1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/spinlock.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/cpumask.h> 21 #include <linux/module.h> 22 #include <linux/sysfs.h> 23 #include <linux/seq_file.h> 24 #include <linux/mnt_namespace.h> 25 #include <linux/namei.h> 26 #include <linux/nsproxy.h> 27 #include <linux/security.h> 28 #include <linux/mount.h> 29 #include <linux/ramfs.h> 30 #include <linux/log2.h> 31 #include <linux/idr.h> 32 #include <linux/fs_struct.h> 33 #include <linux/fsnotify.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include "pnode.h" 37 #include "internal.h" 38 39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 40 #define HASH_SIZE (1UL << HASH_SHIFT) 41 42 static int event; 43 static DEFINE_IDA(mnt_id_ida); 44 static DEFINE_IDA(mnt_group_ida); 45 static DEFINE_SPINLOCK(mnt_id_lock); 46 static int mnt_id_start = 0; 47 static int mnt_group_start = 1; 48 49 static struct list_head *mount_hashtable __read_mostly; 50 static struct kmem_cache *mnt_cache __read_mostly; 51 static struct rw_semaphore namespace_sem; 52 53 /* /sys/fs */ 54 struct kobject *fs_kobj; 55 EXPORT_SYMBOL_GPL(fs_kobj); 56 57 /* 58 * vfsmount lock may be taken for read to prevent changes to the 59 * vfsmount hash, ie. during mountpoint lookups or walking back 60 * up the tree. 61 * 62 * It should be taken for write in all cases where the vfsmount 63 * tree or hash is modified or when a vfsmount structure is modified. 64 */ 65 DEFINE_BRLOCK(vfsmount_lock); 66 67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 68 { 69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 71 tmp = tmp + (tmp >> HASH_SHIFT); 72 return tmp & (HASH_SIZE - 1); 73 } 74 75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 76 77 /* 78 * allocation is serialized by namespace_sem, but we need the spinlock to 79 * serialize with freeing. 80 */ 81 static int mnt_alloc_id(struct vfsmount *mnt) 82 { 83 int res; 84 85 retry: 86 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 87 spin_lock(&mnt_id_lock); 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 89 if (!res) 90 mnt_id_start = mnt->mnt_id + 1; 91 spin_unlock(&mnt_id_lock); 92 if (res == -EAGAIN) 93 goto retry; 94 95 return res; 96 } 97 98 static void mnt_free_id(struct vfsmount *mnt) 99 { 100 int id = mnt->mnt_id; 101 spin_lock(&mnt_id_lock); 102 ida_remove(&mnt_id_ida, id); 103 if (mnt_id_start > id) 104 mnt_id_start = id; 105 spin_unlock(&mnt_id_lock); 106 } 107 108 /* 109 * Allocate a new peer group ID 110 * 111 * mnt_group_ida is protected by namespace_sem 112 */ 113 static int mnt_alloc_group_id(struct vfsmount *mnt) 114 { 115 int res; 116 117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 118 return -ENOMEM; 119 120 res = ida_get_new_above(&mnt_group_ida, 121 mnt_group_start, 122 &mnt->mnt_group_id); 123 if (!res) 124 mnt_group_start = mnt->mnt_group_id + 1; 125 126 return res; 127 } 128 129 /* 130 * Release a peer group ID 131 */ 132 void mnt_release_group_id(struct vfsmount *mnt) 133 { 134 int id = mnt->mnt_group_id; 135 ida_remove(&mnt_group_ida, id); 136 if (mnt_group_start > id) 137 mnt_group_start = id; 138 mnt->mnt_group_id = 0; 139 } 140 141 /* 142 * vfsmount lock must be held for read 143 */ 144 static inline void mnt_add_count(struct vfsmount *mnt, int n) 145 { 146 #ifdef CONFIG_SMP 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 148 #else 149 preempt_disable(); 150 mnt->mnt_count += n; 151 preempt_enable(); 152 #endif 153 } 154 155 static inline void mnt_set_count(struct vfsmount *mnt, int n) 156 { 157 #ifdef CONFIG_SMP 158 this_cpu_write(mnt->mnt_pcp->mnt_count, n); 159 #else 160 mnt->mnt_count = n; 161 #endif 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_inc_count(struct vfsmount *mnt) 168 { 169 mnt_add_count(mnt, 1); 170 } 171 172 /* 173 * vfsmount lock must be held for read 174 */ 175 static inline void mnt_dec_count(struct vfsmount *mnt) 176 { 177 mnt_add_count(mnt, -1); 178 } 179 180 /* 181 * vfsmount lock must be held for write 182 */ 183 unsigned int mnt_get_count(struct vfsmount *mnt) 184 { 185 #ifdef CONFIG_SMP 186 unsigned int count = 0; 187 int cpu; 188 189 for_each_possible_cpu(cpu) { 190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 191 } 192 193 return count; 194 #else 195 return mnt->mnt_count; 196 #endif 197 } 198 199 static struct vfsmount *alloc_vfsmnt(const char *name) 200 { 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 202 if (mnt) { 203 int err; 204 205 err = mnt_alloc_id(mnt); 206 if (err) 207 goto out_free_cache; 208 209 if (name) { 210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 211 if (!mnt->mnt_devname) 212 goto out_free_id; 213 } 214 215 #ifdef CONFIG_SMP 216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 217 if (!mnt->mnt_pcp) 218 goto out_free_devname; 219 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 221 #else 222 mnt->mnt_count = 1; 223 mnt->mnt_writers = 0; 224 #endif 225 226 INIT_LIST_HEAD(&mnt->mnt_hash); 227 INIT_LIST_HEAD(&mnt->mnt_child); 228 INIT_LIST_HEAD(&mnt->mnt_mounts); 229 INIT_LIST_HEAD(&mnt->mnt_list); 230 INIT_LIST_HEAD(&mnt->mnt_expire); 231 INIT_LIST_HEAD(&mnt->mnt_share); 232 INIT_LIST_HEAD(&mnt->mnt_slave_list); 233 INIT_LIST_HEAD(&mnt->mnt_slave); 234 #ifdef CONFIG_FSNOTIFY 235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 236 #endif 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 int __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 if (mnt->mnt_flags & MNT_READONLY) 273 return 1; 274 if (mnt->mnt_sb->s_flags & MS_RDONLY) 275 return 1; 276 return 0; 277 } 278 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 279 280 static inline void mnt_inc_writers(struct vfsmount *mnt) 281 { 282 #ifdef CONFIG_SMP 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 284 #else 285 mnt->mnt_writers++; 286 #endif 287 } 288 289 static inline void mnt_dec_writers(struct vfsmount *mnt) 290 { 291 #ifdef CONFIG_SMP 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 293 #else 294 mnt->mnt_writers--; 295 #endif 296 } 297 298 static unsigned int mnt_get_writers(struct vfsmount *mnt) 299 { 300 #ifdef CONFIG_SMP 301 unsigned int count = 0; 302 int cpu; 303 304 for_each_possible_cpu(cpu) { 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 306 } 307 308 return count; 309 #else 310 return mnt->mnt_writers; 311 #endif 312 } 313 314 /* 315 * Most r/o checks on a fs are for operations that take 316 * discrete amounts of time, like a write() or unlink(). 317 * We must keep track of when those operations start 318 * (for permission checks) and when they end, so that 319 * we can determine when writes are able to occur to 320 * a filesystem. 321 */ 322 /** 323 * mnt_want_write - get write access to a mount 324 * @mnt: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is 327 * about to be performed to it, and makes sure that 328 * writes are allowed before returning success. When 329 * the write operation is finished, mnt_drop_write() 330 * must be called. This is effectively a refcount. 331 */ 332 int mnt_want_write(struct vfsmount *mnt) 333 { 334 int ret = 0; 335 336 preempt_disable(); 337 mnt_inc_writers(mnt); 338 /* 339 * The store to mnt_inc_writers must be visible before we pass 340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 341 * incremented count after it has set MNT_WRITE_HOLD. 342 */ 343 smp_mb(); 344 while (mnt->mnt_flags & MNT_WRITE_HOLD) 345 cpu_relax(); 346 /* 347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 348 * be set to match its requirements. So we must not load that until 349 * MNT_WRITE_HOLD is cleared. 350 */ 351 smp_rmb(); 352 if (__mnt_is_readonly(mnt)) { 353 mnt_dec_writers(mnt); 354 ret = -EROFS; 355 } 356 preempt_enable(); 357 return ret; 358 } 359 EXPORT_SYMBOL_GPL(mnt_want_write); 360 361 /** 362 * mnt_clone_write - get write access to a mount 363 * @mnt: the mount on which to take a write 364 * 365 * This is effectively like mnt_want_write, except 366 * it must only be used to take an extra write reference 367 * on a mountpoint that we already know has a write reference 368 * on it. This allows some optimisation. 369 * 370 * After finished, mnt_drop_write must be called as usual to 371 * drop the reference. 372 */ 373 int mnt_clone_write(struct vfsmount *mnt) 374 { 375 /* superblock may be r/o */ 376 if (__mnt_is_readonly(mnt)) 377 return -EROFS; 378 preempt_disable(); 379 mnt_inc_writers(mnt); 380 preempt_enable(); 381 return 0; 382 } 383 EXPORT_SYMBOL_GPL(mnt_clone_write); 384 385 /** 386 * mnt_want_write_file - get write access to a file's mount 387 * @file: the file who's mount on which to take a write 388 * 389 * This is like mnt_want_write, but it takes a file and can 390 * do some optimisations if the file is open for write already 391 */ 392 int mnt_want_write_file(struct file *file) 393 { 394 struct inode *inode = file->f_dentry->d_inode; 395 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 396 return mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 EXPORT_SYMBOL_GPL(mnt_want_write_file); 401 402 /** 403 * mnt_drop_write - give up write access to a mount 404 * @mnt: the mount on which to give up write access 405 * 406 * Tells the low-level filesystem that we are done 407 * performing writes to it. Must be matched with 408 * mnt_want_write() call above. 