1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 static unsigned int m_hash_mask __read_mostly; 31 static unsigned int m_hash_shift __read_mostly; 32 static unsigned int mp_hash_mask __read_mostly; 33 static unsigned int mp_hash_shift __read_mostly; 34 35 static __initdata unsigned long mhash_entries; 36 static int __init set_mhash_entries(char *str) 37 { 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42 } 43 __setup("mhash_entries=", set_mhash_entries); 44 45 static __initdata unsigned long mphash_entries; 46 static int __init set_mphash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mphash_entries=", set_mphash_entries); 54 55 static u64 event; 56 static DEFINE_IDA(mnt_id_ida); 57 static DEFINE_IDA(mnt_group_ida); 58 static DEFINE_SPINLOCK(mnt_id_lock); 59 static int mnt_id_start = 0; 60 static int mnt_group_start = 1; 61 62 static struct hlist_head *mount_hashtable __read_mostly; 63 static struct hlist_head *mountpoint_hashtable __read_mostly; 64 static struct kmem_cache *mnt_cache __read_mostly; 65 static DECLARE_RWSEM(namespace_sem); 66 67 /* /sys/fs */ 68 struct kobject *fs_kobj; 69 EXPORT_SYMBOL_GPL(fs_kobj); 70 71 /* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82 { 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87 } 88 89 static inline struct hlist_head *mp_hash(struct dentry *dentry) 90 { 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94 } 95 96 /* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static void drop_mountpoint(struct fs_pin *p) 194 { 195 struct mount *m = container_of(p, struct mount, mnt_umount); 196 dput(m->mnt_ex_mountpoint); 197 pin_remove(p); 198 mntput(&m->mnt); 199 } 200 201 static struct mount *alloc_vfsmnt(const char *name) 202 { 203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 204 if (mnt) { 205 int err; 206 207 err = mnt_alloc_id(mnt); 208 if (err) 209 goto out_free_cache; 210 211 if (name) { 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 213 if (!mnt->mnt_devname) 214 goto out_free_id; 215 } 216 217 #ifdef CONFIG_SMP 218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 219 if (!mnt->mnt_pcp) 220 goto out_free_devname; 221 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 223 #else 224 mnt->mnt_count = 1; 225 mnt->mnt_writers = 0; 226 #endif 227 228 INIT_HLIST_NODE(&mnt->mnt_hash); 229 INIT_LIST_HEAD(&mnt->mnt_child); 230 INIT_LIST_HEAD(&mnt->mnt_mounts); 231 INIT_LIST_HEAD(&mnt->mnt_list); 232 INIT_LIST_HEAD(&mnt->mnt_expire); 233 INIT_LIST_HEAD(&mnt->mnt_share); 234 INIT_LIST_HEAD(&mnt->mnt_slave_list); 235 INIT_LIST_HEAD(&mnt->mnt_slave); 236 INIT_HLIST_NODE(&mnt->mnt_mp_list); 237 #ifdef CONFIG_FSNOTIFY 238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 239 #endif 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (mnt->mnt_sb->s_flags & MS_RDONLY) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 */ 440 int mnt_want_write_file(struct file *file) 441 { 442 int ret; 443 444 sb_start_write(file->f_path.mnt->mnt_sb); 445 ret = __mnt_want_write_file(file); 446 if (ret) 447 sb_end_write(file->f_path.mnt->mnt_sb); 448 return ret; 449 } 450 EXPORT_SYMBOL_GPL(mnt_want_write_file); 451 452 /** 453 * __mnt_drop_write - give up write access to a mount 454 * @mnt: the mount on which to give up write access 455 * 456 * Tells the low-level filesystem that we are done 457 * performing writes to it. Must be matched with 458 * __mnt_want_write() call above. 459 */ 460 void __mnt_drop_write(struct vfsmount *mnt) 461 { 462 preempt_disable(); 463 mnt_dec_writers(real_mount(mnt)); 464 preempt_enable(); 465 } 466 467 /** 468 * mnt_drop_write - give up write access to a mount 469 * @mnt: the mount on which to give up write access 470 * 471 * Tells the low-level filesystem that we are done performing writes to it and 472 * also allows filesystem to be frozen again. Must be matched with 473 * mnt_want_write() call above. 474 */ 475 void mnt_drop_write(struct vfsmount *mnt) 476 { 477 __mnt_drop_write(mnt); 478 sb_end_write(mnt->mnt_sb); 479 } 480 EXPORT_SYMBOL_GPL(mnt_drop_write); 481 482 void __mnt_drop_write_file(struct file *file) 483 { 484 __mnt_drop_write(file->f_path.mnt); 485 } 486 487 void mnt_drop_write_file(struct file *file) 488 { 489 mnt_drop_write(file->f_path.mnt); 490 } 491 EXPORT_SYMBOL(mnt_drop_write_file); 492 493 static int mnt_make_readonly(struct mount *mnt) 494 { 495 int ret = 0; 496 497 lock_mount_hash(); 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 499 /* 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 501 * should be visible before we do. 502 */ 503 smp_mb(); 504 505 /* 506 * With writers on hold, if this value is zero, then there are 507 * definitely no active writers (although held writers may subsequently 508 * increment the count, they'll have to wait, and decrement it after 509 * seeing MNT_READONLY). 510 * 511 * It is OK to have counter incremented on one CPU and decremented on 512 * another: the sum will add up correctly. The danger would be when we 513 * sum up each counter, if we read a counter before it is incremented, 514 * but then read another CPU's count which it has been subsequently 515 * decremented from -- we would see more decrements than we should. 516 * MNT_WRITE_HOLD protects against this scenario, because 517 * mnt_want_write first increments count, then smp_mb, then spins on 518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 519 * we're counting up here. 520 */ 521 if (mnt_get_writers(mnt) > 0) 522 ret = -EBUSY; 523 else 524 mnt->mnt.mnt_flags |= MNT_READONLY; 525 /* 526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 527 * that become unheld will see MNT_READONLY. 528 */ 529 smp_wmb(); 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 531 unlock_mount_hash(); 532 return ret; 533 } 534 535 static void __mnt_unmake_readonly(struct mount *mnt) 536 { 537 lock_mount_hash(); 538 mnt->mnt.mnt_flags &= ~MNT_READONLY; 539 unlock_mount_hash(); 540 } 541 542 int sb_prepare_remount_readonly(struct super_block *sb) 543 { 544 struct mount *mnt; 545 int err = 0; 546 547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 548 if (atomic_long_read(&sb->s_remove_count)) 549 return -EBUSY; 550 551 lock_mount_hash(); 552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 555 smp_mb(); 556 if (mnt_get_writers(mnt) > 0) { 557 err = -EBUSY; 558 break; 559 } 560 } 561 } 562 if (!err && atomic_long_read(&sb->s_remove_count)) 563 err = -EBUSY; 564 565 if (!err) { 566 sb->s_readonly_remount = 1; 567 smp_wmb(); 568 } 569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 572 } 573 unlock_mount_hash(); 574 575 return err; 576 } 577 578 static void free_vfsmnt(struct mount *mnt) 579 { 580 kfree_const(mnt->mnt_devname); 581 #ifdef CONFIG_SMP 582 free_percpu(mnt->mnt_pcp); 583 #endif 584 kmem_cache_free(mnt_cache, mnt); 585 } 586 587 static void delayed_free_vfsmnt(struct rcu_head *head) 588 { 589 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 590 } 591 592 /* call under rcu_read_lock */ 593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 594 { 595 struct mount *mnt; 596 if (read_seqretry(&mount_lock, seq)) 597 return false; 598 if (bastard == NULL) 599 return true; 600 mnt = real_mount(bastard); 601 mnt_add_count(mnt, 1); 602 if (likely(!read_seqretry(&mount_lock, seq))) 603 return true; 604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 605 mnt_add_count(mnt, -1); 606 return false; 607 } 608 rcu_read_unlock(); 609 mntput(bastard); 610 rcu_read_lock(); 611 return false; 612 } 613 614 /* 615 * find the first mount at @dentry on vfsmount @mnt. 616 * call under rcu_read_lock() 617 */ 618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 619 { 620 struct hlist_head *head = m_hash(mnt, dentry); 621 struct mount *p; 622 623 hlist_for_each_entry_rcu(p, head, mnt_hash) 624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 625 return p; 626 return NULL; 627 } 628 629 /* 630 * find the last mount at @dentry on vfsmount @mnt. 631 * mount_lock must be held. 632 */ 633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 634 { 635 struct mount *p, *res; 636 res = p = __lookup_mnt(mnt, dentry); 637 if (!p) 638 goto out; 639 hlist_for_each_entry_continue(p, mnt_hash) { 640 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 641 break; 642 res = p; 643 } 644 out: 645 return res; 646 } 647 648 /* 649 * lookup_mnt - Return the first child mount mounted at path 650 * 651 * "First" means first mounted chronologically. If you create the 652 * following mounts: 653 * 654 * mount /dev/sda1 /mnt 655 * mount /dev/sda2 /mnt 656 * mount /dev/sda3 /mnt 657 * 658 * Then lookup_mnt() on the base /mnt dentry in the root mount will 659 * return successively the root dentry and vfsmount of /dev/sda1, then 660 * /dev/sda2, then /dev/sda3, then NULL. 661 * 662 * lookup_mnt takes a reference to the found vfsmount. 663 */ 664 struct vfsmount *lookup_mnt(struct path *path) 665 { 666 struct mount *child_mnt; 667 struct vfsmount *m; 668 unsigned seq; 669 670 rcu_read_lock(); 671 do { 672 seq = read_seqbegin(&mount_lock); 673 child_mnt = __lookup_mnt(path->mnt, path->dentry); 674 m = child_mnt ? &child_mnt->mnt : NULL; 675 } while (!legitimize_mnt(m, seq)); 676 rcu_read_unlock(); 677 return m; 678 } 679 680 /* 681 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 682 * current mount namespace. 683 * 684 * The common case is dentries are not mountpoints at all and that 685 * test is handled inline. For the slow case when we are actually 686 * dealing with a mountpoint of some kind, walk through all of the 687 * mounts in the current mount namespace and test to see if the dentry 688 * is a mountpoint. 689 * 690 * The mount_hashtable is not usable in the context because we 691 * need to identify all mounts that may be in the current mount 692 * namespace not just a mount that happens to have some specified 693 * parent mount. 