xref: /linux/fs/namespace.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/module.h>
20 #include <linux/seq_file.h>
21 #include <linux/namespace.h>
22 #include <linux/namei.h>
23 #include <linux/security.h>
24 #include <linux/mount.h>
25 #include <asm/uaccess.h>
26 #include <asm/unistd.h>
27 
28 extern int __init init_rootfs(void);
29 
30 #ifdef CONFIG_SYSFS
31 extern int __init sysfs_init(void);
32 #else
33 static inline int sysfs_init(void)
34 {
35 	return 0;
36 }
37 #endif
38 
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40  __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 
42 static struct list_head *mount_hashtable;
43 static int hash_mask, hash_bits;
44 static kmem_cache_t *mnt_cache;
45 
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
47 {
48 	unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES);
49 	tmp += ((unsigned long) dentry / L1_CACHE_BYTES);
50 	tmp = tmp + (tmp >> hash_bits);
51 	return tmp & hash_mask;
52 }
53 
54 struct vfsmount *alloc_vfsmnt(const char *name)
55 {
56 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
57 	if (mnt) {
58 		memset(mnt, 0, sizeof(struct vfsmount));
59 		atomic_set(&mnt->mnt_count,1);
60 		INIT_LIST_HEAD(&mnt->mnt_hash);
61 		INIT_LIST_HEAD(&mnt->mnt_child);
62 		INIT_LIST_HEAD(&mnt->mnt_mounts);
63 		INIT_LIST_HEAD(&mnt->mnt_list);
64 		INIT_LIST_HEAD(&mnt->mnt_fslink);
65 		if (name) {
66 			int size = strlen(name)+1;
67 			char *newname = kmalloc(size, GFP_KERNEL);
68 			if (newname) {
69 				memcpy(newname, name, size);
70 				mnt->mnt_devname = newname;
71 			}
72 		}
73 	}
74 	return mnt;
75 }
76 
77 void free_vfsmnt(struct vfsmount *mnt)
78 {
79 	kfree(mnt->mnt_devname);
80 	kmem_cache_free(mnt_cache, mnt);
81 }
82 
83 /*
84  * Now, lookup_mnt increments the ref count before returning
85  * the vfsmount struct.
86  */
87 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	struct list_head * head = mount_hashtable + hash(mnt, dentry);
90 	struct list_head * tmp = head;
91 	struct vfsmount *p, *found = NULL;
92 
93 	spin_lock(&vfsmount_lock);
94 	for (;;) {
95 		tmp = tmp->next;
96 		p = NULL;
97 		if (tmp == head)
98 			break;
99 		p = list_entry(tmp, struct vfsmount, mnt_hash);
100 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
101 			found = mntget(p);
102 			break;
103 		}
104 	}
105 	spin_unlock(&vfsmount_lock);
106 	return found;
107 }
108 
109 static inline int check_mnt(struct vfsmount *mnt)
110 {
111 	return mnt->mnt_namespace == current->namespace;
112 }
113 
114 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
115 {
116 	old_nd->dentry = mnt->mnt_mountpoint;
117 	old_nd->mnt = mnt->mnt_parent;
118 	mnt->mnt_parent = mnt;
119 	mnt->mnt_mountpoint = mnt->mnt_root;
120 	list_del_init(&mnt->mnt_child);
121 	list_del_init(&mnt->mnt_hash);
122 	old_nd->dentry->d_mounted--;
123 }
124 
125 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
126 {
127 	mnt->mnt_parent = mntget(nd->mnt);
128 	mnt->mnt_mountpoint = dget(nd->dentry);
129 	list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry));
130 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
131 	nd->dentry->d_mounted++;
132 }
133 
134 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
135 {
136 	struct list_head *next = p->mnt_mounts.next;
137 	if (next == &p->mnt_mounts) {
138 		while (1) {
139 			if (p == root)
140 				return NULL;
141 			next = p->mnt_child.next;
142 			if (next != &p->mnt_parent->mnt_mounts)
143 				break;
144 			p = p->mnt_parent;
145 		}
146 	}
147 	return list_entry(next, struct vfsmount, mnt_child);
148 }
149 
150 static struct vfsmount *
151 clone_mnt(struct vfsmount *old, struct dentry *root)
152 {
153 	struct super_block *sb = old->mnt_sb;
154 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
155 
156 	if (mnt) {
157 		mnt->mnt_flags = old->mnt_flags;
158 		atomic_inc(&sb->s_active);
159 		mnt->mnt_sb = sb;
160 		mnt->mnt_root = dget(root);
161 		mnt->mnt_mountpoint = mnt->mnt_root;
162 		mnt->mnt_parent = mnt;
163 		mnt->mnt_namespace = old->mnt_namespace;
164 
165 		/* stick the duplicate mount on the same expiry list
166 		 * as the original if that was on one */
167 		spin_lock(&vfsmount_lock);
168 		if (!list_empty(&old->mnt_fslink))
169 			list_add(&mnt->mnt_fslink, &old->mnt_fslink);
170 		spin_unlock(&vfsmount_lock);
171 	}
172 	return mnt;
173 }
174 
175 void __mntput(struct vfsmount *mnt)
176 {
177 	struct super_block *sb = mnt->mnt_sb;
178 	dput(mnt->mnt_root);
179 	free_vfsmnt(mnt);
180 	deactivate_super(sb);
181 }
182 
183 EXPORT_SYMBOL(__mntput);
184 
185 /* iterator */
186 static void *m_start(struct seq_file *m, loff_t *pos)
187 {
188 	struct namespace *n = m->private;
189 	struct list_head *p;
190 	loff_t l = *pos;
191 
192 	down_read(&n->sem);
193 	list_for_each(p, &n->list)
194 		if (!l--)
195 			return list_entry(p, struct vfsmount, mnt_list);
196 	return NULL;
197 }
198 
199 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
200 {
201 	struct namespace *n = m->private;
202 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
203 	(*pos)++;
204 	return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
205 }
206 
207 static void m_stop(struct seq_file *m, void *v)
208 {
209 	struct namespace *n = m->private;
210 	up_read(&n->sem);
211 }
212 
213 static inline void mangle(struct seq_file *m, const char *s)
214 {
215 	seq_escape(m, s, " \t\n\\");