409 */ 410 void mnt_drop_write(struct vfsmount *mnt) 411 { 412 preempt_disable(); 413 mnt_dec_writers(mnt); 414 preempt_enable(); 415 } 416 EXPORT_SYMBOL_GPL(mnt_drop_write); 417 418 static int mnt_make_readonly(struct vfsmount *mnt) 419 { 420 int ret = 0; 421 422 br_write_lock(vfsmount_lock); 423 mnt->mnt_flags |= MNT_WRITE_HOLD; 424 /* 425 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 426 * should be visible before we do. 427 */ 428 smp_mb(); 429 430 /* 431 * With writers on hold, if this value is zero, then there are 432 * definitely no active writers (although held writers may subsequently 433 * increment the count, they'll have to wait, and decrement it after 434 * seeing MNT_READONLY). 435 * 436 * It is OK to have counter incremented on one CPU and decremented on 437 * another: the sum will add up correctly. The danger would be when we 438 * sum up each counter, if we read a counter before it is incremented, 439 * but then read another CPU's count which it has been subsequently 440 * decremented from -- we would see more decrements than we should. 441 * MNT_WRITE_HOLD protects against this scenario, because 442 * mnt_want_write first increments count, then smp_mb, then spins on 443 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 444 * we're counting up here. 445 */ 446 if (mnt_get_writers(mnt) > 0) 447 ret = -EBUSY; 448 else 449 mnt->mnt_flags |= MNT_READONLY; 450 /* 451 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 452 * that become unheld will see MNT_READONLY. 453 */ 454 smp_wmb(); 455 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 456 br_write_unlock(vfsmount_lock); 457 return ret; 458 } 459 460 static void __mnt_unmake_readonly(struct vfsmount *mnt) 461 { 462 br_write_lock(vfsmount_lock); 463 mnt->mnt_flags &= ~MNT_READONLY; 464 br_write_unlock(vfsmount_lock); 465 } 466 467 static void free_vfsmnt(struct vfsmount *mnt) 468 { 469 kfree(mnt->mnt_devname); 470 mnt_free_id(mnt); 471 #ifdef CONFIG_SMP 472 free_percpu(mnt->mnt_pcp); 473 #endif 474 kmem_cache_free(mnt_cache, mnt); 475 } 476 477 /* 478 * find the first or last mount at @dentry on vfsmount @mnt depending on 479 * @dir. If @dir is set return the first mount else return the last mount. 480 * vfsmount_lock must be held for read or write. 481 */ 482 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 483 int dir) 484 { 485 struct list_head *head = mount_hashtable + hash(mnt, dentry); 486 struct list_head *tmp = head; 487 struct vfsmount *p, *found = NULL; 488 489 for (;;) { 490 tmp = dir ? tmp->next : tmp->prev; 491 p = NULL; 492 if (tmp == head) 493 break; 494 p = list_entry(tmp, struct vfsmount, mnt_hash); 495 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 496 found = p; 497 break; 498 } 499 } 500 return found; 501 } 502 503 /* 504 * lookup_mnt increments the ref count before returning 505 * the vfsmount struct. 506 */ 507 struct vfsmount *lookup_mnt(struct path *path) 508 { 509 struct vfsmount *child_mnt; 510 511 br_read_lock(vfsmount_lock); 512 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 513 mntget(child_mnt); 514 br_read_unlock(vfsmount_lock); 515 return child_mnt; 516 } 517 518 static inline int check_mnt(struct vfsmount *mnt) 519 { 520 return mnt->mnt_ns == current->nsproxy->mnt_ns; 521 } 522 523 /* 524 * vfsmount lock must be held for write 525 */ 526 static void touch_mnt_namespace(struct mnt_namespace *ns) 527 { 528 if (ns) { 529 ns->event = ++event; 530 wake_up_interruptible(&ns->poll); 531 } 532 } 533 534 /* 535 * vfsmount lock must be held for write 536 */ 537 static void __touch_mnt_namespace(struct mnt_namespace *ns) 538 { 539 if (ns && ns->event != event) { 540 ns->event = event; 541 wake_up_interruptible(&ns->poll); 542 } 543 } 544 545 /* 546 * Clear dentry's mounted state if it has no remaining mounts. 547 * vfsmount_lock must be held for write. 548 */ 549 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry) 550 { 551 unsigned u; 552 553 for (u = 0; u < HASH_SIZE; u++) { 554 struct vfsmount *p; 555 556 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 557 if (p->mnt_mountpoint == dentry) 558 return; 559 } 560 } 561 spin_lock(&dentry->d_lock); 562 dentry->d_flags &= ~DCACHE_MOUNTED; 563 spin_unlock(&dentry->d_lock); 564 } 565 566 /* 567 * vfsmount lock must be held for write 568 */ 569 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 570 { 571 old_path->dentry = mnt->mnt_mountpoint; 572 old_path->mnt = mnt->mnt_parent; 573 mnt->mnt_parent = mnt; 574 mnt->mnt_mountpoint = mnt->mnt_root; 575 list_del_init(&mnt->mnt_child); 576 list_del_init(&mnt->mnt_hash); 577 dentry_reset_mounted(old_path->mnt, old_path->dentry); 578 } 579 580 /* 581 * vfsmount lock must be held for write 582 */ 583 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 584 struct vfsmount *child_mnt) 585 { 586 child_mnt->mnt_parent = mntget(mnt); 587 child_mnt->mnt_mountpoint = dget(dentry); 588 spin_lock(&dentry->d_lock); 589 dentry->d_flags |= DCACHE_MOUNTED; 590 spin_unlock(&dentry->d_lock); 591 } 592 593 /* 594 * vfsmount lock must be held for write 595 */ 596 static void attach_mnt(struct vfsmount *mnt, struct path *path) 597 { 598 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 599 list_add_tail(&mnt->mnt_hash, mount_hashtable + 600 hash(path->mnt, path->dentry)); 601 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 602 } 603 604 static inline void __mnt_make_longterm(struct vfsmount *mnt) 605 { 606 #ifdef CONFIG_SMP 607 atomic_inc(&mnt->mnt_longterm); 608 #endif 609 } 610 611 /* needs vfsmount lock for write */ 612 static inline void __mnt_make_shortterm(struct vfsmount *mnt) 613 { 614 #ifdef CONFIG_SMP 615 atomic_dec(&mnt->mnt_longterm); 616 #endif 617 } 618 619 /* 620 * vfsmount lock must be held for write 621 */ 622 static void commit_tree(struct vfsmount *mnt) 623 { 624 struct vfsmount *parent = mnt->mnt_parent; 625 struct vfsmount *m; 626 LIST_HEAD(head); 627 struct mnt_namespace *n = parent->mnt_ns; 628 629 BUG_ON(parent == mnt); 630 631 list_add_tail(&head, &mnt->mnt_list); 632 list_for_each_entry(m, &head, mnt_list) { 633 m->mnt_ns = n; 634 __mnt_make_longterm(m); 635 } 636 637 list_splice(&head, n->list.prev); 638 639 list_add_tail(&mnt->mnt_hash, mount_hashtable + 640 hash(parent, mnt->mnt_mountpoint)); 641 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 642 touch_mnt_namespace(n); 643 } 644 645 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 646 { 647 struct list_head *next = p->mnt_mounts.next; 648 if (next == &p->mnt_mounts) { 649 while (1) { 650 if (p == root) 651 return NULL; 652 next = p->mnt_child.next; 653 if (next != &p->mnt_parent->mnt_mounts) 654 break; 655 p = p->mnt_parent; 656 } 657 } 658 return list_entry(next, struct vfsmount, mnt_child); 659 } 660 661 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 662 { 663 struct list_head *prev = p->mnt_mounts.prev; 664 while (prev != &p->mnt_mounts) { 665 p = list_entry(prev, struct vfsmount, mnt_child); 666 prev = p->mnt_mounts.prev; 667 } 668 return p; 669 } 670 671 struct vfsmount * 672 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 673 { 674 struct vfsmount *mnt; 675 struct dentry *root; 676 677 if (!type) 678 return ERR_PTR(-ENODEV); 679 680 mnt = alloc_vfsmnt(name); 681 if (!mnt) 682 return ERR_PTR(-ENOMEM); 683 684 if (flags & MS_KERNMOUNT) 685 mnt->mnt_flags = MNT_INTERNAL; 686 687 root = mount_fs(type, flags, name, data); 688 if (IS_ERR(root)) { 689 free_vfsmnt(mnt); 690 return ERR_CAST(root); 691 } 692 693 mnt->mnt_root = root; 694 mnt->mnt_sb = root->d_sb; 695 mnt->mnt_mountpoint = mnt->mnt_root; 696 mnt->mnt_parent = mnt; 697 return mnt; 698 } 699 EXPORT_SYMBOL_GPL(vfs_kern_mount); 700 701 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 702 int flag) 703 { 704 struct super_block *sb = old->mnt_sb; 705 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 706 707 if (mnt) { 708 if (flag & (CL_SLAVE | CL_PRIVATE)) 709 mnt->mnt_group_id = 0; /* not a peer of original */ 710 else 711 mnt->mnt_group_id = old->mnt_group_id; 712 713 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 714 int err = mnt_alloc_group_id(mnt); 715 if (err) 716 goto out_free; 717 } 718 719 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD; 720 atomic_inc(&sb->s_active); 721 mnt->mnt_sb = sb; 722 mnt->mnt_root = dget(root); 723 mnt->mnt_mountpoint = mnt->mnt_root; 724 mnt->mnt_parent = mnt; 725 726 if (flag & CL_SLAVE) { 727 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 728 mnt->mnt_master = old; 729 CLEAR_MNT_SHARED(mnt); 730 } else if (!(flag & CL_PRIVATE)) { 731 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 732 list_add(&mnt->mnt_share, &old->mnt_share); 733 if (IS_MNT_SLAVE(old)) 734 list_add(&mnt->mnt_slave, &old->mnt_slave); 735 mnt->mnt_master = old->mnt_master; 736 } 737 if (flag & CL_MAKE_SHARED) 738 set_mnt_shared(mnt); 739 740 /* stick the duplicate mount on the same expiry list 741 * as the original if that was on one */ 742 if (flag & CL_EXPIRE) { 743 if (!list_empty(&old->mnt_expire)) 744 list_add(&mnt->mnt_expire, &old->mnt_expire); 745 } 746 } 747 return mnt; 748 749 out_free: 750 free_vfsmnt(mnt); 751 return NULL; 752 } 753 754 static inline void mntfree(struct vfsmount *mnt) 755 { 756 struct super_block *sb = mnt->mnt_sb; 757 758 /* 759 * This probably indicates that somebody messed 760 * up a mnt_want/drop_write() pair. If this 761 * happens, the filesystem was probably unable 762 * to make r/w->r/o transitions. 