xref: /linux/fs/namespace.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include "pnode.h"
34 #include "internal.h"
35 
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
38 
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 
46 static struct list_head *mount_hashtable __read_mostly;
47 static struct kmem_cache *mnt_cache __read_mostly;
48 static struct rw_semaphore namespace_sem;
49 
50 /* /sys/fs */
51 struct kobject *fs_kobj;
52 EXPORT_SYMBOL_GPL(fs_kobj);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 	tmp = tmp + (tmp >> HASH_SHIFT);
59 	return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /* allocation is serialized by namespace_sem */
65 static int mnt_alloc_id(struct vfsmount *mnt)
66 {
67 	int res;
68 
69 retry:
70 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 	spin_lock(&vfsmount_lock);
72 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 	spin_unlock(&vfsmount_lock);
74 	if (res == -EAGAIN)
75 		goto retry;
76 
77 	return res;
78 }
79 
80 static void mnt_free_id(struct vfsmount *mnt)
81 {
82 	spin_lock(&vfsmount_lock);
83 	ida_remove(&mnt_id_ida, mnt->mnt_id);
84 	spin_unlock(&vfsmount_lock);
85 }
86 
87 /*
88  * Allocate a new peer group ID
89  *
90  * mnt_group_ida is protected by namespace_sem
91  */
92 static int mnt_alloc_group_id(struct vfsmount *mnt)
93 {
94 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 		return -ENOMEM;
96 
97 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98 }
99 
100 /*
101  * Release a peer group ID
102  */
103 void mnt_release_group_id(struct vfsmount *mnt)
104 {
105 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 	mnt->mnt_group_id = 0;
107 }
108 
109 struct vfsmount *alloc_vfsmnt(const char *name)
110 {
111 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
112 	if (mnt) {
113 		int err;
114 
115 		err = mnt_alloc_id(mnt);
116 		if (err)
117 			goto out_free_cache;
118 
119 		if (name) {
120 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
121 			if (!mnt->mnt_devname)
122 				goto out_free_id;
123 		}
124 
125 		atomic_set(&mnt->mnt_count, 1);
126 		INIT_LIST_HEAD(&mnt->mnt_hash);
127 		INIT_LIST_HEAD(&mnt->mnt_child);
128 		INIT_LIST_HEAD(&mnt->mnt_mounts);
129 		INIT_LIST_HEAD(&mnt->mnt_list);
130 		INIT_LIST_HEAD(&mnt->mnt_expire);
131 		INIT_LIST_HEAD(&mnt->mnt_share);
132 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
133 		INIT_LIST_HEAD(&mnt->mnt_slave);
134 #ifdef CONFIG_SMP
135 		mnt->mnt_writers = alloc_percpu(int);
136 		if (!mnt->mnt_writers)
137 			goto out_free_devname;
138 #else
139 		mnt->mnt_writers = 0;
140 #endif
141 	}
142 	return mnt;
143 
144 #ifdef CONFIG_SMP
145 out_free_devname:
146 	kfree(mnt->mnt_devname);
147 #endif
148 out_free_id:
149 	mnt_free_id(mnt);
150 out_free_cache:
151 	kmem_cache_free(mnt_cache, mnt);
152 	return NULL;
153 }
154 
155 /*
156  * Most r/o checks on a fs are for operations that take
157  * discrete amounts of time, like a write() or unlink().
158  * We must keep track of when those operations start
159  * (for permission checks) and when they end, so that
160  * we can determine when writes are able to occur to
161  * a filesystem.
162  */
163 /*
164  * __mnt_is_readonly: check whether a mount is read-only
165  * @mnt: the mount to check for its write status
166  *
167  * This shouldn't be used directly ouside of the VFS.
168  * It does not guarantee that the filesystem will stay
169  * r/w, just that it is right *now*.  This can not and
170  * should not be used in place of IS_RDONLY(inode).
171  * mnt_want/drop_write() will _keep_ the filesystem
172  * r/w.
173  */
174 int __mnt_is_readonly(struct vfsmount *mnt)
175 {
176 	if (mnt->mnt_flags & MNT_READONLY)
177 		return 1;
178 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
179 		return 1;
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
183 
184 static inline void inc_mnt_writers(struct vfsmount *mnt)
185 {
186 #ifdef CONFIG_SMP
187 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
188 #else
189 	mnt->mnt_writers++;
190 #endif
191 }
192 
193 static inline void dec_mnt_writers(struct vfsmount *mnt)
194 {
195 #ifdef CONFIG_SMP
196 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
197 #else
198 	mnt->mnt_writers--;
199 #endif
200 }
201 
202 static unsigned int count_mnt_writers(struct vfsmount *mnt)
203 {
204 #ifdef CONFIG_SMP
205 	unsigned int count = 0;
206 	int cpu;
207 
208 	for_each_possible_cpu(cpu) {
209 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
210 	}
211 
212 	return count;
213 #else
214 	return mnt->mnt_writers;
215 #endif
216 }
217 
218 /*
219  * Most r/o checks on a fs are for operations that take
220  * discrete amounts of time, like a write() or unlink().
221  * We must keep track of when those operations start
222  * (for permission checks) and when they end, so that
223  * we can determine when writes are able to occur to
224  * a filesystem.
225  */
226 /**
227  * mnt_want_write - get write access to a mount
228  * @mnt: the mount on which to take a write
229  *
230  * This tells the low-level filesystem that a write is
231  * about to be performed to it, and makes sure that
232  * writes are allowed before returning success.  When
233  * the write operation is finished, mnt_drop_write()
234  * must be called.  This is effectively a refcount.
235  */
236 int mnt_want_write(struct vfsmount *mnt)
237 {
238 	int ret = 0;
239 
240 	preempt_disable();
241 	inc_mnt_writers(mnt);
242 	/*
243 	 * The store to inc_mnt_writers must be visible before we pass
244 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
245 	 * incremented count after it has set MNT_WRITE_HOLD.
246 	 */
247 	smp_mb();
248 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
249 		cpu_relax();
250 	/*
251 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
252 	 * be set to match its requirements. So we must not load that until
253 	 * MNT_WRITE_HOLD is cleared.
254 	 */
255 	smp_rmb();
256 	if (__mnt_is_readonly(mnt)) {
257 		dec_mnt_writers(mnt);
258 		ret = -EROFS;
259 		goto out;
260 	}
261 out:
262 	preempt_enable();
263 	return ret;
264 }
265 EXPORT_SYMBOL_GPL(mnt_want_write);
266 
267 /**
268  * mnt_clone_write - get write access to a mount
269  * @mnt: the mount on which to take a write
270  *
271  * This is effectively like mnt_want_write, except
272  * it must only be used to take an extra write reference
273  * on a mountpoint that we already know has a write reference
274  * on it. This allows some optimisation.
275  *
276  * After finished, mnt_drop_write must be called as usual to
277  * drop the reference.
278  */
279 int mnt_clone_write(struct vfsmount *mnt)
280 {
281 	/* superblock may be r/o */
282 	if (__mnt_is_readonly(mnt))
283 		return -EROFS;
284 	preempt_disable();
285 	inc_mnt_writers(mnt);
286 	preempt_enable();
287 	return 0;
288 }
289 EXPORT_SYMBOL_GPL(mnt_clone_write);
290 
291 /**
292  * mnt_want_write_file - get write access to a file's mount
293  * @file: the file who's mount on which to take a write
294  *
295  * This is like mnt_want_write, but it takes a file and can
296  * do some optimisations if the file is open for write already
297  */
298 int mnt_want_write_file(struct file *file)
299 {
300 	if (!(file->f_mode & FMODE_WRITE))
301 		return mnt_want_write(file->f_path.mnt);
302 	else
303 		return mnt_clone_write(file->f_path.mnt);
304 }
305 EXPORT_SYMBOL_GPL(mnt_want_write_file);
306 
307 /**
308  * mnt_drop_write - give up write access to a mount
309  * @mnt: the mount on which to give up write access
310  *
311  * Tells the low-level filesystem that we are done
312  * performing writes to it.  Must be matched with
313  * mnt_want_write() call above.
314  */
315 void mnt_drop_write(struct vfsmount *mnt)
316 {
317 	preempt_disable();
318 	dec_mnt_writers(mnt);
319 	preempt_enable();
320 }
321 EXPORT_SYMBOL_GPL(mnt_drop_write);
322 
323 static int mnt_make_readonly(struct vfsmount *mnt)
324 {
325 	int ret = 0;
326 
327 	spin_lock(&vfsmount_lock);
328 	mnt->mnt_flags |= MNT_WRITE_HOLD;
329 	/*
330 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
331 	 * should be visible before we do.