216 }
217 
218 static int show_vfsmnt(struct seq_file *m, void *v)
219 {
220 	struct vfsmount *mnt = v;
221 	int err = 0;
222 	static struct proc_fs_info {
223 		int flag;
224 		char *str;
225 	} fs_info[] = {
226 		{ MS_SYNCHRONOUS, ",sync" },
227 		{ MS_DIRSYNC, ",dirsync" },
228 		{ MS_MANDLOCK, ",mand" },
229 		{ MS_NOATIME, ",noatime" },
230 		{ MS_NODIRATIME, ",nodiratime" },
231 		{ 0, NULL }
232 	};
233 	static struct proc_fs_info mnt_info[] = {
234 		{ MNT_NOSUID, ",nosuid" },
235 		{ MNT_NODEV, ",nodev" },
236 		{ MNT_NOEXEC, ",noexec" },
237 		{ 0, NULL }
238 	};
239 	struct proc_fs_info *fs_infop;
240 
241 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
242 	seq_putc(m, ' ');
243 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
244 	seq_putc(m, ' ');
245 	mangle(m, mnt->mnt_sb->s_type->name);
246 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
247 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
248 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
249 			seq_puts(m, fs_infop->str);
250 	}
251 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
252 		if (mnt->mnt_flags & fs_infop->flag)
253 			seq_puts(m, fs_infop->str);
254 	}
255 	if (mnt->mnt_sb->s_op->show_options)
256 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
257 	seq_puts(m, " 0 0\n");
258 	return err;
259 }
260 
261 struct seq_operations mounts_op = {
262 	.start	= m_start,
263 	.next	= m_next,
264 	.stop	= m_stop,
265 	.show	= show_vfsmnt
266 };
267 
268 /**
269  * may_umount_tree - check if a mount tree is busy
270  * @mnt: root of mount tree
271  *
272  * This is called to check if a tree of mounts has any
273  * open files, pwds, chroots or sub mounts that are
274  * busy.
275  */
276 int may_umount_tree(struct vfsmount *mnt)
277 {
278 	struct list_head *next;
279 	struct vfsmount *this_parent = mnt;
280 	int actual_refs;
281 	int minimum_refs;
282 
283 	spin_lock(&vfsmount_lock);
284 	actual_refs = atomic_read(&mnt->mnt_count);
285 	minimum_refs = 2;
286 repeat:
287 	next = this_parent->mnt_mounts.next;
288 resume:
289 	while (next != &this_parent->mnt_mounts) {
290 		struct vfsmount *p = list_entry(next, struct vfsmount, mnt_child);
291 
292 		next = next->next;
293 
294 		actual_refs += atomic_read(&p->mnt_count);
295 		minimum_refs += 2;
296 
297 		if (!list_empty(&p->mnt_mounts)) {
298 			this_parent = p;
299 			goto repeat;
300 		}
301 	}
302 
303 	if (this_parent != mnt) {
304 		next = this_parent->mnt_child.next;
305 		this_parent = this_parent->mnt_parent;
306 		goto resume;
307 	}
308 	spin_unlock(&vfsmount_lock);
309 
310 	if (actual_refs > minimum_refs)
311 		return -EBUSY;
312 
313 	return 0;
314 }
315 
316 EXPORT_SYMBOL(may_umount_tree);
317 
318 /**
319  * may_umount - check if a mount point is busy
320  * @mnt: root of mount
321  *
322  * This is called to check if a mount point has any
323  * open files, pwds, chroots or sub mounts. If the
324  * mount has sub mounts this will return busy
325  * regardless of whether the sub mounts are busy.
326  *
327  * Doesn't take quota and stuff into account. IOW, in some cases it will
328  * give false negatives. The main reason why it's here is that we need
329  * a non-destructive way to look for easily umountable filesystems.
330  */
331 int may_umount(struct vfsmount *mnt)
332 {
333 	if (atomic_read(&mnt->mnt_count) > 2)
334 		return -EBUSY;
335 	return 0;
336 }
337 
338 EXPORT_SYMBOL(may_umount);
339 
340 static void umount_tree(struct vfsmount *mnt)
341 {
342 	struct vfsmount *p;
343 	LIST_HEAD(kill);
344 
345 	for (p = mnt; p; p = next_mnt(p, mnt)) {
346 		list_del(&p->mnt_list);
347 		list_add(&p->mnt_list, &kill);
348 	}
349 
350 	while (!list_empty(&kill)) {
351 		mnt = list_entry(kill.next, struct vfsmount, mnt_list);
352 		list_del_init(&mnt->mnt_list);
353 		list_del_init(&mnt->mnt_fslink);
354 		if (mnt->mnt_parent == mnt) {
355 			spin_unlock(&vfsmount_lock);
356 		} else {
357 			struct nameidata old_nd;
358 			detach_mnt(mnt, &old_nd);
359 			spin_unlock(&vfsmount_lock);
360 			path_release(&old_nd);
361 		}
362 		mntput(mnt);
363 		spin_lock(&vfsmount_lock);
364 	}
365 }
366 
367 static int do_umount(struct vfsmount *mnt, int flags)
368 {
369 	struct super_block * sb = mnt->mnt_sb;
370 	int retval;
371 
372 	retval = security_sb_umount(mnt, flags);
373 	if (retval)
374 		return retval;
375 
376 	/*
377 	 * Allow userspace to request a mountpoint be expired rather than
378 	 * unmounting unconditionally. Unmount only happens if:
379 	 *  (1) the mark is already set (the mark is cleared by mntput())
380 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
381 	 */
382 	if (flags & MNT_EXPIRE) {
383 		if (mnt == current->fs->rootmnt ||
384 		    flags & (MNT_FORCE | MNT_DETACH))
385 			return -EINVAL;
386 
387 		if (atomic_read(&mnt->mnt_count) != 2)
388 			return -EBUSY;
389 
390 		if (!xchg(&mnt->mnt_expiry_mark, 1))
391 			return -EAGAIN;
392 	}
393 
394 	/*
395 	 * If we may have to abort operations to get out of this
396 	 * mount, and they will themselves hold resources we must
397 	 * allow the fs to do things. In the Unix tradition of
398 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
399 	 * might fail to complete on the first run through as other tasks
400 	 * must return, and the like. Thats for the mount program to worry
401 	 * about for the moment.