763 */ 764 /* 765 * The locking used to deal with mnt_count decrement provides barriers, 766 * so mnt_get_writers() below is safe. 767 */ 768 WARN_ON(mnt_get_writers(mnt)); 769 fsnotify_vfsmount_delete(mnt); 770 dput(mnt->mnt_root); 771 free_vfsmnt(mnt); 772 deactivate_super(sb); 773 } 774 775 static void mntput_no_expire(struct vfsmount *mnt) 776 { 777 put_again: 778 #ifdef CONFIG_SMP 779 br_read_lock(vfsmount_lock); 780 if (likely(atomic_read(&mnt->mnt_longterm))) { 781 mnt_dec_count(mnt); 782 br_read_unlock(vfsmount_lock); 783 return; 784 } 785 br_read_unlock(vfsmount_lock); 786 787 br_write_lock(vfsmount_lock); 788 mnt_dec_count(mnt); 789 if (mnt_get_count(mnt)) { 790 br_write_unlock(vfsmount_lock); 791 return; 792 } 793 #else 794 mnt_dec_count(mnt); 795 if (likely(mnt_get_count(mnt))) 796 return; 797 br_write_lock(vfsmount_lock); 798 #endif 799 if (unlikely(mnt->mnt_pinned)) { 800 mnt_add_count(mnt, mnt->mnt_pinned + 1); 801 mnt->mnt_pinned = 0; 802 br_write_unlock(vfsmount_lock); 803 acct_auto_close_mnt(mnt); 804 goto put_again; 805 } 806 br_write_unlock(vfsmount_lock); 807 mntfree(mnt); 808 } 809 810 void mntput(struct vfsmount *mnt) 811 { 812 if (mnt) { 813 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 814 if (unlikely(mnt->mnt_expiry_mark)) 815 mnt->mnt_expiry_mark = 0; 816 mntput_no_expire(mnt); 817 } 818 } 819 EXPORT_SYMBOL(mntput); 820 821 struct vfsmount *mntget(struct vfsmount *mnt) 822 { 823 if (mnt) 824 mnt_inc_count(mnt); 825 return mnt; 826 } 827 EXPORT_SYMBOL(mntget); 828 829 void mnt_pin(struct vfsmount *mnt) 830 { 831 br_write_lock(vfsmount_lock); 832 mnt->mnt_pinned++; 833 br_write_unlock(vfsmount_lock); 834 } 835 EXPORT_SYMBOL(mnt_pin); 836 837 void mnt_unpin(struct vfsmount *mnt) 838 { 839 br_write_lock(vfsmount_lock); 840 if (mnt->mnt_pinned) { 841 mnt_inc_count(mnt); 842 mnt->mnt_pinned--; 843 } 844 br_write_unlock(vfsmount_lock); 845 } 846 EXPORT_SYMBOL(mnt_unpin); 847 848 static inline void mangle(struct seq_file *m, const char *s) 849 { 850 seq_escape(m, s, " \t\n\\"); 851 } 852 853 /* 854 * Simple .show_options callback for filesystems which don't want to 855 * implement more complex mount option showing. 856 * 857 * See also save_mount_options(). 858 */ 859 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 860 { 861 const char *options; 862 863 rcu_read_lock(); 864 options = rcu_dereference(mnt->mnt_sb->s_options); 865 866 if (options != NULL && options[0]) { 867 seq_putc(m, ','); 868 mangle(m, options); 869 } 870 rcu_read_unlock(); 871 872 return 0; 873 } 874 EXPORT_SYMBOL(generic_show_options); 875 876 /* 877 * If filesystem uses generic_show_options(), this function should be 878 * called from the fill_super() callback. 879 * 880 * The .remount_fs callback usually needs to be handled in a special 881 * way, to make sure, that previous options are not overwritten if the 882 * remount fails. 883 * 884 * Also note, that if the filesystem's .remount_fs function doesn't 885 * reset all options to their default value, but changes only newly 886 * given options, then the displayed options will not reflect reality 887 * any more. 888 */ 889 void save_mount_options(struct super_block *sb, char *options) 890 { 891 BUG_ON(sb->s_options); 892 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 893 } 894 EXPORT_SYMBOL(save_mount_options); 895 896 void replace_mount_options(struct super_block *sb, char *options) 897 { 898 char *old = sb->s_options; 899 rcu_assign_pointer(sb->s_options, options); 900 if (old) { 901 synchronize_rcu(); 902 kfree(old); 903 } 904 } 905 EXPORT_SYMBOL(replace_mount_options); 906 907 #ifdef CONFIG_PROC_FS 908 /* iterator */ 909 static void *m_start(struct seq_file *m, loff_t *pos) 910 { 911 struct proc_mounts *p = m->private; 912 913 down_read(&namespace_sem); 914 return seq_list_start(&p->ns->list, *pos); 915 } 916 917 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 918 { 919 struct proc_mounts *p = m->private; 920 921 return seq_list_next(v, &p->ns->list, pos); 922 } 923 924 static void m_stop(struct seq_file *m, void *v) 925 { 926 up_read(&namespace_sem); 927 } 928 929 int mnt_had_events(struct proc_mounts *p) 930 { 931 struct mnt_namespace *ns = p->ns; 932 int res = 0; 933 934 br_read_lock(vfsmount_lock); 935 if (p->m.poll_event != ns->event) { 936 p->m.poll_event = ns->event; 937 res = 1; 938 } 939 br_read_unlock(vfsmount_lock); 940 941 return res; 942 } 943 944 struct proc_fs_info { 945 int flag; 946 const char *str; 947 }; 948 949 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 950 { 951 static const struct proc_fs_info fs_info[] = { 952 { MS_SYNCHRONOUS, ",sync" }, 953 { MS_DIRSYNC, ",dirsync" }, 954 { MS_MANDLOCK, ",mand" }, 955 { 0, NULL } 956 }; 957 const struct proc_fs_info *fs_infop; 958 959 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 960 if (sb->s_flags & fs_infop->flag) 961 seq_puts(m, fs_infop->str); 962 } 963 964 return security_sb_show_options(m, sb); 965 } 966 967 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 968 { 969 static const struct proc_fs_info mnt_info[] = { 970 { MNT_NOSUID, ",nosuid" }, 971 { MNT_NODEV, ",nodev" }, 972 { MNT_NOEXEC, ",noexec" }, 973 { MNT_NOATIME, ",noatime" }, 974 { MNT_NODIRATIME, ",nodiratime" }, 975 { MNT_RELATIME, ",relatime" }, 976 { 0, NULL } 977 }; 978 const struct proc_fs_info *fs_infop; 979 980 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 981 if (mnt->mnt_flags & fs_infop->flag) 982 seq_puts(m, fs_infop->str); 983 } 984 } 985 986 static void show_type(struct seq_file *m, struct super_block *sb) 987 { 988 mangle(m, sb->s_type->name); 989 if (sb->s_subtype && sb->s_subtype[0]) { 990 seq_putc(m, '.'); 991 mangle(m, sb->s_subtype); 992 } 993 } 994 995 static int show_vfsmnt(struct seq_file *m, void *v) 996 { 997 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 998 int err = 0; 999 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1000 1001 if (mnt->mnt_sb->s_op->show_devname) { 1002 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1003 if (err) 1004 goto out; 1005 } else { 1006 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1007 } 1008 seq_putc(m, ' '); 1009 seq_path(m, &mnt_path, " \t\n\\"); 1010 seq_putc(m, ' '); 1011 show_type(m, mnt->mnt_sb); 1012 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 1013 err = show_sb_opts(m, mnt->mnt_sb); 1014 if (err) 1015 goto out; 1016 show_mnt_opts(m, mnt); 1017 if (mnt->mnt_sb->s_op->show_options) 1018 err = mnt->mnt_sb->s_op->show_options(m, mnt); 1019 seq_puts(m, " 0 0\n"); 1020 out: 1021 return err; 1022 } 1023 1024 const struct seq_operations mounts_op = { 1025 .start = m_start, 1026 .next = m_next, 1027 .stop = m_stop, 1028 .show = show_vfsmnt 1029 }; 1030 1031 static int show_mountinfo(struct seq_file *m, void *v) 1032 { 1033 struct proc_mounts *p = m->private; 1034 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1035 struct super_block *sb = mnt->mnt_sb; 1036 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1037 struct path root = p->root; 1038 int err = 0; 1039 1040 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 1041 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 1042 if (sb->s_op->show_path) 1043 err = sb->s_op->show_path(m, mnt); 1044 else 1045 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 1046 if (err) 1047 goto out; 1048 seq_putc(m, ' '); 1049 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 1050 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 1051 /* 1052 * Mountpoint is outside root, discard that one. Ugly, 1053 * but less so than trying to do that in iterator in a 1054 * race-free way (due to renames). 