1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 35 #include "pnode.h" 36 #include "internal.h" 37 38 /* Maximum number of mounts in a mount namespace */ 39 unsigned int sysctl_mount_max __read_mostly = 100000; 40 41 static unsigned int m_hash_mask __read_mostly; 42 static unsigned int m_hash_shift __read_mostly; 43 static unsigned int mp_hash_mask __read_mostly; 44 static unsigned int mp_hash_shift __read_mostly; 45 46 static __initdata unsigned long mhash_entries; 47 static int __init set_mhash_entries(char *str) 48 { 49 if (!str) 50 return 0; 51 mhash_entries = simple_strtoul(str, &str, 0); 52 return 1; 53 } 54 __setup("mhash_entries=", set_mhash_entries); 55 56 static __initdata unsigned long mphash_entries; 57 static int __init set_mphash_entries(char *str) 58 { 59 if (!str) 60 return 0; 61 mphash_entries = simple_strtoul(str, &str, 0); 62 return 1; 63 } 64 __setup("mphash_entries=", set_mphash_entries); 65 66 static u64 event; 67 static DEFINE_IDA(mnt_id_ida); 68 static DEFINE_IDA(mnt_group_ida); 69 70 static struct hlist_head *mount_hashtable __read_mostly; 71 static struct hlist_head *mountpoint_hashtable __read_mostly; 72 static struct kmem_cache *mnt_cache __read_mostly; 73 static DECLARE_RWSEM(namespace_sem); 74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 76 77 struct mount_kattr { 78 unsigned int attr_set; 79 unsigned int attr_clr; 80 unsigned int propagation; 81 unsigned int lookup_flags; 82 bool recurse; 83 struct user_namespace *mnt_userns; 84 }; 85 86 /* /sys/fs */ 87 struct kobject *fs_kobj; 88 EXPORT_SYMBOL_GPL(fs_kobj); 89 90 /* 91 * vfsmount lock may be taken for read to prevent changes to the 92 * vfsmount hash, ie. during mountpoint lookups or walking back 93 * up the tree. 94 * 95 * It should be taken for write in all cases where the vfsmount 96 * tree or hash is modified or when a vfsmount structure is modified. 97 */ 98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 99 100 static inline void lock_mount_hash(void) 101 { 102 write_seqlock(&mount_lock); 103 } 104 105 static inline void unlock_mount_hash(void) 106 { 107 write_sequnlock(&mount_lock); 108 } 109 110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 111 { 112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 114 tmp = tmp + (tmp >> m_hash_shift); 115 return &mount_hashtable[tmp & m_hash_mask]; 116 } 117 118 static inline struct hlist_head *mp_hash(struct dentry *dentry) 119 { 120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 121 tmp = tmp + (tmp >> mp_hash_shift); 122 return &mountpoint_hashtable[tmp & mp_hash_mask]; 123 } 124 125 static int mnt_alloc_id(struct mount *mnt) 126 { 127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 128 129 if (res < 0) 130 return res; 131 mnt->mnt_id = res; 132 return 0; 133 } 134 135 static void mnt_free_id(struct mount *mnt) 136 { 137 ida_free(&mnt_id_ida, mnt->mnt_id); 138 } 139 140 /* 141 * Allocate a new peer group ID 142 */ 143 static int mnt_alloc_group_id(struct mount *mnt) 144 { 145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_group_id = res; 150 return 0; 151 } 152 153 /* 154 * Release a peer group ID 155 */ 156 void mnt_release_group_id(struct mount *mnt) 157 { 158 ida_free(&mnt_group_ida, mnt->mnt_group_id); 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static struct mount *alloc_vfsmnt(const char *name) 196 { 197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 198 if (mnt) { 199 int err; 200 201 err = mnt_alloc_id(mnt); 202 if (err) 203 goto out_free_cache; 204 205 if (name) { 206 mnt->mnt_devname = kstrdup_const(name, 207 GFP_KERNEL_ACCOUNT); 208 if (!mnt->mnt_devname) 209 goto out_free_id; 210 } 211 212 #ifdef CONFIG_SMP 213 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 214 if (!mnt->mnt_pcp) 215 goto out_free_devname; 216 217 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 218 #else 219 mnt->mnt_count = 1; 220 mnt->mnt_writers = 0; 221 #endif 222 223 INIT_HLIST_NODE(&mnt->mnt_hash); 224 INIT_LIST_HEAD(&mnt->mnt_child); 225 INIT_LIST_HEAD(&mnt->mnt_mounts); 226 INIT_LIST_HEAD(&mnt->mnt_list); 227 INIT_LIST_HEAD(&mnt->mnt_expire); 228 INIT_LIST_HEAD(&mnt->mnt_share); 229 INIT_LIST_HEAD(&mnt->mnt_slave_list); 230 INIT_LIST_HEAD(&mnt->mnt_slave); 231 INIT_HLIST_NODE(&mnt->mnt_mp_list); 232 INIT_LIST_HEAD(&mnt->mnt_umounting); 233 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 234 mnt->mnt.mnt_userns = &init_user_ns; 235 } 236 return mnt; 237 238 #ifdef CONFIG_SMP 239 out_free_devname: 240 kfree_const(mnt->mnt_devname); 241 #endif 242 out_free_id: 243 mnt_free_id(mnt); 244 out_free_cache: 245 kmem_cache_free(mnt_cache, mnt); 246 return NULL; 247 } 248 249 /* 250 * Most r/o checks on a fs are for operations that take 251 * discrete amounts of time, like a write() or unlink(). 252 * We must keep track of when those operations start 253 * (for permission checks) and when they end, so that 254 * we can determine when writes are able to occur to 255 * a filesystem. 256 */ 257 /* 258 * __mnt_is_readonly: check whether a mount is read-only 259 * @mnt: the mount to check for its write status 260 * 261 * This shouldn't be used directly ouside of the VFS. 262 * It does not guarantee that the filesystem will stay 263 * r/w, just that it is right *now*. This can not and 264 * should not be used in place of IS_RDONLY(inode). 265 * mnt_want/drop_write() will _keep_ the filesystem 266 * r/w. 267 */ 268 bool __mnt_is_readonly(struct vfsmount *mnt) 269 { 270 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 271 } 272 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 273 274 static inline void mnt_inc_writers(struct mount *mnt) 275 { 276 #ifdef CONFIG_SMP 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 278 #else 279 mnt->mnt_writers++; 280 #endif 281 } 282 283 static inline void mnt_dec_writers(struct mount *mnt) 284 { 285 #ifdef CONFIG_SMP 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 287 #else 288 mnt->mnt_writers--; 289 #endif 290 } 291 292 static unsigned int mnt_get_writers(struct mount *mnt) 293 { 294 #ifdef CONFIG_SMP 295 unsigned int count = 0; 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 300 } 301 302 return count; 303 #else 304 return mnt->mnt_writers; 305 #endif 306 } 307 308 static int mnt_is_readonly(struct vfsmount *mnt) 309 { 310 if (mnt->mnt_sb->s_readonly_remount) 311 return 1; 312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 313 smp_rmb(); 314 return __mnt_is_readonly(mnt); 315 } 316 317 /* 318 * Most r/o & frozen checks on a fs are for operations that take discrete 319 * amounts of time, like a write() or unlink(). We must keep track of when 320 * those operations start (for permission checks) and when they end, so that we 321 * can determine when writes are able to occur to a filesystem. 322 */ 323 /** 324 * __mnt_want_write - get write access to a mount without freeze protection 325 * @m: the mount on which to take a write 326 * 327 * This tells the low-level filesystem that a write is about to be performed to 328 * it, and makes sure that writes are allowed (mnt it read-write) before 329 * returning success. This operation does not protect against filesystem being 330 * frozen. When the write operation is finished, __mnt_drop_write() must be 331 * called. This is effectively a refcount. 332 */ 333 int __mnt_want_write(struct vfsmount *m) 334 { 335 struct mount *mnt = real_mount(m); 336 int ret = 0; 337 338 preempt_disable(); 339 mnt_inc_writers(mnt); 340 /* 341 * The store to mnt_inc_writers must be visible before we pass 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 343 * incremented count after it has set MNT_WRITE_HOLD. 344 */ 345 smp_mb(); 346 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 347 cpu_relax(); 348 /* 349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 350 * be set to match its requirements. So we must not load that until 351 * MNT_WRITE_HOLD is cleared. 352 */ 353 smp_rmb(); 354 if (mnt_is_readonly(m)) { 355 mnt_dec_writers(mnt); 356 ret = -EROFS; 357 } 358 preempt_enable(); 359 360 return ret; 361 } 362 363 /** 364 * mnt_want_write - get write access to a mount 365 * @m: the mount on which to take a write 366 * 367 * This tells the low-level filesystem that a write is about to be performed to 368 * it, and makes sure that writes are allowed (mount is read-write, filesystem 369 * is not frozen) before returning success. When the write operation is 370 * finished, mnt_drop_write() must be called. This is effectively a refcount. 371 */ 372 int mnt_want_write(struct vfsmount *m) 373 { 374 int ret; 375 376 sb_start_write(m->mnt_sb); 377 ret = __mnt_want_write(m); 378 if (ret) 379 sb_end_write(m->mnt_sb); 380 return ret; 381 } 382 EXPORT_SYMBOL_GPL(mnt_want_write); 383 384 /** 385 * __mnt_want_write_file - get write access to a file's mount 386 * @file: the file who's mount on which to take a write 387 * 388 * This is like __mnt_want_write, but if the file is already open for writing it 389 * skips incrementing mnt_writers (since the open file already has a reference) 390 * and instead only does the check for emergency r/o remounts. This must be 391 * paired with __mnt_drop_write_file. 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (file->f_mode & FMODE_WRITER) { 396 /* 397 * Superblock may have become readonly while there are still 398 * writable fd's, e.g. due to a fs error with errors=remount-ro 399 */ 400 if (__mnt_is_readonly(file->f_path.mnt)) 401 return -EROFS; 402 return 0; 403 } 404 return __mnt_want_write(file->f_path.mnt); 405 } 406 407 /** 408 * mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like mnt_want_write, but if the file is already open for writing it 412 * skips incrementing mnt_writers (since the open file already has a reference) 413 * and instead only does the freeze protection and the check for emergency r/o 414 * remounts. This must be paired with mnt_drop_write_file. 415 */ 416 int mnt_want_write_file(struct file *file) 417 { 418 int ret; 419 420 sb_start_write(file_inode(file)->i_sb); 421 ret = __mnt_want_write_file(file); 422 if (ret) 423 sb_end_write(file_inode(file)->i_sb); 424 return ret; 425 } 426 EXPORT_SYMBOL_GPL(mnt_want_write_file); 427 428 /** 429 * __mnt_drop_write - give up write access to a mount 430 * @mnt: the mount on which to give up write access 431 * 432 * Tells the low-level filesystem that we are done 433 * performing writes to it. Must be matched with 434 * __mnt_want_write() call above. 435 */ 436 void __mnt_drop_write(struct vfsmount *mnt) 437 { 438 preempt_disable(); 439 mnt_dec_writers(real_mount(mnt)); 440 preempt_enable(); 441 } 442 443 /** 444 * mnt_drop_write - give up write access to a mount 445 * @mnt: the mount on which to give up write access 446 * 447 * Tells the low-level filesystem that we are done performing writes to it and 448 * also allows filesystem to be frozen again. Must be matched with 449 * mnt_want_write() call above. 450 */ 451 void mnt_drop_write(struct vfsmount *mnt) 452 { 453 __mnt_drop_write(mnt); 454 sb_end_write(mnt->mnt_sb); 455 } 456 EXPORT_SYMBOL_GPL(mnt_drop_write); 457 458 void __mnt_drop_write_file(struct file *file) 459 { 460 if (!(file->f_mode & FMODE_WRITER)) 461 __mnt_drop_write(file->f_path.mnt); 462 } 463 464 void mnt_drop_write_file(struct file *file) 465 { 466 __mnt_drop_write_file(file); 467 sb_end_write(file_inode(file)->i_sb); 468 } 469 EXPORT_SYMBOL(mnt_drop_write_file); 470 471 static inline int mnt_hold_writers(struct mount *mnt) 472 { 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 474 /* 475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 476 * should be visible before we do. 477 */ 478 smp_mb(); 479 480 /* 481 * With writers on hold, if this value is zero, then there are 482 * definitely no active writers (although held writers may subsequently 483 * increment the count, they'll have to wait, and decrement it after 484 * seeing MNT_READONLY). 485 * 486 * It is OK to have counter incremented on one CPU and decremented on 487 * another: the sum will add up correctly. The danger would be when we 488 * sum up each counter, if we read a counter before it is incremented, 489 * but then read another CPU's count which it has been subsequently 490 * decremented from -- we would see more decrements than we should. 491 * MNT_WRITE_HOLD protects against this scenario, because 492 * mnt_want_write first increments count, then smp_mb, then spins on 493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 494 * we're counting up here. 495 */ 496 if (mnt_get_writers(mnt) > 0) 497 return -EBUSY; 498 499 return 0; 500 } 501 502 static inline void mnt_unhold_writers(struct mount *mnt) 503 { 504 /* 505 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 506 * that become unheld will see MNT_READONLY. 507 */ 508 smp_wmb(); 509 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 510 } 511 512 static int mnt_make_readonly(struct mount *mnt) 513 { 514 int ret; 515 516 ret = mnt_hold_writers(mnt); 517 if (!ret) 518 mnt->mnt.mnt_flags |= MNT_READONLY; 519 mnt_unhold_writers(mnt); 520 return ret; 521 } 522 523 int sb_prepare_remount_readonly(struct super_block *sb) 524 { 525 struct mount *mnt; 526 int err = 0; 527 528 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 529 if (atomic_long_read(&sb->s_remove_count)) 530 return -EBUSY; 531 532 lock_mount_hash(); 533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 534 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 535 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 536 smp_mb(); 537 if (mnt_get_writers(mnt) > 0) { 538 err = -EBUSY; 539 break; 540 } 541 } 542 } 543 if (!err && atomic_long_read(&sb->s_remove_count)) 544 err = -EBUSY; 545 546 if (!err) { 547 sb->s_readonly_remount = 1; 548 smp_wmb(); 549 } 550 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 551 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 552 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 553 } 554 unlock_mount_hash(); 555 556 return err; 557 } 558 559 static void free_vfsmnt(struct mount *mnt) 560 { 561 struct user_namespace *mnt_userns; 562 563 mnt_userns = mnt_user_ns(&mnt->mnt); 564 if (mnt_userns != &init_user_ns) 565 put_user_ns(mnt_userns); 566 kfree_const(mnt->mnt_devname); 567 #ifdef CONFIG_SMP 568 free_percpu(mnt->mnt_pcp); 569 #endif 570 kmem_cache_free(mnt_cache, mnt); 571 } 572 573 static void delayed_free_vfsmnt(struct rcu_head *head) 574 { 575 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 576 } 577 578 /* call under rcu_read_lock */ 579 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 580 { 581 struct mount *mnt; 582 if (read_seqretry(&mount_lock, seq)) 583 return 1; 584 if (bastard == NULL) 585 return 0; 586 mnt = real_mount(bastard); 587 mnt_add_count(mnt, 1); 588 smp_mb(); // see mntput_no_expire() 589 if (likely(!read_seqretry(&mount_lock, seq))) 590 return 0; 591 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 592 mnt_add_count(mnt, -1); 593 return 1; 594 } 595 lock_mount_hash(); 596 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 597 mnt_add_count(mnt, -1); 598 unlock_mount_hash(); 599 return 1; 600 } 601 unlock_mount_hash(); 602 /* caller will mntput() */ 603 return -1; 604 } 605 606 /* call under rcu_read_lock */ 607 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 608 { 609 int res = __legitimize_mnt(bastard, seq); 610 if (likely(!res)) 611 return true; 612 if (unlikely(res < 0)) { 613 rcu_read_unlock(); 614 mntput(bastard); 615 rcu_read_lock(); 616 } 617 return false; 618 } 619 620 /* 621 * find the first mount at @dentry on vfsmount @mnt. 622 * call under rcu_read_lock() 623 */ 624 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 625 { 626 struct hlist_head *head = m_hash(mnt, dentry); 627 struct mount *p; 628 629 hlist_for_each_entry_rcu(p, head, mnt_hash) 630 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 631 return p; 632 return NULL; 633 } 634 635 /* 636 * lookup_mnt - Return the first child mount mounted at path 637 * 638 * "First" means first mounted chronologically. If you create the 639 * following mounts: 640 * 641 * mount /dev/sda1 /mnt 642 * mount /dev/sda2 /mnt 643 * mount /dev/sda3 /mnt 644 * 645 * Then lookup_mnt() on the base /mnt dentry in the root mount will 646 * return successively the root dentry and vfsmount of /dev/sda1, then 647 * /dev/sda2, then /dev/sda3, then NULL. 648 * 649 * lookup_mnt takes a reference to the found vfsmount. 