xref: /linux/fs/namespace.c (revision dce49103962840dd61423d7627748d6c558d58c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 
35 #include "pnode.h"
36 #include "internal.h"
37 
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40 
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45 
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 	if (!str)
50 		return 0;
51 	mhash_entries = simple_strtoul(str, &str, 0);
52 	return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	if (!str)
60 		return 0;
61 	mphash_entries = simple_strtoul(str, &str, 0);
62 	return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65 
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69 
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76 
77 struct mount_kattr {
78 	unsigned int attr_set;
79 	unsigned int attr_clr;
80 	unsigned int propagation;
81 	unsigned int lookup_flags;
82 	bool recurse;
83 	struct user_namespace *mnt_userns;
84 };
85 
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89 
90 /*
91  * vfsmount lock may be taken for read to prevent changes to the
92  * vfsmount hash, ie. during mountpoint lookups or walking back
93  * up the tree.
94  *
95  * It should be taken for write in all cases where the vfsmount
96  * tree or hash is modified or when a vfsmount structure is modified.
97  */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99 
100 static inline void lock_mount_hash(void)
101 {
102 	write_seqlock(&mount_lock);
103 }
104 
105 static inline void unlock_mount_hash(void)
106 {
107 	write_sequnlock(&mount_lock);
108 }
109 
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 	tmp = tmp + (tmp >> m_hash_shift);
115 	return &mount_hashtable[tmp & m_hash_mask];
116 }
117 
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 	tmp = tmp + (tmp >> mp_hash_shift);
122 	return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124 
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128 
129 	if (res < 0)
130 		return res;
131 	mnt->mnt_id = res;
132 	return 0;
133 }
134 
135 static void mnt_free_id(struct mount *mnt)
136 {
137 	ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139 
140 /*
141  * Allocate a new peer group ID
142  */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_group_id = res;
150 	return 0;
151 }
152 
153 /*
154  * Release a peer group ID
155  */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 	if (mnt) {
199 		int err;
200 
201 		err = mnt_alloc_id(mnt);
202 		if (err)
203 			goto out_free_cache;
204 
205 		if (name) {
206 			mnt->mnt_devname = kstrdup_const(name,
207 							 GFP_KERNEL_ACCOUNT);
208 			if (!mnt->mnt_devname)
209 				goto out_free_id;
210 		}
211 
212 #ifdef CONFIG_SMP
213 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
214 		if (!mnt->mnt_pcp)
215 			goto out_free_devname;
216 
217 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
218 #else
219 		mnt->mnt_count = 1;
220 		mnt->mnt_writers = 0;
221 #endif
222 
223 		INIT_HLIST_NODE(&mnt->mnt_hash);
224 		INIT_LIST_HEAD(&mnt->mnt_child);
225 		INIT_LIST_HEAD(&mnt->mnt_mounts);
226 		INIT_LIST_HEAD(&mnt->mnt_list);
227 		INIT_LIST_HEAD(&mnt->mnt_expire);
228 		INIT_LIST_HEAD(&mnt->mnt_share);
229 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
230 		INIT_LIST_HEAD(&mnt->mnt_slave);
231 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
232 		INIT_LIST_HEAD(&mnt->mnt_umounting);
233 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
234 		mnt->mnt.mnt_userns = &init_user_ns;
235 	}
236 	return mnt;
237 
238 #ifdef CONFIG_SMP
239 out_free_devname:
240 	kfree_const(mnt->mnt_devname);
241 #endif
242 out_free_id:
243 	mnt_free_id(mnt);
244 out_free_cache:
245 	kmem_cache_free(mnt_cache, mnt);
246 	return NULL;
247 }
248 
249 /*
250  * Most r/o checks on a fs are for operations that take
251  * discrete amounts of time, like a write() or unlink().
252  * We must keep track of when those operations start
253  * (for permission checks) and when they end, so that
254  * we can determine when writes are able to occur to
255  * a filesystem.
256  */
257 /*
258  * __mnt_is_readonly: check whether a mount is read-only
259  * @mnt: the mount to check for its write status
260  *
261  * This shouldn't be used directly ouside of the VFS.
262  * It does not guarantee that the filesystem will stay
263  * r/w, just that it is right *now*.  This can not and
264  * should not be used in place of IS_RDONLY(inode).
265  * mnt_want/drop_write() will _keep_ the filesystem
266  * r/w.
267  */
268 bool __mnt_is_readonly(struct vfsmount *mnt)
269 {
270 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273 
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 	mnt->mnt_writers++;
280 #endif
281 }
282 
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 	mnt->mnt_writers--;
289 #endif
290 }
291 
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	unsigned int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_writers;
305 #endif
306 }
307 
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 	if (mnt->mnt_sb->s_readonly_remount)
311 		return 1;
312 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 	smp_rmb();
314 	return __mnt_is_readonly(mnt);
315 }
316 
317 /*
318  * Most r/o & frozen checks on a fs are for operations that take discrete
319  * amounts of time, like a write() or unlink().  We must keep track of when
320  * those operations start (for permission checks) and when they end, so that we
321  * can determine when writes are able to occur to a filesystem.
322  */
323 /**
324  * __mnt_want_write - get write access to a mount without freeze protection
325  * @m: the mount on which to take a write
326  *
327  * This tells the low-level filesystem that a write is about to be performed to
328  * it, and makes sure that writes are allowed (mnt it read-write) before
329  * returning success. This operation does not protect against filesystem being
330  * frozen. When the write operation is finished, __mnt_drop_write() must be
331  * called. This is effectively a refcount.
332  */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 	struct mount *mnt = real_mount(m);
336 	int ret = 0;
337 
338 	preempt_disable();
339 	mnt_inc_writers(mnt);
340 	/*
341 	 * The store to mnt_inc_writers must be visible before we pass
342 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 	 * incremented count after it has set MNT_WRITE_HOLD.
344 	 */
345 	smp_mb();
346 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 		cpu_relax();
348 	/*
349 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 	 * be set to match its requirements. So we must not load that until
351 	 * MNT_WRITE_HOLD is cleared.
352 	 */
353 	smp_rmb();
354 	if (mnt_is_readonly(m)) {
355 		mnt_dec_writers(mnt);
356 		ret = -EROFS;
357 	}
358 	preempt_enable();
359 
360 	return ret;
361 }
362 
363 /**
364  * mnt_want_write - get write access to a mount
365  * @m: the mount on which to take a write
366  *
367  * This tells the low-level filesystem that a write is about to be performed to
368  * it, and makes sure that writes are allowed (mount is read-write, filesystem
369  * is not frozen) before returning success.  When the write operation is
370  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
371  */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 	int ret;
375 
376 	sb_start_write(m->mnt_sb);
377 	ret = __mnt_want_write(m);
378 	if (ret)
379 		sb_end_write(m->mnt_sb);
380 	return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383 
384 /**
385  * __mnt_want_write_file - get write access to a file's mount
386  * @file: the file who's mount on which to take a write
387  *
388  * This is like __mnt_want_write, but if the file is already open for writing it
389  * skips incrementing mnt_writers (since the open file already has a reference)
390  * and instead only does the check for emergency r/o remounts.  This must be
391  * paired with __mnt_drop_write_file.
392  */
393 int __mnt_want_write_file(struct file *file)
394 {
395 	if (file->f_mode & FMODE_WRITER) {
396 		/*
397 		 * Superblock may have become readonly while there are still
398 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
399 		 */
400 		if (__mnt_is_readonly(file->f_path.mnt))
401 			return -EROFS;
402 		return 0;
403 	}
404 	return __mnt_want_write(file->f_path.mnt);
405 }
406 
407 /**
408  * mnt_want_write_file - get write access to a file's mount
409  * @file: the file who's mount on which to take a write
410  *
411  * This is like mnt_want_write, but if the file is already open for writing it
412  * skips incrementing mnt_writers (since the open file already has a reference)
413  * and instead only does the freeze protection and the check for emergency r/o
414  * remounts.  This must be paired with mnt_drop_write_file.
415  */
416 int mnt_want_write_file(struct file *file)
417 {
418 	int ret;
419 
420 	sb_start_write(file_inode(file)->i_sb);
421 	ret = __mnt_want_write_file(file);
422 	if (ret)
423 		sb_end_write(file_inode(file)->i_sb);
424 	return ret;
425 }
426 EXPORT_SYMBOL_GPL(mnt_want_write_file);
427 
428 /**
429  * __mnt_drop_write - give up write access to a mount
430  * @mnt: the mount on which to give up write access
431  *
432  * Tells the low-level filesystem that we are done
433  * performing writes to it.  Must be matched with
434  * __mnt_want_write() call above.
435  */
436 void __mnt_drop_write(struct vfsmount *mnt)
437 {
438 	preempt_disable();
439 	mnt_dec_writers(real_mount(mnt));
440 	preempt_enable();
441 }
442 
443 /**
444  * mnt_drop_write - give up write access to a mount
445  * @mnt: the mount on which to give up write access
446  *
447  * Tells the low-level filesystem that we are done performing writes to it and
448  * also allows filesystem to be frozen again.  Must be matched with
449  * mnt_want_write() call above.
450  */
451 void mnt_drop_write(struct vfsmount *mnt)
452 {
453 	__mnt_drop_write(mnt);
454 	sb_end_write(mnt->mnt_sb);
455 }
456 EXPORT_SYMBOL_GPL(mnt_drop_write);
457 
458 void __mnt_drop_write_file(struct file *file)
459 {
460 	if (!(file->f_mode & FMODE_WRITER))
461 		__mnt_drop_write(file->f_path.mnt);
462 }
463 
464 void mnt_drop_write_file(struct file *file)
465 {
466 	__mnt_drop_write_file(file);
467 	sb_end_write(file_inode(file)->i_sb);
468 }
469 EXPORT_SYMBOL(mnt_drop_write_file);
470 
471 static inline int mnt_hold_writers(struct mount *mnt)
472 {
473 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 	/*
475 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 	 * should be visible before we do.
477 	 */
478 	smp_mb();
479 
480 	/*
481 	 * With writers on hold, if this value is zero, then there are
482 	 * definitely no active writers (although held writers may subsequently
483 	 * increment the count, they'll have to wait, and decrement it after
484 	 * seeing MNT_READONLY).
485 	 *
486 	 * It is OK to have counter incremented on one CPU and decremented on
487 	 * another: the sum will add up correctly. The danger would be when we
488 	 * sum up each counter, if we read a counter before it is incremented,
489 	 * but then read another CPU's count which it has been subsequently
490 	 * decremented from -- we would see more decrements than we should.
491 	 * MNT_WRITE_HOLD protects against this scenario, because
492 	 * mnt_want_write first increments count, then smp_mb, then spins on
493 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 	 * we're counting up here.
495 	 */
496 	if (mnt_get_writers(mnt) > 0)
497 		return -EBUSY;
498 
499 	return 0;
500 }
501 
502 static inline void mnt_unhold_writers(struct mount *mnt)
503 {
504 	/*
505 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
506 	 * that become unheld will see MNT_READONLY.
507 	 */
508 	smp_wmb();
509 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
510 }
511 
512 static int mnt_make_readonly(struct mount *mnt)
513 {
514 	int ret;
515 
516 	ret = mnt_hold_writers(mnt);
517 	if (!ret)
518 		mnt->mnt.mnt_flags |= MNT_READONLY;
519 	mnt_unhold_writers(mnt);
520 	return ret;
521 }
522 
523 int sb_prepare_remount_readonly(struct super_block *sb)
524 {
525 	struct mount *mnt;
526 	int err = 0;
527 
528 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
529 	if (atomic_long_read(&sb->s_remove_count))
530 		return -EBUSY;
531 
532 	lock_mount_hash();
533 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
535 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
536 			smp_mb();
537 			if (mnt_get_writers(mnt) > 0) {
538 				err = -EBUSY;
539 				break;
540 			}
541 		}
542 	}
543 	if (!err && atomic_long_read(&sb->s_remove_count))
544 		err = -EBUSY;
545 
546 	if (!err) {
547 		sb->s_readonly_remount = 1;
548 		smp_wmb();
549 	}
550 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
551 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
552 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
553 	}
554 	unlock_mount_hash();
555 
556 	return err;
557 }
558 
559 static void free_vfsmnt(struct mount *mnt)
560 {
561 	struct user_namespace *mnt_userns;
562 
563 	mnt_userns = mnt_user_ns(&mnt->mnt);
564 	if (mnt_userns != &init_user_ns)
565 		put_user_ns(mnt_userns);
566 	kfree_const(mnt->mnt_devname);
567 #ifdef CONFIG_SMP
568 	free_percpu(mnt->mnt_pcp);
569 #endif
570 	kmem_cache_free(mnt_cache, mnt);
571 }
572 
573 static void delayed_free_vfsmnt(struct rcu_head *head)
574 {
575 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
576 }
577 
578 /* call under rcu_read_lock */
579 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
580 {
581 	struct mount *mnt;
582 	if (read_seqretry(&mount_lock, seq))
583 		return 1;
584 	if (bastard == NULL)
585 		return 0;
586 	mnt = real_mount(bastard);
587 	mnt_add_count(mnt, 1);
588 	smp_mb();			// see mntput_no_expire()
589 	if (likely(!read_seqretry(&mount_lock, seq)))
590 		return 0;
591 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
592 		mnt_add_count(mnt, -1);
593 		return 1;
594 	}
595 	lock_mount_hash();
596 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
597 		mnt_add_count(mnt, -1);
598 		unlock_mount_hash();
599 		return 1;
600 	}
601 	unlock_mount_hash();
602 	/* caller will mntput() */
603 	return -1;
604 }
605 
606 /* call under rcu_read_lock */
607 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
608 {
609 	int res = __legitimize_mnt(bastard, seq);
610 	if (likely(!res))
611 		return true;
612 	if (unlikely(res < 0)) {
613 		rcu_read_unlock();
614 		mntput(bastard);
615 		rcu_read_lock();
616 	}
617 	return false;
618 }
619 
620 /*
621  * find the first mount at @dentry on vfsmount @mnt.
622  * call under rcu_read_lock()
623  */
624 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 	struct hlist_head *head = m_hash(mnt, dentry);
627 	struct mount *p;
628 
629 	hlist_for_each_entry_rcu(p, head, mnt_hash)
630 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
631 			return p;
632 	return NULL;
633 }
634 
635 /*
636  * lookup_mnt - Return the first child mount mounted at path
637  *
638  * "First" means first mounted chronologically.  If you create the
639  * following mounts:
640  *
641  * mount /dev/sda1 /mnt
642  * mount /dev/sda2 /mnt
643  * mount /dev/sda3 /mnt
644  *
645  * Then lookup_mnt() on the base /mnt dentry in the root mount will
646  * return successively the root dentry and vfsmount of /dev/sda1, then
647  * /dev/sda2, then /dev/sda3, then NULL.
648  *
649  * lookup_mnt takes a reference to the found vfsmount.
650  */
651 struct vfsmount *lookup_mnt(const struct path *path)
652 {
653 	struct mount *child_mnt;
654 	struct vfsmount *m;
655 	unsigned seq;
656 
657 	rcu_read_lock();
658 	do {
659 		seq = read_seqbegin(&mount_lock);
660 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
661 		m = child_mnt ? &child_mnt->mnt : NULL;
662 	} while (!legitimize_mnt(m, seq));
663 	rcu_read_unlock();
664 	return m;
665 }
666 
667 static inline void lock_ns_list(struct mnt_namespace *ns)
668 {
669 	spin_lock(&ns->ns_lock);
670 }
671 
672 static inline void unlock_ns_list(struct mnt_namespace *ns)
673 {
674 	spin_unlock(&ns->ns_lock);
675 }
676 
677 static inline bool mnt_is_cursor(struct mount *mnt)
678 {
679 	return mnt->mnt.mnt_flags & MNT_CURSOR;
680 }
681 
682 /*
683  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
684  *                         current mount namespace.
685  *
686  * The common case is dentries are not mountpoints at all and that
687  * test is handled inline.  For the slow case when we are actually
688  * dealing with a mountpoint of some kind, walk through all of the
689  * mounts in the current mount namespace and test to see if the dentry
690  * is a mountpoint.
691  *
692  * The mount_hashtable is not usable in the context because we
693  * need to identify all mounts that may be in the current mount
694  * namespace not just a mount that happens to have some specified
695  * parent mount.