402 	 */
403 
404 	lock_kernel();
405 	if( (flags&MNT_FORCE) && sb->s_op->umount_begin)
406 		sb->s_op->umount_begin(sb);
407 	unlock_kernel();
408 
409 	/*
410 	 * No sense to grab the lock for this test, but test itself looks
411 	 * somewhat bogus. Suggestions for better replacement?
412 	 * Ho-hum... In principle, we might treat that as umount + switch
413 	 * to rootfs. GC would eventually take care of the old vfsmount.
414 	 * Actually it makes sense, especially if rootfs would contain a
415 	 * /reboot - static binary that would close all descriptors and
416 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
417 	 */
418 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
419 		/*
420 		 * Special case for "unmounting" root ...
421 		 * we just try to remount it readonly.
422 		 */
423 		down_write(&sb->s_umount);
424 		if (!(sb->s_flags & MS_RDONLY)) {
425 			lock_kernel();
426 			DQUOT_OFF(sb);
427 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
428 			unlock_kernel();
429 		}
430 		up_write(&sb->s_umount);
431 		return retval;
432 	}
433 
434 	down_write(&current->namespace->sem);
435 	spin_lock(&vfsmount_lock);
436 
437 	if (atomic_read(&sb->s_active) == 1) {
438 		/* last instance - try to be smart */
439 		spin_unlock(&vfsmount_lock);
440 		lock_kernel();
441 		DQUOT_OFF(sb);
442 		acct_auto_close(sb);
443 		unlock_kernel();
444 		security_sb_umount_close(mnt);
445 		spin_lock(&vfsmount_lock);
446 	}
447 	retval = -EBUSY;
448 	if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) {
449 		if (!list_empty(&mnt->mnt_list))
450 			umount_tree(mnt);
451 		retval = 0;
452 	}
453 	spin_unlock(&vfsmount_lock);
454 	if (retval)
455 		security_sb_umount_busy(mnt);
456 	up_write(&current->namespace->sem);
457 	return retval;
458 }
459 
460 /*
461  * Now umount can handle mount points as well as block devices.
462  * This is important for filesystems which use unnamed block devices.
463  *
464  * We now support a flag for forced unmount like the other 'big iron'
465  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
466  */
467 
468 asmlinkage long sys_umount(char __user * name, int flags)
469 {
470 	struct nameidata nd;
471 	int retval;
472 
473 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
474 	if (retval)
475 		goto out;
476 	retval = -EINVAL;
477 	if (nd.dentry != nd.mnt->mnt_root)
478 		goto dput_and_out;
479 	if (!check_mnt(nd.mnt))
480 		goto dput_and_out;
481 
482 	retval = -EPERM;
483 	if (!capable(CAP_SYS_ADMIN))
484 		goto dput_and_out;
485 
486 	retval = do_umount(nd.mnt, flags);
487 dput_and_out:
488 	path_release_on_umount(&nd);
489 out:
490 	return retval;
491 }
492 
493 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
494 
495 /*
496  *	The 2.0 compatible umount. No flags.
