xref: /linux/fs/namespace.c (revision d593b5413d13be31782385bf5b27af3b3bad59eb)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38 
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 /*
58  * vfsmount lock may be taken for read to prevent changes to the
59  * vfsmount hash, ie. during mountpoint lookups or walking back
60  * up the tree.
61  *
62  * It should be taken for write in all cases where the vfsmount
63  * tree or hash is modified or when a vfsmount structure is modified.
64  */
65 DEFINE_BRLOCK(vfsmount_lock);
66 
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 	tmp = tmp + (tmp >> HASH_SHIFT);
72 	return tmp & (HASH_SIZE - 1);
73 }
74 
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76 
77 /*
78  * allocation is serialized by namespace_sem, but we need the spinlock to
79  * serialize with freeing.
80  */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 	int res;
84 
85 retry:
86 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 	spin_lock(&mnt_id_lock);
88 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 	if (!res)
90 		mnt_id_start = mnt->mnt_id + 1;
91 	spin_unlock(&mnt_id_lock);
92 	if (res == -EAGAIN)
93 		goto retry;
94 
95 	return res;
96 }
97 
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 	int id = mnt->mnt_id;
101 	spin_lock(&mnt_id_lock);
102 	ida_remove(&mnt_id_ida, id);
103 	if (mnt_id_start > id)
104 		mnt_id_start = id;
105 	spin_unlock(&mnt_id_lock);
106 }
107 
108 /*
109  * Allocate a new peer group ID
110  *
111  * mnt_group_ida is protected by namespace_sem
112  */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 	int res;
116 
117 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 		return -ENOMEM;
119 
120 	res = ida_get_new_above(&mnt_group_ida,
121 				mnt_group_start,
122 				&mnt->mnt_group_id);
123 	if (!res)
124 		mnt_group_start = mnt->mnt_group_id + 1;
125 
126 	return res;
127 }
128 
129 /*
130  * Release a peer group ID
131  */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 	int id = mnt->mnt_group_id;
135 	ida_remove(&mnt_group_ida, id);
136 	if (mnt_group_start > id)
137 		mnt_group_start = id;
138 	mnt->mnt_group_id = 0;
139 }
140 
141 /*
142  * vfsmount lock must be held for read
143  */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 	preempt_disable();
150 	mnt->mnt_count += n;
151 	preempt_enable();
152 #endif
153 }
154 
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
156 {
157 #ifdef CONFIG_SMP
158 	this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 	mnt->mnt_count = n;
161 #endif
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_inc_count(struct vfsmount *mnt)
168 {
169 	mnt_add_count(mnt, 1);
170 }
171 
172 /*
173  * vfsmount lock must be held for read
174  */
175 static inline void mnt_dec_count(struct vfsmount *mnt)
176 {
177 	mnt_add_count(mnt, -1);
178 }
179 
180 /*
181  * vfsmount lock must be held for write
182  */
183 unsigned int mnt_get_count(struct vfsmount *mnt)
184 {
185 #ifdef CONFIG_SMP
186 	unsigned int count = 0;
187 	int cpu;
188 
189 	for_each_possible_cpu(cpu) {
190 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 	}
192 
193 	return count;
194 #else
195 	return mnt->mnt_count;
196 #endif
197 }
198 
199 static struct vfsmount *alloc_vfsmnt(const char *name)
200 {
201 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 	if (mnt) {
203 		int err;
204 
205 		err = mnt_alloc_id(mnt);
206 		if (err)
207 			goto out_free_cache;
208 
209 		if (name) {
210 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 			if (!mnt->mnt_devname)
212 				goto out_free_id;
213 		}
214 
215 #ifdef CONFIG_SMP
216 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 		if (!mnt->mnt_pcp)
218 			goto out_free_devname;
219 
220 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 		mnt->mnt_count = 1;
223 		mnt->mnt_writers = 0;
224 #endif
225 
226 		INIT_LIST_HEAD(&mnt->mnt_hash);
227 		INIT_LIST_HEAD(&mnt->mnt_child);
228 		INIT_LIST_HEAD(&mnt->mnt_mounts);
229 		INIT_LIST_HEAD(&mnt->mnt_list);
230 		INIT_LIST_HEAD(&mnt->mnt_expire);
231 		INIT_LIST_HEAD(&mnt->mnt_share);
232 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 		INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 int __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	if (mnt->mnt_flags & MNT_READONLY)
273 		return 1;
274 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 		return 1;
276 	return 0;
277 }
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279 
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
281 {
282 #ifdef CONFIG_SMP
283 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 	mnt->mnt_writers++;
286 #endif
287 }
288 
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 	mnt->mnt_writers--;
295 #endif
296 }
297 
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 	unsigned int count = 0;
302 	int cpu;
303 
304 	for_each_possible_cpu(cpu) {
305 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 	}
307 
308 	return count;
309 #else
310 	return mnt->mnt_writers;
311 #endif
312 }
313 
314 /*
315  * Most r/o checks on a fs are for operations that take
316  * discrete amounts of time, like a write() or unlink().