650 */ 651 struct vfsmount *lookup_mnt(const struct path *path) 652 { 653 struct mount *child_mnt; 654 struct vfsmount *m; 655 unsigned seq; 656 657 rcu_read_lock(); 658 do { 659 seq = read_seqbegin(&mount_lock); 660 child_mnt = __lookup_mnt(path->mnt, path->dentry); 661 m = child_mnt ? &child_mnt->mnt : NULL; 662 } while (!legitimize_mnt(m, seq)); 663 rcu_read_unlock(); 664 return m; 665 } 666 667 static inline void lock_ns_list(struct mnt_namespace *ns) 668 { 669 spin_lock(&ns->ns_lock); 670 } 671 672 static inline void unlock_ns_list(struct mnt_namespace *ns) 673 { 674 spin_unlock(&ns->ns_lock); 675 } 676 677 static inline bool mnt_is_cursor(struct mount *mnt) 678 { 679 return mnt->mnt.mnt_flags & MNT_CURSOR; 680 } 681 682 /* 683 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 684 * current mount namespace. 685 * 686 * The common case is dentries are not mountpoints at all and that 687 * test is handled inline. For the slow case when we are actually 688 * dealing with a mountpoint of some kind, walk through all of the 689 * mounts in the current mount namespace and test to see if the dentry 690 * is a mountpoint. 691 * 692 * The mount_hashtable is not usable in the context because we 693 * need to identify all mounts that may be in the current mount 694 * namespace not just a mount that happens to have some specified 695 * parent mount. 696 */ 697 bool __is_local_mountpoint(struct dentry *dentry) 698 { 699 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 700 struct mount *mnt; 701 bool is_covered = false; 702 703 down_read(&namespace_sem); 704 lock_ns_list(ns); 705 list_for_each_entry(mnt, &ns->list, mnt_list) { 706 if (mnt_is_cursor(mnt)) 707 continue; 708 is_covered = (mnt->mnt_mountpoint == dentry); 709 if (is_covered) 710 break; 711 } 712 unlock_ns_list(ns); 713 up_read(&namespace_sem); 714 715 return is_covered; 716 } 717 718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 719 { 720 struct hlist_head *chain = mp_hash(dentry); 721 struct mountpoint *mp; 722 723 hlist_for_each_entry(mp, chain, m_hash) { 724 if (mp->m_dentry == dentry) { 725 mp->m_count++; 726 return mp; 727 } 728 } 729 return NULL; 730 } 731 732 static struct mountpoint *get_mountpoint(struct dentry *dentry) 733 { 734 struct mountpoint *mp, *new = NULL; 735 int ret; 736 737 if (d_mountpoint(dentry)) { 738 /* might be worth a WARN_ON() */ 739 if (d_unlinked(dentry)) 740 return ERR_PTR(-ENOENT); 741 mountpoint: 742 read_seqlock_excl(&mount_lock); 743 mp = lookup_mountpoint(dentry); 744 read_sequnlock_excl(&mount_lock); 745 if (mp) 746 goto done; 747 } 748 749 if (!new) 750 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 751 if (!new) 752 return ERR_PTR(-ENOMEM); 753 754 755 /* Exactly one processes may set d_mounted */ 756 ret = d_set_mounted(dentry); 757 758 /* Someone else set d_mounted? */ 759 if (ret == -EBUSY) 760 goto mountpoint; 761 762 /* The dentry is not available as a mountpoint? */ 763 mp = ERR_PTR(ret); 764 if (ret) 765 goto done; 766 767 /* Add the new mountpoint to the hash table */ 768 read_seqlock_excl(&mount_lock); 769 new->m_dentry = dget(dentry); 770 new->m_count = 1; 771 hlist_add_head(&new->m_hash, mp_hash(dentry)); 772 INIT_HLIST_HEAD(&new->m_list); 773 read_sequnlock_excl(&mount_lock); 774 775 mp = new; 776 new = NULL; 777 done: 778 kfree(new); 779 return mp; 780 } 781 782 /* 783 * vfsmount lock must be held. Additionally, the caller is responsible 784 * for serializing calls for given disposal list. 785 */ 786 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 787 { 788 if (!--mp->m_count) { 789 struct dentry *dentry = mp->m_dentry; 790 BUG_ON(!hlist_empty(&mp->m_list)); 791 spin_lock(&dentry->d_lock); 792 dentry->d_flags &= ~DCACHE_MOUNTED; 793 spin_unlock(&dentry->d_lock); 794 dput_to_list(dentry, list); 795 hlist_del(&mp->m_hash); 796 kfree(mp); 797 } 798 } 799 800 /* called with namespace_lock and vfsmount lock */ 801 static void put_mountpoint(struct mountpoint *mp) 802 { 803 __put_mountpoint(mp, &ex_mountpoints); 804 } 805 806 static inline int check_mnt(struct mount *mnt) 807 { 808 return mnt->mnt_ns == current->nsproxy->mnt_ns; 809 } 810 811 /* 812 * vfsmount lock must be held for write 813 */ 814 static void touch_mnt_namespace(struct mnt_namespace *ns) 815 { 816 if (ns) { 817 ns->event = ++event; 818 wake_up_interruptible(&ns->poll); 819 } 820 } 821 822 /* 823 * vfsmount lock must be held for write 824 */ 825 static void __touch_mnt_namespace(struct mnt_namespace *ns) 826 { 827 if (ns && ns->event != event) { 828 ns->event = event; 829 wake_up_interruptible(&ns->poll); 830 } 831 } 832 833 /* 834 * vfsmount lock must be held for write 835 */ 836 static struct mountpoint *unhash_mnt(struct mount *mnt) 837 { 838 struct mountpoint *mp; 839 mnt->mnt_parent = mnt; 840 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 841 list_del_init(&mnt->mnt_child); 842 hlist_del_init_rcu(&mnt->mnt_hash); 843 hlist_del_init(&mnt->mnt_mp_list); 844 mp = mnt->mnt_mp; 845 mnt->mnt_mp = NULL; 846 return mp; 847 } 848 849 /* 850 * vfsmount lock must be held for write 851 */ 852 static void umount_mnt(struct mount *mnt) 853 { 854 put_mountpoint(unhash_mnt(mnt)); 855 } 856 857 /* 858 * vfsmount lock must be held for write 859 */ 860 void mnt_set_mountpoint(struct mount *mnt, 861 struct mountpoint *mp, 862 struct mount *child_mnt) 863 { 864 mp->m_count++; 865 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 866 child_mnt->mnt_mountpoint = mp->m_dentry; 867 child_mnt->mnt_parent = mnt; 868 child_mnt->mnt_mp = mp; 869 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 870 } 871 872 static void __attach_mnt(struct mount *mnt, struct mount *parent) 873 { 874 hlist_add_head_rcu(&mnt->mnt_hash, 875 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 876 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 877 } 878 879 /* 880 * vfsmount lock must be held for write 881 */ 882 static void attach_mnt(struct mount *mnt, 883 struct mount *parent, 884 struct mountpoint *mp) 885 { 886 mnt_set_mountpoint(parent, mp, mnt); 887 __attach_mnt(mnt, parent); 888 } 889 890 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 891 { 892 struct mountpoint *old_mp = mnt->mnt_mp; 893 struct mount *old_parent = mnt->mnt_parent; 894 895 list_del_init(&mnt->mnt_child); 896 hlist_del_init(&mnt->mnt_mp_list); 897 hlist_del_init_rcu(&mnt->mnt_hash); 898 899 attach_mnt(mnt, parent, mp); 900 901 put_mountpoint(old_mp); 902 mnt_add_count(old_parent, -1); 903 } 904 905 /* 906 * vfsmount lock must be held for write 907 */ 908 static void commit_tree(struct mount *mnt) 909 { 910 struct mount *parent = mnt->mnt_parent; 911 struct mount *m; 912 LIST_HEAD(head); 913 struct mnt_namespace *n = parent->mnt_ns; 914 915 BUG_ON(parent == mnt); 916 917 list_add_tail(&head, &mnt->mnt_list); 918 list_for_each_entry(m, &head, mnt_list) 919 m->mnt_ns = n; 920 921 list_splice(&head, n->list.prev); 922 923 n->mounts += n->pending_mounts; 924 n->pending_mounts = 0; 925 926 __attach_mnt(mnt, parent); 927 touch_mnt_namespace(n); 928 } 929 930 static struct mount *next_mnt(struct mount *p, struct mount *root) 931 { 932 struct list_head *next = p->mnt_mounts.next; 933 if (next == &p->mnt_mounts) { 934 while (1) { 935 if (p == root) 936 return NULL; 937 next = p->mnt_child.next; 938 if (next != &p->mnt_parent->mnt_mounts) 939 break; 940 p = p->mnt_parent; 941 } 942 } 943 return list_entry(next, struct mount, mnt_child); 944 } 945 946 static struct mount *skip_mnt_tree(struct mount *p) 947 { 948 struct list_head *prev = p->mnt_mounts.prev; 949 while (prev != &p->mnt_mounts) { 950 p = list_entry(prev, struct mount, mnt_child); 951 prev = p->mnt_mounts.prev; 952 } 953 return p; 954 } 955 956 /** 957 * vfs_create_mount - Create a mount for a configured superblock 958 * @fc: The configuration context with the superblock attached 959 * 960 * Create a mount to an already configured superblock. If necessary, the 961 * caller should invoke vfs_get_tree() before calling this. 962 * 963 * Note that this does not attach the mount to anything. 964 */ 965 struct vfsmount *vfs_create_mount(struct fs_context *fc) 966 { 967 struct mount *mnt; 968 969 if (!fc->root) 970 return ERR_PTR(-EINVAL); 971 972 mnt = alloc_vfsmnt(fc->source ?: "none"); 973 if (!mnt) 974 return ERR_PTR(-ENOMEM); 975 976 if (fc->sb_flags & SB_KERNMOUNT) 977 mnt->mnt.mnt_flags = MNT_INTERNAL; 978 979 atomic_inc(&fc->root->d_sb->s_active); 980 mnt->mnt.mnt_sb = fc->root->d_sb; 981 mnt->mnt.mnt_root = dget(fc->root); 982 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 983 mnt->mnt_parent = mnt; 984 985 lock_mount_hash(); 986 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 987 unlock_mount_hash(); 988 return &mnt->mnt; 989 } 990 EXPORT_SYMBOL(vfs_create_mount); 991 992 struct vfsmount *fc_mount(struct fs_context *fc) 993 { 994 int err = vfs_get_tree(fc); 995 if (!err) { 996 up_write(&fc->root->d_sb->s_umount); 997 return vfs_create_mount(fc); 998 } 999 return ERR_PTR(err); 1000 } 1001 EXPORT_SYMBOL(fc_mount); 1002 1003 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1004 int flags, const char *name, 1005 void *data) 1006 { 1007 struct fs_context *fc; 1008 struct vfsmount *mnt; 1009 int ret = 0; 1010 1011 if (!type) 1012 return ERR_PTR(-EINVAL); 1013 1014 fc = fs_context_for_mount(type, flags); 1015 if (IS_ERR(fc)) 1016 return ERR_CAST(fc); 1017 1018 if (name) 1019 ret = vfs_parse_fs_string(fc, "source", 1020 name, strlen(name)); 1021 if (!ret) 1022 ret = parse_monolithic_mount_data(fc, data); 1023 if (!ret) 1024 mnt = fc_mount(fc); 1025 else 1026 mnt = ERR_PTR(ret); 1027 1028 put_fs_context(fc); 1029 return mnt; 1030 } 1031 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1032 1033 struct vfsmount * 1034 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1035 const char *name, void *data) 1036 { 1037 /* Until it is worked out how to pass the user namespace 1038 * through from the parent mount to the submount don't support 1039 * unprivileged mounts with submounts. 1040 */ 1041 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1042 return ERR_PTR(-EPERM); 1043 1044 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1045 } 1046 EXPORT_SYMBOL_GPL(vfs_submount); 1047 1048 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1049 int flag) 1050 { 1051 struct super_block *sb = old->mnt.mnt_sb; 1052 struct mount *mnt; 1053 int err; 1054 1055 mnt = alloc_vfsmnt(old->mnt_devname); 1056 if (!mnt) 1057 return ERR_PTR(-ENOMEM); 1058 1059 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1060 mnt->mnt_group_id = 0; /* not a peer of original */ 1061 else 1062 mnt->mnt_group_id = old->mnt_group_id; 1063 1064 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1065 err = mnt_alloc_group_id(mnt); 1066 if (err) 1067 goto out_free; 1068 } 1069 1070 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1071 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1072 1073 atomic_inc(&sb->s_active); 1074 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1075 if (mnt->mnt.mnt_userns != &init_user_ns) 1076 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1077 mnt->mnt.mnt_sb = sb; 1078 mnt->mnt.mnt_root = dget(root); 1079 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1080 mnt->mnt_parent = mnt; 1081 lock_mount_hash(); 1082 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1083 unlock_mount_hash(); 1084 1085 if ((flag & CL_SLAVE) || 1086 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1087 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1088 mnt->mnt_master = old; 1089 CLEAR_MNT_SHARED(mnt); 1090 } else if (!(flag & CL_PRIVATE)) { 1091 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1092 list_add(&mnt->mnt_share, &old->mnt_share); 1093 if (IS_MNT_SLAVE(old)) 1094 list_add(&mnt->mnt_slave, &old->mnt_slave); 1095 mnt->mnt_master = old->mnt_master; 1096 } else { 1097 CLEAR_MNT_SHARED(mnt); 1098 } 1099 if (flag & CL_MAKE_SHARED) 1100 set_mnt_shared(mnt); 1101 1102 /* stick the duplicate mount on the same expiry list 1103 * as the original if that was on one */ 1104 if (flag & CL_EXPIRE) { 1105 if (!list_empty(&old->mnt_expire)) 1106 list_add(&mnt->mnt_expire, &old->mnt_expire); 1107 } 1108 1109 return mnt; 1110 1111 out_free: 1112 mnt_free_id(mnt); 1113 free_vfsmnt(mnt); 1114 return ERR_PTR(err); 1115 } 1116 1117 static void cleanup_mnt(struct mount *mnt) 1118 { 1119 struct hlist_node *p; 1120 struct mount *m; 1121 /* 1122 * The warning here probably indicates that somebody messed 1123 * up a mnt_want/drop_write() pair. If this happens, the 1124 * filesystem was probably unable to make r/w->r/o transitions. 1125 * The locking used to deal with mnt_count decrement provides barriers, 1126 * so mnt_get_writers() below is safe. 1127 */ 1128 WARN_ON(mnt_get_writers(mnt)); 1129 if (unlikely(mnt->mnt_pins.first)) 1130 mnt_pin_kill(mnt); 1131 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1132 hlist_del(&m->mnt_umount); 1133 mntput(&m->mnt); 1134 } 1135 fsnotify_vfsmount_delete(&mnt->mnt); 1136 dput(mnt->mnt.mnt_root); 1137 deactivate_super(mnt->mnt.mnt_sb); 1138 mnt_free_id(mnt); 1139 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1140 } 1141 1142 static void __cleanup_mnt(struct rcu_head *head) 1143 { 1144 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1145 } 1146 1147 static LLIST_HEAD(delayed_mntput_list); 1148 static void delayed_mntput(struct work_struct *unused) 1149 { 1150 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1151 struct mount *m, *t; 1152 1153 llist_for_each_entry_safe(m, t, node, mnt_llist) 1154 cleanup_mnt(m); 1155 } 1156 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1157 1158 static void mntput_no_expire(struct mount *mnt) 1159 { 1160 LIST_HEAD(list); 1161 int count; 1162 1163 rcu_read_lock(); 1164 if (likely(READ_ONCE(mnt->mnt_ns))) { 1165 /* 1166 * Since we don't do lock_mount_hash() here, 1167 * ->mnt_ns can change under us. However, if it's 1168 * non-NULL, then there's a reference that won't 1169 * be dropped until after an RCU delay done after 1170 * turning ->mnt_ns NULL. So if we observe it 1171 * non-NULL under rcu_read_lock(), the reference 1172 * we are dropping is not the final one. 1173 */ 1174 mnt_add_count(mnt, -1); 1175 rcu_read_unlock(); 1176 return; 1177 } 1178 lock_mount_hash(); 1179 /* 1180 * make sure that if __legitimize_mnt() has not seen us grab 1181 * mount_lock, we'll see their refcount increment here. 1182 */ 1183 smp_mb(); 1184 mnt_add_count(mnt, -1); 1185 count = mnt_get_count(mnt); 1186 if (count != 0) { 1187 WARN_ON(count < 0); 1188 rcu_read_unlock(); 1189 unlock_mount_hash(); 1190 return; 1191 } 1192 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1193 rcu_read_unlock(); 1194 unlock_mount_hash(); 1195 return; 1196 } 1197 mnt->mnt.mnt_flags |= MNT_DOOMED; 1198 rcu_read_unlock(); 1199 1200 list_del(&mnt->mnt_instance); 1201 1202 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1203 struct mount *p, *tmp; 1204 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1205 __put_mountpoint(unhash_mnt(p), &list); 1206 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1207 } 1208 } 1209 unlock_mount_hash(); 1210 shrink_dentry_list(&list); 1211 1212 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1213 struct task_struct *task = current; 1214 if (likely(!