 247 { 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 249 } 250 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 251 252 static inline void mnt_inc_writers(struct mount *mnt) 253 { 254 #ifdef CONFIG_SMP 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 256 #else 257 mnt->mnt_writers++; 258 #endif 259 } 260 261 static inline void mnt_dec_writers(struct mount *mnt) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 265 #else 266 mnt->mnt_writers--; 267 #endif 268 } 269 270 static unsigned int mnt_get_writers(struct mount *mnt) 271 { 272 #ifdef CONFIG_SMP 273 unsigned int count = 0; 274 int cpu; 275 276 for_each_possible_cpu(cpu) { 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 278 } 279 280 return count; 281 #else 282 return mnt->mnt_writers; 283 #endif 284 } 285 286 static int mnt_is_readonly(struct vfsmount *mnt) 287 { 288 if (mnt->mnt_sb->s_readonly_remount) 289 return 1; 290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 291 smp_rmb(); 292 return __mnt_is_readonly(mnt); 293 } 294 295 /* 296 * Most r/o & frozen checks on a fs are for operations that take discrete 297 * amounts of time, like a write() or unlink(). We must keep track of when 298 * those operations start (for permission checks) and when they end, so that we 299 * can determine when writes are able to occur to a filesystem. 300 */ 301 /** 302 * __mnt_want_write - get write access to a mount without freeze protection 303 * @m: the mount on which to take a write 304 * 305 * This tells the low-level filesystem that a write is about to be performed to 306 * it, and makes sure that writes are allowed (mnt it read-write) before 307 * returning success. This operation does not protect against filesystem being 308 * frozen. When the write operation is finished, __mnt_drop_write() must be 309 * called. This is effectively a refcount. 310 */ 311 int __mnt_want_write(struct vfsmount *m) 312 { 313 struct mount *mnt = real_mount(m); 314 int ret = 0; 315 316 preempt_disable(); 317 mnt_inc_writers(mnt); 318 /* 319 * The store to mnt_inc_writers must be visible before we pass 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 321 * incremented count after it has set MNT_WRITE_HOLD. 322 */ 323 smp_mb(); 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 325 cpu_relax(); 326 /* 327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 328 * be set to match its requirements. So we must not load that until 329 * MNT_WRITE_HOLD is cleared. 330 */ 331 smp_rmb(); 332 if (mnt_is_readonly(m)) { 333 mnt_dec_writers(mnt); 334 ret = -EROFS; 335 } 336 preempt_enable(); 337 338 return ret; 339 } 340 341 /** 342 * mnt_want_write - get write access to a mount 343 * @m: the mount on which to take a write 344 * 345 * This tells the low-level filesystem that a write is about to be performed to 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem 347 * is not frozen) before returning success. When the write operation is 348 * finished, mnt_drop_write() must be called. This is effectively a refcount. 349 */ 350 int mnt_want_write(struct vfsmount *m) 351 { 352 int ret; 353 354 sb_start_write(m->mnt_sb); 355 ret = __mnt_want_write(m); 356 if (ret) 357 sb_end_write(m->mnt_sb); 358 return ret; 359 } 360 EXPORT_SYMBOL_GPL(mnt_want_write); 361 362 /** 363 * mnt_clone_write - get write access to a mount 364 * @mnt: the mount on which to take a write 365 * 366 * This is effectively like mnt_want_write, except 367 * it must only be used to take an extra write reference 368 * on a mountpoint that we already know has a write reference 369 * on it. This allows some optimisation. 370 * 371 * After finished, mnt_drop_write must be called as usual to 372 * drop the reference. 373 */ 374 int mnt_clone_write(struct vfsmount *mnt) 375 { 376 /* superblock may be r/o */ 377 if (__mnt_is_readonly(mnt)) 378 return -EROFS; 379 preempt_disable(); 380 mnt_inc_writers(real_mount(mnt)); 381 preempt_enable(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(mnt_clone_write); 385 386 /** 387 * __mnt_want_write_file - get write access to a file's mount 388 * @file: the file who's mount on which to take a write 389 * 390 * This is like __mnt_want_write, but it takes a file and can 391 * do some optimisations if the file is open for write already 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (!(file->f_mode & FMODE_WRITER)) 396 return __mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 401 /** 402 * mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like mnt_want_write, but it takes a file and can 406 * do some optimisations if the file is open for write already 407 */ 408 int mnt_want_write_file(struct file *file) 409 { 410 int ret; 411 412 sb_start_write(file_inode(file)->i_sb); 413 ret = __mnt_want_write_file(file); 414 if (ret) 415 sb_end_write(file_inode(file)->i_sb); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(mnt_want_write_file); 419 420 /** 421 * __mnt_drop_write - give up write access to a mount 422 * @mnt: the mount on which to give up write access 423 * 424 * Tells the low-level filesystem that we are done 425 * performing writes to it. Must be matched with 426 * __mnt_want_write() call above. 427 */ 428 void __mnt_drop_write(struct vfsmount *mnt) 429 { 430 preempt_disable(); 431 mnt_dec_writers(real_mount(mnt)); 432 preempt_enable(); 433 } 434 435 /** 436 * mnt_drop_write - give up write access to a mount 437 * @mnt: the mount on which to give up write access 438 * 439 * Tells the low-level filesystem that we are done performing writes to it and 440 * also allows filesystem to be frozen again. Must be matched with 441 * mnt_want_write() call above. 442 */ 443 void mnt_drop_write(struct vfsmount *mnt) 444 { 445 __mnt_drop_write(mnt); 446 sb_end_write(mnt->mnt_sb); 447 } 448 EXPORT_SYMBOL_GPL(mnt_drop_write); 449 450 void __mnt_drop_write_file(struct file *file) 451 { 452 __mnt_drop_write(file->f_path.mnt); 453 } 454 455 void mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write_file(file); 458 sb_end_write(file_inode(file)->i_sb); 459 } 460 EXPORT_SYMBOL(mnt_drop_write_file); 461 462 static int mnt_make_readonly(struct mount *mnt) 463 { 464 int ret = 0; 465 466 lock_mount_hash(); 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 468 /* 469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 470 * should be visible before we do. 471 */ 472 smp_mb(); 473 474 /* 475 * With writers on hold, if this value is zero, then there are 476 * definitely no active writers (although held writers may subsequently 477 * increment the count, they'll have to wait, and decrement it after 478 * seeing MNT_READONLY). 479 * 480 * It is OK to have counter incremented on one CPU and decremented on 481 * another: the sum will add up correctly. The danger would be when we 482 * sum up each counter, if we read a counter before it is incremented, 483 * but then read another CPU's count which it has been subsequently 484 * decremented from -- we would see more decrements than we should. 485 * MNT_WRITE_HOLD protects against this scenario, because 486 * mnt_want_write first increments count, then smp_mb, then spins on 487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 488 * we're counting up here. 489 */ 490 if (mnt_get_writers(mnt) > 0) 491 ret = -EBUSY; 492 else 493 mnt->mnt.mnt_flags |= MNT_READONLY; 494 /* 495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 496 * that become unheld will see MNT_READONLY. 497 */ 498 smp_wmb(); 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 500 unlock_mount_hash(); 501 return ret; 502 } 503 504 static int __mnt_unmake_readonly(struct mount *mnt) 505 { 506 lock_mount_hash(); 507 mnt->mnt.mnt_flags &= ~MNT_READONLY; 508 unlock_mount_hash(); 509 return 0; 510 } 511 512 int sb_prepare_remount_readonly(struct super_block *sb) 513 { 514 struct mount *mnt; 515 int err = 0; 516 517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 518 if (atomic_long_read(&sb->s_remove_count)) 519 return -EBUSY; 520 521 lock_mount_hash(); 522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 525 smp_mb(); 526 if (mnt_get_writers(mnt) > 0) { 527 err = -EBUSY; 528 break; 529 } 530 } 531 } 532 if (!err && atomic_long_read(&sb->s_remove_count)) 533 err = -EBUSY; 534 535 if (!err) { 536 sb->s_readonly_remount = 1; 537 smp_wmb(); 538 } 539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 542 } 543 unlock_mount_hash(); 544 545 return err; 546 } 547 548 static void free_vfsmnt(struct mount *mnt) 549 { 550 kfree_const(mnt->mnt_devname); 551 #ifdef CONFIG_SMP 552 free_percpu(mnt->mnt_pcp); 553 #endif 554 kmem_cache_free(mnt_cache, mnt); 555 } 556 557 static void delayed_free_vfsmnt(struct rcu_head *head) 558 { 559 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 560 } 561 562 /* call under rcu_read_lock */ 563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 564 { 565 struct mount *mnt; 566 if (read_seqretry(&mount_lock, seq)) 567 return 1; 568 if (bastard == NULL) 569 return 0; 570 mnt = real_mount(bastard); 571 mnt_add_count(mnt, 1); 572 smp_mb(); // see mntput_no_expire() 573 if (likely(!read_seqretry(&mount_lock, seq))) 574 return 0; 575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 576 mnt_add_count(mnt, -1); 577 return 1; 578 } 579 lock_mount_hash(); 580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 581 mnt_add_count(mnt, -1); 582 unlock_mount_hash(); 583 return 1; 584 } 585 unlock_mount_hash(); 586 /* caller will mntput() */ 587 return -1; 588 } 589 590 /* call under rcu_read_lock */ 591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 int res = __legitimize_mnt(bastard, seq); 594 if (likely(!res)) 595 return true; 596 if (unlikely(res < 0)) { 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 } 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * lookup_mnt - Return the first child mount mounted at path 621 * 622 * "First" means first mounted chronologically. If you create the 623 * following mounts: 624 * 625 * mount /dev/sda1 /mnt 626 * mount /dev/sda2 /mnt 627 * mount /dev/sda3 /mnt 628 * 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will 630 * return successively the root dentry and vfsmount of /dev/sda1, then 631 * /dev/sda2, then /dev/sda3, then NULL. 632 * 633 * lookup_mnt takes a reference to the found vfsmount. 634 */ 635 struct vfsmount *lookup_mnt(const struct path *path) 636 { 637 struct mount *child_mnt; 638 struct vfsmount *m; 639 unsigned seq; 640 641 rcu_read_lock(); 642 do { 643 seq = read_seqbegin(&mount_lock); 644 child_mnt = __lookup_mnt(path->mnt, path->dentry); 645 m = child_mnt ? &child_mnt->mnt : NULL; 646 } while (!legitimize_mnt(m, seq)); 647 rcu_read_unlock(); 648 return m; 649 } 650 651 static inline void lock_ns_list(struct mnt_namespace *ns) 652 { 653 spin_lock(&ns->ns_lock); 654 } 655 656 static inline void unlock_ns_list(struct mnt_namespace *ns) 657 { 658 spin_unlock(&ns->ns_lock); 659 } 660 661 static inline bool mnt_is_cursor(struct mount *mnt) 662 { 663 return mnt->mnt.mnt_flags & MNT_CURSOR; 664 } 665 666 /* 667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 668 * current mount namespace. 669 * 670 * The common case is dentries are not mountpoints at all and that 671 * test is handled inline. For the slow case when we are actually 672 * dealing with a mountpoint of some kind, walk through all of the 673 * mounts in the current mount namespace and test to see if the dentry 674 * is a mountpoint. 675 * 676 * The mount_hashtable is not usable in the context because we 677 * need to identify all mounts that may be in the current mount 678 * namespace not just a mount that happens to have some specified 679 * parent mount. 680 */ 681 bool __is_local_mountpoint(struct dentry *dentry) 682 { 683 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 684 struct mount *mnt; 685 bool is_covered = false; 686 687 if (!d_mountpoint(dentry)) 688 goto out; 689 690 down_read(&namespace_sem); 691 lock_ns_list(ns); 692 list_for_each_entry(mnt, &ns->list, mnt_list) { 693 if (mnt_is_cursor(mnt)) 694 continue; 695 is_covered = (mnt->mnt_mountpoint == dentry); 696 if (is_covered) 697 break; 698 } 699 unlock_ns_list(ns); 700 up_read(&namespace_sem); 701 out: 702 return is_covered; 703 } 704 705 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 706 { 707 struct hlist_head *chain = mp_hash(dentry); 708 struct mountpoint *mp; 709 710 hlist_for_each_entry(mp, chain, m_hash) { 711 if (mp->m_dentry == dentry) { 712 mp->m_count++; 713 return mp; 714 } 715 } 716 return NULL; 717 } 718 719 static struct mountpoint *get_mountpoint(struct dentry *dentry) 720 { 721 struct mountpoint *mp, *new = NULL; 722 int ret; 723 724 if (d_mountpoint(dentry)) { 725 /* might be worth a WARN_ON() */ 726 if (d_unlinked(dentry)) 727 return ERR_PTR(-ENOENT); 728 mountpoint: 729 read_seqlock_excl(&mount_lock); 730 mp = lookup_mountpoint(dentry); 731 read_sequnlock_excl(&mount_lock); 732 if (mp) 733 goto done; 734 } 735 736 if (!new) 737 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 738 if (!new) 739 return ERR_PTR(-ENOMEM); 740 741 742 /* Exactly one processes may set d_mounted */ 743 ret = d_set_mounted(dentry); 744 745 /* Someone else set d_mounted? */ 746 if (ret == -EBUSY) 747 goto mountpoint; 748 749 /* The dentry is not available as a mountpoint? */ 750 mp = ERR_PTR(ret); 751 if (ret) 752 goto done; 753 754 /* Add the new mountpoint to the hash table */ 755 read_seqlock_excl(&mount_lock); 756 new->m_dentry = dget(dentry); 757 new->m_count = 1; 758 hlist_add_head(&new->m_hash, mp_hash(dentry)); 759 INIT_HLIST_HEAD(&new->m_list); 760 read_sequnlock_excl(&mount_lock); 761 762 mp = new; 763 new = NULL; 764 done: 765 kfree(new); 766 return mp; 767 } 768 769 /* 770 * vfsmount lock must be held. Additionally, the caller is responsible 771 * for serializing calls for given disposal list. 772 */ 773 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 774 { 775 if (!