xref: /linux/fs/namespace.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h>		/* acct_auto_close_mnt */
19 #include <linux/ramfs.h>	/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25 
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28 
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35 
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39 
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43 
44 /*
45  * vfsmount lock may be taken for read to prevent changes to the
46  * vfsmount hash, ie. during mountpoint lookups or walking back
47  * up the tree.
48  *
49  * It should be taken for write in all cases where the vfsmount
50  * tree or hash is modified or when a vfsmount structure is modified.
51  */
52 DEFINE_BRLOCK(vfsmount_lock);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 	tmp = tmp + (tmp >> HASH_SHIFT);
59 	return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /*
65  * allocation is serialized by namespace_sem, but we need the spinlock to
66  * serialize with freeing.
67  */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&mnt_id_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&mnt_id_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct mount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&mnt_id_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&mnt_id_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 /*
129  * vfsmount lock must be held for read
130  */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 	preempt_disable();
137 	mnt->mnt_count += n;
138 	preempt_enable();
139 #endif
140 }
141 
142 /*
143  * vfsmount lock must be held for write
144  */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 	unsigned int count = 0;
149 	int cpu;
150 
151 	for_each_possible_cpu(cpu) {
152 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 	}
154 
155 	return count;
156 #else
157 	return mnt->mnt_count;
158 #endif
159 }
160 
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 	if (mnt) {
165 		int err;
166 
167 		err = mnt_alloc_id(mnt);
168 		if (err)
169 			goto out_free_cache;
170 
171 		if (name) {
172 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 			if (!mnt->mnt_devname)
174 				goto out_free_id;
175 		}
176 
177 #ifdef CONFIG_SMP
178 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 		if (!mnt->mnt_pcp)
180 			goto out_free_devname;
181 
182 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 		mnt->mnt_count = 1;
185 		mnt->mnt_writers = 0;
186 #endif
187 
188 		INIT_LIST_HEAD(&mnt->mnt_hash);
189 		INIT_LIST_HEAD(&mnt->mnt_child);
190 		INIT_LIST_HEAD(&mnt->mnt_mounts);
191 		INIT_LIST_HEAD(&mnt->mnt_list);
192 		INIT_LIST_HEAD(&mnt->mnt_expire);
193 		INIT_LIST_HEAD(&mnt->mnt_share);
194 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 		INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 	}
200 	return mnt;
201 
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 	kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 	mnt_free_id(mnt);
208 out_free_cache:
209 	kmem_cache_free(mnt_cache, mnt);
210 	return NULL;
211 }
212 
213 /*
214  * Most r/o checks on a fs are for operations that take
215  * discrete amounts of time, like a write() or unlink().
216  * We must keep track of when those operations start
217  * (for permission checks) and when they end, so that
218  * we can determine when writes are able to occur to
219  * a filesystem.
220  */
221 /*
222  * __mnt_is_readonly: check whether a mount is read-only
223  * @mnt: the mount to check for its write status
224  *
225  * This shouldn't be used directly ouside of the VFS.
226  * It does not guarantee that the filesystem will stay
227  * r/w, just that it is right *now*.  This can not and
228  * should not be used in place of IS_RDONLY(inode).
229  * mnt_want/drop_write() will _keep_ the filesystem
230  * r/w.
231  */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 	if (mnt->mnt_flags & MNT_READONLY)
235 		return 1;
236 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 		return 1;
238 	return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241 
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 	mnt->mnt_writers++;
248 #endif
249 }
250 
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 	mnt->mnt_writers--;
257 #endif
258 }
259 
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 	unsigned int count = 0;
264 	int cpu;
265 
266 	for_each_possible_cpu(cpu) {
267 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 	}
269 
270 	return count;
271 #else
272 	return mnt->mnt_writers;
273 #endif
274 }
275 
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 	if (mnt->mnt_sb->s_readonly_remount)
279 		return 1;
280 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 	smp_rmb();
282 	return __mnt_is_readonly(mnt);
283 }
284 
285 /*
286  * Most r/o checks on a fs are for operations that take
287  * discrete amounts of time, like a write() or unlink().
288  * We must keep track of when those operations start
289  * (for permission checks) and when they end, so that
290  * we can determine when writes are able to occur to
291  * a filesystem.
292  */
293 /**
294  * mnt_want_write - get write access to a mount
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is
298  * about to be performed to it, and makes sure that
299  * writes are allowed before returning success.  When
300  * the write operation is finished, mnt_drop_write()
301  * must be called.  This is effectively a refcount.
302  */
303 int mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 	return ret;
330 }
331 EXPORT_SYMBOL_GPL(mnt_want_write);
332 
333 /**
334  * mnt_clone_write - get write access to a mount
335  * @mnt: the mount on which to take a write
336  *
337  * This is effectively like mnt_want_write, except
338  * it must only be used to take an extra write reference
339  * on a mountpoint that we already know has a write reference
340  * on it. This allows some optimisation.
341  *
342  * After finished, mnt_drop_write must be called as usual to
343  * drop the reference.
344  */
345 int mnt_clone_write(struct vfsmount *mnt)
346 {
347 	/* superblock may be r/o */
348 	if (__mnt_is_readonly(mnt))
349 		return -EROFS;
350 	preempt_disable();
351 	mnt_inc_writers(real_mount(mnt));
352 	preempt_enable();
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
356 
357 /**
358  * mnt_want_write_file - get write access to a file's mount
359  * @file: the file who's mount on which to take a write
360  *
361  * This is like mnt_want_write, but it takes a file and can
362  * do some optimisations if the file is open for write already
363  */
364 int mnt_want_write_file(struct file *file)
365 {
366 	struct inode *inode = file->f_dentry->d_inode;
367 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 		return mnt_want_write(file->f_path.mnt);
369 	else
370 		return mnt_clone_write(file->f_path.mnt);
371 }
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
373 
374 /**
375  * mnt_drop_write - give up write access to a mount
376  * @mnt: the mount on which to give up write access
377  *
378  * Tells the low-level filesystem that we are done
379  * performing writes to it.  Must be matched with
380  * mnt_want_write() call above.
381  */
382 void mnt_drop_write(struct vfsmount *mnt)
383 {
384 	preempt_disable();
385 	mnt_dec_writers(real_mount(mnt));
386 	preempt_enable();
387 }
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
389 
390 void mnt_drop_write_file(struct file *file)
391 {
392 	mnt_drop_write(file->f_path.mnt);
393 }
394 EXPORT_SYMBOL(mnt_drop_write_file);
395 
396 static int mnt_make_readonly(struct mount *mnt)
397 {
398 	int ret = 0;
399 
400 	br_write_lock(&vfsmount_lock);
401 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
402 	/*
403 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 	 * should be visible before we do.
405 	 */
406 	smp_mb();
407 
408 	/*
409 	 * With writers on hold, if this value is zero, then there are
410 	 * definitely no active writers (although held writers may subsequently
411 	 * increment the count, they'll have to wait, and decrement it after
412 	 * seeing MNT_READONLY).
413 	 *
414 	 * It is OK to have counter incremented on one CPU and decremented on
415 	 * another: the sum will add up correctly. The danger would be when we
416 	 * sum up each counter, if we read a counter before it is incremented,
417 	 * but then read another CPU's count which it has been subsequently
418 	 * decremented from -- we would see more decrements than we should.
419 	 * MNT_WRITE_HOLD protects against this scenario, because
420 	 * mnt_want_write first increments count, then smp_mb, then spins on
421 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 	 * we're counting up here.
423 	 */
424 	if (mnt_get_writers(mnt) > 0)
425 		ret = -EBUSY;
426 	else
427 		mnt->mnt.mnt_flags |= MNT_READONLY;
428 	/*
429 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 	 * that become unheld will see MNT_READONLY.
431 	 */
432 	smp_wmb();
433 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 	br_write_unlock(&vfsmount_lock);
435 	return ret;
436 }
437 
438 static void __mnt_unmake_readonly(struct mount *mnt)
439 {
440 	br_write_lock(&vfsmount_lock);
441 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 	br_write_unlock(&vfsmount_lock);
443 }
444 
445 int sb_prepare_remount_readonly(struct super_block *sb)
446 {
447 	struct mount *mnt;
448 	int err = 0;
449 
450 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
451 	if (atomic_long_read(&sb->s_remove_count))
452 		return -EBUSY;
453 
454 	br_write_lock(&vfsmount_lock);
455 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 			smp_mb();
459 			if (mnt_get_writers(mnt) > 0) {
460 				err = -EBUSY;
461 				break;
462 			}
463 		}
464 	}
465 	if (!err && atomic_long_read(&sb->s_remove_count))
466 		err = -EBUSY;
467 
468 	if (!err) {
469 		sb->s_readonly_remount = 1;
470 		smp_wmb();
471 	}
472 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 	}
476 	br_write_unlock(&vfsmount_lock);
477 
478 	return err;
479 }
480 
481 static void free_vfsmnt(struct mount *mnt)
482 {
483 	kfree(mnt->mnt_devname);
484 	mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 	free_percpu(mnt->mnt_pcp);
487 #endif
488 	kmem_cache_free(mnt_cache, mnt);
489 }
490 
491 /*
492  * find the first or last mount at @dentry on vfsmount @mnt depending on
493  * @dir. If @dir is set return the first mount else return the last mount.
494  * vfsmount_lock must be held for read or write.