694 */ 695 bool __is_local_mountpoint(struct dentry *dentry) 696 { 697 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 698 struct mount *mnt; 699 bool is_covered = false; 700 701 if (!d_mountpoint(dentry)) 702 goto out; 703 704 down_read(&namespace_sem); 705 list_for_each_entry(mnt, &ns->list, mnt_list) { 706 is_covered = (mnt->mnt_mountpoint == dentry); 707 if (is_covered) 708 break; 709 } 710 up_read(&namespace_sem); 711 out: 712 return is_covered; 713 } 714 715 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 716 { 717 struct hlist_head *chain = mp_hash(dentry); 718 struct mountpoint *mp; 719 720 hlist_for_each_entry(mp, chain, m_hash) { 721 if (mp->m_dentry == dentry) { 722 /* might be worth a WARN_ON() */ 723 if (d_unlinked(dentry)) 724 return ERR_PTR(-ENOENT); 725 mp->m_count++; 726 return mp; 727 } 728 } 729 return NULL; 730 } 731 732 static struct mountpoint *new_mountpoint(struct dentry *dentry) 733 { 734 struct hlist_head *chain = mp_hash(dentry); 735 struct mountpoint *mp; 736 int ret; 737 738 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 739 if (!mp) 740 return ERR_PTR(-ENOMEM); 741 742 ret = d_set_mounted(dentry); 743 if (ret) { 744 kfree(mp); 745 return ERR_PTR(ret); 746 } 747 748 mp->m_dentry = dentry; 749 mp->m_count = 1; 750 hlist_add_head(&mp->m_hash, chain); 751 INIT_HLIST_HEAD(&mp->m_list); 752 return mp; 753 } 754 755 static void put_mountpoint(struct mountpoint *mp) 756 { 757 if (!--mp->m_count) { 758 struct dentry *dentry = mp->m_dentry; 759 BUG_ON(!hlist_empty(&mp->m_list)); 760 spin_lock(&dentry->d_lock); 761 dentry->d_flags &= ~DCACHE_MOUNTED; 762 spin_unlock(&dentry->d_lock); 763 hlist_del(&mp->m_hash); 764 kfree(mp); 765 } 766 } 767 768 static inline int check_mnt(struct mount *mnt) 769 { 770 return mnt->mnt_ns == current->nsproxy->mnt_ns; 771 } 772 773 /* 774 * vfsmount lock must be held for write 775 */ 776 static void touch_mnt_namespace(struct mnt_namespace *ns) 777 { 778 if (ns) { 779 ns->event = ++event; 780 wake_up_interruptible(&ns->poll); 781 } 782 } 783 784 /* 785 * vfsmount lock must be held for write 786 */ 787 static void __touch_mnt_namespace(struct mnt_namespace *ns) 788 { 789 if (ns && ns->event != event) { 790 ns->event = event; 791 wake_up_interruptible(&ns->poll); 792 } 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void detach_mnt(struct mount *mnt, struct path *old_path) 799 { 800 old_path->dentry = mnt->mnt_mountpoint; 801 old_path->mnt = &mnt->mnt_parent->mnt; 802 mnt->mnt_parent = mnt; 803 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 804 list_del_init(&mnt->mnt_child); 805 hlist_del_init_rcu(&mnt->mnt_hash); 806 hlist_del_init(&mnt->mnt_mp_list); 807 put_mountpoint(mnt->mnt_mp); 808 mnt->mnt_mp = NULL; 809 } 810 811 /* 812 * vfsmount lock must be held for write 813 */ 814 void mnt_set_mountpoint(struct mount *mnt, 815 struct mountpoint *mp, 816 struct mount *child_mnt) 817 { 818 mp->m_count++; 819 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 820 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 821 child_mnt->mnt_parent = mnt; 822 child_mnt->mnt_mp = mp; 823 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 824 } 825 826 /* 827 * vfsmount lock must be held for write 828 */ 829 static void attach_mnt(struct mount *mnt, 830 struct mount *parent, 831 struct mountpoint *mp) 832 { 833 mnt_set_mountpoint(parent, mp, mnt); 834 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 835 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 836 } 837 838 static void attach_shadowed(struct mount *mnt, 839 struct mount *parent, 840 struct mount *shadows) 841 { 842 if (shadows) { 843 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 844 list_add(&mnt->mnt_child, &shadows->mnt_child); 845 } else { 846 hlist_add_head_rcu(&mnt->mnt_hash, 847 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 849 } 850 } 851 852 /* 853 * vfsmount lock must be held for write 854 */ 855 static void commit_tree(struct mount *mnt, struct mount *shadows) 856 { 857 struct mount *parent = mnt->mnt_parent; 858 struct mount *m; 859 LIST_HEAD(head); 860 struct mnt_namespace *n = parent->mnt_ns; 861 862 BUG_ON(parent == mnt); 863 864 list_add_tail(&head, &mnt->mnt_list); 865 list_for_each_entry(m, &head, mnt_list) 866 m->mnt_ns = n; 867 868 list_splice(&head, n->list.prev); 869 870 attach_shadowed(mnt, parent, shadows); 871 touch_mnt_namespace(n); 872 } 873 874 static struct mount *next_mnt(struct mount *p, struct mount *root) 875 { 876 struct list_head *next = p->mnt_mounts.next; 877 if (next == &p->mnt_mounts) { 878 while (1) { 879 if (p == root) 880 return NULL; 881 next = p->mnt_child.next; 882 if (next != &p->mnt_parent->mnt_mounts) 883 break; 884 p = p->mnt_parent; 885 } 886 } 887 return list_entry(next, struct mount, mnt_child); 888 } 889 890 static struct mount *skip_mnt_tree(struct mount *p) 891 { 892 struct list_head *prev = p->mnt_mounts.prev; 893 while (prev != &p->mnt_mounts) { 894 p = list_entry(prev, struct mount, mnt_child); 895 prev = p->mnt_mounts.prev; 896 } 897 return p; 898 } 899 900 struct vfsmount * 901 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 902 { 903 struct mount *mnt; 904 struct dentry *root; 905 906 if (!type) 907 return ERR_PTR(-ENODEV); 908 909 mnt = alloc_vfsmnt(name); 910 if (!mnt) 911 return ERR_PTR(-ENOMEM); 912 913 if (flags & MS_KERNMOUNT) 914 mnt->mnt.mnt_flags = MNT_INTERNAL; 915 916 root = mount_fs(type, flags, name, data); 917 if (IS_ERR(root)) { 918 mnt_free_id(mnt); 919 free_vfsmnt(mnt); 920 return ERR_CAST(root); 921 } 922 923 mnt->mnt.mnt_root = root; 924 mnt->mnt.mnt_sb = root->d_sb; 925 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 926 mnt->mnt_parent = mnt; 927 lock_mount_hash(); 928 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 929 unlock_mount_hash(); 930 return &mnt->mnt; 931 } 932 EXPORT_SYMBOL_GPL(vfs_kern_mount); 933 934 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 935 int flag) 936 { 937 struct super_block *sb = old->mnt.mnt_sb; 938 struct mount *mnt; 939 int err; 940 941 mnt = alloc_vfsmnt(old->mnt_devname); 942 if (!mnt) 943 return ERR_PTR(-ENOMEM); 944 945 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 946 mnt->mnt_group_id = 0; /* not a peer of original */ 947 else 948 mnt->mnt_group_id = old->mnt_group_id; 949 950 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 951 err = mnt_alloc_group_id(mnt); 952 if (err) 953 goto out_free; 954 } 955 956 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 957 /* Don't allow unprivileged users to change mount flags */ 958 if (flag & CL_UNPRIVILEGED) { 959 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 960 961 if (mnt->mnt.mnt_flags & MNT_READONLY) 962 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 963 964 if (mnt->mnt.mnt_flags & MNT_NODEV) 965 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 966 967 if (mnt->mnt.mnt_flags & MNT_NOSUID) 968 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 969 970 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 971 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 972 } 973 974 /* Don't allow unprivileged users to reveal what is under a mount */ 975 if ((flag & CL_UNPRIVILEGED) && 976 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 977 mnt->mnt.mnt_flags |= MNT_LOCKED; 978 979 atomic_inc(&sb->s_active); 980 mnt->mnt.mnt_sb = sb; 981 mnt->mnt.mnt_root = dget(root); 982 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 983 mnt->mnt_parent = mnt; 984 lock_mount_hash(); 985 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 986 unlock_mount_hash(); 987 988 if ((flag & CL_SLAVE) || 989 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 990 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 991 mnt->mnt_master = old; 992 CLEAR_MNT_SHARED(mnt); 993 } else if (!(flag & CL_PRIVATE)) { 994 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 995 list_add(&mnt->mnt_share, &old->mnt_share); 996 if (IS_MNT_SLAVE(old)) 997 list_add(&mnt->mnt_slave, &old->mnt_slave); 998 mnt->mnt_master = old->mnt_master; 999 } 1000 if (flag & CL_MAKE_SHARED) 1001 set_mnt_shared(mnt); 1002 1003 /* stick the duplicate mount on the same expiry list 1004 * as the original if that was on one */ 1005 if (flag & CL_EXPIRE) { 1006 if (!list_empty(&old->mnt_expire)) 1007 list_add(&mnt->mnt_expire, &old->mnt_expire); 1008 } 1009 1010 return mnt; 1011 1012 out_free: 1013 mnt_free_id(mnt); 1014 free_vfsmnt(mnt); 1015 return ERR_PTR(err); 1016 } 1017 1018 static void cleanup_mnt(struct mount *mnt) 1019 { 1020 /* 1021 * This probably indicates that somebody messed 1022 * up a mnt_want/drop_write() pair. If this 1023 * happens, the filesystem was probably unable 1024 * to make r/w->r/o transitions. 1025 */ 1026 /* 1027 * The locking used to deal with mnt_count decrement provides barriers, 1028 * so mnt_get_writers() below is safe. 1029 */ 1030 WARN_ON(mnt_get_writers(mnt)); 1031 if (unlikely(mnt->mnt_pins.first)) 1032 mnt_pin_kill(mnt); 1033 fsnotify_vfsmount_delete(&mnt->mnt); 1034 dput(mnt->mnt.mnt_root); 1035 deactivate_super(mnt->mnt.mnt_sb); 1036 mnt_free_id(mnt); 1037 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1038 } 1039 1040 static void __cleanup_mnt(struct rcu_head *head) 1041 { 1042 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1043 } 1044 1045 static LLIST_HEAD(delayed_mntput_list); 1046 static void delayed_mntput(struct work_struct *unused) 1047 { 1048 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1049 struct llist_node *next; 1050 1051 for (; node; node = next) { 1052 next = llist_next(node); 1053 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1054 } 1055 } 1056 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1057 1058 static void mntput_no_expire(struct mount *mnt) 1059 { 1060 rcu_read_lock(); 1061 mnt_add_count(mnt, -1); 1062 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1063 rcu_read_unlock(); 1064 return; 1065 } 1066 lock_mount_hash(); 1067 if (mnt_get_count(mnt)) { 1068 rcu_read_unlock(); 1069 unlock_mount_hash(); 1070 return; 1071 } 1072 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1073 rcu_read_unlock(); 1074 unlock_mount_hash(); 1075 return; 1076 } 1077 mnt->mnt.mnt_flags |= MNT_DOOMED; 1078 rcu_read_unlock(); 1079 1080 list_del(&mnt->mnt_instance); 1081 unlock_mount_hash(); 1082 1083 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1084 struct task_struct *task = current; 1085 if (likely(!