--mp->m_count) { 776 struct dentry *dentry = mp->m_dentry; 777 BUG_ON(!hlist_empty(&mp->m_list)); 778 spin_lock(&dentry->d_lock); 779 dentry->d_flags &= ~DCACHE_MOUNTED; 780 spin_unlock(&dentry->d_lock); 781 dput_to_list(dentry, list); 782 hlist_del(&mp->m_hash); 783 kfree(mp); 784 } 785 } 786 787 /* called with namespace_lock and vfsmount lock */ 788 static void put_mountpoint(struct mountpoint *mp) 789 { 790 __put_mountpoint(mp, &ex_mountpoints); 791 } 792 793 static inline int check_mnt(struct mount *mnt) 794 { 795 return mnt->mnt_ns == current->nsproxy->mnt_ns; 796 } 797 798 /* 799 * vfsmount lock must be held for write 800 */ 801 static void touch_mnt_namespace(struct mnt_namespace *ns) 802 { 803 if (ns) { 804 ns->event = ++event; 805 wake_up_interruptible(&ns->poll); 806 } 807 } 808 809 /* 810 * vfsmount lock must be held for write 811 */ 812 static void __touch_mnt_namespace(struct mnt_namespace *ns) 813 { 814 if (ns && ns->event != event) { 815 ns->event = event; 816 wake_up_interruptible(&ns->poll); 817 } 818 } 819 820 /* 821 * vfsmount lock must be held for write 822 */ 823 static struct mountpoint *unhash_mnt(struct mount *mnt) 824 { 825 struct mountpoint *mp; 826 mnt->mnt_parent = mnt; 827 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 828 list_del_init(&mnt->mnt_child); 829 hlist_del_init_rcu(&mnt->mnt_hash); 830 hlist_del_init(&mnt->mnt_mp_list); 831 mp = mnt->mnt_mp; 832 mnt->mnt_mp = NULL; 833 return mp; 834 } 835 836 /* 837 * vfsmount lock must be held for write 838 */ 839 static void umount_mnt(struct mount *mnt) 840 { 841 put_mountpoint(unhash_mnt(mnt)); 842 } 843 844 /* 845 * vfsmount lock must be held for write 846 */ 847 void mnt_set_mountpoint(struct mount *mnt, 848 struct mountpoint *mp, 849 struct mount *child_mnt) 850 { 851 mp->m_count++; 852 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 853 child_mnt->mnt_mountpoint = mp->m_dentry; 854 child_mnt->mnt_parent = mnt; 855 child_mnt->mnt_mp = mp; 856 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 857 } 858 859 static void __attach_mnt(struct mount *mnt, struct mount *parent) 860 { 861 hlist_add_head_rcu(&mnt->mnt_hash, 862 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 863 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 864 } 865 866 /* 867 * vfsmount lock must be held for write 868 */ 869 static void attach_mnt(struct mount *mnt, 870 struct mount *parent, 871 struct mountpoint *mp) 872 { 873 mnt_set_mountpoint(parent, mp, mnt); 874 __attach_mnt(mnt, parent); 875 } 876 877 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 878 { 879 struct mountpoint *old_mp = mnt->mnt_mp; 880 struct mount *old_parent = mnt->mnt_parent; 881 882 list_del_init(&mnt->mnt_child); 883 hlist_del_init(&mnt->mnt_mp_list); 884 hlist_del_init_rcu(&mnt->mnt_hash); 885 886 attach_mnt(mnt, parent, mp); 887 888 put_mountpoint(old_mp); 889 mnt_add_count(old_parent, -1); 890 } 891 892 /* 893 * vfsmount lock must be held for write 894 */ 895 static void commit_tree(struct mount *mnt) 896 { 897 struct mount *parent = mnt->mnt_parent; 898 struct mount *m; 899 LIST_HEAD(head); 900 struct mnt_namespace *n = parent->mnt_ns; 901 902 BUG_ON(parent == mnt); 903 904 list_add_tail(&head, &mnt->mnt_list); 905 list_for_each_entry(m, &head, mnt_list) 906 m->mnt_ns = n; 907 908 list_splice(&head, n->list.prev); 909 910 n->mounts += n->pending_mounts; 911 n->pending_mounts = 0; 912 913 __attach_mnt(mnt, parent); 914 touch_mnt_namespace(n); 915 } 916 917 static struct mount *next_mnt(struct mount *p, struct mount *root) 918 { 919 struct list_head *next = p->mnt_mounts.next; 920 if (next == &p->mnt_mounts) { 921 while (1) { 922 if (p == root) 923 return NULL; 924 next = p->mnt_child.next; 925 if (next != &p->mnt_parent->mnt_mounts) 926 break; 927 p = p->mnt_parent; 928 } 929 } 930 return list_entry(next, struct mount, mnt_child); 931 } 932 933 static struct mount *skip_mnt_tree(struct mount *p) 934 { 935 struct list_head *prev = p->mnt_mounts.prev; 936 while (prev != &p->mnt_mounts) { 937 p = list_entry(prev, struct mount, mnt_child); 938 prev = p->mnt_mounts.prev; 939 } 940 return p; 941 } 942 943 /** 944 * vfs_create_mount - Create a mount for a configured superblock 945 * @fc: The configuration context with the superblock attached 946 * 947 * Create a mount to an already configured superblock. If necessary, the 948 * caller should invoke vfs_get_tree() before calling this. 949 * 950 * Note that this does not attach the mount to anything. 951 */ 952 struct vfsmount *vfs_create_mount(struct fs_context *fc) 953 { 954 struct mount *mnt; 955 956 if (!fc->root) 957 return ERR_PTR(-EINVAL); 958 959 mnt = alloc_vfsmnt(fc->source ?: "none"); 960 if (!mnt) 961 return ERR_PTR(-ENOMEM); 962 963 if (fc->sb_flags & SB_KERNMOUNT) 964 mnt->mnt.mnt_flags = MNT_INTERNAL; 965 966 atomic_inc(&fc->root->d_sb->s_active); 967 mnt->mnt.mnt_sb = fc->root->d_sb; 968 mnt->mnt.mnt_root = dget(fc->root); 969 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 970 mnt->mnt_parent = mnt; 971 972 lock_mount_hash(); 973 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 974 unlock_mount_hash(); 975 return &mnt->mnt; 976 } 977 EXPORT_SYMBOL(vfs_create_mount); 978 979 struct vfsmount *fc_mount(struct fs_context *fc) 980 { 981 int err = vfs_get_tree(fc); 982 if (!err) { 983 up_write(&fc->root->d_sb->s_umount); 984 return vfs_create_mount(fc); 985 } 986 return ERR_PTR(err); 987 } 988 EXPORT_SYMBOL(fc_mount); 989 990 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 991 int flags, const char *name, 992 void *data) 993 { 994 struct fs_context *fc; 995 struct vfsmount *mnt; 996 int ret = 0; 997 998 if (!type) 999 return ERR_PTR(-EINVAL); 1000 1001 fc = fs_context_for_mount(type, flags); 1002 if (IS_ERR(fc)) 1003 return ERR_CAST(fc); 1004 1005 if (name) 1006 ret = vfs_parse_fs_string(fc, "source", 1007 name, strlen(name)); 1008 if (!ret) 1009 ret = parse_monolithic_mount_data(fc, data); 1010 if (!ret) 1011 mnt = fc_mount(fc); 1012 else 1013 mnt = ERR_PTR(ret); 1014 1015 put_fs_context(fc); 1016 return mnt; 1017 } 1018 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1019 1020 struct vfsmount * 1021 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1022 const char *name, void *data) 1023 { 1024 /* Until it is worked out how to pass the user namespace 1025 * through from the parent mount to the submount don't support 1026 * unprivileged mounts with submounts. 1027 */ 1028 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1029 return ERR_PTR(-EPERM); 1030 1031 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1032 } 1033 EXPORT_SYMBOL_GPL(vfs_submount); 1034 1035 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1036 int flag) 1037 { 1038 struct super_block *sb = old->mnt.mnt_sb; 1039 struct mount *mnt; 1040 int err; 1041 1042 mnt = alloc_vfsmnt(old->mnt_devname); 1043 if (!mnt) 1044 return ERR_PTR(-ENOMEM); 1045 1046 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1047 mnt->mnt_group_id = 0; /* not a peer of original */ 1048 else 1049 mnt->mnt_group_id = old->mnt_group_id; 1050 1051 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1052 err = mnt_alloc_group_id(mnt); 1053 if (err) 1054 goto out_free; 1055 } 1056 1057 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1058 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1059 1060 atomic_inc(&sb->s_active); 1061 mnt->mnt.mnt_sb = sb; 1062 mnt->mnt.mnt_root = dget(root); 1063 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1064 mnt->mnt_parent = mnt; 1065 lock_mount_hash(); 1066 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1067 unlock_mount_hash(); 1068 1069 if ((flag & CL_SLAVE) || 1070 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1071 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1072 mnt->mnt_master = old; 1073 CLEAR_MNT_SHARED(mnt); 1074 } else if (!(flag & CL_PRIVATE)) { 1075 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1076 list_add(&mnt->mnt_share, &old->mnt_share); 1077 if (IS_MNT_SLAVE(old)) 1078 list_add(&mnt->mnt_slave, &old->mnt_slave); 1079 mnt->mnt_master = old->mnt_master; 1080 } else { 1081 CLEAR_MNT_SHARED(mnt); 1082 } 1083 if (flag & CL_MAKE_SHARED) 1084 set_mnt_shared(mnt); 1085 1086 /* stick the duplicate mount on the same expiry list 1087 * as the original if that was on one */ 1088 if (flag & CL_EXPIRE) { 1089 if (!list_empty(&old->mnt_expire)) 1090 list_add(&mnt->mnt_expire, &old->mnt_expire); 1091 } 1092 1093 return mnt; 1094 1095 out_free: 1096 mnt_free_id(mnt); 1097 free_vfsmnt(mnt); 1098 return ERR_PTR(err); 1099 } 1100 1101 static void cleanup_mnt(struct mount *mnt) 1102 { 1103 struct hlist_node *p; 1104 struct mount *m; 1105 /* 1106 * The warning here probably indicates that somebody messed 1107 * up a mnt_want/drop_write() pair. If this happens, the 1108 * filesystem was probably unable to make r/w->r/o transitions. 1109 * The locking used to deal with mnt_count decrement provides barriers, 1110 * so mnt_get_writers() below is safe. 1111 */ 1112 WARN_ON(mnt_get_writers(mnt)); 1113 if (unlikely(mnt->mnt_pins.first)) 1114 mnt_pin_kill(mnt); 1115 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1116 hlist_del(&m->mnt_umount); 1117 mntput(&m->mnt); 1118 } 1119 fsnotify_vfsmount_delete(&mnt->mnt); 1120 dput(mnt->mnt.mnt_root); 1121 deactivate_super(mnt->mnt.mnt_sb); 1122 mnt_free_id(mnt); 1123 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1124 } 1125 1126 static void __cleanup_mnt(struct rcu_head *head) 1127 { 1128 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1129 } 1130 1131 static LLIST_HEAD(delayed_mntput_list); 1132 static void delayed_mntput(struct work_struct *unused) 1133 { 1134 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1135 struct mount *m, *t; 1136 1137 llist_for_each_entry_safe(m, t, node, mnt_llist) 1138 cleanup_mnt(m); 1139 } 1140 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1141 1142 static void mntput_no_expire(struct mount *mnt) 1143 { 1144 LIST_HEAD(list); 1145 1146 rcu_read_lock(); 1147 if (likely(READ_ONCE(mnt->mnt_ns))) { 1148 /* 1149 * Since we don't do lock_mount_hash() here, 1150 * ->mnt_ns can change under us. However, if it's 1151 * non-NULL, then there's a reference that won't 1152 * be dropped until after an RCU delay done after 1153 * turning ->mnt_ns NULL. So if we observe it 1154 * non-NULL under rcu_read_lock(), the reference 1155 * we are dropping is not the final one. 1156 */ 1157 mnt_add_count(mnt, -1); 1158 rcu_read_unlock(); 1159 return; 1160 } 1161 lock_mount_hash(); 1162 /* 1163 * make sure that if __legitimize_mnt() has not seen us grab 1164 * mount_lock, we'll see their refcount increment here. 1165 */ 1166 smp_mb(); 1167 mnt_add_count(mnt, -1); 1168 if (mnt_get_count(mnt)) { 1169 rcu_read_unlock(); 1170 unlock_mount_hash(); 1171 return; 1172 } 1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1174 rcu_read_unlock(); 1175 unlock_mount_hash(); 1176 return; 1177 } 1178 mnt->mnt.mnt_flags |= MNT_DOOMED; 1179 rcu_read_unlock(); 1180 1181 list_del(&mnt->mnt_instance); 1182 1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1184 struct mount *p, *tmp; 1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1186 __put_mountpoint(unhash_mnt(p), &list); 1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1188 } 1189 } 1190 unlock_mount_hash(); 1191 shrink_dentry_list(&list); 1192 1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1194 struct task_struct *task = current; 1195 if (likely(!(task->flags & PF_KTHREAD))) { 1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1197 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1198 return; 1199 } 1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1201 schedule_delayed_work(&delayed_mntput_work, 1); 1202 return; 1203 } 1204 cleanup_mnt(mnt); 1205 } 1206 1207 void mntput(struct vfsmount *mnt) 1208 { 1209 if (mnt) { 1210 struct mount *m = real_mount(mnt); 1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1212 if (unlikely(m->mnt_expiry_mark)) 1213 m->mnt_expiry_mark = 0; 1214 mntput_no_expire(m); 1215 } 1216 } 1217 EXPORT_SYMBOL(mntput); 1218 1219 struct vfsmount *mntget(struct vfsmount *mnt) 1220 { 1221 if (mnt) 1222 mnt_add_count(real_mount(mnt), 1); 1223 return mnt; 1224 } 1225 EXPORT_SYMBOL(mntget); 1226 1227 /* path_is_mountpoint() - Check if path is a mount in the current 1228 * namespace. 