332 	 */
333 	smp_mb();
334 
335 	/*
336 	 * With writers on hold, if this value is zero, then there are
337 	 * definitely no active writers (although held writers may subsequently
338 	 * increment the count, they'll have to wait, and decrement it after
339 	 * seeing MNT_READONLY).
340 	 *
341 	 * It is OK to have counter incremented on one CPU and decremented on
342 	 * another: the sum will add up correctly. The danger would be when we
343 	 * sum up each counter, if we read a counter before it is incremented,
344 	 * but then read another CPU's count which it has been subsequently
345 	 * decremented from -- we would see more decrements than we should.
346 	 * MNT_WRITE_HOLD protects against this scenario, because
347 	 * mnt_want_write first increments count, then smp_mb, then spins on
348 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
349 	 * we're counting up here.
350 	 */
351 	if (count_mnt_writers(mnt) > 0)
352 		ret = -EBUSY;
353 	else
354 		mnt->mnt_flags |= MNT_READONLY;
355 	/*
356 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
357 	 * that become unheld will see MNT_READONLY.
358 	 */
359 	smp_wmb();
360 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
361 	spin_unlock(&vfsmount_lock);
362 	return ret;
363 }
364 
365 static void __mnt_unmake_readonly(struct vfsmount *mnt)
366 {
367 	spin_lock(&vfsmount_lock);
368 	mnt->mnt_flags &= ~MNT_READONLY;
369 	spin_unlock(&vfsmount_lock);
370 }
371 
372 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
373 {
374 	mnt->mnt_sb = sb;
375 	mnt->mnt_root = dget(sb->s_root);
376 }
377 
378 EXPORT_SYMBOL(simple_set_mnt);
379 
380 void free_vfsmnt(struct vfsmount *mnt)
381 {
382 	kfree(mnt->mnt_devname);
383 	mnt_free_id(mnt);
384 #ifdef CONFIG_SMP
385 	free_percpu(mnt->mnt_writers);
386 #endif
387 	kmem_cache_free(mnt_cache, mnt);
388 }
389 
390 /*
391  * find the first or last mount at @dentry on vfsmount @mnt depending on
392  * @dir. If @dir is set return the first mount else return the last mount.
393  */
394 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
395 			      int dir)
396 {
397 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
398 	struct list_head *tmp = head;
399 	struct vfsmount *p, *found = NULL;
400 
401 	for (;;) {
402 		tmp = dir ? tmp->next : tmp->prev;
403 		p = NULL;
404 		if (tmp == head)
405 			break;
406 		p = list_entry(tmp, struct vfsmount, mnt_hash);
407 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
408 			found = p;
409 			break;
410 		}
411 	}
412 	return found;
413 }
414 
415 /*
416  * lookup_mnt increments the ref count before returning
417  * the vfsmount struct.
418  */
419 struct vfsmount *lookup_mnt(struct path *path)
420 {
421 	struct vfsmount *child_mnt;
422 	spin_lock(&vfsmount_lock);
423 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
424 		mntget(child_mnt);
425 	spin_unlock(&vfsmount_lock);
426 	return child_mnt;
427 }
428 
429 static inline int check_mnt(struct vfsmount *mnt)
430 {
431 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
432 }
433 
434 static void touch_mnt_namespace(struct mnt_namespace *ns)
435 {
436 	if (ns) {
437 		ns->event = ++event;
438 		wake_up_interruptible(&ns->poll);
439 	}
440 }
441 
442 static void __touch_mnt_namespace(struct mnt_namespace *ns)
443 {
444 	if (ns && ns->event != event) {
445 		ns->event = event;
446 		wake_up_interruptible(&ns->poll);
447 	}
448 }
449 
450 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
451 {
452 	old_path->dentry = mnt->mnt_mountpoint;
453 	old_path->mnt = mnt->mnt_parent;
454 	mnt->mnt_parent = mnt;
455 	mnt->mnt_mountpoint = mnt->mnt_root;
456 	list_del_init(&mnt->mnt_child);
457 	list_del_init(&mnt->mnt_hash);
458 	old_path->dentry->d_mounted--;
459 }
460 
461 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
462 			struct vfsmount *child_mnt)
463 {
464 	child_mnt->mnt_parent = mntget(mnt);
465 	child_mnt->mnt_mountpoint = dget(dentry);
466 	dentry->d_mounted++;
467 }
468 
469 static void attach_mnt(struct vfsmount *mnt, struct path *path)
470 {
471 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
472 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
473 			hash(path->mnt, path->dentry));
474 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
475 }
476 
477 /*
478  * the caller must hold vfsmount_lock
479  */
480 static void commit_tree(struct vfsmount *mnt)
481 {
482 	struct vfsmount *parent = mnt->mnt_parent;
483 	struct vfsmount *m;
484 	LIST_HEAD(head);
485 	struct mnt_namespace *n = parent->mnt_ns;
486 
487 	BUG_ON(parent == mnt);
488 
489 	list_add_tail(&head, &mnt->mnt_list);
490 	list_for_each_entry(m, &head, mnt_list)
491 		m->mnt_ns = n;
492 	list_splice(&head, n->list.prev);
493 
494 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
495 				hash(parent, mnt->mnt_mountpoint));
496 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
497 	touch_mnt_namespace(n);
498 }
499 
500 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
501 {
502 	struct list_head *next = p->mnt_mounts.next;
503 	if (next == &p->mnt_mounts) {
504 		while (1) {
505 			if (p == root)
506 				return NULL;
507 			next = p->mnt_child.next;
508 			if (next != &p->mnt_parent->mnt_mounts)
509 				break;
510 			p = p->mnt_parent;
511 		}
512 	}
513 	return list_entry(next, struct vfsmount, mnt_child);
514 }
515 
516 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
517 {
518 	struct list_head *prev = p->mnt_mounts.prev;
519 	while (prev != &p->mnt_mounts) {
520 		p = list_entry(prev, struct vfsmount, mnt_child);
521 		prev = p->mnt_mounts.prev;
522 	}
523 	return p;
524 }
525 
526 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
527 					int flag)
528 {
529 	struct super_block *sb = old->mnt_sb;
530 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
531 
532 	if (mnt) {
533 		if (flag & (CL_SLAVE | CL_PRIVATE))
534 			mnt->mnt_group_id = 0; /* not a peer of original */
535 		else
536 			mnt->mnt_group_id = old->mnt_group_id;
537 
538 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
539 			int err = mnt_alloc_group_id(mnt);
540 			if (err)
541 				goto out_free;
542 		}
543 
544 		mnt->mnt_flags = old->mnt_flags;
545 		atomic_inc(&sb->s_active);
546 		mnt->mnt_sb = sb;
547 		mnt->mnt_root = dget(root);
548 		mnt->mnt_mountpoint = mnt->mnt_root;
549 		mnt->mnt_parent = mnt;
550 
551 		if (flag & CL_SLAVE) {
552 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
553 			mnt->mnt_master = old;
554 			CLEAR_MNT_SHARED(mnt);
555 		} else if (!(flag & CL_PRIVATE)) {
556 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
557 				list_add(&mnt->mnt_share, &old->mnt_share);
558 			if (IS_MNT_SLAVE(old))
559 				list_add(&mnt->mnt_slave, &old->mnt_slave);
560 			mnt->mnt_master = old->mnt_master;
561 		}
562 		if (flag & CL_MAKE_SHARED)
563 			set_mnt_shared(mnt);
564 
565 		/* stick the duplicate mount on the same expiry list
566 		 * as the original if that was on one */
567 		if (flag & CL_EXPIRE) {
568 			if (!list_empty(&old->mnt_expire))
569 				list_add(&mnt->mnt_expire, &old->mnt_expire);
570 		}
571 	}
572 	return mnt;
573 
574  out_free:
575 	free_vfsmnt(mnt);
576 	return NULL;
577 }
578 
579 static inline void __mntput(struct vfsmount *mnt)
580 {
581 	struct super_block *sb = mnt->mnt_sb;
582 	/*
583 	 * This probably indicates that somebody messed
584 	 * up a mnt_want/drop_write() pair.  If this
585 	 * happens, the filesystem was probably unable
586 	 * to make r/w->r/o transitions.