(task->flags & PF_KTHREAD))) { 1215 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1216 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1217 return; 1218 } 1219 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1220 schedule_delayed_work(&delayed_mntput_work, 1); 1221 return; 1222 } 1223 cleanup_mnt(mnt); 1224 } 1225 1226 void mntput(struct vfsmount *mnt) 1227 { 1228 if (mnt) { 1229 struct mount *m = real_mount(mnt); 1230 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1231 if (unlikely(m->mnt_expiry_mark)) 1232 m->mnt_expiry_mark = 0; 1233 mntput_no_expire(m); 1234 } 1235 } 1236 EXPORT_SYMBOL(mntput); 1237 1238 struct vfsmount *mntget(struct vfsmount *mnt) 1239 { 1240 if (mnt) 1241 mnt_add_count(real_mount(mnt), 1); 1242 return mnt; 1243 } 1244 EXPORT_SYMBOL(mntget); 1245 1246 /** 1247 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1248 * @path: path to check 1249 * 1250 * d_mountpoint() can only be used reliably to establish if a dentry is 1251 * not mounted in any namespace and that common case is handled inline. 1252 * d_mountpoint() isn't aware of the possibility there may be multiple 1253 * mounts using a given dentry in a different namespace. This function 1254 * checks if the passed in path is a mountpoint rather than the dentry 1255 * alone. 1256 */ 1257 bool path_is_mountpoint(const struct path *path) 1258 { 1259 unsigned seq; 1260 bool res; 1261 1262 if (!d_mountpoint(path->dentry)) 1263 return false; 1264 1265 rcu_read_lock(); 1266 do { 1267 seq = read_seqbegin(&mount_lock); 1268 res = __path_is_mountpoint(path); 1269 } while (read_seqretry(&mount_lock, seq)); 1270 rcu_read_unlock(); 1271 1272 return res; 1273 } 1274 EXPORT_SYMBOL(path_is_mountpoint); 1275 1276 struct vfsmount *mnt_clone_internal(const struct path *path) 1277 { 1278 struct mount *p; 1279 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1280 if (IS_ERR(p)) 1281 return ERR_CAST(p); 1282 p->mnt.mnt_flags |= MNT_INTERNAL; 1283 return &p->mnt; 1284 } 1285 1286 #ifdef CONFIG_PROC_FS 1287 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1288 struct list_head *p) 1289 { 1290 struct mount *mnt, *ret = NULL; 1291 1292 lock_ns_list(ns); 1293 list_for_each_continue(p, &ns->list) { 1294 mnt = list_entry(p, typeof(*mnt), mnt_list); 1295 if (!mnt_is_cursor(mnt)) { 1296 ret = mnt; 1297 break; 1298 } 1299 } 1300 unlock_ns_list(ns); 1301 1302 return ret; 1303 } 1304 1305 /* iterator; we want it to have access to namespace_sem, thus here... */ 1306 static void *m_start(struct seq_file *m, loff_t *pos) 1307 { 1308 struct proc_mounts *p = m->private; 1309 struct list_head *prev; 1310 1311 down_read(&namespace_sem); 1312 if (!*pos) { 1313 prev = &p->ns->list; 1314 } else { 1315 prev = &p->cursor.mnt_list; 1316 1317 /* Read after we'd reached the end? */ 1318 if (list_empty(prev)) 1319 return NULL; 1320 } 1321 1322 return mnt_list_next(p->ns, prev); 1323 } 1324 1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1326 { 1327 struct proc_mounts *p = m->private; 1328 struct mount *mnt = v; 1329 1330 ++*pos; 1331 return mnt_list_next(p->ns, &mnt->mnt_list); 1332 } 1333 1334 static void m_stop(struct seq_file *m, void *v) 1335 { 1336 struct proc_mounts *p = m->private; 1337 struct mount *mnt = v; 1338 1339 lock_ns_list(p->ns); 1340 if (mnt) 1341 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1342 else 1343 list_del_init(&p->cursor.mnt_list); 1344 unlock_ns_list(p->ns); 1345 up_read(&namespace_sem); 1346 } 1347 1348 static int m_show(struct seq_file *m, void *v) 1349 { 1350 struct proc_mounts *p = m->private; 1351 struct mount *r = v; 1352 return p->show(m, &r->mnt); 1353 } 1354 1355 const struct seq_operations mounts_op = { 1356 .start = m_start, 1357 .next = m_next, 1358 .stop = m_stop, 1359 .show = m_show, 1360 }; 1361 1362 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1363 { 1364 down_read(&namespace_sem); 1365 lock_ns_list(ns); 1366 list_del(&cursor->mnt_list); 1367 unlock_ns_list(ns); 1368 up_read(&namespace_sem); 1369 } 1370 #endif /* CONFIG_PROC_FS */ 1371 1372 /** 1373 * may_umount_tree - check if a mount tree is busy 1374 * @m: root of mount tree 1375 * 1376 * This is called to check if a tree of mounts has any 1377 * open files, pwds, chroots or sub mounts that are 1378 * busy. 1379 */ 1380 int may_umount_tree(struct vfsmount *m) 1381 { 1382 struct mount *mnt = real_mount(m); 1383 int actual_refs = 0; 1384 int minimum_refs = 0; 1385 struct mount *p; 1386 BUG_ON(!m); 1387 1388 /* write lock needed for mnt_get_count */ 1389 lock_mount_hash(); 1390 for (p = mnt; p; p = next_mnt(p, mnt)) { 1391 actual_refs += mnt_get_count(p); 1392 minimum_refs += 2; 1393 } 1394 unlock_mount_hash(); 1395 1396 if (actual_refs > minimum_refs) 1397 return 0; 1398 1399 return 1; 1400 } 1401 1402 EXPORT_SYMBOL(may_umount_tree); 1403 1404 /** 1405 * may_umount - check if a mount point is busy 1406 * @mnt: root of mount 1407 * 1408 * This is called to check if a mount point has any 1409 * open files, pwds, chroots or sub mounts. If the 1410 * mount has sub mounts this will return busy 1411 * regardless of whether the sub mounts are busy. 1412 * 1413 * Doesn't take quota and stuff into account. IOW, in some cases it will 1414 * give false negatives. The main reason why it's here is that we need 1415 * a non-destructive way to look for easily umountable filesystems. 1416 */ 1417 int may_umount(struct vfsmount *mnt) 1418 { 1419 int ret = 1; 1420 down_read(&namespace_sem); 1421 lock_mount_hash(); 1422 if (propagate_mount_busy(real_mount(mnt), 2)) 1423 ret = 0; 1424 unlock_mount_hash(); 1425 up_read(&namespace_sem); 1426 return ret; 1427 } 1428 1429 EXPORT_SYMBOL(may_umount); 1430 1431 static void namespace_unlock(void) 1432 { 1433 struct hlist_head head; 1434 struct hlist_node *p; 1435 struct mount *m; 1436 LIST_HEAD(list); 1437 1438 hlist_move_list(&unmounted, &head); 1439 list_splice_init(&ex_mountpoints, &list); 1440 1441 up_write(&namespace_sem); 1442 1443 shrink_dentry_list(&list); 1444 1445 if (likely(hlist_empty(&head))) 1446 return; 1447 1448 synchronize_rcu_expedited(); 1449 1450 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1451 hlist_del(&m->mnt_umount); 1452 mntput(&m->mnt); 1453 } 1454 } 1455 1456 static inline void namespace_lock(void) 1457 { 1458 down_write(&namespace_sem); 1459 } 1460 1461 enum umount_tree_flags { 1462 UMOUNT_SYNC = 1, 1463 UMOUNT_PROPAGATE = 2, 1464 UMOUNT_CONNECTED = 4, 1465 }; 1466 1467 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1468 { 1469 /* Leaving mounts connected is only valid for lazy umounts */ 1470 if (how & UMOUNT_SYNC) 1471 return true; 1472 1473 /* A mount without a parent has nothing to be connected to */ 1474 if (!mnt_has_parent(mnt)) 1475 return true; 1476 1477 /* Because the reference counting rules change when mounts are 1478 * unmounted and connected, umounted mounts may not be 1479 * connected to mounted mounts. 1480 */ 1481 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1482 return true; 1483 1484 /* Has it been requested that the mount remain connected? */ 1485 if (how & UMOUNT_CONNECTED) 1486 return false; 1487 1488 /* Is the mount locked such that it needs to remain connected? */ 1489 if (IS_MNT_LOCKED(mnt)) 1490 return false; 1491 1492 /* By default disconnect the mount */ 1493 return true; 1494 } 1495 1496 /* 1497 * mount_lock must be held 1498 * namespace_sem must be held for write 1499 */ 1500 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1501 { 1502 LIST_HEAD(tmp_list); 1503 struct mount *p; 1504 1505 if (how & UMOUNT_PROPAGATE) 1506 propagate_mount_unlock(mnt); 1507 1508 /* Gather the mounts to umount */ 1509 for (p = mnt; p; p = next_mnt(p, mnt)) { 1510 p->mnt.mnt_flags |= MNT_UMOUNT; 1511 list_move(&p->mnt_list, &tmp_list); 1512 } 1513 1514 /* Hide the mounts from mnt_mounts */ 1515 list_for_each_entry(p, &tmp_list, mnt_list) { 1516 list_del_init(&p->mnt_child); 1517 } 1518 1519 /* Add propogated mounts to the tmp_list */ 1520 if (how & UMOUNT_PROPAGATE) 1521 propagate_umount(&tmp_list); 1522 1523 while (!list_empty(&tmp_list)) { 1524 struct mnt_namespace *ns; 1525 bool disconnect; 1526 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1527 list_del_init(&p->mnt_expire); 1528 list_del_init(&p->mnt_list); 1529 ns = p->mnt_ns; 1530 if (ns) { 1531 ns->mounts--; 1532 __touch_mnt_namespace(ns); 1533 } 1534 p->mnt_ns = NULL; 1535 if (how & UMOUNT_SYNC) 1536 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1537 1538 disconnect = disconnect_mount(p, how); 1539 if (mnt_has_parent(p)) { 1540 mnt_add_count(p->mnt_parent, -1); 1541 if (!disconnect) { 1542 /* Don't forget about p */ 1543 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1544 } else { 1545 umount_mnt(p); 1546 } 1547 } 1548 change_mnt_propagation(p, MS_PRIVATE); 1549 if (disconnect) 1550 hlist_add_head(&p->mnt_umount, &unmounted); 1551 } 1552 } 1553 1554 static void shrink_submounts(struct mount *mnt); 1555 1556 static int do_umount_root(struct super_block *sb) 1557 { 1558 int ret = 0; 1559 1560 down_write(&sb->s_umount); 1561 if (!sb_rdonly(sb)) { 1562 struct fs_context *fc; 1563 1564 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1565 SB_RDONLY); 1566 if (IS_ERR(fc)) { 1567 ret = PTR_ERR(fc); 1568 } else { 1569 ret = parse_monolithic_mount_data(fc, NULL); 1570 if (!ret) 1571 ret = reconfigure_super(fc); 1572 put_fs_context(fc); 1573 } 1574 } 1575 up_write(&sb->s_umount); 1576 return ret; 1577 } 1578 1579 static int do_umount(struct mount *mnt, int flags) 1580 { 1581 struct super_block *sb = mnt->mnt.mnt_sb; 1582 int retval; 1583 1584 retval = security_sb_umount(&mnt->mnt, flags); 1585 if (retval) 1586 return retval; 1587 1588 /* 1589 * Allow userspace to request a mountpoint be expired rather than 1590 * unmounting unconditionally. Unmount only happens if: 1591 * (1) the mark is already set (the mark is cleared by mntput()) 1592 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1593 */ 1594 if (flags & MNT_EXPIRE) { 1595 if (&mnt->mnt == current->fs->root.mnt || 1596 flags & (MNT_FORCE | MNT_DETACH)) 1597 return -EINVAL; 1598 1599 /* 1600 * probably don't strictly need the lock here if we examined 1601 * all race cases, but it's a slowpath. 1602 */ 1603 lock_mount_hash(); 1604 if (mnt_get_count(mnt) != 2) { 1605 unlock_mount_hash(); 1606 return -EBUSY; 1607 } 1608 unlock_mount_hash(); 1609 1610 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1611 return -EAGAIN; 1612 } 1613 1614 /* 1615 * If we may have to abort operations to get out of this 1616 * mount, and they will themselves hold resources we must 1617 * allow the fs to do things. In the Unix tradition of 1618 * 'Gee thats tricky lets do it in userspace' the umount_begin 1619 * might fail to complete on the first run through as other tasks 1620 * must return, and the like. Thats for the mount program to worry 1621 * about for the moment. 1622 */ 1623 1624 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1625 sb->s_op->umount_begin(sb); 1626 } 1627 1628 /* 1629 * No sense to grab the lock for this test, but test itself looks 1630 * somewhat bogus. Suggestions for better replacement? 1631 * Ho-hum... In principle, we might treat that as umount + switch 1632 * to rootfs. GC would eventually take care of the old vfsmount. 1633 * Actually it makes sense, especially if rootfs would contain a 1634 * /reboot - static binary that would close all descriptors and 1635 * call reboot(9). Then init(8) could umount root and exec /reboot. 1636 */ 1637 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1638 /* 1639 * Special case for "unmounting" root ... 1640 * we just try to remount it readonly. 1641 */ 1642 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1643 return -EPERM; 1644 return do_umount_root(sb); 1645 } 1646 1647 namespace_lock(); 1648 lock_mount_hash(); 1649 1650 /* Recheck MNT_LOCKED with the locks held */ 1651 retval = -EINVAL; 1652 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1653 goto out; 1654 1655 event++; 1656 if (flags & MNT_DETACH) { 1657 if (!list_empty(&mnt->mnt_list)) 1658 umount_tree(mnt, UMOUNT_PROPAGATE); 1659 retval = 0; 1660 } else { 1661 shrink_submounts(mnt); 1662 retval = -EBUSY; 1663 if (!propagate_mount_busy(mnt, 2)) { 1664 if (!list_empty(&mnt->mnt_list)) 1665 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1666 retval = 0; 1667 } 1668 } 1669 out: 1670 unlock_mount_hash(); 1671 namespace_unlock(); 1672 return retval; 1673 } 1674 1675 /* 1676 * __detach_mounts - lazily unmount all mounts on the specified dentry 1677 * 1678 * During unlink, rmdir, and d_drop it is possible to loose the path 1679 * to an existing mountpoint, and wind up leaking the mount. 1680 * detach_mounts allows lazily unmounting those mounts instead of 1681 * leaking them. 1682 * 1683 * The caller may hold dentry->d_inode->i_mutex. 1684 */ 1685 void __detach_mounts(struct dentry *dentry) 1686 { 1687 struct mountpoint *mp; 1688 struct mount *mnt; 1689 1690 namespace_lock(); 1691 lock_mount_hash(); 1692 mp = lookup_mountpoint(dentry); 1693 if (!mp) 1694 goto out_unlock; 1695 1696 event++; 1697 while (!hlist_empty(&mp->m_list)) { 1698 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1699 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1700 umount_mnt(mnt); 1701 hlist_add_head(&mnt->mnt_umount, &unmounted); 1702 } 1703 else umount_tree(mnt, UMOUNT_CONNECTED); 1704 } 1705 put_mountpoint(mp); 1706 out_unlock: 1707 unlock_mount_hash(); 1708 namespace_unlock(); 1709 } 1710 1711 /* 1712 * Is the caller allowed to modify his namespace? 1713 */ 1714 static inline bool may_mount(void) 1715 { 1716 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1717 } 1718 1719 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1720 static bool may_mandlock(void) 1721 { 1722 pr_warn_once("======================================================\n" 1723 "WARNING: the mand mount option is being deprecated and\n" 1724 " will be removed in v5.15!