1229 * 1230 * d_mountpoint() can only be used reliably to establish if a dentry is 1231 * not mounted in any namespace and that common case is handled inline. 1232 * d_mountpoint() isn't aware of the possibility there may be multiple 1233 * mounts using a given dentry in a different namespace. This function 1234 * checks if the passed in path is a mountpoint rather than the dentry 1235 * alone. 1236 */ 1237 bool path_is_mountpoint(const struct path *path) 1238 { 1239 unsigned seq; 1240 bool res; 1241 1242 if (!d_mountpoint(path->dentry)) 1243 return false; 1244 1245 rcu_read_lock(); 1246 do { 1247 seq = read_seqbegin(&mount_lock); 1248 res = __path_is_mountpoint(path); 1249 } while (read_seqretry(&mount_lock, seq)); 1250 rcu_read_unlock(); 1251 1252 return res; 1253 } 1254 EXPORT_SYMBOL(path_is_mountpoint); 1255 1256 struct vfsmount *mnt_clone_internal(const struct path *path) 1257 { 1258 struct mount *p; 1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1260 if (IS_ERR(p)) 1261 return ERR_CAST(p); 1262 p->mnt.mnt_flags |= MNT_INTERNAL; 1263 return &p->mnt; 1264 } 1265 1266 #ifdef CONFIG_PROC_FS 1267 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1268 struct list_head *p) 1269 { 1270 struct mount *mnt, *ret = NULL; 1271 1272 lock_ns_list(ns); 1273 list_for_each_continue(p, &ns->list) { 1274 mnt = list_entry(p, typeof(*mnt), mnt_list); 1275 if (!mnt_is_cursor(mnt)) { 1276 ret = mnt; 1277 break; 1278 } 1279 } 1280 unlock_ns_list(ns); 1281 1282 return ret; 1283 } 1284 1285 /* iterator; we want it to have access to namespace_sem, thus here... */ 1286 static void *m_start(struct seq_file *m, loff_t *pos) 1287 { 1288 struct proc_mounts *p = m->private; 1289 struct list_head *prev; 1290 1291 down_read(&namespace_sem); 1292 if (!*pos) { 1293 prev = &p->ns->list; 1294 } else { 1295 prev = &p->cursor.mnt_list; 1296 1297 /* Read after we'd reached the end? */ 1298 if (list_empty(prev)) 1299 return NULL; 1300 } 1301 1302 return mnt_list_next(p->ns, prev); 1303 } 1304 1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1306 { 1307 struct proc_mounts *p = m->private; 1308 struct mount *mnt = v; 1309 1310 ++*pos; 1311 return mnt_list_next(p->ns, &mnt->mnt_list); 1312 } 1313 1314 static void m_stop(struct seq_file *m, void *v) 1315 { 1316 struct proc_mounts *p = m->private; 1317 struct mount *mnt = v; 1318 1319 lock_ns_list(p->ns); 1320 if (mnt) 1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1322 else 1323 list_del_init(&p->cursor.mnt_list); 1324 unlock_ns_list(p->ns); 1325 up_read(&namespace_sem); 1326 } 1327 1328 static int m_show(struct seq_file *m, void *v) 1329 { 1330 struct proc_mounts *p = m->private; 1331 struct mount *r = v; 1332 return p->show(m, &r->mnt); 1333 } 1334 1335 const struct seq_operations mounts_op = { 1336 .start = m_start, 1337 .next = m_next, 1338 .stop = m_stop, 1339 .show = m_show, 1340 }; 1341 1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1343 { 1344 down_read(&namespace_sem); 1345 lock_ns_list(ns); 1346 list_del(&cursor->mnt_list); 1347 unlock_ns_list(ns); 1348 up_read(&namespace_sem); 1349 } 1350 #endif /* CONFIG_PROC_FS */ 1351 1352 /** 1353 * may_umount_tree - check if a mount tree is busy 1354 * @mnt: root of mount tree 1355 * 1356 * This is called to check if a tree of mounts has any 1357 * open files, pwds, chroots or sub mounts that are 1358 * busy. 1359 */ 1360 int may_umount_tree(struct vfsmount *m) 1361 { 1362 struct mount *mnt = real_mount(m); 1363 int actual_refs = 0; 1364 int minimum_refs = 0; 1365 struct mount *p; 1366 BUG_ON(!m); 1367 1368 /* write lock needed for mnt_get_count */ 1369 lock_mount_hash(); 1370 for (p = mnt; p; p = next_mnt(p, mnt)) { 1371 actual_refs += mnt_get_count(p); 1372 minimum_refs += 2; 1373 } 1374 unlock_mount_hash(); 1375 1376 if (actual_refs > minimum_refs) 1377 return 0; 1378 1379 return 1; 1380 } 1381 1382 EXPORT_SYMBOL(may_umount_tree); 1383 1384 /** 1385 * may_umount - check if a mount point is busy 1386 * @mnt: root of mount 1387 * 1388 * This is called to check if a mount point has any 1389 * open files, pwds, chroots or sub mounts. If the 1390 * mount has sub mounts this will return busy 1391 * regardless of whether the sub mounts are busy. 1392 * 1393 * Doesn't take quota and stuff into account. IOW, in some cases it will 1394 * give false negatives. The main reason why it's here is that we need 1395 * a non-destructive way to look for easily umountable filesystems. 1396 */ 1397 int may_umount(struct vfsmount *mnt) 1398 { 1399 int ret = 1; 1400 down_read(&namespace_sem); 1401 lock_mount_hash(); 1402 if (propagate_mount_busy(real_mount(mnt), 2)) 1403 ret = 0; 1404 unlock_mount_hash(); 1405 up_read(&namespace_sem); 1406 return ret; 1407 } 1408 1409 EXPORT_SYMBOL(may_umount); 1410 1411 static void namespace_unlock(void) 1412 { 1413 struct hlist_head head; 1414 struct hlist_node *p; 1415 struct mount *m; 1416 LIST_HEAD(list); 1417 1418 hlist_move_list(&unmounted, &head); 1419 list_splice_init(&ex_mountpoints, &list); 1420 1421 up_write(&namespace_sem); 1422 1423 shrink_dentry_list(&list); 1424 1425 if (likely(hlist_empty(&head))) 1426 return; 1427 1428 synchronize_rcu_expedited(); 1429 1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1431 hlist_del(&m->mnt_umount); 1432 mntput(&m->mnt); 1433 } 1434 } 1435 1436 static inline void namespace_lock(void) 1437 { 1438 down_write(&namespace_sem); 1439 } 1440 1441 enum umount_tree_flags { 1442 UMOUNT_SYNC = 1, 1443 UMOUNT_PROPAGATE = 2, 1444 UMOUNT_CONNECTED = 4, 1445 }; 1446 1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1448 { 1449 /* Leaving mounts connected is only valid for lazy umounts */ 1450 if (how & UMOUNT_SYNC) 1451 return true; 1452 1453 /* A mount without a parent has nothing to be connected to */ 1454 if (!mnt_has_parent(mnt)) 1455 return true; 1456 1457 /* Because the reference counting rules change when mounts are 1458 * unmounted and connected, umounted mounts may not be 1459 * connected to mounted mounts. 1460 */ 1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1462 return true; 1463 1464 /* Has it been requested that the mount remain connected? */ 1465 if (how & UMOUNT_CONNECTED) 1466 return false; 1467 1468 /* Is the mount locked such that it needs to remain connected? */ 1469 if (IS_MNT_LOCKED(mnt)) 1470 return false; 1471 1472 /* By default disconnect the mount */ 1473 return true; 1474 } 1475 1476 /* 1477 * mount_lock must be held 1478 * namespace_sem must be held for write 1479 */ 1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1481 { 1482 LIST_HEAD(tmp_list); 1483 struct mount *p; 1484 1485 if (how & UMOUNT_PROPAGATE) 1486 propagate_mount_unlock(mnt); 1487 1488 /* Gather the mounts to umount */ 1489 for (p = mnt; p; p = next_mnt(p, mnt)) { 1490 p->mnt.mnt_flags |= MNT_UMOUNT; 1491 list_move(&p->mnt_list, &tmp_list); 1492 } 1493 1494 /* Hide the mounts from mnt_mounts */ 1495 list_for_each_entry(p, &tmp_list, mnt_list) { 1496 list_del_init(&p->mnt_child); 1497 } 1498 1499 /* Add propogated mounts to the tmp_list */ 1500 if (how & UMOUNT_PROPAGATE) 1501 propagate_umount(&tmp_list); 1502 1503 while (!list_empty(&tmp_list)) { 1504 struct mnt_namespace *ns; 1505 bool disconnect; 1506 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1507 list_del_init(&p->mnt_expire); 1508 list_del_init(&p->mnt_list); 1509 ns = p->mnt_ns; 1510 if (ns) { 1511 ns->mounts--; 1512 __touch_mnt_namespace(ns); 1513 } 1514 p->mnt_ns = NULL; 1515 if (how & UMOUNT_SYNC) 1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1517 1518 disconnect = disconnect_mount(p, how); 1519 if (mnt_has_parent(p)) { 1520 mnt_add_count(p->mnt_parent, -1); 1521 if (!disconnect) { 1522 /* Don't forget about p */ 1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1524 } else { 1525 umount_mnt(p); 1526 } 1527 } 1528 change_mnt_propagation(p, MS_PRIVATE); 1529 if (disconnect) 1530 hlist_add_head(&p->mnt_umount, &unmounted); 1531 } 1532 } 1533 1534 static void shrink_submounts(struct mount *mnt); 1535 1536 static int do_umount_root(struct super_block *sb) 1537 { 1538 int ret = 0; 1539 1540 down_write(&sb->s_umount); 1541 if (!sb_rdonly(sb)) { 1542 struct fs_context *fc; 1543 1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1545 SB_RDONLY); 1546 if (IS_ERR(fc)) { 1547 ret = PTR_ERR(fc); 1548 } else { 1549 ret = parse_monolithic_mount_data(fc, NULL); 1550 if (!ret) 1551 ret = reconfigure_super(fc); 1552 put_fs_context(fc); 1553 } 1554 } 1555 up_write(&sb->s_umount); 1556 return ret; 1557 } 1558 1559 static int do_umount(struct mount *mnt, int flags) 1560 { 1561 struct super_block *sb = mnt->mnt.mnt_sb; 1562 int retval; 1563 1564 retval = security_sb_umount(&mnt->mnt, flags); 1565 if (retval) 1566 return retval; 1567 1568 /* 1569 * Allow userspace to request a mountpoint be expired rather than 1570 * unmounting unconditionally. Unmount only happens if: 1571 * (1) the mark is already set (the mark is cleared by mntput()) 1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1573 */ 1574 if (flags & MNT_EXPIRE) { 1575 if (&mnt->mnt == current->fs->root.mnt || 1576 flags & (MNT_FORCE | MNT_DETACH)) 1577 return -EINVAL; 1578 1579 /* 1580 * probably don't strictly need the lock here if we examined 1581 * all race cases, but it's a slowpath. 1582 */ 1583 lock_mount_hash(); 1584 if (mnt_get_count(mnt) != 2) { 1585 unlock_mount_hash(); 1586 return -EBUSY; 1587 } 1588 unlock_mount_hash(); 1589 1590 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1591 return -EAGAIN; 1592 } 1593 1594 /* 1595 * If we may have to abort operations to get out of this 1596 * mount, and they will themselves hold resources we must 1597 * allow the fs to do things. In the Unix tradition of 1598 * 'Gee thats tricky lets do it in userspace' the umount_begin 1599 * might fail to complete on the first run through as other tasks 1600 * must return, and the like. Thats for the mount program to worry 1601 * about for the moment. 1602 */ 1603 1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1605 sb->s_op->umount_begin(sb); 1606 } 1607 1608 /* 1609 * No sense to grab the lock for this test, but test itself looks 1610 * somewhat bogus. Suggestions for better replacement? 1611 * Ho-hum... In principle, we might treat that as umount + switch 1612 * to rootfs. GC would eventually take care of the old vfsmount. 1613 * Actually it makes sense, especially if rootfs would contain a 1614 * /reboot - static binary that would close all descriptors and 1615 * call reboot(9). Then init(8) could umount root and exec /reboot. 1616 */ 1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1618 /* 1619 * Special case for "unmounting" root ... 1620 * we just try to remount it readonly. 1621 */ 1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1623 return -EPERM; 1624 return do_umount_root(sb); 1625 } 1626 1627 namespace_lock(); 1628 lock_mount_hash(); 1629 1630 /* Recheck MNT_LOCKED with the locks held */ 1631 retval = -EINVAL; 1632 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1633 goto out; 1634 1635 event++; 1636 if (flags & MNT_DETACH) { 1637 if (!list_empty(&mnt->mnt_list)) 1638 umount_tree(mnt, UMOUNT_PROPAGATE); 1639 retval = 0; 1640 } else { 1641 shrink_submounts(mnt); 1642 retval = -EBUSY; 1643 if (!propagate_mount_busy(mnt, 2)) { 1644 if (!list_empty(&mnt->mnt_list)) 1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1646 retval = 0; 1647 } 1648 } 1649 out: 1650 unlock_mount_hash(); 1651 namespace_unlock(); 1652 return retval; 1653 } 1654 1655 /* 1656 * __detach_mounts - lazily unmount all mounts on the specified dentry 1657 * 1658 * During unlink, rmdir, and d_drop it is possible to loose the path 1659 * to an existing mountpoint, and wind up leaking the mount. 1660 * detach_mounts allows lazily unmounting those mounts instead of 1661 * leaking them. 1662 * 1663 * The caller may hold dentry->d_inode->i_mutex. 1664 */ 1665 void __detach_mounts(struct dentry *dentry) 1666 { 1667 struct mountpoint *mp; 1668 struct mount *mnt; 1669 1670 namespace_lock(); 1671 lock_mount_hash(); 1672 mp = lookup_mountpoint(dentry); 1673 if (!mp) 1674 goto out_unlock; 1675 1676 event++; 1677 while (!hlist_empty(&mp->m_list)) { 1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1680 umount_mnt(mnt); 1681 hlist_add_head(&mnt->mnt_umount, &unmounted); 1682 } 1683 else umount_tree(mnt, UMOUNT_CONNECTED); 1684 } 1685 put_mountpoint(mp); 1686 out_unlock: 1687 unlock_mount_hash(); 1688 namespace_unlock(); 1689 } 1690 1691 /* 1692 * Is the caller allowed to modify his namespace? 1693 */ 1694 static inline bool may_mount(void) 1695 { 1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1697 } 1698 1699 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1700 static inline bool may_mandlock(void) 1701 { 1702 return capable(CAP_SYS_ADMIN); 1703 } 1704 #else 1705 static inline bool may_mandlock(void) 1706 { 1707 pr_warn("VFS: \"mand\" mount option not supported"); 1708 return false; 1709 } 1710 #endif 1711 1712 /* 1713 * Now umount can handle mount points as well as block devices. 1714 * This is important for filesystems which use unnamed block devices. 