1055 */ 1056 return SEQ_SKIP; 1057 } 1058 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 1059 show_mnt_opts(m, mnt); 1060 1061 /* Tagged fields ("foo:X" or "bar") */ 1062 if (IS_MNT_SHARED(mnt)) 1063 seq_printf(m, " shared:%i", mnt->mnt_group_id); 1064 if (IS_MNT_SLAVE(mnt)) { 1065 int master = mnt->mnt_master->mnt_group_id; 1066 int dom = get_dominating_id(mnt, &p->root); 1067 seq_printf(m, " master:%i", master); 1068 if (dom && dom != master) 1069 seq_printf(m, " propagate_from:%i", dom); 1070 } 1071 if (IS_MNT_UNBINDABLE(mnt)) 1072 seq_puts(m, " unbindable"); 1073 1074 /* Filesystem specific data */ 1075 seq_puts(m, " - "); 1076 show_type(m, sb); 1077 seq_putc(m, ' '); 1078 if (sb->s_op->show_devname) 1079 err = sb->s_op->show_devname(m, mnt); 1080 else 1081 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1082 if (err) 1083 goto out; 1084 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 1085 err = show_sb_opts(m, sb); 1086 if (err) 1087 goto out; 1088 if (sb->s_op->show_options) 1089 err = sb->s_op->show_options(m, mnt); 1090 seq_putc(m, '\n'); 1091 out: 1092 return err; 1093 } 1094 1095 const struct seq_operations mountinfo_op = { 1096 .start = m_start, 1097 .next = m_next, 1098 .stop = m_stop, 1099 .show = show_mountinfo, 1100 }; 1101 1102 static int show_vfsstat(struct seq_file *m, void *v) 1103 { 1104 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1105 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1106 int err = 0; 1107 1108 /* device */ 1109 if (mnt->mnt_sb->s_op->show_devname) { 1110 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1111 } else { 1112 if (mnt->mnt_devname) { 1113 seq_puts(m, "device "); 1114 mangle(m, mnt->mnt_devname); 1115 } else 1116 seq_puts(m, "no device"); 1117 } 1118 1119 /* mount point */ 1120 seq_puts(m, " mounted on "); 1121 seq_path(m, &mnt_path, " \t\n\\"); 1122 seq_putc(m, ' '); 1123 1124 /* file system type */ 1125 seq_puts(m, "with fstype "); 1126 show_type(m, mnt->mnt_sb); 1127 1128 /* optional statistics */ 1129 if (mnt->mnt_sb->s_op->show_stats) { 1130 seq_putc(m, ' '); 1131 if (!err) 1132 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 1133 } 1134 1135 seq_putc(m, '\n'); 1136 return err; 1137 } 1138 1139 const struct seq_operations mountstats_op = { 1140 .start = m_start, 1141 .next = m_next, 1142 .stop = m_stop, 1143 .show = show_vfsstat, 1144 }; 1145 #endif /* CONFIG_PROC_FS */ 1146 1147 /** 1148 * may_umount_tree - check if a mount tree is busy 1149 * @mnt: root of mount tree 1150 * 1151 * This is called to check if a tree of mounts has any 1152 * open files, pwds, chroots or sub mounts that are 1153 * busy. 1154 */ 1155 int may_umount_tree(struct vfsmount *mnt) 1156 { 1157 int actual_refs = 0; 1158 int minimum_refs = 0; 1159 struct vfsmount *p; 1160 1161 /* write lock needed for mnt_get_count */ 1162 br_write_lock(vfsmount_lock); 1163 for (p = mnt; p; p = next_mnt(p, mnt)) { 1164 actual_refs += mnt_get_count(p); 1165 minimum_refs += 2; 1166 } 1167 br_write_unlock(vfsmount_lock); 1168 1169 if (actual_refs > minimum_refs) 1170 return 0; 1171 1172 return 1; 1173 } 1174 1175 EXPORT_SYMBOL(may_umount_tree); 1176 1177 /** 1178 * may_umount - check if a mount point is busy 1179 * @mnt: root of mount 1180 * 1181 * This is called to check if a mount point has any 1182 * open files, pwds, chroots or sub mounts. If the 1183 * mount has sub mounts this will return busy 1184 * regardless of whether the sub mounts are busy. 1185 * 1186 * Doesn't take quota and stuff into account. IOW, in some cases it will 1187 * give false negatives. The main reason why it's here is that we need 1188 * a non-destructive way to look for easily umountable filesystems. 1189 */ 1190 int may_umount(struct vfsmount *mnt) 1191 { 1192 int ret = 1; 1193 down_read(&namespace_sem); 1194 br_write_lock(vfsmount_lock); 1195 if (propagate_mount_busy(mnt, 2)) 1196 ret = 0; 1197 br_write_unlock(vfsmount_lock); 1198 up_read(&namespace_sem); 1199 return ret; 1200 } 1201 1202 EXPORT_SYMBOL(may_umount); 1203 1204 void release_mounts(struct list_head *head) 1205 { 1206 struct vfsmount *mnt; 1207 while (!list_empty(head)) { 1208 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 1209 list_del_init(&mnt->mnt_hash); 1210 if (mnt->mnt_parent != mnt) { 1211 struct dentry *dentry; 1212 struct vfsmount *m; 1213 1214 br_write_lock(vfsmount_lock); 1215 dentry = mnt->mnt_mountpoint; 1216 m = mnt->mnt_parent; 1217 mnt->mnt_mountpoint = mnt->mnt_root; 1218 mnt->mnt_parent = mnt; 1219 m->mnt_ghosts--; 1220 br_write_unlock(vfsmount_lock); 1221 dput(dentry); 1222 mntput(m); 1223 } 1224 mntput(mnt); 1225 } 1226 } 1227 1228 /* 1229 * vfsmount lock must be held for write 1230 * namespace_sem must be held for write 1231 */ 1232 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1233 { 1234 LIST_HEAD(tmp_list); 1235 struct vfsmount *p; 1236 1237 for (p = mnt; p; p = next_mnt(p, mnt)) 1238 list_move(&p->mnt_hash, &tmp_list); 1239 1240 if (propagate) 1241 propagate_umount(&tmp_list); 1242 1243 list_for_each_entry(p, &tmp_list, mnt_hash) { 1244 list_del_init(&p->mnt_expire); 1245 list_del_init(&p->mnt_list); 1246 __touch_mnt_namespace(p->mnt_ns); 1247 p->mnt_ns = NULL; 1248 __mnt_make_shortterm(p); 1249 list_del_init(&p->mnt_child); 1250 if (p->mnt_parent != p) { 1251 p->mnt_parent->mnt_ghosts++; 1252 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint); 1253 } 1254 change_mnt_propagation(p, MS_PRIVATE); 1255 } 1256 list_splice(&tmp_list, kill); 1257 } 1258 1259 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1260 1261 static int do_umount(struct vfsmount *mnt, int flags) 1262 { 1263 struct super_block *sb = mnt->mnt_sb; 1264 int retval; 1265 LIST_HEAD(umount_list); 1266 1267 retval = security_sb_umount(mnt, flags); 1268 if (retval) 1269 return retval; 1270 1271 /* 1272 * Allow userspace to request a mountpoint be expired rather than 1273 * unmounting unconditionally. Unmount only happens if: 1274 * (1) the mark is already set (the mark is cleared by mntput()) 1275 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1276 */ 1277 if (flags & MNT_EXPIRE) { 1278 if (mnt == current->fs->root.mnt || 1279 flags & (MNT_FORCE | MNT_DETACH)) 1280 return -EINVAL; 1281 1282 /* 1283 * probably don't strictly need the lock here if we examined 1284 * all race cases, but it's a slowpath. 1285 */ 1286 br_write_lock(vfsmount_lock); 1287 if (mnt_get_count(mnt) != 2) { 1288 br_write_unlock(vfsmount_lock); 1289 return -EBUSY; 1290 } 1291 br_write_unlock(vfsmount_lock); 1292 1293 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1294 return -EAGAIN; 1295 } 1296 1297 /* 1298 * If we may have to abort operations to get out of this 1299 * mount, and they will themselves hold resources we must 1300 * allow the fs to do things. In the Unix tradition of 1301 * 'Gee thats tricky lets do it in userspace' the umount_begin 1302 * might fail to complete on the first run through as other tasks 1303 * must return, and the like. Thats for the mount program to worry 1304 * about for the moment. 1305 */ 1306 1307 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1308 sb->s_op->umount_begin(sb); 1309 } 1310 1311 /* 1312 * No sense to grab the lock for this test, but test itself looks 1313 * somewhat bogus. Suggestions for better replacement? 1314 * Ho-hum... In principle, we might treat that as umount + switch 1315 * to rootfs. GC would eventually take care of the old vfsmount. 1316 * Actually it makes sense, especially if rootfs would contain a 1317 * /reboot - static binary that would close all descriptors and 1318 * call reboot(9). Then init(8) could umount root and exec /reboot. 1319 */ 1320 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1321 /* 1322 * Special case for "unmounting" root ... 1323 * we just try to remount it readonly. 1324 */ 1325 down_write(&sb->s_umount); 1326 if (!(sb->s_flags & MS_RDONLY)) 1327 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1328 up_write(&sb->s_umount); 1329 return retval; 1330 } 1331 1332 down_write(&namespace_sem); 1333 br_write_lock(vfsmount_lock); 1334 event++; 1335 1336 if (!(flags & MNT_DETACH)) 1337 shrink_submounts(mnt, &umount_list); 1338 1339 retval = -EBUSY; 1340 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1341 if (!list_empty(&mnt->mnt_list)) 1342 umount_tree(mnt, 1, &umount_list); 1343 retval = 0; 1344 } 1345 br_write_unlock(vfsmount_lock); 1346 up_write(&namespace_sem); 1347 release_mounts(&umount_list); 1348 return retval; 1349 } 1350 1351 /* 1352 * Now umount can handle mount points as well as block devices. 1353 * This is important for filesystems which use unnamed block devices. 1354 * 1355 * We now support a flag for forced unmount like the other 'big iron' 1356 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1357 */ 1358 1359 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1360 { 1361 struct path path; 1362 int retval; 1363 int lookup_flags = 0; 1364 1365 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1366 return -EINVAL; 1367 1368 if (!(flags & UMOUNT_NOFOLLOW)) 1369 lookup_flags |= LOOKUP_FOLLOW; 1370 1371 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1372 if (retval) 1373 goto out; 1374 retval = -EINVAL; 1375 if (path.dentry != path.mnt->mnt_root) 1376 goto dput_and_out; 1377 if (!check_mnt(path.mnt)) 1378 goto dput_and_out; 1379 1380 retval = -EPERM; 1381 if (!capable(CAP_SYS_ADMIN)) 1382 goto dput_and_out; 1383 1384 retval = do_umount(path.mnt, flags); 1385 dput_and_out: 1386 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1387 dput(path.dentry); 1388 mntput_no_expire(path.mnt); 1389 out: 1390 return retval; 1391 } 1392 1393 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1394 1395 /* 1396 * The 2.0 compatible umount. No flags. 