\n" 1725 "======================================================\n"); 1726 return capable(CAP_SYS_ADMIN); 1727 } 1728 #else 1729 static inline bool may_mandlock(void) 1730 { 1731 pr_warn("VFS: \"mand\" mount option not supported"); 1732 return false; 1733 } 1734 #endif 1735 1736 static int can_umount(const struct path *path, int flags) 1737 { 1738 struct mount *mnt = real_mount(path->mnt); 1739 1740 if (!may_mount()) 1741 return -EPERM; 1742 if (path->dentry != path->mnt->mnt_root) 1743 return -EINVAL; 1744 if (!check_mnt(mnt)) 1745 return -EINVAL; 1746 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1747 return -EINVAL; 1748 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1749 return -EPERM; 1750 return 0; 1751 } 1752 1753 // caller is responsible for flags being sane 1754 int path_umount(struct path *path, int flags) 1755 { 1756 struct mount *mnt = real_mount(path->mnt); 1757 int ret; 1758 1759 ret = can_umount(path, flags); 1760 if (!ret) 1761 ret = do_umount(mnt, flags); 1762 1763 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1764 dput(path->dentry); 1765 mntput_no_expire(mnt); 1766 return ret; 1767 } 1768 1769 static int ksys_umount(char __user *name, int flags) 1770 { 1771 int lookup_flags = LOOKUP_MOUNTPOINT; 1772 struct path path; 1773 int ret; 1774 1775 // basic validity checks done first 1776 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1777 return -EINVAL; 1778 1779 if (!(flags & UMOUNT_NOFOLLOW)) 1780 lookup_flags |= LOOKUP_FOLLOW; 1781 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1782 if (ret) 1783 return ret; 1784 return path_umount(&path, flags); 1785 } 1786 1787 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1788 { 1789 return ksys_umount(name, flags); 1790 } 1791 1792 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1793 1794 /* 1795 * The 2.0 compatible umount. No flags. 1796 */ 1797 SYSCALL_DEFINE1(oldumount, char __user *, name) 1798 { 1799 return ksys_umount(name, 0); 1800 } 1801 1802 #endif 1803 1804 static bool is_mnt_ns_file(struct dentry *dentry) 1805 { 1806 /* Is this a proxy for a mount namespace? */ 1807 return dentry->d_op == &ns_dentry_operations && 1808 dentry->d_fsdata == &mntns_operations; 1809 } 1810 1811 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1812 { 1813 return container_of(ns, struct mnt_namespace, ns); 1814 } 1815 1816 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1817 { 1818 return &mnt->ns; 1819 } 1820 1821 static bool mnt_ns_loop(struct dentry *dentry) 1822 { 1823 /* Could bind mounting the mount namespace inode cause a 1824 * mount namespace loop? 1825 */ 1826 struct mnt_namespace *mnt_ns; 1827 if (!is_mnt_ns_file(dentry)) 1828 return false; 1829 1830 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1831 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1832 } 1833 1834 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1835 int flag) 1836 { 1837 struct mount *res, *p, *q, *r, *parent; 1838 1839 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1840 return ERR_PTR(-EINVAL); 1841 1842 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1843 return ERR_PTR(-EINVAL); 1844 1845 res = q = clone_mnt(mnt, dentry, flag); 1846 if (IS_ERR(q)) 1847 return q; 1848 1849 q->mnt_mountpoint = mnt->mnt_mountpoint; 1850 1851 p = mnt; 1852 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1853 struct mount *s; 1854 if (!is_subdir(r->mnt_mountpoint, dentry)) 1855 continue; 1856 1857 for (s = r; s; s = next_mnt(s, r)) { 1858 if (!(flag & CL_COPY_UNBINDABLE) && 1859 IS_MNT_UNBINDABLE(s)) { 1860 if (s->mnt.mnt_flags & MNT_LOCKED) { 1861 /* Both unbindable and locked. */ 1862 q = ERR_PTR(-EPERM); 1863 goto out; 1864 } else { 1865 s = skip_mnt_tree(s); 1866 continue; 1867 } 1868 } 1869 if (!(flag & CL_COPY_MNT_NS_FILE) && 1870 is_mnt_ns_file(s->mnt.mnt_root)) { 1871 s = skip_mnt_tree(s); 1872 continue; 1873 } 1874 while (p != s->mnt_parent) { 1875 p = p->mnt_parent; 1876 q = q->mnt_parent; 1877 } 1878 p = s; 1879 parent = q; 1880 q = clone_mnt(p, p->mnt.mnt_root, flag); 1881 if (IS_ERR(q)) 1882 goto out; 1883 lock_mount_hash(); 1884 list_add_tail(&q->mnt_list, &res->mnt_list); 1885 attach_mnt(q, parent, p->mnt_mp); 1886 unlock_mount_hash(); 1887 } 1888 } 1889 return res; 1890 out: 1891 if (res) { 1892 lock_mount_hash(); 1893 umount_tree(res, UMOUNT_SYNC); 1894 unlock_mount_hash(); 1895 } 1896 return q; 1897 } 1898 1899 /* Caller should check returned pointer for errors */ 1900 1901 struct vfsmount *collect_mounts(const struct path *path) 1902 { 1903 struct mount *tree; 1904 namespace_lock(); 1905 if (!check_mnt(real_mount(path->mnt))) 1906 tree = ERR_PTR(-EINVAL); 1907 else 1908 tree = copy_tree(real_mount(path->mnt), path->dentry, 1909 CL_COPY_ALL | CL_PRIVATE); 1910 namespace_unlock(); 1911 if (IS_ERR(tree)) 1912 return ERR_CAST(tree); 1913 return &tree->mnt; 1914 } 1915 1916 static void free_mnt_ns(struct mnt_namespace *); 1917 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1918 1919 void dissolve_on_fput(struct vfsmount *mnt) 1920 { 1921 struct mnt_namespace *ns; 1922 namespace_lock(); 1923 lock_mount_hash(); 1924 ns = real_mount(mnt)->mnt_ns; 1925 if (ns) { 1926 if (is_anon_ns(ns)) 1927 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1928 else 1929 ns = NULL; 1930 } 1931 unlock_mount_hash(); 1932 namespace_unlock(); 1933 if (ns) 1934 free_mnt_ns(ns); 1935 } 1936 1937 void drop_collected_mounts(struct vfsmount *mnt) 1938 { 1939 namespace_lock(); 1940 lock_mount_hash(); 1941 umount_tree(real_mount(mnt), 0); 1942 unlock_mount_hash(); 1943 namespace_unlock(); 1944 } 1945 1946 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1947 { 1948 struct mount *child; 1949 1950 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1951 if (!is_subdir(child->mnt_mountpoint, dentry)) 1952 continue; 1953 1954 if (child->mnt.mnt_flags & MNT_LOCKED) 1955 return true; 1956 } 1957 return false; 1958 } 1959 1960 /** 1961 * clone_private_mount - create a private clone of a path 1962 * @path: path to clone 1963 * 1964 * This creates a new vfsmount, which will be the clone of @path. The new mount 1965 * will not be attached anywhere in the namespace and will be private (i.e. 1966 * changes to the originating mount won't be propagated into this). 1967 * 1968 * Release with mntput(). 1969 */ 1970 struct vfsmount *clone_private_mount(const struct path *path) 1971 { 1972 struct mount *old_mnt = real_mount(path->mnt); 1973 struct mount *new_mnt; 1974 1975 down_read(&namespace_sem); 1976 if (IS_MNT_UNBINDABLE(old_mnt)) 1977 goto invalid; 1978 1979 if (!check_mnt(old_mnt)) 1980 goto invalid; 1981 1982 if (has_locked_children(old_mnt, path->dentry)) 1983 goto invalid; 1984 1985 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1986 up_read(&namespace_sem); 1987 1988 if (IS_ERR(new_mnt)) 1989 return ERR_CAST(new_mnt); 1990 1991 /* Longterm mount to be removed by kern_unmount*() */ 1992 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1993 1994 return &new_mnt->mnt; 1995 1996 invalid: 1997 up_read(&namespace_sem); 1998 return ERR_PTR(-EINVAL); 1999 } 2000 EXPORT_SYMBOL_GPL(clone_private_mount); 2001 2002 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2003 struct vfsmount *root) 2004 { 2005 struct mount *mnt; 2006 int res = f(root, arg); 2007 if (res) 2008 return res; 2009 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2010 res = f(&mnt->mnt, arg); 2011 if (res) 2012 return res; 2013 } 2014 return 0; 2015 } 2016 2017 static void lock_mnt_tree(struct mount *mnt) 2018 { 2019 struct mount *p; 2020 2021 for (p = mnt; p; p = next_mnt(p, mnt)) { 2022 int flags = p->mnt.mnt_flags; 2023 /* Don't allow unprivileged users to change mount flags */ 2024 flags |= MNT_LOCK_ATIME; 2025 2026 if (flags & MNT_READONLY) 2027 flags |= MNT_LOCK_READONLY; 2028 2029 if (flags & MNT_NODEV) 2030 flags |= MNT_LOCK_NODEV; 2031 2032 if (flags & MNT_NOSUID) 2033 flags |= MNT_LOCK_NOSUID; 2034 2035 if (flags & MNT_NOEXEC) 2036 flags |= MNT_LOCK_NOEXEC; 2037 /* Don't allow unprivileged users to reveal what is under a mount */ 2038 if (list_empty(&p->mnt_expire)) 2039 flags |= MNT_LOCKED; 2040 p->mnt.mnt_flags = flags; 2041 } 2042 } 2043 2044 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2045 { 2046 struct mount *p; 2047 2048 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2049 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2050 mnt_release_group_id(p); 2051 } 2052 } 2053 2054 static int invent_group_ids(struct mount *mnt, bool recurse) 2055 { 2056 struct mount *p; 2057 2058 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2059 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2060 int err = mnt_alloc_group_id(p); 2061 if (err) { 2062 cleanup_group_ids(mnt, p); 2063 return err; 2064 } 2065 } 2066 } 2067 2068 return 0; 2069 } 2070 2071 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2072 { 2073 unsigned int max = READ_ONCE(sysctl_mount_max); 2074 unsigned int mounts = 0, old, pending, sum; 2075 struct mount *p; 2076 2077 for (p = mnt; p; p = next_mnt(p, mnt)) 2078 mounts++; 2079 2080 old = ns->mounts; 2081 pending = ns->pending_mounts; 2082 sum = old + pending; 2083 if ((old > sum) || 2084 (pending > sum) || 2085 (max < sum) || 2086 (mounts > (max - sum))) 2087 return -ENOSPC; 2088 2089 ns->pending_mounts = pending + mounts; 2090 return 0; 2091 } 2092 2093 /* 2094 * @source_mnt : mount tree to be attached 2095 * @nd : place the mount tree @source_mnt is attached 2096 * @parent_nd : if non-null, detach the source_mnt from its parent and 2097 * store the parent mount and mountpoint dentry. 2098 * (done when source_mnt is moved) 2099 * 2100 * NOTE: in the table below explains the semantics when a source mount 2101 * of a given type is attached to a destination mount of a given type. 2102 * --------------------------------------------------------------------------- 2103 * | BIND MOUNT OPERATION | 2104 * |************************************************************************** 2105 * | source-->| shared | private | slave | unbindable | 2106 * | dest | | | | | 2107 * | | | | | | | 2108 * | v | | | | | 2109 * |************************************************************************** 2110 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2111 * | | | | | | 2112 * |non-shared| shared (+) | private | slave (*) | invalid | 2113 * *************************************************************************** 2114 * A bind operation clones the source mount and mounts the clone on the 2115 * destination mount. 2116 * 2117 * (++) the cloned mount is propagated to all the mounts in the propagation 2118 * tree of the destination mount and the cloned mount is added to 2119 * the peer group of the source mount. 2120 * (+) the cloned mount is created under the destination mount and is marked 2121 * as shared. The cloned mount is added to the peer group of the source 2122 * mount. 2123 * (+++) the mount is propagated to all the mounts in the propagation tree 2124 * of the destination mount and the cloned mount is made slave 2125 * of the same master as that of the source mount. The cloned mount 2126 * is marked as 'shared and slave'. 2127 * (*) the cloned mount is made a slave of the same master as that of the 2128 * source mount. 2129 * 2130 * --------------------------------------------------------------------------- 2131 * | MOVE MOUNT OPERATION | 2132 * |************************************************************************** 2133 * | source-->| shared | private | slave | unbindable | 2134 * | dest | | | | | 2135 * | | | | | | | 2136 * | v | | | | | 2137 * |************************************************************************** 2138 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2139 * | | | | | | 2140 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2141 * *************************************************************************** 2142 * 2143 * (+) the mount is moved to the destination. And is then propagated to 2144 * all the mounts in the propagation tree of the destination mount. 2145 * (+*) the mount is moved to the destination. 2146 * (+++) the mount is moved to the destination and is then propagated to 2147 * all the mounts belonging to the destination mount's propagation tree. 2148 * the mount is marked as 'shared and slave'. 2149 * (*) the mount continues to be a slave at the new location. 2150 * 2151 * if the source mount is a tree, the operations explained above is 2152 * applied to each mount in the tree. 2153 * Must be called without spinlocks held, since this function can sleep 2154 * in allocations. 2155 */ 2156 static int attach_recursive_mnt(struct mount *source_mnt, 2157 struct mount *dest_mnt, 2158 struct mountpoint *dest_mp, 2159 bool moving) 2160 { 2161 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2162 HLIST_HEAD(tree_list); 2163 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2164 struct mountpoint *smp; 2165 struct mount *child, *p; 2166 struct hlist_node *n; 2167 int err; 2168 2169 /* Preallocate a mountpoint in case the new mounts need 2170 * to be tucked under other mounts. 2171 */ 2172 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2173 if (IS_ERR(smp)) 2174 return PTR_ERR(smp); 2175 2176 /* Is there space to add these mounts to the mount namespace? */ 2177 if (!moving) { 2178 err = count_mounts(ns, source_mnt); 2179 if (err) 2180 goto out; 2181 } 2182 2183 if (IS_MNT_SHARED(dest_mnt)) { 2184 err = invent_group_ids(source_mnt, true); 2185 if (err) 2186 goto out; 2187 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2188 lock_mount_hash(); 2189 if (err) 2190 goto out_cleanup_ids; 2191 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2192 set_mnt_shared(p); 2193 } else { 2194 lock_mount_hash(); 2195 } 2196 if (moving) { 2197 unhash_mnt(source_mnt); 2198 attach_mnt(source_mnt, dest_mnt, dest_mp); 2199 touch_mnt_namespace(source_mnt->mnt_ns); 2200 } else { 2201 if (source_mnt->mnt_ns) { 2202 /* move from anon - the caller will destroy */ 2203 list_del_init(&source_mnt->mnt_ns->list); 2204 } 2205 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2206 commit_tree(source_mnt); 2207 } 2208 2209 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2210 struct mount *q; 2211 hlist_del_init(&child->mnt_hash); 2212 q = __lookup_mnt(&child->mnt_parent->mnt, 2213 child->mnt_mountpoint); 2214 if (q) 2215 mnt_change_mountpoint(child, smp, q); 2216 /* Notice when we are propagating across user namespaces */ 2217 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2218 lock_mnt_tree(child); 2219 child->mnt.mnt_flags &= ~MNT_LOCKED; 2220 commit_tree(child); 2221 } 2222 put_mountpoint(smp); 2223 unlock_mount_hash(); 2224 2225 return 0; 2226 2227 out_cleanup_ids: 2228 while (!hlist_empty(&tree_list)) { 2229 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2230 child->mnt_parent->mnt_ns->pending_mounts = 0; 2231 umount_tree(child, UMOUNT_SYNC); 2232 } 2233 unlock_mount_hash(); 2234 cleanup_group_ids(source_mnt, NULL); 2235 out: 2236 ns->pending_mounts = 0; 2237 2238 read_seqlock_excl(&mount_lock); 2239 put_mountpoint(smp); 2240 read_sequnlock_excl(&mount_lock); 2241 2242 return err; 2243 } 2244 2245 static struct mountpoint *lock_mount(struct path *path) 2246 { 2247 struct vfsmount *mnt; 2248 struct dentry *dentry = path->dentry; 2249 retry: 2250 inode_lock(dentry->d_inode); 2251 if (unlikely(cant_mount(dentry))) { 2252 inode_unlock(dentry->d_inode); 2253 return ERR_PTR(-ENOENT); 2254 } 2255 namespace_lock(); 2256 mnt = lookup_mnt(path); 2257 if (likely(!mnt)) { 2258 struct mountpoint *mp = get_mountpoint(dentry); 2259 if (IS_ERR(mp)) { 2260 namespace_unlock(); 2261 inode_unlock(dentry->d_inode); 2262 return mp; 2263 } 2264 return mp; 2265 } 2266 namespace_unlock(); 2267 inode_unlock(path->dentry->d_inode); 2268 path_put(path); 2269 path->mnt = mnt; 2270 dentry = path->dentry = dget(mnt->mnt_root); 2271 goto retry; 2272 } 2273 2274 static void unlock_mount(struct mountpoint *where) 2275 { 2276 struct dentry *dentry = where->m_dentry; 2277 2278 read_seqlock_excl(&mount_lock); 2279 put_mountpoint(where); 2280 read_sequnlock_excl(&mount_lock); 2281 2282 namespace_unlock(); 2283 inode_unlock(dentry->d_inode); 2284 } 2285 2286 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2287 { 2288 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2289 return -EINVAL; 2290 2291 if (d_is_dir(mp->m_dentry) != 2292 d_is_dir(mnt->mnt.mnt_root)) 2293 return -ENOTDIR; 2294 2295 return attach_recursive_mnt(mnt, p, mp, false); 2296 } 2297 2298 /* 2299 * Sanity check the flags to change_mnt_propagation. 