(task->flags & PF_KTHREAD))) { 1086 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1087 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1088 return; 1089 } 1090 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1091 schedule_delayed_work(&delayed_mntput_work, 1); 1092 return; 1093 } 1094 cleanup_mnt(mnt); 1095 } 1096 1097 void mntput(struct vfsmount *mnt) 1098 { 1099 if (mnt) { 1100 struct mount *m = real_mount(mnt); 1101 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1102 if (unlikely(m->mnt_expiry_mark)) 1103 m->mnt_expiry_mark = 0; 1104 mntput_no_expire(m); 1105 } 1106 } 1107 EXPORT_SYMBOL(mntput); 1108 1109 struct vfsmount *mntget(struct vfsmount *mnt) 1110 { 1111 if (mnt) 1112 mnt_add_count(real_mount(mnt), 1); 1113 return mnt; 1114 } 1115 EXPORT_SYMBOL(mntget); 1116 1117 struct vfsmount *mnt_clone_internal(struct path *path) 1118 { 1119 struct mount *p; 1120 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1121 if (IS_ERR(p)) 1122 return ERR_CAST(p); 1123 p->mnt.mnt_flags |= MNT_INTERNAL; 1124 return &p->mnt; 1125 } 1126 1127 static inline void mangle(struct seq_file *m, const char *s) 1128 { 1129 seq_escape(m, s, " \t\n\\"); 1130 } 1131 1132 /* 1133 * Simple .show_options callback for filesystems which don't want to 1134 * implement more complex mount option showing. 1135 * 1136 * See also save_mount_options(). 1137 */ 1138 int generic_show_options(struct seq_file *m, struct dentry *root) 1139 { 1140 const char *options; 1141 1142 rcu_read_lock(); 1143 options = rcu_dereference(root->d_sb->s_options); 1144 1145 if (options != NULL && options[0]) { 1146 seq_putc(m, ','); 1147 mangle(m, options); 1148 } 1149 rcu_read_unlock(); 1150 1151 return 0; 1152 } 1153 EXPORT_SYMBOL(generic_show_options); 1154 1155 /* 1156 * If filesystem uses generic_show_options(), this function should be 1157 * called from the fill_super() callback. 1158 * 1159 * The .remount_fs callback usually needs to be handled in a special 1160 * way, to make sure, that previous options are not overwritten if the 1161 * remount fails. 1162 * 1163 * Also note, that if the filesystem's .remount_fs function doesn't 1164 * reset all options to their default value, but changes only newly 1165 * given options, then the displayed options will not reflect reality 1166 * any more. 1167 */ 1168 void save_mount_options(struct super_block *sb, char *options) 1169 { 1170 BUG_ON(sb->s_options); 1171 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1172 } 1173 EXPORT_SYMBOL(save_mount_options); 1174 1175 void replace_mount_options(struct super_block *sb, char *options) 1176 { 1177 char *old = sb->s_options; 1178 rcu_assign_pointer(sb->s_options, options); 1179 if (old) { 1180 synchronize_rcu(); 1181 kfree(old); 1182 } 1183 } 1184 EXPORT_SYMBOL(replace_mount_options); 1185 1186 #ifdef CONFIG_PROC_FS 1187 /* iterator; we want it to have access to namespace_sem, thus here... */ 1188 static void *m_start(struct seq_file *m, loff_t *pos) 1189 { 1190 struct proc_mounts *p = proc_mounts(m); 1191 1192 down_read(&namespace_sem); 1193 if (p->cached_event == p->ns->event) { 1194 void *v = p->cached_mount; 1195 if (*pos == p->cached_index) 1196 return v; 1197 if (*pos == p->cached_index + 1) { 1198 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1199 return p->cached_mount = v; 1200 } 1201 } 1202 1203 p->cached_event = p->ns->event; 1204 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1205 p->cached_index = *pos; 1206 return p->cached_mount; 1207 } 1208 1209 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1210 { 1211 struct proc_mounts *p = proc_mounts(m); 1212 1213 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1214 p->cached_index = *pos; 1215 return p->cached_mount; 1216 } 1217 1218 static void m_stop(struct seq_file *m, void *v) 1219 { 1220 up_read(&namespace_sem); 1221 } 1222 1223 static int m_show(struct seq_file *m, void *v) 1224 { 1225 struct proc_mounts *p = proc_mounts(m); 1226 struct mount *r = list_entry(v, struct mount, mnt_list); 1227 return p->show(m, &r->mnt); 1228 } 1229 1230 const struct seq_operations mounts_op = { 1231 .start = m_start, 1232 .next = m_next, 1233 .stop = m_stop, 1234 .show = m_show, 1235 }; 1236 #endif /* CONFIG_PROC_FS */ 1237 1238 /** 1239 * may_umount_tree - check if a mount tree is busy 1240 * @mnt: root of mount tree 1241 * 1242 * This is called to check if a tree of mounts has any 1243 * open files, pwds, chroots or sub mounts that are 1244 * busy. 1245 */ 1246 int may_umount_tree(struct vfsmount *m) 1247 { 1248 struct mount *mnt = real_mount(m); 1249 int actual_refs = 0; 1250 int minimum_refs = 0; 1251 struct mount *p; 1252 BUG_ON(!m); 1253 1254 /* write lock needed for mnt_get_count */ 1255 lock_mount_hash(); 1256 for (p = mnt; p; p = next_mnt(p, mnt)) { 1257 actual_refs += mnt_get_count(p); 1258 minimum_refs += 2; 1259 } 1260 unlock_mount_hash(); 1261 1262 if (actual_refs > minimum_refs) 1263 return 0; 1264 1265 return 1; 1266 } 1267 1268 EXPORT_SYMBOL(may_umount_tree); 1269 1270 /** 1271 * may_umount - check if a mount point is busy 1272 * @mnt: root of mount 1273 * 1274 * This is called to check if a mount point has any 1275 * open files, pwds, chroots or sub mounts. If the 1276 * mount has sub mounts this will return busy 1277 * regardless of whether the sub mounts are busy. 1278 * 1279 * Doesn't take quota and stuff into account. IOW, in some cases it will 1280 * give false negatives. The main reason why it's here is that we need 1281 * a non-destructive way to look for easily umountable filesystems. 1282 */ 1283 int may_umount(struct vfsmount *mnt) 1284 { 1285 int ret = 1; 1286 down_read(&namespace_sem); 1287 lock_mount_hash(); 1288 if (propagate_mount_busy(real_mount(mnt), 2)) 1289 ret = 0; 1290 unlock_mount_hash(); 1291 up_read(&namespace_sem); 1292 return ret; 1293 } 1294 1295 EXPORT_SYMBOL(may_umount); 1296 1297 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1298 1299 static void namespace_unlock(void) 1300 { 1301 struct hlist_head head = unmounted; 1302 1303 if (likely(hlist_empty(&head))) { 1304 up_write(&namespace_sem); 1305 return; 1306 } 1307 1308 head.first->pprev = &head.first; 1309 INIT_HLIST_HEAD(&unmounted); 1310 up_write(&namespace_sem); 1311 1312 synchronize_rcu(); 1313 1314 group_pin_kill(&head); 1315 } 1316 1317 static inline void namespace_lock(void) 1318 { 1319 down_write(&namespace_sem); 1320 } 1321 1322 /* 1323 * mount_lock must be held 1324 * namespace_sem must be held for write 1325 * how = 0 => just this tree, don't propagate 1326 * how = 1 => propagate; we know that nobody else has reference to any victims 1327 * how = 2 => lazy umount 1328 */ 1329 void umount_tree(struct mount *mnt, int how) 1330 { 1331 HLIST_HEAD(tmp_list); 1332 struct mount *p; 1333 1334 for (p = mnt; p; p = next_mnt(p, mnt)) { 1335 hlist_del_init_rcu(&p->mnt_hash); 1336 hlist_add_head(&p->mnt_hash, &tmp_list); 1337 } 1338 1339 hlist_for_each_entry(p, &tmp_list, mnt_hash) 1340 list_del_init(&p->mnt_child); 1341 1342 if (how) 1343 propagate_umount(&tmp_list); 1344 1345 while (!hlist_empty(&tmp_list)) { 1346 p = hlist_entry(tmp_list.first, struct mount, mnt_hash); 1347 hlist_del_init_rcu(&p->mnt_hash); 1348 list_del_init(&p->mnt_expire); 1349 list_del_init(&p->mnt_list); 1350 __touch_mnt_namespace(p->mnt_ns); 1351 p->mnt_ns = NULL; 1352 if (how < 2) 1353 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1354 1355 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted); 1356 if (mnt_has_parent(p)) { 1357 hlist_del_init(&p->mnt_mp_list); 1358 put_mountpoint(p->mnt_mp); 1359 mnt_add_count(p->mnt_parent, -1); 1360 /* old mountpoint will be dropped when we can do that */ 1361 p->mnt_ex_mountpoint = p->mnt_mountpoint; 1362 p->mnt_mountpoint = p->mnt.mnt_root; 1363 p->mnt_parent = p; 1364 p->mnt_mp = NULL; 1365 } 1366 change_mnt_propagation(p, MS_PRIVATE); 1367 } 1368 } 1369 1370 static void shrink_submounts(struct mount *mnt); 1371 1372 static int do_umount(struct mount *mnt, int flags) 1373 { 1374 struct super_block *sb = mnt->mnt.mnt_sb; 1375 int retval; 1376 1377 retval = security_sb_umount(&mnt->mnt, flags); 1378 if (retval) 1379 return retval; 1380 1381 /* 1382 * Allow userspace to request a mountpoint be expired rather than 1383 * unmounting unconditionally. Unmount only happens if: 1384 * (1) the mark is already set (the mark is cleared by mntput()) 1385 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1386 */ 1387 if (flags & MNT_EXPIRE) { 1388 if (&mnt->mnt == current->fs->root.mnt || 1389 flags & (MNT_FORCE | MNT_DETACH)) 1390 return -EINVAL; 1391 1392 /* 1393 * probably don't strictly need the lock here if we examined 1394 * all race cases, but it's a slowpath. 1395 */ 1396 lock_mount_hash(); 1397 if (mnt_get_count(mnt) != 2) { 1398 unlock_mount_hash(); 1399 return -EBUSY; 1400 } 1401 unlock_mount_hash(); 1402 1403 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1404 return -EAGAIN; 1405 } 1406 1407 /* 1408 * If we may have to abort operations to get out of this 1409 * mount, and they will themselves hold resources we must 1410 * allow the fs to do things. In the Unix tradition of 1411 * 'Gee thats tricky lets do it in userspace' the umount_begin 1412 * might fail to complete on the first run through as other tasks 1413 * must return, and the like. Thats for the mount program to worry 1414 * about for the moment. 1415 */ 1416 1417 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1418 sb->s_op->umount_begin(sb); 1419 } 1420 1421 /* 1422 * No sense to grab the lock for this test, but test itself looks 1423 * somewhat bogus. Suggestions for better replacement? 