497  */
498 
499 asmlinkage long sys_oldumount(char __user * name)
500 {
501 	return sys_umount(name,0);
502 }
503 
504 #endif
505 
506 static int mount_is_safe(struct nameidata *nd)
507 {
508 	if (capable(CAP_SYS_ADMIN))
509 		return 0;
510 	return -EPERM;
511 #ifdef notyet
512 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
513 		return -EPERM;
514 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
515 		if (current->uid != nd->dentry->d_inode->i_uid)
516 			return -EPERM;
517 	}
518 	if (permission(nd->dentry->d_inode, MAY_WRITE, nd))
519 		return -EPERM;
520 	return 0;
521 #endif
522 }
523 
524 static int
525 lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
526 {
527 	while (1) {
528 		if (d == dentry)
529 			return 1;
530 		if (d == NULL || d == d->d_parent)
531 			return 0;
532 		d = d->d_parent;
533 	}
534 }
535 
536 static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry)
537 {
538 	struct vfsmount *res, *p, *q, *r, *s;
539 	struct list_head *h;
540 	struct nameidata nd;
541 
542 	res = q = clone_mnt(mnt, dentry);
543 	if (!q)
544 		goto Enomem;
545 	q->mnt_mountpoint = mnt->mnt_mountpoint;
546 
547 	p = mnt;
548 	for (h = mnt->mnt_mounts.next; h != &mnt->mnt_mounts; h = h->next) {
549 		r = list_entry(h, struct vfsmount, mnt_child);
550 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
551 			continue;
552 
553 		for (s = r; s; s = next_mnt(s, r)) {
554 			while (p != s->mnt_parent) {
555 				p = p->mnt_parent;
556 				q = q->mnt_parent;
557 			}
558 			p = s;
559 			nd.mnt = q;
560 			nd.dentry = p->mnt_mountpoint;
561 			q = clone_mnt(p, p->mnt_root);
562 			if (!q)
563 				goto Enomem;
564 			spin_lock(&vfsmount_lock);
565 			list_add_tail(&q->mnt_list, &res->mnt_list);
566 			attach_mnt(q, &nd);
567 			spin_unlock(&vfsmount_lock);
568 		}
569 	}
570 	return res;
571  Enomem:
572 	if (res) {
573 		spin_lock(&vfsmount_lock);
574 		umount_tree(res);
575 		spin_unlock(&vfsmount_lock);
576 	}
577 	return NULL;
578 }
579 
580 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
581 {
582 	int err;
583 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
584 		return -EINVAL;
585 
586 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
587 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
588 		return -ENOTDIR;
589 
590 	err = -ENOENT;
591 	down(&nd->dentry->d_inode->i_sem);
592 	if (IS_DEADDIR(nd->dentry->d_inode))
593 		goto out_unlock;
594 
595 	err = security_sb_check_sb(mnt, nd);
596 	if (err)
597 		goto out_unlock;
598 
599 	err = -ENOENT;
600 	spin_lock(&vfsmount_lock);
601 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) {
602 		struct list_head head;
603 
604 		attach_mnt(mnt, nd);
605 		list_add_tail(&head, &mnt->mnt_list);
606 		list_splice(&head, current->namespace->list.prev);
607 		mntget(mnt);
608 		err = 0;
609 	}
610 	spin_unlock(&vfsmount_lock);
611 out_unlock:
612 	up(&nd->dentry->d_inode->i_sem);
613 	if (!err)
614 		security_sb_post_addmount(mnt, nd);
615 	return err;
616 }
617 
618 /*
619  * do loopback mount.
620  */
621 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
622 {
623 	struct nameidata old_nd;
624 	struct vfsmount *mnt = NULL;
625 	int err = mount_is_safe(nd);
626 	if (err)
627 		return err;
628 	if (!old_name || !*old_name)
629 		return -EINVAL;
630 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
631 	if (err)
632 		return err;
633 
634 	down_write(&current->namespace->sem);
635 	err = -EINVAL;
636 	if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) {
637 		err = -ENOMEM;
638 		if (recurse)
639 			mnt = copy_tree(old_nd.mnt, old_nd.dentry);
640 		else
641 			mnt = clone_mnt(old_nd.mnt, old_nd.dentry);
642 	}
643 
644 	if (mnt) {
645 		/* stop bind mounts from expiring */
646 		spin_lock(&vfsmount_lock);
647 		list_del_init(&mnt->mnt_fslink);
648 		spin_unlock(&vfsmount_lock);
649 
650 		err = graft_tree(mnt, nd);
651 		if (err) {
652 			spin_lock(&vfsmount_lock);
653 			umount_tree(mnt);
654 			spin_unlock(&vfsmount_lock);
655 		} else
656 			mntput(mnt);
657 	}
658 
659 	up_write(&current->namespace->sem);
660 	path_release(&old_nd);
661 	return err;
662 }
663 
664 /*
665  * change filesystem flags. dir should be a physical root of filesystem.
666  * If you've mounted a non-root directory somewhere and want to do remount
667  * on it - tough luck.
668  */
669 
670 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
671 		      void *data)
672 {
673 	int err;
674 	struct super_block * sb = nd->mnt->mnt_sb;
675 
676 	if (!capable(CAP_SYS_ADMIN))
677 		return -EPERM;
678 
679 	if (!check_mnt(nd->mnt))
680 		return -EINVAL;
681 
682 	if (nd->dentry != nd->mnt->mnt_root)
683 		return -EINVAL;
684 
685 	down_write(&sb->s_umount);
686 	err = do_remount_sb(sb, flags, data, 0);
687 	if (!err)
688 		nd->mnt->mnt_flags=mnt_flags;
689 	up_write(&sb->s_umount);
690 	if (!err)
691 		security_sb_post_remount(nd->mnt, flags, data);
692 	return err;
693 }
694 
695 static int do_move_mount(struct nameidata *nd, char *old_name)
696 {
697 	struct nameidata old_nd, parent_nd;
698 	struct vfsmount *p;
699 	int err = 0;
700 	if (!capable(CAP_SYS_ADMIN))
701 		return -EPERM;
702 	if (!old_name || !*old_name)
703 		return -EINVAL;
704 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
705 	if (err)
706 		return err;
707 
708 	down_write(&current->namespace->sem);
709 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
710 		;
711 	err = -EINVAL;
712 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
713 		goto out;
714 
715 	err = -ENOENT;
716 	down(&nd->dentry->d_inode->i_sem);
717 	if (IS_DEADDIR(nd->dentry->d_inode))
718 		goto out1;
719 
720 	spin_lock(&vfsmount_lock);
721 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
722 		goto out2;
723 
724 	err = -EINVAL;
725 	if (old_nd.dentry != old_nd.mnt->mnt_root)
726 		goto out2;
727 
728 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
729 		goto out2;
730 
731 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
732 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
