xref: /linux/fs/namespace.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
29 
30 extern int __init init_rootfs(void);
31 
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
36 {
37 	return 0;
38 }
39 #endif
40 
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43 
44 static int event;
45 
46 static struct list_head *mount_hashtable;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache;
49 static struct rw_semaphore namespace_sem;
50 
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
54 
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 {
57 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 	tmp = tmp + (tmp >> hash_bits);
60 	return tmp & hash_mask;
61 }
62 
63 struct vfsmount *alloc_vfsmnt(const char *name)
64 {
65 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 	if (mnt) {
67 		memset(mnt, 0, sizeof(struct vfsmount));
68 		atomic_set(&mnt->mnt_count, 1);
69 		INIT_LIST_HEAD(&mnt->mnt_hash);
70 		INIT_LIST_HEAD(&mnt->mnt_child);
71 		INIT_LIST_HEAD(&mnt->mnt_mounts);
72 		INIT_LIST_HEAD(&mnt->mnt_list);
73 		INIT_LIST_HEAD(&mnt->mnt_expire);
74 		INIT_LIST_HEAD(&mnt->mnt_share);
75 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 		INIT_LIST_HEAD(&mnt->mnt_slave);
77 		if (name) {
78 			int size = strlen(name) + 1;
79 			char *newname = kmalloc(size, GFP_KERNEL);
80 			if (newname) {
81 				memcpy(newname, name, size);
82 				mnt->mnt_devname = newname;
83 			}
84 		}
85 	}
86 	return mnt;
87 }
88 
89 void free_vfsmnt(struct vfsmount *mnt)
90 {
91 	kfree(mnt->mnt_devname);
92 	kmem_cache_free(mnt_cache, mnt);
93 }
94 
95 /*
96  * find the first or last mount at @dentry on vfsmount @mnt depending on
97  * @dir. If @dir is set return the first mount else return the last mount.
98  */
99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100 			      int dir)
101 {
102 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
103 	struct list_head *tmp = head;
104 	struct vfsmount *p, *found = NULL;
105 
106 	for (;;) {
107 		tmp = dir ? tmp->next : tmp->prev;
108 		p = NULL;
109 		if (tmp == head)
110 			break;
111 		p = list_entry(tmp, struct vfsmount, mnt_hash);
112 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113 			found = p;
114 			break;
115 		}
116 	}
117 	return found;
118 }
119 
120 /*
121  * lookup_mnt increments the ref count before returning
122  * the vfsmount struct.
123  */
124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 {
126 	struct vfsmount *child_mnt;
127 	spin_lock(&vfsmount_lock);
128 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129 		mntget(child_mnt);
130 	spin_unlock(&vfsmount_lock);
131 	return child_mnt;
132 }
133 
134 static inline int check_mnt(struct vfsmount *mnt)
135 {
136 	return mnt->mnt_namespace == current->namespace;
137 }
138 
139 static void touch_namespace(struct namespace *ns)
140 {
141 	if (ns) {
142 		ns->event = ++event;
143 		wake_up_interruptible(&ns->poll);
144 	}
145 }
146 
147 static void __touch_namespace(struct namespace *ns)
148 {
149 	if (ns && ns->event != event) {
150 		ns->event = event;
151 		wake_up_interruptible(&ns->poll);
152 	}
153 }
154 
155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 {
157 	old_nd->dentry = mnt->mnt_mountpoint;
158 	old_nd->mnt = mnt->mnt_parent;
159 	mnt->mnt_parent = mnt;
160 	mnt->mnt_mountpoint = mnt->mnt_root;
161 	list_del_init(&mnt->mnt_child);
162 	list_del_init(&mnt->mnt_hash);
163 	old_nd->dentry->d_mounted--;
164 }
165 
166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167 			struct vfsmount *child_mnt)
168 {
169 	child_mnt->mnt_parent = mntget(mnt);
170 	child_mnt->mnt_mountpoint = dget(dentry);
171 	dentry->d_mounted++;
172 }
173 
174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 {
176 	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
178 			hash(nd->mnt, nd->dentry));
179 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
180 }
181 
182 /*
183  * the caller must hold vfsmount_lock
184  */
185 static void commit_tree(struct vfsmount *mnt)
186 {
187 	struct vfsmount *parent = mnt->mnt_parent;
188 	struct vfsmount *m;
189 	LIST_HEAD(head);
190 	struct namespace *n = parent->mnt_namespace;
191 
192 	BUG_ON(parent == mnt);
193 
194 	list_add_tail(&head, &mnt->mnt_list);
195 	list_for_each_entry(m, &head, mnt_list)
196 		m->mnt_namespace = n;
197 	list_splice(&head, n->list.prev);
198 
199 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
200 				hash(parent, mnt->mnt_mountpoint));
201 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202 	touch_namespace(n);
203 }
204 
205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 {
207 	struct list_head *next = p->mnt_mounts.next;
208 	if (next == &p->mnt_mounts) {
209 		while (1) {
210 			if (p == root)
211 				return NULL;
212 			next = p->mnt_child.next;
213 			if (next != &p->mnt_parent->mnt_mounts)
214 				break;
215 			p = p->mnt_parent;
216 		}
217 	}
218 	return list_entry(next, struct vfsmount, mnt_child);
219 }
220 
221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 {
223 	struct list_head *prev = p->mnt_mounts.prev;
224 	while (prev != &p->mnt_mounts) {
225 		p = list_entry(prev, struct vfsmount, mnt_child);
226 		prev = p->mnt_mounts.prev;
227 	}
228 	return p;
229 }
230 
231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232 					int flag)
233 {
234 	struct super_block *sb = old->mnt_sb;
235 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236 
237 	if (mnt) {
238 		mnt->mnt_flags = old->mnt_flags;
239 		atomic_inc(&sb->s_active);
240 		mnt->mnt_sb = sb;
241 		mnt->mnt_root = dget(root);