1397 */ 1398 SYSCALL_DEFINE1(oldumount, char __user *, name) 1399 { 1400 return sys_umount(name, 0); 1401 } 1402 1403 #endif 1404 1405 static int mount_is_safe(struct path *path) 1406 { 1407 if (capable(CAP_SYS_ADMIN)) 1408 return 0; 1409 return -EPERM; 1410 #ifdef notyet 1411 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1412 return -EPERM; 1413 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1414 if (current_uid() != path->dentry->d_inode->i_uid) 1415 return -EPERM; 1416 } 1417 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1418 return -EPERM; 1419 return 0; 1420 #endif 1421 } 1422 1423 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1424 int flag) 1425 { 1426 struct vfsmount *res, *p, *q, *r, *s; 1427 struct path path; 1428 1429 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1430 return NULL; 1431 1432 res = q = clone_mnt(mnt, dentry, flag); 1433 if (!q) 1434 goto Enomem; 1435 q->mnt_mountpoint = mnt->mnt_mountpoint; 1436 1437 p = mnt; 1438 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1439 if (!is_subdir(r->mnt_mountpoint, dentry)) 1440 continue; 1441 1442 for (s = r; s; s = next_mnt(s, r)) { 1443 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1444 s = skip_mnt_tree(s); 1445 continue; 1446 } 1447 while (p != s->mnt_parent) { 1448 p = p->mnt_parent; 1449 q = q->mnt_parent; 1450 } 1451 p = s; 1452 path.mnt = q; 1453 path.dentry = p->mnt_mountpoint; 1454 q = clone_mnt(p, p->mnt_root, flag); 1455 if (!q) 1456 goto Enomem; 1457 br_write_lock(vfsmount_lock); 1458 list_add_tail(&q->mnt_list, &res->mnt_list); 1459 attach_mnt(q, &path); 1460 br_write_unlock(vfsmount_lock); 1461 } 1462 } 1463 return res; 1464 Enomem: 1465 if (res) { 1466 LIST_HEAD(umount_list); 1467 br_write_lock(vfsmount_lock); 1468 umount_tree(res, 0, &umount_list); 1469 br_write_unlock(vfsmount_lock); 1470 release_mounts(&umount_list); 1471 } 1472 return NULL; 1473 } 1474 1475 struct vfsmount *collect_mounts(struct path *path) 1476 { 1477 struct vfsmount *tree; 1478 down_write(&namespace_sem); 1479 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1480 up_write(&namespace_sem); 1481 return tree; 1482 } 1483 1484 void drop_collected_mounts(struct vfsmount *mnt) 1485 { 1486 LIST_HEAD(umount_list); 1487 down_write(&namespace_sem); 1488 br_write_lock(vfsmount_lock); 1489 umount_tree(mnt, 0, &umount_list); 1490 br_write_unlock(vfsmount_lock); 1491 up_write(&namespace_sem); 1492 release_mounts(&umount_list); 1493 } 1494 1495 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1496 struct vfsmount *root) 1497 { 1498 struct vfsmount *mnt; 1499 int res = f(root, arg); 1500 if (res) 1501 return res; 1502 list_for_each_entry(mnt, &root->mnt_list, mnt_list) { 1503 res = f(mnt, arg); 1504 if (res) 1505 return res; 1506 } 1507 return 0; 1508 } 1509 1510 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1511 { 1512 struct vfsmount *p; 1513 1514 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1515 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1516 mnt_release_group_id(p); 1517 } 1518 } 1519 1520 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1521 { 1522 struct vfsmount *p; 1523 1524 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1525 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1526 int err = mnt_alloc_group_id(p); 1527 if (err) { 1528 cleanup_group_ids(mnt, p); 1529 return err; 1530 } 1531 } 1532 } 1533 1534 return 0; 1535 } 1536 1537 /* 1538 * @source_mnt : mount tree to be attached 1539 * @nd : place the mount tree @source_mnt is attached 1540 * @parent_nd : if non-null, detach the source_mnt from its parent and 1541 * store the parent mount and mountpoint dentry. 1542 * (done when source_mnt is moved) 1543 * 1544 * NOTE: in the table below explains the semantics when a source mount 1545 * of a given type is attached to a destination mount of a given type. 1546 * --------------------------------------------------------------------------- 1547 * | BIND MOUNT OPERATION | 1548 * |************************************************************************** 1549 * | source-->| shared | private | slave | unbindable | 1550 * | dest | | | | | 1551 * | | | | | | | 1552 * | v | | | | | 1553 * |************************************************************************** 1554 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1555 * | | | | | | 1556 * |non-shared| shared (+) | private | slave (*) | invalid | 1557 * *************************************************************************** 1558 * A bind operation clones the source mount and mounts the clone on the 1559 * destination mount. 1560 * 1561 * (++) the cloned mount is propagated to all the mounts in the propagation 1562 * tree of the destination mount and the cloned mount is added to 1563 * the peer group of the source mount. 1564 * (+) the cloned mount is created under the destination mount and is marked 1565 * as shared. The cloned mount is added to the peer group of the source 1566 * mount. 1567 * (+++) the mount is propagated to all the mounts in the propagation tree 1568 * of the destination mount and the cloned mount is made slave 1569 * of the same master as that of the source mount. The cloned mount 1570 * is marked as 'shared and slave'. 1571 * (*) the cloned mount is made a slave of the same master as that of the 1572 * source mount. 1573 * 1574 * --------------------------------------------------------------------------- 1575 * | MOVE MOUNT OPERATION | 1576 * |************************************************************************** 1577 * | source-->| shared | private | slave | unbindable | 1578 * | dest | | | | | 1579 * | | | | | | | 1580 * | v | | | | | 1581 * |************************************************************************** 1582 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1583 * | | | | | | 1584 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1585 * *************************************************************************** 1586 * 1587 * (+) the mount is moved to the destination. And is then propagated to 1588 * all the mounts in the propagation tree of the destination mount. 1589 * (+*) the mount is moved to the destination. 1590 * (+++) the mount is moved to the destination and is then propagated to 1591 * all the mounts belonging to the destination mount's propagation tree. 1592 * the mount is marked as 'shared and slave'. 1593 * (*) the mount continues to be a slave at the new location. 1594 * 1595 * if the source mount is a tree, the operations explained above is 1596 * applied to each mount in the tree. 1597 * Must be called without spinlocks held, since this function can sleep 1598 * in allocations. 1599 */ 1600 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1601 struct path *path, struct path *parent_path) 1602 { 1603 LIST_HEAD(tree_list); 1604 struct vfsmount *dest_mnt = path->mnt; 1605 struct dentry *dest_dentry = path->dentry; 1606 struct vfsmount *child, *p; 1607 int err; 1608 1609 if (IS_MNT_SHARED(dest_mnt)) { 1610 err = invent_group_ids(source_mnt, true); 1611 if (err) 1612 goto out; 1613 } 1614 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1615 if (err) 1616 goto out_cleanup_ids; 1617 1618 br_write_lock(vfsmount_lock); 1619 1620 if (IS_MNT_SHARED(dest_mnt)) { 1621 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1622 set_mnt_shared(p); 1623 } 1624 if (parent_path) { 1625 detach_mnt(source_mnt, parent_path); 1626 attach_mnt(source_mnt, path); 1627 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1628 } else { 1629 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1630 commit_tree(source_mnt); 1631 } 1632 1633 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1634 list_del_init(&child->mnt_hash); 1635 commit_tree(child); 1636 } 1637 br_write_unlock(vfsmount_lock); 1638 1639 return 0; 1640 1641 out_cleanup_ids: 1642 if (IS_MNT_SHARED(dest_mnt)) 1643 cleanup_group_ids(source_mnt, NULL); 1644 out: 1645 return err; 1646 } 1647 1648 static int lock_mount(struct path *path) 1649 { 1650 struct vfsmount *mnt; 1651 retry: 1652 mutex_lock(&path->dentry->d_inode->i_mutex); 1653 if (unlikely(cant_mount(path->dentry))) { 1654 mutex_unlock(&path->dentry->d_inode->i_mutex); 1655 return -ENOENT; 1656 } 1657 down_write(&namespace_sem); 1658 mnt = lookup_mnt(path); 1659 if (likely(!mnt)) 1660 return 0; 1661 up_write(&namespace_sem); 1662 mutex_unlock(&path->dentry->d_inode->i_mutex); 1663 path_put(path); 1664 path->mnt = mnt; 1665 path->dentry = dget(mnt->mnt_root); 1666 goto retry; 1667 } 1668 1669 static void unlock_mount(struct path *path) 1670 { 1671 up_write(&namespace_sem); 1672 mutex_unlock(&path->dentry->d_inode->i_mutex); 1673 } 1674 1675 static int graft_tree(struct vfsmount *mnt, struct path *path) 1676 { 1677 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1678 return -EINVAL; 1679 1680 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1681 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1682 return -ENOTDIR; 1683 1684 if (d_unlinked(path->dentry)) 1685 return -ENOENT; 1686 1687 return attach_recursive_mnt(mnt, path, NULL); 1688 } 1689 1690 /* 1691 * Sanity check the flags to change_mnt_propagation. 1692 */ 1693 1694 static int flags_to_propagation_type(int flags) 1695 { 1696 int type = flags & ~(MS_REC | MS_SILENT); 1697 1698 /* Fail if any non-propagation flags are set */ 1699 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1700 return 0; 1701 /* Only one propagation flag should be set */ 1702 if (!is_power_of_2(type)) 1703 return 0; 1704 return type; 1705 } 1706 1707 /* 1708 * recursively change the type of the mountpoint. 