495  */
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 			      int dir)
498 {
499 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 	struct list_head *tmp = head;
501 	struct mount *p, *found = NULL;
502 
503 	for (;;) {
504 		tmp = dir ? tmp->next : tmp->prev;
505 		p = NULL;
506 		if (tmp == head)
507 			break;
508 		p = list_entry(tmp, struct mount, mnt_hash);
509 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 			found = p;
511 			break;
512 		}
513 	}
514 	return found;
515 }
516 
517 /*
518  * lookup_mnt - Return the first child mount mounted at path
519  *
520  * "First" means first mounted chronologically.  If you create the
521  * following mounts:
522  *
523  * mount /dev/sda1 /mnt
524  * mount /dev/sda2 /mnt
525  * mount /dev/sda3 /mnt
526  *
527  * Then lookup_mnt() on the base /mnt dentry in the root mount will
528  * return successively the root dentry and vfsmount of /dev/sda1, then
529  * /dev/sda2, then /dev/sda3, then NULL.
530  *
531  * lookup_mnt takes a reference to the found vfsmount.
532  */
533 struct vfsmount *lookup_mnt(struct path *path)
534 {
535 	struct mount *child_mnt;
536 
537 	br_read_lock(&vfsmount_lock);
538 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
539 	if (child_mnt) {
540 		mnt_add_count(child_mnt, 1);
541 		br_read_unlock(&vfsmount_lock);
542 		return &child_mnt->mnt;
543 	} else {
544 		br_read_unlock(&vfsmount_lock);
545 		return NULL;
546 	}
547 }
548 
549 static inline int check_mnt(struct mount *mnt)
550 {
551 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
552 }
553 
554 /*
555  * vfsmount lock must be held for write
556  */
557 static void touch_mnt_namespace(struct mnt_namespace *ns)
558 {
559 	if (ns) {
560 		ns->event = ++event;
561 		wake_up_interruptible(&ns->poll);
562 	}
563 }
564 
565 /*
566  * vfsmount lock must be held for write
567  */
568 static void __touch_mnt_namespace(struct mnt_namespace *ns)
569 {
570 	if (ns && ns->event != event) {
571 		ns->event = event;
572 		wake_up_interruptible(&ns->poll);
573 	}
574 }
575 
576 /*
577  * Clear dentry's mounted state if it has no remaining mounts.
578  * vfsmount_lock must be held for write.
579  */
580 static void dentry_reset_mounted(struct dentry *dentry)
581 {
582 	unsigned u;
583 
584 	for (u = 0; u < HASH_SIZE; u++) {
585 		struct mount *p;
586 
587 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
588 			if (p->mnt_mountpoint == dentry)
589 				return;
590 		}
591 	}
592 	spin_lock(&dentry->d_lock);
593 	dentry->d_flags &= ~DCACHE_MOUNTED;
594 	spin_unlock(&dentry->d_lock);
595 }
596 
597 /*
598  * vfsmount lock must be held for write
599  */
600 static void detach_mnt(struct mount *mnt, struct path *old_path)
601 {
602 	old_path->dentry = mnt->mnt_mountpoint;
603 	old_path->mnt = &mnt->mnt_parent->mnt;
604 	mnt->mnt_parent = mnt;
605 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
606 	list_del_init(&mnt->mnt_child);
607 	list_del_init(&mnt->mnt_hash);
608 	dentry_reset_mounted(old_path->dentry);
609 }
610 
611 /*
612  * vfsmount lock must be held for write
613  */
614 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
615 			struct mount *child_mnt)
616 {
617 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
618 	child_mnt->mnt_mountpoint = dget(dentry);
619 	child_mnt->mnt_parent = mnt;
620 	spin_lock(&dentry->d_lock);
621 	dentry->d_flags |= DCACHE_MOUNTED;
622 	spin_unlock(&dentry->d_lock);
623 }
624 
625 /*
626  * vfsmount lock must be held for write
627  */
628 static void attach_mnt(struct mount *mnt, struct path *path)
629 {
630 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
631 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
632 			hash(path->mnt, path->dentry));
633 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
634 }
635 
636 /*
637  * vfsmount lock must be held for write
638  */
639 static void commit_tree(struct mount *mnt)
640 {
641 	struct mount *parent = mnt->mnt_parent;
642 	struct mount *m;
643 	LIST_HEAD(head);
644 	struct mnt_namespace *n = parent->mnt_ns;
645 
646 	BUG_ON(parent == mnt);
647 
648 	list_add_tail(&head, &mnt->mnt_list);
649 	list_for_each_entry(m, &head, mnt_list)
650 		m->mnt_ns = n;
651 
652 	list_splice(&head, n->list.prev);
653 
654 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
655 				hash(&parent->mnt, mnt->mnt_mountpoint));
656 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
657 	touch_mnt_namespace(n);
658 }
659 
660 static struct mount *next_mnt(struct mount *p, struct mount *root)
661 {
662 	struct list_head *next = p->mnt_mounts.next;
663 	if (next == &p->mnt_mounts) {
664 		while (1) {
665 			if (p == root)
666 				return NULL;
667 			next = p->mnt_child.next;
668 			if (next != &p->mnt_parent->mnt_mounts)
669 				break;
670 			p = p->mnt_parent;
671 		}
672 	}
673 	return list_entry(next, struct mount, mnt_child);
674 }
675 
676 static struct mount *skip_mnt_tree(struct mount *p)
677 {
678 	struct list_head *prev = p->mnt_mounts.prev;
679 	while (prev != &p->mnt_mounts) {
680 		p = list_entry(prev, struct mount, mnt_child);
681 		prev = p->mnt_mounts.prev;
682 	}
683 	return p;
684 }
685 
686 struct vfsmount *
687 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
688 {
689 	struct mount *mnt;
690 	struct dentry *root;
691 
692 	if (!type)
693 		return ERR_PTR(-ENODEV);
694 
695 	mnt = alloc_vfsmnt(name);
696 	if (!mnt)
697 		return ERR_PTR(-ENOMEM);
698 
699 	if (flags & MS_KERNMOUNT)
700 		mnt->mnt.mnt_flags = MNT_INTERNAL;
701 
702 	root = mount_fs(type, flags, name, data);
703 	if (IS_ERR(root)) {
704 		free_vfsmnt(mnt);
705 		return ERR_CAST(root);
706 	}
707 
708 	mnt->mnt.mnt_root = root;
709 	mnt->mnt.mnt_sb = root->d_sb;
710 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
711 	mnt->mnt_parent = mnt;
712 	br_write_lock(&vfsmount_lock);
713 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
714 	br_write_unlock(&vfsmount_lock);
715 	return &mnt->mnt;
716 }
717 EXPORT_SYMBOL_GPL(vfs_kern_mount);
718 
719 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
720 					int flag)
721 {
722 	struct super_block *sb = old->mnt.mnt_sb;
723 	struct mount *mnt;
724 	int err;
725 
726 	mnt = alloc_vfsmnt(old->mnt_devname);
727 	if (!mnt)
728 		return ERR_PTR(-ENOMEM);
729 
730 	if (flag & (CL_SLAVE | CL_PRIVATE))
731 		mnt->mnt_group_id = 0; /* not a peer of original */
732 	else
733 		mnt->mnt_group_id = old->mnt_group_id;
734 
735 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
736 		err = mnt_alloc_group_id(mnt);
737 		if (err)
738 			goto out_free;
739 	}
740 
741 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
742 	atomic_inc(&sb->s_active);
743 	mnt->mnt.mnt_sb = sb;
744 	mnt->mnt.mnt_root = dget(root);
745 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
746 	mnt->mnt_parent = mnt;
747 	br_write_lock(&vfsmount_lock);
748 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
749 	br_write_unlock(&vfsmount_lock);
750 
751 	if (flag & CL_SLAVE) {
752 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
753 		mnt->mnt_master = old;
754 		CLEAR_MNT_SHARED(mnt);
755 	} else if (!(flag & CL_PRIVATE)) {
756 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
757 			list_add(&mnt->mnt_share, &old->mnt_share);
758 		if (IS_MNT_SLAVE(old))
759 			list_add(&mnt->mnt_slave, &old->mnt_slave);
760 		mnt->mnt_master = old->mnt_master;
761 	}
762 	if (flag & CL_MAKE_SHARED)
763 		set_mnt_shared(mnt);
764 
765 	/* stick the duplicate mount on the same expiry list
766 	 * as the original if that was on one */
767 	if (flag & CL_EXPIRE) {
768 		if (!list_empty(&old->mnt_expire))
769 			list_add(&mnt->mnt_expire, &old->mnt_expire);
770 	}
771 
772 	return mnt;
773 
774  out_free:
775 	free_vfsmnt(mnt);
776 	return ERR_PTR(err);
777 }
778 
779 static inline void mntfree(struct mount *mnt)
780 {
781 	struct vfsmount *m = &mnt->mnt;
782 	struct super_block *sb = m->mnt_sb;
783 
784 	/*
785 	 * This probably indicates that somebody messed
786 	 * up a mnt_want/drop_write() pair.  If this
787 	 * happens, the filesystem was probably unable
788 	 * to make r/w->r/o transitions.
789 	 */
790 	/*
791 	 * The locking used to deal with mnt_count decrement provides barriers,
792 	 * so mnt_get_writers() below is safe.