242 		mnt->mnt_mountpoint = mnt->mnt_root;
243 		mnt->mnt_parent = mnt;
244 
245 		if (flag & CL_SLAVE) {
246 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247 			mnt->mnt_master = old;
248 			CLEAR_MNT_SHARED(mnt);
249 		} else {
250 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251 				list_add(&mnt->mnt_share, &old->mnt_share);
252 			if (IS_MNT_SLAVE(old))
253 				list_add(&mnt->mnt_slave, &old->mnt_slave);
254 			mnt->mnt_master = old->mnt_master;
255 		}
256 		if (flag & CL_MAKE_SHARED)
257 			set_mnt_shared(mnt);
258 
259 		/* stick the duplicate mount on the same expiry list
260 		 * as the original if that was on one */
261 		if (flag & CL_EXPIRE) {
262 			spin_lock(&vfsmount_lock);
263 			if (!list_empty(&old->mnt_expire))
264 				list_add(&mnt->mnt_expire, &old->mnt_expire);
265 			spin_unlock(&vfsmount_lock);
266 		}
267 	}
268 	return mnt;
269 }
270 
271 static inline void __mntput(struct vfsmount *mnt)
272 {
273 	struct super_block *sb = mnt->mnt_sb;
274 	dput(mnt->mnt_root);
275 	free_vfsmnt(mnt);
276 	deactivate_super(sb);
277 }
278 
279 void mntput_no_expire(struct vfsmount *mnt)
280 {
281 repeat:
282 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283 		if (likely(!mnt->mnt_pinned)) {
284 			spin_unlock(&vfsmount_lock);
285 			__mntput(mnt);
286 			return;
287 		}
288 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289 		mnt->mnt_pinned = 0;
290 		spin_unlock(&vfsmount_lock);
291 		acct_auto_close_mnt(mnt);
292 		security_sb_umount_close(mnt);
293 		goto repeat;
294 	}
295 }
296 
297 EXPORT_SYMBOL(mntput_no_expire);
298 
299 void mnt_pin(struct vfsmount *mnt)
300 {
301 	spin_lock(&vfsmount_lock);
302 	mnt->mnt_pinned++;
303 	spin_unlock(&vfsmount_lock);
304 }
305 
306 EXPORT_SYMBOL(mnt_pin);
307 
308 void mnt_unpin(struct vfsmount *mnt)
309 {
310 	spin_lock(&vfsmount_lock);
311 	if (mnt->mnt_pinned) {
312 		atomic_inc(&mnt->mnt_count);
313 		mnt->mnt_pinned--;
314 	}
315 	spin_unlock(&vfsmount_lock);
316 }
317 
318 EXPORT_SYMBOL(mnt_unpin);
319 
320 /* iterator */
321 static void *m_start(struct seq_file *m, loff_t *pos)
322 {
323 	struct namespace *n = m->private;
324 	struct list_head *p;
325 	loff_t l = *pos;
326 
327 	down_read(&namespace_sem);
328 	list_for_each(p, &n->list)
329 		if (!l--)
330 			return list_entry(p, struct vfsmount, mnt_list);
331 	return NULL;
332 }
333 
334 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
335 {
336 	struct namespace *n = m->private;
337 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
338 	(*pos)++;
339 	return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
340 }
341 
342 static void m_stop(struct seq_file *m, void *v)
343 {
344 	up_read(&namespace_sem);
345 }
346 
347 static inline void mangle(struct seq_file *m, const char *s)
348 {
349 	seq_escape(m, s, " \t\n\\");
350 }
351 
352 static int show_vfsmnt(struct seq_file *m, void *v)
353 {
354 	struct vfsmount *mnt = v;
355 	int err = 0;
356 	static struct proc_fs_info {
357 		int flag;
358 		char *str;
359 	} fs_info[] = {
360 		{ MS_SYNCHRONOUS, ",sync" },
361 		{ MS_DIRSYNC, ",dirsync" },
362 		{ MS_MANDLOCK, ",mand" },
363 		{ 0, NULL }
364 	};
365 	static struct proc_fs_info mnt_info[] = {
366 		{ MNT_NOSUID, ",nosuid" },
367 		{ MNT_NODEV, ",nodev" },
368 		{ MNT_NOEXEC, ",noexec" },
369 		{ MNT_NOATIME, ",noatime" },
370 		{ MNT_NODIRATIME, ",nodiratime" },
371 		{ 0, NULL }
372 	};
373 	struct proc_fs_info *fs_infop;
374 
375 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
376 	seq_putc(m, ' ');
377 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
378 	seq_putc(m, ' ');
379 	mangle(m, mnt->mnt_sb->s_type->name);
380 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
381 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
382 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
383 			seq_puts(m, fs_infop->str);
384 	}
385 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
386 		if (mnt->mnt_flags & fs_infop->flag)
387 			seq_puts(m, fs_infop->str);
388 	}
389 	if (mnt->mnt_sb->s_op->show_options)
390 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
391 	seq_puts(m, " 0 0\n");
392 	return err;
393 }
394 
395 struct seq_operations mounts_op = {
396 	.start	= m_start,
397 	.next	= m_next,
398 	.stop	= m_stop,
399 	.show	= show_vfsmnt
400 };
401 
402 /**
403  * may_umount_tree - check if a mount tree is busy
404  * @mnt: root of mount tree
405  *
406  * This is called to check if a tree of mounts has any
407  * open files, pwds, chroots or sub mounts that are
408  * busy.
409  */
410 int may_umount_tree(struct vfsmount *mnt)
411 {
412 	int actual_refs = 0;
413 	int minimum_refs = 0;
414 	struct vfsmount *p;
415 
416 	spin_lock(&vfsmount_lock);
417 	for (p = mnt; p; p = next_mnt(p, mnt)) {
418 		actual_refs += atomic_read(&p->mnt_count);
419 		minimum_refs += 2;
420 	}
421 	spin_unlock(&vfsmount_lock);
422 
423 	if (actual_refs > minimum_refs)
424 		return -EBUSY;
425 
426 	return 0;
427 }
428 
429 EXPORT_SYMBOL(may_umount_tree);
430 
431 /**
432  * may_umount - check if a mount point is busy
433  * @mnt: root of mount
434  *
435  * This is called to check if a mount point has any
436  * open files, pwds, chroots or sub mounts. If the
437  * mount has sub mounts this will return busy
438  * regardless of whether the sub mounts are busy.
439  *
440  * Doesn't take quota and stuff into account. IOW, in some cases it will
441  * give false negatives. The main reason why it's here is that we need
442  * a non-destructive way to look for easily umountable filesystems.