1424 * Ho-hum... In principle, we might treat that as umount + switch 1425 * to rootfs. GC would eventually take care of the old vfsmount. 1426 * Actually it makes sense, especially if rootfs would contain a 1427 * /reboot - static binary that would close all descriptors and 1428 * call reboot(9). Then init(8) could umount root and exec /reboot. 1429 */ 1430 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1431 /* 1432 * Special case for "unmounting" root ... 1433 * we just try to remount it readonly. 1434 */ 1435 if (!capable(CAP_SYS_ADMIN)) 1436 return -EPERM; 1437 down_write(&sb->s_umount); 1438 if (!(sb->s_flags & MS_RDONLY)) 1439 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1440 up_write(&sb->s_umount); 1441 return retval; 1442 } 1443 1444 namespace_lock(); 1445 lock_mount_hash(); 1446 event++; 1447 1448 if (flags & MNT_DETACH) { 1449 if (!list_empty(&mnt->mnt_list)) 1450 umount_tree(mnt, 2); 1451 retval = 0; 1452 } else { 1453 shrink_submounts(mnt); 1454 retval = -EBUSY; 1455 if (!propagate_mount_busy(mnt, 2)) { 1456 if (!list_empty(&mnt->mnt_list)) 1457 umount_tree(mnt, 1); 1458 retval = 0; 1459 } 1460 } 1461 unlock_mount_hash(); 1462 namespace_unlock(); 1463 return retval; 1464 } 1465 1466 /* 1467 * __detach_mounts - lazily unmount all mounts on the specified dentry 1468 * 1469 * During unlink, rmdir, and d_drop it is possible to loose the path 1470 * to an existing mountpoint, and wind up leaking the mount. 1471 * detach_mounts allows lazily unmounting those mounts instead of 1472 * leaking them. 1473 * 1474 * The caller may hold dentry->d_inode->i_mutex. 1475 */ 1476 void __detach_mounts(struct dentry *dentry) 1477 { 1478 struct mountpoint *mp; 1479 struct mount *mnt; 1480 1481 namespace_lock(); 1482 mp = lookup_mountpoint(dentry); 1483 if (!mp) 1484 goto out_unlock; 1485 1486 lock_mount_hash(); 1487 while (!hlist_empty(&mp->m_list)) { 1488 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1489 umount_tree(mnt, 2); 1490 } 1491 unlock_mount_hash(); 1492 put_mountpoint(mp); 1493 out_unlock: 1494 namespace_unlock(); 1495 } 1496 1497 /* 1498 * Is the caller allowed to modify his namespace? 1499 */ 1500 static inline bool may_mount(void) 1501 { 1502 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1503 } 1504 1505 /* 1506 * Now umount can handle mount points as well as block devices. 1507 * This is important for filesystems which use unnamed block devices. 1508 * 1509 * We now support a flag for forced unmount like the other 'big iron' 1510 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1511 */ 1512 1513 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1514 { 1515 struct path path; 1516 struct mount *mnt; 1517 int retval; 1518 int lookup_flags = 0; 1519 1520 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1521 return -EINVAL; 1522 1523 if (!may_mount()) 1524 return -EPERM; 1525 1526 if (!(flags & UMOUNT_NOFOLLOW)) 1527 lookup_flags |= LOOKUP_FOLLOW; 1528 1529 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1530 if (retval) 1531 goto out; 1532 mnt = real_mount(path.mnt); 1533 retval = -EINVAL; 1534 if (path.dentry != path.mnt->mnt_root) 1535 goto dput_and_out; 1536 if (!check_mnt(mnt)) 1537 goto dput_and_out; 1538 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1539 goto dput_and_out; 1540 retval = -EPERM; 1541 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1542 goto dput_and_out; 1543 1544 retval = do_umount(mnt, flags); 1545 dput_and_out: 1546 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1547 dput(path.dentry); 1548 mntput_no_expire(mnt); 1549 out: 1550 return retval; 1551 } 1552 1553 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1554 1555 /* 1556 * The 2.0 compatible umount. No flags. 1557 */ 1558 SYSCALL_DEFINE1(oldumount, char __user *, name) 1559 { 1560 return sys_umount(name, 0); 1561 } 1562 1563 #endif 1564 1565 static bool is_mnt_ns_file(struct dentry *dentry) 1566 { 1567 /* Is this a proxy for a mount namespace? */ 1568 return dentry->d_op == &ns_dentry_operations && 1569 dentry->d_fsdata == &mntns_operations; 1570 } 1571 1572 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1573 { 1574 return container_of(ns, struct mnt_namespace, ns); 1575 } 1576 1577 static bool mnt_ns_loop(struct dentry *dentry) 1578 { 1579 /* Could bind mounting the mount namespace inode cause a 1580 * mount namespace loop? 1581 */ 1582 struct mnt_namespace *mnt_ns; 1583 if (!is_mnt_ns_file(dentry)) 1584 return false; 1585 1586 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1587 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1588 } 1589 1590 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1591 int flag) 1592 { 1593 struct mount *res, *p, *q, *r, *parent; 1594 1595 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1596 return ERR_PTR(-EINVAL); 1597 1598 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1599 return ERR_PTR(-EINVAL); 1600 1601 res = q = clone_mnt(mnt, dentry, flag); 1602 if (IS_ERR(q)) 1603 return q; 1604 1605 q->mnt_mountpoint = mnt->mnt_mountpoint; 1606 1607 p = mnt; 1608 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1609 struct mount *s; 1610 if (!is_subdir(r->mnt_mountpoint, dentry)) 1611 continue; 1612 1613 for (s = r; s; s = next_mnt(s, r)) { 1614 struct mount *t = NULL; 1615 if (!(flag & CL_COPY_UNBINDABLE) && 1616 IS_MNT_UNBINDABLE(s)) { 1617 s = skip_mnt_tree(s); 1618 continue; 1619 } 1620 if (!(flag & CL_COPY_MNT_NS_FILE) && 1621 is_mnt_ns_file(s->mnt.mnt_root)) { 1622 s = skip_mnt_tree(s); 1623 continue; 1624 } 1625 while (p != s->mnt_parent) { 1626 p = p->mnt_parent; 1627 q = q->mnt_parent; 1628 } 1629 p = s; 1630 parent = q; 1631 q = clone_mnt(p, p->mnt.mnt_root, flag); 1632 if (IS_ERR(q)) 1633 goto out; 1634 lock_mount_hash(); 1635 list_add_tail(&q->mnt_list, &res->mnt_list); 1636 mnt_set_mountpoint(parent, p->mnt_mp, q); 1637 if (!list_empty(&parent->mnt_mounts)) { 1638 t = list_last_entry(&parent->mnt_mounts, 1639 struct mount, mnt_child); 1640 if (t->mnt_mp != p->mnt_mp) 1641 t = NULL; 1642 } 1643 attach_shadowed(q, parent, t); 1644 unlock_mount_hash(); 1645 } 1646 } 1647 return res; 1648 out: 1649 if (res) { 1650 lock_mount_hash(); 1651 umount_tree(res, 0); 1652 unlock_mount_hash(); 1653 } 1654 return q; 1655 } 1656 1657 /* Caller should check returned pointer for errors */ 1658 1659 struct vfsmount *collect_mounts(struct path *path) 1660 { 1661 struct mount *tree; 1662 namespace_lock(); 1663 tree = copy_tree(real_mount(path->mnt), path->dentry, 1664 CL_COPY_ALL | CL_PRIVATE); 1665 namespace_unlock(); 1666 if (IS_ERR(tree)) 1667 return ERR_CAST(tree); 1668 return &tree->mnt; 1669 } 1670 1671 void drop_collected_mounts(struct vfsmount *mnt) 1672 { 1673 namespace_lock(); 1674 lock_mount_hash(); 1675 umount_tree(real_mount(mnt), 0); 1676 unlock_mount_hash(); 1677 namespace_unlock(); 1678 } 1679 1680 /** 1681 * clone_private_mount - create a private clone of a path 1682 * 1683 * This creates a new vfsmount, which will be the clone of @path. The new will 1684 * not be attached anywhere in the namespace and will be private (i.e. changes 1685 * to the originating mount won't be propagated into this). 1686 * 1687 * Release with mntput(). 1688 */ 1689 struct vfsmount *clone_private_mount(struct path *path) 1690 { 1691 struct mount *old_mnt = real_mount(path->mnt); 1692 struct mount *new_mnt; 1693 1694 if (IS_MNT_UNBINDABLE(old_mnt)) 1695 return ERR_PTR(-EINVAL); 1696 1697 down_read(&namespace_sem); 1698 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1699 up_read(&namespace_sem); 1700 if (IS_ERR(new_mnt)) 1701 return ERR_CAST(new_mnt); 1702 1703 return &new_mnt->mnt; 1704 } 1705 EXPORT_SYMBOL_GPL(clone_private_mount); 1706 1707 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1708 struct vfsmount *root) 1709 { 1710 struct mount *mnt; 1711 int res = f(root, arg); 1712 if (res) 1713 return res; 1714 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1715 res = f(&mnt->mnt, arg); 1716 if (res) 1717 return res; 1718 } 1719 return 0; 1720 } 1721 1722 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1723 { 1724 struct mount *p; 1725 1726 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1727 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1728 mnt_release_group_id(p); 1729 } 1730 } 1731 1732 static int invent_group_ids(struct mount *mnt, bool recurse) 1733 { 1734 struct mount *p; 1735 1736 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1737 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1738 int err = mnt_alloc_group_id(p); 1739 if (err) { 1740 cleanup_group_ids(mnt, p); 1741 return err; 1742 } 1743 } 1744 } 1745 1746 return 0; 1747 } 1748 1749 /* 1750 * @source_mnt : mount tree to be attached 1751 * @nd : place the mount tree @source_mnt is attached 1752 * @parent_nd : if non-null, detach the source_mnt from its parent and 1753 * store the parent mount and mountpoint dentry. 1754 * (done when source_mnt is moved) 1755 * 1756 * NOTE: in the table below explains the semantics when a source mount 1757 * of a given type is attached to a destination mount of a given type. 1758 * --------------------------------------------------------------------------- 1759 * | BIND MOUNT OPERATION | 1760 * |************************************************************************** 1761 * | source-->| shared | private | slave | unbindable | 1762 * | dest | | | | | 1763 * | | | | | | | 1764 * | v | | | | | 1765 * |************************************************************************** 1766 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1767 * | | | | | | 1768 * |non-shared| shared (+) | private | slave (*) | invalid | 1769 * *************************************************************************** 1770 * A bind operation clones the source mount and mounts the clone on the 1771 * destination mount. 1772 * 1773 * (++) the cloned mount is propagated to all the mounts in the propagation 1774 * tree of the destination mount and the cloned mount is added to 1775 * the peer group of the source mount. 