793 	 */
794 	WARN_ON(mnt_get_writers(mnt));
795 	fsnotify_vfsmount_delete(m);
796 	dput(m->mnt_root);
797 	free_vfsmnt(mnt);
798 	deactivate_super(sb);
799 }
800 
801 static void mntput_no_expire(struct mount *mnt)
802 {
803 put_again:
804 #ifdef CONFIG_SMP
805 	br_read_lock(&vfsmount_lock);
806 	if (likely(mnt->mnt_ns)) {
807 		/* shouldn't be the last one */
808 		mnt_add_count(mnt, -1);
809 		br_read_unlock(&vfsmount_lock);
810 		return;
811 	}
812 	br_read_unlock(&vfsmount_lock);
813 
814 	br_write_lock(&vfsmount_lock);
815 	mnt_add_count(mnt, -1);
816 	if (mnt_get_count(mnt)) {
817 		br_write_unlock(&vfsmount_lock);
818 		return;
819 	}
820 #else
821 	mnt_add_count(mnt, -1);
822 	if (likely(mnt_get_count(mnt)))
823 		return;
824 	br_write_lock(&vfsmount_lock);
825 #endif
826 	if (unlikely(mnt->mnt_pinned)) {
827 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 		mnt->mnt_pinned = 0;
829 		br_write_unlock(&vfsmount_lock);
830 		acct_auto_close_mnt(&mnt->mnt);
831 		goto put_again;
832 	}
833 
834 	list_del(&mnt->mnt_instance);
835 	br_write_unlock(&vfsmount_lock);
836 	mntfree(mnt);
837 }
838 
839 void mntput(struct vfsmount *mnt)
840 {
841 	if (mnt) {
842 		struct mount *m = real_mount(mnt);
843 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 		if (unlikely(m->mnt_expiry_mark))
845 			m->mnt_expiry_mark = 0;
846 		mntput_no_expire(m);
847 	}
848 }
849 EXPORT_SYMBOL(mntput);
850 
851 struct vfsmount *mntget(struct vfsmount *mnt)
852 {
853 	if (mnt)
854 		mnt_add_count(real_mount(mnt), 1);
855 	return mnt;
856 }
857 EXPORT_SYMBOL(mntget);
858 
859 void mnt_pin(struct vfsmount *mnt)
860 {
861 	br_write_lock(&vfsmount_lock);
862 	real_mount(mnt)->mnt_pinned++;
863 	br_write_unlock(&vfsmount_lock);
864 }
865 EXPORT_SYMBOL(mnt_pin);
866 
867 void mnt_unpin(struct vfsmount *m)
868 {
869 	struct mount *mnt = real_mount(m);
870 	br_write_lock(&vfsmount_lock);
871 	if (mnt->mnt_pinned) {
872 		mnt_add_count(mnt, 1);
873 		mnt->mnt_pinned--;
874 	}
875 	br_write_unlock(&vfsmount_lock);
876 }
877 EXPORT_SYMBOL(mnt_unpin);
878 
879 static inline void mangle(struct seq_file *m, const char *s)
880 {
881 	seq_escape(m, s, " \t\n\\");
882 }
883 
884 /*
885  * Simple .show_options callback for filesystems which don't want to
886  * implement more complex mount option showing.
887  *
888  * See also save_mount_options().
889  */
890 int generic_show_options(struct seq_file *m, struct dentry *root)
891 {
892 	const char *options;
893 
894 	rcu_read_lock();
895 	options = rcu_dereference(root->d_sb->s_options);
896 
897 	if (options != NULL && options[0]) {
898 		seq_putc(m, ',');
899 		mangle(m, options);
900 	}
901 	rcu_read_unlock();
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL(generic_show_options);
906 
907 /*
908  * If filesystem uses generic_show_options(), this function should be
909  * called from the fill_super() callback.
910  *
911  * The .remount_fs callback usually needs to be handled in a special
912  * way, to make sure, that previous options are not overwritten if the
913  * remount fails.
914  *
915  * Also note, that if the filesystem's .remount_fs function doesn't
916  * reset all options to their default value, but changes only newly
917  * given options, then the displayed options will not reflect reality
918  * any more.
919  */
920 void save_mount_options(struct super_block *sb, char *options)
921 {
922 	BUG_ON(sb->s_options);
923 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
924 }
925 EXPORT_SYMBOL(save_mount_options);
926 
927 void replace_mount_options(struct super_block *sb, char *options)
928 {
929 	char *old = sb->s_options;
930 	rcu_assign_pointer(sb->s_options, options);
931 	if (old) {
932 		synchronize_rcu();
933 		kfree(old);
934 	}
935 }
936 EXPORT_SYMBOL(replace_mount_options);
937 
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file *m, loff_t *pos)
941 {
942 	struct proc_mounts *p = proc_mounts(m);
943 
944 	down_read(&namespace_sem);
945 	return seq_list_start(&p->ns->list, *pos);
946 }
947 
948 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949 {
950 	struct proc_mounts *p = proc_mounts(m);
951 
952 	return seq_list_next(v, &p->ns->list, pos);
953 }
954 
955 static void m_stop(struct seq_file *m, void *v)
956 {
957 	up_read(&namespace_sem);
958 }
959 
960 static int m_show(struct seq_file *m, void *v)
961 {
962 	struct proc_mounts *p = proc_mounts(m);
963 	struct mount *r = list_entry(v, struct mount, mnt_list);
964 	return p->show(m, &r->mnt);
965 }
966 
967 const struct seq_operations mounts_op = {
968 	.start	= m_start,
969 	.next	= m_next,
970 	.stop	= m_stop,
971 	.show	= m_show,
972 };
973 #endif  /* CONFIG_PROC_FS */
974 
975 /**
976  * may_umount_tree - check if a mount tree is busy
977  * @mnt: root of mount tree
978  *
979  * This is called to check if a tree of mounts has any
980  * open files, pwds, chroots or sub mounts that are
981  * busy.
982  */
983 int may_umount_tree(struct vfsmount *m)
984 {
985 	struct mount *mnt = real_mount(m);
986 	int actual_refs = 0;
987 	int minimum_refs = 0;
988 	struct mount *p;
989 	BUG_ON(!m);
990 
991 	/* write lock needed for mnt_get_count */
992 	br_write_lock(&vfsmount_lock);
993 	for (p = mnt; p; p = next_mnt(p, mnt)) {
994 		actual_refs += mnt_get_count(p);
995 		minimum_refs += 2;
996 	}
997 	br_write_unlock(&vfsmount_lock);
998 
999 	if (actual_refs > minimum_refs)
1000 		return 0;
1001 
1002 	return 1;
1003 }
1004 
1005 EXPORT_SYMBOL(may_umount_tree);
1006 
1007 /**
1008  * may_umount - check if a mount point is busy
1009  * @mnt: root of mount
1010  *
1011  * This is called to check if a mount point has any
1012  * open files, pwds, chroots or sub mounts. If the
1013  * mount has sub mounts this will return busy
1014  * regardless of whether the sub mounts are busy.
1015  *
1016  * Doesn't take quota and stuff into account. IOW, in some cases it will
1017  * give false negatives. The main reason why it's here is that we need
1018  * a non-destructive way to look for easily umountable filesystems.
1019  */
1020 int may_umount(struct vfsmount *mnt)
1021 {
1022 	int ret = 1;
1023 	down_read(&namespace_sem);
1024 	br_write_lock(&vfsmount_lock);
1025 	if (propagate_mount_busy(real_mount(mnt), 2))
1026 		ret = 0;
1027 	br_write_unlock(&vfsmount_lock);
1028 	up_read(&namespace_sem);
1029 	return ret;
1030 }
1031 
1032 EXPORT_SYMBOL(may_umount);
1033 
1034 void release_mounts(struct list_head *head)
1035 {
1036 	struct mount *mnt;
1037 	while (!list_empty(head)) {
1038 		mnt = list_first_entry(head, struct mount, mnt_hash);
1039 		list_del_init(&mnt->mnt_hash);
1040 		if (mnt_has_parent(mnt)) {
1041 			struct dentry *dentry;
1042 			struct mount *m;
1043 
1044 			br_write_lock(&vfsmount_lock);
1045 			dentry = mnt->mnt_mountpoint;
1046 			m = mnt->mnt_parent;
1047 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 			mnt->mnt_parent = mnt;
1049 			m->mnt_ghosts--;
1050 			br_write_unlock(&vfsmount_lock);
1051 			dput(dentry);
1052 			mntput(&m->mnt);
1053 		}
1054 		mntput(&mnt->mnt);
1055 	}
1056 }
1057 
1058 /*
1059  * vfsmount lock must be held for write
1060  * namespace_sem must be held for write
1061  */
1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1063 {
1064 	LIST_HEAD(tmp_list);
1065 	struct mount *p;
1066 
1067 	for (p = mnt; p; p = next_mnt(p, mnt))
1068 		list_move(&p->mnt_hash, &tmp_list);
1069 
1070 	if (propagate)
1071 		propagate_umount(&tmp_list);
1072 
1073 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1074 		list_del_init(&p->mnt_expire);
1075 		list_del_init(&p->mnt_list);
1076 		__touch_mnt_namespace(p->mnt_ns);
1077 		p->mnt_ns = NULL;
1078 		list_del_init(&p->mnt_child);
1079 		if (mnt_has_parent(p)) {
1080 			p->mnt_parent->mnt_ghosts++;
1081 			dentry_reset_mounted(p->mnt_mountpoint);
1082 		}
1083 		change_mnt_propagation(p, MS_PRIVATE);
1084 	}
1085 	list_splice(&tmp_list, kill);
1086 }
1087 
1088 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1089 
1090 static int do_umount(struct mount *mnt, int flags)
1091 {
1092 	struct super_block *sb = mnt->mnt.mnt_sb;
1093 	int retval;
1094 	LIST_HEAD(umount_list);
1095 
1096 	retval = security_sb_umount(&mnt->mnt, flags);
1097 	if (retval)
1098 		return retval;
1099 
1100 	/*
1101 	 * Allow userspace to request a mountpoint be expired rather than
1102 	 * unmounting unconditionally. Unmount only happens if:
1103 	 *  (1) the mark is already set (the mark is cleared by mntput())
1104 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1105 	 */
1106 	if (flags & MNT_EXPIRE) {
1107 		if (&mnt->mnt == current->fs->root.mnt ||
1108 		    flags & (MNT_FORCE | MNT_DETACH))
1109 			return -EINVAL;
1110 
1111 		/*
1112 		 * probably don't strictly need the lock here if we examined
1113 		 * all race cases, but it's a slowpath.