317  * We must keep track of when those operations start
318  * (for permission checks) and when they end, so that
319  * we can determine when writes are able to occur to
320  * a filesystem.
321  */
322 /**
323  * mnt_want_write - get write access to a mount
324  * @mnt: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is
327  * about to be performed to it, and makes sure that
328  * writes are allowed before returning success.  When
329  * the write operation is finished, mnt_drop_write()
330  * must be called.  This is effectively a refcount.
331  */
332 int mnt_want_write(struct vfsmount *mnt)
333 {
334 	int ret = 0;
335 
336 	preempt_disable();
337 	mnt_inc_writers(mnt);
338 	/*
339 	 * The store to mnt_inc_writers must be visible before we pass
340 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 	 * incremented count after it has set MNT_WRITE_HOLD.
342 	 */
343 	smp_mb();
344 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 		cpu_relax();
346 	/*
347 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 	 * be set to match its requirements. So we must not load that until
349 	 * MNT_WRITE_HOLD is cleared.
350 	 */
351 	smp_rmb();
352 	if (__mnt_is_readonly(mnt)) {
353 		mnt_dec_writers(mnt);
354 		ret = -EROFS;
355 	}
356 	preempt_enable();
357 	return ret;
358 }
359 EXPORT_SYMBOL_GPL(mnt_want_write);
360 
361 /**
362  * mnt_clone_write - get write access to a mount
363  * @mnt: the mount on which to take a write
364  *
365  * This is effectively like mnt_want_write, except
366  * it must only be used to take an extra write reference
367  * on a mountpoint that we already know has a write reference
368  * on it. This allows some optimisation.
369  *
370  * After finished, mnt_drop_write must be called as usual to
371  * drop the reference.
372  */
373 int mnt_clone_write(struct vfsmount *mnt)
374 {
375 	/* superblock may be r/o */
376 	if (__mnt_is_readonly(mnt))
377 		return -EROFS;
378 	preempt_disable();
379 	mnt_inc_writers(mnt);
380 	preempt_enable();
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(mnt_clone_write);
384 
385 /**
386  * mnt_want_write_file - get write access to a file's mount
387  * @file: the file who's mount on which to take a write
388  *
389  * This is like mnt_want_write, but it takes a file and can
390  * do some optimisations if the file is open for write already
391  */
392 int mnt_want_write_file(struct file *file)
393 {
394 	struct inode *inode = file->f_dentry->d_inode;
395 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
396 		return mnt_want_write(file->f_path.mnt);
397 	else
398 		return mnt_clone_write(file->f_path.mnt);
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write_file);
401 
402 /**
403  * mnt_drop_write - give up write access to a mount
404  * @mnt: the mount on which to give up write access
405  *
406  * Tells the low-level filesystem that we are done
407  * performing writes to it.  Must be matched with
408  * mnt_want_write() call above.