2300 */ 2301 2302 static int flags_to_propagation_type(int ms_flags) 2303 { 2304 int type = ms_flags & ~(MS_REC | MS_SILENT); 2305 2306 /* Fail if any non-propagation flags are set */ 2307 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2308 return 0; 2309 /* Only one propagation flag should be set */ 2310 if (!is_power_of_2(type)) 2311 return 0; 2312 return type; 2313 } 2314 2315 /* 2316 * recursively change the type of the mountpoint. 2317 */ 2318 static int do_change_type(struct path *path, int ms_flags) 2319 { 2320 struct mount *m; 2321 struct mount *mnt = real_mount(path->mnt); 2322 int recurse = ms_flags & MS_REC; 2323 int type; 2324 int err = 0; 2325 2326 if (path->dentry != path->mnt->mnt_root) 2327 return -EINVAL; 2328 2329 type = flags_to_propagation_type(ms_flags); 2330 if (!type) 2331 return -EINVAL; 2332 2333 namespace_lock(); 2334 if (type == MS_SHARED) { 2335 err = invent_group_ids(mnt, recurse); 2336 if (err) 2337 goto out_unlock; 2338 } 2339 2340 lock_mount_hash(); 2341 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2342 change_mnt_propagation(m, type); 2343 unlock_mount_hash(); 2344 2345 out_unlock: 2346 namespace_unlock(); 2347 return err; 2348 } 2349 2350 static struct mount *__do_loopback(struct path *old_path, int recurse) 2351 { 2352 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2353 2354 if (IS_MNT_UNBINDABLE(old)) 2355 return mnt; 2356 2357 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2358 return mnt; 2359 2360 if (!recurse && has_locked_children(old, old_path->dentry)) 2361 return mnt; 2362 2363 if (recurse) 2364 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2365 else 2366 mnt = clone_mnt(old, old_path->dentry, 0); 2367 2368 if (!IS_ERR(mnt)) 2369 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2370 2371 return mnt; 2372 } 2373 2374 /* 2375 * do loopback mount. 2376 */ 2377 static int do_loopback(struct path *path, const char *old_name, 2378 int recurse) 2379 { 2380 struct path old_path; 2381 struct mount *mnt = NULL, *parent; 2382 struct mountpoint *mp; 2383 int err; 2384 if (!old_name || !*old_name) 2385 return -EINVAL; 2386 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2387 if (err) 2388 return err; 2389 2390 err = -EINVAL; 2391 if (mnt_ns_loop(old_path.dentry)) 2392 goto out; 2393 2394 mp = lock_mount(path); 2395 if (IS_ERR(mp)) { 2396 err = PTR_ERR(mp); 2397 goto out; 2398 } 2399 2400 parent = real_mount(path->mnt); 2401 if (!check_mnt(parent)) 2402 goto out2; 2403 2404 mnt = __do_loopback(&old_path, recurse); 2405 if (IS_ERR(mnt)) { 2406 err = PTR_ERR(mnt); 2407 goto out2; 2408 } 2409 2410 err = graft_tree(mnt, parent, mp); 2411 if (err) { 2412 lock_mount_hash(); 2413 umount_tree(mnt, UMOUNT_SYNC); 2414 unlock_mount_hash(); 2415 } 2416 out2: 2417 unlock_mount(mp); 2418 out: 2419 path_put(&old_path); 2420 return err; 2421 } 2422 2423 static struct file *open_detached_copy(struct path *path, bool recursive) 2424 { 2425 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2426 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2427 struct mount *mnt, *p; 2428 struct file *file; 2429 2430 if (IS_ERR(ns)) 2431 return ERR_CAST(ns); 2432 2433 namespace_lock(); 2434 mnt = __do_loopback(path, recursive); 2435 if (IS_ERR(mnt)) { 2436 namespace_unlock(); 2437 free_mnt_ns(ns); 2438 return ERR_CAST(mnt); 2439 } 2440 2441 lock_mount_hash(); 2442 for (p = mnt; p; p = next_mnt(p, mnt)) { 2443 p->mnt_ns = ns; 2444 ns->mounts++; 2445 } 2446 ns->root = mnt; 2447 list_add_tail(&ns->list, &mnt->mnt_list); 2448 mntget(&mnt->mnt); 2449 unlock_mount_hash(); 2450 namespace_unlock(); 2451 2452 mntput(path->mnt); 2453 path->mnt = &mnt->mnt; 2454 file = dentry_open(path, O_PATH, current_cred()); 2455 if (IS_ERR(file)) 2456 dissolve_on_fput(path->mnt); 2457 else 2458 file->f_mode |= FMODE_NEED_UNMOUNT; 2459 return file; 2460 } 2461 2462 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2463 { 2464 struct file *file; 2465 struct path path; 2466 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2467 bool detached = flags & OPEN_TREE_CLONE; 2468 int error; 2469 int fd; 2470 2471 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2472 2473 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2474 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2475 OPEN_TREE_CLOEXEC)) 2476 return -EINVAL; 2477 2478 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2479 return -EINVAL; 2480 2481 if (flags & AT_NO_AUTOMOUNT) 2482 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2483 if (flags & AT_SYMLINK_NOFOLLOW) 2484 lookup_flags &= ~LOOKUP_FOLLOW; 2485 if (flags & AT_EMPTY_PATH) 2486 lookup_flags |= LOOKUP_EMPTY; 2487 2488 if (detached && !may_mount()) 2489 return -EPERM; 2490 2491 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2492 if (fd < 0) 2493 return fd; 2494 2495 error = user_path_at(dfd, filename, lookup_flags, &path); 2496 if (unlikely(error)) { 2497 file = ERR_PTR(error); 2498 } else { 2499 if (detached) 2500 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2501 else 2502 file = dentry_open(&path, O_PATH, current_cred()); 2503 path_put(&path); 2504 } 2505 if (IS_ERR(file)) { 2506 put_unused_fd(fd); 2507 return PTR_ERR(file); 2508 } 2509 fd_install(fd, file); 2510 return fd; 2511 } 2512 2513 /* 2514 * Don't allow locked mount flags to be cleared. 2515 * 2516 * No locks need to be held here while testing the various MNT_LOCK 2517 * flags because those flags can never be cleared once they are set. 2518 */ 2519 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2520 { 2521 unsigned int fl = mnt->mnt.mnt_flags; 2522 2523 if ((fl & MNT_LOCK_READONLY) && 2524 !(mnt_flags & MNT_READONLY)) 2525 return false; 2526 2527 if ((fl & MNT_LOCK_NODEV) && 2528 !(mnt_flags & MNT_NODEV)) 2529 return false; 2530 2531 if ((fl & MNT_LOCK_NOSUID) && 2532 !(mnt_flags & MNT_NOSUID)) 2533 return false; 2534 2535 if ((fl & MNT_LOCK_NOEXEC) && 2536 !(mnt_flags & MNT_NOEXEC)) 2537 return false; 2538 2539 if ((fl & MNT_LOCK_ATIME) && 2540 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2541 return false; 2542 2543 return true; 2544 } 2545 2546 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2547 { 2548 bool readonly_request = (mnt_flags & MNT_READONLY); 2549 2550 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2551 return 0; 2552 2553 if (readonly_request) 2554 return mnt_make_readonly(mnt); 2555 2556 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2557 return 0; 2558 } 2559 2560 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2561 { 2562 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2563 mnt->mnt.mnt_flags = mnt_flags; 2564 touch_mnt_namespace(mnt->mnt_ns); 2565 } 2566 2567 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2568 { 2569 struct super_block *sb = mnt->mnt_sb; 2570 2571 if (!__mnt_is_readonly(mnt) && 2572 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2573 char *buf = (char *)__get_free_page(GFP_KERNEL); 2574 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2575 struct tm tm; 2576 2577 time64_to_tm(sb->s_time_max, 0, &tm); 2578 2579 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2580 sb->s_type->name, 2581 is_mounted(mnt) ? "remounted" : "mounted", 2582 mntpath, 2583 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2584 2585 free_page((unsigned long)buf); 2586 } 2587 } 2588 2589 /* 2590 * Handle reconfiguration of the mountpoint only without alteration of the 2591 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2592 * to mount(2). 2593 */ 2594 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2595 { 2596 struct super_block *sb = path->mnt->mnt_sb; 2597 struct mount *mnt = real_mount(path->mnt); 2598 int ret; 2599 2600 if (!check_mnt(mnt)) 2601 return -EINVAL; 2602 2603 if (path->dentry != mnt->mnt.mnt_root) 2604 return -EINVAL; 2605 2606 if (!can_change_locked_flags(mnt, mnt_flags)) 2607 return -EPERM; 2608 2609 /* 2610 * We're only checking whether the superblock is read-only not 2611 * changing it, so only take down_read(&sb->s_umount). 2612 */ 2613 down_read(&sb->s_umount); 2614 lock_mount_hash(); 2615 ret = change_mount_ro_state(mnt, mnt_flags); 2616 if (ret == 0) 2617 set_mount_attributes(mnt, mnt_flags); 2618 unlock_mount_hash(); 2619 up_read(&sb->s_umount); 2620 2621 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2622 2623 return ret; 2624 } 2625 2626 /* 2627 * change filesystem flags. dir should be a physical root of filesystem. 2628 * If you've mounted a non-root directory somewhere and want to do remount 2629 * on it - tough luck. 2630 */ 2631 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2632 int mnt_flags, void *data) 2633 { 2634 int err; 2635 struct super_block *sb = path->mnt->mnt_sb; 2636 struct mount *mnt = real_mount(path->mnt); 2637 struct fs_context *fc; 2638 2639 if (!check_mnt(mnt)) 2640 return -EINVAL; 2641 2642 if (path->dentry != path->mnt->mnt_root) 2643 return -EINVAL; 2644 2645 if (!can_change_locked_flags(mnt, mnt_flags)) 2646 return -EPERM; 2647 2648 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2649 if (IS_ERR(fc)) 2650 return PTR_ERR(fc); 2651 2652 fc->oldapi = true; 2653 err = parse_monolithic_mount_data(fc, data); 2654 if (!err) { 2655 down_write(&sb->s_umount); 2656 err = -EPERM; 2657 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2658 err = reconfigure_super(fc); 2659 if (!err) { 2660 lock_mount_hash(); 2661 set_mount_attributes(mnt, mnt_flags); 2662 unlock_mount_hash(); 2663 } 2664 } 2665 up_write(&sb->s_umount); 2666 } 2667 2668 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2669 2670 put_fs_context(fc); 2671 return err; 2672 } 2673 2674 static inline int tree_contains_unbindable(struct mount *mnt) 2675 { 2676 struct mount *p; 2677 for (p = mnt; p; p = next_mnt(p, mnt)) { 2678 if (IS_MNT_UNBINDABLE(p)) 2679 return 1; 2680 } 2681 return 0; 2682 } 2683 2684 /* 2685 * Check that there aren't references to earlier/same mount namespaces in the 2686 * specified subtree. Such references can act as pins for mount namespaces 2687 * that aren't checked by the mount-cycle checking code, thereby allowing 2688 * cycles to be made. 2689 */ 2690 static bool check_for_nsfs_mounts(struct mount *subtree) 2691 { 2692 struct mount *p; 2693 bool ret = false; 2694 2695 lock_mount_hash(); 2696 for (p = subtree; p; p = next_mnt(p, subtree)) 2697 if (mnt_ns_loop(p->mnt.mnt_root)) 2698 goto out; 2699 2700 ret = true; 2701 out: 2702 unlock_mount_hash(); 2703 return ret; 2704 } 2705 2706 static int do_move_mount(struct path *old_path, struct path *new_path) 2707 { 2708 struct mnt_namespace *ns; 2709 struct mount *p; 2710 struct mount *old; 2711 struct mount *parent; 2712 struct mountpoint *mp, *old_mp; 2713 int err; 2714 bool attached; 2715 2716 mp = lock_mount(new_path); 2717 if (IS_ERR(mp)) 2718 return PTR_ERR(mp); 2719 2720 old = real_mount(old_path->mnt); 2721 p = real_mount(new_path->mnt); 2722 parent = old->mnt_parent; 2723 attached = mnt_has_parent(old); 2724 old_mp = old->mnt_mp; 2725 ns = old->mnt_ns; 2726 2727 err = -EINVAL; 2728 /* The mountpoint must be in our namespace. */ 2729 if (!check_mnt(p)) 2730 goto out; 2731 2732 /* The thing moved must be mounted... */ 2733 if (!is_mounted(&old->mnt)) 2734 goto out; 2735 2736 /* ... and either ours or the root of anon namespace */ 2737 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2738 goto out; 2739 2740 if (old->mnt.mnt_flags & MNT_LOCKED) 2741 goto out; 2742 2743 if (old_path->dentry != old_path->mnt->mnt_root) 2744 goto out; 2745 2746 if (d_is_dir(new_path->dentry) != 2747 d_is_dir(old_path->dentry)) 2748 goto out; 2749 /* 2750 * Don't move a mount residing in a shared parent. 2751 */ 2752 if (attached && IS_MNT_SHARED(parent)) 2753 goto out; 2754 /* 2755 * Don't move a mount tree containing unbindable mounts to a destination 2756 * mount which is shared. 2757 */ 2758 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2759 goto out; 2760 err = -ELOOP; 2761 if (!check_for_nsfs_mounts(old)) 2762 goto out; 2763 for (; mnt_has_parent(p); p = p->mnt_parent) 2764 if (p == old) 2765 goto out; 2766 2767 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2768 attached); 2769 if (err) 2770 goto out; 2771 2772 /* if the mount is moved, it should no longer be expire 2773 * automatically */ 2774 list_del_init(&old->mnt_expire); 2775 if (attached) 2776 put_mountpoint(old_mp); 2777 out: 2778 unlock_mount(mp); 2779 if (!err) { 2780 if (attached) 2781 mntput_no_expire(parent); 2782 else 2783 free_mnt_ns(ns); 2784 } 2785 return err; 2786 } 2787 2788 static int do_move_mount_old(struct path *path, const char *old_name) 2789 { 2790 struct path old_path; 2791 int err; 2792 2793 if (!old_name || !*old_name) 2794 return -EINVAL; 2795 2796 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2797 if (err) 2798 return err; 2799 2800 err = do_move_mount(&old_path, path); 2801 path_put(&old_path); 2802 return err; 2803 } 2804 2805 /* 2806 * add a mount into a namespace's mount tree 2807 */ 2808 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2809 struct path *path, int mnt_flags) 2810 { 2811 struct mount *parent = real_mount(path->mnt); 2812 2813 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2814 2815 if (unlikely(!check_mnt(parent))) { 2816 /* that's acceptable only for automounts done in private ns */ 2817 if (!(mnt_flags & MNT_SHRINKABLE)) 2818 return -EINVAL; 2819 /* ... and for those we'd better have mountpoint still alive */ 2820 if (!parent->mnt_ns) 2821 return -EINVAL; 2822 } 2823 2824 /* Refuse the same filesystem on the same mount point */ 2825 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2826 path->mnt->mnt_root == path->dentry) 2827 return -EBUSY; 2828 2829 if (d_is_symlink(newmnt->mnt.mnt_root)) 2830 return -EINVAL; 2831 2832 newmnt->mnt.mnt_flags = mnt_flags; 2833 return graft_tree(newmnt, parent, mp); 2834 } 2835 2836 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2837 2838 /* 2839 * Create a new mount using a superblock configuration and request it 2840 * be added to the namespace tree. 2841 */ 2842 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2843 unsigned int mnt_flags) 2844 { 2845 struct vfsmount *mnt; 2846 struct mountpoint *mp; 2847 struct super_block *sb = fc->root->d_sb; 2848 int error; 2849 2850 error = security_sb_kern_mount(sb); 2851 if (!error && mount_too_revealing(sb, &mnt_flags)) 2852 error = -EPERM; 2853 2854 if (unlikely(error)) { 2855 fc_drop_locked(fc); 2856 return error; 2857 } 2858 2859 up_write(&sb->s_umount); 2860 2861 mnt = vfs_create_mount(fc); 2862 if (IS_ERR(mnt)) 2863 return PTR_ERR(mnt); 2864 2865 mnt_warn_timestamp_expiry(mountpoint, mnt); 2866 2867 mp = lock_mount(mountpoint); 2868 if (IS_ERR(mp)) { 2869 mntput(mnt); 2870 return PTR_ERR(mp); 2871 } 2872 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2873 unlock_mount(mp); 2874 if (error < 0) 2875 mntput(mnt); 2876 return error; 2877 } 2878 2879 /* 2880 * create a new mount for userspace and request it to be added into the 2881 * namespace's tree 2882 */ 2883 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2884 int mnt_flags, const char *name, void *data) 2885 { 2886 struct file_system_type *type; 2887 struct fs_context *fc; 2888 const char *subtype = NULL; 2889 int err = 0; 2890 2891 if (!fstype) 2892 return -EINVAL; 2893 2894 type = get_fs_type(fstype); 2895 if (!type) 2896 return -ENODEV; 2897 2898 if (type->fs_flags & FS_HAS_SUBTYPE) { 2899 subtype = strchr(fstype, '.'); 2900 if (subtype) { 2901 subtype++; 2902 if (!