1709 */ 1710 static int do_change_type(struct path *path, int flag) 1711 { 1712 struct vfsmount *m, *mnt = path->mnt; 1713 int recurse = flag & MS_REC; 1714 int type; 1715 int err = 0; 1716 1717 if (!capable(CAP_SYS_ADMIN)) 1718 return -EPERM; 1719 1720 if (path->dentry != path->mnt->mnt_root) 1721 return -EINVAL; 1722 1723 type = flags_to_propagation_type(flag); 1724 if (!type) 1725 return -EINVAL; 1726 1727 down_write(&namespace_sem); 1728 if (type == MS_SHARED) { 1729 err = invent_group_ids(mnt, recurse); 1730 if (err) 1731 goto out_unlock; 1732 } 1733 1734 br_write_lock(vfsmount_lock); 1735 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1736 change_mnt_propagation(m, type); 1737 br_write_unlock(vfsmount_lock); 1738 1739 out_unlock: 1740 up_write(&namespace_sem); 1741 return err; 1742 } 1743 1744 /* 1745 * do loopback mount. 1746 */ 1747 static int do_loopback(struct path *path, char *old_name, 1748 int recurse) 1749 { 1750 LIST_HEAD(umount_list); 1751 struct path old_path; 1752 struct vfsmount *mnt = NULL; 1753 int err = mount_is_safe(path); 1754 if (err) 1755 return err; 1756 if (!old_name || !*old_name) 1757 return -EINVAL; 1758 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1759 if (err) 1760 return err; 1761 1762 err = lock_mount(path); 1763 if (err) 1764 goto out; 1765 1766 err = -EINVAL; 1767 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1768 goto out2; 1769 1770 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1771 goto out2; 1772 1773 err = -ENOMEM; 1774 if (recurse) 1775 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1776 else 1777 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1778 1779 if (!mnt) 1780 goto out2; 1781 1782 err = graft_tree(mnt, path); 1783 if (err) { 1784 br_write_lock(vfsmount_lock); 1785 umount_tree(mnt, 0, &umount_list); 1786 br_write_unlock(vfsmount_lock); 1787 } 1788 out2: 1789 unlock_mount(path); 1790 release_mounts(&umount_list); 1791 out: 1792 path_put(&old_path); 1793 return err; 1794 } 1795 1796 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1797 { 1798 int error = 0; 1799 int readonly_request = 0; 1800 1801 if (ms_flags & MS_RDONLY) 1802 readonly_request = 1; 1803 if (readonly_request == __mnt_is_readonly(mnt)) 1804 return 0; 1805 1806 if (readonly_request) 1807 error = mnt_make_readonly(mnt); 1808 else 1809 __mnt_unmake_readonly(mnt); 1810 return error; 1811 } 1812 1813 /* 1814 * change filesystem flags. dir should be a physical root of filesystem. 1815 * If you've mounted a non-root directory somewhere and want to do remount 1816 * on it - tough luck. 1817 */ 1818 static int do_remount(struct path *path, int flags, int mnt_flags, 1819 void *data) 1820 { 1821 int err; 1822 struct super_block *sb = path->mnt->mnt_sb; 1823 1824 if (!capable(CAP_SYS_ADMIN)) 1825 return -EPERM; 1826 1827 if (!check_mnt(path->mnt)) 1828 return -EINVAL; 1829 1830 if (path->dentry != path->mnt->mnt_root) 1831 return -EINVAL; 1832 1833 err = security_sb_remount(sb, data); 1834 if (err) 1835 return err; 1836 1837 down_write(&sb->s_umount); 1838 if (flags & MS_BIND) 1839 err = change_mount_flags(path->mnt, flags); 1840 else 1841 err = do_remount_sb(sb, flags, data, 0); 1842 if (!err) { 1843 br_write_lock(vfsmount_lock); 1844 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK; 1845 path->mnt->mnt_flags = mnt_flags; 1846 br_write_unlock(vfsmount_lock); 1847 } 1848 up_write(&sb->s_umount); 1849 if (!err) { 1850 br_write_lock(vfsmount_lock); 1851 touch_mnt_namespace(path->mnt->mnt_ns); 1852 br_write_unlock(vfsmount_lock); 1853 } 1854 return err; 1855 } 1856 1857 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1858 { 1859 struct vfsmount *p; 1860 for (p = mnt; p; p = next_mnt(p, mnt)) { 1861 if (IS_MNT_UNBINDABLE(p)) 1862 return 1; 1863 } 1864 return 0; 1865 } 1866 1867 static int do_move_mount(struct path *path, char *old_name) 1868 { 1869 struct path old_path, parent_path; 1870 struct vfsmount *p; 1871 int err = 0; 1872 if (!capable(CAP_SYS_ADMIN)) 1873 return -EPERM; 1874 if (!old_name || !*old_name) 1875 return -EINVAL; 1876 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1877 if (err) 1878 return err; 1879 1880 err = lock_mount(path); 1881 if (err < 0) 1882 goto out; 1883 1884 err = -EINVAL; 1885 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1886 goto out1; 1887 1888 if (d_unlinked(path->dentry)) 1889 goto out1; 1890 1891 err = -EINVAL; 1892 if (old_path.dentry != old_path.mnt->mnt_root) 1893 goto out1; 1894 1895 if (old_path.mnt == old_path.mnt->mnt_parent) 1896 goto out1; 1897 1898 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1899 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1900 goto out1; 1901 /* 1902 * Don't move a mount residing in a shared parent. 1903 */ 1904 if (old_path.mnt->mnt_parent && 1905 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1906 goto out1; 1907 /* 1908 * Don't move a mount tree containing unbindable mounts to a destination 1909 * mount which is shared. 1910 */ 1911 if (IS_MNT_SHARED(path->mnt) && 1912 tree_contains_unbindable(old_path.mnt)) 1913 goto out1; 1914 err = -ELOOP; 1915 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1916 if (p == old_path.mnt) 1917 goto out1; 1918 1919 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1920 if (err) 1921 goto out1; 1922 1923 /* if the mount is moved, it should no longer be expire 1924 * automatically */ 1925 list_del_init(&old_path.mnt->mnt_expire); 1926 out1: 1927 unlock_mount(path); 1928 out: 1929 if (!err) 1930 path_put(&parent_path); 1931 path_put(&old_path); 1932 return err; 1933 } 1934 1935 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1936 { 1937 int err; 1938 const char *subtype = strchr(fstype, '.'); 1939 if (subtype) { 1940 subtype++; 1941 err = -EINVAL; 1942 if (!subtype[0]) 1943 goto err; 1944 } else 1945 subtype = ""; 1946 1947 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1948 err = -ENOMEM; 1949 if (!mnt->mnt_sb->s_subtype) 1950 goto err; 1951 return mnt; 1952 1953 err: 1954 mntput(mnt); 1955 return ERR_PTR(err); 1956 } 1957 1958 struct vfsmount * 1959 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1960 { 1961 struct file_system_type *type = get_fs_type(fstype); 1962 struct vfsmount *mnt; 1963 if (!type) 1964 return ERR_PTR(-ENODEV); 1965 mnt = vfs_kern_mount(type, flags, name, data); 1966 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1967 !mnt->mnt_sb->s_subtype) 1968 mnt = fs_set_subtype(mnt, fstype); 1969 put_filesystem(type); 1970 return mnt; 1971 } 1972 EXPORT_SYMBOL_GPL(do_kern_mount); 1973 1974 /* 1975 * add a mount into a namespace's mount tree 1976 */ 1977 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags) 1978 { 1979 int err; 1980 1981 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1982 1983 err = lock_mount(path); 1984 if (err) 1985 return err; 1986 1987 err = -EINVAL; 1988 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1989 goto unlock; 1990 1991 /* Refuse the same filesystem on the same mount point */ 1992 err = -EBUSY; 1993 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1994 path->mnt->mnt_root == path->dentry) 1995 goto unlock; 1996 1997 err = -EINVAL; 1998 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1999 goto unlock; 2000 2001 newmnt->mnt_flags = mnt_flags; 2002 err = graft_tree(newmnt, path); 2003 2004 unlock: 2005 unlock_mount(path); 2006 return err; 2007 } 2008 2009 /* 2010 * create a new mount for userspace and request it to be added into the 2011 * namespace's tree 2012 */ 2013 static int do_new_mount(struct path *path, char *type, int flags, 2014 int mnt_flags, char *name, void *data) 2015 { 2016 struct vfsmount *mnt; 2017 int err; 2018 2019 if (!type) 2020 return -EINVAL; 2021 2022 /* we need capabilities... */ 2023 if (!capable(CAP_SYS_ADMIN)) 2024 return -EPERM; 2025 2026 mnt = do_kern_mount(type, flags, name, data); 2027 if (IS_ERR(mnt)) 2028 return PTR_ERR(mnt); 2029 2030 err = do_add_mount(mnt, path, mnt_flags); 2031 if (err) 2032 mntput(mnt); 2033 return err; 2034 } 2035 2036 int finish_automount(struct vfsmount *m, struct path *path) 2037 { 2038 int err; 2039 /* The new mount record should have at least 2 refs to prevent it being 2040 * expired before we get a chance to add it 2041 */ 2042 BUG_ON(mnt_get_count(m) < 2); 2043 2044 if (m->mnt_sb == path->mnt->mnt_sb && 2045 m->mnt_root == path->dentry) { 2046 err = -ELOOP; 2047 goto fail; 2048 } 2049 2050 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2051 if (!err) 2052 return 0; 2053 fail: 2054 /* remove m from any expiration list it may be on */ 2055 if (!list_empty(&m->mnt_expire)) { 2056 down_write(&namespace_sem); 2057 br_write_lock(vfsmount_lock); 2058 list_del_init(&m->mnt_expire); 2059 br_write_unlock(vfsmount_lock); 2060 up_write(&namespace_sem); 2061 } 2062 mntput(m); 2063 mntput(m); 2064 return err; 2065 } 2066 2067 /** 2068 * mnt_set_expiry - Put a mount on an expiration list 2069 * @mnt: The mount to list. 2070 * @expiry_list: The list to add the mount to. 2071 */ 2072 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2073 { 2074 down_write(&namespace_sem); 2075 br_write_lock(vfsmount_lock); 2076 2077 list_add_tail(&mnt->mnt_expire, expiry_list); 2078 2079 br_write_unlock(vfsmount_lock); 2080 