409  */
410 void mnt_drop_write(struct vfsmount *mnt)
411 {
412 	preempt_disable();
413 	mnt_dec_writers(mnt);
414 	preempt_enable();
415 }
416 EXPORT_SYMBOL_GPL(mnt_drop_write);
417 
418 static int mnt_make_readonly(struct vfsmount *mnt)
419 {
420 	int ret = 0;
421 
422 	br_write_lock(vfsmount_lock);
423 	mnt->mnt_flags |= MNT_WRITE_HOLD;
424 	/*
425 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
426 	 * should be visible before we do.
427 	 */
428 	smp_mb();
429 
430 	/*
431 	 * With writers on hold, if this value is zero, then there are
432 	 * definitely no active writers (although held writers may subsequently
433 	 * increment the count, they'll have to wait, and decrement it after
434 	 * seeing MNT_READONLY).
435 	 *
436 	 * It is OK to have counter incremented on one CPU and decremented on
437 	 * another: the sum will add up correctly. The danger would be when we
438 	 * sum up each counter, if we read a counter before it is incremented,
439 	 * but then read another CPU's count which it has been subsequently
440 	 * decremented from -- we would see more decrements than we should.
441 	 * MNT_WRITE_HOLD protects against this scenario, because
442 	 * mnt_want_write first increments count, then smp_mb, then spins on
443 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
444 	 * we're counting up here.
445 	 */
446 	if (mnt_get_writers(mnt) > 0)
447 		ret = -EBUSY;
448 	else
449 		mnt->mnt_flags |= MNT_READONLY;
450 	/*
451 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
452 	 * that become unheld will see MNT_READONLY.
453 	 */
454 	smp_wmb();
455 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
456 	br_write_unlock(vfsmount_lock);
457 	return ret;
458 }
459 
460 static void __mnt_unmake_readonly(struct vfsmount *mnt)
461 {
462 	br_write_lock(vfsmount_lock);
463 	mnt->mnt_flags &= ~MNT_READONLY;
464 	br_write_unlock(vfsmount_lock);
465 }
466 
467 static void free_vfsmnt(struct vfsmount *mnt)
468 {
469 	kfree(mnt->mnt_devname);
470 	mnt_free_id(mnt);
471 #ifdef CONFIG_SMP
472 	free_percpu(mnt->mnt_pcp);
473 #endif
474 	kmem_cache_free(mnt_cache, mnt);
475 }
476 
477 /*
478  * find the first or last mount at @dentry on vfsmount @mnt depending on
479  * @dir. If @dir is set return the first mount else return the last mount.
480  * vfsmount_lock must be held for read or write.
481  */
482 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
483 			      int dir)
484 {
485 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
486 	struct list_head *tmp = head;
487 	struct vfsmount *p, *found = NULL;
488 
489 	for (;;) {
490 		tmp = dir ? tmp->next : tmp->prev;
491 		p = NULL;
492 		if (tmp == head)
493 			break;
494 		p = list_entry(tmp, struct vfsmount, mnt_hash);
495 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
496 			found = p;
497 			break;
498 		}
499 	}
500 	return found;
501 }
502 
503 /*
504  * lookup_mnt increments the ref count before returning
505  * the vfsmount struct.
506  */
507 struct vfsmount *lookup_mnt(struct path *path)
508 {
509 	struct vfsmount *child_mnt;
510 
511 	br_read_lock(vfsmount_lock);
512 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
513 		mntget(child_mnt);
514 	br_read_unlock(vfsmount_lock);
515 	return child_mnt;
516 }
517 
518 static inline int check_mnt(struct vfsmount *mnt)
519 {
520 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
521 }
522 
523 /*
524  * vfsmount lock must be held for write
525  */
526 static void touch_mnt_namespace(struct mnt_namespace *ns)
527 {
528 	if (ns) {
529 		ns->event = ++event;
530 		wake_up_interruptible(&ns->poll);
531 	}
532 }
533 
534 /*
535  * vfsmount lock must be held for write
536  */
537 static void __touch_mnt_namespace(struct mnt_namespace *ns)
538 {
539 	if (ns && ns->event != event) {
540 		ns->event = event;
541 		wake_up_interruptible(&ns->poll);
542 	}
543 }
544 
545 /*
546  * Clear dentry's mounted state if it has no remaining mounts.