*subtype) { 2903 put_filesystem(type); 2904 return -EINVAL; 2905 } 2906 } 2907 } 2908 2909 fc = fs_context_for_mount(type, sb_flags); 2910 put_filesystem(type); 2911 if (IS_ERR(fc)) 2912 return PTR_ERR(fc); 2913 2914 if (subtype) 2915 err = vfs_parse_fs_string(fc, "subtype", 2916 subtype, strlen(subtype)); 2917 if (!err && name) 2918 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2919 if (!err) 2920 err = parse_monolithic_mount_data(fc, data); 2921 if (!err && !mount_capable(fc)) 2922 err = -EPERM; 2923 if (!err) 2924 err = vfs_get_tree(fc); 2925 if (!err) 2926 err = do_new_mount_fc(fc, path, mnt_flags); 2927 2928 put_fs_context(fc); 2929 return err; 2930 } 2931 2932 int finish_automount(struct vfsmount *m, struct path *path) 2933 { 2934 struct dentry *dentry = path->dentry; 2935 struct mountpoint *mp; 2936 struct mount *mnt; 2937 int err; 2938 2939 if (!m) 2940 return 0; 2941 if (IS_ERR(m)) 2942 return PTR_ERR(m); 2943 2944 mnt = real_mount(m); 2945 /* The new mount record should have at least 2 refs to prevent it being 2946 * expired before we get a chance to add it 2947 */ 2948 BUG_ON(mnt_get_count(mnt) < 2); 2949 2950 if (m->mnt_sb == path->mnt->mnt_sb && 2951 m->mnt_root == dentry) { 2952 err = -ELOOP; 2953 goto discard; 2954 } 2955 2956 /* 2957 * we don't want to use lock_mount() - in this case finding something 2958 * that overmounts our mountpoint to be means "quitely drop what we've 2959 * got", not "try to mount it on top". 2960 */ 2961 inode_lock(dentry->d_inode); 2962 namespace_lock(); 2963 if (unlikely(cant_mount(dentry))) { 2964 err = -ENOENT; 2965 goto discard_locked; 2966 } 2967 rcu_read_lock(); 2968 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2969 rcu_read_unlock(); 2970 err = 0; 2971 goto discard_locked; 2972 } 2973 rcu_read_unlock(); 2974 mp = get_mountpoint(dentry); 2975 if (IS_ERR(mp)) { 2976 err = PTR_ERR(mp); 2977 goto discard_locked; 2978 } 2979 2980 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2981 unlock_mount(mp); 2982 if (unlikely(err)) 2983 goto discard; 2984 mntput(m); 2985 return 0; 2986 2987 discard_locked: 2988 namespace_unlock(); 2989 inode_unlock(dentry->d_inode); 2990 discard: 2991 /* remove m from any expiration list it may be on */ 2992 if (!list_empty(&mnt->mnt_expire)) { 2993 namespace_lock(); 2994 list_del_init(&mnt->mnt_expire); 2995 namespace_unlock(); 2996 } 2997 mntput(m); 2998 mntput(m); 2999 return err; 3000 } 3001 3002 /** 3003 * mnt_set_expiry - Put a mount on an expiration list 3004 * @mnt: The mount to list. 3005 * @expiry_list: The list to add the mount to. 3006 */ 3007 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3008 { 3009 namespace_lock(); 3010 3011 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3012 3013 namespace_unlock(); 3014 } 3015 EXPORT_SYMBOL(mnt_set_expiry); 3016 3017 /* 3018 * process a list of expirable mountpoints with the intent of discarding any 3019 * mountpoints that aren't in use and haven't been touched since last we came 3020 * here 3021 */ 3022 void mark_mounts_for_expiry(struct list_head *mounts) 3023 { 3024 struct mount *mnt, *next; 3025 LIST_HEAD(graveyard); 3026 3027 if (list_empty(mounts)) 3028 return; 3029 3030 namespace_lock(); 3031 lock_mount_hash(); 3032 3033 /* extract from the expiration list every vfsmount that matches the 3034 * following criteria: 3035 * - only referenced by its parent vfsmount 3036 * - still marked for expiry (marked on the last call here; marks are 3037 * cleared by mntput()) 3038 */ 3039 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3040 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3041 propagate_mount_busy(mnt, 1)) 3042 continue; 3043 list_move(&mnt->mnt_expire, &graveyard); 3044 } 3045 while (!list_empty(&graveyard)) { 3046 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3047 touch_mnt_namespace(mnt->mnt_ns); 3048 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3049 } 3050 unlock_mount_hash(); 3051 namespace_unlock(); 3052 } 3053 3054 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3055 3056 /* 3057 * Ripoff of 'select_parent()' 3058 * 3059 * search the list of submounts for a given mountpoint, and move any 3060 * shrinkable submounts to the 'graveyard' list. 3061 */ 3062 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3063 { 3064 struct mount *this_parent = parent; 3065 struct list_head *next; 3066 int found = 0; 3067 3068 repeat: 3069 next = this_parent->mnt_mounts.next; 3070 resume: 3071 while (next != &this_parent->mnt_mounts) { 3072 struct list_head *tmp = next; 3073 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3074 3075 next = tmp->next; 3076 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3077 continue; 3078 /* 3079 * Descend a level if the d_mounts list is non-empty. 3080 */ 3081 if (!list_empty(&mnt->mnt_mounts)) { 3082 this_parent = mnt; 3083 goto repeat; 3084 } 3085 3086 if (!propagate_mount_busy(mnt, 1)) { 3087 list_move_tail(&mnt->mnt_expire, graveyard); 3088 found++; 3089 } 3090 } 3091 /* 3092 * All done at this level ... ascend and resume the search 3093 */ 3094 if (this_parent != parent) { 3095 next = this_parent->mnt_child.next; 3096 this_parent = this_parent->mnt_parent; 3097 goto resume; 3098 } 3099 return found; 3100 } 3101 3102 /* 3103 * process a list of expirable mountpoints with the intent of discarding any 3104 * submounts of a specific parent mountpoint 3105 * 3106 * mount_lock must be held for write 3107 */ 3108 static void shrink_submounts(struct mount *mnt) 3109 { 3110 LIST_HEAD(graveyard); 3111 struct mount *m; 3112 3113 /* extract submounts of 'mountpoint' from the expiration list */ 3114 while (select_submounts(mnt, &graveyard)) { 3115 while (!list_empty(&graveyard)) { 3116 m = list_first_entry(&graveyard, struct mount, 3117 mnt_expire); 3118 touch_mnt_namespace(m->mnt_ns); 3119 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3120 } 3121 } 3122 } 3123 3124 static void *copy_mount_options(const void __user * data) 3125 { 3126 char *copy; 3127 unsigned left, offset; 3128 3129 if (!data) 3130 return NULL; 3131 3132 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3133 if (!copy) 3134 return ERR_PTR(-ENOMEM); 3135 3136 left = copy_from_user(copy, data, PAGE_SIZE); 3137 3138 /* 3139 * Not all architectures have an exact copy_from_user(). Resort to 3140 * byte at a time. 3141 */ 3142 offset = PAGE_SIZE - left; 3143 while (left) { 3144 char c; 3145 if (get_user(c, (const char __user *)data + offset)) 3146 break; 3147 copy[offset] = c; 3148 left--; 3149 offset++; 3150 } 3151 3152 if (left == PAGE_SIZE) { 3153 kfree(copy); 3154 return ERR_PTR(-EFAULT); 3155 } 3156 3157 return copy; 3158 } 3159 3160 static char *copy_mount_string(const void __user *data) 3161 { 3162 return data ? strndup_user(data, PATH_MAX) : NULL; 3163 } 3164 3165 /* 3166 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3167 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3168 * 3169 * data is a (void *) that can point to any structure up to 3170 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3171 * information (or be NULL). 3172 * 3173 * Pre-0.97 versions of mount() didn't have a flags word. 3174 * When the flags word was introduced its top half was required 3175 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3176 * Therefore, if this magic number is present, it carries no information 3177 * and must be discarded. 3178 */ 3179 int path_mount(const char *dev_name, struct path *path, 3180 const char *type_page, unsigned long flags, void *data_page) 3181 { 3182 unsigned int mnt_flags = 0, sb_flags; 3183 int ret; 3184 3185 /* Discard magic */ 3186 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3187 flags &= ~MS_MGC_MSK; 3188 3189 /* Basic sanity checks */ 3190 if (data_page) 3191 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3192 3193 if (flags & MS_NOUSER) 3194 return -EINVAL; 3195 3196 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3197 if (ret) 3198 return ret; 3199 if (!may_mount()) 3200 return -EPERM; 3201 if ((flags & SB_MANDLOCK) && !may_mandlock()) 3202 return -EPERM; 3203 3204 /* Default to relatime unless overriden */ 3205 if (!(flags & MS_NOATIME)) 3206 mnt_flags |= MNT_RELATIME; 3207 3208 /* Separate the per-mountpoint flags */ 3209 if (flags & MS_NOSUID) 3210 mnt_flags |= MNT_NOSUID; 3211 if (flags & MS_NODEV) 3212 mnt_flags |= MNT_NODEV; 3213 if (flags & MS_NOEXEC) 3214 mnt_flags |= MNT_NOEXEC; 3215 if (flags & MS_NOATIME) 3216 mnt_flags |= MNT_NOATIME; 3217 if (flags & MS_NODIRATIME) 3218 mnt_flags |= MNT_NODIRATIME; 3219 if (flags & MS_STRICTATIME) 3220 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3221 if (flags & MS_RDONLY) 3222 mnt_flags |= MNT_READONLY; 3223 if (flags & MS_NOSYMFOLLOW) 3224 mnt_flags |= MNT_NOSYMFOLLOW; 3225 3226 /* The default atime for remount is preservation */ 3227 if ((flags & MS_REMOUNT) && 3228 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3229 MS_STRICTATIME)) == 0)) { 3230 mnt_flags &= ~MNT_ATIME_MASK; 3231 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3232 } 3233 3234 sb_flags = flags & (SB_RDONLY | 3235 SB_SYNCHRONOUS | 3236 SB_MANDLOCK | 3237 SB_DIRSYNC | 3238 SB_SILENT | 3239 SB_POSIXACL | 3240 SB_LAZYTIME | 3241 SB_I_VERSION); 3242 3243 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3244 return do_reconfigure_mnt(path, mnt_flags); 3245 if (flags & MS_REMOUNT) 3246 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3247 if (flags & MS_BIND) 3248 return do_loopback(path, dev_name, flags & MS_REC); 3249 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3250 return do_change_type(path, flags); 3251 if (flags & MS_MOVE) 3252 return do_move_mount_old(path, dev_name); 3253 3254 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3255 data_page); 3256 } 3257 3258 long do_mount(const char *dev_name, const char __user *dir_name, 3259 const char *type_page, unsigned long flags, void *data_page) 3260 { 3261 struct path path; 3262 int ret; 3263 3264 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3265 if (ret) 3266 return ret; 3267 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3268 path_put(&path); 3269 return ret; 3270 } 3271 3272 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3273 { 3274 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3275 } 3276 3277 static void dec_mnt_namespaces(struct ucounts *ucounts) 3278 { 3279 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3280 } 3281 3282 static void free_mnt_ns(struct mnt_namespace *ns) 3283 { 3284 if (!is_anon_ns(ns)) 3285 ns_free_inum(&ns->ns); 3286 dec_mnt_namespaces(ns->ucounts); 3287 put_user_ns(ns->user_ns); 3288 kfree(ns); 3289 } 3290 3291 /* 3292 * Assign a sequence number so we can detect when we attempt to bind 3293 * mount a reference to an older mount namespace into the current 3294 * mount namespace, preventing reference counting loops. A 64bit 3295 * number incrementing at 10Ghz will take 12,427 years to wrap which 3296 * is effectively never, so we can ignore the possibility. 3297 */ 3298 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3299 3300 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3301 { 3302 struct mnt_namespace *new_ns; 3303 struct ucounts *ucounts; 3304 int ret; 3305 3306 ucounts = inc_mnt_namespaces(user_ns); 3307 if (!ucounts) 3308 return ERR_PTR(-ENOSPC); 3309 3310 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3311 if (!new_ns) { 3312 dec_mnt_namespaces(ucounts); 3313 return ERR_PTR(-ENOMEM); 3314 } 3315 if (!anon) { 3316 ret = ns_alloc_inum(&new_ns->ns); 3317 if (ret) { 3318 kfree(new_ns); 3319 dec_mnt_namespaces(ucounts); 3320 return ERR_PTR(ret); 3321 } 3322 } 3323 new_ns->ns.ops = &mntns_operations; 3324 if (!anon) 3325 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3326 refcount_set(&new_ns->ns.count, 1); 3327 INIT_LIST_HEAD(&new_ns->list); 3328 init_waitqueue_head(&new_ns->poll); 3329 spin_lock_init(&new_ns->ns_lock); 3330 new_ns->user_ns = get_user_ns(user_ns); 3331 new_ns->ucounts = ucounts; 3332 return new_ns; 3333 } 3334 3335 __latent_entropy 3336 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3337 struct user_namespace *user_ns, struct fs_struct *new_fs) 3338 { 3339 struct mnt_namespace *new_ns; 3340 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3341 struct mount *p, *q; 3342 struct mount *old; 3343 struct mount *new; 3344 int copy_flags; 3345 3346 BUG_ON(!ns); 3347 3348 if (likely(!(flags & CLONE_NEWNS))) { 3349 get_mnt_ns(ns); 3350 return ns; 3351 } 3352 3353 old = ns->root; 3354 3355 new_ns = alloc_mnt_ns(user_ns, false); 3356 if (IS_ERR(new_ns)) 3357 return new_ns; 3358 3359 namespace_lock(); 3360 /* First pass: copy the tree topology */ 3361 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3362 if (user_ns != ns->user_ns) 3363 copy_flags |= CL_SHARED_TO_SLAVE; 3364 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3365 if (IS_ERR(new)) { 3366 namespace_unlock(); 3367 free_mnt_ns(new_ns); 3368 return ERR_CAST(new); 3369 } 3370 if (user_ns != ns->user_ns) { 3371 lock_mount_hash(); 3372 lock_mnt_tree(new); 3373 unlock_mount_hash(); 3374 } 3375 new_ns->root = new; 3376 list_add_tail(&new_ns->list, &new->mnt_list); 3377 3378 /* 3379 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3380 * as belonging to new namespace. We have already acquired a private 3381 * fs_struct, so tsk->fs->lock is not needed. 