1114 		 */
1115 		br_write_lock(&vfsmount_lock);
1116 		if (mnt_get_count(mnt) != 2) {
1117 			br_write_unlock(&vfsmount_lock);
1118 			return -EBUSY;
1119 		}
1120 		br_write_unlock(&vfsmount_lock);
1121 
1122 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1123 			return -EAGAIN;
1124 	}
1125 
1126 	/*
1127 	 * If we may have to abort operations to get out of this
1128 	 * mount, and they will themselves hold resources we must
1129 	 * allow the fs to do things. In the Unix tradition of
1130 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 	 * might fail to complete on the first run through as other tasks
1132 	 * must return, and the like. Thats for the mount program to worry
1133 	 * about for the moment.
1134 	 */
1135 
1136 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1137 		sb->s_op->umount_begin(sb);
1138 	}
1139 
1140 	/*
1141 	 * No sense to grab the lock for this test, but test itself looks
1142 	 * somewhat bogus. Suggestions for better replacement?
1143 	 * Ho-hum... In principle, we might treat that as umount + switch
1144 	 * to rootfs. GC would eventually take care of the old vfsmount.
1145 	 * Actually it makes sense, especially if rootfs would contain a
1146 	 * /reboot - static binary that would close all descriptors and
1147 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1148 	 */
1149 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1150 		/*
1151 		 * Special case for "unmounting" root ...
1152 		 * we just try to remount it readonly.
1153 		 */
1154 		down_write(&sb->s_umount);
1155 		if (!(sb->s_flags & MS_RDONLY))
1156 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1157 		up_write(&sb->s_umount);
1158 		return retval;
1159 	}
1160 
1161 	down_write(&namespace_sem);
1162 	br_write_lock(&vfsmount_lock);
1163 	event++;
1164 
1165 	if (!(flags & MNT_DETACH))
1166 		shrink_submounts(mnt, &umount_list);
1167 
1168 	retval = -EBUSY;
1169 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1170 		if (!list_empty(&mnt->mnt_list))
1171 			umount_tree(mnt, 1, &umount_list);
1172 		retval = 0;
1173 	}
1174 	br_write_unlock(&vfsmount_lock);
1175 	up_write(&namespace_sem);
1176 	release_mounts(&umount_list);
1177 	return retval;
1178 }
1179 
1180 /*
1181  * Now umount can handle mount points as well as block devices.
1182  * This is important for filesystems which use unnamed block devices.
1183  *
1184  * We now support a flag for forced unmount like the other 'big iron'
1185  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1186  */
1187 
1188 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1189 {
1190 	struct path path;
1191 	struct mount *mnt;
1192 	int retval;
1193 	int lookup_flags = 0;
1194 
1195 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1196 		return -EINVAL;
1197 
1198 	if (!(flags & UMOUNT_NOFOLLOW))
1199 		lookup_flags |= LOOKUP_FOLLOW;
1200 
1201 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1202 	if (retval)
1203 		goto out;
1204 	mnt = real_mount(path.mnt);
1205 	retval = -EINVAL;
1206 	if (path.dentry != path.mnt->mnt_root)
1207 		goto dput_and_out;
1208 	if (!check_mnt(mnt))
1209 		goto dput_and_out;
1210 
1211 	retval = -EPERM;
1212 	if (!capable(CAP_SYS_ADMIN))
1213 		goto dput_and_out;
1214 
1215 	retval = do_umount(mnt, flags);
1216 dput_and_out:
1217 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1218 	dput(path.dentry);
1219 	mntput_no_expire(mnt);
1220 out:
1221 	return retval;
1222 }
1223 
1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1225 
1226 /*
1227  *	The 2.0 compatible umount. No flags.
1228  */
1229 SYSCALL_DEFINE1(oldumount, char __user *, name)
1230 {
1231 	return sys_umount(name, 0);
1232 }
1233 
1234 #endif
1235 
1236 static int mount_is_safe(struct path *path)
1237 {
1238 	if (capable(CAP_SYS_ADMIN))
1239 		return 0;
1240 	return -EPERM;
1241 #ifdef notyet
1242 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1243 		return -EPERM;
1244 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1245 		if (current_uid() != path->dentry->d_inode->i_uid)
1246 			return -EPERM;
1247 	}
1248 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1249 		return -EPERM;
1250 	return 0;
1251 #endif
1252 }
1253 
1254 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1255 					int flag)
1256 {
1257 	struct mount *res, *p, *q, *r;
1258 	struct path path;
1259 
1260 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	res = q = clone_mnt(mnt, dentry, flag);
1264 	if (IS_ERR(q))
1265 		return q;
1266 
1267 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1268 
1269 	p = mnt;
1270 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1271 		struct mount *s;
1272 		if (!is_subdir(r->mnt_mountpoint, dentry))
1273 			continue;
1274 
1275 		for (s = r; s; s = next_mnt(s, r)) {
1276 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1277 				s = skip_mnt_tree(s);
1278 				continue;
1279 			}
1280 			while (p != s->mnt_parent) {
1281 				p = p->mnt_parent;
1282 				q = q->mnt_parent;
1283 			}
1284 			p = s;
1285 			path.mnt = &q->mnt;
1286 			path.dentry = p->mnt_mountpoint;
1287 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1288 			if (IS_ERR(q))
1289 				goto out;
1290 			br_write_lock(&vfsmount_lock);
1291 			list_add_tail(&q->mnt_list, &res->mnt_list);
1292 			attach_mnt(q, &path);
1293 			br_write_unlock(&vfsmount_lock);
1294 		}
1295 	}
1296 	return res;
1297 out:
1298 	if (res) {
1299 		LIST_HEAD(umount_list);
1300 		br_write_lock(&vfsmount_lock);
1301 		umount_tree(res, 0, &umount_list);
1302 		br_write_unlock(&vfsmount_lock);
1303 		release_mounts(&umount_list);
1304 	}
1305 	return q;
1306 }
1307 
1308 /* Caller should check returned pointer for errors */
1309 
1310 struct vfsmount *collect_mounts(struct path *path)
1311 {
1312 	struct mount *tree;
1313 	down_write(&namespace_sem);
1314 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1315 			 CL_COPY_ALL | CL_PRIVATE);
1316 	up_write(&namespace_sem);
1317 	if (IS_ERR(tree))
1318 		return NULL;
1319 	return &tree->mnt;
1320 }
1321 
1322 void drop_collected_mounts(struct vfsmount *mnt)
1323 {
1324 	LIST_HEAD(umount_list);
1325 	down_write(&namespace_sem);
1326 	br_write_lock(&vfsmount_lock);
1327 	umount_tree(real_mount(mnt), 0, &umount_list);
1328 	br_write_unlock(&vfsmount_lock);
1329 	up_write(&namespace_sem);
1330 	release_mounts(&umount_list);
1331 }
1332 
1333 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1334 		   struct vfsmount *root)
1335 {
1336 	struct mount *mnt;
1337 	int res = f(root, arg);
1338 	if (res)
1339 		return res;
1340 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1341 		res = f(&mnt->mnt, arg);
1342 		if (res)
1343 			return res;
1344 	}
1345 	return 0;
1346 }
1347 
1348 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1349 {
1350 	struct mount *p;
1351 
1352 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1353 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1354 			mnt_release_group_id(p);
1355 	}
1356 }
1357 
1358 static int invent_group_ids(struct mount *mnt, bool recurse)
1359 {
1360 	struct mount *p;
1361 
1362 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1363 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1364 			int err = mnt_alloc_group_id(p);
1365 			if (err) {
1366 				cleanup_group_ids(mnt, p);
1367 				return err;
1368 			}
1369 		}
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  *  @source_mnt : mount tree to be attached
1377  *  @nd         : place the mount tree @source_mnt is attached
1378  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1379  *  		   store the parent mount and mountpoint dentry.
1380  *  		   (done when source_mnt is moved)
1381  *
1382  *  NOTE: in the table below explains the semantics when a source mount
1383  *  of a given type is attached to a destination mount of a given type.
1384  * ---------------------------------------------------------------------------
1385  * |         BIND MOUNT OPERATION                                            |
1386  * |**************************************************************************
1387  * | source-->| shared        |       private  |       slave    | unbindable |
1388  * | dest     |               |                |                |            |
1389  * |   |      |               |                |                |            |
1390  * |   v      |               |                |                |            |
1391  * |**************************************************************************
1392  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1393  * |          |               |                |                |            |
1394  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1395  * ***************************************************************************
1396  * A bind operation clones the source mount and mounts the clone on the
1397  * destination mount.
1398  *
1399  * (++)  the cloned mount is propagated to all the mounts in the propagation
1400  * 	 tree of the destination mount and the cloned mount is added to
1401  * 	 the peer group of the source mount.
1402  * (+)   the cloned mount is created under the destination mount and is marked
1403  *       as shared. The cloned mount is added to the peer group of the source
1404  *       mount.