547  * vfsmount_lock must be held for write.
548  */
549 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
550 {
551 	unsigned u;
552 
553 	for (u = 0; u < HASH_SIZE; u++) {
554 		struct vfsmount *p;
555 
556 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
557 			if (p->mnt_mountpoint == dentry)
558 				return;
559 		}
560 	}
561 	spin_lock(&dentry->d_lock);
562 	dentry->d_flags &= ~DCACHE_MOUNTED;
563 	spin_unlock(&dentry->d_lock);
564 }
565 
566 /*
567  * vfsmount lock must be held for write
568  */
569 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
570 {
571 	old_path->dentry = mnt->mnt_mountpoint;
572 	old_path->mnt = mnt->mnt_parent;
573 	mnt->mnt_parent = mnt;
574 	mnt->mnt_mountpoint = mnt->mnt_root;
575 	list_del_init(&mnt->mnt_child);
576 	list_del_init(&mnt->mnt_hash);
577 	dentry_reset_mounted(old_path->mnt, old_path->dentry);
578 }
579 
580 /*
581  * vfsmount lock must be held for write
582  */
583 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
584 			struct vfsmount *child_mnt)
585 {
586 	child_mnt->mnt_parent = mntget(mnt);
587 	child_mnt->mnt_mountpoint = dget(dentry);
588 	spin_lock(&dentry->d_lock);
589 	dentry->d_flags |= DCACHE_MOUNTED;
590 	spin_unlock(&dentry->d_lock);
591 }
592 
593 /*
594  * vfsmount lock must be held for write
595  */
596 static void attach_mnt(struct vfsmount *mnt, struct path *path)
597 {
598 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
599 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
600 			hash(path->mnt, path->dentry));
601 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
602 }
603 
604 static inline void __mnt_make_longterm(struct vfsmount *mnt)
605 {
606 #ifdef CONFIG_SMP
607 	atomic_inc(&mnt->mnt_longterm);
608 #endif
609 }
610 
611 /* needs vfsmount lock for write */
612 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
613 {
614 #ifdef CONFIG_SMP
615 	atomic_dec(&mnt->mnt_longterm);
616 #endif
617 }
618 
619 /*
620  * vfsmount lock must be held for write
621  */
622 static void commit_tree(struct vfsmount *mnt)
623 {
624 	struct vfsmount *parent = mnt->mnt_parent;
625 	struct vfsmount *m;
626 	LIST_HEAD(head);
627 	struct mnt_namespace *n = parent->mnt_ns;
628 
629 	BUG_ON(parent == mnt);
630 
631 	list_add_tail(&head, &mnt->mnt_list);
632 	list_for_each_entry(m, &head, mnt_list) {
633 		m->mnt_ns = n;
634 		__mnt_make_longterm(m);
635 	}
636 
637 	list_splice(&head, n->list.prev);
638 
639 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
640 				hash(parent, mnt->mnt_mountpoint));
641 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
642 	touch_mnt_namespace(n);
643 }
644 
645 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
646 {
647 	struct list_head *next = p->mnt_mounts.next;
648 	if (next == &p->mnt_mounts) {
649 		while (1) {
650 			if (p == root)
651 				return NULL;
652 			next = p->mnt_child.next;
653 			if (next != &p->mnt_parent->mnt_mounts)
654 				break;
655 			p = p->mnt_parent;
656 		}
657 	}
658 	return list_entry(next, struct vfsmount, mnt_child);
659 }
660 
661 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
662 {
663 	struct list_head *prev = p->mnt_mounts.prev;
664 	while (prev != &p->mnt_mounts) {
665 		p = list_entry(prev, struct vfsmount, mnt_child);
666 		prev = p->mnt_mounts.prev;
667 	}
668 	return p;
669 }
670 
671 struct vfsmount *