733 		goto out2;
734 
735 	err = -ELOOP;
736 	for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent)
737 		if (p == old_nd.mnt)
738 			goto out2;
739 	err = 0;
740 
741 	detach_mnt(old_nd.mnt, &parent_nd);
742 	attach_mnt(old_nd.mnt, nd);
743 
744 	/* if the mount is moved, it should no longer be expire
745 	 * automatically */
746 	list_del_init(&old_nd.mnt->mnt_fslink);
747 out2:
748 	spin_unlock(&vfsmount_lock);
749 out1:
750 	up(&nd->dentry->d_inode->i_sem);
751 out:
752 	up_write(&current->namespace->sem);
753 	if (!err)
754 		path_release(&parent_nd);
755 	path_release(&old_nd);
756 	return err;
757 }
758 
759 /*
760  * create a new mount for userspace and request it to be added into the
761  * namespace's tree
762  */
763 static int do_new_mount(struct nameidata *nd, char *type, int flags,
764 			int mnt_flags, char *name, void *data)
765 {
766 	struct vfsmount *mnt;
767 
768 	if (!type || !memchr(type, 0, PAGE_SIZE))
769 		return -EINVAL;
770 
771 	/* we need capabilities... */
772 	if (!capable(CAP_SYS_ADMIN))
773 		return -EPERM;
774 
775 	mnt = do_kern_mount(type, flags, name, data);
776 	if (IS_ERR(mnt))
777 		return PTR_ERR(mnt);
778 
779 	return do_add_mount(mnt, nd, mnt_flags, NULL);
780 }
781 
782 /*
783  * add a mount into a namespace's mount tree
784  * - provide the option of adding the new mount to an expiration list
785  */
786 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
787 		 int mnt_flags, struct list_head *fslist)
788 {
789 	int err;
790 
791 	down_write(&current->namespace->sem);
792 	/* Something was mounted here while we slept */
793 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
794 		;
795 	err = -EINVAL;
796 	if (!check_mnt(nd->mnt))
797 		goto unlock;
798 
799 	/* Refuse the same filesystem on the same mount point */
800 	err = -EBUSY;
801 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
802 	    nd->mnt->mnt_root == nd->dentry)
803 		goto unlock;
804 
805 	err = -EINVAL;
806 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
807 		goto unlock;
808 
809 	newmnt->mnt_flags = mnt_flags;
810 	err = graft_tree(newmnt, nd);
811 
812 	if (err == 0 && fslist) {
813 		/* add to the specified expiration list */
814 		spin_lock(&vfsmount_lock);
815 		list_add_tail(&newmnt->mnt_fslink, fslist);
816 		spin_unlock(&vfsmount_lock);
817 	}
818 
819 unlock:
820 	up_write(&current->namespace->sem);
821 	mntput(newmnt);
822 	return err;
823 }
824 
825 EXPORT_SYMBOL_GPL(do_add_mount);
826 
827 /*
828  * process a list of expirable mountpoints with the intent of discarding any
829  * mountpoints that aren't in use and haven't been touched since last we came
830  * here
831  */
832 void mark_mounts_for_expiry(struct list_head *mounts)
833 {
834 	struct namespace *namespace;
835 	struct vfsmount *mnt, *next;
836 	LIST_HEAD(graveyard);
837 
838 	if (list_empty(mounts))
839 		return;
840 
841 	spin_lock(&vfsmount_lock);
842 
843 	/* extract from the expiration list every vfsmount that matches the
844 	 * following criteria:
845 	 * - only referenced by its parent vfsmount
846 	 * - still marked for expiry (marked on the last call here; marks are
847 	 *   cleared by mntput())
848 	 */
849 	list_for_each_entry_safe(mnt, next, mounts, mnt_fslink) {
850 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
851 		    atomic_read(&mnt->mnt_count) != 1)
852 			continue;
853 
854 		mntget(mnt);
855 		list_move(&mnt->mnt_fslink, &graveyard);
856 	}
857 
858 	/*
859 	 * go through the vfsmounts we've just consigned to the graveyard to
860 	 * - check that they're still dead
861 	 * - delete the vfsmount from the appropriate namespace under lock
862 	 * - dispose of the corpse
863 	 */
864 	while (!list_empty(&graveyard)) {
865 		mnt = list_entry(graveyard.next, struct vfsmount, mnt_fslink);
866 		list_del_init(&mnt->mnt_fslink);
867 
868 		/* don't do anything if the namespace is dead - all the
869 		 * vfsmounts from it are going away anyway */
870 		namespace = mnt->mnt_namespace;
871 		if (!namespace || atomic_read(&namespace->count) <= 0)
872 			continue;
873 		get_namespace(namespace);
874 
875 		spin_unlock(&vfsmount_lock);
876 		down_write(&namespace->sem);
877 		spin_lock(&vfsmount_lock);
878 
879 		/* check that it is still dead: the count should now be 2 - as
880 		 * contributed by the vfsmount parent and the mntget above */
881 		if (atomic_read(&mnt->mnt_count) == 2) {
882 			struct vfsmount *xdmnt;
883 			struct dentry *xdentry;
884 
885 			/* delete from the namespace */
886 			list_del_init(&mnt->mnt_list);
887 			list_del_init(&mnt->mnt_child);
888 			list_del_init(&mnt->mnt_hash);
889 			mnt->mnt_mountpoint->d_mounted--;
890 
891 			xdentry = mnt->mnt_mountpoint;
892 			mnt->mnt_mountpoint = mnt->mnt_root;
893 			xdmnt = mnt->mnt_parent;
894 			mnt->mnt_parent = mnt;
895 
896 			spin_unlock(&vfsmount_lock);
897 
898 			mntput(xdmnt);
899 			dput(xdentry);
900 
901 			/* now lay it to rest if this was the last ref on the
902 			 * superblock */
903 			if (atomic_read(&mnt->mnt_sb->s_active) == 1) {
904 				/* last instance - try to be smart */
905 				lock_kernel();
906 				DQUOT_OFF(mnt->mnt_sb);
907 				acct_auto_close(mnt->mnt_sb);
908 				unlock_kernel();
909 			}
910 
911 			mntput(mnt);
912 		} else {
913 			/* someone brought it back to life whilst we didn't
914 			 * have any locks held so return it to the expiration
915 			 * list */
916 			list_add_tail(&mnt->mnt_fslink, mounts);
917 			spin_unlock(&vfsmount_lock);
918 		}
919 
920 		up_write(&namespace->sem);
921 
922 		mntput(mnt);
923 		put_namespace(namespace);
924 
925 		spin_lock(&vfsmount_lock);
926 	}
927 
928 	spin_unlock(&vfsmount_lock);
929 }
930 
931 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
932 
933 /*
934  * Some copy_from_user() implementations do not return the exact number of
935  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
936  * Note that this function differs from copy_from_user() in that it will oops
937  * on bad values of `to', rather than returning a short copy.