up_write(&namespace_sem); 2081 } 2082 EXPORT_SYMBOL(mnt_set_expiry); 2083 2084 /* 2085 * process a list of expirable mountpoints with the intent of discarding any 2086 * mountpoints that aren't in use and haven't been touched since last we came 2087 * here 2088 */ 2089 void mark_mounts_for_expiry(struct list_head *mounts) 2090 { 2091 struct vfsmount *mnt, *next; 2092 LIST_HEAD(graveyard); 2093 LIST_HEAD(umounts); 2094 2095 if (list_empty(mounts)) 2096 return; 2097 2098 down_write(&namespace_sem); 2099 br_write_lock(vfsmount_lock); 2100 2101 /* extract from the expiration list every vfsmount that matches the 2102 * following criteria: 2103 * - only referenced by its parent vfsmount 2104 * - still marked for expiry (marked on the last call here; marks are 2105 * cleared by mntput()) 2106 */ 2107 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2108 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2109 propagate_mount_busy(mnt, 1)) 2110 continue; 2111 list_move(&mnt->mnt_expire, &graveyard); 2112 } 2113 while (!list_empty(&graveyard)) { 2114 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 2115 touch_mnt_namespace(mnt->mnt_ns); 2116 umount_tree(mnt, 1, &umounts); 2117 } 2118 br_write_unlock(vfsmount_lock); 2119 up_write(&namespace_sem); 2120 2121 release_mounts(&umounts); 2122 } 2123 2124 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2125 2126 /* 2127 * Ripoff of 'select_parent()' 2128 * 2129 * search the list of submounts for a given mountpoint, and move any 2130 * shrinkable submounts to the 'graveyard' list. 2131 */ 2132 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 2133 { 2134 struct vfsmount *this_parent = parent; 2135 struct list_head *next; 2136 int found = 0; 2137 2138 repeat: 2139 next = this_parent->mnt_mounts.next; 2140 resume: 2141 while (next != &this_parent->mnt_mounts) { 2142 struct list_head *tmp = next; 2143 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 2144 2145 next = tmp->next; 2146 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 2147 continue; 2148 /* 2149 * Descend a level if the d_mounts list is non-empty. 2150 */ 2151 if (!list_empty(&mnt->mnt_mounts)) { 2152 this_parent = mnt; 2153 goto repeat; 2154 } 2155 2156 if (!propagate_mount_busy(mnt, 1)) { 2157 list_move_tail(&mnt->mnt_expire, graveyard); 2158 found++; 2159 } 2160 } 2161 /* 2162 * All done at this level ... ascend and resume the search 2163 */ 2164 if (this_parent != parent) { 2165 next = this_parent->mnt_child.next; 2166 this_parent = this_parent->mnt_parent; 2167 goto resume; 2168 } 2169 return found; 2170 } 2171 2172 /* 2173 * process a list of expirable mountpoints with the intent of discarding any 2174 * submounts of a specific parent mountpoint 2175 * 2176 * vfsmount_lock must be held for write 2177 */ 2178 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 2179 { 2180 LIST_HEAD(graveyard); 2181 struct vfsmount *m; 2182 2183 /* extract submounts of 'mountpoint' from the expiration list */ 2184 while (select_submounts(mnt, &graveyard)) { 2185 while (!list_empty(&graveyard)) { 2186 m = list_first_entry(&graveyard, struct vfsmount, 2187 mnt_expire); 2188 touch_mnt_namespace(m->mnt_ns); 2189 umount_tree(m, 1, umounts); 2190 } 2191 } 2192 } 2193 2194 /* 2195 * Some copy_from_user() implementations do not return the exact number of 2196 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2197 * Note that this function differs from copy_from_user() in that it will oops 2198 * on bad values of `to', rather than returning a short copy. 2199 */ 2200 static long exact_copy_from_user(void *to, const void __user * from, 2201 unsigned long n) 2202 { 2203 char *t = to; 2204 const char __user *f = from; 2205 char c; 2206 2207 if (!access_ok(VERIFY_READ, from, n)) 2208 return n; 2209 2210 while (n) { 2211 if (__get_user(c, f)) { 2212 memset(t, 0, n); 2213 break; 2214 } 2215 *t++ = c; 2216 f++; 2217 n--; 2218 } 2219 return n; 2220 } 2221 2222 int copy_mount_options(const void __user * data, unsigned long *where) 2223 { 2224 int i; 2225 unsigned long page; 2226 unsigned long size; 2227 2228 *where = 0; 2229 if (!data) 2230 return 0; 2231 2232 if (!(page = __get_free_page(GFP_KERNEL))) 2233 return -ENOMEM; 2234 2235 /* We only care that *some* data at the address the user 2236 * gave us is valid. Just in case, we'll zero 2237 * the remainder of the page. 2238 */ 2239 /* copy_from_user cannot cross TASK_SIZE ! */ 2240 size = TASK_SIZE - (unsigned long)data; 2241 if (size > PAGE_SIZE) 2242 size = PAGE_SIZE; 2243 2244 i = size - exact_copy_from_user((void *)page, data, size); 2245 if (!i) { 2246 free_page(page); 2247 return -EFAULT; 2248 } 2249 if (i != PAGE_SIZE) 2250 memset((char *)page + i, 0, PAGE_SIZE - i); 2251 *where = page; 2252 return 0; 2253 } 2254 2255 int copy_mount_string(const void __user *data, char **where) 2256 { 2257 char *tmp; 2258 2259 if (!data) { 2260 *where = NULL; 2261 return 0; 2262 } 2263 2264 tmp = strndup_user(data, PAGE_SIZE); 2265 if (IS_ERR(tmp)) 2266 return PTR_ERR(tmp); 2267 2268 *where = tmp; 2269 return 0; 2270 } 2271 2272 /* 2273 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2274 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2275 * 2276 * data is a (void *) that can point to any structure up to 2277 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2278 * information (or be NULL). 2279 * 2280 * Pre-0.97 versions of mount() didn't have a flags word. 2281 * When the flags word was introduced its top half was required 2282 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2283 * Therefore, if this magic number is present, it carries no information 2284 * and must be discarded. 2285 */ 2286 long do_mount(char *dev_name, char *dir_name, char *type_page, 2287 unsigned long flags, void *data_page) 2288 { 2289 struct path path; 2290 int retval = 0; 2291 int mnt_flags = 0; 2292 2293 /* Discard magic */ 2294 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2295 flags &= ~MS_MGC_MSK; 2296 2297 /* Basic sanity checks */ 2298 2299 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2300 return -EINVAL; 2301 2302 if (data_page) 2303 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2304 2305 /* ... and get the mountpoint */ 2306 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2307 if (retval) 2308 return retval; 2309 2310 retval = security_sb_mount(dev_name, &path, 2311 type_page, flags, data_page); 2312 if (retval) 2313 goto dput_out; 2314 2315 /* Default to relatime unless overriden */ 2316 if (!(flags & MS_NOATIME)) 2317 mnt_flags |= MNT_RELATIME; 2318 2319 /* Separate the per-mountpoint flags */ 2320 if (flags & MS_NOSUID) 2321 mnt_flags |= MNT_NOSUID; 2322 if (flags & MS_NODEV) 2323 mnt_flags |= MNT_NODEV; 2324 if (flags & MS_NOEXEC) 2325 mnt_flags |= MNT_NOEXEC; 2326 if (flags & MS_NOATIME) 2327 mnt_flags |= MNT_NOATIME; 2328 if (flags & MS_NODIRATIME) 2329 mnt_flags |= MNT_NODIRATIME; 2330 if (flags & MS_STRICTATIME) 2331 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2332 if (flags & MS_RDONLY) 2333 mnt_flags |= MNT_READONLY; 2334 2335 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2336 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2337 MS_STRICTATIME); 2338 2339 if (flags & MS_REMOUNT) 2340 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2341 data_page); 2342 else if (flags & MS_BIND) 2343 retval = do_loopback(&path, dev_name, flags & MS_REC); 2344 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2345 retval = do_change_type(&path, flags); 2346 else if (flags & MS_MOVE) 2347 retval = do_move_mount(&path, dev_name); 2348 else 2349 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2350 dev_name, data_page); 2351 dput_out: 2352 path_put(&path); 2353 return retval; 2354 } 2355 2356 static struct mnt_namespace *alloc_mnt_ns(void) 2357 { 2358 struct mnt_namespace *new_ns; 2359 2360 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2361 if (!new_ns) 2362 return ERR_PTR(-ENOMEM); 2363 atomic_set(&new_ns->count, 1); 2364 new_ns->root = NULL; 2365 INIT_LIST_HEAD(&new_ns->list); 2366 init_waitqueue_head(&new_ns->poll); 2367 new_ns->event = 0; 2368 return new_ns; 2369 } 2370 2371 void mnt_make_longterm(struct vfsmount *mnt) 2372 { 2373 __mnt_make_longterm(mnt); 2374 } 2375 2376 void mnt_make_shortterm(struct vfsmount *mnt) 2377 { 2378 #ifdef CONFIG_SMP 2379 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) 2380 return; 2381 br_write_lock(vfsmount_lock); 2382 atomic_dec(&mnt->mnt_longterm); 2383 br_write_unlock(vfsmount_lock); 2384 #endif 2385 } 2386 2387 /* 2388 * Allocate a new namespace structure and populate it with contents 2389 * copied from the namespace of the passed in task structure. 2390 */ 2391 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2392 struct fs_struct *fs) 2393 { 2394 struct mnt_namespace *new_ns; 2395 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2396 struct vfsmount *p, *q; 2397 2398 new_ns = alloc_mnt_ns(); 2399 if (IS_ERR(new_ns)) 2400 return new_ns; 2401 2402 down_write(&namespace_sem); 2403 /* First pass: copy the tree topology */ 2404 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 2405 CL_COPY_ALL | CL_EXPIRE); 2406 if (!new_ns->root) { 2407 up_write(&namespace_sem); 2408 kfree(new_ns); 2409 return ERR_PTR(-ENOMEM); 2410 } 2411 br_write_lock(vfsmount_lock); 2412 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2413 br_write_unlock(vfsmount_lock); 2414 2415 /* 2416 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2417 * as belonging to new namespace. We have already acquired a private 2418 * fs_struct, so tsk->fs->lock is not needed. 