587 	 */
588 	/*
589 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
590 	 * provides barriers, so count_mnt_writers() below is safe.  AV
591 	 */
592 	WARN_ON(count_mnt_writers(mnt));
593 	dput(mnt->mnt_root);
594 	free_vfsmnt(mnt);
595 	deactivate_super(sb);
596 }
597 
598 void mntput_no_expire(struct vfsmount *mnt)
599 {
600 repeat:
601 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
602 		if (likely(!mnt->mnt_pinned)) {
603 			spin_unlock(&vfsmount_lock);
604 			__mntput(mnt);
605 			return;
606 		}
607 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
608 		mnt->mnt_pinned = 0;
609 		spin_unlock(&vfsmount_lock);
610 		acct_auto_close_mnt(mnt);
611 		security_sb_umount_close(mnt);
612 		goto repeat;
613 	}
614 }
615 
616 EXPORT_SYMBOL(mntput_no_expire);
617 
618 void mnt_pin(struct vfsmount *mnt)
619 {
620 	spin_lock(&vfsmount_lock);
621 	mnt->mnt_pinned++;
622 	spin_unlock(&vfsmount_lock);
623 }
624 
625 EXPORT_SYMBOL(mnt_pin);
626 
627 void mnt_unpin(struct vfsmount *mnt)
628 {
629 	spin_lock(&vfsmount_lock);
630 	if (mnt->mnt_pinned) {
631 		atomic_inc(&mnt->mnt_count);
632 		mnt->mnt_pinned--;
633 	}
634 	spin_unlock(&vfsmount_lock);
635 }
636 
637 EXPORT_SYMBOL(mnt_unpin);
638 
639 static inline void mangle(struct seq_file *m, const char *s)
640 {
641 	seq_escape(m, s, " \t\n\\");
642 }
643 
644 /*
645  * Simple .show_options callback for filesystems which don't want to
646  * implement more complex mount option showing.
647  *
648  * See also save_mount_options().
649  */
650 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
651 {
652 	const char *options;
653 
654 	rcu_read_lock();
655 	options = rcu_dereference(mnt->mnt_sb->s_options);
656 
657 	if (options != NULL && options[0]) {
658 		seq_putc(m, ',');
659 		mangle(m, options);
660 	}
661 	rcu_read_unlock();
662 
663 	return 0;
664 }
665 EXPORT_SYMBOL(generic_show_options);
666 
667 /*
668  * If filesystem uses generic_show_options(), this function should be
669  * called from the fill_super() callback.
670  *
671  * The .remount_fs callback usually needs to be handled in a special
672  * way, to make sure, that previous options are not overwritten if the
673  * remount fails.
674  *
675  * Also note, that if the filesystem's .remount_fs function doesn't
676  * reset all options to their default value, but changes only newly
677  * given options, then the displayed options will not reflect reality
678  * any more.
679  */
680 void save_mount_options(struct super_block *sb, char *options)
681 {
682 	BUG_ON(sb->s_options);
683 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
684 }
685 EXPORT_SYMBOL(save_mount_options);
686 
687 void replace_mount_options(struct super_block *sb, char *options)
688 {
689 	char *old = sb->s_options;
690 	rcu_assign_pointer(sb->s_options, options);
691 	if (old) {
692 		synchronize_rcu();
693 		kfree(old);
694 	}
695 }
696 EXPORT_SYMBOL(replace_mount_options);
697 
698 #ifdef CONFIG_PROC_FS
699 /* iterator */
700 static void *m_start(struct seq_file *m, loff_t *pos)
701 {
702 	struct proc_mounts *p = m->private;
703 
704 	down_read(&namespace_sem);
705 	return seq_list_start(&p->ns->list, *pos);
706 }
707 
708 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
709 {
710 	struct proc_mounts *p = m->private;
711 
712 	return seq_list_next(v, &p->ns->list, pos);
713 }
714 
715 static void m_stop(struct seq_file *m, void *v)
716 {
717 	up_read(&namespace_sem);
718 }
719 
720 struct proc_fs_info {
721 	int flag;
722 	const char *str;
723 };
724 
725 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
726 {
727 	static const struct proc_fs_info fs_info[] = {
728 		{ MS_SYNCHRONOUS, ",sync" },
729 		{ MS_DIRSYNC, ",dirsync" },
730 		{ MS_MANDLOCK, ",mand" },
731 		{ 0, NULL }
732 	};
733 	const struct proc_fs_info *fs_infop;
734 
735 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
736 		if (sb->s_flags & fs_infop->flag)
737 			seq_puts(m, fs_infop->str);
738 	}
739 
740 	return security_sb_show_options(m, sb);
741 }
742 
743 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
744 {
745 	static const struct proc_fs_info mnt_info[] = {
746 		{ MNT_NOSUID, ",nosuid" },
747 		{ MNT_NODEV, ",nodev" },
748 		{ MNT_NOEXEC, ",noexec" },
749 		{ MNT_NOATIME, ",noatime" },
750 		{ MNT_NODIRATIME, ",nodiratime" },
751 		{ MNT_RELATIME, ",relatime" },
752 		{ MNT_STRICTATIME, ",strictatime" },
753 		{ 0, NULL }
754 	};
755 	const struct proc_fs_info *fs_infop;
756 
757 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
758 		if (mnt->mnt_flags & fs_infop->flag)
759 			seq_puts(m, fs_infop->str);
760 	}
761 }
762 
763 static void show_type(struct seq_file *m, struct super_block *sb)
764 {
765 	mangle(m, sb->s_type->name);
766 	if (sb->s_subtype && sb->s_subtype[0]) {
767 		seq_putc(m, '.');
768 		mangle(m, sb->s_subtype);
769 	}
770 }
771 
772 static int show_vfsmnt(struct seq_file *m, void *v)
773 {
774 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
775 	int err = 0;
776 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
777 
778 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
779 	seq_putc(m, ' ');
780 	seq_path(m, &mnt_path, " \t\n\\");
781 	seq_putc(m, ' ');
782 	show_type(m, mnt->mnt_sb);
783 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
784 	err = show_sb_opts(m, mnt->mnt_sb);
785 	if (err)
786 		goto out;
787 	show_mnt_opts(m, mnt);
788 	if (mnt->mnt_sb->s_op->show_options)
789 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
790 	seq_puts(m, " 0 0\n");
791 out:
792 	return err;
793 }
794 
795 const struct seq_operations mounts_op = {
796 	.start	= m_start,
797 	.next	= m_next,
798 	.stop	= m_stop,
799 	.show	= show_vfsmnt
800 };
801 
802 static int show_mountinfo(struct seq_file *m, void *v)
803 {
804 	struct proc_mounts *p = m->private;
805 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
806 	struct super_block *sb = mnt->mnt_sb;
807 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
808 	struct path root = p->root;
809 	int err = 0;
810 
811 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
812 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
813 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
814 	seq_putc(m, ' ');
815 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
816 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
817 		/*
818 		 * Mountpoint is outside root, discard that one.  Ugly,
819 		 * but less so than trying to do that in iterator in a
820 		 * race-free way (due to renames).
821 		 */
822 		return SEQ_SKIP;
823 	}
824 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
825 	show_mnt_opts(m, mnt);
826 
827 	/* Tagged fields ("foo:X" or "bar") */
828 	if (IS_MNT_SHARED(mnt))
829 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
830 	if (IS_MNT_SLAVE(mnt)) {
831 		int master = mnt->mnt_master->mnt_group_id;
832 		int dom = get_dominating_id(mnt, &p->root);
833 		seq_printf(m, " master:%i", master);
834 		if (dom && dom != master)
835 			seq_printf(m, " propagate_from:%i", dom);
836 	}
837 	if (IS_MNT_UNBINDABLE(mnt))
838 		seq_puts(m, " unbindable");
839 
840 	/* Filesystem specific data */
841 	seq_puts(m, " - ");
842 	show_type(m, sb);
843 	seq_putc(m, ' ');
844 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
845 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
846 	err = show_sb_opts(m, sb);
847 	if (err)
848 		goto out;
849 	if (sb->s_op->show_options)
850 		err = sb->s_op->show_options(m, mnt);
851 	seq_putc(m, '\n');
852 out:
853 	return err;
854 }
855 
856 const struct seq_operations mountinfo_op = {
857 	.start	= m_start,
858 	.next	= m_next,
859 	.stop	= m_stop,
860 	.show	= show_mountinfo,
861 };
862 
863 static int show_vfsstat(struct seq_file *m, void *v)
864 {
865 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
866 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
867 	int err = 0;
868 
869 	/* device */
870 	if (mnt->mnt_devname) {
871 		seq_puts(m, "device ");
872 		mangle(m, mnt->mnt_devname);
873 	} else
874 		seq_puts(m, "no device");
875 
876 	/* mount point */
877 	seq_puts(m, " mounted on ");
878 	seq_path(m, &mnt_path, " \t\n\\");
879 	seq_putc(m, ' ');
880 
881 	/* file system type */
882 	seq_puts(m, "with fstype ");
883 	show_type(m, mnt->mnt_sb);
884 
885 	/* optional statistics */
886 	if (mnt->mnt_sb->s_op->show_stats) {
887 		seq_putc(m, ' ');
888 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
889 	}
890 
891 	seq_putc(m, '\n');
892 	return err;
893 }
894 
895 const struct seq_operations mountstats_op = {
896 	.start	= m_start,
897 	.next	= m_next,
898 	.stop	= m_stop,
899 	.show	= show_vfsstat,
900 };
901 #endif  /* CONFIG_PROC_FS */
902 
903 /**
904  * may_umount_tree - check if a mount tree is busy
905  * @mnt: root of mount tree
906  *
907  * This is called to check if a tree of mounts has any
908  * open files, pwds, chroots or sub mounts that are
909  * busy.