1715 * 1716 * We now support a flag for forced unmount like the other 'big iron' 1717 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1718 */ 1719 1720 int ksys_umount(char __user *name, int flags) 1721 { 1722 struct path path; 1723 struct mount *mnt; 1724 int retval; 1725 int lookup_flags = LOOKUP_MOUNTPOINT; 1726 1727 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1728 return -EINVAL; 1729 1730 if (!may_mount()) 1731 return -EPERM; 1732 1733 if (!(flags & UMOUNT_NOFOLLOW)) 1734 lookup_flags |= LOOKUP_FOLLOW; 1735 1736 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1737 if (retval) 1738 goto out; 1739 mnt = real_mount(path.mnt); 1740 retval = -EINVAL; 1741 if (path.dentry != path.mnt->mnt_root) 1742 goto dput_and_out; 1743 if (!check_mnt(mnt)) 1744 goto dput_and_out; 1745 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1746 goto dput_and_out; 1747 retval = -EPERM; 1748 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1749 goto dput_and_out; 1750 1751 retval = do_umount(mnt, flags); 1752 dput_and_out: 1753 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1754 dput(path.dentry); 1755 mntput_no_expire(mnt); 1756 out: 1757 return retval; 1758 } 1759 1760 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1761 { 1762 return ksys_umount(name, flags); 1763 } 1764 1765 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1766 1767 /* 1768 * The 2.0 compatible umount. No flags. 1769 */ 1770 SYSCALL_DEFINE1(oldumount, char __user *, name) 1771 { 1772 return ksys_umount(name, 0); 1773 } 1774 1775 #endif 1776 1777 static bool is_mnt_ns_file(struct dentry *dentry) 1778 { 1779 /* Is this a proxy for a mount namespace? */ 1780 return dentry->d_op == &ns_dentry_operations && 1781 dentry->d_fsdata == &mntns_operations; 1782 } 1783 1784 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1785 { 1786 return container_of(ns, struct mnt_namespace, ns); 1787 } 1788 1789 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1790 { 1791 return &mnt->ns; 1792 } 1793 1794 static bool mnt_ns_loop(struct dentry *dentry) 1795 { 1796 /* Could bind mounting the mount namespace inode cause a 1797 * mount namespace loop? 1798 */ 1799 struct mnt_namespace *mnt_ns; 1800 if (!is_mnt_ns_file(dentry)) 1801 return false; 1802 1803 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1804 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1805 } 1806 1807 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1808 int flag) 1809 { 1810 struct mount *res, *p, *q, *r, *parent; 1811 1812 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1813 return ERR_PTR(-EINVAL); 1814 1815 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1816 return ERR_PTR(-EINVAL); 1817 1818 res = q = clone_mnt(mnt, dentry, flag); 1819 if (IS_ERR(q)) 1820 return q; 1821 1822 q->mnt_mountpoint = mnt->mnt_mountpoint; 1823 1824 p = mnt; 1825 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1826 struct mount *s; 1827 if (!is_subdir(r->mnt_mountpoint, dentry)) 1828 continue; 1829 1830 for (s = r; s; s = next_mnt(s, r)) { 1831 if (!(flag & CL_COPY_UNBINDABLE) && 1832 IS_MNT_UNBINDABLE(s)) { 1833 if (s->mnt.mnt_flags & MNT_LOCKED) { 1834 /* Both unbindable and locked. */ 1835 q = ERR_PTR(-EPERM); 1836 goto out; 1837 } else { 1838 s = skip_mnt_tree(s); 1839 continue; 1840 } 1841 } 1842 if (!(flag & CL_COPY_MNT_NS_FILE) && 1843 is_mnt_ns_file(s->mnt.mnt_root)) { 1844 s = skip_mnt_tree(s); 1845 continue; 1846 } 1847 while (p != s->mnt_parent) { 1848 p = p->mnt_parent; 1849 q = q->mnt_parent; 1850 } 1851 p = s; 1852 parent = q; 1853 q = clone_mnt(p, p->mnt.mnt_root, flag); 1854 if (IS_ERR(q)) 1855 goto out; 1856 lock_mount_hash(); 1857 list_add_tail(&q->mnt_list, &res->mnt_list); 1858 attach_mnt(q, parent, p->mnt_mp); 1859 unlock_mount_hash(); 1860 } 1861 } 1862 return res; 1863 out: 1864 if (res) { 1865 lock_mount_hash(); 1866 umount_tree(res, UMOUNT_SYNC); 1867 unlock_mount_hash(); 1868 } 1869 return q; 1870 } 1871 1872 /* Caller should check returned pointer for errors */ 1873 1874 struct vfsmount *collect_mounts(const struct path *path) 1875 { 1876 struct mount *tree; 1877 namespace_lock(); 1878 if (!check_mnt(real_mount(path->mnt))) 1879 tree = ERR_PTR(-EINVAL); 1880 else 1881 tree = copy_tree(real_mount(path->mnt), path->dentry, 1882 CL_COPY_ALL | CL_PRIVATE); 1883 namespace_unlock(); 1884 if (IS_ERR(tree)) 1885 return ERR_CAST(tree); 1886 return &tree->mnt; 1887 } 1888 1889 static void free_mnt_ns(struct mnt_namespace *); 1890 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1891 1892 void dissolve_on_fput(struct vfsmount *mnt) 1893 { 1894 struct mnt_namespace *ns; 1895 namespace_lock(); 1896 lock_mount_hash(); 1897 ns = real_mount(mnt)->mnt_ns; 1898 if (ns) { 1899 if (is_anon_ns(ns)) 1900 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1901 else 1902 ns = NULL; 1903 } 1904 unlock_mount_hash(); 1905 namespace_unlock(); 1906 if (ns) 1907 free_mnt_ns(ns); 1908 } 1909 1910 void drop_collected_mounts(struct vfsmount *mnt) 1911 { 1912 namespace_lock(); 1913 lock_mount_hash(); 1914 umount_tree(real_mount(mnt), 0); 1915 unlock_mount_hash(); 1916 namespace_unlock(); 1917 } 1918 1919 /** 1920 * clone_private_mount - create a private clone of a path 1921 * 1922 * This creates a new vfsmount, which will be the clone of @path. The new will 1923 * not be attached anywhere in the namespace and will be private (i.e. changes 1924 * to the originating mount won't be propagated into this). 1925 * 1926 * Release with mntput(). 1927 */ 1928 struct vfsmount *clone_private_mount(const struct path *path) 1929 { 1930 struct mount *old_mnt = real_mount(path->mnt); 1931 struct mount *new_mnt; 1932 1933 if (IS_MNT_UNBINDABLE(old_mnt)) 1934 return ERR_PTR(-EINVAL); 1935 1936 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1937 if (IS_ERR(new_mnt)) 1938 return ERR_CAST(new_mnt); 1939 1940 /* Longterm mount to be removed by kern_unmount*() */ 1941 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1942 1943 return &new_mnt->mnt; 1944 } 1945 EXPORT_SYMBOL_GPL(clone_private_mount); 1946 1947 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1948 struct vfsmount *root) 1949 { 1950 struct mount *mnt; 1951 int res = f(root, arg); 1952 if (res) 1953 return res; 1954 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1955 res = f(&mnt->mnt, arg); 1956 if (res) 1957 return res; 1958 } 1959 return 0; 1960 } 1961 1962 static void lock_mnt_tree(struct mount *mnt) 1963 { 1964 struct mount *p; 1965 1966 for (p = mnt; p; p = next_mnt(p, mnt)) { 1967 int flags = p->mnt.mnt_flags; 1968 /* Don't allow unprivileged users to change mount flags */ 1969 flags |= MNT_LOCK_ATIME; 1970 1971 if (flags & MNT_READONLY) 1972 flags |= MNT_LOCK_READONLY; 1973 1974 if (flags & MNT_NODEV) 1975 flags |= MNT_LOCK_NODEV; 1976 1977 if (flags & MNT_NOSUID) 1978 flags |= MNT_LOCK_NOSUID; 1979 1980 if (flags & MNT_NOEXEC) 1981 flags |= MNT_LOCK_NOEXEC; 1982 /* Don't allow unprivileged users to reveal what is under a mount */ 1983 if (list_empty(&p->mnt_expire)) 1984 flags |= MNT_LOCKED; 1985 p->mnt.mnt_flags = flags; 1986 } 1987 } 1988 1989 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1990 { 1991 struct mount *p; 1992 1993 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1994 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1995 mnt_release_group_id(p); 1996 } 1997 } 1998 1999 static int invent_group_ids(struct mount *mnt, bool recurse) 2000 { 2001 struct mount *p; 2002 2003 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2004 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2005 int err = mnt_alloc_group_id(p); 2006 if (err) { 2007 cleanup_group_ids(mnt, p); 2008 return err; 2009 } 2010 } 2011 } 2012 2013 return 0; 2014 } 2015 2016 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2017 { 2018 unsigned int max = READ_ONCE(sysctl_mount_max); 2019 unsigned int mounts = 0, old, pending, sum; 2020 struct mount *p; 2021 2022 for (p = mnt; p; p = next_mnt(p, mnt)) 2023 mounts++; 2024 2025 old = ns->mounts; 2026 pending = ns->pending_mounts; 2027 sum = old + pending; 2028 if ((old > sum) || 2029 (pending > sum) || 2030 (max < sum) || 2031 (mounts > (max - sum))) 2032 return -ENOSPC; 2033 2034 ns->pending_mounts = pending + mounts; 2035 return 0; 2036 } 2037 2038 /* 2039 * @source_mnt : mount tree to be attached 2040 * @nd : place the mount tree @source_mnt is attached 2041 * @parent_nd : if non-null, detach the source_mnt from its parent and 2042 * store the parent mount and mountpoint dentry. 2043 * (done when source_mnt is moved) 2044 * 2045 * NOTE: in the table below explains the semantics when a source mount 2046 * of a given type is attached to a destination mount of a given type. 2047 * --------------------------------------------------------------------------- 2048 * | BIND MOUNT OPERATION | 2049 * |************************************************************************** 2050 * | source-->| shared | private | slave | unbindable | 2051 * | dest | | | | | 2052 * | | | | | | | 2053 * | v | | | | | 2054 * |************************************************************************** 2055 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2056 * | | | | | | 2057 * |non-shared| shared (+) | private | slave (*) | invalid | 2058 * *************************************************************************** 2059 * A bind operation clones the source mount and mounts the clone on the 2060 * destination mount. 2061 * 2062 * (++) the cloned mount is propagated to all the mounts in the propagation 2063 * tree of the destination mount and the cloned mount is added to 2064 * the peer group of the source mount. 2065 * (+) the cloned mount is created under the destination mount and is marked 2066 * as shared. The cloned mount is added to the peer group of the source 2067 * mount. 2068 * (+++) the mount is propagated to all the mounts in the propagation tree 2069 * of the destination mount and the cloned mount is made slave 2070 * of the same master as that of the source mount. The cloned mount 2071 * is marked as 'shared and slave'. 2072 * (*) the cloned mount is made a slave of the same master as that of the 2073 * source mount. 2074 * 2075 * --------------------------------------------------------------------------- 2076 * | MOVE MOUNT OPERATION | 2077 * |************************************************************************** 2078 * | source-->| shared | private | slave | unbindable | 2079 * | dest | | | | | 2080 * | | | | | | | 2081 * | v | | | | | 2082 * |************************************************************************** 2083 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2084 * | | | | | | 2085 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2086 * *************************************************************************** 2087 * 2088 * (+) the mount is moved to the destination. And is then propagated to 2089 * all the mounts in the propagation tree of the destination mount. 2090 * (+*) the mount is moved to the destination. 2091 * (+++) the mount is moved to the destination and is then propagated to 2092 * all the mounts belonging to the destination mount's propagation tree. 2093 * the mount is marked as 'shared and slave'. 2094 * (*) the mount continues to be a slave at the new location. 2095 * 2096 * if the source mount is a tree, the operations explained above is 2097 * applied to each mount in the tree. 2098 * Must be called without spinlocks held, since this function can sleep 2099 * in allocations. 2100 */ 2101 static int attach_recursive_mnt(struct mount *source_mnt, 2102 struct mount *dest_mnt, 2103 struct mountpoint *dest_mp, 2104 bool moving) 2105 { 2106 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2107 HLIST_HEAD(tree_list); 2108 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2109 struct mountpoint *smp; 2110 struct mount *child, *p; 2111 struct hlist_node *n; 2112 int err; 2113 2114 /* Preallocate a mountpoint in case the new mounts need 2115 * to be tucked under other mounts. 