696  */
697 bool __is_local_mountpoint(struct dentry *dentry)
698 {
699 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
700 	struct mount *mnt;
701 	bool is_covered = false;
702 
703 	down_read(&namespace_sem);
704 	lock_ns_list(ns);
705 	list_for_each_entry(mnt, &ns->list, mnt_list) {
706 		if (mnt_is_cursor(mnt))
707 			continue;
708 		is_covered = (mnt->mnt_mountpoint == dentry);
709 		if (is_covered)
710 			break;
711 	}
712 	unlock_ns_list(ns);
713 	up_read(&namespace_sem);
714 
715 	return is_covered;
716 }
717 
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 	struct hlist_head *chain = mp_hash(dentry);
721 	struct mountpoint *mp;
722 
723 	hlist_for_each_entry(mp, chain, m_hash) {
724 		if (mp->m_dentry == dentry) {
725 			mp->m_count++;
726 			return mp;
727 		}
728 	}
729 	return NULL;
730 }
731 
732 static struct mountpoint *get_mountpoint(struct dentry *dentry)
733 {
734 	struct mountpoint *mp, *new = NULL;
735 	int ret;
736 
737 	if (d_mountpoint(dentry)) {
738 		/* might be worth a WARN_ON() */
739 		if (d_unlinked(dentry))
740 			return ERR_PTR(-ENOENT);
741 mountpoint:
742 		read_seqlock_excl(&mount_lock);
743 		mp = lookup_mountpoint(dentry);
744 		read_sequnlock_excl(&mount_lock);
745 		if (mp)
746 			goto done;
747 	}
748 
749 	if (!new)
750 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
751 	if (!new)
752 		return ERR_PTR(-ENOMEM);
753 
754 
755 	/* Exactly one processes may set d_mounted */
756 	ret = d_set_mounted(dentry);
757 
758 	/* Someone else set d_mounted? */
759 	if (ret == -EBUSY)
760 		goto mountpoint;
761 
762 	/* The dentry is not available as a mountpoint? */
763 	mp = ERR_PTR(ret);
764 	if (ret)
765 		goto done;
766 
767 	/* Add the new mountpoint to the hash table */
768 	read_seqlock_excl(&mount_lock);
769 	new->m_dentry = dget(dentry);
770 	new->m_count = 1;
771 	hlist_add_head(&new->m_hash, mp_hash(dentry));
772 	INIT_HLIST_HEAD(&new->m_list);
773 	read_sequnlock_excl(&mount_lock);
774 
775 	mp = new;
776 	new = NULL;
777 done:
778 	kfree(new);
779 	return mp;
780 }
781 
782 /*
783  * vfsmount lock must be held.  Additionally, the caller is responsible
784  * for serializing calls for given disposal list.
785  */
786 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
787 {
788 	if (!--mp->m_count) {
789 		struct dentry *dentry = mp->m_dentry;
790 		BUG_ON(!hlist_empty(&mp->m_list));
791 		spin_lock(&dentry->d_lock);
792 		dentry->d_flags &= ~DCACHE_MOUNTED;
793 		spin_unlock(&dentry->d_lock);
794 		dput_to_list(dentry, list);
795 		hlist_del(&mp->m_hash);
796 		kfree(mp);
797 	}
798 }
799 
800 /* called with namespace_lock and vfsmount lock */
801 static void put_mountpoint(struct mountpoint *mp)
802 {
803 	__put_mountpoint(mp, &ex_mountpoints);
804 }
805 
806 static inline int check_mnt(struct mount *mnt)
807 {
808 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
809 }
810 
811 /*
812  * vfsmount lock must be held for write
813  */
814 static void touch_mnt_namespace(struct mnt_namespace *ns)
815 {
816 	if (ns) {
817 		ns->event = ++event;
818 		wake_up_interruptible(&ns->poll);
819 	}
820 }
821 
822 /*
823  * vfsmount lock must be held for write
824  */
825 static void __touch_mnt_namespace(struct mnt_namespace *ns)
826 {
827 	if (ns && ns->event != event) {
828 		ns->event = event;
829 		wake_up_interruptible(&ns->poll);
830 	}
831 }
832 
833 /*
834  * vfsmount lock must be held for write
835  */
836 static struct mountpoint *unhash_mnt(struct mount *mnt)
837 {
838 	struct mountpoint *mp;
839 	mnt->mnt_parent = mnt;
840 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
841 	list_del_init(&mnt->mnt_child);
842 	hlist_del_init_rcu(&mnt->mnt_hash);
843 	hlist_del_init(&mnt->mnt_mp_list);
844 	mp = mnt->mnt_mp;
845 	mnt->mnt_mp = NULL;
846 	return mp;
847 }
848 
849 /*
850  * vfsmount lock must be held for write
851  */
852 static void umount_mnt(struct mount *mnt)
853 {
854 	put_mountpoint(unhash_mnt(mnt));
855 }
856 
857 /*
858  * vfsmount lock must be held for write
859  */
860 void mnt_set_mountpoint(struct mount *mnt,
861 			struct mountpoint *mp,
862 			struct mount *child_mnt)
863 {
864 	mp->m_count++;
865 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
866 	child_mnt->mnt_mountpoint = mp->m_dentry;
867 	child_mnt->mnt_parent = mnt;
868 	child_mnt->mnt_mp = mp;
869 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
870 }
871 
872 static void __attach_mnt(struct mount *mnt, struct mount *parent)
873 {
874 	hlist_add_head_rcu(&mnt->mnt_hash,
875 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
876 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
877 }
878 
879 /*
880  * vfsmount lock must be held for write
881  */
882 static void attach_mnt(struct mount *mnt,
883 			struct mount *parent,
884 			struct mountpoint *mp)
885 {
886 	mnt_set_mountpoint(parent, mp, mnt);
887 	__attach_mnt(mnt, parent);
888 }
889 
890 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
891 {
892 	struct mountpoint *old_mp = mnt->mnt_mp;
893 	struct mount *old_parent = mnt->mnt_parent;
894 
895 	list_del_init(&mnt->mnt_child);
896 	hlist_del_init(&mnt->mnt_mp_list);
897 	hlist_del_init_rcu(&mnt->mnt_hash);
898 
899 	attach_mnt(mnt, parent, mp);
900 
901 	put_mountpoint(old_mp);
902 	mnt_add_count(old_parent, -1);
903 }
904 
905 /*
906  * vfsmount lock must be held for write
907  */
908 static void commit_tree(struct mount *mnt)
909 {
910 	struct mount *parent = mnt->mnt_parent;
911 	struct mount *m;
912 	LIST_HEAD(head);
913 	struct mnt_namespace *n = parent->mnt_ns;
914 
915 	BUG_ON(parent == mnt);
916 
917 	list_add_tail(&head, &mnt->mnt_list);
918 	list_for_each_entry(m, &head, mnt_list)
919 		m->mnt_ns = n;
920 
921 	list_splice(&head, n->list.prev);
922 
923 	n->mounts += n->pending_mounts;
924 	n->pending_mounts = 0;
925 
926 	__attach_mnt(mnt, parent);
927 	touch_mnt_namespace(n);
928 }
929 
930 static struct mount *next_mnt(struct mount *p, struct mount *root)
931 {
932 	struct list_head *next = p->mnt_mounts.next;
933 	if (next == &p->mnt_mounts) {
934 		while (1) {
935 			if (p == root)
936 				return NULL;
937 			next = p->mnt_child.next;
938 			if (next != &p->mnt_parent->mnt_mounts)
939 				break;
940 			p = p->mnt_parent;
941 		}
942 	}
943 	return list_entry(next, struct mount, mnt_child);
944 }
945 
946 static struct mount *skip_mnt_tree(struct mount *p)
947 {
948 	struct list_head *prev = p->mnt_mounts.prev;
949 	while (prev != &p->mnt_mounts) {
950 		p = list_entry(prev, struct mount, mnt_child);
951 		prev = p->mnt_mounts.prev;
952 	}
953 	return p;
954 }
955 
956 /**
957  * vfs_create_mount - Create a mount for a configured superblock
958  * @fc: The configuration context with the superblock attached
959  *
960  * Create a mount to an already configured superblock.  If necessary, the
961  * caller should invoke vfs_get_tree() before calling this.
962  *
963  * Note that this does not attach the mount to anything.
964  */
965 struct vfsmount *vfs_create_mount(struct fs_context *fc)
966 {
967 	struct mount *mnt;
968 
969 	if (!fc->root)
970 		return ERR_PTR(-EINVAL);
971 
972 	mnt = alloc_vfsmnt(fc->source ?: "none");
973 	if (!mnt)
974 		return ERR_PTR(-ENOMEM);
975 
976 	if (fc->sb_flags & SB_KERNMOUNT)
977 		mnt->mnt.mnt_flags = MNT_INTERNAL;
978 
979 	atomic_inc(&fc->root->d_sb->s_active);
980 	mnt->mnt.mnt_sb		= fc->root->d_sb;
981 	mnt->mnt.mnt_root	= dget(fc->root);
982 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
983 	mnt->mnt_parent		= mnt;
984 
985 	lock_mount_hash();
986 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
987 	unlock_mount_hash();
988 	return &mnt->mnt;
989 }
990 EXPORT_SYMBOL(vfs_create_mount);
991 
992 struct vfsmount *fc_mount(struct fs_context *fc)
993 {
994 	int err = vfs_get_tree(fc);
995 	if (!err) {
996 		up_write(&fc->root->d_sb->s_umount);
997 		return vfs_create_mount(fc);
998 	}
999 	return ERR_PTR(err);
1000 }
1001 EXPORT_SYMBOL(fc_mount);
1002 
1003 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1004 				int flags, const char *name,
1005 				void *data)
1006 {
1007 	struct fs_context *fc;
1008 	struct vfsmount *mnt;
1009 	int ret = 0;
1010 
1011 	if (!type)
1012 		return ERR_PTR(-EINVAL);
1013 
1014 	fc = fs_context_for_mount(type, flags);
1015 	if (IS_ERR(fc))
1016 		return ERR_CAST(fc);
1017 
1018 	if (name)
1019 		ret = vfs_parse_fs_string(fc, "source",
1020 					  name, strlen(name));
1021 	if (!ret)
1022 		ret = parse_monolithic_mount_data(fc, data);
1023 	if (!ret)
1024 		mnt = fc_mount(fc);
1025 	else
1026 		mnt = ERR_PTR(ret);
1027 
1028 	put_fs_context(fc);
1029 	return mnt;
1030 }
1031 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1032 
1033 struct vfsmount *
1034 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1035 	     const char *name, void *data)
1036 {
1037 	/* Until it is worked out how to pass the user namespace
1038 	 * through from the parent mount to the submount don't support
1039 	 * unprivileged mounts with submounts.
1040 	 */
1041 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1042 		return ERR_PTR(-EPERM);
1043 
1044 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1045 }
1046 EXPORT_SYMBOL_GPL(vfs_submount);
1047 
1048 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1049 					int flag)
1050 {
1051 	struct super_block *sb = old->mnt.mnt_sb;
1052 	struct mount *mnt;
1053 	int err;
1054 
1055 	mnt = alloc_vfsmnt(old->mnt_devname);
1056 	if (!mnt)
1057 		return ERR_PTR(-ENOMEM);
1058 
1059 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1060 		mnt->mnt_group_id = 0; /* not a peer of original */
1061 	else
1062 		mnt->mnt_group_id = old->mnt_group_id;
1063 
1064 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1065 		err = mnt_alloc_group_id(mnt);
1066 		if (err)
1067 			goto out_free;
1068 	}
1069 
1070 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1071 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1072 
1073 	atomic_inc(&sb->s_active);
1074 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1075 	if (mnt->mnt.mnt_userns != &init_user_ns)
1076 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1077 	mnt->mnt.mnt_sb = sb;
1078 	mnt->mnt.mnt_root = dget(root);
1079 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1080 	mnt->mnt_parent = mnt;
1081 	lock_mount_hash();
1082 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1083 	unlock_mount_hash();
1084 
1085 	if ((flag & CL_SLAVE) ||
1086 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1087 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1088 		mnt->mnt_master = old;
1089 		CLEAR_MNT_SHARED(mnt);
1090 	} else if (!(flag & CL_PRIVATE)) {
1091 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1092 			list_add(&mnt->mnt_share, &old->mnt_share);
1093 		if (IS_MNT_SLAVE(old))
1094 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1095 		mnt->mnt_master = old->mnt_master;
1096 	} else {
1097 		CLEAR_MNT_SHARED(mnt);
1098 	}
1099 	if (flag & CL_MAKE_SHARED)
1100 		set_mnt_shared(mnt);
1101 
1102 	/* stick the duplicate mount on the same expiry list
1103 	 * as the original if that was on one */
1104 	if (flag & CL_EXPIRE) {
1105 		if (!list_empty(&old->mnt_expire))
1106 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1107 	}
1108 
1109 	return mnt;
1110 
1111  out_free:
1112 	mnt_free_id(mnt);
1113 	free_vfsmnt(mnt);
1114 	return ERR_PTR(err);
1115 }
1116 
1117 static void cleanup_mnt(struct mount *mnt)
1118 {
1119 	struct hlist_node *p;
1120 	struct mount *m;
1121 	/*
1122 	 * The warning here probably indicates that somebody messed
1123 	 * up a mnt_want/drop_write() pair.  If this happens, the
1124 	 * filesystem was probably unable to make r/w->r/o transitions.
1125 	 * The locking used to deal with mnt_count decrement provides barriers,
1126 	 * so mnt_get_writers() below is safe.
1127 	 */
1128 	WARN_ON(mnt_get_writers(mnt));
1129 	if (unlikely(mnt->mnt_pins.first))
1130 		mnt_pin_kill(mnt);
1131 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1132 		hlist_del(&m->mnt_umount);
1133 		mntput(&m->mnt);
1134 	}
1135 	fsnotify_vfsmount_delete(&mnt->mnt);
1136 	dput(mnt->mnt.mnt_root);
1137 	deactivate_super(mnt->mnt.mnt_sb);
1138 	mnt_free_id(mnt);
1139 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1140 }
1141 
1142 static void __cleanup_mnt(struct rcu_head *head)
1143 {
1144 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1145 }
1146 
1147 static LLIST_HEAD(delayed_mntput_list);
1148 static void delayed_mntput(struct work_struct *unused)
1149 {
1150 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1151 	struct mount *m, *t;
1152 
1153 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1154 		cleanup_mnt(m);
1155 }
1156 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1157 
1158 static void mntput_no_expire(struct mount *mnt)
1159 {
1160 	LIST_HEAD(list);
1161 	int count;
1162 
1163 	rcu_read_lock();
1164 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1165 		/*
1166 		 * Since we don't do lock_mount_hash() here,
1167 		 * ->mnt_ns can change under us.  However, if it's
1168 		 * non-NULL, then there's a reference that won't
1169 		 * be dropped until after an RCU delay done after
1170 		 * turning ->mnt_ns NULL.  So if we observe it
1171 		 * non-NULL under rcu_read_lock(), the reference
1172 		 * we are dropping is not the final one.
1173 		 */
1174 		mnt_add_count(mnt, -1);
1175 		rcu_read_unlock();
1176 		return;
1177 	}
1178 	lock_mount_hash();
1179 	/*
1180 	 * make sure that if __legitimize_mnt() has not seen us grab
1181 	 * mount_lock, we'll see their refcount increment here.
1182 	 */
1183 	smp_mb();
1184 	mnt_add_count(mnt, -1);
1185 	count = mnt_get_count(mnt);
1186 	if (count != 0) {
1187 		WARN_ON(count < 0);
1188 		rcu_read_unlock();
1189 		unlock_mount_hash();
1190 		return;
1191 	}
1192 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1193 		rcu_read_unlock();
1194 		unlock_mount_hash();
1195 		return;
1196 	}
1197 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1198 	rcu_read_unlock();
1199 
1200 	list_del(&mnt->mnt_instance);
1201 
1202 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1203 		struct mount *p, *tmp;
1204 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1205 			__put_mountpoint(unhash_mnt(p), &list);
1206 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1207 		}
1208 	}
1209 	unlock_mount_hash();
1210 	shrink_dentry_list(&list);
1211 
1212 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1213 		struct task_struct *task = current;
1214 		if (likely(!(task->flags & PF_KTHREAD))) {
1215 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1216 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1217 				return;
1218 		}
1219 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1220 			schedule_delayed_work(&delayed_mntput_work, 1);
1221 		return;
1222 	}
1223 	cleanup_mnt(mnt);
1224 }
1225 
1226 void mntput(struct vfsmount *mnt)
1227 {
1228 	if (mnt) {
1229 		struct mount *m = real_mount(mnt);
1230 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1231 		if (unlikely(m->mnt_expiry_mark))
1232 			m->mnt_expiry_mark = 0;
1233 		mntput_no_expire(m);
1234 	}
1235 }
1236 EXPORT_SYMBOL(mntput);
1237 
1238 struct vfsmount *mntget(struct vfsmount *mnt)
1239 {
1240 	if (mnt)
1241 		mnt_add_count(real_mount(mnt), 1);
1242 	return mnt;
1243 }
1244 EXPORT_SYMBOL(mntget);
1245 
1246 /**
1247  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1248  * @path: path to check
1249  *
1250  *  d_mountpoint() can only be used reliably to establish if a dentry is
1251  *  not mounted in any namespace and that common case is handled inline.