910  */
911 int may_umount_tree(struct vfsmount *mnt)
912 {
913 	int actual_refs = 0;
914 	int minimum_refs = 0;
915 	struct vfsmount *p;
916 
917 	spin_lock(&vfsmount_lock);
918 	for (p = mnt; p; p = next_mnt(p, mnt)) {
919 		actual_refs += atomic_read(&p->mnt_count);
920 		minimum_refs += 2;
921 	}
922 	spin_unlock(&vfsmount_lock);
923 
924 	if (actual_refs > minimum_refs)
925 		return 0;
926 
927 	return 1;
928 }
929 
930 EXPORT_SYMBOL(may_umount_tree);
931 
932 /**
933  * may_umount - check if a mount point is busy
934  * @mnt: root of mount
935  *
936  * This is called to check if a mount point has any
937  * open files, pwds, chroots or sub mounts. If the
938  * mount has sub mounts this will return busy
939  * regardless of whether the sub mounts are busy.
940  *
941  * Doesn't take quota and stuff into account. IOW, in some cases it will
942  * give false negatives. The main reason why it's here is that we need
943  * a non-destructive way to look for easily umountable filesystems.
944  */
945 int may_umount(struct vfsmount *mnt)
946 {
947 	int ret = 1;
948 	spin_lock(&vfsmount_lock);
949 	if (propagate_mount_busy(mnt, 2))
950 		ret = 0;
951 	spin_unlock(&vfsmount_lock);
952 	return ret;
953 }
954 
955 EXPORT_SYMBOL(may_umount);
956 
957 void release_mounts(struct list_head *head)
958 {
959 	struct vfsmount *mnt;
960 	while (!list_empty(head)) {
961 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
962 		list_del_init(&mnt->mnt_hash);
963 		if (mnt->mnt_parent != mnt) {
964 			struct dentry *dentry;
965 			struct vfsmount *m;
966 			spin_lock(&vfsmount_lock);
967 			dentry = mnt->mnt_mountpoint;
968 			m = mnt->mnt_parent;
969 			mnt->mnt_mountpoint = mnt->mnt_root;
970 			mnt->mnt_parent = mnt;
971 			m->mnt_ghosts--;
972 			spin_unlock(&vfsmount_lock);
973 			dput(dentry);
974 			mntput(m);
975 		}
976 		mntput(mnt);
977 	}
978 }
979 
980 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
981 {
982 	struct vfsmount *p;
983 
984 	for (p = mnt; p; p = next_mnt(p, mnt))
985 		list_move(&p->mnt_hash, kill);
986 
987 	if (propagate)
988 		propagate_umount(kill);
989 
990 	list_for_each_entry(p, kill, mnt_hash) {
991 		list_del_init(&p->mnt_expire);
992 		list_del_init(&p->mnt_list);
993 		__touch_mnt_namespace(p->mnt_ns);
994 		p->mnt_ns = NULL;
995 		list_del_init(&p->mnt_child);
996 		if (p->mnt_parent != p) {
997 			p->mnt_parent->mnt_ghosts++;
998 			p->mnt_mountpoint->d_mounted--;
999 		}
1000 		change_mnt_propagation(p, MS_PRIVATE);
1001 	}
1002 }
1003 
1004 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1005 
1006 static int do_umount(struct vfsmount *mnt, int flags)
1007 {
1008 	struct super_block *sb = mnt->mnt_sb;
1009 	int retval;
1010 	LIST_HEAD(umount_list);
1011 
1012 	retval = security_sb_umount(mnt, flags);
1013 	if (retval)
1014 		return retval;
1015 
1016 	/*
1017 	 * Allow userspace to request a mountpoint be expired rather than
1018 	 * unmounting unconditionally. Unmount only happens if:
1019 	 *  (1) the mark is already set (the mark is cleared by mntput())
1020 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1021 	 */
1022 	if (flags & MNT_EXPIRE) {
1023 		if (mnt == current->fs->root.mnt ||
1024 		    flags & (MNT_FORCE | MNT_DETACH))
1025 			return -EINVAL;
1026 
1027 		if (atomic_read(&mnt->mnt_count) != 2)
1028 			return -EBUSY;
1029 
1030 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1031 			return -EAGAIN;
1032 	}
1033 
1034 	/*
1035 	 * If we may have to abort operations to get out of this
1036 	 * mount, and they will themselves hold resources we must
1037 	 * allow the fs to do things. In the Unix tradition of
1038 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1039 	 * might fail to complete on the first run through as other tasks
1040 	 * must return, and the like. Thats for the mount program to worry
1041 	 * about for the moment.
1042 	 */
1043 
1044 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1045 		sb->s_op->umount_begin(sb);
1046 	}
1047 
1048 	/*
1049 	 * No sense to grab the lock for this test, but test itself looks
1050 	 * somewhat bogus. Suggestions for better replacement?
1051 	 * Ho-hum... In principle, we might treat that as umount + switch
1052 	 * to rootfs. GC would eventually take care of the old vfsmount.
1053 	 * Actually it makes sense, especially if rootfs would contain a
1054 	 * /reboot - static binary that would close all descriptors and
1055 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1056 	 */
1057 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1058 		/*
1059 		 * Special case for "unmounting" root ...
1060 		 * we just try to remount it readonly.
1061 		 */
1062 		down_write(&sb->s_umount);
1063 		if (!(sb->s_flags & MS_RDONLY))
1064 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1065 		up_write(&sb->s_umount);
1066 		return retval;
1067 	}
1068 
1069 	down_write(&namespace_sem);
1070 	spin_lock(&vfsmount_lock);
1071 	event++;
1072 
1073 	if (!(flags & MNT_DETACH))
1074 		shrink_submounts(mnt, &umount_list);
1075 
1076 	retval = -EBUSY;
1077 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1078 		if (!list_empty(&mnt->mnt_list))
1079 			umount_tree(mnt, 1, &umount_list);
1080 		retval = 0;
1081 	}
1082 	spin_unlock(&vfsmount_lock);
1083 	if (retval)
1084 		security_sb_umount_busy(mnt);
1085 	up_write(&namespace_sem);
1086 	release_mounts(&umount_list);
1087 	return retval;
1088 }
1089 
1090 /*
1091  * Now umount can handle mount points as well as block devices.
1092  * This is important for filesystems which use unnamed block devices.
1093  *
1094  * We now support a flag for forced unmount like the other 'big iron'
1095  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1096  */
1097 
1098 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1099 {
1100 	struct path path;
1101 	int retval;
1102 
1103 	retval = user_path(name, &path);
1104 	if (retval)
1105 		goto out;
1106 	retval = -EINVAL;
1107 	if (path.dentry != path.mnt->mnt_root)
1108 		goto dput_and_out;
1109 	if (!check_mnt(path.mnt))
1110 		goto dput_and_out;
1111 
1112 	retval = -EPERM;
1113 	if (!capable(CAP_SYS_ADMIN))
1114 		goto dput_and_out;
1115 
1116 	retval = do_umount(path.mnt, flags);
1117 dput_and_out:
1118 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1119 	dput(path.dentry);
1120 	mntput_no_expire(path.mnt);
1121 out:
1122 	return retval;
1123 }
1124 
1125 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1126 
1127 /*
1128  *	The 2.0 compatible umount. No flags.