3382 */ 3383 p = old; 3384 q = new; 3385 while (p) { 3386 q->mnt_ns = new_ns; 3387 new_ns->mounts++; 3388 if (new_fs) { 3389 if (&p->mnt == new_fs->root.mnt) { 3390 new_fs->root.mnt = mntget(&q->mnt); 3391 rootmnt = &p->mnt; 3392 } 3393 if (&p->mnt == new_fs->pwd.mnt) { 3394 new_fs->pwd.mnt = mntget(&q->mnt); 3395 pwdmnt = &p->mnt; 3396 } 3397 } 3398 p = next_mnt(p, old); 3399 q = next_mnt(q, new); 3400 if (!q) 3401 break; 3402 while (p->mnt.mnt_root != q->mnt.mnt_root) 3403 p = next_mnt(p, old); 3404 } 3405 namespace_unlock(); 3406 3407 if (rootmnt) 3408 mntput(rootmnt); 3409 if (pwdmnt) 3410 mntput(pwdmnt); 3411 3412 return new_ns; 3413 } 3414 3415 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3416 { 3417 struct mount *mnt = real_mount(m); 3418 struct mnt_namespace *ns; 3419 struct super_block *s; 3420 struct path path; 3421 int err; 3422 3423 ns = alloc_mnt_ns(&init_user_ns, true); 3424 if (IS_ERR(ns)) { 3425 mntput(m); 3426 return ERR_CAST(ns); 3427 } 3428 mnt->mnt_ns = ns; 3429 ns->root = mnt; 3430 ns->mounts++; 3431 list_add(&mnt->mnt_list, &ns->list); 3432 3433 err = vfs_path_lookup(m->mnt_root, m, 3434 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3435 3436 put_mnt_ns(ns); 3437 3438 if (err) 3439 return ERR_PTR(err); 3440 3441 /* trade a vfsmount reference for active sb one */ 3442 s = path.mnt->mnt_sb; 3443 atomic_inc(&s->s_active); 3444 mntput(path.mnt); 3445 /* lock the sucker */ 3446 down_write(&s->s_umount); 3447 /* ... and return the root of (sub)tree on it */ 3448 return path.dentry; 3449 } 3450 EXPORT_SYMBOL(mount_subtree); 3451 3452 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3453 char __user *, type, unsigned long, flags, void __user *, data) 3454 { 3455 int ret; 3456 char *kernel_type; 3457 char *kernel_dev; 3458 void *options; 3459 3460 kernel_type = copy_mount_string(type); 3461 ret = PTR_ERR(kernel_type); 3462 if (IS_ERR(kernel_type)) 3463 goto out_type; 3464 3465 kernel_dev = copy_mount_string(dev_name); 3466 ret = PTR_ERR(kernel_dev); 3467 if (IS_ERR(kernel_dev)) 3468 goto out_dev; 3469 3470 options = copy_mount_options(data); 3471 ret = PTR_ERR(options); 3472 if (IS_ERR(options)) 3473 goto out_data; 3474 3475 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3476 3477 kfree(options); 3478 out_data: 3479 kfree(kernel_dev); 3480 out_dev: 3481 kfree(kernel_type); 3482 out_type: 3483 return ret; 3484 } 3485 3486 #define FSMOUNT_VALID_FLAGS \ 3487 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3488 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3489 MOUNT_ATTR_NOSYMFOLLOW) 3490 3491 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3492 3493 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3494 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3495 3496 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3497 { 3498 unsigned int mnt_flags = 0; 3499 3500 if (attr_flags & MOUNT_ATTR_RDONLY) 3501 mnt_flags |= MNT_READONLY; 3502 if (attr_flags & MOUNT_ATTR_NOSUID) 3503 mnt_flags |= MNT_NOSUID; 3504 if (attr_flags & MOUNT_ATTR_NODEV) 3505 mnt_flags |= MNT_NODEV; 3506 if (attr_flags & MOUNT_ATTR_NOEXEC) 3507 mnt_flags |= MNT_NOEXEC; 3508 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3509 mnt_flags |= MNT_NODIRATIME; 3510 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3511 mnt_flags |= MNT_NOSYMFOLLOW; 3512 3513 return mnt_flags; 3514 } 3515 3516 /* 3517 * Create a kernel mount representation for a new, prepared superblock 3518 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3519 */ 3520 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3521 unsigned int, attr_flags) 3522 { 3523 struct mnt_namespace *ns; 3524 struct fs_context *fc; 3525 struct file *file; 3526 struct path newmount; 3527 struct mount *mnt; 3528 struct fd f; 3529 unsigned int mnt_flags = 0; 3530 long ret; 3531 3532 if (!may_mount()) 3533 return -EPERM; 3534 3535 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3536 return -EINVAL; 3537 3538 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3539 return -EINVAL; 3540 3541 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3542 3543 switch (attr_flags & MOUNT_ATTR__ATIME) { 3544 case MOUNT_ATTR_STRICTATIME: 3545 break; 3546 case MOUNT_ATTR_NOATIME: 3547 mnt_flags |= MNT_NOATIME; 3548 break; 3549 case MOUNT_ATTR_RELATIME: 3550 mnt_flags |= MNT_RELATIME; 3551 break; 3552 default: 3553 return -EINVAL; 3554 } 3555 3556 f = fdget(fs_fd); 3557 if (!f.file) 3558 return -EBADF; 3559 3560 ret = -EINVAL; 3561 if (f.file->f_op != &fscontext_fops) 3562 goto err_fsfd; 3563 3564 fc = f.file->private_data; 3565 3566 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3567 if (ret < 0) 3568 goto err_fsfd; 3569 3570 /* There must be a valid superblock or we can't mount it */ 3571 ret = -EINVAL; 3572 if (!fc->root) 3573 goto err_unlock; 3574 3575 ret = -EPERM; 3576 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3577 pr_warn("VFS: Mount too revealing\n"); 3578 goto err_unlock; 3579 } 3580 3581 ret = -EBUSY; 3582 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3583 goto err_unlock; 3584 3585 ret = -EPERM; 3586 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3587 goto err_unlock; 3588 3589 newmount.mnt = vfs_create_mount(fc); 3590 if (IS_ERR(newmount.mnt)) { 3591 ret = PTR_ERR(newmount.mnt); 3592 goto err_unlock; 3593 } 3594 newmount.dentry = dget(fc->root); 3595 newmount.mnt->mnt_flags = mnt_flags; 3596 3597 /* We've done the mount bit - now move the file context into more or 3598 * less the same state as if we'd done an fspick(). We don't want to 3599 * do any memory allocation or anything like that at this point as we 3600 * don't want to have to handle any errors incurred. 3601 */ 3602 vfs_clean_context(fc); 3603 3604 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3605 if (IS_ERR(ns)) { 3606 ret = PTR_ERR(ns); 3607 goto err_path; 3608 } 3609 mnt = real_mount(newmount.mnt); 3610 mnt->mnt_ns = ns; 3611 ns->root = mnt; 3612 ns->mounts = 1; 3613 list_add(&mnt->mnt_list, &ns->list); 3614 mntget(newmount.mnt); 3615 3616 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3617 * it, not just simply put it. 3618 */ 3619 file = dentry_open(&newmount, O_PATH, fc->cred); 3620 if (IS_ERR(file)) { 3621 dissolve_on_fput(newmount.mnt); 3622 ret = PTR_ERR(file); 3623 goto err_path; 3624 } 3625 file->f_mode |= FMODE_NEED_UNMOUNT; 3626 3627 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3628 if (ret >= 0) 3629 fd_install(ret, file); 3630 else 3631 fput(file); 3632 3633 err_path: 3634 path_put(&newmount); 3635 err_unlock: 3636 mutex_unlock(&fc->uapi_mutex); 3637 err_fsfd: 3638 fdput(f); 3639 return ret; 3640 } 3641 3642 /* 3643 * Move a mount from one place to another. In combination with 3644 * fsopen()/fsmount() this is used to install a new mount and in combination 3645 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3646 * a mount subtree. 3647 * 3648 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3649 */ 3650 SYSCALL_DEFINE5(move_mount, 3651 int, from_dfd, const char __user *, from_pathname, 3652 int, to_dfd, const char __user *, to_pathname, 3653 unsigned int, flags) 3654 { 3655 struct path from_path, to_path; 3656 unsigned int lflags; 3657 int ret = 0; 3658 3659 if (!may_mount()) 3660 return -EPERM; 3661 3662 if (flags & ~MOVE_MOUNT__MASK) 3663 return -EINVAL; 3664 3665 /* If someone gives a pathname, they aren't permitted to move 3666 * from an fd that requires unmount as we can't get at the flag 3667 * to clear it afterwards. 3668 */ 3669 lflags = 0; 3670 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3671 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3672 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3673 3674 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3675 if (ret < 0) 3676 return ret; 3677 3678 lflags = 0; 3679 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3680 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3681 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3682 3683 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3684 if (ret < 0) 3685 goto out_from; 3686 3687 ret = security_move_mount(&from_path, &to_path); 3688 if (ret < 0) 3689 goto out_to; 3690 3691 ret = do_move_mount(&from_path, &to_path); 3692 3693 out_to: 3694 path_put(&to_path); 3695 out_from: 3696 path_put(&from_path); 3697 return ret; 3698 } 3699 3700 /* 3701 * Return true if path is reachable from root 3702 * 3703 * namespace_sem or mount_lock is held 3704 */ 3705 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3706 const struct path *root) 3707 { 3708 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3709 dentry = mnt->mnt_mountpoint; 3710 mnt = mnt->mnt_parent; 3711 } 3712 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3713 } 3714 3715 bool path_is_under(const struct path *path1, const struct path *path2) 3716 { 3717 bool res; 3718 read_seqlock_excl(&mount_lock); 3719 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3720 read_sequnlock_excl(&mount_lock); 3721 return res; 3722 } 3723 EXPORT_SYMBOL(path_is_under); 3724 3725 /* 3726 * pivot_root Semantics: 3727 * Moves the root file system of the current process to the directory put_old, 3728 * makes new_root as the new root file system of the current process, and sets 3729 * root/cwd of all processes which had them on the current root to new_root. 3730 * 3731 * Restrictions: 3732 * The new_root and put_old must be directories, and must not be on the 3733 * same file system as the current process root. The put_old must be 3734 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3735 * pointed to by put_old must yield the same directory as new_root. No other 3736 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3737 * 3738 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3739 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3740 * in this situation. 3741 * 3742 * Notes: 3743 * - we don't move root/cwd if they are not at the root (reason: if something 3744 * cared enough to change them, it's probably wrong to force them elsewhere) 3745 * - it's okay to pick a root that isn't the root of a file system, e.g. 3746 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3747 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3748 * first. 3749 */ 3750 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3751 const char __user *, put_old) 3752 { 3753 struct path new, old, root; 3754 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3755 struct mountpoint *old_mp, *root_mp; 3756 int error; 3757 3758 if (!may_mount()) 3759 return -EPERM; 3760 3761 error = user_path_at(AT_FDCWD, new_root, 3762 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3763 if (error) 3764 goto out0; 3765 3766 error = user_path_at(AT_FDCWD, put_old, 3767 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3768 if (error) 3769 goto out1; 3770 3771 error = security_sb_pivotroot(&old, &new); 3772 if (error) 3773 goto out2; 3774 3775 get_fs_root(current->fs, &root); 3776 old_mp = lock_mount(&old); 3777 error = PTR_ERR(old_mp); 3778 if (IS_ERR(old_mp)) 3779 goto out3; 3780 3781 error = -EINVAL; 3782 new_mnt = real_mount(new.mnt); 3783 root_mnt = real_mount(root.mnt); 3784 old_mnt = real_mount(old.mnt); 3785 ex_parent = new_mnt->mnt_parent; 3786 root_parent = root_mnt->mnt_parent; 3787 if (IS_MNT_SHARED(old_mnt) || 3788 IS_MNT_SHARED(ex_parent) || 3789 IS_MNT_SHARED(root_parent)) 3790 goto out4; 3791 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3792 goto out4; 3793 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3794 goto out4; 3795 error = -ENOENT; 3796 if (d_unlinked(new.dentry)) 3797 goto out4; 3798 error = -EBUSY; 3799 if (new_mnt == root_mnt || old_mnt == root_mnt) 3800 goto out4; /* loop, on the same file system */ 3801 error = -EINVAL; 3802 if (root.mnt->mnt_root != root.dentry) 3803 goto out4; /* not a mountpoint */ 3804 if (!mnt_has_parent(root_mnt)) 3805 goto out4; /* not attached */ 3806 if (new.mnt->mnt_root != new.dentry) 3807 goto out4; /* not a mountpoint */ 3808 if (!mnt_has_parent(new_mnt)) 3809 goto out4; /* not attached */ 3810 /* make sure we can reach put_old from new_root */ 3811 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3812 goto out4; 3813 /* make certain new is below the root */ 3814 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3815 goto out4; 3816 lock_mount_hash(); 3817 umount_mnt(new_mnt); 3818 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3819 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3820 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3821 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3822 } 3823 /* mount old root on put_old */ 3824 attach_mnt(root_mnt, old_mnt, old_mp); 3825 /* mount new_root on / */ 3826 attach_mnt(new_mnt, root_parent, root_mp); 3827 mnt_add_count(root_parent, -1); 3828 touch_mnt_namespace(current->nsproxy->mnt_ns); 3829 /* A moved mount should not expire automatically */ 3830 list_del_init(&new_mnt->mnt_expire); 3831 put_mountpoint(root_mp); 3832 unlock_mount_hash(); 3833 chroot_fs_refs(&root, &new); 3834 error = 0; 3835 out4: 3836 unlock_mount(old_mp); 3837 if (!error) 3838 mntput_no_expire(ex_parent); 3839 out3: 3840 path_put(&root); 3841 out2: 3842 path_put(&old); 3843 out1: 3844 path_put(&new); 3845 out0: 3846 return error; 3847 } 3848 3849 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3850 { 3851 unsigned int flags = mnt->mnt.mnt_flags; 3852 3853 /* flags to clear */ 3854 flags &= ~kattr->attr_clr; 3855 /* flags to raise */ 3856 flags |= kattr->attr_set; 3857 3858 return flags; 3859 } 3860 3861 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3862 { 3863 struct vfsmount *m = &mnt->mnt; 3864 3865 if (!kattr->mnt_userns) 3866 return 0; 3867 3868 /* 3869 * Once a mount has been idmapped we don't allow it to change its 3870 * mapping. It makes things simpler and callers can just create 3871 * another bind-mount they can idmap if they want to. 3872 */ 3873 if (mnt_user_ns(m) != &init_user_ns) 3874 return -EPERM; 3875 3876 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3877 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3878 return -EINVAL; 3879 3880 /* Don't yet support filesystem mountable in user namespaces. */ 3881 if (m->mnt_sb->s_user_ns != &init_user_ns) 3882 return -EINVAL; 3883 3884 /* We're not controlling the superblock. */ 3885 if (!capable(CAP_SYS_ADMIN)) 3886 return -EPERM; 3887 3888 /* Mount has already been visible in the filesystem hierarchy. */ 3889 if (!is_anon_ns(mnt->mnt_ns)) 3890 return -EINVAL; 3891 3892 return 0; 3893 } 3894 3895 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3896 struct mount *mnt, int *err) 3897 { 3898 struct mount *m = mnt, *last = NULL; 3899 3900 if (!is_mounted(&m->mnt)) { 3901 *err = -EINVAL; 3902 goto out; 3903 } 3904 3905 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3906 *err = -EINVAL; 3907 goto out; 3908 } 3909 3910 do { 3911 unsigned int flags; 3912 3913 flags = recalc_flags(kattr, m); 3914 if (!can_change_locked_flags(m, flags)) { 3915 *err = -EPERM; 3916 goto out; 3917 } 3918 3919 *err = can_idmap_mount(kattr, m); 3920 if (*err) 3921 goto out; 3922 3923 last = m; 3924 3925 if ((kattr->attr_set & MNT_READONLY) && 3926 !(m->mnt.mnt_flags & MNT_READONLY)) { 3927 *err = mnt_hold_writers(m); 3928 if (*err) 3929 goto out; 3930 } 3931 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3932 3933 out: 3934 return last; 3935 } 3936 3937 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3938 { 3939 struct user_namespace *mnt_userns; 3940 3941 if (!kattr->mnt_userns) 3942 return; 3943 3944 mnt_userns = get_user_ns(kattr->mnt_userns); 3945 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 3946 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 3947 } 3948 3949 static void mount_setattr_commit(struct mount_kattr *kattr, 3950 struct mount *mnt, struct mount *last, 3951 int err) 3952 { 3953 struct mount *m = mnt; 3954 3955 do { 3956 if (!err) { 3957 unsigned int flags; 3958 3959 do_idmap_mount(kattr, m); 3960 flags = recalc_flags(kattr, m); 3961 WRITE_ONCE(m->mnt.mnt_flags, flags); 3962 } 3963 3964 /* 3965 * We either set MNT_READONLY above so make it visible 3966 * before ~MNT_WRITE_HOLD or we failed to recursively 3967 * apply mount options. 