1252  *  d_mountpoint() isn't aware of the possibility there may be multiple
1253  *  mounts using a given dentry in a different namespace. This function
1254  *  checks if the passed in path is a mountpoint rather than the dentry
1255  *  alone.
1256  */
1257 bool path_is_mountpoint(const struct path *path)
1258 {
1259 	unsigned seq;
1260 	bool res;
1261 
1262 	if (!d_mountpoint(path->dentry))
1263 		return false;
1264 
1265 	rcu_read_lock();
1266 	do {
1267 		seq = read_seqbegin(&mount_lock);
1268 		res = __path_is_mountpoint(path);
1269 	} while (read_seqretry(&mount_lock, seq));
1270 	rcu_read_unlock();
1271 
1272 	return res;
1273 }
1274 EXPORT_SYMBOL(path_is_mountpoint);
1275 
1276 struct vfsmount *mnt_clone_internal(const struct path *path)
1277 {
1278 	struct mount *p;
1279 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1280 	if (IS_ERR(p))
1281 		return ERR_CAST(p);
1282 	p->mnt.mnt_flags |= MNT_INTERNAL;
1283 	return &p->mnt;
1284 }
1285 
1286 #ifdef CONFIG_PROC_FS
1287 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1288 				   struct list_head *p)
1289 {
1290 	struct mount *mnt, *ret = NULL;
1291 
1292 	lock_ns_list(ns);
1293 	list_for_each_continue(p, &ns->list) {
1294 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1295 		if (!mnt_is_cursor(mnt)) {
1296 			ret = mnt;
1297 			break;
1298 		}
1299 	}
1300 	unlock_ns_list(ns);
1301 
1302 	return ret;
1303 }
1304 
1305 /* iterator; we want it to have access to namespace_sem, thus here... */
1306 static void *m_start(struct seq_file *m, loff_t *pos)
1307 {
1308 	struct proc_mounts *p = m->private;
1309 	struct list_head *prev;
1310 
1311 	down_read(&namespace_sem);
1312 	if (!*pos) {
1313 		prev = &p->ns->list;
1314 	} else {
1315 		prev = &p->cursor.mnt_list;
1316 
1317 		/* Read after we'd reached the end? */
1318 		if (list_empty(prev))
1319 			return NULL;
1320 	}
1321 
1322 	return mnt_list_next(p->ns, prev);
1323 }
1324 
1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1326 {
1327 	struct proc_mounts *p = m->private;
1328 	struct mount *mnt = v;
1329 
1330 	++*pos;
1331 	return mnt_list_next(p->ns, &mnt->mnt_list);
1332 }
1333 
1334 static void m_stop(struct seq_file *m, void *v)
1335 {
1336 	struct proc_mounts *p = m->private;
1337 	struct mount *mnt = v;
1338 
1339 	lock_ns_list(p->ns);
1340 	if (mnt)
1341 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1342 	else
1343 		list_del_init(&p->cursor.mnt_list);
1344 	unlock_ns_list(p->ns);
1345 	up_read(&namespace_sem);
1346 }
1347 
1348 static int m_show(struct seq_file *m, void *v)
1349 {
1350 	struct proc_mounts *p = m->private;
1351 	struct mount *r = v;
1352 	return p->show(m, &r->mnt);
1353 }
1354 
1355 const struct seq_operations mounts_op = {
1356 	.start	= m_start,
1357 	.next	= m_next,
1358 	.stop	= m_stop,
1359 	.show	= m_show,
1360 };
1361 
1362 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1363 {
1364 	down_read(&namespace_sem);
1365 	lock_ns_list(ns);
1366 	list_del(&cursor->mnt_list);
1367 	unlock_ns_list(ns);
1368 	up_read(&namespace_sem);
1369 }
1370 #endif  /* CONFIG_PROC_FS */
1371 
1372 /**
1373  * may_umount_tree - check if a mount tree is busy
1374  * @m: root of mount tree
1375  *
1376  * This is called to check if a tree of mounts has any
1377  * open files, pwds, chroots or sub mounts that are
1378  * busy.
1379  */
1380 int may_umount_tree(struct vfsmount *m)
1381 {
1382 	struct mount *mnt = real_mount(m);
1383 	int actual_refs = 0;
1384 	int minimum_refs = 0;
1385 	struct mount *p;
1386 	BUG_ON(!m);
1387 
1388 	/* write lock needed for mnt_get_count */
1389 	lock_mount_hash();
1390 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1391 		actual_refs += mnt_get_count(p);
1392 		minimum_refs += 2;
1393 	}
1394 	unlock_mount_hash();
1395 
1396 	if (actual_refs > minimum_refs)
1397 		return 0;
1398 
1399 	return 1;
1400 }
1401 
1402 EXPORT_SYMBOL(may_umount_tree);
1403 
1404 /**
1405  * may_umount - check if a mount point is busy
1406  * @mnt: root of mount
1407  *
1408  * This is called to check if a mount point has any
1409  * open files, pwds, chroots or sub mounts. If the
1410  * mount has sub mounts this will return busy
1411  * regardless of whether the sub mounts are busy.
1412  *
1413  * Doesn't take quota and stuff into account. IOW, in some cases it will
1414  * give false negatives. The main reason why it's here is that we need
1415  * a non-destructive way to look for easily umountable filesystems.
1416  */
1417 int may_umount(struct vfsmount *mnt)
1418 {
1419 	int ret = 1;
1420 	down_read(&namespace_sem);
1421 	lock_mount_hash();
1422 	if (propagate_mount_busy(real_mount(mnt), 2))
1423 		ret = 0;
1424 	unlock_mount_hash();
1425 	up_read(&namespace_sem);
1426 	return ret;
1427 }
1428 
1429 EXPORT_SYMBOL(may_umount);
1430 
1431 static void namespace_unlock(void)
1432 {
1433 	struct hlist_head head;
1434 	struct hlist_node *p;
1435 	struct mount *m;
1436 	LIST_HEAD(list);
1437 
1438 	hlist_move_list(&unmounted, &head);
1439 	list_splice_init(&ex_mountpoints, &list);
1440 
1441 	up_write(&namespace_sem);
1442 
1443 	shrink_dentry_list(&list);
1444 
1445 	if (likely(hlist_empty(&head)))
1446 		return;
1447 
1448 	synchronize_rcu_expedited();
1449 
1450 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1451 		hlist_del(&m->mnt_umount);
1452 		mntput(&m->mnt);
1453 	}
1454 }
1455 
1456 static inline void namespace_lock(void)
1457 {
1458 	down_write(&namespace_sem);
1459 }
1460 
1461 enum umount_tree_flags {
1462 	UMOUNT_SYNC = 1,
1463 	UMOUNT_PROPAGATE = 2,
1464 	UMOUNT_CONNECTED = 4,
1465 };
1466 
1467 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1468 {
1469 	/* Leaving mounts connected is only valid for lazy umounts */
1470 	if (how & UMOUNT_SYNC)
1471 		return true;
1472 
1473 	/* A mount without a parent has nothing to be connected to */
1474 	if (!mnt_has_parent(mnt))
1475 		return true;
1476 
1477 	/* Because the reference counting rules change when mounts are
1478 	 * unmounted and connected, umounted mounts may not be
1479 	 * connected to mounted mounts.
1480 	 */
1481 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1482 		return true;
1483 
1484 	/* Has it been requested that the mount remain connected? */
1485 	if (how & UMOUNT_CONNECTED)
1486 		return false;
1487 
1488 	/* Is the mount locked such that it needs to remain connected? */
1489 	if (IS_MNT_LOCKED(mnt))
1490 		return false;
1491 
1492 	/* By default disconnect the mount */
1493 	return true;
1494 }
1495 
1496 /*
1497  * mount_lock must be held
1498  * namespace_sem must be held for write
1499  */
1500 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1501 {
1502 	LIST_HEAD(tmp_list);
1503 	struct mount *p;
1504 
1505 	if (how & UMOUNT_PROPAGATE)
1506 		propagate_mount_unlock(mnt);
1507 
1508 	/* Gather the mounts to umount */
1509 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1510 		p->mnt.mnt_flags |= MNT_UMOUNT;
1511 		list_move(&p->mnt_list, &tmp_list);
1512 	}
1513 
1514 	/* Hide the mounts from mnt_mounts */
1515 	list_for_each_entry(p, &tmp_list, mnt_list) {
1516 		list_del_init(&p->mnt_child);
1517 	}
1518 
1519 	/* Add propogated mounts to the tmp_list */
1520 	if (how & UMOUNT_PROPAGATE)
1521 		propagate_umount(&tmp_list);
1522 
1523 	while (!list_empty(&tmp_list)) {
1524 		struct mnt_namespace *ns;
1525 		bool disconnect;
1526 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1527 		list_del_init(&p->mnt_expire);
1528 		list_del_init(&p->mnt_list);
1529 		ns = p->mnt_ns;
1530 		if (ns) {
1531 			ns->mounts--;
1532 			__touch_mnt_namespace(ns);
1533 		}
1534 		p->mnt_ns = NULL;
1535 		if (how & UMOUNT_SYNC)
1536 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1537 
1538 		disconnect = disconnect_mount(p, how);
1539 		if (mnt_has_parent(p)) {
1540 			mnt_add_count(p->mnt_parent, -1);
1541 			if (!disconnect) {
1542 				/* Don't forget about p */
1543 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544 			} else {
1545 				umount_mnt(p);
1546 			}
1547 		}
1548 		change_mnt_propagation(p, MS_PRIVATE);
1549 		if (disconnect)
1550 			hlist_add_head(&p->mnt_umount, &unmounted);
1551 	}
1552 }
1553 
1554 static void shrink_submounts(struct mount *mnt);
1555 
1556 static int do_umount_root(struct super_block *sb)
1557 {
1558 	int ret = 0;
1559 
1560 	down_write(&sb->s_umount);
1561 	if (!sb_rdonly(sb)) {
1562 		struct fs_context *fc;
1563 
1564 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1565 						SB_RDONLY);
1566 		if (IS_ERR(fc)) {
1567 			ret = PTR_ERR(fc);
1568 		} else {
1569 			ret = parse_monolithic_mount_data(fc, NULL);
1570 			if (!ret)
1571 				ret = reconfigure_super(fc);
1572 			put_fs_context(fc);
1573 		}
1574 	}
1575 	up_write(&sb->s_umount);
1576 	return ret;
1577 }
1578 
1579 static int do_umount(struct mount *mnt, int flags)
1580 {
1581 	struct super_block *sb = mnt->mnt.mnt_sb;
1582 	int retval;
1583 
1584 	retval = security_sb_umount(&mnt->mnt, flags);
1585 	if (retval)
1586 		return retval;
1587 
1588 	/*
1589 	 * Allow userspace to request a mountpoint be expired rather than
1590 	 * unmounting unconditionally. Unmount only happens if:
1591 	 *  (1) the mark is already set (the mark is cleared by mntput())
1592 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1593 	 */
1594 	if (flags & MNT_EXPIRE) {
1595 		if (&mnt->mnt == current->fs->root.mnt ||
1596 		    flags & (MNT_FORCE | MNT_DETACH))
1597 			return -EINVAL;
1598 
1599 		/*
1600 		 * probably don't strictly need the lock here if we examined
1601 		 * all race cases, but it's a slowpath.
1602 		 */
1603 		lock_mount_hash();
1604 		if (mnt_get_count(mnt) != 2) {
1605 			unlock_mount_hash();
1606 			return -EBUSY;
1607 		}
1608 		unlock_mount_hash();
1609 
1610 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1611 			return -EAGAIN;
1612 	}
1613 
1614 	/*
1615 	 * If we may have to abort operations to get out of this
1616 	 * mount, and they will themselves hold resources we must
1617 	 * allow the fs to do things. In the Unix tradition of
1618 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1619 	 * might fail to complete on the first run through as other tasks
1620 	 * must return, and the like. Thats for the mount program to worry
1621 	 * about for the moment.
1622 	 */
1623 
1624 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1625 		sb->s_op->umount_begin(sb);
1626 	}
1627 
1628 	/*
1629 	 * No sense to grab the lock for this test, but test itself looks
1630 	 * somewhat bogus. Suggestions for better replacement?
1631 	 * Ho-hum... In principle, we might treat that as umount + switch
1632 	 * to rootfs. GC would eventually take care of the old vfsmount.
1633 	 * Actually it makes sense, especially if rootfs would contain a
1634 	 * /reboot - static binary that would close all descriptors and
1635 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1636 	 */
1637 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1638 		/*
1639 		 * Special case for "unmounting" root ...
1640 		 * we just try to remount it readonly.
1641 		 */
1642 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1643 			return -EPERM;
1644 		return do_umount_root(sb);
1645 	}
1646 
1647 	namespace_lock();
1648 	lock_mount_hash();
1649 
1650 	/* Recheck MNT_LOCKED with the locks held */
1651 	retval = -EINVAL;
1652 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1653 		goto out;
1654 
1655 	event++;
1656 	if (flags & MNT_DETACH) {
1657 		if (!list_empty(&mnt->mnt_list))
1658 			umount_tree(mnt, UMOUNT_PROPAGATE);
1659 		retval = 0;
1660 	} else {
1661 		shrink_submounts(mnt);
1662 		retval = -EBUSY;
1663 		if (!propagate_mount_busy(mnt, 2)) {
1664 			if (!list_empty(&mnt->mnt_list))
1665 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1666 			retval = 0;
1667 		}
1668 	}
1669 out:
1670 	unlock_mount_hash();
1671 	namespace_unlock();
1672 	return retval;
1673 }
1674 
1675 /*
1676  * __detach_mounts - lazily unmount all mounts on the specified dentry
1677  *
1678  * During unlink, rmdir, and d_drop it is possible to loose the path
1679  * to an existing mountpoint, and wind up leaking the mount.
1680  * detach_mounts allows lazily unmounting those mounts instead of
1681  * leaking them.
1682  *
1683  * The caller may hold dentry->d_inode->i_mutex.
1684  */
1685 void __detach_mounts(struct dentry *dentry)
1686 {
1687 	struct mountpoint *mp;
1688 	struct mount *mnt;
1689 
1690 	namespace_lock();
1691 	lock_mount_hash();
1692 	mp = lookup_mountpoint(dentry);
1693 	if (!mp)
1694 		goto out_unlock;
1695 
1696 	event++;
1697 	while (!hlist_empty(&mp->m_list)) {
1698 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1699 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1700 			umount_mnt(mnt);
1701 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1702 		}
1703 		else umount_tree(mnt, UMOUNT_CONNECTED);
1704 	}
1705 	put_mountpoint(mp);
1706 out_unlock:
1707 	unlock_mount_hash();
1708 	namespace_unlock();
1709 }
1710 
1711 /*
1712  * Is the caller allowed to modify his namespace?
1713  */
1714 static inline bool may_mount(void)
1715 {
1716 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1717 }
1718 
1719 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1720 static bool may_mandlock(void)
1721 {
1722 	pr_warn_once("======================================================\n"
1723 		     "WARNING: the mand mount option is being deprecated and\n"
1724 		     "         will be removed in v5.15!\n"
1725 		     "======================================================\n");
1726 	return capable(CAP_SYS_ADMIN);
1727 }
1728 #else
1729 static inline bool may_mandlock(void)
1730 {
1731 	pr_warn("VFS: \"mand\" mount option not supported");
1732 	return false;
1733 }
1734 #endif
1735 
1736 static int can_umount(const struct path *path, int flags)
1737 {
1738 	struct mount *mnt = real_mount(path->mnt);
1739 
1740 	if (!may_mount())
1741 		return -EPERM;
1742 	if (path->dentry != path->mnt->mnt_root)
1743 		return -EINVAL;
1744 	if (!check_mnt(mnt))
1745 		return -EINVAL;
1746 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1747 		return -EINVAL;
1748 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1749 		return -EPERM;
1750 	return 0;
1751 }
1752 
1753 // caller is responsible for flags being sane
1754 int path_umount(struct path *path, int flags)
1755 {
1756 	struct mount *mnt = real_mount(path->mnt);
1757 	int ret;
1758 
1759 	ret = can_umount(path, flags);
1760 	if (!ret)
1761 		ret = do_umount(mnt, flags);
1762 
1763 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1764 	dput(path->dentry);
1765 	mntput_no_expire(mnt);
1766 	return ret;
1767 }
1768 
1769 static int ksys_umount(char __user *name, int flags)
1770 {
1771 	int lookup_flags = LOOKUP_MOUNTPOINT;
1772 	struct path path;
1773 	int ret;
1774 
1775 	// basic validity checks done first
1776 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1777 		return -EINVAL;
1778 
1779 	if (!(flags & UMOUNT_NOFOLLOW))
1780 		lookup_flags |= LOOKUP_FOLLOW;
1781 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1782 	if (ret)
1783 		return ret;
1784 	return path_umount(&path, flags);
1785 }
1786 
1787 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1788 {
1789 	return ksys_umount(name, flags);
1790 }
1791 
1792 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1793 
1794 /*
1795  *	The 2.0 compatible umount. No flags.