2116 */ 2117 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2118 if (IS_ERR(smp)) 2119 return PTR_ERR(smp); 2120 2121 /* Is there space to add these mounts to the mount namespace? */ 2122 if (!moving) { 2123 err = count_mounts(ns, source_mnt); 2124 if (err) 2125 goto out; 2126 } 2127 2128 if (IS_MNT_SHARED(dest_mnt)) { 2129 err = invent_group_ids(source_mnt, true); 2130 if (err) 2131 goto out; 2132 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2133 lock_mount_hash(); 2134 if (err) 2135 goto out_cleanup_ids; 2136 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2137 set_mnt_shared(p); 2138 } else { 2139 lock_mount_hash(); 2140 } 2141 if (moving) { 2142 unhash_mnt(source_mnt); 2143 attach_mnt(source_mnt, dest_mnt, dest_mp); 2144 touch_mnt_namespace(source_mnt->mnt_ns); 2145 } else { 2146 if (source_mnt->mnt_ns) { 2147 /* move from anon - the caller will destroy */ 2148 list_del_init(&source_mnt->mnt_ns->list); 2149 } 2150 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2151 commit_tree(source_mnt); 2152 } 2153 2154 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2155 struct mount *q; 2156 hlist_del_init(&child->mnt_hash); 2157 q = __lookup_mnt(&child->mnt_parent->mnt, 2158 child->mnt_mountpoint); 2159 if (q) 2160 mnt_change_mountpoint(child, smp, q); 2161 /* Notice when we are propagating across user namespaces */ 2162 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2163 lock_mnt_tree(child); 2164 child->mnt.mnt_flags &= ~MNT_LOCKED; 2165 commit_tree(child); 2166 } 2167 put_mountpoint(smp); 2168 unlock_mount_hash(); 2169 2170 return 0; 2171 2172 out_cleanup_ids: 2173 while (!hlist_empty(&tree_list)) { 2174 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2175 child->mnt_parent->mnt_ns->pending_mounts = 0; 2176 umount_tree(child, UMOUNT_SYNC); 2177 } 2178 unlock_mount_hash(); 2179 cleanup_group_ids(source_mnt, NULL); 2180 out: 2181 ns->pending_mounts = 0; 2182 2183 read_seqlock_excl(&mount_lock); 2184 put_mountpoint(smp); 2185 read_sequnlock_excl(&mount_lock); 2186 2187 return err; 2188 } 2189 2190 static struct mountpoint *lock_mount(struct path *path) 2191 { 2192 struct vfsmount *mnt; 2193 struct dentry *dentry = path->dentry; 2194 retry: 2195 inode_lock(dentry->d_inode); 2196 if (unlikely(cant_mount(dentry))) { 2197 inode_unlock(dentry->d_inode); 2198 return ERR_PTR(-ENOENT); 2199 } 2200 namespace_lock(); 2201 mnt = lookup_mnt(path); 2202 if (likely(!mnt)) { 2203 struct mountpoint *mp = get_mountpoint(dentry); 2204 if (IS_ERR(mp)) { 2205 namespace_unlock(); 2206 inode_unlock(dentry->d_inode); 2207 return mp; 2208 } 2209 return mp; 2210 } 2211 namespace_unlock(); 2212 inode_unlock(path->dentry->d_inode); 2213 path_put(path); 2214 path->mnt = mnt; 2215 dentry = path->dentry = dget(mnt->mnt_root); 2216 goto retry; 2217 } 2218 2219 static void unlock_mount(struct mountpoint *where) 2220 { 2221 struct dentry *dentry = where->m_dentry; 2222 2223 read_seqlock_excl(&mount_lock); 2224 put_mountpoint(where); 2225 read_sequnlock_excl(&mount_lock); 2226 2227 namespace_unlock(); 2228 inode_unlock(dentry->d_inode); 2229 } 2230 2231 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2232 { 2233 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2234 return -EINVAL; 2235 2236 if (d_is_dir(mp->m_dentry) != 2237 d_is_dir(mnt->mnt.mnt_root)) 2238 return -ENOTDIR; 2239 2240 return attach_recursive_mnt(mnt, p, mp, false); 2241 } 2242 2243 /* 2244 * Sanity check the flags to change_mnt_propagation. 2245 */ 2246 2247 static int flags_to_propagation_type(int ms_flags) 2248 { 2249 int type = ms_flags & ~(MS_REC | MS_SILENT); 2250 2251 /* Fail if any non-propagation flags are set */ 2252 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2253 return 0; 2254 /* Only one propagation flag should be set */ 2255 if (!is_power_of_2(type)) 2256 return 0; 2257 return type; 2258 } 2259 2260 /* 2261 * recursively change the type of the mountpoint. 2262 */ 2263 static int do_change_type(struct path *path, int ms_flags) 2264 { 2265 struct mount *m; 2266 struct mount *mnt = real_mount(path->mnt); 2267 int recurse = ms_flags & MS_REC; 2268 int type; 2269 int err = 0; 2270 2271 if (path->dentry != path->mnt->mnt_root) 2272 return -EINVAL; 2273 2274 type = flags_to_propagation_type(ms_flags); 2275 if (!type) 2276 return -EINVAL; 2277 2278 namespace_lock(); 2279 if (type == MS_SHARED) { 2280 err = invent_group_ids(mnt, recurse); 2281 if (err) 2282 goto out_unlock; 2283 } 2284 2285 lock_mount_hash(); 2286 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2287 change_mnt_propagation(m, type); 2288 unlock_mount_hash(); 2289 2290 out_unlock: 2291 namespace_unlock(); 2292 return err; 2293 } 2294 2295 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2296 { 2297 struct mount *child; 2298 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2299 if (!is_subdir(child->mnt_mountpoint, dentry)) 2300 continue; 2301 2302 if (child->mnt.mnt_flags & MNT_LOCKED) 2303 return true; 2304 } 2305 return false; 2306 } 2307 2308 static struct mount *__do_loopback(struct path *old_path, int recurse) 2309 { 2310 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2311 2312 if (IS_MNT_UNBINDABLE(old)) 2313 return mnt; 2314 2315 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2316 return mnt; 2317 2318 if (!recurse && has_locked_children(old, old_path->dentry)) 2319 return mnt; 2320 2321 if (recurse) 2322 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2323 else 2324 mnt = clone_mnt(old, old_path->dentry, 0); 2325 2326 if (!IS_ERR(mnt)) 2327 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2328 2329 return mnt; 2330 } 2331 2332 /* 2333 * do loopback mount. 2334 */ 2335 static int do_loopback(struct path *path, const char *old_name, 2336 int recurse) 2337 { 2338 struct path old_path; 2339 struct mount *mnt = NULL, *parent; 2340 struct mountpoint *mp; 2341 int err; 2342 if (!old_name || !*old_name) 2343 return -EINVAL; 2344 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2345 if (err) 2346 return err; 2347 2348 err = -EINVAL; 2349 if (mnt_ns_loop(old_path.dentry)) 2350 goto out; 2351 2352 mp = lock_mount(path); 2353 if (IS_ERR(mp)) { 2354 err = PTR_ERR(mp); 2355 goto out; 2356 } 2357 2358 parent = real_mount(path->mnt); 2359 if (!check_mnt(parent)) 2360 goto out2; 2361 2362 mnt = __do_loopback(&old_path, recurse); 2363 if (IS_ERR(mnt)) { 2364 err = PTR_ERR(mnt); 2365 goto out2; 2366 } 2367 2368 err = graft_tree(mnt, parent, mp); 2369 if (err) { 2370 lock_mount_hash(); 2371 umount_tree(mnt, UMOUNT_SYNC); 2372 unlock_mount_hash(); 2373 } 2374 out2: 2375 unlock_mount(mp); 2376 out: 2377 path_put(&old_path); 2378 return err; 2379 } 2380 2381 static struct file *open_detached_copy(struct path *path, bool recursive) 2382 { 2383 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2384 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2385 struct mount *mnt, *p; 2386 struct file *file; 2387 2388 if (IS_ERR(ns)) 2389 return ERR_CAST(ns); 2390 2391 namespace_lock(); 2392 mnt = __do_loopback(path, recursive); 2393 if (IS_ERR(mnt)) { 2394 namespace_unlock(); 2395 free_mnt_ns(ns); 2396 return ERR_CAST(mnt); 2397 } 2398 2399 lock_mount_hash(); 2400 for (p = mnt; p; p = next_mnt(p, mnt)) { 2401 p->mnt_ns = ns; 2402 ns->mounts++; 2403 } 2404 ns->root = mnt; 2405 list_add_tail(&ns->list, &mnt->mnt_list); 2406 mntget(&mnt->mnt); 2407 unlock_mount_hash(); 2408 namespace_unlock(); 2409 2410 mntput(path->mnt); 2411 path->mnt = &mnt->mnt; 2412 file = dentry_open(path, O_PATH, current_cred()); 2413 if (IS_ERR(file)) 2414 dissolve_on_fput(path->mnt); 2415 else 2416 file->f_mode |= FMODE_NEED_UNMOUNT; 2417 return file; 2418 } 2419 2420 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2421 { 2422 struct file *file; 2423 struct path path; 2424 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2425 bool detached = flags & OPEN_TREE_CLONE; 2426 int error; 2427 int fd; 2428 2429 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2430 2431 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2432 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2433 OPEN_TREE_CLOEXEC)) 2434 return -EINVAL; 2435 2436 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2437 return -EINVAL; 2438 2439 if (flags & AT_NO_AUTOMOUNT) 2440 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2441 if (flags & AT_SYMLINK_NOFOLLOW) 2442 lookup_flags &= ~LOOKUP_FOLLOW; 2443 if (flags & AT_EMPTY_PATH) 2444 lookup_flags |= LOOKUP_EMPTY; 2445 2446 if (detached && !may_mount()) 2447 return -EPERM; 2448 2449 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2450 if (fd < 0) 2451 return fd; 2452 2453 error = user_path_at(dfd, filename, lookup_flags, &path); 2454 if (unlikely(error)) { 2455 file = ERR_PTR(error); 2456 } else { 2457 if (detached) 2458 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2459 else 2460 file = dentry_open(&path, O_PATH, current_cred()); 2461 path_put(&path); 2462 } 2463 if (IS_ERR(file)) { 2464 put_unused_fd(fd); 2465 return PTR_ERR(file); 2466 } 2467 fd_install(fd, file); 2468 return fd; 2469 } 2470 2471 /* 2472 * Don't allow locked mount flags to be cleared. 2473 * 2474 * No locks need to be held here while testing the various MNT_LOCK 2475 * flags because those flags can never be cleared once they are set. 2476 */ 2477 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2478 { 2479 unsigned int fl = mnt->mnt.mnt_flags; 2480 2481 if ((fl & MNT_LOCK_READONLY) && 2482 !(mnt_flags & MNT_READONLY)) 2483 return false; 2484 2485 if ((fl & MNT_LOCK_NODEV) && 2486 !(mnt_flags & MNT_NODEV)) 2487 return false; 2488 2489 if ((fl & MNT_LOCK_NOSUID) && 2490 !(mnt_flags & MNT_NOSUID)) 2491 return false; 2492 2493 if ((fl & MNT_LOCK_NOEXEC) && 2494 !(mnt_flags & MNT_NOEXEC)) 2495 return false; 2496 2497 if ((fl & MNT_LOCK_ATIME) && 2498 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2499 return false; 2500 2501 return true; 2502 } 2503 2504 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2505 { 2506 bool readonly_request = (mnt_flags & MNT_READONLY); 2507 2508 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2509 return 0; 2510 2511 if (readonly_request) 2512 return mnt_make_readonly(mnt); 2513 2514 return __mnt_unmake_readonly(mnt); 2515 } 2516 2517 /* 2518 * Update the user-settable attributes on a mount. The caller must hold 2519 * sb->s_umount for writing. 2520 */ 2521 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2522 { 2523 lock_mount_hash(); 2524 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2525 mnt->mnt.mnt_flags = mnt_flags; 2526 touch_mnt_namespace(mnt->mnt_ns); 2527 unlock_mount_hash(); 2528 } 2529 2530 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2531 { 2532 struct super_block *sb = mnt->mnt_sb; 2533 2534 if (!__mnt_is_readonly(mnt) && 2535 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2536 char *buf = (char *)__get_free_page(GFP_KERNEL); 2537 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2538 struct tm tm; 2539 2540 time64_to_tm(sb->s_time_max, 0, &tm); 2541 2542 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2543 sb->s_type->name, 2544 is_mounted(mnt) ? "remounted" : "mounted", 2545 mntpath, 2546 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2547 2548 free_page((unsigned long)buf); 2549 } 2550 } 2551 2552 /* 2553 * Handle reconfiguration of the mountpoint only without alteration of the 2554 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2555 * to mount(2). 2556 */ 2557 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2558 { 2559 struct super_block *sb = path->mnt->mnt_sb; 2560 struct mount *mnt = real_mount(path->mnt); 2561 int ret; 2562 2563 if (!check_mnt(mnt)) 2564 return -EINVAL; 2565 2566 if (path->dentry != mnt->mnt.mnt_root) 2567 return -EINVAL; 2568 2569 if (!can_change_locked_flags(mnt, mnt_flags)) 2570 return -EPERM; 2571 2572 down_write(&sb->s_umount); 2573 ret = change_mount_ro_state(mnt, mnt_flags); 2574 if (ret == 0) 2575 set_mount_attributes(mnt, mnt_flags); 2576 up_write(&sb->s_umount); 2577 2578 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2579 2580 return ret; 2581 } 2582 2583 /* 2584 * change filesystem flags. dir should be a physical root of filesystem. 2585 * If you've mounted a non-root directory somewhere and want to do remount 2586 * on it - tough luck. 2587 */ 2588 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2589 int mnt_flags, void *data) 2590 { 2591 int err; 2592 struct super_block *sb = path->mnt->mnt_sb; 2593 struct mount *mnt = real_mount(path->mnt); 2594 struct fs_context *fc; 2595 2596 if (!check_mnt(mnt)) 2597 return -EINVAL; 2598 2599 if (path->dentry != path->mnt->mnt_root) 2600 return -EINVAL; 2601 2602 if (!can_change_locked_flags(mnt, mnt_flags)) 2603 return -EPERM; 2604 2605 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2606 if (IS_ERR(fc)) 2607 return PTR_ERR(fc); 2608 2609 err = parse_monolithic_mount_data(fc, data); 2610 if (!err) { 2611 down_write(&sb->s_umount); 2612 err = -EPERM; 2613 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2614 err = reconfigure_super(fc); 2615 if (!err) 2616 set_mount_attributes(mnt, mnt_flags); 2617 } 2618 up_write(&sb->s_umount); 2619 } 2620 2621 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2622 2623 put_fs_context(fc); 2624 return err; 2625 } 2626 2627 static inline int tree_contains_unbindable(struct mount *mnt) 2628 { 2629 struct mount *p; 2630 for (p = mnt; p; p = next_mnt(p, mnt)) { 2631 if (IS_MNT_UNBINDABLE(p)) 2632 return 1; 2633 } 2634 return 0; 2635 } 2636 2637 /* 2638 * Check that there aren't references to earlier/same mount namespaces in the 2639 * specified subtree. Such references can act as pins for mount namespaces 2640 * that aren't checked by the mount-cycle checking code, thereby allowing 2641 * cycles to be made. 2642 */ 2643 static bool check_for_nsfs_mounts(struct mount *subtree) 2644 { 2645 struct mount *p; 2646 bool ret = false; 2647 2648 lock_mount_hash(); 2649 for (p = subtree; p; p = next_mnt(p, subtree)) 2650 if (mnt_ns_loop(p->mnt.mnt_root)) 2651 goto out; 2652 2653 ret = true; 2654 out: 2655 unlock_mount_hash(); 2656 return ret; 2657 } 2658 2659 static int do_move_mount(struct path *old_path, struct path *new_path) 2660 { 2661 struct mnt_namespace *ns; 2662 struct mount *p; 2663 struct mount *old; 2664 struct mount *parent; 2665 struct mountpoint *mp, *old_mp; 2666 int err; 2667 bool attached; 2668 2669 mp = lock_mount(new_path); 2670 if (IS_ERR(mp)) 2671 return PTR_ERR(mp); 2672 2673 old = real_mount(old_path->mnt); 2674 p = real_mount(new_path->mnt); 2675 parent = old->mnt_parent; 2676 attached = mnt_has_parent(old); 2677 old_mp = old->mnt_mp; 2678 ns = old->mnt_ns; 2679 2680 err = -EINVAL; 2681 /* The mountpoint must be in our namespace. */ 2682 if (!check_mnt(p)) 2683 goto out; 2684 2685 /* The thing moved must be mounted... */ 2686 if (!is_mounted(&old->mnt)) 2687 goto out; 2688 2689 /* ... and either ours or the root of anon namespace */ 2690 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2691 goto out; 2692 2693 if (old->mnt.mnt_flags & MNT_LOCKED) 2694 goto out; 2695 2696 if (old_path->dentry != old_path->mnt->mnt_root) 2697 goto out; 2698 2699 if (d_is_dir(new_path->dentry) != 2700 d_is_dir(old_path->dentry)) 2701 goto out; 2702 /* 2703 * Don't move a mount residing in a shared parent. 