3968 */ 3969 if ((kattr->attr_set & MNT_READONLY) && 3970 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 3971 mnt_unhold_writers(m); 3972 3973 if (!err && kattr->propagation) 3974 change_mnt_propagation(m, kattr->propagation); 3975 3976 /* 3977 * On failure, only cleanup until we found the first mount 3978 * we failed to handle. 3979 */ 3980 if (err && m == last) 3981 break; 3982 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3983 3984 if (!err) 3985 touch_mnt_namespace(mnt->mnt_ns); 3986 } 3987 3988 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 3989 { 3990 struct mount *mnt = real_mount(path->mnt), *last = NULL; 3991 int err = 0; 3992 3993 if (path->dentry != mnt->mnt.mnt_root) 3994 return -EINVAL; 3995 3996 if (kattr->propagation) { 3997 /* 3998 * Only take namespace_lock() if we're actually changing 3999 * propagation. 4000 */ 4001 namespace_lock(); 4002 if (kattr->propagation == MS_SHARED) { 4003 err = invent_group_ids(mnt, kattr->recurse); 4004 if (err) { 4005 namespace_unlock(); 4006 return err; 4007 } 4008 } 4009 } 4010 4011 lock_mount_hash(); 4012 4013 /* 4014 * Get the mount tree in a shape where we can change mount 4015 * properties without failure. 4016 */ 4017 last = mount_setattr_prepare(kattr, mnt, &err); 4018 if (last) /* Commit all changes or revert to the old state. */ 4019 mount_setattr_commit(kattr, mnt, last, err); 4020 4021 unlock_mount_hash(); 4022 4023 if (kattr->propagation) { 4024 namespace_unlock(); 4025 if (err) 4026 cleanup_group_ids(mnt, NULL); 4027 } 4028 4029 return err; 4030 } 4031 4032 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4033 struct mount_kattr *kattr, unsigned int flags) 4034 { 4035 int err = 0; 4036 struct ns_common *ns; 4037 struct user_namespace *mnt_userns; 4038 struct file *file; 4039 4040 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4041 return 0; 4042 4043 /* 4044 * We currently do not support clearing an idmapped mount. If this ever 4045 * is a use-case we can revisit this but for now let's keep it simple 4046 * and not allow it. 4047 */ 4048 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4049 return -EINVAL; 4050 4051 if (attr->userns_fd > INT_MAX) 4052 return -EINVAL; 4053 4054 file = fget(attr->userns_fd); 4055 if (!file) 4056 return -EBADF; 4057 4058 if (!proc_ns_file(file)) { 4059 err = -EINVAL; 4060 goto out_fput; 4061 } 4062 4063 ns = get_proc_ns(file_inode(file)); 4064 if (ns->ops->type != CLONE_NEWUSER) { 4065 err = -EINVAL; 4066 goto out_fput; 4067 } 4068 4069 /* 4070 * The init_user_ns is used to indicate that a vfsmount is not idmapped. 4071 * This is simpler than just having to treat NULL as unmapped. Users 4072 * wanting to idmap a mount to init_user_ns can just use a namespace 4073 * with an identity mapping. 4074 */ 4075 mnt_userns = container_of(ns, struct user_namespace, ns); 4076 if (mnt_userns == &init_user_ns) { 4077 err = -EPERM; 4078 goto out_fput; 4079 } 4080 kattr->mnt_userns = get_user_ns(mnt_userns); 4081 4082 out_fput: 4083 fput(file); 4084 return err; 4085 } 4086 4087 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4088 struct mount_kattr *kattr, unsigned int flags) 4089 { 4090 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4091 4092 if (flags & AT_NO_AUTOMOUNT) 4093 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4094 if (flags & AT_SYMLINK_NOFOLLOW) 4095 lookup_flags &= ~LOOKUP_FOLLOW; 4096 if (flags & AT_EMPTY_PATH) 4097 lookup_flags |= LOOKUP_EMPTY; 4098 4099 *kattr = (struct mount_kattr) { 4100 .lookup_flags = lookup_flags, 4101 .recurse = !!(flags & AT_RECURSIVE), 4102 }; 4103 4104 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4105 return -EINVAL; 4106 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4107 return -EINVAL; 4108 kattr->propagation = attr->propagation; 4109 4110 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4111 return -EINVAL; 4112 4113 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4114 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4115 4116 /* 4117 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4118 * users wanting to transition to a different atime setting cannot 4119 * simply specify the atime setting in @attr_set, but must also 4120 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4121 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4122 * @attr_clr and that @attr_set can't have any atime bits set if 4123 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4124 */ 4125 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4126 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4127 return -EINVAL; 4128 4129 /* 4130 * Clear all previous time settings as they are mutually 4131 * exclusive. 4132 */ 4133 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4134 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4135 case MOUNT_ATTR_RELATIME: 4136 kattr->attr_set |= MNT_RELATIME; 4137 break; 4138 case MOUNT_ATTR_NOATIME: 4139 kattr->attr_set |= MNT_NOATIME; 4140 break; 4141 case MOUNT_ATTR_STRICTATIME: 4142 break; 4143 default: 4144 return -EINVAL; 4145 } 4146 } else { 4147 if (attr->attr_set & MOUNT_ATTR__ATIME) 4148 return -EINVAL; 4149 } 4150 4151 return build_mount_idmapped(attr, usize, kattr, flags); 4152 } 4153 4154 static void finish_mount_kattr(struct mount_kattr *kattr) 4155 { 4156 put_user_ns(kattr->mnt_userns); 4157 kattr->mnt_userns = NULL; 4158 } 4159 4160 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4161 unsigned int, flags, struct mount_attr __user *, uattr, 4162 size_t, usize) 4163 { 4164 int err; 4165 struct path target; 4166 struct mount_attr attr; 4167 struct mount_kattr kattr; 4168 4169 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4170 4171 if (flags & ~(AT_EMPTY_PATH | 4172 AT_RECURSIVE | 4173 AT_SYMLINK_NOFOLLOW | 4174 AT_NO_AUTOMOUNT)) 4175 return -EINVAL; 4176 4177 if (unlikely(usize > PAGE_SIZE)) 4178 return -E2BIG; 4179 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4180 return -EINVAL; 4181 4182 if (!may_mount()) 4183 return -EPERM; 4184 4185 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4186 if (err) 4187 return err; 4188 4189 /* Don't bother walking through the mounts if this is a nop. */ 4190 if (attr.attr_set == 0 && 4191 attr.attr_clr == 0 && 4192 attr.propagation == 0) 4193 return 0; 4194 4195 err = build_mount_kattr(&attr, usize, &kattr, flags); 4196 if (err) 4197 return err; 4198 4199 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4200 if (err) 4201 return err; 4202 4203 err = do_mount_setattr(&target, &kattr); 4204 finish_mount_kattr(&kattr); 4205 path_put(&target); 4206 return err; 4207 } 4208 4209 static void __init init_mount_tree(void) 4210 { 4211 struct vfsmount *mnt; 4212 struct mount *m; 4213 struct mnt_namespace *ns; 4214 struct path root; 4215 4216 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4217 if (IS_ERR(mnt)) 4218 panic("Can't create rootfs"); 4219 4220 ns = alloc_mnt_ns(&init_user_ns, false); 4221 if (IS_ERR(ns)) 4222 panic("Can't allocate initial namespace"); 4223 m = real_mount(mnt); 4224 m->mnt_ns = ns; 4225 ns->root = m; 4226 ns->mounts = 1; 4227 list_add(&m->mnt_list, &ns->list); 4228 init_task.nsproxy->mnt_ns = ns; 4229 get_mnt_ns(ns); 4230 4231 root.mnt = mnt; 4232 root.dentry = mnt->mnt_root; 4233 mnt->mnt_flags |= MNT_LOCKED; 4234 4235 set_fs_pwd(current->fs, &root); 4236 set_fs_root(current->fs, &root); 4237 } 4238 4239 void __init mnt_init(void) 4240 { 4241 int err; 4242 4243 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4244 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4245 4246 mount_hashtable = alloc_large_system_hash("Mount-cache", 4247 sizeof(struct hlist_head), 4248 mhash_entries, 19, 4249 HASH_ZERO, 4250 &m_hash_shift, &m_hash_mask, 0, 0); 4251 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4252 sizeof(struct hlist_head), 4253 mphash_entries, 19, 4254 HASH_ZERO, 4255 &mp_hash_shift, &mp_hash_mask, 0, 0); 4256 4257 if (!mount_hashtable || !mountpoint_hashtable) 4258 panic("Failed to allocate mount hash table\n"); 4259 4260 kernfs_init(); 4261 4262 err = sysfs_init(); 4263 if (err) 4264 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4265 __func__, err); 4266 fs_kobj = kobject_create_and_add("fs", NULL); 4267 if (!fs_kobj) 4268 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4269 shmem_init(); 4270 init_rootfs(); 4271 init_mount_tree(); 4272 } 4273 4274 void put_mnt_ns(struct mnt_namespace *ns) 4275 { 4276 if (!refcount_dec_and_test(&ns->ns.count)) 4277 return; 4278 drop_collected_mounts(&ns->root->mnt); 4279 free_mnt_ns(ns); 4280 } 4281 4282 struct vfsmount *kern_mount(struct file_system_type *type) 4283 { 4284 struct vfsmount *mnt; 4285 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4286 if (!IS_ERR(mnt)) { 4287 /* 4288 * it is a longterm mount, don't release mnt until 4289 * we unmount before file sys is unregistered 4290 */ 4291 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4292 } 4293 return mnt; 4294 } 4295 EXPORT_SYMBOL_GPL(kern_mount); 4296 4297 void kern_unmount(struct vfsmount *mnt) 4298 { 4299 /* release long term mount so mount point can be released */ 4300 if (!IS_ERR_OR_NULL(mnt)) { 4301 real_mount(mnt)->mnt_ns = NULL; 4302 synchronize_rcu(); /* yecchhh... */ 4303 mntput(mnt); 4304 } 4305 } 4306 EXPORT_SYMBOL(kern_unmount); 4307 4308 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4309 { 4310 unsigned int i; 4311 4312 for (i = 0; i < num; i++) 4313 if (mnt[i]) 4314 real_mount(mnt[i])->mnt_ns = NULL; 4315 synchronize_rcu_expedited(); 4316 for (i = 0; i < num; i++) 4317 mntput(mnt[i]); 4318 } 4319 EXPORT_SYMBOL(kern_unmount_array); 4320 4321 bool our_mnt(struct vfsmount *mnt) 4322 { 4323 return check_mnt(real_mount(mnt)); 4324 } 4325 4326 bool current_chrooted(void) 4327 { 4328 /* Does the current process have a non-standard root */ 4329 struct path ns_root; 4330 struct path fs_root; 4331 bool chrooted; 4332 4333 /* Find the namespace root */ 4334 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4335 ns_root.dentry = ns_root.mnt->mnt_root; 4336 path_get(&ns_root); 4337 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4338 ; 4339 4340 get_fs_root(current->fs, &fs_root); 4341 4342 chrooted = !path_equal(&fs_root, &ns_root); 4343 4344 path_put(&fs_root); 4345 path_put(&ns_root); 4346 4347 return chrooted; 4348 } 4349 4350 static bool mnt_already_visible(struct mnt_namespace *ns, 4351 const struct super_block *sb, 4352 int *new_mnt_flags) 4353 { 4354 int new_flags = *new_mnt_flags; 4355 struct mount *mnt; 4356 bool visible = false; 4357 4358 down_read(&namespace_sem); 4359 lock_ns_list(ns); 4360 list_for_each_entry(mnt, &ns->list, mnt_list) { 4361 struct mount *child; 4362 int mnt_flags; 4363 4364 if (mnt_is_cursor(mnt)) 4365 continue; 4366 4367 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4368 continue; 4369 4370 /* This mount is not fully visible if it's root directory 4371 * is not the root directory of the filesystem. 4372 */ 4373 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4374 continue; 4375 4376 /* A local view of the mount flags */ 4377 mnt_flags = mnt->mnt.mnt_flags; 4378 4379 /* Don't miss readonly hidden in the superblock flags */ 4380 if (sb_rdonly(mnt->mnt.mnt_sb)) 4381 mnt_flags |= MNT_LOCK_READONLY; 4382 4383 /* Verify the mount flags are equal to or more permissive 4384 * than the proposed new mount. 4385 */ 4386 if ((mnt_flags & MNT_LOCK_READONLY) && 4387 !(new_flags & MNT_READONLY)) 4388 continue; 4389 if ((mnt_flags & MNT_LOCK_ATIME) && 4390 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4391 continue; 4392 4393 /* This mount is not fully visible if there are any 4394 * locked child mounts that cover anything except for 4395 * empty directories. 4396 */ 4397 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4398 struct inode *inode = child->mnt_mountpoint->d_inode; 4399 /* Only worry about locked mounts */ 4400 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4401 continue; 4402 /* Is the directory permanetly empty? */ 4403 if (!is_empty_dir_inode(inode)) 4404 goto next; 4405 } 4406 /* Preserve the locked attributes */ 4407 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4408 MNT_LOCK_ATIME); 4409 visible = true; 4410 goto found; 4411 next: ; 4412 } 4413 found: 4414 unlock_ns_list(ns); 4415 up_read(&namespace_sem); 4416 return visible; 4417 } 4418 4419 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4420 { 4421 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4422 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4423 unsigned long s_iflags; 4424 4425 if (ns->user_ns == &init_user_ns) 4426 return false; 4427 4428 /* Can this filesystem be too revealing? */ 4429 s_iflags = sb->s_iflags; 4430 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4431 return false; 4432 4433 if ((s_iflags & required_iflags) != required_iflags) { 4434 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4435 required_iflags); 4436 return true; 4437 } 4438 4439 return !mnt_already_visible(ns, sb, new_mnt_flags); 4440 } 4441 4442 bool mnt_may_suid(struct vfsmount *mnt) 4443 { 4444 /* 4445 * Foreign mounts (accessed via fchdir or through /proc 4446 * symlinks) are always treated as if they are nosuid. This 4447 * prevents namespaces from trusting potentially unsafe 4448 * suid/sgid bits, file caps, or security labels that originate 4449 * in other namespaces. 4450 */ 4451 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4452 current_in_userns(mnt->mnt_sb->s_user_ns); 4453 } 4454 4455 static struct ns_common *mntns_get(struct task_struct *task) 4456 { 4457 struct ns_common *ns = NULL; 4458 struct nsproxy *nsproxy; 4459 4460 task_lock(task); 4461 nsproxy = task->nsproxy; 4462 if (nsproxy) { 4463 ns = &nsproxy->mnt_ns->ns; 4464 get_mnt_ns(to_mnt_ns(ns)); 4465 } 4466 task_unlock(task); 4467 4468 return ns; 4469 } 4470 4471 static void mntns_put(struct ns_common *ns) 4472 { 4473 put_mnt_ns(to_mnt_ns(ns)); 4474 } 4475 4476 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4477 { 4478 struct nsproxy *nsproxy = nsset->nsproxy; 4479 struct fs_struct *fs = nsset->fs; 4480 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4481 struct user_namespace *user_ns = nsset->cred->user_ns; 4482 struct path root; 4483 int err; 4484 4485 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4486 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4487 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4488 return -EPERM; 4489 4490 if (is_anon_ns(mnt_ns)) 4491 return -EINVAL; 4492 4493 if (fs->users != 1) 4494 return -EINVAL; 4495 4496 get_mnt_ns(mnt_ns); 4497 old_mnt_ns = nsproxy->mnt_ns; 4498 nsproxy->mnt_ns = mnt_ns; 4499 4500 /* Find the root */ 4501 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4502 "/", LOOKUP_DOWN, &root); 4503 if (err) { 4504 /* revert to old namespace */ 4505 nsproxy->mnt_ns = old_mnt_ns; 4506 put_mnt_ns(mnt_ns); 4507 return err; 4508 } 4509 4510 put_mnt_ns(old_mnt_ns); 4511 4512 /* Update the pwd and root */ 4513 set_fs_pwd(fs, &root); 4514 set_fs_root(fs, &root); 4515 4516 path_put(&root); 4517 return 0; 4518 } 4519 4520 static struct user_namespace *mntns_owner(struct ns_common *ns) 4521 { 4522 return to_mnt_ns(ns)->user_ns; 4523 } 4524 4525 const struct proc_ns_operations mntns_operations = { 4526 .name = "mnt", 4527 .type = CLONE_NEWNS, 4528 .get = mntns_get, 4529 .put = mntns_put, 4530 .install = mntns_install, 4531 .owner = mntns_owner, 4532 }; 4533