1129  */
1130 SYSCALL_DEFINE1(oldumount, char __user *, name)
1131 {
1132 	return sys_umount(name, 0);
1133 }
1134 
1135 #endif
1136 
1137 static int mount_is_safe(struct path *path)
1138 {
1139 	if (capable(CAP_SYS_ADMIN))
1140 		return 0;
1141 	return -EPERM;
1142 #ifdef notyet
1143 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1144 		return -EPERM;
1145 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1146 		if (current_uid() != path->dentry->d_inode->i_uid)
1147 			return -EPERM;
1148 	}
1149 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1150 		return -EPERM;
1151 	return 0;
1152 #endif
1153 }
1154 
1155 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1156 					int flag)
1157 {
1158 	struct vfsmount *res, *p, *q, *r, *s;
1159 	struct path path;
1160 
1161 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1162 		return NULL;
1163 
1164 	res = q = clone_mnt(mnt, dentry, flag);
1165 	if (!q)
1166 		goto Enomem;
1167 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1168 
1169 	p = mnt;
1170 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1171 		if (!is_subdir(r->mnt_mountpoint, dentry))
1172 			continue;
1173 
1174 		for (s = r; s; s = next_mnt(s, r)) {
1175 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1176 				s = skip_mnt_tree(s);
1177 				continue;
1178 			}
1179 			while (p != s->mnt_parent) {
1180 				p = p->mnt_parent;
1181 				q = q->mnt_parent;
1182 			}
1183 			p = s;
1184 			path.mnt = q;
1185 			path.dentry = p->mnt_mountpoint;
1186 			q = clone_mnt(p, p->mnt_root, flag);
1187 			if (!q)
1188 				goto Enomem;
1189 			spin_lock(&vfsmount_lock);
1190 			list_add_tail(&q->mnt_list, &res->mnt_list);
1191 			attach_mnt(q, &path);
1192 			spin_unlock(&vfsmount_lock);
1193 		}
1194 	}
1195 	return res;
1196 Enomem:
1197 	if (res) {
1198 		LIST_HEAD(umount_list);
1199 		spin_lock(&vfsmount_lock);
1200 		umount_tree(res, 0, &umount_list);
1201 		spin_unlock(&vfsmount_lock);
1202 		release_mounts(&umount_list);
1203 	}
1204 	return NULL;
1205 }
1206 
1207 struct vfsmount *collect_mounts(struct path *path)
1208 {
1209 	struct vfsmount *tree;
1210 	down_write(&namespace_sem);
1211 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1212 	up_write(&namespace_sem);
1213 	return tree;
1214 }
1215 
1216 void drop_collected_mounts(struct vfsmount *mnt)
1217 {
1218 	LIST_HEAD(umount_list);
1219 	down_write(&namespace_sem);
1220 	spin_lock(&vfsmount_lock);
1221 	umount_tree(mnt, 0, &umount_list);
1222 	spin_unlock(&vfsmount_lock);
1223 	up_write(&namespace_sem);
1224 	release_mounts(&umount_list);
1225 }
1226 
1227 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1228 {
1229 	struct vfsmount *p;
1230 
1231 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1232 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1233 			mnt_release_group_id(p);
1234 	}
1235 }
1236 
1237 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1238 {
1239 	struct vfsmount *p;
1240 
1241 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1242 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1243 			int err = mnt_alloc_group_id(p);
1244 			if (err) {
1245 				cleanup_group_ids(mnt, p);
1246 				return err;
1247 			}
1248 		}
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 /*
1255  *  @source_mnt : mount tree to be attached
1256  *  @nd         : place the mount tree @source_mnt is attached
1257  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1258  *  		   store the parent mount and mountpoint dentry.
1259  *  		   (done when source_mnt is moved)
1260  *
1261  *  NOTE: in the table below explains the semantics when a source mount
1262  *  of a given type is attached to a destination mount of a given type.
1263  * ---------------------------------------------------------------------------
1264  * |         BIND MOUNT OPERATION                                            |
1265  * |**************************************************************************
1266  * | source-->| shared        |       private  |       slave    | unbindable |
1267  * | dest     |               |                |                |            |
1268  * |   |      |               |                |                |            |
1269  * |   v      |               |                |                |            |
1270  * |**************************************************************************
1271  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1272  * |          |               |                |                |            |
1273  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1274  * ***************************************************************************
1275  * A bind operation clones the source mount and mounts the clone on the
1276  * destination mount.
1277  *
1278  * (++)  the cloned mount is propagated to all the mounts in the propagation
1279  * 	 tree of the destination mount and the cloned mount is added to
1280  * 	 the peer group of the source mount.
1281  * (+)   the cloned mount is created under the destination mount and is marked
1282  *       as shared. The cloned mount is added to the peer group of the source
1283  *       mount.
1284  * (+++) the mount is propagated to all the mounts in the propagation tree
1285  *       of the destination mount and the cloned mount is made slave
1286  *       of the same master as that of the source mount. The cloned mount
1287  *       is marked as 'shared and slave'.
1288  * (*)   the cloned mount is made a slave of the same master as that of the
1289  * 	 source mount.
1290  *
1291  * ---------------------------------------------------------------------------
1292  * |         		MOVE MOUNT OPERATION                                 |
1293  * |**************************************************************************
1294  * | source-->| shared        |       private  |       slave    | unbindable |
1295  * | dest     |               |                |                |            |
1296  * |   |      |               |                |                |            |
1297  * |   v      |               |                |                |            |
1298  * |**************************************************************************
1299  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1300  * |          |               |                |                |            |
1301  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1302  * ***************************************************************************
1303  *
1304  * (+)  the mount is moved to the destination. And is then propagated to
1305  * 	all the mounts in the propagation tree of the destination mount.
1306  * (+*)  the mount is moved to the destination.
1307  * (+++)  the mount is moved to the destination and is then propagated to
1308  * 	all the mounts belonging to the destination mount's propagation tree.
1309  * 	the mount is marked as 'shared and slave'.
1310  * (*)	the mount continues to be a slave at the new location.
1311  *
1312  * if the source mount is a tree, the operations explained above is
1313  * applied to each mount in the tree.
1314  * Must be called without spinlocks held, since this function can sleep
1315  * in allocations.
1316  */
1317 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1318 			struct path *path, struct path *parent_path)
1319 {
1320 	LIST_HEAD(tree_list);
1321 	struct vfsmount *dest_mnt = path->mnt;
1322 	struct dentry *dest_dentry = path->dentry;
1323 	struct vfsmount *child, *p;
1324 	int err;
1325 
1326 	if (IS_MNT_SHARED(dest_mnt)) {
1327 		err = invent_group_ids(source_mnt, true);
1328 		if (err)
1329 			goto out;
1330 	}
1331 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1332 	if (err)
1333 		goto out_cleanup_ids;
1334 
1335 	if (IS_MNT_SHARED(dest_mnt)) {
1336 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1337 			set_mnt_shared(p);
1338 	}
1339 
1340 	spin_lock(&vfsmount_lock);
1341 	if (parent_path) {
1342 		detach_mnt(source_mnt, parent_path);
1343 		attach_mnt(source_mnt, path);
1344 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1345 	} else {
1346 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1347 		commit_tree(source_mnt);
1348 	}
1349 
1350 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1351 		list_del_init(&child->mnt_hash);
1352 		commit_tree(child);
1353 	}
1354 	spin_unlock(&vfsmount_lock);
1355 	return 0;
1356 
1357  out_cleanup_ids:
1358 	if (IS_MNT_SHARED(dest_mnt))
1359 		cleanup_group_ids(source_mnt, NULL);
1360  out:
1361 	return err;
1362 }
1363 
1364 static int graft_tree(struct vfsmount *mnt, struct path *path)
1365 {
1366 	int err;
1367 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1368 		return -EINVAL;
1369 
1370 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1371 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1372 		return -ENOTDIR;
1373 
1374 	err = -ENOENT;
1375 	mutex_lock(&path->dentry->d_inode->i_mutex);
1376 	if (IS_DEADDIR(path->dentry->d_inode))
1377 		goto out_unlock;
1378 
1379 	err = security_sb_check_sb(mnt, path);
1380 	if (err)
1381 		goto out_unlock;
1382 
1383 	err = -ENOENT;
1384 	if (!d_unlinked(path->dentry))
1385 		err = attach_recursive_mnt(mnt, path, NULL);
1386 out_unlock:
1387 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1388 	if (!err)
1389 		security_sb_post_addmount(mnt, path);
1390 	return err;
1391 }
1392 
1393 /*
1394  * recursively change the type of the mountpoint.
1395  */
1396 static int do_change_type(struct path *path, int flag)
1397 {
1398 	struct vfsmount *m, *mnt = path->mnt;
1399 	int recurse = flag & MS_REC;
1400 	int type = flag & ~MS_REC;
1401 	int err = 0;
1402 
1403 	if (!capable(CAP_SYS_ADMIN))
1404 		return -EPERM;
1405 
1406 	if (path->dentry != path->mnt->mnt_root)
1407 		return -EINVAL;
1408 
1409 	down_write(&namespace_sem);
1410 	if (type == MS_SHARED) {
1411 		err = invent_group_ids(mnt, recurse);
1412 		if (err)
1413 			goto out_unlock;
1414 	}
1415 
1416 	spin_lock(&vfsmount_lock);
1417 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1418 		change_mnt_propagation(m, type);
1419 	spin_unlock(&vfsmount_lock);
1420 
1421  out_unlock:
1422 	up_write(&namespace_sem);
1423 	return err;
1424 }
1425 
1426 /*
1427  * do loopback mount.