2704 */ 2705 if (attached && IS_MNT_SHARED(parent)) 2706 goto out; 2707 /* 2708 * Don't move a mount tree containing unbindable mounts to a destination 2709 * mount which is shared. 2710 */ 2711 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2712 goto out; 2713 err = -ELOOP; 2714 if (!check_for_nsfs_mounts(old)) 2715 goto out; 2716 for (; mnt_has_parent(p); p = p->mnt_parent) 2717 if (p == old) 2718 goto out; 2719 2720 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2721 attached); 2722 if (err) 2723 goto out; 2724 2725 /* if the mount is moved, it should no longer be expire 2726 * automatically */ 2727 list_del_init(&old->mnt_expire); 2728 if (attached) 2729 put_mountpoint(old_mp); 2730 out: 2731 unlock_mount(mp); 2732 if (!err) { 2733 if (attached) 2734 mntput_no_expire(parent); 2735 else 2736 free_mnt_ns(ns); 2737 } 2738 return err; 2739 } 2740 2741 static int do_move_mount_old(struct path *path, const char *old_name) 2742 { 2743 struct path old_path; 2744 int err; 2745 2746 if (!old_name || !*old_name) 2747 return -EINVAL; 2748 2749 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2750 if (err) 2751 return err; 2752 2753 err = do_move_mount(&old_path, path); 2754 path_put(&old_path); 2755 return err; 2756 } 2757 2758 /* 2759 * add a mount into a namespace's mount tree 2760 */ 2761 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2762 struct path *path, int mnt_flags) 2763 { 2764 struct mount *parent = real_mount(path->mnt); 2765 2766 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2767 2768 if (unlikely(!check_mnt(parent))) { 2769 /* that's acceptable only for automounts done in private ns */ 2770 if (!(mnt_flags & MNT_SHRINKABLE)) 2771 return -EINVAL; 2772 /* ... and for those we'd better have mountpoint still alive */ 2773 if (!parent->mnt_ns) 2774 return -EINVAL; 2775 } 2776 2777 /* Refuse the same filesystem on the same mount point */ 2778 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2779 path->mnt->mnt_root == path->dentry) 2780 return -EBUSY; 2781 2782 if (d_is_symlink(newmnt->mnt.mnt_root)) 2783 return -EINVAL; 2784 2785 newmnt->mnt.mnt_flags = mnt_flags; 2786 return graft_tree(newmnt, parent, mp); 2787 } 2788 2789 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2790 2791 /* 2792 * Create a new mount using a superblock configuration and request it 2793 * be added to the namespace tree. 2794 */ 2795 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2796 unsigned int mnt_flags) 2797 { 2798 struct vfsmount *mnt; 2799 struct mountpoint *mp; 2800 struct super_block *sb = fc->root->d_sb; 2801 int error; 2802 2803 error = security_sb_kern_mount(sb); 2804 if (!error && mount_too_revealing(sb, &mnt_flags)) 2805 error = -EPERM; 2806 2807 if (unlikely(error)) { 2808 fc_drop_locked(fc); 2809 return error; 2810 } 2811 2812 up_write(&sb->s_umount); 2813 2814 mnt = vfs_create_mount(fc); 2815 if (IS_ERR(mnt)) 2816 return PTR_ERR(mnt); 2817 2818 mnt_warn_timestamp_expiry(mountpoint, mnt); 2819 2820 mp = lock_mount(mountpoint); 2821 if (IS_ERR(mp)) { 2822 mntput(mnt); 2823 return PTR_ERR(mp); 2824 } 2825 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2826 unlock_mount(mp); 2827 if (error < 0) 2828 mntput(mnt); 2829 return error; 2830 } 2831 2832 /* 2833 * create a new mount for userspace and request it to be added into the 2834 * namespace's tree 2835 */ 2836 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2837 int mnt_flags, const char *name, void *data) 2838 { 2839 struct file_system_type *type; 2840 struct fs_context *fc; 2841 const char *subtype = NULL; 2842 int err = 0; 2843 2844 if (!fstype) 2845 return -EINVAL; 2846 2847 type = get_fs_type(fstype); 2848 if (!type) 2849 return -ENODEV; 2850 2851 if (type->fs_flags & FS_HAS_SUBTYPE) { 2852 subtype = strchr(fstype, '.'); 2853 if (subtype) { 2854 subtype++; 2855 if (!*subtype) { 2856 put_filesystem(type); 2857 return -EINVAL; 2858 } 2859 } 2860 } 2861 2862 fc = fs_context_for_mount(type, sb_flags); 2863 put_filesystem(type); 2864 if (IS_ERR(fc)) 2865 return PTR_ERR(fc); 2866 2867 if (subtype) 2868 err = vfs_parse_fs_string(fc, "subtype", 2869 subtype, strlen(subtype)); 2870 if (!err && name) 2871 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2872 if (!err) 2873 err = parse_monolithic_mount_data(fc, data); 2874 if (!err && !mount_capable(fc)) 2875 err = -EPERM; 2876 if (!err) 2877 err = vfs_get_tree(fc); 2878 if (!err) 2879 err = do_new_mount_fc(fc, path, mnt_flags); 2880 2881 put_fs_context(fc); 2882 return err; 2883 } 2884 2885 int finish_automount(struct vfsmount *m, struct path *path) 2886 { 2887 struct dentry *dentry = path->dentry; 2888 struct mountpoint *mp; 2889 struct mount *mnt; 2890 int err; 2891 2892 if (!m) 2893 return 0; 2894 if (IS_ERR(m)) 2895 return PTR_ERR(m); 2896 2897 mnt = real_mount(m); 2898 /* The new mount record should have at least 2 refs to prevent it being 2899 * expired before we get a chance to add it 2900 */ 2901 BUG_ON(mnt_get_count(mnt) < 2); 2902 2903 if (m->mnt_sb == path->mnt->mnt_sb && 2904 m->mnt_root == dentry) { 2905 err = -ELOOP; 2906 goto discard; 2907 } 2908 2909 /* 2910 * we don't want to use lock_mount() - in this case finding something 2911 * that overmounts our mountpoint to be means "quitely drop what we've 2912 * got", not "try to mount it on top". 2913 */ 2914 inode_lock(dentry->d_inode); 2915 namespace_lock(); 2916 if (unlikely(cant_mount(dentry))) { 2917 err = -ENOENT; 2918 goto discard_locked; 2919 } 2920 rcu_read_lock(); 2921 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2922 rcu_read_unlock(); 2923 err = 0; 2924 goto discard_locked; 2925 } 2926 rcu_read_unlock(); 2927 mp = get_mountpoint(dentry); 2928 if (IS_ERR(mp)) { 2929 err = PTR_ERR(mp); 2930 goto discard_locked; 2931 } 2932 2933 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2934 unlock_mount(mp); 2935 if (unlikely(err)) 2936 goto discard; 2937 mntput(m); 2938 return 0; 2939 2940 discard_locked: 2941 namespace_unlock(); 2942 inode_unlock(dentry->d_inode); 2943 discard: 2944 /* remove m from any expiration list it may be on */ 2945 if (!list_empty(&mnt->mnt_expire)) { 2946 namespace_lock(); 2947 list_del_init(&mnt->mnt_expire); 2948 namespace_unlock(); 2949 } 2950 mntput(m); 2951 mntput(m); 2952 return err; 2953 } 2954 2955 /** 2956 * mnt_set_expiry - Put a mount on an expiration list 2957 * @mnt: The mount to list. 2958 * @expiry_list: The list to add the mount to. 2959 */ 2960 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2961 { 2962 namespace_lock(); 2963 2964 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2965 2966 namespace_unlock(); 2967 } 2968 EXPORT_SYMBOL(mnt_set_expiry); 2969 2970 /* 2971 * process a list of expirable mountpoints with the intent of discarding any 2972 * mountpoints that aren't in use and haven't been touched since last we came 2973 * here 2974 */ 2975 void mark_mounts_for_expiry(struct list_head *mounts) 2976 { 2977 struct mount *mnt, *next; 2978 LIST_HEAD(graveyard); 2979 2980 if (list_empty(mounts)) 2981 return; 2982 2983 namespace_lock(); 2984 lock_mount_hash(); 2985 2986 /* extract from the expiration list every vfsmount that matches the 2987 * following criteria: 2988 * - only referenced by its parent vfsmount 2989 * - still marked for expiry (marked on the last call here; marks are 2990 * cleared by mntput()) 2991 */ 2992 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2993 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2994 propagate_mount_busy(mnt, 1)) 2995 continue; 2996 list_move(&mnt->mnt_expire, &graveyard); 2997 } 2998 while (!list_empty(&graveyard)) { 2999 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3000 touch_mnt_namespace(mnt->mnt_ns); 3001 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3002 } 3003 unlock_mount_hash(); 3004 namespace_unlock(); 3005 } 3006 3007 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3008 3009 /* 3010 * Ripoff of 'select_parent()' 3011 * 3012 * search the list of submounts for a given mountpoint, and move any 3013 * shrinkable submounts to the 'graveyard' list. 3014 */ 3015 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3016 { 3017 struct mount *this_parent = parent; 3018 struct list_head *next; 3019 int found = 0; 3020 3021 repeat: 3022 next = this_parent->mnt_mounts.next; 3023 resume: 3024 while (next != &this_parent->mnt_mounts) { 3025 struct list_head *tmp = next; 3026 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3027 3028 next = tmp->next; 3029 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3030 continue; 3031 /* 3032 * Descend a level if the d_mounts list is non-empty. 3033 */ 3034 if (!list_empty(&mnt->mnt_mounts)) { 3035 this_parent = mnt; 3036 goto repeat; 3037 } 3038 3039 if (!propagate_mount_busy(mnt, 1)) { 3040 list_move_tail(&mnt->mnt_expire, graveyard); 3041 found++; 3042 } 3043 } 3044 /* 3045 * All done at this level ... ascend and resume the search 3046 */ 3047 if (this_parent != parent) { 3048 next = this_parent->mnt_child.next; 3049 this_parent = this_parent->mnt_parent; 3050 goto resume; 3051 } 3052 return found; 3053 } 3054 3055 /* 3056 * process a list of expirable mountpoints with the intent of discarding any 3057 * submounts of a specific parent mountpoint 3058 * 3059 * mount_lock must be held for write 3060 */ 3061 static void shrink_submounts(struct mount *mnt) 3062 { 3063 LIST_HEAD(graveyard); 3064 struct mount *m; 3065 3066 /* extract submounts of 'mountpoint' from the expiration list */ 3067 while (select_submounts(mnt, &graveyard)) { 3068 while (!list_empty(&graveyard)) { 3069 m = list_first_entry(&graveyard, struct mount, 3070 mnt_expire); 3071 touch_mnt_namespace(m->mnt_ns); 3072 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3073 } 3074 } 3075 } 3076 3077 void *copy_mount_options(const void __user * data) 3078 { 3079 char *copy; 3080 unsigned size; 3081 3082 if (!data) 3083 return NULL; 3084 3085 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3086 if (!copy) 3087 return ERR_PTR(-ENOMEM); 3088 3089 size = PAGE_SIZE - offset_in_page(data); 3090 3091 if (copy_from_user(copy, data, size)) { 3092 kfree(copy); 3093 return ERR_PTR(-EFAULT); 3094 } 3095 if (size != PAGE_SIZE) { 3096 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size)) 3097 memset(copy + size, 0, PAGE_SIZE - size); 3098 } 3099 return copy; 3100 } 3101 3102 char *copy_mount_string(const void __user *data) 3103 { 3104 return data ? strndup_user(data, PATH_MAX) : NULL; 3105 } 3106 3107 /* 3108 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3109 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3110 * 3111 * data is a (void *) that can point to any structure up to 3112 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3113 * information (or be NULL). 3114 * 3115 * Pre-0.97 versions of mount() didn't have a flags word. 3116 * When the flags word was introduced its top half was required 3117 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3118 * Therefore, if this magic number is present, it carries no information 3119 * and must be discarded. 3120 */ 3121 long do_mount(const char *dev_name, const char __user *dir_name, 3122 const char *type_page, unsigned long flags, void *data_page) 3123 { 3124 struct path path; 3125 unsigned int mnt_flags = 0, sb_flags; 3126 int retval = 0; 3127 3128 /* Discard magic */ 3129 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3130 flags &= ~MS_MGC_MSK; 3131 3132 /* Basic sanity checks */ 3133 if (data_page) 3134 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3135 3136 if (flags & MS_NOUSER) 3137 return -EINVAL; 3138 3139 /* ... and get the mountpoint */ 3140 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3141 if (retval) 3142 return retval; 3143 3144 retval = security_sb_mount(dev_name, &path, 3145 type_page, flags, data_page); 3146 if (!retval && !may_mount()) 3147 retval = -EPERM; 3148 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 3149 retval = -EPERM; 3150 if (retval) 3151 goto dput_out; 3152 3153 /* Default to relatime unless overriden */ 3154 if (!