443  */
444 int may_umount(struct vfsmount *mnt)
445 {
446 	int ret = 0;
447 	spin_lock(&vfsmount_lock);
448 	if (propagate_mount_busy(mnt, 2))
449 		ret = -EBUSY;
450 	spin_unlock(&vfsmount_lock);
451 	return ret;
452 }
453 
454 EXPORT_SYMBOL(may_umount);
455 
456 void release_mounts(struct list_head *head)
457 {
458 	struct vfsmount *mnt;
459 	while (!list_empty(head)) {
460 		mnt = list_entry(head->next, struct vfsmount, mnt_hash);
461 		list_del_init(&mnt->mnt_hash);
462 		if (mnt->mnt_parent != mnt) {
463 			struct dentry *dentry;
464 			struct vfsmount *m;
465 			spin_lock(&vfsmount_lock);
466 			dentry = mnt->mnt_mountpoint;
467 			m = mnt->mnt_parent;
468 			mnt->mnt_mountpoint = mnt->mnt_root;
469 			mnt->mnt_parent = mnt;
470 			spin_unlock(&vfsmount_lock);
471 			dput(dentry);
472 			mntput(m);
473 		}
474 		mntput(mnt);
475 	}
476 }
477 
478 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
479 {
480 	struct vfsmount *p;
481 
482 	for (p = mnt; p; p = next_mnt(p, mnt)) {
483 		list_del(&p->mnt_hash);
484 		list_add(&p->mnt_hash, kill);
485 	}
486 
487 	if (propagate)
488 		propagate_umount(kill);
489 
490 	list_for_each_entry(p, kill, mnt_hash) {
491 		list_del_init(&p->mnt_expire);
492 		list_del_init(&p->mnt_list);
493 		__touch_namespace(p->mnt_namespace);
494 		p->mnt_namespace = NULL;
495 		list_del_init(&p->mnt_child);
496 		if (p->mnt_parent != p)
497 			p->mnt_mountpoint->d_mounted--;
498 		change_mnt_propagation(p, MS_PRIVATE);
499 	}
500 }
501 
502 static int do_umount(struct vfsmount *mnt, int flags)
503 {
504 	struct super_block *sb = mnt->mnt_sb;
505 	int retval;
506 	LIST_HEAD(umount_list);
507 
508 	retval = security_sb_umount(mnt, flags);
509 	if (retval)
510 		return retval;
511 
512 	/*
513 	 * Allow userspace to request a mountpoint be expired rather than
514 	 * unmounting unconditionally. Unmount only happens if:
515 	 *  (1) the mark is already set (the mark is cleared by mntput())
516 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
517 	 */
518 	if (flags & MNT_EXPIRE) {
519 		if (mnt == current->fs->rootmnt ||
520 		    flags & (MNT_FORCE | MNT_DETACH))
521 			return -EINVAL;
522 
523 		if (atomic_read(&mnt->mnt_count) != 2)
524 			return -EBUSY;
525 
526 		if (!xchg(&mnt->mnt_expiry_mark, 1))
527 			return -EAGAIN;
528 	}
529 
530 	/*
531 	 * If we may have to abort operations to get out of this
532 	 * mount, and they will themselves hold resources we must
533 	 * allow the fs to do things. In the Unix tradition of
534 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
535 	 * might fail to complete on the first run through as other tasks
536 	 * must return, and the like. Thats for the mount program to worry
537 	 * about for the moment.
538 	 */
539 
540 	lock_kernel();
541 	if ((flags & MNT_FORCE) && sb->s_op->umount_begin)
542 		sb->s_op->umount_begin(sb);
543 	unlock_kernel();
544 
545 	/*
546 	 * No sense to grab the lock for this test, but test itself looks
547 	 * somewhat bogus. Suggestions for better replacement?
548 	 * Ho-hum... In principle, we might treat that as umount + switch
549 	 * to rootfs. GC would eventually take care of the old vfsmount.
550 	 * Actually it makes sense, especially if rootfs would contain a
551 	 * /reboot - static binary that would close all descriptors and
552 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
553 	 */
554 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
555 		/*
556 		 * Special case for "unmounting" root ...
557 		 * we just try to remount it readonly.
558 		 */
559 		down_write(&sb->s_umount);
560 		if (!(sb->s_flags & MS_RDONLY)) {
561 			lock_kernel();
562 			DQUOT_OFF(sb);
563 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
564 			unlock_kernel();
565 		}
566 		up_write(&sb->s_umount);
567 		return retval;
568 	}
569 
570 	down_write(&namespace_sem);
571 	spin_lock(&vfsmount_lock);
572 	event++;
573 
574 	retval = -EBUSY;
575 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
576 		if (!list_empty(&mnt->mnt_list))
577 			umount_tree(mnt, 1, &umount_list);
578 		retval = 0;
579 	}
580 	spin_unlock(&vfsmount_lock);
581 	if (retval)
582 		security_sb_umount_busy(mnt);
583 	up_write(&namespace_sem);
584 	release_mounts(&umount_list);
585 	return retval;
586 }
587 
588 /*
589  * Now umount can handle mount points as well as block devices.
590  * This is important for filesystems which use unnamed block devices.
591  *
592  * We now support a flag for forced unmount like the other 'big iron'
593  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
594  */
595 
596 asmlinkage long sys_umount(char __user * name, int flags)
597 {
598 	struct nameidata nd;
599 	int retval;
600 
601 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
602 	if (retval)
603 		goto out;
604 	retval = -EINVAL;
605 	if (nd.dentry != nd.mnt->mnt_root)
606 		goto dput_and_out;
607 	if (!check_mnt(nd.mnt))
608 		goto dput_and_out;
609 
610 	retval = -EPERM;
611 	if (!capable(CAP_SYS_ADMIN))
612 		goto dput_and_out;
613 
614 	retval = do_umount(nd.mnt, flags);
615 dput_and_out:
616 	path_release_on_umount(&nd);
617 out:
618 	return retval;
619 }
620 
621 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
622 
623 /*
624  *	The 2.0 compatible umount. No flags.
625  */
626 asmlinkage long sys_oldumount(char __user * name)
627 {
628 	return sys_umount(name, 0);
629 }
630 
631 #endif
632 
633 static int mount_is_safe(struct nameidata *nd)
634 {
635 	if (capable(CAP_SYS_ADMIN))
636 		return 0;
637 	return -EPERM;
638 #ifdef notyet
639 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
640 		return -EPERM;
641 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
642 		if (current->uid != nd->dentry->d_inode->i_uid)
643 			return -EPERM;
644 	}
645 	if (vfs_permission(nd, MAY_WRITE))
646 		return -EPERM;
647 	return 0;
648 #endif
649 }
650 
651 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
652 {
653 	while (1) {
654 		if (d == dentry)
655 			return 1;
656 		if (d == NULL || d == d->d_parent)
657 			return 0;
658 		d = d->d_parent;
659 	}
660 }
661 
662 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
663 					int flag)
664 {
665 	struct vfsmount *res, *p, *q, *r, *s;
666 	struct nameidata nd;
667 
668 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
669 		return NULL;
670 
671 	res = q = clone_mnt(mnt, dentry, flag);
672 	if (!q)
673 		goto Enomem;
674 	q->mnt_mountpoint = mnt->mnt_mountpoint;
675 
676 	p = mnt;
677 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
678 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
679 			continue;
680 
681 		for (s = r; s; s = next_mnt(s, r)) {
682 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
683 				s = skip_mnt_tree(s);
684 				continue;
685 			}
686 			while (p != s->mnt_parent) {
687 				p = p->mnt_parent;
688 				q = q->mnt_parent;
689 			}
690 			p = s;
691 			nd.mnt = q;
692 			nd.dentry = p->mnt_mountpoint;
693 			q = clone_mnt(p, p->mnt_root, flag);
694 			if (!q)
695 				goto Enomem;
696 			spin_lock(&vfsmount_lock);
697 			list_add_tail(&q->mnt_list, &res->mnt_list);
698 			attach_mnt(q, &nd);
699 			spin_unlock(&vfsmount_lock);
700 		}
701 	}
702 	return res;
703 Enomem:
704 	if (res) {
705 		LIST_HEAD(umount_list);
706 		spin_lock(&vfsmount_lock);
707 		umount_tree(res, 0, &umount_list);
708 		spin_unlock(&vfsmount_lock);
709 		release_mounts(&umount_list);
710 	}
711 	return NULL;
712 }
713 
714 /*
715  *  @source_mnt : mount tree to be attached
716  *  @nd         : place the mount tree @source_mnt is attached
717  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
718  *  		   store the parent mount and mountpoint dentry.