1776 * (+) the cloned mount is created under the destination mount and is marked 1777 * as shared. The cloned mount is added to the peer group of the source 1778 * mount. 1779 * (+++) the mount is propagated to all the mounts in the propagation tree 1780 * of the destination mount and the cloned mount is made slave 1781 * of the same master as that of the source mount. The cloned mount 1782 * is marked as 'shared and slave'. 1783 * (*) the cloned mount is made a slave of the same master as that of the 1784 * source mount. 1785 * 1786 * --------------------------------------------------------------------------- 1787 * | MOVE MOUNT OPERATION | 1788 * |************************************************************************** 1789 * | source-->| shared | private | slave | unbindable | 1790 * | dest | | | | | 1791 * | | | | | | | 1792 * | v | | | | | 1793 * |************************************************************************** 1794 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1795 * | | | | | | 1796 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1797 * *************************************************************************** 1798 * 1799 * (+) the mount is moved to the destination. And is then propagated to 1800 * all the mounts in the propagation tree of the destination mount. 1801 * (+*) the mount is moved to the destination. 1802 * (+++) the mount is moved to the destination and is then propagated to 1803 * all the mounts belonging to the destination mount's propagation tree. 1804 * the mount is marked as 'shared and slave'. 1805 * (*) the mount continues to be a slave at the new location. 1806 * 1807 * if the source mount is a tree, the operations explained above is 1808 * applied to each mount in the tree. 1809 * Must be called without spinlocks held, since this function can sleep 1810 * in allocations. 1811 */ 1812 static int attach_recursive_mnt(struct mount *source_mnt, 1813 struct mount *dest_mnt, 1814 struct mountpoint *dest_mp, 1815 struct path *parent_path) 1816 { 1817 HLIST_HEAD(tree_list); 1818 struct mount *child, *p; 1819 struct hlist_node *n; 1820 int err; 1821 1822 if (IS_MNT_SHARED(dest_mnt)) { 1823 err = invent_group_ids(source_mnt, true); 1824 if (err) 1825 goto out; 1826 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1827 lock_mount_hash(); 1828 if (err) 1829 goto out_cleanup_ids; 1830 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1831 set_mnt_shared(p); 1832 } else { 1833 lock_mount_hash(); 1834 } 1835 if (parent_path) { 1836 detach_mnt(source_mnt, parent_path); 1837 attach_mnt(source_mnt, dest_mnt, dest_mp); 1838 touch_mnt_namespace(source_mnt->mnt_ns); 1839 } else { 1840 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1841 commit_tree(source_mnt, NULL); 1842 } 1843 1844 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1845 struct mount *q; 1846 hlist_del_init(&child->mnt_hash); 1847 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1848 child->mnt_mountpoint); 1849 commit_tree(child, q); 1850 } 1851 unlock_mount_hash(); 1852 1853 return 0; 1854 1855 out_cleanup_ids: 1856 while (!hlist_empty(&tree_list)) { 1857 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1858 umount_tree(child, 0); 1859 } 1860 unlock_mount_hash(); 1861 cleanup_group_ids(source_mnt, NULL); 1862 out: 1863 return err; 1864 } 1865 1866 static struct mountpoint *lock_mount(struct path *path) 1867 { 1868 struct vfsmount *mnt; 1869 struct dentry *dentry = path->dentry; 1870 retry: 1871 mutex_lock(&dentry->d_inode->i_mutex); 1872 if (unlikely(cant_mount(dentry))) { 1873 mutex_unlock(&dentry->d_inode->i_mutex); 1874 return ERR_PTR(-ENOENT); 1875 } 1876 namespace_lock(); 1877 mnt = lookup_mnt(path); 1878 if (likely(!mnt)) { 1879 struct mountpoint *mp = lookup_mountpoint(dentry); 1880 if (!mp) 1881 mp = new_mountpoint(dentry); 1882 if (IS_ERR(mp)) { 1883 namespace_unlock(); 1884 mutex_unlock(&dentry->d_inode->i_mutex); 1885 return mp; 1886 } 1887 return mp; 1888 } 1889 namespace_unlock(); 1890 mutex_unlock(&path->dentry->d_inode->i_mutex); 1891 path_put(path); 1892 path->mnt = mnt; 1893 dentry = path->dentry = dget(mnt->mnt_root); 1894 goto retry; 1895 } 1896 1897 static void unlock_mount(struct mountpoint *where) 1898 { 1899 struct dentry *dentry = where->m_dentry; 1900 put_mountpoint(where); 1901 namespace_unlock(); 1902 mutex_unlock(&dentry->d_inode->i_mutex); 1903 } 1904 1905 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1906 { 1907 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1908 return -EINVAL; 1909 1910 if (d_is_dir(mp->m_dentry) != 1911 d_is_dir(mnt->mnt.mnt_root)) 1912 return -ENOTDIR; 1913 1914 return attach_recursive_mnt(mnt, p, mp, NULL); 1915 } 1916 1917 /* 1918 * Sanity check the flags to change_mnt_propagation. 1919 */ 1920 1921 static int flags_to_propagation_type(int flags) 1922 { 1923 int type = flags & ~(MS_REC | MS_SILENT); 1924 1925 /* Fail if any non-propagation flags are set */ 1926 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1927 return 0; 1928 /* Only one propagation flag should be set */ 1929 if (!is_power_of_2(type)) 1930 return 0; 1931 return type; 1932 } 1933 1934 /* 1935 * recursively change the type of the mountpoint. 1936 */ 1937 static int do_change_type(struct path *path, int flag) 1938 { 1939 struct mount *m; 1940 struct mount *mnt = real_mount(path->mnt); 1941 int recurse = flag & MS_REC; 1942 int type; 1943 int err = 0; 1944 1945 if (path->dentry != path->mnt->mnt_root) 1946 return -EINVAL; 1947 1948 type = flags_to_propagation_type(flag); 1949 if (!type) 1950 return -EINVAL; 1951 1952 namespace_lock(); 1953 if (type == MS_SHARED) { 1954 err = invent_group_ids(mnt, recurse); 1955 if (err) 1956 goto out_unlock; 1957 } 1958 1959 lock_mount_hash(); 1960 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1961 change_mnt_propagation(m, type); 1962 unlock_mount_hash(); 1963 1964 out_unlock: 1965 namespace_unlock(); 1966 return err; 1967 } 1968 1969 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1970 { 1971 struct mount *child; 1972 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1973 if (!is_subdir(child->mnt_mountpoint, dentry)) 1974 continue; 1975 1976 if (child->mnt.mnt_flags & MNT_LOCKED) 1977 return true; 1978 } 1979 return false; 1980 } 1981 1982 /* 1983 * do loopback mount. 1984 */ 1985 static int do_loopback(struct path *path, const char *old_name, 1986 int recurse) 1987 { 1988 struct path old_path; 1989 struct mount *mnt = NULL, *old, *parent; 1990 struct mountpoint *mp; 1991 int err; 1992 if (!old_name || !*old_name) 1993 return -EINVAL; 1994 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1995 if (err) 1996 return err; 1997 1998 err = -EINVAL; 1999 if (mnt_ns_loop(old_path.dentry)) 2000 goto out; 2001 2002 mp = lock_mount(path); 2003 err = PTR_ERR(mp); 2004 if (IS_ERR(mp)) 2005 goto out; 2006 2007 old = real_mount(old_path.mnt); 2008 parent = real_mount(path->mnt); 2009 2010 err = -EINVAL; 2011 if (IS_MNT_UNBINDABLE(old)) 2012 goto out2; 2013 2014 if (!check_mnt(parent)) 2015 goto out2; 2016 2017 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2018 goto out2; 2019 2020 if (!recurse && has_locked_children(old, old_path.dentry)) 2021 goto out2; 2022 2023 if (recurse) 2024 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2025 else 2026 mnt = clone_mnt(old, old_path.dentry, 0); 2027 2028 if (IS_ERR(mnt)) { 2029 err = PTR_ERR(mnt); 2030 goto out2; 2031 } 2032 2033 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2034 2035 err = graft_tree(mnt, parent, mp); 2036 if (err) { 2037 lock_mount_hash(); 2038 umount_tree(mnt, 0); 2039 unlock_mount_hash(); 2040 } 2041 out2: 2042 unlock_mount(mp); 2043 out: 2044 path_put(&old_path); 2045 return err; 2046 } 2047 2048 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2049 { 2050 int error = 0; 2051 int readonly_request = 0; 2052 2053 if (ms_flags & MS_RDONLY) 2054 readonly_request = 1; 2055 if (readonly_request == __mnt_is_readonly(mnt)) 2056 return 0; 2057 2058 if (readonly_request) 2059 error = mnt_make_readonly(real_mount(mnt)); 2060 else 2061 __mnt_unmake_readonly(real_mount(mnt)); 2062 return error; 2063 } 2064 2065 /* 2066 * change filesystem flags. dir should be a physical root of filesystem. 2067 * If you've mounted a non-root directory somewhere and want to do remount 2068 * on it - tough luck. 2069 */ 2070 static int do_remount(struct path *path, int flags, int mnt_flags, 2071 void *data) 2072 { 2073 int err; 2074 struct super_block *sb = path->mnt->mnt_sb; 2075 struct mount *mnt = real_mount(path->mnt); 2076 2077 if (!check_mnt(mnt)) 2078 return -EINVAL; 2079 2080 if (path->dentry != path->mnt->mnt_root) 2081 return -EINVAL; 2082 2083 /* Don't allow changing of locked mnt flags. 2084 * 2085 * No locks need to be held here while testing the various 2086 * MNT_LOCK flags because those flags can never be cleared 2087 * once they are set. 2088 */ 2089 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2090 !(mnt_flags & MNT_READONLY)) { 2091 return -EPERM; 2092 } 2093 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2094 !(mnt_flags & MNT_NODEV)) { 2095 /* Was the nodev implicitly added in mount? */ 2096 if ((mnt->mnt_ns->user_ns != &init_user_ns) && 2097 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2098 mnt_flags |= MNT_NODEV; 2099 } else { 2100 return -EPERM; 2101 } 2102 } 2103 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2104 !(mnt_flags & MNT_NOSUID)) { 2105 return -EPERM; 2106 } 2107 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2108 !