1796  */
1797 SYSCALL_DEFINE1(oldumount, char __user *, name)
1798 {
1799 	return ksys_umount(name, 0);
1800 }
1801 
1802 #endif
1803 
1804 static bool is_mnt_ns_file(struct dentry *dentry)
1805 {
1806 	/* Is this a proxy for a mount namespace? */
1807 	return dentry->d_op == &ns_dentry_operations &&
1808 	       dentry->d_fsdata == &mntns_operations;
1809 }
1810 
1811 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1812 {
1813 	return container_of(ns, struct mnt_namespace, ns);
1814 }
1815 
1816 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1817 {
1818 	return &mnt->ns;
1819 }
1820 
1821 static bool mnt_ns_loop(struct dentry *dentry)
1822 {
1823 	/* Could bind mounting the mount namespace inode cause a
1824 	 * mount namespace loop?
1825 	 */
1826 	struct mnt_namespace *mnt_ns;
1827 	if (!is_mnt_ns_file(dentry))
1828 		return false;
1829 
1830 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1831 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1832 }
1833 
1834 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1835 					int flag)
1836 {
1837 	struct mount *res, *p, *q, *r, *parent;
1838 
1839 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1840 		return ERR_PTR(-EINVAL);
1841 
1842 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1843 		return ERR_PTR(-EINVAL);
1844 
1845 	res = q = clone_mnt(mnt, dentry, flag);
1846 	if (IS_ERR(q))
1847 		return q;
1848 
1849 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1850 
1851 	p = mnt;
1852 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1853 		struct mount *s;
1854 		if (!is_subdir(r->mnt_mountpoint, dentry))
1855 			continue;
1856 
1857 		for (s = r; s; s = next_mnt(s, r)) {
1858 			if (!(flag & CL_COPY_UNBINDABLE) &&
1859 			    IS_MNT_UNBINDABLE(s)) {
1860 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1861 					/* Both unbindable and locked. */
1862 					q = ERR_PTR(-EPERM);
1863 					goto out;
1864 				} else {
1865 					s = skip_mnt_tree(s);
1866 					continue;
1867 				}
1868 			}
1869 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1870 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1871 				s = skip_mnt_tree(s);
1872 				continue;
1873 			}
1874 			while (p != s->mnt_parent) {
1875 				p = p->mnt_parent;
1876 				q = q->mnt_parent;
1877 			}
1878 			p = s;
1879 			parent = q;
1880 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1881 			if (IS_ERR(q))
1882 				goto out;
1883 			lock_mount_hash();
1884 			list_add_tail(&q->mnt_list, &res->mnt_list);
1885 			attach_mnt(q, parent, p->mnt_mp);
1886 			unlock_mount_hash();
1887 		}
1888 	}
1889 	return res;
1890 out:
1891 	if (res) {
1892 		lock_mount_hash();
1893 		umount_tree(res, UMOUNT_SYNC);
1894 		unlock_mount_hash();
1895 	}
1896 	return q;
1897 }
1898 
1899 /* Caller should check returned pointer for errors */
1900 
1901 struct vfsmount *collect_mounts(const struct path *path)
1902 {
1903 	struct mount *tree;
1904 	namespace_lock();
1905 	if (!check_mnt(real_mount(path->mnt)))
1906 		tree = ERR_PTR(-EINVAL);
1907 	else
1908 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1909 				 CL_COPY_ALL | CL_PRIVATE);
1910 	namespace_unlock();
1911 	if (IS_ERR(tree))
1912 		return ERR_CAST(tree);
1913 	return &tree->mnt;
1914 }
1915 
1916 static void free_mnt_ns(struct mnt_namespace *);
1917 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1918 
1919 void dissolve_on_fput(struct vfsmount *mnt)
1920 {
1921 	struct mnt_namespace *ns;
1922 	namespace_lock();
1923 	lock_mount_hash();
1924 	ns = real_mount(mnt)->mnt_ns;
1925 	if (ns) {
1926 		if (is_anon_ns(ns))
1927 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1928 		else
1929 			ns = NULL;
1930 	}
1931 	unlock_mount_hash();
1932 	namespace_unlock();
1933 	if (ns)
1934 		free_mnt_ns(ns);
1935 }
1936 
1937 void drop_collected_mounts(struct vfsmount *mnt)
1938 {
1939 	namespace_lock();
1940 	lock_mount_hash();
1941 	umount_tree(real_mount(mnt), 0);
1942 	unlock_mount_hash();
1943 	namespace_unlock();
1944 }
1945 
1946 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1947 {
1948 	struct mount *child;
1949 
1950 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1951 		if (!is_subdir(child->mnt_mountpoint, dentry))
1952 			continue;
1953 
1954 		if (child->mnt.mnt_flags & MNT_LOCKED)
1955 			return true;
1956 	}
1957 	return false;
1958 }
1959 
1960 /**
1961  * clone_private_mount - create a private clone of a path
1962  * @path: path to clone
1963  *
1964  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1965  * will not be attached anywhere in the namespace and will be private (i.e.
1966  * changes to the originating mount won't be propagated into this).
1967  *
1968  * Release with mntput().
1969  */
1970 struct vfsmount *clone_private_mount(const struct path *path)
1971 {
1972 	struct mount *old_mnt = real_mount(path->mnt);
1973 	struct mount *new_mnt;
1974 
1975 	down_read(&namespace_sem);
1976 	if (IS_MNT_UNBINDABLE(old_mnt))
1977 		goto invalid;
1978 
1979 	if (!check_mnt(old_mnt))
1980 		goto invalid;
1981 
1982 	if (has_locked_children(old_mnt, path->dentry))
1983 		goto invalid;
1984 
1985 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1986 	up_read(&namespace_sem);
1987 
1988 	if (IS_ERR(new_mnt))
1989 		return ERR_CAST(new_mnt);
1990 
1991 	/* Longterm mount to be removed by kern_unmount*() */
1992 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1993 
1994 	return &new_mnt->mnt;
1995 
1996 invalid:
1997 	up_read(&namespace_sem);
1998 	return ERR_PTR(-EINVAL);
1999 }
2000 EXPORT_SYMBOL_GPL(clone_private_mount);
2001 
2002 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2003 		   struct vfsmount *root)
2004 {
2005 	struct mount *mnt;
2006 	int res = f(root, arg);
2007 	if (res)
2008 		return res;
2009 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2010 		res = f(&mnt->mnt, arg);
2011 		if (res)
2012 			return res;
2013 	}
2014 	return 0;
2015 }
2016 
2017 static void lock_mnt_tree(struct mount *mnt)
2018 {
2019 	struct mount *p;
2020 
2021 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2022 		int flags = p->mnt.mnt_flags;
2023 		/* Don't allow unprivileged users to change mount flags */
2024 		flags |= MNT_LOCK_ATIME;
2025 
2026 		if (flags & MNT_READONLY)
2027 			flags |= MNT_LOCK_READONLY;
2028 
2029 		if (flags & MNT_NODEV)
2030 			flags |= MNT_LOCK_NODEV;
2031 
2032 		if (flags & MNT_NOSUID)
2033 			flags |= MNT_LOCK_NOSUID;
2034 
2035 		if (flags & MNT_NOEXEC)
2036 			flags |= MNT_LOCK_NOEXEC;
2037 		/* Don't allow unprivileged users to reveal what is under a mount */
2038 		if (list_empty(&p->mnt_expire))
2039 			flags |= MNT_LOCKED;
2040 		p->mnt.mnt_flags = flags;
2041 	}
2042 }
2043 
2044 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2045 {
2046 	struct mount *p;
2047 
2048 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2049 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2050 			mnt_release_group_id(p);
2051 	}
2052 }
2053 
2054 static int invent_group_ids(struct mount *mnt, bool recurse)
2055 {
2056 	struct mount *p;
2057 
2058 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2059 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2060 			int err = mnt_alloc_group_id(p);
2061 			if (err) {
2062 				cleanup_group_ids(mnt, p);
2063 				return err;
2064 			}
2065 		}
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2072 {
2073 	unsigned int max = READ_ONCE(sysctl_mount_max);
2074 	unsigned int mounts = 0, old, pending, sum;
2075 	struct mount *p;
2076 
2077 	for (p = mnt; p; p = next_mnt(p, mnt))
2078 		mounts++;
2079 
2080 	old = ns->mounts;
2081 	pending = ns->pending_mounts;
2082 	sum = old + pending;
2083 	if ((old > sum) ||
2084 	    (pending > sum) ||
2085 	    (max < sum) ||
2086 	    (mounts > (max - sum)))
2087 		return -ENOSPC;
2088 
2089 	ns->pending_mounts = pending + mounts;
2090 	return 0;
2091 }
2092 
2093 /*
2094  *  @source_mnt : mount tree to be attached
2095  *  @nd         : place the mount tree @source_mnt is attached
2096  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2097  *  		   store the parent mount and mountpoint dentry.
2098  *  		   (done when source_mnt is moved)
2099  *
2100  *  NOTE: in the table below explains the semantics when a source mount
2101  *  of a given type is attached to a destination mount of a given type.
2102  * ---------------------------------------------------------------------------
2103  * |         BIND MOUNT OPERATION                                            |
2104  * |**************************************************************************
2105  * | source-->| shared        |       private  |       slave    | unbindable |
2106  * | dest     |               |                |                |            |
2107  * |   |      |               |                |                |            |
2108  * |   v      |               |                |                |            |
2109  * |**************************************************************************
2110  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2111  * |          |               |                |                |            |
2112  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2113  * ***************************************************************************
2114  * A bind operation clones the source mount and mounts the clone on the
2115  * destination mount.
2116  *
2117  * (++)  the cloned mount is propagated to all the mounts in the propagation
2118  * 	 tree of the destination mount and the cloned mount is added to
2119  * 	 the peer group of the source mount.
2120  * (+)   the cloned mount is created under the destination mount and is marked
2121  *       as shared. The cloned mount is added to the peer group of the source
2122  *       mount.
2123  * (+++) the mount is propagated to all the mounts in the propagation tree
2124  *       of the destination mount and the cloned mount is made slave
2125  *       of the same master as that of the source mount. The cloned mount
2126  *       is marked as 'shared and slave'.
2127  * (*)   the cloned mount is made a slave of the same master as that of the
2128  * 	 source mount.
2129  *
2130  * ---------------------------------------------------------------------------
2131  * |         		MOVE MOUNT OPERATION                                 |
2132  * |**************************************************************************
2133  * | source-->| shared        |       private  |       slave    | unbindable |
2134  * | dest     |               |                |                |            |
2135  * |   |      |               |                |                |            |
2136  * |   v      |               |                |                |            |
2137  * |**************************************************************************
2138  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2139  * |          |               |                |                |            |
2140  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2141  * ***************************************************************************
2142  *
2143  * (+)  the mount is moved to the destination. And is then propagated to
2144  * 	all the mounts in the propagation tree of the destination mount.
2145  * (+*)  the mount is moved to the destination.
2146  * (+++)  the mount is moved to the destination and is then propagated to
2147  * 	all the mounts belonging to the destination mount's propagation tree.
2148  * 	the mount is marked as 'shared and slave'.
2149  * (*)	the mount continues to be a slave at the new location.
2150  *
2151  * if the source mount is a tree, the operations explained above is
2152  * applied to each mount in the tree.
2153  * Must be called without spinlocks held, since this function can sleep
2154  * in allocations.
2155  */
2156 static int attach_recursive_mnt(struct mount *source_mnt,
2157 			struct mount *dest_mnt,
2158 			struct mountpoint *dest_mp,
2159 			bool moving)
2160 {
2161 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2162 	HLIST_HEAD(tree_list);
2163 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2164 	struct mountpoint *smp;
2165 	struct mount *child, *p;
2166 	struct hlist_node *n;
2167 	int err;
2168 
2169 	/* Preallocate a mountpoint in case the new mounts need
2170 	 * to be tucked under other mounts.
2171 	 */
2172 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2173 	if (IS_ERR(smp))
2174 		return PTR_ERR(smp);
2175 
2176 	/* Is there space to add these mounts to the mount namespace? */
2177 	if (!moving) {
2178 		err = count_mounts(ns, source_mnt);
2179 		if (err)
2180 			goto out;
2181 	}
2182 
2183 	if (IS_MNT_SHARED(dest_mnt)) {
2184 		err = invent_group_ids(source_mnt, true);
2185 		if (err)
2186 			goto out;
2187 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2188 		lock_mount_hash();
2189 		if (err)
2190 			goto out_cleanup_ids;
2191 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2192 			set_mnt_shared(p);
2193 	} else {
2194 		lock_mount_hash();
2195 	}
2196 	if (moving) {
2197 		unhash_mnt(source_mnt);
2198 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2199 		touch_mnt_namespace(source_mnt->mnt_ns);
2200 	} else {
2201 		if (source_mnt->mnt_ns) {
2202 			/* move from anon - the caller will destroy */
2203 			list_del_init(&source_mnt->mnt_ns->list);
2204 		}
2205 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2206 		commit_tree(source_mnt);
2207 	}
2208 
2209 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2210 		struct mount *q;
2211 		hlist_del_init(&child->mnt_hash);
2212 		q = __lookup_mnt(&child->mnt_parent->mnt,
2213 				 child->mnt_mountpoint);
2214 		if (q)
2215 			mnt_change_mountpoint(child, smp, q);
2216 		/* Notice when we are propagating across user namespaces */
2217 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2218 			lock_mnt_tree(child);
2219 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2220 		commit_tree(child);
2221 	}
2222 	put_mountpoint(smp);
2223 	unlock_mount_hash();
2224 
2225 	return 0;
2226 
2227  out_cleanup_ids:
2228 	while (!hlist_empty(&tree_list)) {
2229 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2230 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2231 		umount_tree(child, UMOUNT_SYNC);
2232 	}
2233 	unlock_mount_hash();
2234 	cleanup_group_ids(source_mnt, NULL);
2235  out:
2236 	ns->pending_mounts = 0;
2237 
2238 	read_seqlock_excl(&mount_lock);
2239 	put_mountpoint(smp);
2240 	read_sequnlock_excl(&mount_lock);
2241 
2242 	return err;
2243 }
2244 
2245 static struct mountpoint *lock_mount(struct path *path)
2246 {
2247 	struct vfsmount *mnt;
2248 	struct dentry *dentry = path->dentry;
2249 retry:
2250 	inode_lock(dentry->d_inode);
2251 	if (unlikely(cant_mount(dentry))) {
2252 		inode_unlock(dentry->d_inode);
2253 		return ERR_PTR(-ENOENT);
2254 	}
2255 	namespace_lock();
2256 	mnt = lookup_mnt(path);
2257 	if (likely(!mnt)) {
2258 		struct mountpoint *mp = get_mountpoint(dentry);
2259 		if (IS_ERR(mp)) {
2260 			namespace_unlock();
2261 			inode_unlock(dentry->d_inode);
2262 			return mp;
2263 		}
2264 		return mp;
2265 	}
2266 	namespace_unlock();
2267 	inode_unlock(path->dentry->d_inode);
2268 	path_put(path);
2269 	path->mnt = mnt;
2270 	dentry = path->dentry = dget(mnt->mnt_root);
2271 	goto retry;
2272 }
2273 
2274 static void unlock_mount(struct mountpoint *where)
2275 {
2276 	struct dentry *dentry = where->m_dentry;
2277 
2278 	read_seqlock_excl(&mount_lock);
2279 	put_mountpoint(where);
2280 	read_sequnlock_excl(&mount_lock);
2281 
2282 	namespace_unlock();
2283 	inode_unlock(dentry->d_inode);
2284 }
2285 
2286 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2287 {
2288 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2289 		return -EINVAL;
2290 
2291 	if (d_is_dir(mp->m_dentry) !=
2292 	      d_is_dir(mnt->mnt.mnt_root))
2293 		return -ENOTDIR;
2294 
2295 	return attach_recursive_mnt(mnt, p, mp, false);
2296 }
2297 
2298 /*
2299  * Sanity check the flags to change_mnt_propagation.
2300  */
2301 
2302 static int flags_to_propagation_type(int ms_flags)
2303 {
2304 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2305 
2306 	/* Fail if any non-propagation flags are set */
2307 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2308 		return 0;
2309 	/* Only one propagation flag should be set */
2310 	if (!is_power_of_2(type))
2311 		return 0;
2312 	return type;
2313 }
2314 
2315 /*
2316  * recursively change the type of the mountpoint.