1428  */
1429 static int do_loopback(struct path *path, char *old_name,
1430 				int recurse)
1431 {
1432 	struct path old_path;
1433 	struct vfsmount *mnt = NULL;
1434 	int err = mount_is_safe(path);
1435 	if (err)
1436 		return err;
1437 	if (!old_name || !*old_name)
1438 		return -EINVAL;
1439 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1440 	if (err)
1441 		return err;
1442 
1443 	down_write(&namespace_sem);
1444 	err = -EINVAL;
1445 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1446 		goto out;
1447 
1448 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1449 		goto out;
1450 
1451 	err = -ENOMEM;
1452 	if (recurse)
1453 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1454 	else
1455 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1456 
1457 	if (!mnt)
1458 		goto out;
1459 
1460 	err = graft_tree(mnt, path);
1461 	if (err) {
1462 		LIST_HEAD(umount_list);
1463 		spin_lock(&vfsmount_lock);
1464 		umount_tree(mnt, 0, &umount_list);
1465 		spin_unlock(&vfsmount_lock);
1466 		release_mounts(&umount_list);
1467 	}
1468 
1469 out:
1470 	up_write(&namespace_sem);
1471 	path_put(&old_path);
1472 	return err;
1473 }
1474 
1475 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1476 {
1477 	int error = 0;
1478 	int readonly_request = 0;
1479 
1480 	if (ms_flags & MS_RDONLY)
1481 		readonly_request = 1;
1482 	if (readonly_request == __mnt_is_readonly(mnt))
1483 		return 0;
1484 
1485 	if (readonly_request)
1486 		error = mnt_make_readonly(mnt);
1487 	else
1488 		__mnt_unmake_readonly(mnt);
1489 	return error;
1490 }
1491 
1492 /*
1493  * change filesystem flags. dir should be a physical root of filesystem.
1494  * If you've mounted a non-root directory somewhere and want to do remount
1495  * on it - tough luck.
1496  */
1497 static int do_remount(struct path *path, int flags, int mnt_flags,
1498 		      void *data)
1499 {
1500 	int err;
1501 	struct super_block *sb = path->mnt->mnt_sb;
1502 
1503 	if (!capable(CAP_SYS_ADMIN))
1504 		return -EPERM;
1505 
1506 	if (!check_mnt(path->mnt))
1507 		return -EINVAL;
1508 
1509 	if (path->dentry != path->mnt->mnt_root)
1510 		return -EINVAL;
1511 
1512 	down_write(&sb->s_umount);
1513 	if (flags & MS_BIND)
1514 		err = change_mount_flags(path->mnt, flags);
1515 	else
1516 		err = do_remount_sb(sb, flags, data, 0);
1517 	if (!err)
1518 		path->mnt->mnt_flags = mnt_flags;
1519 	up_write(&sb->s_umount);
1520 	if (!err) {
1521 		security_sb_post_remount(path->mnt, flags, data);
1522 
1523 		spin_lock(&vfsmount_lock);
1524 		touch_mnt_namespace(path->mnt->mnt_ns);
1525 		spin_unlock(&vfsmount_lock);
1526 	}
1527 	return err;
1528 }
1529 
1530 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1531 {
1532 	struct vfsmount *p;
1533 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1534 		if (IS_MNT_UNBINDABLE(p))
1535 			return 1;
1536 	}
1537 	return 0;
1538 }
1539 
1540 static int do_move_mount(struct path *path, char *old_name)
1541 {
1542 	struct path old_path, parent_path;
1543 	struct vfsmount *p;
1544 	int err = 0;
1545 	if (!capable(CAP_SYS_ADMIN))
1546 		return -EPERM;
1547 	if (!old_name || !*old_name)
1548 		return -EINVAL;
1549 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1550 	if (err)
1551 		return err;
1552 
1553 	down_write(&namespace_sem);
1554 	while (d_mountpoint(path->dentry) &&
1555 	       follow_down(path))
1556 		;
1557 	err = -EINVAL;
1558 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1559 		goto out;
1560 
1561 	err = -ENOENT;
1562 	mutex_lock(&path->dentry->d_inode->i_mutex);
1563 	if (IS_DEADDIR(path->dentry->d_inode))
1564 		goto out1;
1565 
1566 	if (d_unlinked(path->dentry))
1567 		goto out1;
1568 
1569 	err = -EINVAL;
1570 	if (old_path.dentry != old_path.mnt->mnt_root)
1571 		goto out1;
1572 
1573 	if (old_path.mnt == old_path.mnt->mnt_parent)
1574 		goto out1;
1575 
1576 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1577 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1578 		goto out1;
1579 	/*
1580 	 * Don't move a mount residing in a shared parent.
1581 	 */
1582 	if (old_path.mnt->mnt_parent &&
1583 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1584 		goto out1;
1585 	/*
1586 	 * Don't move a mount tree containing unbindable mounts to a destination
1587 	 * mount which is shared.
1588 	 */
1589 	if (IS_MNT_SHARED(path->mnt) &&
1590 	    tree_contains_unbindable(old_path.mnt))
1591 		goto out1;
1592 	err = -ELOOP;
1593 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1594 		if (p == old_path.mnt)
1595 			goto out1;
1596 
1597 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1598 	if (err)
1599 		goto out1;
1600 
1601 	/* if the mount is moved, it should no longer be expire
1602 	 * automatically */
1603 	list_del_init(&old_path.mnt->mnt_expire);
1604 out1:
1605 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1606 out:
1607 	up_write(&namespace_sem);
1608 	if (!err)
1609 		path_put(&parent_path);
1610 	path_put(&old_path);
1611 	return err;
1612 }
1613 
1614 /*
1615  * create a new mount for userspace and request it to be added into the
1616  * namespace's tree
1617  */
1618 static int do_new_mount(struct path *path, char *type, int flags,
1619 			int mnt_flags, char *name, void *data)
1620 {
1621 	struct vfsmount *mnt;
1622 
1623 	if (!type || !memchr(type, 0, PAGE_SIZE))
1624 		return -EINVAL;
1625 
1626 	/* we need capabilities... */
1627 	if (!capable(CAP_SYS_ADMIN))
1628 		return -EPERM;
1629 
1630 	lock_kernel();
1631 	mnt = do_kern_mount(type, flags, name, data);
1632 	unlock_kernel();
1633 	if (IS_ERR(mnt))
1634 		return PTR_ERR(mnt);
1635 
1636 	return do_add_mount(mnt, path, mnt_flags, NULL);
1637 }
1638 
1639 /*
1640  * add a mount into a namespace's mount tree
1641  * - provide the option of adding the new mount to an expiration list
1642  */
1643 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1644 		 int mnt_flags, struct list_head *fslist)
1645 {
1646 	int err;
1647 
1648 	down_write(&namespace_sem);
1649 	/* Something was mounted here while we slept */
1650 	while (d_mountpoint(path->dentry) &&
1651 	       follow_down(path))
1652 		;
1653 	err = -EINVAL;
1654 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1655 		goto unlock;
1656 
1657 	/* Refuse the same filesystem on the same mount point */
1658 	err = -EBUSY;
1659 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1660 	    path->mnt->mnt_root == path->dentry)
1661 		goto unlock;
1662 
1663 	err = -EINVAL;
1664 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1665 		goto unlock;
1666 
1667 	newmnt->mnt_flags = mnt_flags;
1668 	if ((err = graft_tree(newmnt, path)))
1669 		goto unlock;
1670 
1671 	if (fslist) /* add to the specified expiration list */
1672 		list_add_tail(&newmnt->mnt_expire, fslist);
1673 
1674 	up_write(&namespace_sem);
1675 	return 0;
1676 
1677 unlock:
1678 	up_write(&namespace_sem);
1679 	mntput(newmnt);
1680 	return err;
1681 }
1682 
1683 EXPORT_SYMBOL_GPL(do_add_mount);
1684 
1685 /*
1686  * process a list of expirable mountpoints with the intent of discarding any
1687  * mountpoints that aren't in use and haven't been touched since last we came
1688  * here
1689  */
1690 void mark_mounts_for_expiry(struct list_head *mounts)
1691 {
1692 	struct vfsmount *mnt, *next;
1693 	LIST_HEAD(graveyard);
1694 	LIST_HEAD(umounts);
1695 
1696 	if (list_empty(mounts))
1697 		return;
1698 
1699 	down_write(&namespace_sem);
1700 	spin_lock(&vfsmount_lock);
1701 
1702 	/* extract from the expiration list every vfsmount that matches the
1703 	 * following criteria:
1704 	 * - only referenced by its parent vfsmount
1705 	 * - still marked for expiry (marked on the last call here; marks are
1706 	 *   cleared by mntput())
1707 	 */
1708 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1709 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1710 			propagate_mount_busy(mnt, 1))
1711 			continue;
1712 		list_move(&mnt->mnt_expire, &graveyard);
1713 	}
1714 	while (!list_empty(&graveyard)) {
1715 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1716 		touch_mnt_namespace(mnt->mnt_ns);
1717 		umount_tree(mnt, 1, &umounts);
1718 	}
1719 	spin_unlock(&vfsmount_lock);
1720 	up_write(&namespace_sem);
1721 
1722 	release_mounts(&umounts);
1723 }
1724 
1725 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1726 
1727 /*
1728  * Ripoff of 'select_parent()'
1729  *
1730  * search the list of submounts for a given mountpoint, and move any
1731  * shrinkable submounts to the 'graveyard' list.