938  */
939 static long
940 exact_copy_from_user(void *to, const void __user *from, unsigned long n)
941 {
942 	char *t = to;
943 	const char __user *f = from;
944 	char c;
945 
946 	if (!access_ok(VERIFY_READ, from, n))
947 		return n;
948 
949 	while (n) {
950 		if (__get_user(c, f)) {
951 			memset(t, 0, n);
952 			break;
953 		}
954 		*t++ = c;
955 		f++;
956 		n--;
957 	}
958 	return n;
959 }
960 
961 int copy_mount_options(const void __user *data, unsigned long *where)
962 {
963 	int i;
964 	unsigned long page;
965 	unsigned long size;
966 
967 	*where = 0;
968 	if (!data)
969 		return 0;
970 
971 	if (!(page = __get_free_page(GFP_KERNEL)))
972 		return -ENOMEM;
973 
974 	/* We only care that *some* data at the address the user
975 	 * gave us is valid.  Just in case, we'll zero
976 	 * the remainder of the page.
977 	 */
978 	/* copy_from_user cannot cross TASK_SIZE ! */
979 	size = TASK_SIZE - (unsigned long)data;
980 	if (size > PAGE_SIZE)
981 		size = PAGE_SIZE;
982 
983 	i = size - exact_copy_from_user((void *)page, data, size);
984 	if (!i) {
985 		free_page(page);
986 		return -EFAULT;
987 	}
988 	if (i != PAGE_SIZE)
989 		memset((char *)page + i, 0, PAGE_SIZE - i);
990 	*where = page;
991 	return 0;
992 }
993 
994 /*
995  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
996  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
997  *
998  * data is a (void *) that can point to any structure up to
999  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1000  * information (or be NULL).
1001  *
1002  * Pre-0.97 versions of mount() didn't have a flags word.
1003  * When the flags word was introduced its top half was required
1004  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1005  * Therefore, if this magic number is present, it carries no information
1006  * and must be discarded.
1007  */
1008 long do_mount(char * dev_name, char * dir_name, char *type_page,
1009 		  unsigned long flags, void *data_page)
1010 {
1011 	struct nameidata nd;
1012 	int retval = 0;
1013 	int mnt_flags = 0;
1014 
1015 	/* Discard magic */
1016 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1017 		flags &= ~MS_MGC_MSK;
1018 
1019 	/* Basic sanity checks */
1020 
1021 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1022 		return -EINVAL;
1023 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1024 		return -EINVAL;
1025 
1026 	if (data_page)
1027 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1028 
1029 	/* Separate the per-mountpoint flags */
1030 	if (flags & MS_NOSUID)
1031 		mnt_flags |= MNT_NOSUID;
1032 	if (flags & MS_NODEV)
1033 		mnt_flags |= MNT_NODEV;
1034 	if (flags & MS_NOEXEC)
1035 		mnt_flags |= MNT_NOEXEC;
1036 	flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_ACTIVE);
1037 
1038 	/* ... and get the mountpoint */
1039 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1040 	if (retval)
1041 		return retval;
1042 
1043 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1044 	if (retval)
1045 		goto dput_out;
1046 
1047 	if (flags & MS_REMOUNT)
1048 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1049 				    data_page);
1050 	else if (flags & MS_BIND)
1051 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1052 	else if (flags & MS_MOVE)
1053 		retval = do_move_mount(&nd, dev_name);
1054 	else
1055 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1056 				      dev_name, data_page);
1057 dput_out:
1058 	path_release(&nd);
1059 	return retval;
1060 }
1061 
1062 int copy_namespace(int flags, struct task_struct *tsk)
1063 {
1064 	struct namespace *namespace = tsk->namespace;
1065 	struct namespace *new_ns;
1066 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1067 	struct fs_struct *fs = tsk->fs;
1068 	struct vfsmount *p, *q;
1069 
1070 	if (!namespace)
1071 		return 0;
1072 
1073 	get_namespace(namespace);
1074 
1075 	if (!(flags & CLONE_NEWNS))
1076 		return 0;
1077 
1078 	if (!capable(CAP_SYS_ADMIN)) {
1079 		put_namespace(namespace);
1080 		return -EPERM;
1081 	}
1082 
1083 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1084 	if (!new_ns)
1085 		goto out;
1086 
1087 	atomic_set(&new_ns->count, 1);
1088 	init_rwsem(&new_ns->sem);
1089 	INIT_LIST_HEAD(&new_ns->list);
1090 
1091 	down_write(&tsk->namespace->sem);
1092 	/* First pass: copy the tree topology */
1093 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root);
1094 	if (!new_ns->root) {
1095 		up_write(&tsk->namespace->sem);
1096 		kfree(new_ns);
1097 		goto out;
1098 	}
1099 	spin_lock(&vfsmount_lock);
1100 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1101 	spin_unlock(&vfsmount_lock);
1102 
1103 	/*
1104 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1105 	 * as belonging to new namespace.  We have already acquired a private
1106 	 * fs_struct, so tsk->fs->lock is not needed.