2317  */
2318 static int do_change_type(struct path *path, int ms_flags)
2319 {
2320 	struct mount *m;
2321 	struct mount *mnt = real_mount(path->mnt);
2322 	int recurse = ms_flags & MS_REC;
2323 	int type;
2324 	int err = 0;
2325 
2326 	if (path->dentry != path->mnt->mnt_root)
2327 		return -EINVAL;
2328 
2329 	type = flags_to_propagation_type(ms_flags);
2330 	if (!type)
2331 		return -EINVAL;
2332 
2333 	namespace_lock();
2334 	if (type == MS_SHARED) {
2335 		err = invent_group_ids(mnt, recurse);
2336 		if (err)
2337 			goto out_unlock;
2338 	}
2339 
2340 	lock_mount_hash();
2341 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2342 		change_mnt_propagation(m, type);
2343 	unlock_mount_hash();
2344 
2345  out_unlock:
2346 	namespace_unlock();
2347 	return err;
2348 }
2349 
2350 static struct mount *__do_loopback(struct path *old_path, int recurse)
2351 {
2352 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2353 
2354 	if (IS_MNT_UNBINDABLE(old))
2355 		return mnt;
2356 
2357 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2358 		return mnt;
2359 
2360 	if (!recurse && has_locked_children(old, old_path->dentry))
2361 		return mnt;
2362 
2363 	if (recurse)
2364 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2365 	else
2366 		mnt = clone_mnt(old, old_path->dentry, 0);
2367 
2368 	if (!IS_ERR(mnt))
2369 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2370 
2371 	return mnt;
2372 }
2373 
2374 /*
2375  * do loopback mount.
2376  */
2377 static int do_loopback(struct path *path, const char *old_name,
2378 				int recurse)
2379 {
2380 	struct path old_path;
2381 	struct mount *mnt = NULL, *parent;
2382 	struct mountpoint *mp;
2383 	int err;
2384 	if (!old_name || !*old_name)
2385 		return -EINVAL;
2386 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2387 	if (err)
2388 		return err;
2389 
2390 	err = -EINVAL;
2391 	if (mnt_ns_loop(old_path.dentry))
2392 		goto out;
2393 
2394 	mp = lock_mount(path);
2395 	if (IS_ERR(mp)) {
2396 		err = PTR_ERR(mp);
2397 		goto out;
2398 	}
2399 
2400 	parent = real_mount(path->mnt);
2401 	if (!check_mnt(parent))
2402 		goto out2;
2403 
2404 	mnt = __do_loopback(&old_path, recurse);
2405 	if (IS_ERR(mnt)) {
2406 		err = PTR_ERR(mnt);
2407 		goto out2;
2408 	}
2409 
2410 	err = graft_tree(mnt, parent, mp);
2411 	if (err) {
2412 		lock_mount_hash();
2413 		umount_tree(mnt, UMOUNT_SYNC);
2414 		unlock_mount_hash();
2415 	}
2416 out2:
2417 	unlock_mount(mp);
2418 out:
2419 	path_put(&old_path);
2420 	return err;
2421 }
2422 
2423 static struct file *open_detached_copy(struct path *path, bool recursive)
2424 {
2425 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2426 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2427 	struct mount *mnt, *p;
2428 	struct file *file;
2429 
2430 	if (IS_ERR(ns))
2431 		return ERR_CAST(ns);
2432 
2433 	namespace_lock();
2434 	mnt = __do_loopback(path, recursive);
2435 	if (IS_ERR(mnt)) {
2436 		namespace_unlock();
2437 		free_mnt_ns(ns);
2438 		return ERR_CAST(mnt);
2439 	}
2440 
2441 	lock_mount_hash();
2442 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2443 		p->mnt_ns = ns;
2444 		ns->mounts++;
2445 	}
2446 	ns->root = mnt;
2447 	list_add_tail(&ns->list, &mnt->mnt_list);
2448 	mntget(&mnt->mnt);
2449 	unlock_mount_hash();
2450 	namespace_unlock();
2451 
2452 	mntput(path->mnt);
2453 	path->mnt = &mnt->mnt;
2454 	file = dentry_open(path, O_PATH, current_cred());
2455 	if (IS_ERR(file))
2456 		dissolve_on_fput(path->mnt);
2457 	else
2458 		file->f_mode |= FMODE_NEED_UNMOUNT;
2459 	return file;
2460 }
2461 
2462 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2463 {
2464 	struct file *file;
2465 	struct path path;
2466 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2467 	bool detached = flags & OPEN_TREE_CLONE;
2468 	int error;
2469 	int fd;
2470 
2471 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2472 
2473 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2474 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2475 		      OPEN_TREE_CLOEXEC))
2476 		return -EINVAL;
2477 
2478 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2479 		return -EINVAL;
2480 
2481 	if (flags & AT_NO_AUTOMOUNT)
2482 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2483 	if (flags & AT_SYMLINK_NOFOLLOW)
2484 		lookup_flags &= ~LOOKUP_FOLLOW;
2485 	if (flags & AT_EMPTY_PATH)
2486 		lookup_flags |= LOOKUP_EMPTY;
2487 
2488 	if (detached && !may_mount())
2489 		return -EPERM;
2490 
2491 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2492 	if (fd < 0)
2493 		return fd;
2494 
2495 	error = user_path_at(dfd, filename, lookup_flags, &path);
2496 	if (unlikely(error)) {
2497 		file = ERR_PTR(error);
2498 	} else {
2499 		if (detached)
2500 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2501 		else
2502 			file = dentry_open(&path, O_PATH, current_cred());
2503 		path_put(&path);
2504 	}
2505 	if (IS_ERR(file)) {
2506 		put_unused_fd(fd);
2507 		return PTR_ERR(file);
2508 	}
2509 	fd_install(fd, file);
2510 	return fd;
2511 }
2512 
2513 /*
2514  * Don't allow locked mount flags to be cleared.
2515  *
2516  * No locks need to be held here while testing the various MNT_LOCK
2517  * flags because those flags can never be cleared once they are set.
2518  */
2519 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2520 {
2521 	unsigned int fl = mnt->mnt.mnt_flags;
2522 
2523 	if ((fl & MNT_LOCK_READONLY) &&
2524 	    !(mnt_flags & MNT_READONLY))
2525 		return false;
2526 
2527 	if ((fl & MNT_LOCK_NODEV) &&
2528 	    !(mnt_flags & MNT_NODEV))
2529 		return false;
2530 
2531 	if ((fl & MNT_LOCK_NOSUID) &&
2532 	    !(mnt_flags & MNT_NOSUID))
2533 		return false;
2534 
2535 	if ((fl & MNT_LOCK_NOEXEC) &&
2536 	    !(mnt_flags & MNT_NOEXEC))
2537 		return false;
2538 
2539 	if ((fl & MNT_LOCK_ATIME) &&
2540 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2541 		return false;
2542 
2543 	return true;
2544 }
2545 
2546 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2547 {
2548 	bool readonly_request = (mnt_flags & MNT_READONLY);
2549 
2550 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2551 		return 0;
2552 
2553 	if (readonly_request)
2554 		return mnt_make_readonly(mnt);
2555 
2556 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2557 	return 0;
2558 }
2559 
2560 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2561 {
2562 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2563 	mnt->mnt.mnt_flags = mnt_flags;
2564 	touch_mnt_namespace(mnt->mnt_ns);
2565 }
2566 
2567 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2568 {
2569 	struct super_block *sb = mnt->mnt_sb;
2570 
2571 	if (!__mnt_is_readonly(mnt) &&
2572 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2573 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2574 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2575 		struct tm tm;
2576 
2577 		time64_to_tm(sb->s_time_max, 0, &tm);
2578 
2579 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2580 			sb->s_type->name,
2581 			is_mounted(mnt) ? "remounted" : "mounted",
2582 			mntpath,
2583 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2584 
2585 		free_page((unsigned long)buf);
2586 	}
2587 }
2588 
2589 /*
2590  * Handle reconfiguration of the mountpoint only without alteration of the
2591  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2592  * to mount(2).
2593  */
2594 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2595 {
2596 	struct super_block *sb = path->mnt->mnt_sb;
2597 	struct mount *mnt = real_mount(path->mnt);
2598 	int ret;
2599 
2600 	if (!check_mnt(mnt))
2601 		return -EINVAL;
2602 
2603 	if (path->dentry != mnt->mnt.mnt_root)
2604 		return -EINVAL;
2605 
2606 	if (!can_change_locked_flags(mnt, mnt_flags))
2607 		return -EPERM;
2608 
2609 	/*
2610 	 * We're only checking whether the superblock is read-only not
2611 	 * changing it, so only take down_read(&sb->s_umount).
2612 	 */
2613 	down_read(&sb->s_umount);
2614 	lock_mount_hash();
2615 	ret = change_mount_ro_state(mnt, mnt_flags);
2616 	if (ret == 0)
2617 		set_mount_attributes(mnt, mnt_flags);
2618 	unlock_mount_hash();
2619 	up_read(&sb->s_umount);
2620 
2621 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2622 
2623 	return ret;
2624 }
2625 
2626 /*
2627  * change filesystem flags. dir should be a physical root of filesystem.
2628  * If you've mounted a non-root directory somewhere and want to do remount
2629  * on it - tough luck.
2630  */
2631 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2632 		      int mnt_flags, void *data)
2633 {
2634 	int err;
2635 	struct super_block *sb = path->mnt->mnt_sb;
2636 	struct mount *mnt = real_mount(path->mnt);
2637 	struct fs_context *fc;
2638 
2639 	if (!check_mnt(mnt))
2640 		return -EINVAL;
2641 
2642 	if (path->dentry != path->mnt->mnt_root)
2643 		return -EINVAL;
2644 
2645 	if (!can_change_locked_flags(mnt, mnt_flags))
2646 		return -EPERM;
2647 
2648 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2649 	if (IS_ERR(fc))
2650 		return PTR_ERR(fc);
2651 
2652 	fc->oldapi = true;
2653 	err = parse_monolithic_mount_data(fc, data);
2654 	if (!err) {
2655 		down_write(&sb->s_umount);
2656 		err = -EPERM;
2657 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2658 			err = reconfigure_super(fc);
2659 			if (!err) {
2660 				lock_mount_hash();
2661 				set_mount_attributes(mnt, mnt_flags);
2662 				unlock_mount_hash();
2663 			}
2664 		}
2665 		up_write(&sb->s_umount);
2666 	}
2667 
2668 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2669 
2670 	put_fs_context(fc);
2671 	return err;
2672 }
2673 
2674 static inline int tree_contains_unbindable(struct mount *mnt)
2675 {
2676 	struct mount *p;
2677 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2678 		if (IS_MNT_UNBINDABLE(p))
2679 			return 1;
2680 	}
2681 	return 0;
2682 }
2683 
2684 /*
2685  * Check that there aren't references to earlier/same mount namespaces in the
2686  * specified subtree.  Such references can act as pins for mount namespaces
2687  * that aren't checked by the mount-cycle checking code, thereby allowing
2688  * cycles to be made.
2689  */
2690 static bool check_for_nsfs_mounts(struct mount *subtree)
2691 {
2692 	struct mount *p;
2693 	bool ret = false;
2694 
2695 	lock_mount_hash();
2696 	for (p = subtree; p; p = next_mnt(p, subtree))
2697 		if (mnt_ns_loop(p->mnt.mnt_root))
2698 			goto out;
2699 
2700 	ret = true;
2701 out:
2702 	unlock_mount_hash();
2703 	return ret;
2704 }
2705 
2706 static int do_move_mount(struct path *old_path, struct path *new_path)
2707 {
2708 	struct mnt_namespace *ns;
2709 	struct mount *p;
2710 	struct mount *old;
2711 	struct mount *parent;
2712 	struct mountpoint *mp, *old_mp;
2713 	int err;
2714 	bool attached;
2715 
2716 	mp = lock_mount(new_path);
2717 	if (IS_ERR(mp))
2718 		return PTR_ERR(mp);
2719 
2720 	old = real_mount(old_path->mnt);
2721 	p = real_mount(new_path->mnt);
2722 	parent = old->mnt_parent;
2723 	attached = mnt_has_parent(old);
2724 	old_mp = old->mnt_mp;
2725 	ns = old->mnt_ns;
2726 
2727 	err = -EINVAL;
2728 	/* The mountpoint must be in our namespace. */
2729 	if (!check_mnt(p))
2730 		goto out;
2731 
2732 	/* The thing moved must be mounted... */
2733 	if (!is_mounted(&old->mnt))
2734 		goto out;
2735 
2736 	/* ... and either ours or the root of anon namespace */
2737 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2738 		goto out;
2739 
2740 	if (old->mnt.mnt_flags & MNT_LOCKED)
2741 		goto out;
2742 
2743 	if (old_path->dentry != old_path->mnt->mnt_root)
2744 		goto out;
2745 
2746 	if (d_is_dir(new_path->dentry) !=
2747 	    d_is_dir(old_path->dentry))
2748 		goto out;
2749 	/*
2750 	 * Don't move a mount residing in a shared parent.
2751 	 */
2752 	if (attached && IS_MNT_SHARED(parent))
2753 		goto out;
2754 	/*
2755 	 * Don't move a mount tree containing unbindable mounts to a destination
2756 	 * mount which is shared.
2757 	 */
2758 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2759 		goto out;
2760 	err = -ELOOP;
2761 	if (!check_for_nsfs_mounts(old))
2762 		goto out;
2763 	for (; mnt_has_parent(p); p = p->mnt_parent)
2764 		if (p == old)
2765 			goto out;
2766 
2767 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2768 				   attached);
2769 	if (err)
2770 		goto out;
2771 
2772 	/* if the mount is moved, it should no longer be expire
2773 	 * automatically */
2774 	list_del_init(&old->mnt_expire);
2775 	if (attached)
2776 		put_mountpoint(old_mp);
2777 out:
2778 	unlock_mount(mp);
2779 	if (!err) {
2780 		if (attached)
2781 			mntput_no_expire(parent);
2782 		else
2783 			free_mnt_ns(ns);
2784 	}
2785 	return err;
2786 }
2787 
2788 static int do_move_mount_old(struct path *path, const char *old_name)
2789 {
2790 	struct path old_path;
2791 	int err;
2792 
2793 	if (!old_name || !*old_name)
2794 		return -EINVAL;
2795 
2796 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2797 	if (err)
2798 		return err;
2799 
2800 	err = do_move_mount(&old_path, path);
2801 	path_put(&old_path);
2802 	return err;
2803 }
2804 
2805 /*
2806  * add a mount into a namespace's mount tree
2807  */
2808 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2809 			struct path *path, int mnt_flags)
2810 {
2811 	struct mount *parent = real_mount(path->mnt);
2812 
2813 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2814 
2815 	if (unlikely(!check_mnt(parent))) {
2816 		/* that's acceptable only for automounts done in private ns */
2817 		if (!(mnt_flags & MNT_SHRINKABLE))
2818 			return -EINVAL;
2819 		/* ... and for those we'd better have mountpoint still alive */
2820 		if (!parent->mnt_ns)
2821 			return -EINVAL;
2822 	}
2823 
2824 	/* Refuse the same filesystem on the same mount point */
2825 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2826 	    path->mnt->mnt_root == path->dentry)
2827 		return -EBUSY;
2828 
2829 	if (d_is_symlink(newmnt->mnt.mnt_root))
2830 		return -EINVAL;
2831 
2832 	newmnt->mnt.mnt_flags = mnt_flags;
2833 	return graft_tree(newmnt, parent, mp);
2834 }
2835 
2836 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2837 
2838 /*
2839  * Create a new mount using a superblock configuration and request it
2840  * be added to the namespace tree.