1732  */
1733 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1734 {
1735 	struct vfsmount *this_parent = parent;
1736 	struct list_head *next;
1737 	int found = 0;
1738 
1739 repeat:
1740 	next = this_parent->mnt_mounts.next;
1741 resume:
1742 	while (next != &this_parent->mnt_mounts) {
1743 		struct list_head *tmp = next;
1744 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1745 
1746 		next = tmp->next;
1747 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1748 			continue;
1749 		/*
1750 		 * Descend a level if the d_mounts list is non-empty.
1751 		 */
1752 		if (!list_empty(&mnt->mnt_mounts)) {
1753 			this_parent = mnt;
1754 			goto repeat;
1755 		}
1756 
1757 		if (!propagate_mount_busy(mnt, 1)) {
1758 			list_move_tail(&mnt->mnt_expire, graveyard);
1759 			found++;
1760 		}
1761 	}
1762 	/*
1763 	 * All done at this level ... ascend and resume the search
1764 	 */
1765 	if (this_parent != parent) {
1766 		next = this_parent->mnt_child.next;
1767 		this_parent = this_parent->mnt_parent;
1768 		goto resume;
1769 	}
1770 	return found;
1771 }
1772 
1773 /*
1774  * process a list of expirable mountpoints with the intent of discarding any
1775  * submounts of a specific parent mountpoint
1776  */
1777 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1778 {
1779 	LIST_HEAD(graveyard);
1780 	struct vfsmount *m;
1781 
1782 	/* extract submounts of 'mountpoint' from the expiration list */
1783 	while (select_submounts(mnt, &graveyard)) {
1784 		while (!list_empty(&graveyard)) {
1785 			m = list_first_entry(&graveyard, struct vfsmount,
1786 						mnt_expire);
1787 			touch_mnt_namespace(m->mnt_ns);
1788 			umount_tree(m, 1, umounts);
1789 		}
1790 	}
1791 }
1792 
1793 /*
1794  * Some copy_from_user() implementations do not return the exact number of
1795  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1796  * Note that this function differs from copy_from_user() in that it will oops
1797  * on bad values of `to', rather than returning a short copy.
1798  */
1799 static long exact_copy_from_user(void *to, const void __user * from,
1800 				 unsigned long n)
1801 {
1802 	char *t = to;
1803 	const char __user *f = from;
1804 	char c;
1805 
1806 	if (!access_ok(VERIFY_READ, from, n))
1807 		return n;
1808 
1809 	while (n) {
1810 		if (__get_user(c, f)) {
1811 			memset(t, 0, n);
1812 			break;
1813 		}
1814 		*t++ = c;
1815 		f++;
1816 		n--;
1817 	}
1818 	return n;
1819 }
1820 
1821 int copy_mount_options(const void __user * data, unsigned long *where)
1822 {
1823 	int i;
1824 	unsigned long page;
1825 	unsigned long size;
1826 
1827 	*where = 0;
1828 	if (!data)
1829 		return 0;
1830 
1831 	if (!(page = __get_free_page(GFP_KERNEL)))
1832 		return -ENOMEM;
1833 
1834 	/* We only care that *some* data at the address the user
1835 	 * gave us is valid.  Just in case, we'll zero
1836 	 * the remainder of the page.
1837 	 */
1838 	/* copy_from_user cannot cross TASK_SIZE ! */
1839 	size = TASK_SIZE - (unsigned long)data;
1840 	if (size > PAGE_SIZE)
1841 		size = PAGE_SIZE;
1842 
1843 	i = size - exact_copy_from_user((void *)page, data, size);
1844 	if (!i) {
1845 		free_page(page);
1846 		return -EFAULT;
1847 	}
1848 	if (i != PAGE_SIZE)
1849 		memset((char *)page + i, 0, PAGE_SIZE - i);
1850 	*where = page;
1851 	return 0;
1852 }
1853 
1854 /*
1855  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1856  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1857  *
1858  * data is a (void *) that can point to any structure up to
1859  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1860  * information (or be NULL).
1861  *
1862  * Pre-0.97 versions of mount() didn't have a flags word.
1863  * When the flags word was introduced its top half was required
1864  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1865  * Therefore, if this magic number is present, it carries no information
1866  * and must be discarded.
1867  */
1868 long do_mount(char *dev_name, char *dir_name, char *type_page,
1869 		  unsigned long flags, void *data_page)
1870 {
1871 	struct path path;
1872 	int retval = 0;
1873 	int mnt_flags = 0;
1874 
1875 	/* Discard magic */
1876 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1877 		flags &= ~MS_MGC_MSK;
1878 
1879 	/* Basic sanity checks */
1880 
1881 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1882 		return -EINVAL;
1883 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1884 		return -EINVAL;
1885 
1886 	if (data_page)
1887 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1888 
1889 	/* Default to relatime unless overriden */
1890 	if (!(flags & MS_NOATIME))
1891 		mnt_flags |= MNT_RELATIME;
1892 
1893 	/* Separate the per-mountpoint flags */
1894 	if (flags & MS_NOSUID)
1895 		mnt_flags |= MNT_NOSUID;
1896 	if (flags & MS_NODEV)
1897 		mnt_flags |= MNT_NODEV;
1898 	if (flags & MS_NOEXEC)
1899 		mnt_flags |= MNT_NOEXEC;
1900 	if (flags & MS_NOATIME)
1901 		mnt_flags |= MNT_NOATIME;
1902 	if (flags & MS_NODIRATIME)
1903 		mnt_flags |= MNT_NODIRATIME;
1904 	if (flags & MS_STRICTATIME)
1905 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1906 	if (flags & MS_RDONLY)
1907 		mnt_flags |= MNT_READONLY;
1908 
1909 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1910 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1911 		   MS_STRICTATIME);
1912 
1913 	/* ... and get the mountpoint */
1914 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1915 	if (retval)
1916 		return retval;
1917 
1918 	retval = security_sb_mount(dev_name, &path,
1919 				   type_page, flags, data_page);
1920 	if (retval)
1921 		goto dput_out;
1922 
1923 	if (flags & MS_REMOUNT)
1924 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1925 				    data_page);
1926 	else if (flags & MS_BIND)
1927 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1928 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1929 		retval = do_change_type(&path, flags);
1930 	else if (flags & MS_MOVE)
1931 		retval = do_move_mount(&path, dev_name);
1932 	else
1933 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
1934 				      dev_name, data_page);
1935 dput_out:
1936 	path_put(&path);
1937 	return retval;
1938 }
1939 
1940 /*
1941  * Allocate a new namespace structure and populate it with contents
1942  * copied from the namespace of the passed in task structure.
1943  */
1944 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1945 		struct fs_struct *fs)
1946 {
1947 	struct mnt_namespace *new_ns;
1948 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1949 	struct vfsmount *p, *q;
1950 
1951 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1952 	if (!new_ns)
1953 		return ERR_PTR(-ENOMEM);
1954 
1955 	atomic_set(&new_ns->count, 1);
1956 	INIT_LIST_HEAD(&new_ns->list);
1957 	init_waitqueue_head(&new_ns->poll);
1958 	new_ns->event = 0;
1959 
1960 	down_write(&namespace_sem);
1961 	/* First pass: copy the tree topology */
1962 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1963 					CL_COPY_ALL | CL_EXPIRE);
1964 	if (!new_ns->root) {
1965 		up_write(&namespace_sem);
1966 		kfree(new_ns);
1967 		return ERR_PTR(-ENOMEM);
1968 	}
1969 	spin_lock(&vfsmount_lock);
1970 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1971 	spin_unlock(&vfsmount_lock);
1972 
1973 	/*
1974 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1975 	 * as belonging to new namespace.  We have already acquired a private
1976 	 * fs_struct, so tsk->fs->lock is not needed.