1107 	 */
1108 	p = namespace->root;
1109 	q = new_ns->root;
1110 	while (p) {
1111 		q->mnt_namespace = new_ns;
1112 		if (fs) {
1113 			if (p == fs->rootmnt) {
1114 				rootmnt = p;
1115 				fs->rootmnt = mntget(q);
1116 			}
1117 			if (p == fs->pwdmnt) {
1118 				pwdmnt = p;
1119 				fs->pwdmnt = mntget(q);
1120 			}
1121 			if (p == fs->altrootmnt) {
1122 				altrootmnt = p;
1123 				fs->altrootmnt = mntget(q);
1124 			}
1125 		}
1126 		p = next_mnt(p, namespace->root);
1127 		q = next_mnt(q, new_ns->root);
1128 	}
1129 	up_write(&tsk->namespace->sem);
1130 
1131 	tsk->namespace = new_ns;
1132 
1133 	if (rootmnt)
1134 		mntput(rootmnt);
1135 	if (pwdmnt)
1136 		mntput(pwdmnt);
1137 	if (altrootmnt)
1138 		mntput(altrootmnt);
1139 
1140 	put_namespace(namespace);
1141 	return 0;
1142 
1143 out:
1144 	put_namespace(namespace);
1145 	return -ENOMEM;
1146 }
1147 
1148 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1149 			  char __user * type, unsigned long flags,
1150 			  void __user * data)
1151 {
1152 	int retval;
1153 	unsigned long data_page;
1154 	unsigned long type_page;
1155 	unsigned long dev_page;
1156 	char *dir_page;
1157 
1158 	retval = copy_mount_options (type, &type_page);
1159 	if (retval < 0)
1160 		return retval;
1161 
1162 	dir_page = getname(dir_name);
1163 	retval = PTR_ERR(dir_page);
1164 	if (IS_ERR(dir_page))
1165 		goto out1;
1166 
1167 	retval = copy_mount_options (dev_name, &dev_page);
1168 	if (retval < 0)
1169 		goto out2;
1170 
1171 	retval = copy_mount_options (data, &data_page);
1172 	if (retval < 0)
1173 		goto out3;
1174 
1175 	lock_kernel();
1176 	retval = do_mount((char*)dev_page, dir_page, (char*)type_page,
1177 			  flags, (void*)data_page);
1178 	unlock_kernel();
1179 	free_page(data_page);
1180 
1181 out3:
1182 	free_page(dev_page);
1183 out2:
1184 	putname(dir_page);
1185 out1:
1186 	free_page(type_page);
1187 	return retval;
1188 }
1189 
1190 /*
1191  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1192  * It can block. Requires the big lock held.
1193  */
1194 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1195 		 struct dentry *dentry)
1196 {
1197 	struct dentry *old_root;
1198 	struct vfsmount *old_rootmnt;
1199 	write_lock(&fs->lock);
1200 	old_root = fs->root;
1201 	old_rootmnt = fs->rootmnt;
1202 	fs->rootmnt = mntget(mnt);
1203 	fs->root = dget(dentry);
1204 	write_unlock(&fs->lock);
1205 	if (old_root) {
1206 		dput(old_root);
1207 		mntput(old_rootmnt);
1208 	}
1209 }
1210 
1211 /*
1212  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1213  * It can block. Requires the big lock held.
1214  */
1215 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1216 		struct dentry *dentry)
1217 {
1218 	struct dentry *old_pwd;
1219 	struct vfsmount *old_pwdmnt;
1220 
1221 	write_lock(&fs->lock);
1222 	old_pwd = fs->pwd;
1223 	old_pwdmnt = fs->pwdmnt;
1224 	fs->pwdmnt = mntget(mnt);
1225 	fs->pwd = dget(dentry);
1226 	write_unlock(&fs->lock);
1227 
1228 	if (old_pwd) {
1229 		dput(old_pwd);
1230 		mntput(old_pwdmnt);
1231 	}
1232 }
1233 
1234 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1235 {
1236 	struct task_struct *g, *p;
1237 	struct fs_struct *fs;
1238 
1239 	read_lock(&tasklist_lock);
1240 	do_each_thread(g, p) {
1241 		task_lock(p);
1242 		fs = p->fs;
1243 		if (fs) {
1244 			atomic_inc(&fs->count);
1245 			task_unlock(p);
1246 			if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt)
1247 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1248 			if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt)
1249 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1250 			put_fs_struct(fs);
1251 		} else
1252 			task_unlock(p);
1253 	} while_each_thread(g, p);
1254 	read_unlock(&tasklist_lock);
1255 }
1256 
1257 /*
1258  * pivot_root Semantics:
1259  * Moves the root file system of the current process to the directory put_old,
1260  * makes new_root as the new root file system of the current process, and sets
1261  * root/cwd of all processes which had them on the current root to new_root.
1262  *
1263  * Restrictions:
1264  * The new_root and put_old must be directories, and  must not be on the
1265  * same file  system as the current process root. The put_old  must  be
1266  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1267  * pointed to by put_old must yield the same directory as new_root. No other
1268  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1269  *
1270  * Notes:
1271  *  - we don't move root/cwd if they are not at the root (reason: if something
1272  *    cared enough to change them, it's probably wrong to force them elsewhere)
1273  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1274  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1275  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1276  *    first.