1405  * (+++) the mount is propagated to all the mounts in the propagation tree
1406  *       of the destination mount and the cloned mount is made slave
1407  *       of the same master as that of the source mount. The cloned mount
1408  *       is marked as 'shared and slave'.
1409  * (*)   the cloned mount is made a slave of the same master as that of the
1410  * 	 source mount.
1411  *
1412  * ---------------------------------------------------------------------------
1413  * |         		MOVE MOUNT OPERATION                                 |
1414  * |**************************************************************************
1415  * | source-->| shared        |       private  |       slave    | unbindable |
1416  * | dest     |               |                |                |            |
1417  * |   |      |               |                |                |            |
1418  * |   v      |               |                |                |            |
1419  * |**************************************************************************
1420  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1421  * |          |               |                |                |            |
1422  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1423  * ***************************************************************************
1424  *
1425  * (+)  the mount is moved to the destination. And is then propagated to
1426  * 	all the mounts in the propagation tree of the destination mount.
1427  * (+*)  the mount is moved to the destination.
1428  * (+++)  the mount is moved to the destination and is then propagated to
1429  * 	all the mounts belonging to the destination mount's propagation tree.
1430  * 	the mount is marked as 'shared and slave'.
1431  * (*)	the mount continues to be a slave at the new location.
1432  *
1433  * if the source mount is a tree, the operations explained above is
1434  * applied to each mount in the tree.
1435  * Must be called without spinlocks held, since this function can sleep
1436  * in allocations.
1437  */
1438 static int attach_recursive_mnt(struct mount *source_mnt,
1439 			struct path *path, struct path *parent_path)
1440 {
1441 	LIST_HEAD(tree_list);
1442 	struct mount *dest_mnt = real_mount(path->mnt);
1443 	struct dentry *dest_dentry = path->dentry;
1444 	struct mount *child, *p;
1445 	int err;
1446 
1447 	if (IS_MNT_SHARED(dest_mnt)) {
1448 		err = invent_group_ids(source_mnt, true);
1449 		if (err)
1450 			goto out;
1451 	}
1452 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1453 	if (err)
1454 		goto out_cleanup_ids;
1455 
1456 	br_write_lock(&vfsmount_lock);
1457 
1458 	if (IS_MNT_SHARED(dest_mnt)) {
1459 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1460 			set_mnt_shared(p);
1461 	}
1462 	if (parent_path) {
1463 		detach_mnt(source_mnt, parent_path);
1464 		attach_mnt(source_mnt, path);
1465 		touch_mnt_namespace(source_mnt->mnt_ns);
1466 	} else {
1467 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1468 		commit_tree(source_mnt);
1469 	}
1470 
1471 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1472 		list_del_init(&child->mnt_hash);
1473 		commit_tree(child);
1474 	}
1475 	br_write_unlock(&vfsmount_lock);
1476 
1477 	return 0;
1478 
1479  out_cleanup_ids:
1480 	if (IS_MNT_SHARED(dest_mnt))
1481 		cleanup_group_ids(source_mnt, NULL);
1482  out:
1483 	return err;
1484 }
1485 
1486 static int lock_mount(struct path *path)
1487 {
1488 	struct vfsmount *mnt;
1489 retry:
1490 	mutex_lock(&path->dentry->d_inode->i_mutex);
1491 	if (unlikely(cant_mount(path->dentry))) {
1492 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1493 		return -ENOENT;
1494 	}
1495 	down_write(&namespace_sem);
1496 	mnt = lookup_mnt(path);
1497 	if (likely(!mnt))
1498 		return 0;
1499 	up_write(&namespace_sem);
1500 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1501 	path_put(path);
1502 	path->mnt = mnt;
1503 	path->dentry = dget(mnt->mnt_root);
1504 	goto retry;
1505 }
1506 
1507 static void unlock_mount(struct path *path)
1508 {
1509 	up_write(&namespace_sem);
1510 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1511 }
1512 
1513 static int graft_tree(struct mount *mnt, struct path *path)
1514 {
1515 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1516 		return -EINVAL;
1517 
1518 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1519 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1520 		return -ENOTDIR;
1521 
1522 	if (d_unlinked(path->dentry))
1523 		return -ENOENT;
1524 
1525 	return attach_recursive_mnt(mnt, path, NULL);
1526 }
1527 
1528 /*
1529  * Sanity check the flags to change_mnt_propagation.
1530  */
1531 
1532 static int flags_to_propagation_type(int flags)
1533 {
1534 	int type = flags & ~(MS_REC | MS_SILENT);
1535 
1536 	/* Fail if any non-propagation flags are set */
1537 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1538 		return 0;
1539 	/* Only one propagation flag should be set */
1540 	if (!is_power_of_2(type))
1541 		return 0;
1542 	return type;
1543 }
1544 
1545 /*
1546  * recursively change the type of the mountpoint.
1547  */
1548 static int do_change_type(struct path *path, int flag)
1549 {
1550 	struct mount *m;
1551 	struct mount *mnt = real_mount(path->mnt);
1552 	int recurse = flag & MS_REC;
1553 	int type;
1554 	int err = 0;
1555 
1556 	if (!capable(CAP_SYS_ADMIN))
1557 		return -EPERM;
1558 
1559 	if (path->dentry != path->mnt->mnt_root)
1560 		return -EINVAL;
1561 
1562 	type = flags_to_propagation_type(flag);
1563 	if (!type)
1564 		return -EINVAL;
1565 
1566 	down_write(&namespace_sem);
1567 	if (type == MS_SHARED) {
1568 		err = invent_group_ids(mnt, recurse);
1569 		if (err)
1570 			goto out_unlock;
1571 	}
1572 
1573 	br_write_lock(&vfsmount_lock);
1574 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1575 		change_mnt_propagation(m, type);
1576 	br_write_unlock(&vfsmount_lock);
1577 
1578  out_unlock:
1579 	up_write(&namespace_sem);
1580 	return err;
1581 }
1582 
1583 /*
1584  * do loopback mount.
1585  */
1586 static int do_loopback(struct path *path, char *old_name,
1587 				int recurse)
1588 {
1589 	LIST_HEAD(umount_list);
1590 	struct path old_path;
1591 	struct mount *mnt = NULL, *old;
1592 	int err = mount_is_safe(path);
1593 	if (err)
1594 		return err;
1595 	if (!old_name || !*old_name)
1596 		return -EINVAL;
1597 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1598 	if (err)
1599 		return err;
1600 
1601 	err = lock_mount(path);
1602 	if (err)
1603 		goto out;
1604 
1605 	old = real_mount(old_path.mnt);
1606 
1607 	err = -EINVAL;
1608 	if (IS_MNT_UNBINDABLE(old))
1609 		goto out2;
1610 
1611 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1612 		goto out2;
1613 
1614 	if (recurse)
1615 		mnt = copy_tree(old, old_path.dentry, 0);
1616 	else
1617 		mnt = clone_mnt(old, old_path.dentry, 0);
1618 
1619 	if (IS_ERR(mnt)) {
1620 		err = PTR_ERR(mnt);
1621 		goto out;
1622 	}
1623 
1624 	err = graft_tree(mnt, path);
1625 	if (err) {
1626 		br_write_lock(&vfsmount_lock);
1627 		umount_tree(mnt, 0, &umount_list);
1628 		br_write_unlock(&vfsmount_lock);
1629 	}
1630 out2:
1631 	unlock_mount(path);
1632 	release_mounts(&umount_list);
1633 out:
1634 	path_put(&old_path);
1635 	return err;
1636 }
1637 
1638 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1639 {
1640 	int error = 0;
1641 	int readonly_request = 0;
1642 
1643 	if (ms_flags & MS_RDONLY)
1644 		readonly_request = 1;
1645 	if (readonly_request == __mnt_is_readonly(mnt))
1646 		return 0;
1647 
1648 	if (readonly_request)
1649 		error = mnt_make_readonly(real_mount(mnt));
1650 	else
1651 		__mnt_unmake_readonly(real_mount(mnt));
1652 	return error;
1653 }
1654 
1655 /*
1656  * change filesystem flags. dir should be a physical root of filesystem.
1657  * If you've mounted a non-root directory somewhere and want to do remount
1658  * on it - tough luck.