719  *  		   (done when source_mnt is moved)
720  *
721  *  NOTE: in the table below explains the semantics when a source mount
722  *  of a given type is attached to a destination mount of a given type.
723  * ---------------------------------------------------------------------------
724  * |         BIND MOUNT OPERATION                                            |
725  * |**************************************************************************
726  * | source-->| shared        |       private  |       slave    | unbindable |
727  * | dest     |               |                |                |            |
728  * |   |      |               |                |                |            |
729  * |   v      |               |                |                |            |
730  * |**************************************************************************
731  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
732  * |          |               |                |                |            |
733  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
734  * ***************************************************************************
735  * A bind operation clones the source mount and mounts the clone on the
736  * destination mount.
737  *
738  * (++)  the cloned mount is propagated to all the mounts in the propagation
739  * 	 tree of the destination mount and the cloned mount is added to
740  * 	 the peer group of the source mount.
741  * (+)   the cloned mount is created under the destination mount and is marked
742  *       as shared. The cloned mount is added to the peer group of the source
743  *       mount.
744  * (+++) the mount is propagated to all the mounts in the propagation tree
745  *       of the destination mount and the cloned mount is made slave
746  *       of the same master as that of the source mount. The cloned mount
747  *       is marked as 'shared and slave'.
748  * (*)   the cloned mount is made a slave of the same master as that of the
749  * 	 source mount.
750  *
751  * ---------------------------------------------------------------------------
752  * |         		MOVE MOUNT OPERATION                                 |
753  * |**************************************************************************
754  * | source-->| shared        |       private  |       slave    | unbindable |
755  * | dest     |               |                |                |            |
756  * |   |      |               |                |                |            |
757  * |   v      |               |                |                |            |
758  * |**************************************************************************
759  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
760  * |          |               |                |                |            |
761  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
762  * ***************************************************************************
763  *
764  * (+)  the mount is moved to the destination. And is then propagated to
765  * 	all the mounts in the propagation tree of the destination mount.
766  * (+*)  the mount is moved to the destination.
767  * (+++)  the mount is moved to the destination and is then propagated to
768  * 	all the mounts belonging to the destination mount's propagation tree.
769  * 	the mount is marked as 'shared and slave'.
770  * (*)	the mount continues to be a slave at the new location.
771  *
772  * if the source mount is a tree, the operations explained above is
773  * applied to each mount in the tree.
774  * Must be called without spinlocks held, since this function can sleep
775  * in allocations.
776  */
777 static int attach_recursive_mnt(struct vfsmount *source_mnt,
778 			struct nameidata *nd, struct nameidata *parent_nd)
779 {
780 	LIST_HEAD(tree_list);
781 	struct vfsmount *dest_mnt = nd->mnt;
782 	struct dentry *dest_dentry = nd->dentry;
783 	struct vfsmount *child, *p;
784 
785 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
786 		return -EINVAL;
787 
788 	if (IS_MNT_SHARED(dest_mnt)) {
789 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
790 			set_mnt_shared(p);
791 	}
792 
793 	spin_lock(&vfsmount_lock);
794 	if (parent_nd) {
795 		detach_mnt(source_mnt, parent_nd);
796 		attach_mnt(source_mnt, nd);
797 		touch_namespace(current->namespace);
798 	} else {
799 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
800 		commit_tree(source_mnt);
801 	}
802 
803 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
804 		list_del_init(&child->mnt_hash);
805 		commit_tree(child);
806 	}
807 	spin_unlock(&vfsmount_lock);
808 	return 0;
809 }
810 
811 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
812 {
813 	int err;
814 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
815 		return -EINVAL;
816 
817 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
818 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
819 		return -ENOTDIR;
820 
821 	err = -ENOENT;
822 	mutex_lock(&nd->dentry->d_inode->i_mutex);
823 	if (IS_DEADDIR(nd->dentry->d_inode))
824 		goto out_unlock;
825 
826 	err = security_sb_check_sb(mnt, nd);
827 	if (err)
828 		goto out_unlock;
829 
830 	err = -ENOENT;
831 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
832 		err = attach_recursive_mnt(mnt, nd, NULL);
833 out_unlock:
834 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
835 	if (!err)
836 		security_sb_post_addmount(mnt, nd);
837 	return err;
838 }
839 
840 /*
841  * recursively change the type of the mountpoint.
842  */
843 static int do_change_type(struct nameidata *nd, int flag)
844 {
845 	struct vfsmount *m, *mnt = nd->mnt;
846 	int recurse = flag & MS_REC;
847 	int type = flag & ~MS_REC;
848 
849 	if (nd->dentry != nd->mnt->mnt_root)
850 		return -EINVAL;
851 
852 	down_write(&namespace_sem);
853 	spin_lock(&vfsmount_lock);
854 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
855 		change_mnt_propagation(m, type);
856 	spin_unlock(&vfsmount_lock);
857 	up_write(&namespace_sem);
858 	return 0;
859 }
860 
861 /*
862  * do loopback mount.
863  */
864 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
865 {
866 	struct nameidata old_nd;
867 	struct vfsmount *mnt = NULL;
868 	int err = mount_is_safe(nd);
869 	if (err)
870 		return err;
871 	if (!old_name || !*old_name)
872 		return -EINVAL;
873 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
874 	if (err)
875 		return err;
876 
877 	down_write(&namespace_sem);
878 	err = -EINVAL;
879 	if (IS_MNT_UNBINDABLE(old_nd.mnt))
880  		goto out;
881 
882 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
883 		goto out;
884 
885 	err = -ENOMEM;
886 	if (recurse)
887 		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
888 	else
889 		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
890 
891 	if (!mnt)
892 		goto out;
893 
894 	err = graft_tree(mnt, nd);
895 	if (err) {
896 		LIST_HEAD(umount_list);
897 		spin_lock(&vfsmount_lock);
898 		umount_tree(mnt, 0, &umount_list);
899 		spin_unlock(&vfsmount_lock);
900 		release_mounts(&umount_list);
901 	}
902 
903 out:
904 	up_write(&namespace_sem);
905 	path_release(&old_nd);
906 	return err;
907 }
908 
909 /*
910  * change filesystem flags. dir should be a physical root of filesystem.