1277  */
1278 
1279 asmlinkage long sys_pivot_root(const char __user *new_root, const char __user *put_old)
1280 {
1281 	struct vfsmount *tmp;
1282 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1283 	int error;
1284 
1285 	if (!capable(CAP_SYS_ADMIN))
1286 		return -EPERM;
1287 
1288 	lock_kernel();
1289 
1290 	error = __user_walk(new_root, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd);
1291 	if (error)
1292 		goto out0;
1293 	error = -EINVAL;
1294 	if (!check_mnt(new_nd.mnt))
1295 		goto out1;
1296 
1297 	error = __user_walk(put_old, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd);
1298 	if (error)
1299 		goto out1;
1300 
1301 	error = security_sb_pivotroot(&old_nd, &new_nd);
1302 	if (error) {
1303 		path_release(&old_nd);
1304 		goto out1;
1305 	}
1306 
1307 	read_lock(&current->fs->lock);
1308 	user_nd.mnt = mntget(current->fs->rootmnt);
1309 	user_nd.dentry = dget(current->fs->root);
1310 	read_unlock(&current->fs->lock);
1311 	down_write(&current->namespace->sem);
1312 	down(&old_nd.dentry->d_inode->i_sem);
1313 	error = -EINVAL;
1314 	if (!check_mnt(user_nd.mnt))
1315 		goto out2;
1316 	error = -ENOENT;
1317 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1318 		goto out2;
1319 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1320 		goto out2;
1321 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1322 		goto out2;
1323 	error = -EBUSY;
1324 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1325 		goto out2; /* loop, on the same file system  */
1326 	error = -EINVAL;
1327 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1328 		goto out2; /* not a mountpoint */
1329 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1330 		goto out2; /* not a mountpoint */
1331 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1332 	spin_lock(&vfsmount_lock);
1333 	if (tmp != new_nd.mnt) {
1334 		for (;;) {
1335 			if (tmp->mnt_parent == tmp)
1336 				goto out3; /* already mounted on put_old */
1337 			if (tmp->mnt_parent == new_nd.mnt)
1338 				break;
1339 			tmp = tmp->mnt_parent;
1340 		}
1341 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1342 			goto out3;
1343 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1344 		goto out3;
1345 	detach_mnt(new_nd.mnt, &parent_nd);
1346 	detach_mnt(user_nd.mnt, &root_parent);
1347 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1348 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1349 	spin_unlock(&vfsmount_lock);
1350 	chroot_fs_refs(&user_nd, &new_nd);
1351 	security_sb_post_pivotroot(&user_nd, &new_nd);
1352 	error = 0;
1353 	path_release(&root_parent);
1354 	path_release(&parent_nd);
1355 out2:
1356 	up(&old_nd.dentry->d_inode->i_sem);
1357 	up_write(&current->namespace->sem);
1358 	path_release(&user_nd);
1359 	path_release(&old_nd);
1360 out1:
1361 	path_release(&new_nd);
1362 out0:
1363 	unlock_kernel();
1364 	return error;
1365 out3:
1366 	spin_unlock(&vfsmount_lock);
1367 	goto out2;
1368 }
1369 
1370 static void __init init_mount_tree(void)
1371 {
1372 	struct vfsmount *mnt;
1373 	struct namespace *namespace;
1374 	struct task_struct *g, *p;
1375 
1376 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1377 	if (IS_ERR(mnt))
1378 		panic("Can't create rootfs");
1379 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1380 	if (!namespace)
1381 		panic("Can't allocate initial namespace");
1382 	atomic_set(&namespace->count, 1);
1383 	INIT_LIST_HEAD(&namespace->list);
1384 	init_rwsem(&namespace->sem);
1385 	list_add(&mnt->mnt_list, &namespace->list);
1386 	namespace->root = mnt;
1387 	mnt->mnt_namespace = namespace;
1388 
1389 	init_task.namespace = namespace;
1390 	read_lock(&tasklist_lock);
1391 	do_each_thread(g, p) {
1392 		get_namespace(namespace);
1393 		p->namespace = namespace;
1394 	} while_each_thread(g, p);
1395 	read_unlock(&tasklist_lock);
1396 
1397 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1398 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1399 }
1400 
1401 void __init mnt_init(unsigned long mempages)
1402 {
1403 	struct list_head *d;
1404 	unsigned int nr_hash;
1405 	int i;
1406 
1407 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1408 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1409 
1410 	mount_hashtable = (struct list_head *)
1411 		__get_free_page(GFP_ATOMIC);
1412 
1413 	if (!mount_hashtable)
1414 		panic("Failed to allocate mount hash table\n");
1415 
1416 	/*
1417 	 * Find the power-of-two list-heads that can fit into the allocation..
1418 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1419 	 * a power-of-two.
1420 	 */
1421 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1422 	hash_bits = 0;
1423 	do {
1424 		hash_bits++;
1425 	} while ((nr_hash >> hash_bits) != 0);
1426 	hash_bits--;
1427 
1428 	/*
1429 	 * Re-calculate the actual number of entries and the mask
1430 	 * from the number of bits we can fit.
1431 	 */
1432 	nr_hash = 1UL << hash_bits;
1433 	hash_mask = nr_hash-1;
1434 
1435 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1436 
1437 	/* And initialize the newly allocated array */
1438 	d = mount_hashtable;
1439 	i = nr_hash;
1440 	do {
1441 		INIT_LIST_HEAD(d);
1442 		d++;
1443 		i--;
1444 	} while (i);
1445 	sysfs_init();
1446 	init_rootfs();
1447 	init_mount_tree();
1448 }
1449 
1450 void __put_namespace(struct namespace *namespace)
1451 {
1452 	struct vfsmount *mnt;
1453 
1454 	down_write(&namespace->sem);
1455 	spin_lock(&vfsmount_lock);
1456 
1457 	list_for_each_entry(mnt, &namespace->list, mnt_list) {
1458 		mnt->mnt_namespace = NULL;
1459 	}
1460 
1461 	umount_tree(namespace->root);
1462 	spin_unlock(&vfsmount_lock);
1463 	up_write(&namespace->sem);
1464 	kfree(namespace);
1465 }
1466