1659  */
1660 static int do_remount(struct path *path, int flags, int mnt_flags,
1661 		      void *data)
1662 {
1663 	int err;
1664 	struct super_block *sb = path->mnt->mnt_sb;
1665 	struct mount *mnt = real_mount(path->mnt);
1666 
1667 	if (!capable(CAP_SYS_ADMIN))
1668 		return -EPERM;
1669 
1670 	if (!check_mnt(mnt))
1671 		return -EINVAL;
1672 
1673 	if (path->dentry != path->mnt->mnt_root)
1674 		return -EINVAL;
1675 
1676 	err = security_sb_remount(sb, data);
1677 	if (err)
1678 		return err;
1679 
1680 	down_write(&sb->s_umount);
1681 	if (flags & MS_BIND)
1682 		err = change_mount_flags(path->mnt, flags);
1683 	else
1684 		err = do_remount_sb(sb, flags, data, 0);
1685 	if (!err) {
1686 		br_write_lock(&vfsmount_lock);
1687 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1688 		mnt->mnt.mnt_flags = mnt_flags;
1689 		br_write_unlock(&vfsmount_lock);
1690 	}
1691 	up_write(&sb->s_umount);
1692 	if (!err) {
1693 		br_write_lock(&vfsmount_lock);
1694 		touch_mnt_namespace(mnt->mnt_ns);
1695 		br_write_unlock(&vfsmount_lock);
1696 	}
1697 	return err;
1698 }
1699 
1700 static inline int tree_contains_unbindable(struct mount *mnt)
1701 {
1702 	struct mount *p;
1703 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1704 		if (IS_MNT_UNBINDABLE(p))
1705 			return 1;
1706 	}
1707 	return 0;
1708 }
1709 
1710 static int do_move_mount(struct path *path, char *old_name)
1711 {
1712 	struct path old_path, parent_path;
1713 	struct mount *p;
1714 	struct mount *old;
1715 	int err = 0;
1716 	if (!capable(CAP_SYS_ADMIN))
1717 		return -EPERM;
1718 	if (!old_name || !*old_name)
1719 		return -EINVAL;
1720 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1721 	if (err)
1722 		return err;
1723 
1724 	err = lock_mount(path);
1725 	if (err < 0)
1726 		goto out;
1727 
1728 	old = real_mount(old_path.mnt);
1729 	p = real_mount(path->mnt);
1730 
1731 	err = -EINVAL;
1732 	if (!check_mnt(p) || !check_mnt(old))
1733 		goto out1;
1734 
1735 	if (d_unlinked(path->dentry))
1736 		goto out1;
1737 
1738 	err = -EINVAL;
1739 	if (old_path.dentry != old_path.mnt->mnt_root)
1740 		goto out1;
1741 
1742 	if (!mnt_has_parent(old))
1743 		goto out1;
1744 
1745 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1746 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1747 		goto out1;
1748 	/*
1749 	 * Don't move a mount residing in a shared parent.
1750 	 */
1751 	if (IS_MNT_SHARED(old->mnt_parent))
1752 		goto out1;
1753 	/*
1754 	 * Don't move a mount tree containing unbindable mounts to a destination
1755 	 * mount which is shared.
1756 	 */
1757 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1758 		goto out1;
1759 	err = -ELOOP;
1760 	for (; mnt_has_parent(p); p = p->mnt_parent)
1761 		if (p == old)
1762 			goto out1;
1763 
1764 	err = attach_recursive_mnt(old, path, &parent_path);
1765 	if (err)
1766 		goto out1;
1767 
1768 	/* if the mount is moved, it should no longer be expire
1769 	 * automatically */
1770 	list_del_init(&old->mnt_expire);
1771 out1:
1772 	unlock_mount(path);
1773 out:
1774 	if (!err)
1775 		path_put(&parent_path);
1776 	path_put(&old_path);
1777 	return err;
1778 }
1779 
1780 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1781 {
1782 	int err;
1783 	const char *subtype = strchr(fstype, '.');
1784 	if (subtype) {
1785 		subtype++;
1786 		err = -EINVAL;
1787 		if (!subtype[0])
1788 			goto err;
1789 	} else
1790 		subtype = "";
1791 
1792 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1793 	err = -ENOMEM;
1794 	if (!mnt->mnt_sb->s_subtype)
1795 		goto err;
1796 	return mnt;
1797 
1798  err:
1799 	mntput(mnt);
1800 	return ERR_PTR(err);
1801 }
1802 
1803 static struct vfsmount *
1804 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1805 {
1806 	struct file_system_type *type = get_fs_type(fstype);
1807 	struct vfsmount *mnt;
1808 	if (!type)
1809 		return ERR_PTR(-ENODEV);
1810 	mnt = vfs_kern_mount(type, flags, name, data);
1811 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1812 	    !mnt->mnt_sb->s_subtype)
1813 		mnt = fs_set_subtype(mnt, fstype);
1814 	put_filesystem(type);
1815 	return mnt;
1816 }
1817 
1818 /*
1819  * add a mount into a namespace's mount tree
1820  */
1821 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1822 {
1823 	int err;
1824 
1825 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1826 
1827 	err = lock_mount(path);
1828 	if (err)
1829 		return err;
1830 
1831 	err = -EINVAL;
1832 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1833 		goto unlock;
1834 
1835 	/* Refuse the same filesystem on the same mount point */
1836 	err = -EBUSY;
1837 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1838 	    path->mnt->mnt_root == path->dentry)
1839 		goto unlock;
1840 
1841 	err = -EINVAL;
1842 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1843 		goto unlock;
1844 
1845 	newmnt->mnt.mnt_flags = mnt_flags;
1846 	err = graft_tree(newmnt, path);
1847 
1848 unlock:
1849 	unlock_mount(path);
1850 	return err;
1851 }
1852 
1853 /*
1854  * create a new mount for userspace and request it to be added into the
1855  * namespace's tree
1856  */
1857 static int do_new_mount(struct path *path, char *type, int flags,
1858 			int mnt_flags, char *name, void *data)
1859 {
1860 	struct vfsmount *mnt;
1861 	int err;
1862 
1863 	if (!type)
1864 		return -EINVAL;
1865 
1866 	/* we need capabilities... */
1867 	if (!capable(CAP_SYS_ADMIN))
1868 		return -EPERM;
1869 
1870 	mnt = do_kern_mount(type, flags, name, data);
1871 	if (IS_ERR(mnt))
1872 		return PTR_ERR(mnt);
1873 
1874 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1875 	if (err)
1876 		mntput(mnt);
1877 	return err;
1878 }
1879 
1880 int finish_automount(struct vfsmount *m, struct path *path)
1881 {
1882 	struct mount *mnt = real_mount(m);
1883 	int err;
1884 	/* The new mount record should have at least 2 refs to prevent it being
1885 	 * expired before we get a chance to add it
1886 	 */
1887 	BUG_ON(mnt_get_count(mnt) < 2);
1888 
1889 	if (m->mnt_sb == path->mnt->mnt_sb &&
1890 	    m->mnt_root == path->dentry) {
1891 		err = -ELOOP;
1892 		goto fail;
1893 	}
1894 
1895 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1896 	if (!err)
1897 		return 0;
1898 fail:
1899 	/* remove m from any expiration list it may be on */
1900 	if (!list_empty(&mnt->mnt_expire)) {
1901 		down_write(&namespace_sem);
1902 		br_write_lock(&vfsmount_lock);
1903 		list_del_init(&mnt->mnt_expire);
1904 		br_write_unlock(&vfsmount_lock);
1905 		up_write(&namespace_sem);
1906 	}
1907 	mntput(m);
1908 	mntput(m);
1909 	return err;
1910 }
1911 
1912 /**
1913  * mnt_set_expiry - Put a mount on an expiration list
1914  * @mnt: The mount to list.
1915  * @expiry_list: The list to add the mount to.
1916  */
1917 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1918 {
1919 	down_write(&namespace_sem);
1920 	br_write_lock(&vfsmount_lock);
1921 
1922 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1923 
1924 	br_write_unlock(&vfsmount_lock);
1925 	up_write(&namespace_sem);
1926 }
1927 EXPORT_SYMBOL(mnt_set_expiry);
1928 
1929 /*
1930  * process a list of expirable mountpoints with the intent of discarding any
1931  * mountpoints that aren't in use and haven't been touched since last we came
1932  * here
1933  */
1934 void mark_mounts_for_expiry(struct list_head *mounts)
1935 {
1936 	struct mount *mnt, *next;
1937 	LIST_HEAD(graveyard);
1938 	LIST_HEAD(umounts);
1939 
1940 	if (list_empty(mounts))
1941 		return;
1942 
1943 	down_write(&namespace_sem);
1944 	br_write_lock(&vfsmount_lock);
1945 
1946 	/* extract from the expiration list every vfsmount that matches the
1947 	 * following criteria:
1948 	 * - only referenced by its parent vfsmount
1949 	 * - still marked for expiry (marked on the last call here; marks are
1950 	 *   cleared by mntput())
1951 	 */
1952 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1953 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1954 			propagate_mount_busy(mnt, 1))
1955 			continue;
1956 		list_move(&mnt->mnt_expire, &graveyard);
1957 	}
1958 	while (!list_empty(&graveyard)) {
1959 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1960 		touch_mnt_namespace(mnt->mnt_ns);
1961 		umount_tree(mnt, 1, &umounts);
1962 	}
1963 	br_write_unlock(&vfsmount_lock);
1964 	up_write(&namespace_sem);
1965 
1966 	release_mounts(&umounts);
1967 }
1968 
1969 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1970 
1971 /*
1972  * Ripoff of 'select_parent()'
1973  *
1974  * search the list of submounts for a given mountpoint, and move any
1975  * shrinkable submounts to the 'graveyard' list.
1976  */
1977 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1978 {
1979 	struct mount *this_parent = parent;
1980 	struct list_head *next;
1981 	int found = 0;
1982 
1983 repeat:
1984 	next = this_parent->mnt_mounts.next;
1985 resume:
1986 	while (next != &this_parent->mnt_mounts) {
1987 		struct list_head *tmp = next;
1988 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1989 
1990 		next = tmp->next;
1991 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1992 			continue;
1993 		/*
1994 		 * Descend a level if the d_mounts list is non-empty.