911  * If you've mounted a non-root directory somewhere and want to do remount
912  * on it - tough luck.
913  */
914 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
915 		      void *data)
916 {
917 	int err;
918 	struct super_block *sb = nd->mnt->mnt_sb;
919 
920 	if (!capable(CAP_SYS_ADMIN))
921 		return -EPERM;
922 
923 	if (!check_mnt(nd->mnt))
924 		return -EINVAL;
925 
926 	if (nd->dentry != nd->mnt->mnt_root)
927 		return -EINVAL;
928 
929 	down_write(&sb->s_umount);
930 	err = do_remount_sb(sb, flags, data, 0);
931 	if (!err)
932 		nd->mnt->mnt_flags = mnt_flags;
933 	up_write(&sb->s_umount);
934 	if (!err)
935 		security_sb_post_remount(nd->mnt, flags, data);
936 	return err;
937 }
938 
939 static inline int tree_contains_unbindable(struct vfsmount *mnt)
940 {
941 	struct vfsmount *p;
942 	for (p = mnt; p; p = next_mnt(p, mnt)) {
943 		if (IS_MNT_UNBINDABLE(p))
944 			return 1;
945 	}
946 	return 0;
947 }
948 
949 static int do_move_mount(struct nameidata *nd, char *old_name)
950 {
951 	struct nameidata old_nd, parent_nd;
952 	struct vfsmount *p;
953 	int err = 0;
954 	if (!capable(CAP_SYS_ADMIN))
955 		return -EPERM;
956 	if (!old_name || !*old_name)
957 		return -EINVAL;
958 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
959 	if (err)
960 		return err;
961 
962 	down_write(&namespace_sem);
963 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
964 		;
965 	err = -EINVAL;
966 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
967 		goto out;
968 
969 	err = -ENOENT;
970 	mutex_lock(&nd->dentry->d_inode->i_mutex);
971 	if (IS_DEADDIR(nd->dentry->d_inode))
972 		goto out1;
973 
974 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
975 		goto out1;
976 
977 	err = -EINVAL;
978 	if (old_nd.dentry != old_nd.mnt->mnt_root)
979 		goto out1;
980 
981 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
982 		goto out1;
983 
984 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
985 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
986 		goto out1;
987 	/*
988 	 * Don't move a mount residing in a shared parent.
989 	 */
990 	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
991 		goto out1;
992 	/*
993 	 * Don't move a mount tree containing unbindable mounts to a destination
994 	 * mount which is shared.
995 	 */
996 	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
997 		goto out1;
998 	err = -ELOOP;
999 	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1000 		if (p == old_nd.mnt)
1001 			goto out1;
1002 
1003 	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1004 		goto out1;
1005 
1006 	spin_lock(&vfsmount_lock);
1007 	/* if the mount is moved, it should no longer be expire
1008 	 * automatically */
1009 	list_del_init(&old_nd.mnt->mnt_expire);
1010 	spin_unlock(&vfsmount_lock);
1011 out1:
1012 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1013 out:
1014 	up_write(&namespace_sem);
1015 	if (!err)
1016 		path_release(&parent_nd);
1017 	path_release(&old_nd);
1018 	return err;
1019 }
1020 
1021 /*
1022  * create a new mount for userspace and request it to be added into the
1023  * namespace's tree
1024  */
1025 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1026 			int mnt_flags, char *name, void *data)
1027 {
1028 	struct vfsmount *mnt;
1029 
1030 	if (!type || !memchr(type, 0, PAGE_SIZE))
1031 		return -EINVAL;
1032 
1033 	/* we need capabilities... */
1034 	if (!capable(CAP_SYS_ADMIN))
1035 		return -EPERM;
1036 
1037 	mnt = do_kern_mount(type, flags, name, data);
1038 	if (IS_ERR(mnt))
1039 		return PTR_ERR(mnt);
1040 
1041 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1042 }
1043 
1044 /*
1045  * add a mount into a namespace's mount tree
1046  * - provide the option of adding the new mount to an expiration list
1047  */
1048 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1049 		 int mnt_flags, struct list_head *fslist)
1050 {
1051 	int err;
1052 
1053 	down_write(&namespace_sem);
1054 	/* Something was mounted here while we slept */
1055 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1056 		;
1057 	err = -EINVAL;
1058 	if (!check_mnt(nd->mnt))
1059 		goto unlock;
1060 
1061 	/* Refuse the same filesystem on the same mount point */
1062 	err = -EBUSY;
1063 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1064 	    nd->mnt->mnt_root == nd->dentry)
1065 		goto unlock;
1066 
1067 	err = -EINVAL;
1068 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1069 		goto unlock;
1070 
1071 	newmnt->mnt_flags = mnt_flags;
1072 	if ((err = graft_tree(newmnt, nd)))
1073 		goto unlock;
1074 
1075 	if (fslist) {
1076 		/* add to the specified expiration list */
1077 		spin_lock(&vfsmount_lock);
1078 		list_add_tail(&newmnt->mnt_expire, fslist);
1079 		spin_unlock(&vfsmount_lock);
1080 	}
1081 	up_write(&namespace_sem);
1082 	return 0;
1083 
1084 unlock:
1085 	up_write(&namespace_sem);
1086 	mntput(newmnt);
1087 	return err;
1088 }
1089 
1090 EXPORT_SYMBOL_GPL(do_add_mount);
1091 
1092 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1093 				struct list_head *umounts)
1094 {
1095 	spin_lock(&vfsmount_lock);
1096 
1097 	/*
1098 	 * Check if mount is still attached, if not, let whoever holds it deal
1099 	 * with the sucker
1100 	 */
1101 	if (mnt->mnt_parent == mnt) {
1102 		spin_unlock(&vfsmount_lock);
1103 		return;
1104 	}
1105 
1106 	/*
1107 	 * Check that it is still dead: the count should now be 2 - as
1108 	 * contributed by the vfsmount parent and the mntget above
1109 	 */
1110 	if (!propagate_mount_busy(mnt, 2)) {
1111 		/* delete from the namespace */
1112 		touch_namespace(mnt->mnt_namespace);
1113 		list_del_init(&mnt->mnt_list);
1114 		mnt->mnt_namespace = NULL;
1115 		umount_tree(mnt, 1, umounts);
1116 		spin_unlock(&vfsmount_lock);
1117 	} else {
1118 		/*
1119 		 * Someone brought it back to life whilst we didn't have any
1120 		 * locks held so return it to the expiration list
1121 		 */
1122 		list_add_tail(&mnt->mnt_expire, mounts);
1123 		spin_unlock(&vfsmount_lock);
1124 	}
1125 }
1126 
1127 /*
1128  * process a list of expirable mountpoints with the intent of discarding any
1129  * mountpoints that aren't in use and haven't been touched since last we came