2419 */ 2420 p = mnt_ns->root; 2421 q = new_ns->root; 2422 while (p) { 2423 q->mnt_ns = new_ns; 2424 __mnt_make_longterm(q); 2425 if (fs) { 2426 if (p == fs->root.mnt) { 2427 fs->root.mnt = mntget(q); 2428 __mnt_make_longterm(q); 2429 mnt_make_shortterm(p); 2430 rootmnt = p; 2431 } 2432 if (p == fs->pwd.mnt) { 2433 fs->pwd.mnt = mntget(q); 2434 __mnt_make_longterm(q); 2435 mnt_make_shortterm(p); 2436 pwdmnt = p; 2437 } 2438 } 2439 p = next_mnt(p, mnt_ns->root); 2440 q = next_mnt(q, new_ns->root); 2441 } 2442 up_write(&namespace_sem); 2443 2444 if (rootmnt) 2445 mntput(rootmnt); 2446 if (pwdmnt) 2447 mntput(pwdmnt); 2448 2449 return new_ns; 2450 } 2451 2452 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2453 struct fs_struct *new_fs) 2454 { 2455 struct mnt_namespace *new_ns; 2456 2457 BUG_ON(!ns); 2458 get_mnt_ns(ns); 2459 2460 if (!(flags & CLONE_NEWNS)) 2461 return ns; 2462 2463 new_ns = dup_mnt_ns(ns, new_fs); 2464 2465 put_mnt_ns(ns); 2466 return new_ns; 2467 } 2468 2469 /** 2470 * create_mnt_ns - creates a private namespace and adds a root filesystem 2471 * @mnt: pointer to the new root filesystem mountpoint 2472 */ 2473 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2474 { 2475 struct mnt_namespace *new_ns; 2476 2477 new_ns = alloc_mnt_ns(); 2478 if (!IS_ERR(new_ns)) { 2479 mnt->mnt_ns = new_ns; 2480 __mnt_make_longterm(mnt); 2481 new_ns->root = mnt; 2482 list_add(&new_ns->list, &new_ns->root->mnt_list); 2483 } 2484 return new_ns; 2485 } 2486 EXPORT_SYMBOL(create_mnt_ns); 2487 2488 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2489 char __user *, type, unsigned long, flags, void __user *, data) 2490 { 2491 int ret; 2492 char *kernel_type; 2493 char *kernel_dir; 2494 char *kernel_dev; 2495 unsigned long data_page; 2496 2497 ret = copy_mount_string(type, &kernel_type); 2498 if (ret < 0) 2499 goto out_type; 2500 2501 kernel_dir = getname(dir_name); 2502 if (IS_ERR(kernel_dir)) { 2503 ret = PTR_ERR(kernel_dir); 2504 goto out_dir; 2505 } 2506 2507 ret = copy_mount_string(dev_name, &kernel_dev); 2508 if (ret < 0) 2509 goto out_dev; 2510 2511 ret = copy_mount_options(data, &data_page); 2512 if (ret < 0) 2513 goto out_data; 2514 2515 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2516 (void *) data_page); 2517 2518 free_page(data_page); 2519 out_data: 2520 kfree(kernel_dev); 2521 out_dev: 2522 putname(kernel_dir); 2523 out_dir: 2524 kfree(kernel_type); 2525 out_type: 2526 return ret; 2527 } 2528 2529 /* 2530 * pivot_root Semantics: 2531 * Moves the root file system of the current process to the directory put_old, 2532 * makes new_root as the new root file system of the current process, and sets 2533 * root/cwd of all processes which had them on the current root to new_root. 2534 * 2535 * Restrictions: 2536 * The new_root and put_old must be directories, and must not be on the 2537 * same file system as the current process root. The put_old must be 2538 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2539 * pointed to by put_old must yield the same directory as new_root. No other 2540 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2541 * 2542 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2543 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2544 * in this situation. 2545 * 2546 * Notes: 2547 * - we don't move root/cwd if they are not at the root (reason: if something 2548 * cared enough to change them, it's probably wrong to force them elsewhere) 2549 * - it's okay to pick a root that isn't the root of a file system, e.g. 2550 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2551 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2552 * first. 2553 */ 2554 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2555 const char __user *, put_old) 2556 { 2557 struct vfsmount *tmp; 2558 struct path new, old, parent_path, root_parent, root; 2559 int error; 2560 2561 if (!capable(CAP_SYS_ADMIN)) 2562 return -EPERM; 2563 2564 error = user_path_dir(new_root, &new); 2565 if (error) 2566 goto out0; 2567 2568 error = user_path_dir(put_old, &old); 2569 if (error) 2570 goto out1; 2571 2572 error = security_sb_pivotroot(&old, &new); 2573 if (error) 2574 goto out2; 2575 2576 get_fs_root(current->fs, &root); 2577 error = lock_mount(&old); 2578 if (error) 2579 goto out3; 2580 2581 error = -EINVAL; 2582 if (IS_MNT_SHARED(old.mnt) || 2583 IS_MNT_SHARED(new.mnt->mnt_parent) || 2584 IS_MNT_SHARED(root.mnt->mnt_parent)) 2585 goto out4; 2586 if (!check_mnt(root.mnt) || !check_mnt(new.mnt)) 2587 goto out4; 2588 error = -ENOENT; 2589 if (d_unlinked(new.dentry)) 2590 goto out4; 2591 if (d_unlinked(old.dentry)) 2592 goto out4; 2593 error = -EBUSY; 2594 if (new.mnt == root.mnt || 2595 old.mnt == root.mnt) 2596 goto out4; /* loop, on the same file system */ 2597 error = -EINVAL; 2598 if (root.mnt->mnt_root != root.dentry) 2599 goto out4; /* not a mountpoint */ 2600 if (root.mnt->mnt_parent == root.mnt) 2601 goto out4; /* not attached */ 2602 if (new.mnt->mnt_root != new.dentry) 2603 goto out4; /* not a mountpoint */ 2604 if (new.mnt->mnt_parent == new.mnt) 2605 goto out4; /* not attached */ 2606 /* make sure we can reach put_old from new_root */ 2607 tmp = old.mnt; 2608 if (tmp != new.mnt) { 2609 for (;;) { 2610 if (tmp->mnt_parent == tmp) 2611 goto out4; /* already mounted on put_old */ 2612 if (tmp->mnt_parent == new.mnt) 2613 break; 2614 tmp = tmp->mnt_parent; 2615 } 2616 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2617 goto out4; 2618 } else if (!is_subdir(old.dentry, new.dentry)) 2619 goto out4; 2620 br_write_lock(vfsmount_lock); 2621 detach_mnt(new.mnt, &parent_path); 2622 detach_mnt(root.mnt, &root_parent); 2623 /* mount old root on put_old */ 2624 attach_mnt(root.mnt, &old); 2625 /* mount new_root on / */ 2626 attach_mnt(new.mnt, &root_parent); 2627 touch_mnt_namespace(current->nsproxy->mnt_ns); 2628 br_write_unlock(vfsmount_lock); 2629 chroot_fs_refs(&root, &new); 2630 error = 0; 2631 out4: 2632 unlock_mount(&old); 2633 if (!error) { 2634 path_put(&root_parent); 2635 path_put(&parent_path); 2636 } 2637 out3: 2638 path_put(&root); 2639 out2: 2640 path_put(&old); 2641 out1: 2642 path_put(&new); 2643 out0: 2644 return error; 2645 } 2646 2647 static void __init init_mount_tree(void) 2648 { 2649 struct vfsmount *mnt; 2650 struct mnt_namespace *ns; 2651 struct path root; 2652 2653 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2654 if (IS_ERR(mnt)) 2655 panic("Can't create rootfs"); 2656 2657 ns = create_mnt_ns(mnt); 2658 if (IS_ERR(ns)) 2659 panic("Can't allocate initial namespace"); 2660 2661 init_task.nsproxy->mnt_ns = ns; 2662 get_mnt_ns(ns); 2663 2664 root.mnt = ns->root; 2665 root.dentry = ns->root->mnt_root; 2666 2667 set_fs_pwd(current->fs, &root); 2668 set_fs_root(current->fs, &root); 2669 } 2670 2671 void __init mnt_init(void) 2672 { 2673 unsigned u; 2674 int err; 2675 2676 init_rwsem(&namespace_sem); 2677 2678 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2679 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2680 2681 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2682 2683 if (!mount_hashtable) 2684 panic("Failed to allocate mount hash table\n"); 2685 2686 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2687 2688 for (u = 0; u < HASH_SIZE; u++) 2689 INIT_LIST_HEAD(&mount_hashtable[u]); 2690 2691 br_lock_init(vfsmount_lock); 2692 2693 err = sysfs_init(); 2694 if (err) 2695 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2696 __func__, err); 2697 fs_kobj = kobject_create_and_add("fs", NULL); 2698 if (!fs_kobj) 2699 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2700 init_rootfs(); 2701 init_mount_tree(); 2702 } 2703 2704 void put_mnt_ns(struct mnt_namespace *ns) 2705 { 2706 LIST_HEAD(umount_list); 2707 2708 if (!atomic_dec_and_test(&ns->count)) 2709 return; 2710 down_write(&namespace_sem); 2711 br_write_lock(vfsmount_lock); 2712 umount_tree(ns->root, 0, &umount_list); 2713 br_write_unlock(vfsmount_lock); 2714 up_write(&namespace_sem); 2715 release_mounts(&umount_list); 2716 kfree(ns); 2717 } 2718 EXPORT_SYMBOL(put_mnt_ns); 2719 2720 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2721 { 2722 struct vfsmount *mnt; 2723 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2724 if (!IS_ERR(mnt)) { 2725 /* 2726 * it is a longterm mount, don't release mnt until 2727 * we unmount before file sys is unregistered 2728 */ 2729 mnt_make_longterm(mnt); 2730 } 2731 return mnt; 2732 } 2733 EXPORT_SYMBOL_GPL(kern_mount_data); 2734 2735 void kern_unmount(struct vfsmount *mnt) 2736 { 2737 /* release long term mount so mount point can be released */ 2738 if (!IS_ERR_OR_NULL(mnt)) { 2739 mnt_make_shortterm(mnt); 2740 mntput(mnt); 2741 } 2742 } 2743 EXPORT_SYMBOL(kern_unmount); 2744