2841  */
2842 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2843 			   unsigned int mnt_flags)
2844 {
2845 	struct vfsmount *mnt;
2846 	struct mountpoint *mp;
2847 	struct super_block *sb = fc->root->d_sb;
2848 	int error;
2849 
2850 	error = security_sb_kern_mount(sb);
2851 	if (!error && mount_too_revealing(sb, &mnt_flags))
2852 		error = -EPERM;
2853 
2854 	if (unlikely(error)) {
2855 		fc_drop_locked(fc);
2856 		return error;
2857 	}
2858 
2859 	up_write(&sb->s_umount);
2860 
2861 	mnt = vfs_create_mount(fc);
2862 	if (IS_ERR(mnt))
2863 		return PTR_ERR(mnt);
2864 
2865 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2866 
2867 	mp = lock_mount(mountpoint);
2868 	if (IS_ERR(mp)) {
2869 		mntput(mnt);
2870 		return PTR_ERR(mp);
2871 	}
2872 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2873 	unlock_mount(mp);
2874 	if (error < 0)
2875 		mntput(mnt);
2876 	return error;
2877 }
2878 
2879 /*
2880  * create a new mount for userspace and request it to be added into the
2881  * namespace's tree
2882  */
2883 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2884 			int mnt_flags, const char *name, void *data)
2885 {
2886 	struct file_system_type *type;
2887 	struct fs_context *fc;
2888 	const char *subtype = NULL;
2889 	int err = 0;
2890 
2891 	if (!fstype)
2892 		return -EINVAL;
2893 
2894 	type = get_fs_type(fstype);
2895 	if (!type)
2896 		return -ENODEV;
2897 
2898 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2899 		subtype = strchr(fstype, '.');
2900 		if (subtype) {
2901 			subtype++;
2902 			if (!*subtype) {
2903 				put_filesystem(type);
2904 				return -EINVAL;
2905 			}
2906 		}
2907 	}
2908 
2909 	fc = fs_context_for_mount(type, sb_flags);
2910 	put_filesystem(type);
2911 	if (IS_ERR(fc))
2912 		return PTR_ERR(fc);
2913 
2914 	if (subtype)
2915 		err = vfs_parse_fs_string(fc, "subtype",
2916 					  subtype, strlen(subtype));
2917 	if (!err && name)
2918 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2919 	if (!err)
2920 		err = parse_monolithic_mount_data(fc, data);
2921 	if (!err && !mount_capable(fc))
2922 		err = -EPERM;
2923 	if (!err)
2924 		err = vfs_get_tree(fc);
2925 	if (!err)
2926 		err = do_new_mount_fc(fc, path, mnt_flags);
2927 
2928 	put_fs_context(fc);
2929 	return err;
2930 }
2931 
2932 int finish_automount(struct vfsmount *m, struct path *path)
2933 {
2934 	struct dentry *dentry = path->dentry;
2935 	struct mountpoint *mp;
2936 	struct mount *mnt;
2937 	int err;
2938 
2939 	if (!m)
2940 		return 0;
2941 	if (IS_ERR(m))
2942 		return PTR_ERR(m);
2943 
2944 	mnt = real_mount(m);
2945 	/* The new mount record should have at least 2 refs to prevent it being
2946 	 * expired before we get a chance to add it
2947 	 */
2948 	BUG_ON(mnt_get_count(mnt) < 2);
2949 
2950 	if (m->mnt_sb == path->mnt->mnt_sb &&
2951 	    m->mnt_root == dentry) {
2952 		err = -ELOOP;
2953 		goto discard;
2954 	}
2955 
2956 	/*
2957 	 * we don't want to use lock_mount() - in this case finding something
2958 	 * that overmounts our mountpoint to be means "quitely drop what we've
2959 	 * got", not "try to mount it on top".
2960 	 */
2961 	inode_lock(dentry->d_inode);
2962 	namespace_lock();
2963 	if (unlikely(cant_mount(dentry))) {
2964 		err = -ENOENT;
2965 		goto discard_locked;
2966 	}
2967 	rcu_read_lock();
2968 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2969 		rcu_read_unlock();
2970 		err = 0;
2971 		goto discard_locked;
2972 	}
2973 	rcu_read_unlock();
2974 	mp = get_mountpoint(dentry);
2975 	if (IS_ERR(mp)) {
2976 		err = PTR_ERR(mp);
2977 		goto discard_locked;
2978 	}
2979 
2980 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2981 	unlock_mount(mp);
2982 	if (unlikely(err))
2983 		goto discard;
2984 	mntput(m);
2985 	return 0;
2986 
2987 discard_locked:
2988 	namespace_unlock();
2989 	inode_unlock(dentry->d_inode);
2990 discard:
2991 	/* remove m from any expiration list it may be on */
2992 	if (!list_empty(&mnt->mnt_expire)) {
2993 		namespace_lock();
2994 		list_del_init(&mnt->mnt_expire);
2995 		namespace_unlock();
2996 	}
2997 	mntput(m);
2998 	mntput(m);
2999 	return err;
3000 }
3001 
3002 /**
3003  * mnt_set_expiry - Put a mount on an expiration list
3004  * @mnt: The mount to list.
3005  * @expiry_list: The list to add the mount to.
3006  */
3007 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3008 {
3009 	namespace_lock();
3010 
3011 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3012 
3013 	namespace_unlock();
3014 }
3015 EXPORT_SYMBOL(mnt_set_expiry);
3016 
3017 /*
3018  * process a list of expirable mountpoints with the intent of discarding any
3019  * mountpoints that aren't in use and haven't been touched since last we came
3020  * here
3021  */
3022 void mark_mounts_for_expiry(struct list_head *mounts)
3023 {
3024 	struct mount *mnt, *next;
3025 	LIST_HEAD(graveyard);
3026 
3027 	if (list_empty(mounts))
3028 		return;
3029 
3030 	namespace_lock();
3031 	lock_mount_hash();
3032 
3033 	/* extract from the expiration list every vfsmount that matches the
3034 	 * following criteria:
3035 	 * - only referenced by its parent vfsmount
3036 	 * - still marked for expiry (marked on the last call here; marks are
3037 	 *   cleared by mntput())
3038 	 */
3039 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3040 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3041 			propagate_mount_busy(mnt, 1))
3042 			continue;
3043 		list_move(&mnt->mnt_expire, &graveyard);
3044 	}
3045 	while (!list_empty(&graveyard)) {
3046 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3047 		touch_mnt_namespace(mnt->mnt_ns);
3048 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3049 	}
3050 	unlock_mount_hash();
3051 	namespace_unlock();
3052 }
3053 
3054 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3055 
3056 /*
3057  * Ripoff of 'select_parent()'
3058  *
3059  * search the list of submounts for a given mountpoint, and move any
3060  * shrinkable submounts to the 'graveyard' list.
3061  */
3062 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3063 {
3064 	struct mount *this_parent = parent;
3065 	struct list_head *next;
3066 	int found = 0;
3067 
3068 repeat:
3069 	next = this_parent->mnt_mounts.next;
3070 resume:
3071 	while (next != &this_parent->mnt_mounts) {
3072 		struct list_head *tmp = next;
3073 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3074 
3075 		next = tmp->next;
3076 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3077 			continue;
3078 		/*
3079 		 * Descend a level if the d_mounts list is non-empty.
3080 		 */
3081 		if (!list_empty(&mnt->mnt_mounts)) {
3082 			this_parent = mnt;
3083 			goto repeat;
3084 		}
3085 
3086 		if (!propagate_mount_busy(mnt, 1)) {
3087 			list_move_tail(&mnt->mnt_expire, graveyard);
3088 			found++;
3089 		}
3090 	}
3091 	/*
3092 	 * All done at this level ... ascend and resume the search
3093 	 */
3094 	if (this_parent != parent) {
3095 		next = this_parent->mnt_child.next;
3096 		this_parent = this_parent->mnt_parent;
3097 		goto resume;
3098 	}
3099 	return found;
3100 }
3101 
3102 /*
3103  * process a list of expirable mountpoints with the intent of discarding any
3104  * submounts of a specific parent mountpoint
3105  *
3106  * mount_lock must be held for write
3107  */
3108 static void shrink_submounts(struct mount *mnt)
3109 {
3110 	LIST_HEAD(graveyard);
3111 	struct mount *m;
3112 
3113 	/* extract submounts of 'mountpoint' from the expiration list */
3114 	while (select_submounts(mnt, &graveyard)) {
3115 		while (!list_empty(&graveyard)) {
3116 			m = list_first_entry(&graveyard, struct mount,
3117 						mnt_expire);
3118 			touch_mnt_namespace(m->mnt_ns);
3119 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3120 		}
3121 	}
3122 }
3123 
3124 static void *copy_mount_options(const void __user * data)
3125 {
3126 	char *copy;
3127 	unsigned left, offset;
3128 
3129 	if (!data)
3130 		return NULL;
3131 
3132 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3133 	if (!copy)
3134 		return ERR_PTR(-ENOMEM);
3135 
3136 	left = copy_from_user(copy, data, PAGE_SIZE);
3137 
3138 	/*
3139 	 * Not all architectures have an exact copy_from_user(). Resort to
3140 	 * byte at a time.
3141 	 */
3142 	offset = PAGE_SIZE - left;
3143 	while (left) {
3144 		char c;
3145 		if (get_user(c, (const char __user *)data + offset))
3146 			break;
3147 		copy[offset] = c;
3148 		left--;
3149 		offset++;
3150 	}
3151 
3152 	if (left == PAGE_SIZE) {
3153 		kfree(copy);
3154 		return ERR_PTR(-EFAULT);
3155 	}
3156 
3157 	return copy;
3158 }
3159 
3160 static char *copy_mount_string(const void __user *data)
3161 {
3162 	return data ? strndup_user(data, PATH_MAX) : NULL;
3163 }
3164 
3165 /*
3166  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3167  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3168  *
3169  * data is a (void *) that can point to any structure up to
3170  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3171  * information (or be NULL).
3172  *
3173  * Pre-0.97 versions of mount() didn't have a flags word.
3174  * When the flags word was introduced its top half was required
3175  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3176  * Therefore, if this magic number is present, it carries no information
3177  * and must be discarded.
3178  */
3179 int path_mount(const char *dev_name, struct path *path,
3180 		const char *type_page, unsigned long flags, void *data_page)
3181 {
3182 	unsigned int mnt_flags = 0, sb_flags;
3183 	int ret;
3184 
3185 	/* Discard magic */
3186 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3187 		flags &= ~MS_MGC_MSK;
3188 
3189 	/* Basic sanity checks */
3190 	if (data_page)
3191 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3192 
3193 	if (flags & MS_NOUSER)
3194 		return -EINVAL;
3195 
3196 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3197 	if (ret)
3198 		return ret;
3199 	if (!may_mount())
3200 		return -EPERM;
3201 	if ((flags & SB_MANDLOCK) && !may_mandlock())
3202 		return -EPERM;
3203 
3204 	/* Default to relatime unless overriden */
3205 	if (!(flags & MS_NOATIME))
3206 		mnt_flags |= MNT_RELATIME;
3207 
3208 	/* Separate the per-mountpoint flags */
3209 	if (flags & MS_NOSUID)
3210 		mnt_flags |= MNT_NOSUID;
3211 	if (flags & MS_NODEV)
3212 		mnt_flags |= MNT_NODEV;
3213 	if (flags & MS_NOEXEC)
3214 		mnt_flags |= MNT_NOEXEC;
3215 	if (flags & MS_NOATIME)
3216 		mnt_flags |= MNT_NOATIME;
3217 	if (flags & MS_NODIRATIME)
3218 		mnt_flags |= MNT_NODIRATIME;
3219 	if (flags & MS_STRICTATIME)
3220 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3221 	if (flags & MS_RDONLY)
3222 		mnt_flags |= MNT_READONLY;
3223 	if (flags & MS_NOSYMFOLLOW)
3224 		mnt_flags |= MNT_NOSYMFOLLOW;
3225 
3226 	/* The default atime for remount is preservation */
3227 	if ((flags & MS_REMOUNT) &&
3228 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3229 		       MS_STRICTATIME)) == 0)) {
3230 		mnt_flags &= ~MNT_ATIME_MASK;
3231 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3232 	}
3233 
3234 	sb_flags = flags & (SB_RDONLY |
3235 			    SB_SYNCHRONOUS |
3236 			    SB_MANDLOCK |
3237 			    SB_DIRSYNC |
3238 			    SB_SILENT |
3239 			    SB_POSIXACL |
3240 			    SB_LAZYTIME |
3241 			    SB_I_VERSION);
3242 
3243 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3244 		return do_reconfigure_mnt(path, mnt_flags);
3245 	if (flags & MS_REMOUNT)
3246 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3247 	if (flags & MS_BIND)
3248 		return do_loopback(path, dev_name, flags & MS_REC);
3249 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3250 		return do_change_type(path, flags);
3251 	if (flags & MS_MOVE)
3252 		return do_move_mount_old(path, dev_name);
3253 
3254 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3255 			    data_page);
3256 }
3257 
3258 long do_mount(const char *dev_name, const char __user *dir_name,
3259 		const char *type_page, unsigned long flags, void *data_page)
3260 {
3261 	struct path path;
3262 	int ret;
3263 
3264 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3265 	if (ret)
3266 		return ret;
3267 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3268 	path_put(&path);
3269 	return ret;
3270 }
3271 
3272 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3273 {
3274 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3275 }
3276 
3277 static void dec_mnt_namespaces(struct ucounts *ucounts)
3278 {
3279 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3280 }
3281 
3282 static void free_mnt_ns(struct mnt_namespace *ns)
3283 {
3284 	if (!is_anon_ns(ns))
3285 		ns_free_inum(&ns->ns);
3286 	dec_mnt_namespaces(ns->ucounts);
3287 	put_user_ns(ns->user_ns);
3288 	kfree(ns);
3289 }
3290 
3291 /*
3292  * Assign a sequence number so we can detect when we attempt to bind
3293  * mount a reference to an older mount namespace into the current
3294  * mount namespace, preventing reference counting loops.  A 64bit
3295  * number incrementing at 10Ghz will take 12,427 years to wrap which
3296  * is effectively never, so we can ignore the possibility.
3297  */
3298 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3299 
3300 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3301 {
3302 	struct mnt_namespace *new_ns;
3303 	struct ucounts *ucounts;
3304 	int ret;
3305 
3306 	ucounts = inc_mnt_namespaces(user_ns);
3307 	if (!ucounts)
3308 		return ERR_PTR(-ENOSPC);
3309 
3310 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3311 	if (!new_ns) {
3312 		dec_mnt_namespaces(ucounts);
3313 		return ERR_PTR(-ENOMEM);
3314 	}
3315 	if (!anon) {
3316 		ret = ns_alloc_inum(&new_ns->ns);
3317 		if (ret) {
3318 			kfree(new_ns);
3319 			dec_mnt_namespaces(ucounts);
3320 			return ERR_PTR(ret);
3321 		}
3322 	}
3323 	new_ns->ns.ops = &mntns_operations;
3324 	if (!anon)
3325 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3326 	refcount_set(&new_ns->ns.count, 1);
3327 	INIT_LIST_HEAD(&new_ns->list);
3328 	init_waitqueue_head(&new_ns->poll);
3329 	spin_lock_init(&new_ns->ns_lock);
3330 	new_ns->user_ns = get_user_ns(user_ns);
3331 	new_ns->ucounts = ucounts;
3332 	return new_ns;
3333 }
3334 
3335 __latent_entropy
3336 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3337 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3338 {
3339 	struct mnt_namespace *new_ns;
3340 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3341 	struct mount *p, *q;
3342 	struct mount *old;
3343 	struct mount *new;
3344 	int copy_flags;
3345 
3346 	BUG_ON(!ns);
3347 
3348 	if (likely(!(flags & CLONE_NEWNS))) {
3349 		get_mnt_ns(ns);
3350 		return ns;
3351 	}
3352 
3353 	old = ns->root;
3354 
3355 	new_ns = alloc_mnt_ns(user_ns, false);
3356 	if (IS_ERR(new_ns))
3357 		return new_ns;
3358 
3359 	namespace_lock();
3360 	/* First pass: copy the tree topology */
3361 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3362 	if (user_ns != ns->user_ns)
3363 		copy_flags |= CL_SHARED_TO_SLAVE;
3364 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3365 	if (IS_ERR(new)) {
3366 		namespace_unlock();
3367 		free_mnt_ns(new_ns);
3368 		return ERR_CAST(new);
3369 	}
3370 	if (user_ns != ns->user_ns) {
3371 		lock_mount_hash();
3372 		lock_mnt_tree(new);
3373 		unlock_mount_hash();
3374 	}
3375 	new_ns->root = new;
3376 	list_add_tail(&new_ns->list, &new->mnt_list);
3377 
3378 	/*
3379 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3380 	 * as belonging to new namespace.  We have already acquired a private
3381 	 * fs_struct, so tsk->fs->lock is not needed.