(mnt_flags & MNT_NOEXEC)) { 2109 return -EPERM; 2110 } 2111 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2112 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2113 return -EPERM; 2114 } 2115 2116 err = security_sb_remount(sb, data); 2117 if (err) 2118 return err; 2119 2120 down_write(&sb->s_umount); 2121 if (flags & MS_BIND) 2122 err = change_mount_flags(path->mnt, flags); 2123 else if (!capable(CAP_SYS_ADMIN)) 2124 err = -EPERM; 2125 else 2126 err = do_remount_sb(sb, flags, data, 0); 2127 if (!err) { 2128 lock_mount_hash(); 2129 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2130 mnt->mnt.mnt_flags = mnt_flags; 2131 touch_mnt_namespace(mnt->mnt_ns); 2132 unlock_mount_hash(); 2133 } 2134 up_write(&sb->s_umount); 2135 return err; 2136 } 2137 2138 static inline int tree_contains_unbindable(struct mount *mnt) 2139 { 2140 struct mount *p; 2141 for (p = mnt; p; p = next_mnt(p, mnt)) { 2142 if (IS_MNT_UNBINDABLE(p)) 2143 return 1; 2144 } 2145 return 0; 2146 } 2147 2148 static int do_move_mount(struct path *path, const char *old_name) 2149 { 2150 struct path old_path, parent_path; 2151 struct mount *p; 2152 struct mount *old; 2153 struct mountpoint *mp; 2154 int err; 2155 if (!old_name || !*old_name) 2156 return -EINVAL; 2157 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2158 if (err) 2159 return err; 2160 2161 mp = lock_mount(path); 2162 err = PTR_ERR(mp); 2163 if (IS_ERR(mp)) 2164 goto out; 2165 2166 old = real_mount(old_path.mnt); 2167 p = real_mount(path->mnt); 2168 2169 err = -EINVAL; 2170 if (!check_mnt(p) || !check_mnt(old)) 2171 goto out1; 2172 2173 if (old->mnt.mnt_flags & MNT_LOCKED) 2174 goto out1; 2175 2176 err = -EINVAL; 2177 if (old_path.dentry != old_path.mnt->mnt_root) 2178 goto out1; 2179 2180 if (!mnt_has_parent(old)) 2181 goto out1; 2182 2183 if (d_is_dir(path->dentry) != 2184 d_is_dir(old_path.dentry)) 2185 goto out1; 2186 /* 2187 * Don't move a mount residing in a shared parent. 2188 */ 2189 if (IS_MNT_SHARED(old->mnt_parent)) 2190 goto out1; 2191 /* 2192 * Don't move a mount tree containing unbindable mounts to a destination 2193 * mount which is shared. 2194 */ 2195 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2196 goto out1; 2197 err = -ELOOP; 2198 for (; mnt_has_parent(p); p = p->mnt_parent) 2199 if (p == old) 2200 goto out1; 2201 2202 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2203 if (err) 2204 goto out1; 2205 2206 /* if the mount is moved, it should no longer be expire 2207 * automatically */ 2208 list_del_init(&old->mnt_expire); 2209 out1: 2210 unlock_mount(mp); 2211 out: 2212 if (!err) 2213 path_put(&parent_path); 2214 path_put(&old_path); 2215 return err; 2216 } 2217 2218 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2219 { 2220 int err; 2221 const char *subtype = strchr(fstype, '.'); 2222 if (subtype) { 2223 subtype++; 2224 err = -EINVAL; 2225 if (!subtype[0]) 2226 goto err; 2227 } else 2228 subtype = ""; 2229 2230 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2231 err = -ENOMEM; 2232 if (!mnt->mnt_sb->s_subtype) 2233 goto err; 2234 return mnt; 2235 2236 err: 2237 mntput(mnt); 2238 return ERR_PTR(err); 2239 } 2240 2241 /* 2242 * add a mount into a namespace's mount tree 2243 */ 2244 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2245 { 2246 struct mountpoint *mp; 2247 struct mount *parent; 2248 int err; 2249 2250 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2251 2252 mp = lock_mount(path); 2253 if (IS_ERR(mp)) 2254 return PTR_ERR(mp); 2255 2256 parent = real_mount(path->mnt); 2257 err = -EINVAL; 2258 if (unlikely(!check_mnt(parent))) { 2259 /* that's acceptable only for automounts done in private ns */ 2260 if (!(mnt_flags & MNT_SHRINKABLE)) 2261 goto unlock; 2262 /* ... and for those we'd better have mountpoint still alive */ 2263 if (!parent->mnt_ns) 2264 goto unlock; 2265 } 2266 2267 /* Refuse the same filesystem on the same mount point */ 2268 err = -EBUSY; 2269 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2270 path->mnt->mnt_root == path->dentry) 2271 goto unlock; 2272 2273 err = -EINVAL; 2274 if (d_is_symlink(newmnt->mnt.mnt_root)) 2275 goto unlock; 2276 2277 newmnt->mnt.mnt_flags = mnt_flags; 2278 err = graft_tree(newmnt, parent, mp); 2279 2280 unlock: 2281 unlock_mount(mp); 2282 return err; 2283 } 2284 2285 /* 2286 * create a new mount for userspace and request it to be added into the 2287 * namespace's tree 2288 */ 2289 static int do_new_mount(struct path *path, const char *fstype, int flags, 2290 int mnt_flags, const char *name, void *data) 2291 { 2292 struct file_system_type *type; 2293 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2294 struct vfsmount *mnt; 2295 int err; 2296 2297 if (!fstype) 2298 return -EINVAL; 2299 2300 type = get_fs_type(fstype); 2301 if (!type) 2302 return -ENODEV; 2303 2304 if (user_ns != &init_user_ns) { 2305 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2306 put_filesystem(type); 2307 return -EPERM; 2308 } 2309 /* Only in special cases allow devices from mounts 2310 * created outside the initial user namespace. 2311 */ 2312 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2313 flags |= MS_NODEV; 2314 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2315 } 2316 } 2317 2318 mnt = vfs_kern_mount(type, flags, name, data); 2319 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2320 !mnt->mnt_sb->s_subtype) 2321 mnt = fs_set_subtype(mnt, fstype); 2322 2323 put_filesystem(type); 2324 if (IS_ERR(mnt)) 2325 return PTR_ERR(mnt); 2326 2327 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2328 if (err) 2329 mntput(mnt); 2330 return err; 2331 } 2332 2333 int finish_automount(struct vfsmount *m, struct path *path) 2334 { 2335 struct mount *mnt = real_mount(m); 2336 int err; 2337 /* The new mount record should have at least 2 refs to prevent it being 2338 * expired before we get a chance to add it 2339 */ 2340 BUG_ON(mnt_get_count(mnt) < 2); 2341 2342 if (m->mnt_sb == path->mnt->mnt_sb && 2343 m->mnt_root == path->dentry) { 2344 err = -ELOOP; 2345 goto fail; 2346 } 2347 2348 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2349 if (!err) 2350 return 0; 2351 fail: 2352 /* remove m from any expiration list it may be on */ 2353 if (!list_empty(&mnt->mnt_expire)) { 2354 namespace_lock(); 2355 list_del_init(&mnt->mnt_expire); 2356 namespace_unlock(); 2357 } 2358 mntput(m); 2359 mntput(m); 2360 return err; 2361 } 2362 2363 /** 2364 * mnt_set_expiry - Put a mount on an expiration list 2365 * @mnt: The mount to list. 2366 * @expiry_list: The list to add the mount to. 2367 */ 2368 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2369 { 2370 namespace_lock(); 2371 2372 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2373 2374 namespace_unlock(); 2375 } 2376 EXPORT_SYMBOL(mnt_set_expiry); 2377 2378 /* 2379 * process a list of expirable mountpoints with the intent of discarding any 2380 * mountpoints that aren't in use and haven't been touched since last we came 2381 * here 2382 */ 2383 void mark_mounts_for_expiry(struct list_head *mounts) 2384 { 2385 struct mount *mnt, *next; 2386 LIST_HEAD(graveyard); 2387 2388 if (list_empty(mounts)) 2389 return; 2390 2391 namespace_lock(); 2392 lock_mount_hash(); 2393 2394 /* extract from the expiration list every vfsmount that matches the 2395 * following criteria: 2396 * - only referenced by its parent vfsmount 2397 * - still marked for expiry (marked on the last call here; marks are 2398 * cleared by mntput()) 2399 */ 2400 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2401 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2402 propagate_mount_busy(mnt, 1)) 2403 continue; 2404 list_move(&mnt->mnt_expire, &graveyard); 2405 } 2406 while (!list_empty(&graveyard)) { 2407 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2408 touch_mnt_namespace(mnt->mnt_ns); 2409 umount_tree(mnt, 1); 2410 } 2411 unlock_mount_hash(); 2412 namespace_unlock(); 2413 } 2414 2415 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2416 2417 /* 2418 * Ripoff of 'select_parent()' 2419 * 2420 * search the list of submounts for a given mountpoint, and move any 2421 * shrinkable submounts to the 'graveyard' list. 2422 */ 2423 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2424 { 2425 struct mount *this_parent = parent; 2426 struct list_head *next; 2427 int found = 0; 2428 2429 repeat: 2430 next = this_parent->mnt_mounts.next; 2431 resume: 2432 while (next != &this_parent->mnt_mounts) { 2433 struct list_head *tmp = next; 2434 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2435 2436 next = tmp->next; 2437 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2438 continue; 2439 /* 2440 * Descend a level if the d_mounts list is non-empty. 2441 */ 2442 if (!list_empty(&mnt->mnt_mounts)) { 2443 this_parent = mnt; 2444 goto repeat; 2445 } 2446 2447 if (!propagate_mount_busy(mnt, 1)) { 2448 list_move_tail(&mnt->mnt_expire, graveyard); 2449 found++; 2450 } 2451 } 2452 /* 2453 * All done at this level ... ascend and resume the search 2454 */ 2455 if (this_parent != parent) { 2456 next = this_parent->mnt_child.next; 2457 this_parent = this_parent->mnt_parent; 2458 goto resume; 2459 } 2460 return found; 2461 } 2462 2463 /* 2464 * process a list of expirable mountpoints with the intent of discarding any 2465 * submounts of a specific parent mountpoint 2466 * 2467 * mount_lock must be held for write 2468 */ 2469 static void shrink_submounts(struct mount *mnt) 2470 { 2471 LIST_HEAD(graveyard); 2472 struct mount *m; 2473 2474 /* extract submounts of 'mountpoint' from the expiration list */ 2475 while (select_submounts(mnt, &graveyard)) { 2476 while (!list_empty(&graveyard)) { 2477 m = list_first_entry(&graveyard, struct mount, 2478 mnt_expire); 2479 touch_mnt_namespace(m->mnt_ns); 2480 umount_tree(m, 1); 2481 } 2482 } 2483 } 2484 2485 /* 2486 * Some copy_from_user() implementations do not return the exact number of 2487 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2488 * Note that this function differs from copy_from_user() in that it will oops 2489 * on bad values of `to', rather than returning a short copy. 2490 */ 2491 static long exact_copy_from_user(void *to, const void __user * from, 2492 unsigned long n) 2493 { 2494 char *t = to; 2495 const char __user *f = from; 2496 char c; 2497 2498 if (!access_ok(VERIFY_READ, from, n)) 2499 return n; 2500 2501 while (n) { 2502 if (__get_user(c, f)) { 2503 memset(t, 0, n); 2504 break; 2505 } 2506 *t++ = c; 2507 f++; 2508 n--; 2509 } 2510 return n; 2511 } 2512 2513 int copy_mount_options(const void __user * data, unsigned long *where) 2514 { 2515 int i; 2516 unsigned long page; 2517 unsigned long size; 2518 2519 *where = 0; 2520 if (!data) 2521 return 0; 2522 2523 if (!