1130  * here
1131  */
1132 void mark_mounts_for_expiry(struct list_head *mounts)
1133 {
1134 	struct namespace *namespace;
1135 	struct vfsmount *mnt, *next;
1136 	LIST_HEAD(graveyard);
1137 
1138 	if (list_empty(mounts))
1139 		return;
1140 
1141 	spin_lock(&vfsmount_lock);
1142 
1143 	/* extract from the expiration list every vfsmount that matches the
1144 	 * following criteria:
1145 	 * - only referenced by its parent vfsmount
1146 	 * - still marked for expiry (marked on the last call here; marks are
1147 	 *   cleared by mntput())
1148 	 */
1149 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1150 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1151 		    atomic_read(&mnt->mnt_count) != 1)
1152 			continue;
1153 
1154 		mntget(mnt);
1155 		list_move(&mnt->mnt_expire, &graveyard);
1156 	}
1157 
1158 	/*
1159 	 * go through the vfsmounts we've just consigned to the graveyard to
1160 	 * - check that they're still dead
1161 	 * - delete the vfsmount from the appropriate namespace under lock
1162 	 * - dispose of the corpse
1163 	 */
1164 	while (!list_empty(&graveyard)) {
1165 		LIST_HEAD(umounts);
1166 		mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
1167 		list_del_init(&mnt->mnt_expire);
1168 
1169 		/* don't do anything if the namespace is dead - all the
1170 		 * vfsmounts from it are going away anyway */
1171 		namespace = mnt->mnt_namespace;
1172 		if (!namespace || !namespace->root)
1173 			continue;
1174 		get_namespace(namespace);
1175 
1176 		spin_unlock(&vfsmount_lock);
1177 		down_write(&namespace_sem);
1178 		expire_mount(mnt, mounts, &umounts);
1179 		up_write(&namespace_sem);
1180 		release_mounts(&umounts);
1181 		mntput(mnt);
1182 		put_namespace(namespace);
1183 		spin_lock(&vfsmount_lock);
1184 	}
1185 
1186 	spin_unlock(&vfsmount_lock);
1187 }
1188 
1189 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1190 
1191 /*
1192  * Some copy_from_user() implementations do not return the exact number of
1193  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1194  * Note that this function differs from copy_from_user() in that it will oops
1195  * on bad values of `to', rather than returning a short copy.
1196  */
1197 static long exact_copy_from_user(void *to, const void __user * from,
1198 				 unsigned long n)
1199 {
1200 	char *t = to;
1201 	const char __user *f = from;
1202 	char c;
1203 
1204 	if (!access_ok(VERIFY_READ, from, n))
1205 		return n;
1206 
1207 	while (n) {
1208 		if (__get_user(c, f)) {
1209 			memset(t, 0, n);
1210 			break;
1211 		}
1212 		*t++ = c;
1213 		f++;
1214 		n--;
1215 	}
1216 	return n;
1217 }
1218 
1219 int copy_mount_options(const void __user * data, unsigned long *where)
1220 {
1221 	int i;
1222 	unsigned long page;
1223 	unsigned long size;
1224 
1225 	*where = 0;
1226 	if (!data)
1227 		return 0;
1228 
1229 	if (!(page = __get_free_page(GFP_KERNEL)))
1230 		return -ENOMEM;
1231 
1232 	/* We only care that *some* data at the address the user
1233 	 * gave us is valid.  Just in case, we'll zero
1234 	 * the remainder of the page.
1235 	 */
1236 	/* copy_from_user cannot cross TASK_SIZE ! */
1237 	size = TASK_SIZE - (unsigned long)data;
1238 	if (size > PAGE_SIZE)
1239 		size = PAGE_SIZE;
1240 
1241 	i = size - exact_copy_from_user((void *)page, data, size);
1242 	if (!i) {
1243 		free_page(page);
1244 		return -EFAULT;
1245 	}
1246 	if (i != PAGE_SIZE)
1247 		memset((char *)page + i, 0, PAGE_SIZE - i);
1248 	*where = page;
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1254  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1255  *
1256  * data is a (void *) that can point to any structure up to
1257  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1258  * information (or be NULL).
1259  *
1260  * Pre-0.97 versions of mount() didn't have a flags word.
1261  * When the flags word was introduced its top half was required
1262  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1263  * Therefore, if this magic number is present, it carries no information
1264  * and must be discarded.
1265  */
1266 long do_mount(char *dev_name, char *dir_name, char *type_page,
1267 		  unsigned long flags, void *data_page)
1268 {
1269 	struct nameidata nd;
1270 	int retval = 0;
1271 	int mnt_flags = 0;
1272 
1273 	/* Discard magic */
1274 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1275 		flags &= ~MS_MGC_MSK;
1276 
1277 	/* Basic sanity checks */
1278 
1279 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1280 		return -EINVAL;
1281 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1282 		return -EINVAL;
1283 
1284 	if (data_page)
1285 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1286 
1287 	/* Separate the per-mountpoint flags */
1288 	if (flags & MS_NOSUID)
1289 		mnt_flags |= MNT_NOSUID;
1290 	if (flags & MS_NODEV)
1291 		mnt_flags |= MNT_NODEV;
1292 	if (flags & MS_NOEXEC)
1293 		mnt_flags |= MNT_NOEXEC;
1294 	if (flags & MS_NOATIME)
1295 		mnt_flags |= MNT_NOATIME;
1296 	if (flags & MS_NODIRATIME)
1297 		mnt_flags |= MNT_NODIRATIME;
1298 
1299 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1300 		   MS_NOATIME | MS_NODIRATIME);
1301 
1302 	/* ... and get the mountpoint */
1303 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1304 	if (retval)
1305 		return retval;
1306 
1307 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1308 	if (retval)
1309 		goto dput_out;
1310 
1311 	if (flags & MS_REMOUNT)
1312 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1313 				    data_page);
1314 	else if (flags & MS_BIND)
1315 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1316 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1317 		retval = do_change_type(&nd, flags);
1318 	else if (flags & MS_MOVE)
1319 		retval = do_move_mount(&nd, dev_name);
1320 	else
1321 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1322 				      dev_name, data_page);
1323 dput_out:
1324 	path_release(&nd);
1325 	return retval;
1326 }
1327 
1328 /*
1329  * Allocate a new namespace structure and populate it with contents
1330  * copied from the namespace of the passed in task structure.