1995 		 */
1996 		if (!list_empty(&mnt->mnt_mounts)) {
1997 			this_parent = mnt;
1998 			goto repeat;
1999 		}
2000 
2001 		if (!propagate_mount_busy(mnt, 1)) {
2002 			list_move_tail(&mnt->mnt_expire, graveyard);
2003 			found++;
2004 		}
2005 	}
2006 	/*
2007 	 * All done at this level ... ascend and resume the search
2008 	 */
2009 	if (this_parent != parent) {
2010 		next = this_parent->mnt_child.next;
2011 		this_parent = this_parent->mnt_parent;
2012 		goto resume;
2013 	}
2014 	return found;
2015 }
2016 
2017 /*
2018  * process a list of expirable mountpoints with the intent of discarding any
2019  * submounts of a specific parent mountpoint
2020  *
2021  * vfsmount_lock must be held for write
2022  */
2023 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2024 {
2025 	LIST_HEAD(graveyard);
2026 	struct mount *m;
2027 
2028 	/* extract submounts of 'mountpoint' from the expiration list */
2029 	while (select_submounts(mnt, &graveyard)) {
2030 		while (!list_empty(&graveyard)) {
2031 			m = list_first_entry(&graveyard, struct mount,
2032 						mnt_expire);
2033 			touch_mnt_namespace(m->mnt_ns);
2034 			umount_tree(m, 1, umounts);
2035 		}
2036 	}
2037 }
2038 
2039 /*
2040  * Some copy_from_user() implementations do not return the exact number of
2041  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2042  * Note that this function differs from copy_from_user() in that it will oops
2043  * on bad values of `to', rather than returning a short copy.
2044  */
2045 static long exact_copy_from_user(void *to, const void __user * from,
2046 				 unsigned long n)
2047 {
2048 	char *t = to;
2049 	const char __user *f = from;
2050 	char c;
2051 
2052 	if (!access_ok(VERIFY_READ, from, n))
2053 		return n;
2054 
2055 	while (n) {
2056 		if (__get_user(c, f)) {
2057 			memset(t, 0, n);
2058 			break;
2059 		}
2060 		*t++ = c;
2061 		f++;
2062 		n--;
2063 	}
2064 	return n;
2065 }
2066 
2067 int copy_mount_options(const void __user * data, unsigned long *where)
2068 {
2069 	int i;
2070 	unsigned long page;
2071 	unsigned long size;
2072 
2073 	*where = 0;
2074 	if (!data)
2075 		return 0;
2076 
2077 	if (!(page = __get_free_page(GFP_KERNEL)))
2078 		return -ENOMEM;
2079 
2080 	/* We only care that *some* data at the address the user
2081 	 * gave us is valid.  Just in case, we'll zero
2082 	 * the remainder of the page.
2083 	 */
2084 	/* copy_from_user cannot cross TASK_SIZE ! */
2085 	size = TASK_SIZE - (unsigned long)data;
2086 	if (size > PAGE_SIZE)
2087 		size = PAGE_SIZE;
2088 
2089 	i = size - exact_copy_from_user((void *)page, data, size);
2090 	if (!i) {
2091 		free_page(page);
2092 		return -EFAULT;
2093 	}
2094 	if (i != PAGE_SIZE)
2095 		memset((char *)page + i, 0, PAGE_SIZE - i);
2096 	*where = page;
2097 	return 0;
2098 }
2099 
2100 int copy_mount_string(const void __user *data, char **where)
2101 {
2102 	char *tmp;
2103 
2104 	if (!data) {
2105 		*where = NULL;
2106 		return 0;
2107 	}
2108 
2109 	tmp = strndup_user(data, PAGE_SIZE);
2110 	if (IS_ERR(tmp))
2111 		return PTR_ERR(tmp);
2112 
2113 	*where = tmp;
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2119  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2120  *
2121  * data is a (void *) that can point to any structure up to
2122  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2123  * information (or be NULL).
2124  *
2125  * Pre-0.97 versions of mount() didn't have a flags word.
2126  * When the flags word was introduced its top half was required
2127  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2128  * Therefore, if this magic number is present, it carries no information
2129  * and must be discarded.
2130  */
2131 long do_mount(char *dev_name, char *dir_name, char *type_page,
2132 		  unsigned long flags, void *data_page)
2133 {
2134 	struct path path;
2135 	int retval = 0;
2136 	int mnt_flags = 0;
2137 
2138 	/* Discard magic */
2139 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2140 		flags &= ~MS_MGC_MSK;
2141 
2142 	/* Basic sanity checks */
2143 
2144 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2145 		return -EINVAL;
2146 
2147 	if (data_page)
2148 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2149 
2150 	/* ... and get the mountpoint */
2151 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2152 	if (retval)
2153 		return retval;
2154 
2155 	retval = security_sb_mount(dev_name, &path,
2156 				   type_page, flags, data_page);
2157 	if (retval)
2158 		goto dput_out;
2159 
2160 	/* Default to relatime unless overriden */
2161 	if (!(flags & MS_NOATIME))
2162 		mnt_flags |= MNT_RELATIME;
2163 
2164 	/* Separate the per-mountpoint flags */
2165 	if (flags & MS_NOSUID)
2166 		mnt_flags |= MNT_NOSUID;
2167 	if (flags & MS_NODEV)
2168 		mnt_flags |= MNT_NODEV;
2169 	if (flags & MS_NOEXEC)
2170 		mnt_flags |= MNT_NOEXEC;
2171 	if (flags & MS_NOATIME)
2172 		mnt_flags |= MNT_NOATIME;
2173 	if (flags & MS_NODIRATIME)
2174 		mnt_flags |= MNT_NODIRATIME;
2175 	if (flags & MS_STRICTATIME)
2176 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2177 	if (flags & MS_RDONLY)
2178 		mnt_flags |= MNT_READONLY;
2179 
2180 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2181 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2182 		   MS_STRICTATIME);
2183 
2184 	if (flags & MS_REMOUNT)
2185 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2186 				    data_page);
2187 	else if (flags & MS_BIND)
2188 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2189 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2190 		retval = do_change_type(&path, flags);
2191 	else if (flags & MS_MOVE)
2192 		retval = do_move_mount(&path, dev_name);
2193 	else
2194 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2195 				      dev_name, data_page);
2196 dput_out:
2197 	path_put(&path);
2198 	return retval;
2199 }
2200 
2201 static struct mnt_namespace *alloc_mnt_ns(void)
2202 {
2203 	struct mnt_namespace *new_ns;
2204 
2205 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2206 	if (!new_ns)
2207 		return ERR_PTR(-ENOMEM);
2208 	atomic_set(&new_ns->count, 1);
2209 	new_ns->root = NULL;
2210 	INIT_LIST_HEAD(&new_ns->list);
2211 	init_waitqueue_head(&new_ns->poll);
2212 	new_ns->event = 0;
2213 	return new_ns;
2214 }
2215 
2216 /*
2217  * Allocate a new namespace structure and populate it with contents
2218  * copied from the namespace of the passed in task structure.
2219  */
2220 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2221 		struct fs_struct *fs)
2222 {
2223 	struct mnt_namespace *new_ns;
2224 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2225 	struct mount *p, *q;
2226 	struct mount *old = mnt_ns->root;
2227 	struct mount *new;
2228 
2229 	new_ns = alloc_mnt_ns();
2230 	if (IS_ERR(new_ns))
2231 		return new_ns;
2232 
2233 	down_write(&namespace_sem);
2234 	/* First pass: copy the tree topology */
2235 	new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2236 	if (IS_ERR(new)) {
2237 		up_write(&namespace_sem);
2238 		kfree(new_ns);
2239 		return ERR_CAST(new);
2240 	}
2241 	new_ns->root = new;
2242 	br_write_lock(&vfsmount_lock);
2243 	list_add_tail(&new_ns->list, &new->mnt_list);
2244 	br_write_unlock(&vfsmount_lock);
2245 
2246 	/*
2247 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2248 	 * as belonging to new namespace.  We have already acquired a private
2249 	 * fs_struct, so tsk->fs->lock is not needed.