(page = __get_free_page(GFP_KERNEL))) 2524 return -ENOMEM; 2525 2526 /* We only care that *some* data at the address the user 2527 * gave us is valid. Just in case, we'll zero 2528 * the remainder of the page. 2529 */ 2530 /* copy_from_user cannot cross TASK_SIZE ! */ 2531 size = TASK_SIZE - (unsigned long)data; 2532 if (size > PAGE_SIZE) 2533 size = PAGE_SIZE; 2534 2535 i = size - exact_copy_from_user((void *)page, data, size); 2536 if (!i) { 2537 free_page(page); 2538 return -EFAULT; 2539 } 2540 if (i != PAGE_SIZE) 2541 memset((char *)page + i, 0, PAGE_SIZE - i); 2542 *where = page; 2543 return 0; 2544 } 2545 2546 char *copy_mount_string(const void __user *data) 2547 { 2548 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2549 } 2550 2551 /* 2552 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2553 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2554 * 2555 * data is a (void *) that can point to any structure up to 2556 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2557 * information (or be NULL). 2558 * 2559 * Pre-0.97 versions of mount() didn't have a flags word. 2560 * When the flags word was introduced its top half was required 2561 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2562 * Therefore, if this magic number is present, it carries no information 2563 * and must be discarded. 2564 */ 2565 long do_mount(const char *dev_name, const char __user *dir_name, 2566 const char *type_page, unsigned long flags, void *data_page) 2567 { 2568 struct path path; 2569 int retval = 0; 2570 int mnt_flags = 0; 2571 2572 /* Discard magic */ 2573 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2574 flags &= ~MS_MGC_MSK; 2575 2576 /* Basic sanity checks */ 2577 if (data_page) 2578 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2579 2580 /* ... and get the mountpoint */ 2581 retval = user_path(dir_name, &path); 2582 if (retval) 2583 return retval; 2584 2585 retval = security_sb_mount(dev_name, &path, 2586 type_page, flags, data_page); 2587 if (!retval && !may_mount()) 2588 retval = -EPERM; 2589 if (retval) 2590 goto dput_out; 2591 2592 /* Default to relatime unless overriden */ 2593 if (!(flags & MS_NOATIME)) 2594 mnt_flags |= MNT_RELATIME; 2595 2596 /* Separate the per-mountpoint flags */ 2597 if (flags & MS_NOSUID) 2598 mnt_flags |= MNT_NOSUID; 2599 if (flags & MS_NODEV) 2600 mnt_flags |= MNT_NODEV; 2601 if (flags & MS_NOEXEC) 2602 mnt_flags |= MNT_NOEXEC; 2603 if (flags & MS_NOATIME) 2604 mnt_flags |= MNT_NOATIME; 2605 if (flags & MS_NODIRATIME) 2606 mnt_flags |= MNT_NODIRATIME; 2607 if (flags & MS_STRICTATIME) 2608 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2609 if (flags & MS_RDONLY) 2610 mnt_flags |= MNT_READONLY; 2611 2612 /* The default atime for remount is preservation */ 2613 if ((flags & MS_REMOUNT) && 2614 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2615 MS_STRICTATIME)) == 0)) { 2616 mnt_flags &= ~MNT_ATIME_MASK; 2617 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2618 } 2619 2620 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2621 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2622 MS_STRICTATIME); 2623 2624 if (flags & MS_REMOUNT) 2625 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2626 data_page); 2627 else if (flags & MS_BIND) 2628 retval = do_loopback(&path, dev_name, flags & MS_REC); 2629 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2630 retval = do_change_type(&path, flags); 2631 else if (flags & MS_MOVE) 2632 retval = do_move_mount(&path, dev_name); 2633 else 2634 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2635 dev_name, data_page); 2636 dput_out: 2637 path_put(&path); 2638 return retval; 2639 } 2640 2641 static void free_mnt_ns(struct mnt_namespace *ns) 2642 { 2643 ns_free_inum(&ns->ns); 2644 put_user_ns(ns->user_ns); 2645 kfree(ns); 2646 } 2647 2648 /* 2649 * Assign a sequence number so we can detect when we attempt to bind 2650 * mount a reference to an older mount namespace into the current 2651 * mount namespace, preventing reference counting loops. A 64bit 2652 * number incrementing at 10Ghz will take 12,427 years to wrap which 2653 * is effectively never, so we can ignore the possibility. 2654 */ 2655 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2656 2657 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2658 { 2659 struct mnt_namespace *new_ns; 2660 int ret; 2661 2662 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2663 if (!new_ns) 2664 return ERR_PTR(-ENOMEM); 2665 ret = ns_alloc_inum(&new_ns->ns); 2666 if (ret) { 2667 kfree(new_ns); 2668 return ERR_PTR(ret); 2669 } 2670 new_ns->ns.ops = &mntns_operations; 2671 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2672 atomic_set(&new_ns->count, 1); 2673 new_ns->root = NULL; 2674 INIT_LIST_HEAD(&new_ns->list); 2675 init_waitqueue_head(&new_ns->poll); 2676 new_ns->event = 0; 2677 new_ns->user_ns = get_user_ns(user_ns); 2678 return new_ns; 2679 } 2680 2681 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2682 struct user_namespace *user_ns, struct fs_struct *new_fs) 2683 { 2684 struct mnt_namespace *new_ns; 2685 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2686 struct mount *p, *q; 2687 struct mount *old; 2688 struct mount *new; 2689 int copy_flags; 2690 2691 BUG_ON(!ns); 2692 2693 if (likely(!(flags & CLONE_NEWNS))) { 2694 get_mnt_ns(ns); 2695 return ns; 2696 } 2697 2698 old = ns->root; 2699 2700 new_ns = alloc_mnt_ns(user_ns); 2701 if (IS_ERR(new_ns)) 2702 return new_ns; 2703 2704 namespace_lock(); 2705 /* First pass: copy the tree topology */ 2706 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2707 if (user_ns != ns->user_ns) 2708 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2709 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2710 if (IS_ERR(new)) { 2711 namespace_unlock(); 2712 free_mnt_ns(new_ns); 2713 return ERR_CAST(new); 2714 } 2715 new_ns->root = new; 2716 list_add_tail(&new_ns->list, &new->mnt_list); 2717 2718 /* 2719 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2720 * as belonging to new namespace. We have already acquired a private 2721 * fs_struct, so tsk->fs->lock is not needed. 2722 */ 2723 p = old; 2724 q = new; 2725 while (p) { 2726 q->mnt_ns = new_ns; 2727 if (new_fs) { 2728 if (&p->mnt == new_fs->root.mnt) { 2729 new_fs->root.mnt = mntget(&q->mnt); 2730 rootmnt = &p->mnt; 2731 } 2732 if (&p->mnt == new_fs->pwd.mnt) { 2733 new_fs->pwd.mnt = mntget(&q->mnt); 2734 pwdmnt = &p->mnt; 2735 } 2736 } 2737 p = next_mnt(p, old); 2738 q = next_mnt(q, new); 2739 if (!q) 2740 break; 2741 while (p->mnt.mnt_root != q->mnt.mnt_root) 2742 p = next_mnt(p, old); 2743 } 2744 namespace_unlock(); 2745 2746 if (rootmnt) 2747 mntput(rootmnt); 2748 if (pwdmnt) 2749 mntput(pwdmnt); 2750 2751 return new_ns; 2752 } 2753 2754 /** 2755 * create_mnt_ns - creates a private namespace and adds a root filesystem 2756 * @mnt: pointer to the new root filesystem mountpoint 2757 */ 2758 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2759 { 2760 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2761 if (!IS_ERR(new_ns)) { 2762 struct mount *mnt = real_mount(m); 2763 mnt->mnt_ns = new_ns; 2764 new_ns->root = mnt; 2765 list_add(&mnt->mnt_list, &new_ns->list); 2766 } else { 2767 mntput(m); 2768 } 2769 return new_ns; 2770 } 2771 2772 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2773 { 2774 struct mnt_namespace *ns; 2775 struct super_block *s; 2776 struct path path; 2777 int err; 2778 2779 ns = create_mnt_ns(mnt); 2780 if (IS_ERR(ns)) 2781 return ERR_CAST(ns); 2782 2783 err = vfs_path_lookup(mnt->mnt_root, mnt, 2784 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2785 2786 put_mnt_ns(ns); 2787 2788 if (err) 2789 return ERR_PTR(err); 2790 2791 /* trade a vfsmount reference for active sb one */ 2792 s = path.mnt->mnt_sb; 2793 atomic_inc(&s->s_active); 2794 mntput(path.mnt); 2795 /* lock the sucker */ 2796 down_write(&s->s_umount); 2797 /* ... and return the root of (sub)tree on it */ 2798 return path.dentry; 2799 } 2800 EXPORT_SYMBOL(mount_subtree); 2801 2802 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2803 char __user *, type, unsigned long, flags, void __user *, data) 2804 { 2805 int ret; 2806 char *kernel_type; 2807 char *kernel_dev; 2808 unsigned long data_page; 2809 2810 kernel_type = copy_mount_string(type); 2811 ret = PTR_ERR(kernel_type); 2812 if (IS_ERR(kernel_type)) 2813 goto out_type; 2814 2815 kernel_dev = copy_mount_string(dev_name); 2816 ret = PTR_ERR(kernel_dev); 2817 if (IS_ERR(kernel_dev)) 2818 goto out_dev; 2819 2820 ret = copy_mount_options(data, &data_page); 2821 if (ret < 0) 2822 goto out_data; 2823 2824 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, 2825 (void *) data_page); 2826 2827 free_page(data_page); 2828 out_data: 2829 kfree(kernel_dev); 2830 out_dev: 2831 kfree(kernel_type); 2832 out_type: 2833 return ret; 2834 } 2835 2836 /* 2837 * Return true if path is reachable from root 2838 * 2839 * namespace_sem or mount_lock is held 2840 */ 2841 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2842 const struct path *root) 2843 { 2844 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2845 dentry = mnt->mnt_mountpoint; 2846 mnt = mnt->mnt_parent; 2847 } 2848 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2849 } 2850 2851 int path_is_under(struct path *path1, struct path *path2) 2852 { 2853 int res; 2854 read_seqlock_excl(&mount_lock); 2855 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2856 read_sequnlock_excl(&mount_lock); 2857 return res; 2858 } 2859 EXPORT_SYMBOL(path_is_under); 2860 2861 /* 2862 * pivot_root Semantics: 2863 * Moves the root file system of the current process to the directory put_old, 2864 * makes new_root as the new root file system of the current process, and sets 2865 * root/cwd of all processes which had them on the current root to new_root. 2866 * 2867 * Restrictions: 2868 * The new_root and put_old must be directories, and must not be on the 2869 * same file system as the current process root. The put_old must be 2870 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2871 * pointed to by put_old must yield the same directory as new_root. No other 2872 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2873 * 2874 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2875 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2876 * in this situation. 