1331  */
1332 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1333 {
1334 	struct namespace *namespace = tsk->namespace;
1335 	struct namespace *new_ns;
1336 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1337 	struct vfsmount *p, *q;
1338 
1339 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1340 	if (!new_ns)
1341 		return NULL;
1342 
1343 	atomic_set(&new_ns->count, 1);
1344 	INIT_LIST_HEAD(&new_ns->list);
1345 	init_waitqueue_head(&new_ns->poll);
1346 	new_ns->event = 0;
1347 
1348 	down_write(&namespace_sem);
1349 	/* First pass: copy the tree topology */
1350 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1351 					CL_COPY_ALL | CL_EXPIRE);
1352 	if (!new_ns->root) {
1353 		up_write(&namespace_sem);
1354 		kfree(new_ns);
1355 		return NULL;
1356 	}
1357 	spin_lock(&vfsmount_lock);
1358 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1359 	spin_unlock(&vfsmount_lock);
1360 
1361 	/*
1362 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1363 	 * as belonging to new namespace.  We have already acquired a private
1364 	 * fs_struct, so tsk->fs->lock is not needed.
1365 	 */
1366 	p = namespace->root;
1367 	q = new_ns->root;
1368 	while (p) {
1369 		q->mnt_namespace = new_ns;
1370 		if (fs) {
1371 			if (p == fs->rootmnt) {
1372 				rootmnt = p;
1373 				fs->rootmnt = mntget(q);
1374 			}
1375 			if (p == fs->pwdmnt) {
1376 				pwdmnt = p;
1377 				fs->pwdmnt = mntget(q);
1378 			}
1379 			if (p == fs->altrootmnt) {
1380 				altrootmnt = p;
1381 				fs->altrootmnt = mntget(q);
1382 			}
1383 		}
1384 		p = next_mnt(p, namespace->root);
1385 		q = next_mnt(q, new_ns->root);
1386 	}
1387 	up_write(&namespace_sem);
1388 
1389 	if (rootmnt)
1390 		mntput(rootmnt);
1391 	if (pwdmnt)
1392 		mntput(pwdmnt);
1393 	if (altrootmnt)
1394 		mntput(altrootmnt);
1395 
1396 	return new_ns;
1397 }
1398 
1399 int copy_namespace(int flags, struct task_struct *tsk)
1400 {
1401 	struct namespace *namespace = tsk->namespace;
1402 	struct namespace *new_ns;
1403 	int err = 0;
1404 
1405 	if (!namespace)
1406 		return 0;
1407 
1408 	get_namespace(namespace);
1409 
1410 	if (!(flags & CLONE_NEWNS))
1411 		return 0;
1412 
1413 	if (!capable(CAP_SYS_ADMIN)) {
1414 		err = -EPERM;
1415 		goto out;
1416 	}
1417 
1418 	new_ns = dup_namespace(tsk, tsk->fs);
1419 	if (!new_ns) {
1420 		err = -ENOMEM;
1421 		goto out;
1422 	}
1423 
1424 	tsk->namespace = new_ns;
1425 
1426 out:
1427 	put_namespace(namespace);
1428 	return err;
1429 }
1430 
1431 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1432 			  char __user * type, unsigned long flags,
1433 			  void __user * data)
1434 {
1435 	int retval;
1436 	unsigned long data_page;
1437 	unsigned long type_page;
1438 	unsigned long dev_page;
1439 	char *dir_page;
1440 
1441 	retval = copy_mount_options(type, &type_page);
1442 	if (retval < 0)
1443 		return retval;
1444 
1445 	dir_page = getname(dir_name);
1446 	retval = PTR_ERR(dir_page);
1447 	if (IS_ERR(dir_page))
1448 		goto out1;
1449 
1450 	retval = copy_mount_options(dev_name, &dev_page);
1451 	if (retval < 0)
1452 		goto out2;
1453 
1454 	retval = copy_mount_options(data, &data_page);
1455 	if (retval < 0)
1456 		goto out3;
1457 
1458 	lock_kernel();
1459 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1460 			  flags, (void *)data_page);
1461 	unlock_kernel();
1462 	free_page(data_page);
1463 
1464 out3:
1465 	free_page(dev_page);
1466 out2:
1467 	putname(dir_page);
1468 out1:
1469 	free_page(type_page);
1470 	return retval;
1471 }
1472 
1473 /*
1474  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1475  * It can block. Requires the big lock held.
1476  */
1477 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1478 		 struct dentry *dentry)
1479 {
1480 	struct dentry *old_root;
1481 	struct vfsmount *old_rootmnt;
1482 	write_lock(&fs->lock);
1483 	old_root = fs->root;
1484 	old_rootmnt = fs->rootmnt;
1485 	fs->rootmnt = mntget(mnt);
1486 	fs->root = dget(dentry);
1487 	write_unlock(&fs->lock);
1488 	if (old_root) {
1489 		dput(old_root);
1490 		mntput(old_rootmnt);
1491 	}
1492 }
1493 
1494 /*
1495  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1496  * It can block. Requires the big lock held.
1497  */
1498 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1499 		struct dentry *dentry)
1500 {
1501 	struct dentry *old_pwd;
1502 	struct vfsmount *old_pwdmnt;
1503 
1504 	write_lock(&fs->lock);
1505 	old_pwd = fs->pwd;
1506 	old_pwdmnt = fs->pwdmnt;
1507 	fs->pwdmnt = mntget(mnt);
1508 	fs->pwd = dget(dentry);
1509 	write_unlock(&fs->lock);
1510 
1511 	if (old_pwd) {
1512 		dput(old_pwd);
1513 		mntput(old_pwdmnt);
1514 	}
1515 }
1516 
1517 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1518 {
1519 	struct task_struct *g, *p;
1520 	struct fs_struct *fs;
1521 
1522 	read_lock(&tasklist_lock);
1523 	do_each_thread(g, p) {
1524 		task_lock(p);
1525 		fs = p->fs;
1526 		if (fs) {
1527 			atomic_inc(&fs->count);
1528 			task_unlock(p);
1529 			if (fs->root == old_nd->dentry
1530 			    && fs->rootmnt == old_nd->mnt)
1531 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1532 			if (fs->pwd == old_nd->dentry
1533 			    && fs->pwdmnt == old_nd->mnt)
1534 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1535 			put_fs_struct(fs);
1536 		} else
1537 			task_unlock(p);
1538 	} while_each_thread(g, p);
1539 	read_unlock(&tasklist_lock);
1540 }
1541 
1542 /*
1543  * pivot_root Semantics:
1544  * Moves the root file system of the current process to the directory put_old,
1545  * makes new_root as the new root file system of the current process, and sets
1546  * root/cwd of all processes which had them on the current root to new_root.