2250 	 */
2251 	p = old;
2252 	q = new;
2253 	while (p) {
2254 		q->mnt_ns = new_ns;
2255 		if (fs) {
2256 			if (&p->mnt == fs->root.mnt) {
2257 				fs->root.mnt = mntget(&q->mnt);
2258 				rootmnt = &p->mnt;
2259 			}
2260 			if (&p->mnt == fs->pwd.mnt) {
2261 				fs->pwd.mnt = mntget(&q->mnt);
2262 				pwdmnt = &p->mnt;
2263 			}
2264 		}
2265 		p = next_mnt(p, old);
2266 		q = next_mnt(q, new);
2267 	}
2268 	up_write(&namespace_sem);
2269 
2270 	if (rootmnt)
2271 		mntput(rootmnt);
2272 	if (pwdmnt)
2273 		mntput(pwdmnt);
2274 
2275 	return new_ns;
2276 }
2277 
2278 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2279 		struct fs_struct *new_fs)
2280 {
2281 	struct mnt_namespace *new_ns;
2282 
2283 	BUG_ON(!ns);
2284 	get_mnt_ns(ns);
2285 
2286 	if (!(flags & CLONE_NEWNS))
2287 		return ns;
2288 
2289 	new_ns = dup_mnt_ns(ns, new_fs);
2290 
2291 	put_mnt_ns(ns);
2292 	return new_ns;
2293 }
2294 
2295 /**
2296  * create_mnt_ns - creates a private namespace and adds a root filesystem
2297  * @mnt: pointer to the new root filesystem mountpoint
2298  */
2299 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2300 {
2301 	struct mnt_namespace *new_ns = alloc_mnt_ns();
2302 	if (!IS_ERR(new_ns)) {
2303 		struct mount *mnt = real_mount(m);
2304 		mnt->mnt_ns = new_ns;
2305 		new_ns->root = mnt;
2306 		list_add(&new_ns->list, &mnt->mnt_list);
2307 	} else {
2308 		mntput(m);
2309 	}
2310 	return new_ns;
2311 }
2312 
2313 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2314 {
2315 	struct mnt_namespace *ns;
2316 	struct super_block *s;
2317 	struct path path;
2318 	int err;
2319 
2320 	ns = create_mnt_ns(mnt);
2321 	if (IS_ERR(ns))
2322 		return ERR_CAST(ns);
2323 
2324 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2325 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2326 
2327 	put_mnt_ns(ns);
2328 
2329 	if (err)
2330 		return ERR_PTR(err);
2331 
2332 	/* trade a vfsmount reference for active sb one */
2333 	s = path.mnt->mnt_sb;
2334 	atomic_inc(&s->s_active);
2335 	mntput(path.mnt);
2336 	/* lock the sucker */
2337 	down_write(&s->s_umount);
2338 	/* ... and return the root of (sub)tree on it */
2339 	return path.dentry;
2340 }
2341 EXPORT_SYMBOL(mount_subtree);
2342 
2343 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2344 		char __user *, type, unsigned long, flags, void __user *, data)
2345 {
2346 	int ret;
2347 	char *kernel_type;
2348 	char *kernel_dir;
2349 	char *kernel_dev;
2350 	unsigned long data_page;
2351 
2352 	ret = copy_mount_string(type, &kernel_type);
2353 	if (ret < 0)
2354 		goto out_type;
2355 
2356 	kernel_dir = getname(dir_name);
2357 	if (IS_ERR(kernel_dir)) {
2358 		ret = PTR_ERR(kernel_dir);
2359 		goto out_dir;
2360 	}
2361 
2362 	ret = copy_mount_string(dev_name, &kernel_dev);
2363 	if (ret < 0)
2364 		goto out_dev;
2365 
2366 	ret = copy_mount_options(data, &data_page);
2367 	if (ret < 0)
2368 		goto out_data;
2369 
2370 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2371 		(void *) data_page);
2372 
2373 	free_page(data_page);
2374 out_data:
2375 	kfree(kernel_dev);
2376 out_dev:
2377 	putname(kernel_dir);
2378 out_dir:
2379 	kfree(kernel_type);
2380 out_type:
2381 	return ret;
2382 }
2383 
2384 /*
2385  * Return true if path is reachable from root
2386  *
2387  * namespace_sem or vfsmount_lock is held
2388  */
2389 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2390 			 const struct path *root)
2391 {
2392 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2393 		dentry = mnt->mnt_mountpoint;
2394 		mnt = mnt->mnt_parent;
2395 	}
2396 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2397 }
2398 
2399 int path_is_under(struct path *path1, struct path *path2)
2400 {
2401 	int res;
2402 	br_read_lock(&vfsmount_lock);
2403 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2404 	br_read_unlock(&vfsmount_lock);
2405 	return res;
2406 }
2407 EXPORT_SYMBOL(path_is_under);
2408 
2409 /*
2410  * pivot_root Semantics:
2411  * Moves the root file system of the current process to the directory put_old,
2412  * makes new_root as the new root file system of the current process, and sets
2413  * root/cwd of all processes which had them on the current root to new_root.
2414  *
2415  * Restrictions:
2416  * The new_root and put_old must be directories, and  must not be on the
2417  * same file  system as the current process root. The put_old  must  be
2418  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2419  * pointed to by put_old must yield the same directory as new_root. No other
2420  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2421  *
2422  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2423  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2424  * in this situation.
2425  *
2426  * Notes:
2427  *  - we don't move root/cwd if they are not at the root (reason: if something
2428  *    cared enough to change them, it's probably wrong to force them elsewhere)
2429  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2430  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2431  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2432  *    first.
2433  */
2434 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2435 		const char __user *, put_old)
2436 {
2437 	struct path new, old, parent_path, root_parent, root;
2438 	struct mount *new_mnt, *root_mnt;
2439 	int error;
2440 
2441 	if (!capable(CAP_SYS_ADMIN))
2442 		return -EPERM;
2443 
2444 	error = user_path_dir(new_root, &new);
2445 	if (error)
2446 		goto out0;
2447 
2448 	error = user_path_dir(put_old, &old);
2449 	if (error)
2450 		goto out1;
2451 
2452 	error = security_sb_pivotroot(&old, &new);
2453 	if (error)
2454 		goto out2;
2455 
2456 	get_fs_root(current->fs, &root);
2457 	error = lock_mount(&old);
2458 	if (error)
2459 		goto out3;
2460 
2461 	error = -EINVAL;
2462 	new_mnt = real_mount(new.mnt);
2463 	root_mnt = real_mount(root.mnt);
2464 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2465 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2466 		IS_MNT_SHARED(root_mnt->mnt_parent))
2467 		goto out4;
2468 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2469 		goto out4;
2470 	error = -ENOENT;
2471 	if (d_unlinked(new.dentry))
2472 		goto out4;
2473 	if (d_unlinked(old.dentry))
2474 		goto out4;
2475 	error = -EBUSY;
2476 	if (new.mnt == root.mnt ||
2477 	    old.mnt == root.mnt)
2478 		goto out4; /* loop, on the same file system  */
2479 	error = -EINVAL;
2480 	if (root.mnt->mnt_root != root.dentry)
2481 		goto out4; /* not a mountpoint */
2482 	if (!mnt_has_parent(root_mnt))
2483 		goto out4; /* not attached */
2484 	if (new.mnt->mnt_root != new.dentry)
2485 		goto out4; /* not a mountpoint */
2486 	if (!mnt_has_parent(new_mnt))
2487 		goto out4; /* not attached */
2488 	/* make sure we can reach put_old from new_root */
2489 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2490 		goto out4;
2491 	br_write_lock(&vfsmount_lock);
2492 	detach_mnt(new_mnt, &parent_path);
2493 	detach_mnt(root_mnt, &root_parent);
2494 	/* mount old root on put_old */
2495 	attach_mnt(root_mnt, &old);
2496 	/* mount new_root on / */
2497 	attach_mnt(new_mnt, &root_parent);
2498 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2499 	br_write_unlock(&vfsmount_lock);
2500 	chroot_fs_refs(&root, &new);
2501 	error = 0;
2502 out4:
2503 	unlock_mount(&old);
2504 	if (!error) {
2505 		path_put(&root_parent);
2506 		path_put(&parent_path);
2507 	}
2508 out3:
2509 	path_put(&root);
2510 out2:
2511 	path_put(&old);
2512 out1:
2513 	path_put(&new);
2514 out0:
2515 	return error;
2516 }
2517 
2518 static void __init init_mount_tree(void)
2519 {
2520 	struct vfsmount *mnt;
2521 	struct mnt_namespace *ns;
2522 	struct path root;
2523 
2524 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2525 	if (IS_ERR(mnt))
2526 		panic("Can't create rootfs");
2527 
2528 	ns = create_mnt_ns(mnt);
2529 	if (IS_ERR(ns))
2530 		panic("Can't allocate initial namespace");
2531 
2532 	init_task.nsproxy->mnt_ns = ns;
2533 	get_mnt_ns(ns);
2534 
2535 	root.mnt = mnt;
2536 	root.dentry = mnt->mnt_root;
2537 
2538 	set_fs_pwd(current->fs, &root);
2539 	set_fs_root(current->fs, &root);
2540 }
2541 
2542 void __init mnt_init(void)
2543 {
2544 	unsigned u;
2545 	int err;
2546 
2547 	init_rwsem(&namespace_sem);
2548 
2549 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2550 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2551 
2552 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2553 
2554 	if (!mount_hashtable)
2555 		panic("Failed to allocate mount hash table\n");
2556 
2557 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2558 
2559 	for (u = 0; u < HASH_SIZE; u++)
2560 		INIT_LIST_HEAD(&mount_hashtable[u]);
2561 
2562 	br_lock_init(&vfsmount_lock);
2563 
2564 	err = sysfs_init();
2565 	if (err)
2566 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2567 			__func__, err);
2568 	fs_kobj = kobject_create_and_add("fs", NULL);
2569 	if (!fs_kobj)
2570 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2571 	init_rootfs();
2572 	init_mount_tree();
2573 }
2574 
2575 void put_mnt_ns(struct mnt_namespace *ns)
2576 {
2577 	LIST_HEAD(umount_list);
2578 
2579 	if (!atomic_dec_and_test(&ns->count))
2580 		return;
2581 	down_write(&namespace_sem);
2582 	br_write_lock(&vfsmount_lock);
2583 	umount_tree(ns->root, 0, &umount_list);
2584 	br_write_unlock(&vfsmount_lock);
2585 	up_write(&namespace_sem);
2586 	release_mounts(&umount_list);
2587 	kfree(ns);
2588 }
2589 
2590 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2591 {
2592 	struct vfsmount *mnt;
2593 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2594 	if (!IS_ERR(mnt)) {
2595 		/*
2596 		 * it is a longterm mount, don't release mnt until
2597 		 * we unmount before file sys is unregistered
2598 		*/
2599 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2600 	}
2601 	return mnt;
2602 }
2603 EXPORT_SYMBOL_GPL(kern_mount_data);
2604 
2605 void kern_unmount(struct vfsmount *mnt)
2606 {
2607 	/* release long term mount so mount point can be released */
2608 	if (!IS_ERR_OR_NULL(mnt)) {
2609 		br_write_lock(&vfsmount_lock);
2610 		real_mount(mnt)->mnt_ns = NULL;
2611 		br_write_unlock(&vfsmount_lock);
2612 		mntput(mnt);
2613 	}
2614 }
2615 EXPORT_SYMBOL(kern_unmount);
2616 
2617 bool our_mnt(struct vfsmount *mnt)
2618 {
2619 	return check_mnt(real_mount(mnt));
2620 }
2621