(flags & MS_NOATIME)) 3155 mnt_flags |= MNT_RELATIME; 3156 3157 /* Separate the per-mountpoint flags */ 3158 if (flags & MS_NOSUID) 3159 mnt_flags |= MNT_NOSUID; 3160 if (flags & MS_NODEV) 3161 mnt_flags |= MNT_NODEV; 3162 if (flags & MS_NOEXEC) 3163 mnt_flags |= MNT_NOEXEC; 3164 if (flags & MS_NOATIME) 3165 mnt_flags |= MNT_NOATIME; 3166 if (flags & MS_NODIRATIME) 3167 mnt_flags |= MNT_NODIRATIME; 3168 if (flags & MS_STRICTATIME) 3169 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3170 if (flags & MS_RDONLY) 3171 mnt_flags |= MNT_READONLY; 3172 3173 /* The default atime for remount is preservation */ 3174 if ((flags & MS_REMOUNT) && 3175 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3176 MS_STRICTATIME)) == 0)) { 3177 mnt_flags &= ~MNT_ATIME_MASK; 3178 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 3179 } 3180 3181 sb_flags = flags & (SB_RDONLY | 3182 SB_SYNCHRONOUS | 3183 SB_MANDLOCK | 3184 SB_DIRSYNC | 3185 SB_SILENT | 3186 SB_POSIXACL | 3187 SB_LAZYTIME | 3188 SB_I_VERSION); 3189 3190 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3191 retval = do_reconfigure_mnt(&path, mnt_flags); 3192 else if (flags & MS_REMOUNT) 3193 retval = do_remount(&path, flags, sb_flags, mnt_flags, 3194 data_page); 3195 else if (flags & MS_BIND) 3196 retval = do_loopback(&path, dev_name, flags & MS_REC); 3197 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3198 retval = do_change_type(&path, flags); 3199 else if (flags & MS_MOVE) 3200 retval = do_move_mount_old(&path, dev_name); 3201 else 3202 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 3203 dev_name, data_page); 3204 dput_out: 3205 path_put(&path); 3206 return retval; 3207 } 3208 3209 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3210 { 3211 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3212 } 3213 3214 static void dec_mnt_namespaces(struct ucounts *ucounts) 3215 { 3216 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3217 } 3218 3219 static void free_mnt_ns(struct mnt_namespace *ns) 3220 { 3221 if (!is_anon_ns(ns)) 3222 ns_free_inum(&ns->ns); 3223 dec_mnt_namespaces(ns->ucounts); 3224 put_user_ns(ns->user_ns); 3225 kfree(ns); 3226 } 3227 3228 /* 3229 * Assign a sequence number so we can detect when we attempt to bind 3230 * mount a reference to an older mount namespace into the current 3231 * mount namespace, preventing reference counting loops. A 64bit 3232 * number incrementing at 10Ghz will take 12,427 years to wrap which 3233 * is effectively never, so we can ignore the possibility. 3234 */ 3235 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3236 3237 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3238 { 3239 struct mnt_namespace *new_ns; 3240 struct ucounts *ucounts; 3241 int ret; 3242 3243 ucounts = inc_mnt_namespaces(user_ns); 3244 if (!ucounts) 3245 return ERR_PTR(-ENOSPC); 3246 3247 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3248 if (!new_ns) { 3249 dec_mnt_namespaces(ucounts); 3250 return ERR_PTR(-ENOMEM); 3251 } 3252 if (!anon) { 3253 ret = ns_alloc_inum(&new_ns->ns); 3254 if (ret) { 3255 kfree(new_ns); 3256 dec_mnt_namespaces(ucounts); 3257 return ERR_PTR(ret); 3258 } 3259 } 3260 new_ns->ns.ops = &mntns_operations; 3261 if (!anon) 3262 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3263 atomic_set(&new_ns->count, 1); 3264 INIT_LIST_HEAD(&new_ns->list); 3265 init_waitqueue_head(&new_ns->poll); 3266 spin_lock_init(&new_ns->ns_lock); 3267 new_ns->user_ns = get_user_ns(user_ns); 3268 new_ns->ucounts = ucounts; 3269 return new_ns; 3270 } 3271 3272 __latent_entropy 3273 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3274 struct user_namespace *user_ns, struct fs_struct *new_fs) 3275 { 3276 struct mnt_namespace *new_ns; 3277 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3278 struct mount *p, *q; 3279 struct mount *old; 3280 struct mount *new; 3281 int copy_flags; 3282 3283 BUG_ON(!ns); 3284 3285 if (likely(!(flags & CLONE_NEWNS))) { 3286 get_mnt_ns(ns); 3287 return ns; 3288 } 3289 3290 old = ns->root; 3291 3292 new_ns = alloc_mnt_ns(user_ns, false); 3293 if (IS_ERR(new_ns)) 3294 return new_ns; 3295 3296 namespace_lock(); 3297 /* First pass: copy the tree topology */ 3298 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3299 if (user_ns != ns->user_ns) 3300 copy_flags |= CL_SHARED_TO_SLAVE; 3301 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3302 if (IS_ERR(new)) { 3303 namespace_unlock(); 3304 free_mnt_ns(new_ns); 3305 return ERR_CAST(new); 3306 } 3307 if (user_ns != ns->user_ns) { 3308 lock_mount_hash(); 3309 lock_mnt_tree(new); 3310 unlock_mount_hash(); 3311 } 3312 new_ns->root = new; 3313 list_add_tail(&new_ns->list, &new->mnt_list); 3314 3315 /* 3316 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3317 * as belonging to new namespace. We have already acquired a private 3318 * fs_struct, so tsk->fs->lock is not needed. 3319 */ 3320 p = old; 3321 q = new; 3322 while (p) { 3323 q->mnt_ns = new_ns; 3324 new_ns->mounts++; 3325 if (new_fs) { 3326 if (&p->mnt == new_fs->root.mnt) { 3327 new_fs->root.mnt = mntget(&q->mnt); 3328 rootmnt = &p->mnt; 3329 } 3330 if (&p->mnt == new_fs->pwd.mnt) { 3331 new_fs->pwd.mnt = mntget(&q->mnt); 3332 pwdmnt = &p->mnt; 3333 } 3334 } 3335 p = next_mnt(p, old); 3336 q = next_mnt(q, new); 3337 if (!q) 3338 break; 3339 while (p->mnt.mnt_root != q->mnt.mnt_root) 3340 p = next_mnt(p, old); 3341 } 3342 namespace_unlock(); 3343 3344 if (rootmnt) 3345 mntput(rootmnt); 3346 if (pwdmnt) 3347 mntput(pwdmnt); 3348 3349 return new_ns; 3350 } 3351 3352 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3353 { 3354 struct mount *mnt = real_mount(m); 3355 struct mnt_namespace *ns; 3356 struct super_block *s; 3357 struct path path; 3358 int err; 3359 3360 ns = alloc_mnt_ns(&init_user_ns, true); 3361 if (IS_ERR(ns)) { 3362 mntput(m); 3363 return ERR_CAST(ns); 3364 } 3365 mnt->mnt_ns = ns; 3366 ns->root = mnt; 3367 ns->mounts++; 3368 list_add(&mnt->mnt_list, &ns->list); 3369 3370 err = vfs_path_lookup(m->mnt_root, m, 3371 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3372 3373 put_mnt_ns(ns); 3374 3375 if (err) 3376 return ERR_PTR(err); 3377 3378 /* trade a vfsmount reference for active sb one */ 3379 s = path.mnt->mnt_sb; 3380 atomic_inc(&s->s_active); 3381 mntput(path.mnt); 3382 /* lock the sucker */ 3383 down_write(&s->s_umount); 3384 /* ... and return the root of (sub)tree on it */ 3385 return path.dentry; 3386 } 3387 EXPORT_SYMBOL(mount_subtree); 3388 3389 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3390 char __user *, type, unsigned long, flags, void __user *, data) 3391 { 3392 int ret; 3393 char *kernel_type; 3394 char *kernel_dev; 3395 void *options; 3396 3397 kernel_type = copy_mount_string(type); 3398 ret = PTR_ERR(kernel_type); 3399 if (IS_ERR(kernel_type)) 3400 goto out_type; 3401 3402 kernel_dev = copy_mount_string(dev_name); 3403 ret = PTR_ERR(kernel_dev); 3404 if (IS_ERR(kernel_dev)) 3405 goto out_dev; 3406 3407 options = copy_mount_options(data); 3408 ret = PTR_ERR(options); 3409 if (IS_ERR(options)) 3410 goto out_data; 3411 3412 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3413 3414 kfree(options); 3415 out_data: 3416 kfree(kernel_dev); 3417 out_dev: 3418 kfree(kernel_type); 3419 out_type: 3420 return ret; 3421 } 3422 3423 /* 3424 * Create a kernel mount representation for a new, prepared superblock 3425 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3426 */ 3427 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3428 unsigned int, attr_flags) 3429 { 3430 struct mnt_namespace *ns; 3431 struct fs_context *fc; 3432 struct file *file; 3433 struct path newmount; 3434 struct mount *mnt; 3435 struct fd f; 3436 unsigned int mnt_flags = 0; 3437 long ret; 3438 3439 if (!may_mount()) 3440 return -EPERM; 3441 3442 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3443 return -EINVAL; 3444 3445 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3446 MOUNT_ATTR_NOSUID | 3447 MOUNT_ATTR_NODEV | 3448 MOUNT_ATTR_NOEXEC | 3449 MOUNT_ATTR__ATIME | 3450 MOUNT_ATTR_NODIRATIME)) 3451 return -EINVAL; 3452 3453 if (attr_flags & MOUNT_ATTR_RDONLY) 3454 mnt_flags |= MNT_READONLY; 3455 if (attr_flags & MOUNT_ATTR_NOSUID) 3456 mnt_flags |= MNT_NOSUID; 3457 if (attr_flags & MOUNT_ATTR_NODEV) 3458 mnt_flags |= MNT_NODEV; 3459 if (attr_flags & MOUNT_ATTR_NOEXEC) 3460 mnt_flags |= MNT_NOEXEC; 3461 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3462 mnt_flags |= MNT_NODIRATIME; 3463 3464 switch (attr_flags & MOUNT_ATTR__ATIME) { 3465 case MOUNT_ATTR_STRICTATIME: 3466 break; 3467 case MOUNT_ATTR_NOATIME: 3468 mnt_flags |= MNT_NOATIME; 3469 break; 3470 case MOUNT_ATTR_RELATIME: 3471 mnt_flags |= MNT_RELATIME; 3472 break; 3473 default: 3474 return -EINVAL; 3475 } 3476 3477 f = fdget(fs_fd); 3478 if (!f.file) 3479 return -EBADF; 3480 3481 ret = -EINVAL; 3482 if (f.file->f_op != &fscontext_fops) 3483 goto err_fsfd; 3484 3485 fc = f.file->private_data; 3486 3487 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3488 if (ret < 0) 3489 goto err_fsfd; 3490 3491 /* There must be a valid superblock or we can't mount it */ 3492 ret = -EINVAL; 3493 if (!fc->root) 3494 goto err_unlock; 3495 3496 ret = -EPERM; 3497 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3498 pr_warn("VFS: Mount too revealing\n"); 3499 goto err_unlock; 3500 } 3501 3502 ret = -EBUSY; 3503 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3504 goto err_unlock; 3505 3506 ret = -EPERM; 3507 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3508 goto err_unlock; 3509 3510 newmount.mnt = vfs_create_mount(fc); 3511 if (IS_ERR(newmount.mnt)) { 3512 ret = PTR_ERR(newmount.mnt); 3513 goto err_unlock; 3514 } 3515 newmount.dentry = dget(fc->root); 3516 newmount.mnt->mnt_flags = mnt_flags; 3517 3518 /* We've done the mount bit - now move the file context into more or 3519 * less the same state as if we'd done an fspick(). We don't want to 3520 * do any memory allocation or anything like that at this point as we 3521 * don't want to have to handle any errors incurred. 3522 */ 3523 vfs_clean_context(fc); 3524 3525 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3526 if (IS_ERR(ns)) { 3527 ret = PTR_ERR(ns); 3528 goto err_path; 3529 } 3530 mnt = real_mount(newmount.mnt); 3531 mnt->mnt_ns = ns; 3532 ns->root = mnt; 3533 ns->mounts = 1; 3534 list_add(&mnt->mnt_list, &ns->list); 3535 mntget(newmount.mnt); 3536 3537 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3538 * it, not just simply put it. 3539 */ 3540 file = dentry_open(&newmount, O_PATH, fc->cred); 3541 if (IS_ERR(file)) { 3542 dissolve_on_fput(newmount.mnt); 3543 ret = PTR_ERR(file); 3544 goto err_path; 3545 } 3546 file->f_mode |= FMODE_NEED_UNMOUNT; 3547 3548 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3549 if (ret >= 0) 3550 fd_install(ret, file); 3551 else 3552 fput(file); 3553 3554 err_path: 3555 path_put(&newmount); 3556 err_unlock: 3557 mutex_unlock(&fc->uapi_mutex); 3558 err_fsfd: 3559 fdput(f); 3560 return ret; 3561 } 3562 3563 /* 3564 * Move a mount from one place to another. In combination with 3565 * fsopen()/fsmount() this is used to install a new mount and in combination 3566 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3567 * a mount subtree. 3568 * 3569 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3570 */ 3571 SYSCALL_DEFINE5(move_mount, 3572 int, from_dfd, const char __user *, from_pathname, 3573 int, to_dfd, const char __user *, to_pathname, 3574 unsigned int, flags) 3575 { 3576 struct path from_path, to_path; 3577 unsigned int lflags; 3578 int ret = 0; 3579 3580 if (!may_mount()) 3581 return -EPERM; 3582 3583 if (flags & ~MOVE_MOUNT__MASK) 3584 return -EINVAL; 3585 3586 /* If someone gives a pathname, they aren't permitted to move 3587 * from an fd that requires unmount as we can't get at the flag 3588 * to clear it afterwards. 3589 */ 3590 lflags = 0; 3591 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3592 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3593 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3594 3595 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3596 if (ret < 0) 3597 return ret; 3598 3599 lflags = 0; 3600 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3601 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3602 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3603 3604 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3605 if (ret < 0) 3606 goto out_from; 3607 3608 ret = security_move_mount(&from_path, &to_path); 3609 if (ret < 0) 3610 goto out_to; 3611 3612 ret = do_move_mount(&from_path, &to_path); 3613 3614 out_to: 3615 path_put(&to_path); 3616 out_from: 3617 path_put(&from_path); 3618 return ret; 3619 } 3620 3621 /* 3622 * Return true if path is reachable from root 3623 * 3624 * namespace_sem or mount_lock is held 3625 */ 3626 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3627 const struct path *root) 3628 { 3629 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3630 dentry = mnt->mnt_mountpoint; 3631 mnt = mnt->mnt_parent; 3632 } 3633 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3634 } 3635 3636 bool path_is_under(const struct path *path1, const struct path *path2) 3637 { 3638 bool res; 3639 read_seqlock_excl(&mount_lock); 3640 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3641 read_sequnlock_excl(&mount_lock); 3642 return res; 3643 } 3644 EXPORT_SYMBOL(path_is_under); 3645 3646 /* 3647 * pivot_root Semantics: 3648 * Moves the root file system of the current process to the directory put_old, 3649 * makes new_root as the new root file system of the current process, and sets 3650 * root/cwd of all processes which had them on the current root to new_root. 3651 * 3652 * Restrictions: 3653 * The new_root and put_old must be directories, and must not be on the 3654 * same file system as the current process root. The put_old must be 3655 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3656 * pointed to by put_old must yield the same directory as new_root. No other 3657 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3658 * 3659 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3660 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3661 * in this situation. 