2877 * 2878 * Notes: 2879 * - we don't move root/cwd if they are not at the root (reason: if something 2880 * cared enough to change them, it's probably wrong to force them elsewhere) 2881 * - it's okay to pick a root that isn't the root of a file system, e.g. 2882 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2883 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2884 * first. 2885 */ 2886 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2887 const char __user *, put_old) 2888 { 2889 struct path new, old, parent_path, root_parent, root; 2890 struct mount *new_mnt, *root_mnt, *old_mnt; 2891 struct mountpoint *old_mp, *root_mp; 2892 int error; 2893 2894 if (!may_mount()) 2895 return -EPERM; 2896 2897 error = user_path_dir(new_root, &new); 2898 if (error) 2899 goto out0; 2900 2901 error = user_path_dir(put_old, &old); 2902 if (error) 2903 goto out1; 2904 2905 error = security_sb_pivotroot(&old, &new); 2906 if (error) 2907 goto out2; 2908 2909 get_fs_root(current->fs, &root); 2910 old_mp = lock_mount(&old); 2911 error = PTR_ERR(old_mp); 2912 if (IS_ERR(old_mp)) 2913 goto out3; 2914 2915 error = -EINVAL; 2916 new_mnt = real_mount(new.mnt); 2917 root_mnt = real_mount(root.mnt); 2918 old_mnt = real_mount(old.mnt); 2919 if (IS_MNT_SHARED(old_mnt) || 2920 IS_MNT_SHARED(new_mnt->mnt_parent) || 2921 IS_MNT_SHARED(root_mnt->mnt_parent)) 2922 goto out4; 2923 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2924 goto out4; 2925 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2926 goto out4; 2927 error = -ENOENT; 2928 if (d_unlinked(new.dentry)) 2929 goto out4; 2930 error = -EBUSY; 2931 if (new_mnt == root_mnt || old_mnt == root_mnt) 2932 goto out4; /* loop, on the same file system */ 2933 error = -EINVAL; 2934 if (root.mnt->mnt_root != root.dentry) 2935 goto out4; /* not a mountpoint */ 2936 if (!mnt_has_parent(root_mnt)) 2937 goto out4; /* not attached */ 2938 root_mp = root_mnt->mnt_mp; 2939 if (new.mnt->mnt_root != new.dentry) 2940 goto out4; /* not a mountpoint */ 2941 if (!mnt_has_parent(new_mnt)) 2942 goto out4; /* not attached */ 2943 /* make sure we can reach put_old from new_root */ 2944 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2945 goto out4; 2946 /* make certain new is below the root */ 2947 if (!is_path_reachable(new_mnt, new.dentry, &root)) 2948 goto out4; 2949 root_mp->m_count++; /* pin it so it won't go away */ 2950 lock_mount_hash(); 2951 detach_mnt(new_mnt, &parent_path); 2952 detach_mnt(root_mnt, &root_parent); 2953 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2954 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2955 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2956 } 2957 /* mount old root on put_old */ 2958 attach_mnt(root_mnt, old_mnt, old_mp); 2959 /* mount new_root on / */ 2960 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2961 touch_mnt_namespace(current->nsproxy->mnt_ns); 2962 /* A moved mount should not expire automatically */ 2963 list_del_init(&new_mnt->mnt_expire); 2964 unlock_mount_hash(); 2965 chroot_fs_refs(&root, &new); 2966 put_mountpoint(root_mp); 2967 error = 0; 2968 out4: 2969 unlock_mount(old_mp); 2970 if (!error) { 2971 path_put(&root_parent); 2972 path_put(&parent_path); 2973 } 2974 out3: 2975 path_put(&root); 2976 out2: 2977 path_put(&old); 2978 out1: 2979 path_put(&new); 2980 out0: 2981 return error; 2982 } 2983 2984 static void __init init_mount_tree(void) 2985 { 2986 struct vfsmount *mnt; 2987 struct mnt_namespace *ns; 2988 struct path root; 2989 struct file_system_type *type; 2990 2991 type = get_fs_type("rootfs"); 2992 if (!type) 2993 panic("Can't find rootfs type"); 2994 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2995 put_filesystem(type); 2996 if (IS_ERR(mnt)) 2997 panic("Can't create rootfs"); 2998 2999 ns = create_mnt_ns(mnt); 3000 if (IS_ERR(ns)) 3001 panic("Can't allocate initial namespace"); 3002 3003 init_task.nsproxy->mnt_ns = ns; 3004 get_mnt_ns(ns); 3005 3006 root.mnt = mnt; 3007 root.dentry = mnt->mnt_root; 3008 mnt->mnt_flags |= MNT_LOCKED; 3009 3010 set_fs_pwd(current->fs, &root); 3011 set_fs_root(current->fs, &root); 3012 } 3013 3014 void __init mnt_init(void) 3015 { 3016 unsigned u; 3017 int err; 3018 3019 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3020 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3021 3022 mount_hashtable = alloc_large_system_hash("Mount-cache", 3023 sizeof(struct hlist_head), 3024 mhash_entries, 19, 3025 0, 3026 &m_hash_shift, &m_hash_mask, 0, 0); 3027 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3028 sizeof(struct hlist_head), 3029 mphash_entries, 19, 3030 0, 3031 &mp_hash_shift, &mp_hash_mask, 0, 0); 3032 3033 if (!mount_hashtable || !mountpoint_hashtable) 3034 panic("Failed to allocate mount hash table\n"); 3035 3036 for (u = 0; u <= m_hash_mask; u++) 3037 INIT_HLIST_HEAD(&mount_hashtable[u]); 3038 for (u = 0; u <= mp_hash_mask; u++) 3039 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3040 3041 kernfs_init(); 3042 3043 err = sysfs_init(); 3044 if (err) 3045 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3046 __func__, err); 3047 fs_kobj = kobject_create_and_add("fs", NULL); 3048 if (!fs_kobj) 3049 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3050 init_rootfs(); 3051 init_mount_tree(); 3052 } 3053 3054 void put_mnt_ns(struct mnt_namespace *ns) 3055 { 3056 if (!atomic_dec_and_test(&ns->count)) 3057 return; 3058 drop_collected_mounts(&ns->root->mnt); 3059 free_mnt_ns(ns); 3060 } 3061 3062 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3063 { 3064 struct vfsmount *mnt; 3065 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3066 if (!IS_ERR(mnt)) { 3067 /* 3068 * it is a longterm mount, don't release mnt until 3069 * we unmount before file sys is unregistered 3070 */ 3071 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3072 } 3073 return mnt; 3074 } 3075 EXPORT_SYMBOL_GPL(kern_mount_data); 3076 3077 void kern_unmount(struct vfsmount *mnt) 3078 { 3079 /* release long term mount so mount point can be released */ 3080 if (!IS_ERR_OR_NULL(mnt)) { 3081 real_mount(mnt)->mnt_ns = NULL; 3082 synchronize_rcu(); /* yecchhh... */ 3083 mntput(mnt); 3084 } 3085 } 3086 EXPORT_SYMBOL(kern_unmount); 3087 3088 bool our_mnt(struct vfsmount *mnt) 3089 { 3090 return check_mnt(real_mount(mnt)); 3091 } 3092 3093 bool current_chrooted(void) 3094 { 3095 /* Does the current process have a non-standard root */ 3096 struct path ns_root; 3097 struct path fs_root; 3098 bool chrooted; 3099 3100 /* Find the namespace root */ 3101 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3102 ns_root.dentry = ns_root.mnt->mnt_root; 3103 path_get(&ns_root); 3104 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3105 ; 3106 3107 get_fs_root(current->fs, &fs_root); 3108 3109 chrooted = !path_equal(&fs_root, &ns_root); 3110 3111 path_put(&fs_root); 3112 path_put(&ns_root); 3113 3114 return chrooted; 3115 } 3116 3117 bool fs_fully_visible(struct file_system_type *type) 3118 { 3119 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3120 struct mount *mnt; 3121 bool visible = false; 3122 3123 if (unlikely(!ns)) 3124 return false; 3125 3126 down_read(&namespace_sem); 3127 list_for_each_entry(mnt, &ns->list, mnt_list) { 3128 struct mount *child; 3129 if (mnt->mnt.mnt_sb->s_type != type) 3130 continue; 3131 3132 /* This mount is not fully visible if there are any child mounts 3133 * that cover anything except for empty directories. 3134 */ 3135 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3136 struct inode *inode = child->mnt_mountpoint->d_inode; 3137 if (!S_ISDIR(inode->i_mode)) 3138 goto next; 3139 if (inode->i_nlink > 2) 3140 goto next; 3141 } 3142 visible = true; 3143 goto found; 3144 next: ; 3145 } 3146 found: 3147 up_read(&namespace_sem); 3148 return visible; 3149 } 3150 3151 static struct ns_common *mntns_get(struct task_struct *task) 3152 { 3153 struct ns_common *ns = NULL; 3154 struct nsproxy *nsproxy; 3155 3156 task_lock(task); 3157 nsproxy = task->nsproxy; 3158 if (nsproxy) { 3159 ns = &nsproxy->mnt_ns->ns; 3160 get_mnt_ns(to_mnt_ns(ns)); 3161 } 3162 task_unlock(task); 3163 3164 return ns; 3165 } 3166 3167 static void mntns_put(struct ns_common *ns) 3168 { 3169 put_mnt_ns(to_mnt_ns(ns)); 3170 } 3171 3172 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3173 { 3174 struct fs_struct *fs = current->fs; 3175 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3176 struct path root; 3177 3178 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3179 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3180 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3181 return -EPERM; 3182 3183 if (fs->users != 1) 3184 return -EINVAL; 3185 3186 get_mnt_ns(mnt_ns); 3187 put_mnt_ns(nsproxy->mnt_ns); 3188 nsproxy->mnt_ns = mnt_ns; 3189 3190 /* Find the root */ 3191 root.mnt = &mnt_ns->root->mnt; 3192 root.dentry = mnt_ns->root->mnt.mnt_root; 3193 path_get(&root); 3194 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3195 ; 3196 3197 /* Update the pwd and root */ 3198 set_fs_pwd(fs, &root); 3199 set_fs_root(fs, &root); 3200 3201 path_put(&root); 3202 return 0; 3203 } 3204 3205 const struct proc_ns_operations mntns_operations = { 3206 .name = "mnt", 3207 .type = CLONE_NEWNS, 3208 .get = mntns_get, 3209 .put = mntns_put, 3210 .install = mntns_install, 3211 }; 3212