3382 	 */
3383 	p = old;
3384 	q = new;
3385 	while (p) {
3386 		q->mnt_ns = new_ns;
3387 		new_ns->mounts++;
3388 		if (new_fs) {
3389 			if (&p->mnt == new_fs->root.mnt) {
3390 				new_fs->root.mnt = mntget(&q->mnt);
3391 				rootmnt = &p->mnt;
3392 			}
3393 			if (&p->mnt == new_fs->pwd.mnt) {
3394 				new_fs->pwd.mnt = mntget(&q->mnt);
3395 				pwdmnt = &p->mnt;
3396 			}
3397 		}
3398 		p = next_mnt(p, old);
3399 		q = next_mnt(q, new);
3400 		if (!q)
3401 			break;
3402 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3403 			p = next_mnt(p, old);
3404 	}
3405 	namespace_unlock();
3406 
3407 	if (rootmnt)
3408 		mntput(rootmnt);
3409 	if (pwdmnt)
3410 		mntput(pwdmnt);
3411 
3412 	return new_ns;
3413 }
3414 
3415 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3416 {
3417 	struct mount *mnt = real_mount(m);
3418 	struct mnt_namespace *ns;
3419 	struct super_block *s;
3420 	struct path path;
3421 	int err;
3422 
3423 	ns = alloc_mnt_ns(&init_user_ns, true);
3424 	if (IS_ERR(ns)) {
3425 		mntput(m);
3426 		return ERR_CAST(ns);
3427 	}
3428 	mnt->mnt_ns = ns;
3429 	ns->root = mnt;
3430 	ns->mounts++;
3431 	list_add(&mnt->mnt_list, &ns->list);
3432 
3433 	err = vfs_path_lookup(m->mnt_root, m,
3434 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3435 
3436 	put_mnt_ns(ns);
3437 
3438 	if (err)
3439 		return ERR_PTR(err);
3440 
3441 	/* trade a vfsmount reference for active sb one */
3442 	s = path.mnt->mnt_sb;
3443 	atomic_inc(&s->s_active);
3444 	mntput(path.mnt);
3445 	/* lock the sucker */
3446 	down_write(&s->s_umount);
3447 	/* ... and return the root of (sub)tree on it */
3448 	return path.dentry;
3449 }
3450 EXPORT_SYMBOL(mount_subtree);
3451 
3452 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3453 		char __user *, type, unsigned long, flags, void __user *, data)
3454 {
3455 	int ret;
3456 	char *kernel_type;
3457 	char *kernel_dev;
3458 	void *options;
3459 
3460 	kernel_type = copy_mount_string(type);
3461 	ret = PTR_ERR(kernel_type);
3462 	if (IS_ERR(kernel_type))
3463 		goto out_type;
3464 
3465 	kernel_dev = copy_mount_string(dev_name);
3466 	ret = PTR_ERR(kernel_dev);
3467 	if (IS_ERR(kernel_dev))
3468 		goto out_dev;
3469 
3470 	options = copy_mount_options(data);
3471 	ret = PTR_ERR(options);
3472 	if (IS_ERR(options))
3473 		goto out_data;
3474 
3475 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3476 
3477 	kfree(options);
3478 out_data:
3479 	kfree(kernel_dev);
3480 out_dev:
3481 	kfree(kernel_type);
3482 out_type:
3483 	return ret;
3484 }
3485 
3486 #define FSMOUNT_VALID_FLAGS                                                    \
3487 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3488 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3489 	 MOUNT_ATTR_NOSYMFOLLOW)
3490 
3491 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3492 
3493 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3494 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3495 
3496 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3497 {
3498 	unsigned int mnt_flags = 0;
3499 
3500 	if (attr_flags & MOUNT_ATTR_RDONLY)
3501 		mnt_flags |= MNT_READONLY;
3502 	if (attr_flags & MOUNT_ATTR_NOSUID)
3503 		mnt_flags |= MNT_NOSUID;
3504 	if (attr_flags & MOUNT_ATTR_NODEV)
3505 		mnt_flags |= MNT_NODEV;
3506 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3507 		mnt_flags |= MNT_NOEXEC;
3508 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3509 		mnt_flags |= MNT_NODIRATIME;
3510 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3511 		mnt_flags |= MNT_NOSYMFOLLOW;
3512 
3513 	return mnt_flags;
3514 }
3515 
3516 /*
3517  * Create a kernel mount representation for a new, prepared superblock
3518  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3519  */
3520 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3521 		unsigned int, attr_flags)
3522 {
3523 	struct mnt_namespace *ns;
3524 	struct fs_context *fc;
3525 	struct file *file;
3526 	struct path newmount;
3527 	struct mount *mnt;
3528 	struct fd f;
3529 	unsigned int mnt_flags = 0;
3530 	long ret;
3531 
3532 	if (!may_mount())
3533 		return -EPERM;
3534 
3535 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3536 		return -EINVAL;
3537 
3538 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3539 		return -EINVAL;
3540 
3541 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3542 
3543 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3544 	case MOUNT_ATTR_STRICTATIME:
3545 		break;
3546 	case MOUNT_ATTR_NOATIME:
3547 		mnt_flags |= MNT_NOATIME;
3548 		break;
3549 	case MOUNT_ATTR_RELATIME:
3550 		mnt_flags |= MNT_RELATIME;
3551 		break;
3552 	default:
3553 		return -EINVAL;
3554 	}
3555 
3556 	f = fdget(fs_fd);
3557 	if (!f.file)
3558 		return -EBADF;
3559 
3560 	ret = -EINVAL;
3561 	if (f.file->f_op != &fscontext_fops)
3562 		goto err_fsfd;
3563 
3564 	fc = f.file->private_data;
3565 
3566 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3567 	if (ret < 0)
3568 		goto err_fsfd;
3569 
3570 	/* There must be a valid superblock or we can't mount it */
3571 	ret = -EINVAL;
3572 	if (!fc->root)
3573 		goto err_unlock;
3574 
3575 	ret = -EPERM;
3576 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3577 		pr_warn("VFS: Mount too revealing\n");
3578 		goto err_unlock;
3579 	}
3580 
3581 	ret = -EBUSY;
3582 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3583 		goto err_unlock;
3584 
3585 	ret = -EPERM;
3586 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3587 		goto err_unlock;
3588 
3589 	newmount.mnt = vfs_create_mount(fc);
3590 	if (IS_ERR(newmount.mnt)) {
3591 		ret = PTR_ERR(newmount.mnt);
3592 		goto err_unlock;
3593 	}
3594 	newmount.dentry = dget(fc->root);
3595 	newmount.mnt->mnt_flags = mnt_flags;
3596 
3597 	/* We've done the mount bit - now move the file context into more or
3598 	 * less the same state as if we'd done an fspick().  We don't want to
3599 	 * do any memory allocation or anything like that at this point as we
3600 	 * don't want to have to handle any errors incurred.
3601 	 */
3602 	vfs_clean_context(fc);
3603 
3604 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3605 	if (IS_ERR(ns)) {
3606 		ret = PTR_ERR(ns);
3607 		goto err_path;
3608 	}
3609 	mnt = real_mount(newmount.mnt);
3610 	mnt->mnt_ns = ns;
3611 	ns->root = mnt;
3612 	ns->mounts = 1;
3613 	list_add(&mnt->mnt_list, &ns->list);
3614 	mntget(newmount.mnt);
3615 
3616 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3617 	 * it, not just simply put it.
3618 	 */
3619 	file = dentry_open(&newmount, O_PATH, fc->cred);
3620 	if (IS_ERR(file)) {
3621 		dissolve_on_fput(newmount.mnt);
3622 		ret = PTR_ERR(file);
3623 		goto err_path;
3624 	}
3625 	file->f_mode |= FMODE_NEED_UNMOUNT;
3626 
3627 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3628 	if (ret >= 0)
3629 		fd_install(ret, file);
3630 	else
3631 		fput(file);
3632 
3633 err_path:
3634 	path_put(&newmount);
3635 err_unlock:
3636 	mutex_unlock(&fc->uapi_mutex);
3637 err_fsfd:
3638 	fdput(f);
3639 	return ret;
3640 }
3641 
3642 /*
3643  * Move a mount from one place to another.  In combination with
3644  * fsopen()/fsmount() this is used to install a new mount and in combination
3645  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3646  * a mount subtree.
3647  *
3648  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3649  */
3650 SYSCALL_DEFINE5(move_mount,
3651 		int, from_dfd, const char __user *, from_pathname,
3652 		int, to_dfd, const char __user *, to_pathname,
3653 		unsigned int, flags)
3654 {
3655 	struct path from_path, to_path;
3656 	unsigned int lflags;
3657 	int ret = 0;
3658 
3659 	if (!may_mount())
3660 		return -EPERM;
3661 
3662 	if (flags & ~MOVE_MOUNT__MASK)
3663 		return -EINVAL;
3664 
3665 	/* If someone gives a pathname, they aren't permitted to move
3666 	 * from an fd that requires unmount as we can't get at the flag
3667 	 * to clear it afterwards.
3668 	 */
3669 	lflags = 0;
3670 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3671 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3672 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3673 
3674 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3675 	if (ret < 0)
3676 		return ret;
3677 
3678 	lflags = 0;
3679 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3680 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3681 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3682 
3683 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3684 	if (ret < 0)
3685 		goto out_from;
3686 
3687 	ret = security_move_mount(&from_path, &to_path);
3688 	if (ret < 0)
3689 		goto out_to;
3690 
3691 	ret = do_move_mount(&from_path, &to_path);
3692 
3693 out_to:
3694 	path_put(&to_path);
3695 out_from:
3696 	path_put(&from_path);
3697 	return ret;
3698 }
3699 
3700 /*
3701  * Return true if path is reachable from root
3702  *
3703  * namespace_sem or mount_lock is held
3704  */
3705 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3706 			 const struct path *root)
3707 {
3708 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3709 		dentry = mnt->mnt_mountpoint;
3710 		mnt = mnt->mnt_parent;
3711 	}
3712 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3713 }
3714 
3715 bool path_is_under(const struct path *path1, const struct path *path2)
3716 {
3717 	bool res;
3718 	read_seqlock_excl(&mount_lock);
3719 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3720 	read_sequnlock_excl(&mount_lock);
3721 	return res;
3722 }
3723 EXPORT_SYMBOL(path_is_under);
3724 
3725 /*
3726  * pivot_root Semantics:
3727  * Moves the root file system of the current process to the directory put_old,
3728  * makes new_root as the new root file system of the current process, and sets
3729  * root/cwd of all processes which had them on the current root to new_root.
3730  *
3731  * Restrictions:
3732  * The new_root and put_old must be directories, and  must not be on the
3733  * same file  system as the current process root. The put_old  must  be
3734  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3735  * pointed to by put_old must yield the same directory as new_root. No other
3736  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3737  *
3738  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3739  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3740  * in this situation.
3741  *
3742  * Notes:
3743  *  - we don't move root/cwd if they are not at the root (reason: if something
3744  *    cared enough to change them, it's probably wrong to force them elsewhere)
3745  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3746  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3747  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3748  *    first.
3749  */
3750 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3751 		const char __user *, put_old)
3752 {
3753 	struct path new, old, root;
3754 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3755 	struct mountpoint *old_mp, *root_mp;
3756 	int error;
3757 
3758 	if (!may_mount())
3759 		return -EPERM;
3760 
3761 	error = user_path_at(AT_FDCWD, new_root,
3762 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3763 	if (error)
3764 		goto out0;
3765 
3766 	error = user_path_at(AT_FDCWD, put_old,
3767 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3768 	if (error)
3769 		goto out1;
3770 
3771 	error = security_sb_pivotroot(&old, &new);
3772 	if (error)
3773 		goto out2;
3774 
3775 	get_fs_root(current->fs, &root);
3776 	old_mp = lock_mount(&old);
3777 	error = PTR_ERR(old_mp);
3778 	if (IS_ERR(old_mp))
3779 		goto out3;
3780 
3781 	error = -EINVAL;
3782 	new_mnt = real_mount(new.mnt);
3783 	root_mnt = real_mount(root.mnt);
3784 	old_mnt = real_mount(old.mnt);
3785 	ex_parent = new_mnt->mnt_parent;
3786 	root_parent = root_mnt->mnt_parent;
3787 	if (IS_MNT_SHARED(old_mnt) ||
3788 		IS_MNT_SHARED(ex_parent) ||
3789 		IS_MNT_SHARED(root_parent))
3790 		goto out4;
3791 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3792 		goto out4;
3793 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3794 		goto out4;
3795 	error = -ENOENT;
3796 	if (d_unlinked(new.dentry))
3797 		goto out4;
3798 	error = -EBUSY;
3799 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3800 		goto out4; /* loop, on the same file system  */
3801 	error = -EINVAL;
3802 	if (root.mnt->mnt_root != root.dentry)
3803 		goto out4; /* not a mountpoint */
3804 	if (!mnt_has_parent(root_mnt))
3805 		goto out4; /* not attached */
3806 	if (new.mnt->mnt_root != new.dentry)
3807 		goto out4; /* not a mountpoint */
3808 	if (!mnt_has_parent(new_mnt))
3809 		goto out4; /* not attached */
3810 	/* make sure we can reach put_old from new_root */
3811 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3812 		goto out4;
3813 	/* make certain new is below the root */
3814 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3815 		goto out4;
3816 	lock_mount_hash();
3817 	umount_mnt(new_mnt);
3818 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3819 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3820 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3821 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3822 	}
3823 	/* mount old root on put_old */
3824 	attach_mnt(root_mnt, old_mnt, old_mp);
3825 	/* mount new_root on / */
3826 	attach_mnt(new_mnt, root_parent, root_mp);
3827 	mnt_add_count(root_parent, -1);
3828 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3829 	/* A moved mount should not expire automatically */
3830 	list_del_init(&new_mnt->mnt_expire);
3831 	put_mountpoint(root_mp);
3832 	unlock_mount_hash();
3833 	chroot_fs_refs(&root, &new);
3834 	error = 0;
3835 out4:
3836 	unlock_mount(old_mp);
3837 	if (!error)
3838 		mntput_no_expire(ex_parent);
3839 out3:
3840 	path_put(&root);
3841 out2:
3842 	path_put(&old);
3843 out1:
3844 	path_put(&new);
3845 out0:
3846 	return error;
3847 }
3848 
3849 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3850 {
3851 	unsigned int flags = mnt->mnt.mnt_flags;
3852 
3853 	/*  flags to clear */
3854 	flags &= ~kattr->attr_clr;
3855 	/* flags to raise */
3856 	flags |= kattr->attr_set;
3857 
3858 	return flags;
3859 }
3860 
3861 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3862 {
3863 	struct vfsmount *m = &mnt->mnt;
3864 
3865 	if (!kattr->mnt_userns)
3866 		return 0;
3867 
3868 	/*
3869 	 * Once a mount has been idmapped we don't allow it to change its
3870 	 * mapping. It makes things simpler and callers can just create
3871 	 * another bind-mount they can idmap if they want to.
3872 	 */
3873 	if (mnt_user_ns(m) != &init_user_ns)
3874 		return -EPERM;
3875 
3876 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3877 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3878 		return -EINVAL;
3879 
3880 	/* Don't yet support filesystem mountable in user namespaces. */
3881 	if (m->mnt_sb->s_user_ns != &init_user_ns)
3882 		return -EINVAL;
3883 
3884 	/* We're not controlling the superblock. */
3885 	if (!capable(CAP_SYS_ADMIN))
3886 		return -EPERM;
3887 
3888 	/* Mount has already been visible in the filesystem hierarchy. */
3889 	if (!is_anon_ns(mnt->mnt_ns))
3890 		return -EINVAL;
3891 
3892 	return 0;
3893 }
3894 
3895 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3896 					   struct mount *mnt, int *err)
3897 {
3898 	struct mount *m = mnt, *last = NULL;
3899 
3900 	if (!is_mounted(&m->mnt)) {
3901 		*err = -EINVAL;
3902 		goto out;
3903 	}
3904 
3905 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3906 		*err = -EINVAL;
3907 		goto out;
3908 	}
3909 
3910 	do {
3911 		unsigned int flags;
3912 
3913 		flags = recalc_flags(kattr, m);
3914 		if (!can_change_locked_flags(m, flags)) {
3915 			*err = -EPERM;
3916 			goto out;
3917 		}
3918 
3919 		*err = can_idmap_mount(kattr, m);
3920 		if (*err)
3921 			goto out;
3922 
3923 		last = m;
3924 
3925 		if ((kattr->attr_set & MNT_READONLY) &&
3926 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3927 			*err = mnt_hold_writers(m);
3928 			if (*err)
3929 				goto out;
3930 		}
3931 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3932 
3933 out:
3934 	return last;
3935 }
3936 
3937 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3938 {
3939 	struct user_namespace *mnt_userns;
3940 
3941 	if (!kattr->mnt_userns)
3942 		return;
3943 
3944 	mnt_userns = get_user_ns(kattr->mnt_userns);
3945 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
3946 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3947 }
3948 
3949 static void mount_setattr_commit(struct mount_kattr *kattr,
3950 				 struct mount *mnt, struct mount *last,
3951 				 int err)
3952 {
3953 	struct mount *m = mnt;
3954 
3955 	do {
3956 		if (!err) {
3957 			unsigned int flags;
3958 
3959 			do_idmap_mount(kattr, m);
3960 			flags = recalc_flags(kattr, m);
3961 			WRITE_ONCE(m->mnt.mnt_flags, flags);
3962 		}
3963 
3964 		/*
3965 		 * We either set MNT_READONLY above so make it visible
3966 		 * before ~MNT_WRITE_HOLD or we failed to recursively
3967 		 * apply mount options.