3662 * 3663 * Notes: 3664 * - we don't move root/cwd if they are not at the root (reason: if something 3665 * cared enough to change them, it's probably wrong to force them elsewhere) 3666 * - it's okay to pick a root that isn't the root of a file system, e.g. 3667 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3668 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3669 * first. 3670 */ 3671 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3672 const char __user *, put_old) 3673 { 3674 struct path new, old, root; 3675 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3676 struct mountpoint *old_mp, *root_mp; 3677 int error; 3678 3679 if (!may_mount()) 3680 return -EPERM; 3681 3682 error = user_path_at(AT_FDCWD, new_root, 3683 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3684 if (error) 3685 goto out0; 3686 3687 error = user_path_at(AT_FDCWD, put_old, 3688 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3689 if (error) 3690 goto out1; 3691 3692 error = security_sb_pivotroot(&old, &new); 3693 if (error) 3694 goto out2; 3695 3696 get_fs_root(current->fs, &root); 3697 old_mp = lock_mount(&old); 3698 error = PTR_ERR(old_mp); 3699 if (IS_ERR(old_mp)) 3700 goto out3; 3701 3702 error = -EINVAL; 3703 new_mnt = real_mount(new.mnt); 3704 root_mnt = real_mount(root.mnt); 3705 old_mnt = real_mount(old.mnt); 3706 ex_parent = new_mnt->mnt_parent; 3707 root_parent = root_mnt->mnt_parent; 3708 if (IS_MNT_SHARED(old_mnt) || 3709 IS_MNT_SHARED(ex_parent) || 3710 IS_MNT_SHARED(root_parent)) 3711 goto out4; 3712 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3713 goto out4; 3714 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3715 goto out4; 3716 error = -ENOENT; 3717 if (d_unlinked(new.dentry)) 3718 goto out4; 3719 error = -EBUSY; 3720 if (new_mnt == root_mnt || old_mnt == root_mnt) 3721 goto out4; /* loop, on the same file system */ 3722 error = -EINVAL; 3723 if (root.mnt->mnt_root != root.dentry) 3724 goto out4; /* not a mountpoint */ 3725 if (!mnt_has_parent(root_mnt)) 3726 goto out4; /* not attached */ 3727 if (new.mnt->mnt_root != new.dentry) 3728 goto out4; /* not a mountpoint */ 3729 if (!mnt_has_parent(new_mnt)) 3730 goto out4; /* not attached */ 3731 /* make sure we can reach put_old from new_root */ 3732 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3733 goto out4; 3734 /* make certain new is below the root */ 3735 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3736 goto out4; 3737 lock_mount_hash(); 3738 umount_mnt(new_mnt); 3739 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3740 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3741 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3742 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3743 } 3744 /* mount old root on put_old */ 3745 attach_mnt(root_mnt, old_mnt, old_mp); 3746 /* mount new_root on / */ 3747 attach_mnt(new_mnt, root_parent, root_mp); 3748 mnt_add_count(root_parent, -1); 3749 touch_mnt_namespace(current->nsproxy->mnt_ns); 3750 /* A moved mount should not expire automatically */ 3751 list_del_init(&new_mnt->mnt_expire); 3752 put_mountpoint(root_mp); 3753 unlock_mount_hash(); 3754 chroot_fs_refs(&root, &new); 3755 error = 0; 3756 out4: 3757 unlock_mount(old_mp); 3758 if (!error) 3759 mntput_no_expire(ex_parent); 3760 out3: 3761 path_put(&root); 3762 out2: 3763 path_put(&old); 3764 out1: 3765 path_put(&new); 3766 out0: 3767 return error; 3768 } 3769 3770 static void __init init_mount_tree(void) 3771 { 3772 struct vfsmount *mnt; 3773 struct mount *m; 3774 struct mnt_namespace *ns; 3775 struct path root; 3776 3777 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 3778 if (IS_ERR(mnt)) 3779 panic("Can't create rootfs"); 3780 3781 ns = alloc_mnt_ns(&init_user_ns, false); 3782 if (IS_ERR(ns)) 3783 panic("Can't allocate initial namespace"); 3784 m = real_mount(mnt); 3785 m->mnt_ns = ns; 3786 ns->root = m; 3787 ns->mounts = 1; 3788 list_add(&m->mnt_list, &ns->list); 3789 init_task.nsproxy->mnt_ns = ns; 3790 get_mnt_ns(ns); 3791 3792 root.mnt = mnt; 3793 root.dentry = mnt->mnt_root; 3794 mnt->mnt_flags |= MNT_LOCKED; 3795 3796 set_fs_pwd(current->fs, &root); 3797 set_fs_root(current->fs, &root); 3798 } 3799 3800 void __init mnt_init(void) 3801 { 3802 int err; 3803 3804 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3805 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3806 3807 mount_hashtable = alloc_large_system_hash("Mount-cache", 3808 sizeof(struct hlist_head), 3809 mhash_entries, 19, 3810 HASH_ZERO, 3811 &m_hash_shift, &m_hash_mask, 0, 0); 3812 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3813 sizeof(struct hlist_head), 3814 mphash_entries, 19, 3815 HASH_ZERO, 3816 &mp_hash_shift, &mp_hash_mask, 0, 0); 3817 3818 if (!mount_hashtable || !mountpoint_hashtable) 3819 panic("Failed to allocate mount hash table\n"); 3820 3821 kernfs_init(); 3822 3823 err = sysfs_init(); 3824 if (err) 3825 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3826 __func__, err); 3827 fs_kobj = kobject_create_and_add("fs", NULL); 3828 if (!fs_kobj) 3829 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3830 shmem_init(); 3831 init_rootfs(); 3832 init_mount_tree(); 3833 } 3834 3835 void put_mnt_ns(struct mnt_namespace *ns) 3836 { 3837 if (!atomic_dec_and_test(&ns->count)) 3838 return; 3839 drop_collected_mounts(&ns->root->mnt); 3840 free_mnt_ns(ns); 3841 } 3842 3843 struct vfsmount *kern_mount(struct file_system_type *type) 3844 { 3845 struct vfsmount *mnt; 3846 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3847 if (!IS_ERR(mnt)) { 3848 /* 3849 * it is a longterm mount, don't release mnt until 3850 * we unmount before file sys is unregistered 3851 */ 3852 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3853 } 3854 return mnt; 3855 } 3856 EXPORT_SYMBOL_GPL(kern_mount); 3857 3858 void kern_unmount(struct vfsmount *mnt) 3859 { 3860 /* release long term mount so mount point can be released */ 3861 if (!IS_ERR_OR_NULL(mnt)) { 3862 real_mount(mnt)->mnt_ns = NULL; 3863 synchronize_rcu(); /* yecchhh... */ 3864 mntput(mnt); 3865 } 3866 } 3867 EXPORT_SYMBOL(kern_unmount); 3868 3869 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 3870 { 3871 unsigned int i; 3872 3873 for (i = 0; i < num; i++) 3874 if (mnt[i]) 3875 real_mount(mnt[i])->mnt_ns = NULL; 3876 synchronize_rcu_expedited(); 3877 for (i = 0; i < num; i++) 3878 mntput(mnt[i]); 3879 } 3880 EXPORT_SYMBOL(kern_unmount_array); 3881 3882 bool our_mnt(struct vfsmount *mnt) 3883 { 3884 return check_mnt(real_mount(mnt)); 3885 } 3886 3887 bool current_chrooted(void) 3888 { 3889 /* Does the current process have a non-standard root */ 3890 struct path ns_root; 3891 struct path fs_root; 3892 bool chrooted; 3893 3894 /* Find the namespace root */ 3895 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3896 ns_root.dentry = ns_root.mnt->mnt_root; 3897 path_get(&ns_root); 3898 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3899 ; 3900 3901 get_fs_root(current->fs, &fs_root); 3902 3903 chrooted = !path_equal(&fs_root, &ns_root); 3904 3905 path_put(&fs_root); 3906 path_put(&ns_root); 3907 3908 return chrooted; 3909 } 3910 3911 static bool mnt_already_visible(struct mnt_namespace *ns, 3912 const struct super_block *sb, 3913 int *new_mnt_flags) 3914 { 3915 int new_flags = *new_mnt_flags; 3916 struct mount *mnt; 3917 bool visible = false; 3918 3919 down_read(&namespace_sem); 3920 lock_ns_list(ns); 3921 list_for_each_entry(mnt, &ns->list, mnt_list) { 3922 struct mount *child; 3923 int mnt_flags; 3924 3925 if (mnt_is_cursor(mnt)) 3926 continue; 3927 3928 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3929 continue; 3930 3931 /* This mount is not fully visible if it's root directory 3932 * is not the root directory of the filesystem. 3933 */ 3934 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3935 continue; 3936 3937 /* A local view of the mount flags */ 3938 mnt_flags = mnt->mnt.mnt_flags; 3939 3940 /* Don't miss readonly hidden in the superblock flags */ 3941 if (sb_rdonly(mnt->mnt.mnt_sb)) 3942 mnt_flags |= MNT_LOCK_READONLY; 3943 3944 /* Verify the mount flags are equal to or more permissive 3945 * than the proposed new mount. 3946 */ 3947 if ((mnt_flags & MNT_LOCK_READONLY) && 3948 !(new_flags & MNT_READONLY)) 3949 continue; 3950 if ((mnt_flags & MNT_LOCK_ATIME) && 3951 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3952 continue; 3953 3954 /* This mount is not fully visible if there are any 3955 * locked child mounts that cover anything except for 3956 * empty directories. 3957 */ 3958 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3959 struct inode *inode = child->mnt_mountpoint->d_inode; 3960 /* Only worry about locked mounts */ 3961 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3962 continue; 3963 /* Is the directory permanetly empty? */ 3964 if (!is_empty_dir_inode(inode)) 3965 goto next; 3966 } 3967 /* Preserve the locked attributes */ 3968 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3969 MNT_LOCK_ATIME); 3970 visible = true; 3971 goto found; 3972 next: ; 3973 } 3974 found: 3975 unlock_ns_list(ns); 3976 up_read(&namespace_sem); 3977 return visible; 3978 } 3979 3980 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3981 { 3982 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3983 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3984 unsigned long s_iflags; 3985 3986 if (ns->user_ns == &init_user_ns) 3987 return false; 3988 3989 /* Can this filesystem be too revealing? */ 3990 s_iflags = sb->s_iflags; 3991 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3992 return false; 3993 3994 if ((s_iflags & required_iflags) != required_iflags) { 3995 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3996 required_iflags); 3997 return true; 3998 } 3999 4000 return !mnt_already_visible(ns, sb, new_mnt_flags); 4001 } 4002 4003 bool mnt_may_suid(struct vfsmount *mnt) 4004 { 4005 /* 4006 * Foreign mounts (accessed via fchdir or through /proc 4007 * symlinks) are always treated as if they are nosuid. This 4008 * prevents namespaces from trusting potentially unsafe 4009 * suid/sgid bits, file caps, or security labels that originate 4010 * in other namespaces. 4011 */ 4012 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4013 current_in_userns(mnt->mnt_sb->s_user_ns); 4014 } 4015 4016 static struct ns_common *mntns_get(struct task_struct *task) 4017 { 4018 struct ns_common *ns = NULL; 4019 struct nsproxy *nsproxy; 4020 4021 task_lock(task); 4022 nsproxy = task->nsproxy; 4023 if (nsproxy) { 4024 ns = &nsproxy->mnt_ns->ns; 4025 get_mnt_ns(to_mnt_ns(ns)); 4026 } 4027 task_unlock(task); 4028 4029 return ns; 4030 } 4031 4032 static void mntns_put(struct ns_common *ns) 4033 { 4034 put_mnt_ns(to_mnt_ns(ns)); 4035 } 4036 4037 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4038 { 4039 struct nsproxy *nsproxy = nsset->nsproxy; 4040 struct fs_struct *fs = nsset->fs; 4041 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4042 struct user_namespace *user_ns = nsset->cred->user_ns; 4043 struct path root; 4044 int err; 4045 4046 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4047 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4048 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4049 return -EPERM; 4050 4051 if (is_anon_ns(mnt_ns)) 4052 return -EINVAL; 4053 4054 if (fs->users != 1) 4055 return -EINVAL; 4056 4057 get_mnt_ns(mnt_ns); 4058 old_mnt_ns = nsproxy->mnt_ns; 4059 nsproxy->mnt_ns = mnt_ns; 4060 4061 /* Find the root */ 4062 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4063 "/", LOOKUP_DOWN, &root); 4064 if (err) { 4065 /* revert to old namespace */ 4066 nsproxy->mnt_ns = old_mnt_ns; 4067 put_mnt_ns(mnt_ns); 4068 return err; 4069 } 4070 4071 put_mnt_ns(old_mnt_ns); 4072 4073 /* Update the pwd and root */ 4074 set_fs_pwd(fs, &root); 4075 set_fs_root(fs, &root); 4076 4077 path_put(&root); 4078 return 0; 4079 } 4080 4081 static struct user_namespace *mntns_owner(struct ns_common *ns) 4082 { 4083 return to_mnt_ns(ns)->user_ns; 4084 } 4085 4086 const struct proc_ns_operations mntns_operations = { 4087 .name = "mnt", 4088 .type = CLONE_NEWNS, 4089 .get = mntns_get, 4090 .put = mntns_put, 4091 .install = mntns_install, 4092 .owner = mntns_owner, 4093 }; 4094