1547  *
1548  * Restrictions:
1549  * The new_root and put_old must be directories, and  must not be on the
1550  * same file  system as the current process root. The put_old  must  be
1551  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1552  * pointed to by put_old must yield the same directory as new_root. No other
1553  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1554  *
1555  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1556  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1557  * in this situation.
1558  *
1559  * Notes:
1560  *  - we don't move root/cwd if they are not at the root (reason: if something
1561  *    cared enough to change them, it's probably wrong to force them elsewhere)
1562  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1563  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1564  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1565  *    first.
1566  */
1567 asmlinkage long sys_pivot_root(const char __user * new_root,
1568 			       const char __user * put_old)
1569 {
1570 	struct vfsmount *tmp;
1571 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1572 	int error;
1573 
1574 	if (!capable(CAP_SYS_ADMIN))
1575 		return -EPERM;
1576 
1577 	lock_kernel();
1578 
1579 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1580 			    &new_nd);
1581 	if (error)
1582 		goto out0;
1583 	error = -EINVAL;
1584 	if (!check_mnt(new_nd.mnt))
1585 		goto out1;
1586 
1587 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1588 	if (error)
1589 		goto out1;
1590 
1591 	error = security_sb_pivotroot(&old_nd, &new_nd);
1592 	if (error) {
1593 		path_release(&old_nd);
1594 		goto out1;
1595 	}
1596 
1597 	read_lock(&current->fs->lock);
1598 	user_nd.mnt = mntget(current->fs->rootmnt);
1599 	user_nd.dentry = dget(current->fs->root);
1600 	read_unlock(&current->fs->lock);
1601 	down_write(&namespace_sem);
1602 	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1603 	error = -EINVAL;
1604 	if (IS_MNT_SHARED(old_nd.mnt) ||
1605 		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1606 		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1607 		goto out2;
1608 	if (!check_mnt(user_nd.mnt))
1609 		goto out2;
1610 	error = -ENOENT;
1611 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1612 		goto out2;
1613 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1614 		goto out2;
1615 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1616 		goto out2;
1617 	error = -EBUSY;
1618 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1619 		goto out2; /* loop, on the same file system  */
1620 	error = -EINVAL;
1621 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1622 		goto out2; /* not a mountpoint */
1623 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1624 		goto out2; /* not attached */
1625 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1626 		goto out2; /* not a mountpoint */
1627 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1628 		goto out2; /* not attached */
1629 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1630 	spin_lock(&vfsmount_lock);
1631 	if (tmp != new_nd.mnt) {
1632 		for (;;) {
1633 			if (tmp->mnt_parent == tmp)
1634 				goto out3; /* already mounted on put_old */
1635 			if (tmp->mnt_parent == new_nd.mnt)
1636 				break;
1637 			tmp = tmp->mnt_parent;
1638 		}
1639 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1640 			goto out3;
1641 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1642 		goto out3;
1643 	detach_mnt(new_nd.mnt, &parent_nd);
1644 	detach_mnt(user_nd.mnt, &root_parent);
1645 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1646 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1647 	touch_namespace(current->namespace);
1648 	spin_unlock(&vfsmount_lock);
1649 	chroot_fs_refs(&user_nd, &new_nd);
1650 	security_sb_post_pivotroot(&user_nd, &new_nd);
1651 	error = 0;
1652 	path_release(&root_parent);
1653 	path_release(&parent_nd);
1654 out2:
1655 	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1656 	up_write(&namespace_sem);
1657 	path_release(&user_nd);
1658 	path_release(&old_nd);
1659 out1:
1660 	path_release(&new_nd);
1661 out0:
1662 	unlock_kernel();
1663 	return error;
1664 out3:
1665 	spin_unlock(&vfsmount_lock);
1666 	goto out2;
1667 }
1668 
1669 static void __init init_mount_tree(void)
1670 {
1671 	struct vfsmount *mnt;
1672 	struct namespace *namespace;
1673 	struct task_struct *g, *p;
1674 
1675 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1676 	if (IS_ERR(mnt))
1677 		panic("Can't create rootfs");
1678 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1679 	if (!namespace)
1680 		panic("Can't allocate initial namespace");
1681 	atomic_set(&namespace->count, 1);
1682 	INIT_LIST_HEAD(&namespace->list);
1683 	init_waitqueue_head(&namespace->poll);
1684 	namespace->event = 0;
1685 	list_add(&mnt->mnt_list, &namespace->list);
1686 	namespace->root = mnt;
1687 	mnt->mnt_namespace = namespace;
1688 
1689 	init_task.namespace = namespace;
1690 	read_lock(&tasklist_lock);
1691 	do_each_thread(g, p) {
1692 		get_namespace(namespace);
1693 		p->namespace = namespace;
1694 	} while_each_thread(g, p);
1695 	read_unlock(&tasklist_lock);
1696 
1697 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1698 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1699 }
1700 
1701 void __init mnt_init(unsigned long mempages)
1702 {
1703 	struct list_head *d;
1704 	unsigned int nr_hash;
1705 	int i;
1706 
1707 	init_rwsem(&namespace_sem);
1708 
1709 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1710 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1711 
1712 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1713 
1714 	if (!mount_hashtable)
1715 		panic("Failed to allocate mount hash table\n");
1716 
1717 	/*
1718 	 * Find the power-of-two list-heads that can fit into the allocation..
1719 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1720 	 * a power-of-two.
1721 	 */
1722 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1723 	hash_bits = 0;
1724 	do {
1725 		hash_bits++;
1726 	} while ((nr_hash >> hash_bits) != 0);
1727 	hash_bits--;
1728 
1729 	/*
1730 	 * Re-calculate the actual number of entries and the mask
1731 	 * from the number of bits we can fit.
1732 	 */
1733 	nr_hash = 1UL << hash_bits;
1734 	hash_mask = nr_hash - 1;
1735 
1736 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1737 
1738 	/* And initialize the newly allocated array */
1739 	d = mount_hashtable;
1740 	i = nr_hash;
1741 	do {
1742 		INIT_LIST_HEAD(d);
1743 		d++;
1744 		i--;
1745 	} while (i);
1746 	sysfs_init();
1747 	subsystem_register(&fs_subsys);
1748 	init_rootfs();
1749 	init_mount_tree();
1750 }
1751 
1752 void __put_namespace(struct namespace *namespace)
1753 {
1754 	struct vfsmount *root = namespace->root;
1755 	LIST_HEAD(umount_list);
1756 	namespace->root = NULL;
1757 	spin_unlock(&vfsmount_lock);
1758 	down_write(&namespace_sem);
1759 	spin_lock(&vfsmount_lock);
1760 	umount_tree(root, 0, &umount_list);
1761 	spin_unlock(&vfsmount_lock);
1762 	up_write(&namespace_sem);
1763 	release_mounts(&umount_list);
1764 	kfree(namespace);
1765 }
1766