3968 		 */
3969 		if ((kattr->attr_set & MNT_READONLY) &&
3970 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3971 			mnt_unhold_writers(m);
3972 
3973 		if (!err && kattr->propagation)
3974 			change_mnt_propagation(m, kattr->propagation);
3975 
3976 		/*
3977 		 * On failure, only cleanup until we found the first mount
3978 		 * we failed to handle.
3979 		 */
3980 		if (err && m == last)
3981 			break;
3982 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3983 
3984 	if (!err)
3985 		touch_mnt_namespace(mnt->mnt_ns);
3986 }
3987 
3988 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3989 {
3990 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
3991 	int err = 0;
3992 
3993 	if (path->dentry != mnt->mnt.mnt_root)
3994 		return -EINVAL;
3995 
3996 	if (kattr->propagation) {
3997 		/*
3998 		 * Only take namespace_lock() if we're actually changing
3999 		 * propagation.
4000 		 */
4001 		namespace_lock();
4002 		if (kattr->propagation == MS_SHARED) {
4003 			err = invent_group_ids(mnt, kattr->recurse);
4004 			if (err) {
4005 				namespace_unlock();
4006 				return err;
4007 			}
4008 		}
4009 	}
4010 
4011 	lock_mount_hash();
4012 
4013 	/*
4014 	 * Get the mount tree in a shape where we can change mount
4015 	 * properties without failure.
4016 	 */
4017 	last = mount_setattr_prepare(kattr, mnt, &err);
4018 	if (last) /* Commit all changes or revert to the old state. */
4019 		mount_setattr_commit(kattr, mnt, last, err);
4020 
4021 	unlock_mount_hash();
4022 
4023 	if (kattr->propagation) {
4024 		namespace_unlock();
4025 		if (err)
4026 			cleanup_group_ids(mnt, NULL);
4027 	}
4028 
4029 	return err;
4030 }
4031 
4032 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4033 				struct mount_kattr *kattr, unsigned int flags)
4034 {
4035 	int err = 0;
4036 	struct ns_common *ns;
4037 	struct user_namespace *mnt_userns;
4038 	struct file *file;
4039 
4040 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4041 		return 0;
4042 
4043 	/*
4044 	 * We currently do not support clearing an idmapped mount. If this ever
4045 	 * is a use-case we can revisit this but for now let's keep it simple
4046 	 * and not allow it.
4047 	 */
4048 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4049 		return -EINVAL;
4050 
4051 	if (attr->userns_fd > INT_MAX)
4052 		return -EINVAL;
4053 
4054 	file = fget(attr->userns_fd);
4055 	if (!file)
4056 		return -EBADF;
4057 
4058 	if (!proc_ns_file(file)) {
4059 		err = -EINVAL;
4060 		goto out_fput;
4061 	}
4062 
4063 	ns = get_proc_ns(file_inode(file));
4064 	if (ns->ops->type != CLONE_NEWUSER) {
4065 		err = -EINVAL;
4066 		goto out_fput;
4067 	}
4068 
4069 	/*
4070 	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4071 	 * This is simpler than just having to treat NULL as unmapped. Users
4072 	 * wanting to idmap a mount to init_user_ns can just use a namespace
4073 	 * with an identity mapping.
4074 	 */
4075 	mnt_userns = container_of(ns, struct user_namespace, ns);
4076 	if (mnt_userns == &init_user_ns) {
4077 		err = -EPERM;
4078 		goto out_fput;
4079 	}
4080 	kattr->mnt_userns = get_user_ns(mnt_userns);
4081 
4082 out_fput:
4083 	fput(file);
4084 	return err;
4085 }
4086 
4087 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4088 			     struct mount_kattr *kattr, unsigned int flags)
4089 {
4090 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4091 
4092 	if (flags & AT_NO_AUTOMOUNT)
4093 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4094 	if (flags & AT_SYMLINK_NOFOLLOW)
4095 		lookup_flags &= ~LOOKUP_FOLLOW;
4096 	if (flags & AT_EMPTY_PATH)
4097 		lookup_flags |= LOOKUP_EMPTY;
4098 
4099 	*kattr = (struct mount_kattr) {
4100 		.lookup_flags	= lookup_flags,
4101 		.recurse	= !!(flags & AT_RECURSIVE),
4102 	};
4103 
4104 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4105 		return -EINVAL;
4106 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4107 		return -EINVAL;
4108 	kattr->propagation = attr->propagation;
4109 
4110 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4111 		return -EINVAL;
4112 
4113 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4114 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4115 
4116 	/*
4117 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4118 	 * users wanting to transition to a different atime setting cannot
4119 	 * simply specify the atime setting in @attr_set, but must also
4120 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4121 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4122 	 * @attr_clr and that @attr_set can't have any atime bits set if
4123 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4124 	 */
4125 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4126 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4127 			return -EINVAL;
4128 
4129 		/*
4130 		 * Clear all previous time settings as they are mutually
4131 		 * exclusive.
4132 		 */
4133 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4134 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4135 		case MOUNT_ATTR_RELATIME:
4136 			kattr->attr_set |= MNT_RELATIME;
4137 			break;
4138 		case MOUNT_ATTR_NOATIME:
4139 			kattr->attr_set |= MNT_NOATIME;
4140 			break;
4141 		case MOUNT_ATTR_STRICTATIME:
4142 			break;
4143 		default:
4144 			return -EINVAL;
4145 		}
4146 	} else {
4147 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4148 			return -EINVAL;
4149 	}
4150 
4151 	return build_mount_idmapped(attr, usize, kattr, flags);
4152 }
4153 
4154 static void finish_mount_kattr(struct mount_kattr *kattr)
4155 {
4156 	put_user_ns(kattr->mnt_userns);
4157 	kattr->mnt_userns = NULL;
4158 }
4159 
4160 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4161 		unsigned int, flags, struct mount_attr __user *, uattr,
4162 		size_t, usize)
4163 {
4164 	int err;
4165 	struct path target;
4166 	struct mount_attr attr;
4167 	struct mount_kattr kattr;
4168 
4169 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4170 
4171 	if (flags & ~(AT_EMPTY_PATH |
4172 		      AT_RECURSIVE |
4173 		      AT_SYMLINK_NOFOLLOW |
4174 		      AT_NO_AUTOMOUNT))
4175 		return -EINVAL;
4176 
4177 	if (unlikely(usize > PAGE_SIZE))
4178 		return -E2BIG;
4179 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4180 		return -EINVAL;
4181 
4182 	if (!may_mount())
4183 		return -EPERM;
4184 
4185 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4186 	if (err)
4187 		return err;
4188 
4189 	/* Don't bother walking through the mounts if this is a nop. */
4190 	if (attr.attr_set == 0 &&
4191 	    attr.attr_clr == 0 &&
4192 	    attr.propagation == 0)
4193 		return 0;
4194 
4195 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4196 	if (err)
4197 		return err;
4198 
4199 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4200 	if (err)
4201 		return err;
4202 
4203 	err = do_mount_setattr(&target, &kattr);
4204 	finish_mount_kattr(&kattr);
4205 	path_put(&target);
4206 	return err;
4207 }
4208 
4209 static void __init init_mount_tree(void)
4210 {
4211 	struct vfsmount *mnt;
4212 	struct mount *m;
4213 	struct mnt_namespace *ns;
4214 	struct path root;
4215 
4216 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4217 	if (IS_ERR(mnt))
4218 		panic("Can't create rootfs");
4219 
4220 	ns = alloc_mnt_ns(&init_user_ns, false);
4221 	if (IS_ERR(ns))
4222 		panic("Can't allocate initial namespace");
4223 	m = real_mount(mnt);
4224 	m->mnt_ns = ns;
4225 	ns->root = m;
4226 	ns->mounts = 1;
4227 	list_add(&m->mnt_list, &ns->list);
4228 	init_task.nsproxy->mnt_ns = ns;
4229 	get_mnt_ns(ns);
4230 
4231 	root.mnt = mnt;
4232 	root.dentry = mnt->mnt_root;
4233 	mnt->mnt_flags |= MNT_LOCKED;
4234 
4235 	set_fs_pwd(current->fs, &root);
4236 	set_fs_root(current->fs, &root);
4237 }
4238 
4239 void __init mnt_init(void)
4240 {
4241 	int err;
4242 
4243 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4244 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4245 
4246 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4247 				sizeof(struct hlist_head),
4248 				mhash_entries, 19,
4249 				HASH_ZERO,
4250 				&m_hash_shift, &m_hash_mask, 0, 0);
4251 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4252 				sizeof(struct hlist_head),
4253 				mphash_entries, 19,
4254 				HASH_ZERO,
4255 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4256 
4257 	if (!mount_hashtable || !mountpoint_hashtable)
4258 		panic("Failed to allocate mount hash table\n");
4259 
4260 	kernfs_init();
4261 
4262 	err = sysfs_init();
4263 	if (err)
4264 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4265 			__func__, err);
4266 	fs_kobj = kobject_create_and_add("fs", NULL);
4267 	if (!fs_kobj)
4268 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4269 	shmem_init();
4270 	init_rootfs();
4271 	init_mount_tree();
4272 }
4273 
4274 void put_mnt_ns(struct mnt_namespace *ns)
4275 {
4276 	if (!refcount_dec_and_test(&ns->ns.count))
4277 		return;
4278 	drop_collected_mounts(&ns->root->mnt);
4279 	free_mnt_ns(ns);
4280 }
4281 
4282 struct vfsmount *kern_mount(struct file_system_type *type)
4283 {
4284 	struct vfsmount *mnt;
4285 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4286 	if (!IS_ERR(mnt)) {
4287 		/*
4288 		 * it is a longterm mount, don't release mnt until
4289 		 * we unmount before file sys is unregistered
4290 		*/
4291 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4292 	}
4293 	return mnt;
4294 }
4295 EXPORT_SYMBOL_GPL(kern_mount);
4296 
4297 void kern_unmount(struct vfsmount *mnt)
4298 {
4299 	/* release long term mount so mount point can be released */
4300 	if (!IS_ERR_OR_NULL(mnt)) {
4301 		real_mount(mnt)->mnt_ns = NULL;
4302 		synchronize_rcu();	/* yecchhh... */
4303 		mntput(mnt);
4304 	}
4305 }
4306 EXPORT_SYMBOL(kern_unmount);
4307 
4308 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4309 {
4310 	unsigned int i;
4311 
4312 	for (i = 0; i < num; i++)
4313 		if (mnt[i])
4314 			real_mount(mnt[i])->mnt_ns = NULL;
4315 	synchronize_rcu_expedited();
4316 	for (i = 0; i < num; i++)
4317 		mntput(mnt[i]);
4318 }
4319 EXPORT_SYMBOL(kern_unmount_array);
4320 
4321 bool our_mnt(struct vfsmount *mnt)
4322 {
4323 	return check_mnt(real_mount(mnt));
4324 }
4325 
4326 bool current_chrooted(void)
4327 {
4328 	/* Does the current process have a non-standard root */
4329 	struct path ns_root;
4330 	struct path fs_root;
4331 	bool chrooted;
4332 
4333 	/* Find the namespace root */
4334 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4335 	ns_root.dentry = ns_root.mnt->mnt_root;
4336 	path_get(&ns_root);
4337 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4338 		;
4339 
4340 	get_fs_root(current->fs, &fs_root);
4341 
4342 	chrooted = !path_equal(&fs_root, &ns_root);
4343 
4344 	path_put(&fs_root);
4345 	path_put(&ns_root);
4346 
4347 	return chrooted;
4348 }
4349 
4350 static bool mnt_already_visible(struct mnt_namespace *ns,
4351 				const struct super_block *sb,
4352 				int *new_mnt_flags)
4353 {
4354 	int new_flags = *new_mnt_flags;
4355 	struct mount *mnt;
4356 	bool visible = false;
4357 
4358 	down_read(&namespace_sem);
4359 	lock_ns_list(ns);
4360 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4361 		struct mount *child;
4362 		int mnt_flags;
4363 
4364 		if (mnt_is_cursor(mnt))
4365 			continue;
4366 
4367 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4368 			continue;
4369 
4370 		/* This mount is not fully visible if it's root directory
4371 		 * is not the root directory of the filesystem.
4372 		 */
4373 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4374 			continue;
4375 
4376 		/* A local view of the mount flags */
4377 		mnt_flags = mnt->mnt.mnt_flags;
4378 
4379 		/* Don't miss readonly hidden in the superblock flags */
4380 		if (sb_rdonly(mnt->mnt.mnt_sb))
4381 			mnt_flags |= MNT_LOCK_READONLY;
4382 
4383 		/* Verify the mount flags are equal to or more permissive
4384 		 * than the proposed new mount.
4385 		 */
4386 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4387 		    !(new_flags & MNT_READONLY))
4388 			continue;
4389 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4390 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4391 			continue;
4392 
4393 		/* This mount is not fully visible if there are any
4394 		 * locked child mounts that cover anything except for
4395 		 * empty directories.
4396 		 */
4397 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4398 			struct inode *inode = child->mnt_mountpoint->d_inode;
4399 			/* Only worry about locked mounts */
4400 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4401 				continue;
4402 			/* Is the directory permanetly empty? */
4403 			if (!is_empty_dir_inode(inode))
4404 				goto next;
4405 		}
4406 		/* Preserve the locked attributes */
4407 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4408 					       MNT_LOCK_ATIME);
4409 		visible = true;
4410 		goto found;
4411 	next:	;
4412 	}
4413 found:
4414 	unlock_ns_list(ns);
4415 	up_read(&namespace_sem);
4416 	return visible;
4417 }
4418 
4419 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4420 {
4421 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4422 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4423 	unsigned long s_iflags;
4424 
4425 	if (ns->user_ns == &init_user_ns)
4426 		return false;
4427 
4428 	/* Can this filesystem be too revealing? */
4429 	s_iflags = sb->s_iflags;
4430 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4431 		return false;
4432 
4433 	if ((s_iflags & required_iflags) != required_iflags) {
4434 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4435 			  required_iflags);
4436 		return true;
4437 	}
4438 
4439 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4440 }
4441 
4442 bool mnt_may_suid(struct vfsmount *mnt)
4443 {
4444 	/*
4445 	 * Foreign mounts (accessed via fchdir or through /proc
4446 	 * symlinks) are always treated as if they are nosuid.  This
4447 	 * prevents namespaces from trusting potentially unsafe
4448 	 * suid/sgid bits, file caps, or security labels that originate
4449 	 * in other namespaces.
4450 	 */
4451 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4452 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4453 }
4454 
4455 static struct ns_common *mntns_get(struct task_struct *task)
4456 {
4457 	struct ns_common *ns = NULL;
4458 	struct nsproxy *nsproxy;
4459 
4460 	task_lock(task);
4461 	nsproxy = task->nsproxy;
4462 	if (nsproxy) {
4463 		ns = &nsproxy->mnt_ns->ns;
4464 		get_mnt_ns(to_mnt_ns(ns));
4465 	}
4466 	task_unlock(task);
4467 
4468 	return ns;
4469 }
4470 
4471 static void mntns_put(struct ns_common *ns)
4472 {
4473 	put_mnt_ns(to_mnt_ns(ns));
4474 }
4475 
4476 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4477 {
4478 	struct nsproxy *nsproxy = nsset->nsproxy;
4479 	struct fs_struct *fs = nsset->fs;
4480 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4481 	struct user_namespace *user_ns = nsset->cred->user_ns;
4482 	struct path root;
4483 	int err;
4484 
4485 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4486 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4487 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4488 		return -EPERM;
4489 
4490 	if (is_anon_ns(mnt_ns))
4491 		return -EINVAL;
4492 
4493 	if (fs->users != 1)
4494 		return -EINVAL;
4495 
4496 	get_mnt_ns(mnt_ns);
4497 	old_mnt_ns = nsproxy->mnt_ns;
4498 	nsproxy->mnt_ns = mnt_ns;
4499 
4500 	/* Find the root */
4501 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4502 				"/", LOOKUP_DOWN, &root);
4503 	if (err) {
4504 		/* revert to old namespace */
4505 		nsproxy->mnt_ns = old_mnt_ns;
4506 		put_mnt_ns(mnt_ns);
4507 		return err;
4508 	}
4509 
4510 	put_mnt_ns(old_mnt_ns);
4511 
4512 	/* Update the pwd and root */
4513 	set_fs_pwd(fs, &root);
4514 	set_fs_root(fs, &root);
4515 
4516 	path_put(&root);
4517 	return 0;
4518 }
4519 
4520 static struct user_namespace *mntns_owner(struct ns_common *ns)
4521 {
4522 	return to_mnt_ns(ns)->user_ns;
4523 }
4524 
4525 const struct proc_ns_operations mntns_operations = {
4526 	.name		= "mnt",
4527 	.type		= CLONE_NEWNS,
4528 	.get		= mntns_get,
4529 	.put		= mntns_put,
4530 	.install	= mntns_install,
4531 	.owner		= mntns_owner,
4532 };
4533