1977 	 */
1978 	p = mnt_ns->root;
1979 	q = new_ns->root;
1980 	while (p) {
1981 		q->mnt_ns = new_ns;
1982 		if (fs) {
1983 			if (p == fs->root.mnt) {
1984 				rootmnt = p;
1985 				fs->root.mnt = mntget(q);
1986 			}
1987 			if (p == fs->pwd.mnt) {
1988 				pwdmnt = p;
1989 				fs->pwd.mnt = mntget(q);
1990 			}
1991 		}
1992 		p = next_mnt(p, mnt_ns->root);
1993 		q = next_mnt(q, new_ns->root);
1994 	}
1995 	up_write(&namespace_sem);
1996 
1997 	if (rootmnt)
1998 		mntput(rootmnt);
1999 	if (pwdmnt)
2000 		mntput(pwdmnt);
2001 
2002 	return new_ns;
2003 }
2004 
2005 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2006 		struct fs_struct *new_fs)
2007 {
2008 	struct mnt_namespace *new_ns;
2009 
2010 	BUG_ON(!ns);
2011 	get_mnt_ns(ns);
2012 
2013 	if (!(flags & CLONE_NEWNS))
2014 		return ns;
2015 
2016 	new_ns = dup_mnt_ns(ns, new_fs);
2017 
2018 	put_mnt_ns(ns);
2019 	return new_ns;
2020 }
2021 
2022 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2023 		char __user *, type, unsigned long, flags, void __user *, data)
2024 {
2025 	int retval;
2026 	unsigned long data_page;
2027 	unsigned long type_page;
2028 	unsigned long dev_page;
2029 	char *dir_page;
2030 
2031 	retval = copy_mount_options(type, &type_page);
2032 	if (retval < 0)
2033 		return retval;
2034 
2035 	dir_page = getname(dir_name);
2036 	retval = PTR_ERR(dir_page);
2037 	if (IS_ERR(dir_page))
2038 		goto out1;
2039 
2040 	retval = copy_mount_options(dev_name, &dev_page);
2041 	if (retval < 0)
2042 		goto out2;
2043 
2044 	retval = copy_mount_options(data, &data_page);
2045 	if (retval < 0)
2046 		goto out3;
2047 
2048 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2049 			  flags, (void *)data_page);
2050 	free_page(data_page);
2051 
2052 out3:
2053 	free_page(dev_page);
2054 out2:
2055 	putname(dir_page);
2056 out1:
2057 	free_page(type_page);
2058 	return retval;
2059 }
2060 
2061 /*
2062  * pivot_root Semantics:
2063  * Moves the root file system of the current process to the directory put_old,
2064  * makes new_root as the new root file system of the current process, and sets
2065  * root/cwd of all processes which had them on the current root to new_root.
2066  *
2067  * Restrictions:
2068  * The new_root and put_old must be directories, and  must not be on the
2069  * same file  system as the current process root. The put_old  must  be
2070  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2071  * pointed to by put_old must yield the same directory as new_root. No other
2072  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2073  *
2074  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2075  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2076  * in this situation.
2077  *
2078  * Notes:
2079  *  - we don't move root/cwd if they are not at the root (reason: if something
2080  *    cared enough to change them, it's probably wrong to force them elsewhere)
2081  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2082  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2083  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2084  *    first.
2085  */
2086 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2087 		const char __user *, put_old)
2088 {
2089 	struct vfsmount *tmp;
2090 	struct path new, old, parent_path, root_parent, root;
2091 	int error;
2092 
2093 	if (!capable(CAP_SYS_ADMIN))
2094 		return -EPERM;
2095 
2096 	error = user_path_dir(new_root, &new);
2097 	if (error)
2098 		goto out0;
2099 	error = -EINVAL;
2100 	if (!check_mnt(new.mnt))
2101 		goto out1;
2102 
2103 	error = user_path_dir(put_old, &old);
2104 	if (error)
2105 		goto out1;
2106 
2107 	error = security_sb_pivotroot(&old, &new);
2108 	if (error) {
2109 		path_put(&old);
2110 		goto out1;
2111 	}
2112 
2113 	read_lock(&current->fs->lock);
2114 	root = current->fs->root;
2115 	path_get(&current->fs->root);
2116 	read_unlock(&current->fs->lock);
2117 	down_write(&namespace_sem);
2118 	mutex_lock(&old.dentry->d_inode->i_mutex);
2119 	error = -EINVAL;
2120 	if (IS_MNT_SHARED(old.mnt) ||
2121 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2122 		IS_MNT_SHARED(root.mnt->mnt_parent))
2123 		goto out2;
2124 	if (!check_mnt(root.mnt))
2125 		goto out2;
2126 	error = -ENOENT;
2127 	if (IS_DEADDIR(new.dentry->d_inode))
2128 		goto out2;
2129 	if (d_unlinked(new.dentry))
2130 		goto out2;
2131 	if (d_unlinked(old.dentry))
2132 		goto out2;
2133 	error = -EBUSY;
2134 	if (new.mnt == root.mnt ||
2135 	    old.mnt == root.mnt)
2136 		goto out2; /* loop, on the same file system  */
2137 	error = -EINVAL;
2138 	if (root.mnt->mnt_root != root.dentry)
2139 		goto out2; /* not a mountpoint */
2140 	if (root.mnt->mnt_parent == root.mnt)
2141 		goto out2; /* not attached */
2142 	if (new.mnt->mnt_root != new.dentry)
2143 		goto out2; /* not a mountpoint */
2144 	if (new.mnt->mnt_parent == new.mnt)
2145 		goto out2; /* not attached */
2146 	/* make sure we can reach put_old from new_root */
2147 	tmp = old.mnt;
2148 	spin_lock(&vfsmount_lock);
2149 	if (tmp != new.mnt) {
2150 		for (;;) {
2151 			if (tmp->mnt_parent == tmp)
2152 				goto out3; /* already mounted on put_old */
2153 			if (tmp->mnt_parent == new.mnt)
2154 				break;
2155 			tmp = tmp->mnt_parent;
2156 		}
2157 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2158 			goto out3;
2159 	} else if (!is_subdir(old.dentry, new.dentry))
2160 		goto out3;
2161 	detach_mnt(new.mnt, &parent_path);
2162 	detach_mnt(root.mnt, &root_parent);
2163 	/* mount old root on put_old */
2164 	attach_mnt(root.mnt, &old);
2165 	/* mount new_root on / */
2166 	attach_mnt(new.mnt, &root_parent);
2167 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2168 	spin_unlock(&vfsmount_lock);
2169 	chroot_fs_refs(&root, &new);
2170 	security_sb_post_pivotroot(&root, &new);
2171 	error = 0;
2172 	path_put(&root_parent);
2173 	path_put(&parent_path);
2174 out2:
2175 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2176 	up_write(&namespace_sem);
2177 	path_put(&root);
2178 	path_put(&old);
2179 out1:
2180 	path_put(&new);
2181 out0:
2182 	return error;
2183 out3:
2184 	spin_unlock(&vfsmount_lock);
2185 	goto out2;
2186 }
2187 
2188 static void __init init_mount_tree(void)
2189 {
2190 	struct vfsmount *mnt;
2191 	struct mnt_namespace *ns;
2192 	struct path root;
2193 
2194 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2195 	if (IS_ERR(mnt))
2196 		panic("Can't create rootfs");
2197 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2198 	if (!ns)
2199 		panic("Can't allocate initial namespace");
2200 	atomic_set(&ns->count, 1);
2201 	INIT_LIST_HEAD(&ns->list);
2202 	init_waitqueue_head(&ns->poll);
2203 	ns->event = 0;
2204 	list_add(&mnt->mnt_list, &ns->list);
2205 	ns->root = mnt;
2206 	mnt->mnt_ns = ns;
2207 
2208 	init_task.nsproxy->mnt_ns = ns;
2209 	get_mnt_ns(ns);
2210 
2211 	root.mnt = ns->root;
2212 	root.dentry = ns->root->mnt_root;
2213 
2214 	set_fs_pwd(current->fs, &root);
2215 	set_fs_root(current->fs, &root);
2216 }
2217 
2218 void __init mnt_init(void)
2219 {
2220 	unsigned u;
2221 	int err;
2222 
2223 	init_rwsem(&namespace_sem);
2224 
2225 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2226 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2227 
2228 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2229 
2230 	if (!mount_hashtable)
2231 		panic("Failed to allocate mount hash table\n");
2232 
2233 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2234 
2235 	for (u = 0; u < HASH_SIZE; u++)
2236 		INIT_LIST_HEAD(&mount_hashtable[u]);
2237 
2238 	err = sysfs_init();
2239 	if (err)
2240 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2241 			__func__, err);
2242 	fs_kobj = kobject_create_and_add("fs", NULL);
2243 	if (!fs_kobj)
2244 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2245 	init_rootfs();
2246 	init_mount_tree();
2247 }
2248 
2249 void __put_mnt_ns(struct mnt_namespace *ns)
2250 {
2251 	struct vfsmount *root = ns->root;
2252 	LIST_HEAD(umount_list);
2253 	ns->root = NULL;
2254 	spin_unlock(&vfsmount_lock);
2255 	down_write(&namespace_sem);
2256 	spin_lock(&vfsmount_lock);
2257 	umount_tree(root, 0, &umount_list);
2258 	spin_unlock(&vfsmount_lock);
2259 	up_write(&namespace_sem);
2260 	release_mounts(&umount_list);
2261 	kfree(ns);
2262 }
2263