672 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
673 {
674 	struct vfsmount *mnt;
675 	struct dentry *root;
676 
677 	if (!type)
678 		return ERR_PTR(-ENODEV);
679 
680 	mnt = alloc_vfsmnt(name);
681 	if (!mnt)
682 		return ERR_PTR(-ENOMEM);
683 
684 	if (flags & MS_KERNMOUNT)
685 		mnt->mnt_flags = MNT_INTERNAL;
686 
687 	root = mount_fs(type, flags, name, data);
688 	if (IS_ERR(root)) {
689 		free_vfsmnt(mnt);
690 		return ERR_CAST(root);
691 	}
692 
693 	mnt->mnt_root = root;
694 	mnt->mnt_sb = root->d_sb;
695 	mnt->mnt_mountpoint = mnt->mnt_root;
696 	mnt->mnt_parent = mnt;
697 	return mnt;
698 }
699 EXPORT_SYMBOL_GPL(vfs_kern_mount);
700 
701 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
702 					int flag)
703 {
704 	struct super_block *sb = old->mnt_sb;
705 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
706 
707 	if (mnt) {
708 		if (flag & (CL_SLAVE | CL_PRIVATE))
709 			mnt->mnt_group_id = 0; /* not a peer of original */
710 		else
711 			mnt->mnt_group_id = old->mnt_group_id;
712 
713 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
714 			int err = mnt_alloc_group_id(mnt);
715 			if (err)
716 				goto out_free;
717 		}
718 
719 		mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
720 		atomic_inc(&sb->s_active);
721 		mnt->mnt_sb = sb;
722 		mnt->mnt_root = dget(root);
723 		mnt->mnt_mountpoint = mnt->mnt_root;
724 		mnt->mnt_parent = mnt;
725 
726 		if (flag & CL_SLAVE) {
727 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
728 			mnt->mnt_master = old;
729 			CLEAR_MNT_SHARED(mnt);
730 		} else if (!(flag & CL_PRIVATE)) {
731 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
732 				list_add(&mnt->mnt_share, &old->mnt_share);
733 			if (IS_MNT_SLAVE(old))
734 				list_add(&mnt->mnt_slave, &old->mnt_slave);
735 			mnt->mnt_master = old->mnt_master;
736 		}
737 		if (flag & CL_MAKE_SHARED)
738 			set_mnt_shared(mnt);
739 
740 		/* stick the duplicate mount on the same expiry list
741 		 * as the original if that was on one */
742 		if (flag & CL_EXPIRE) {
743 			if (!list_empty(&old->mnt_expire))
744 				list_add(&mnt->mnt_expire, &old->mnt_expire);
745 		}
746 	}
747 	return mnt;
748 
749  out_free:
750 	free_vfsmnt(mnt);
751 	return NULL;
752 }
753 
754 static inline void mntfree(struct vfsmount *mnt)
755 {
756 	struct super_block *sb = mnt->mnt_sb;
757 
758 	/*
759 	 * This probably indicates that somebody messed
760 	 * up a mnt_want/drop_write() pair.  If this
761 	 * happens, the filesystem was probably unable
762 	 * to make r/w->r/o transitions.
763 	 */
764 	/*
765 	 * The locking used to deal with mnt_count decrement provides barriers,
766 	 * so mnt_get_writers() below is safe.
767 	 */
768 	WARN_ON(mnt_get_writers(mnt));
769 	fsnotify_vfsmount_delete(mnt);
770 	dput(mnt->mnt_root);
771 	free_vfsmnt(mnt);
772 	deactivate_super(sb);
773 }
774 
775 static void mntput_no_expire(struct vfsmount *mnt)
776 {
777 put_again:
778 #ifdef CONFIG_SMP
779 	br_read_lock(vfsmount_lock);
780 	if (likely(atomic_read(&mnt->mnt_longterm))) {
781 		mnt_dec_count(mnt);
782 		br_read_unlock(vfsmount_lock);
783 		return;
784 	}
785 	br_read_unlock(vfsmount_lock);
786 
787 	br_write_lock(vfsmount_lock);
788 	mnt_dec_count(mnt);
789 	if (mnt_get_count(mnt)) {
790 		br_write_unlock(vfsmount_lock);
791 		return;
792 	}
793 #else
794 	mnt_dec_count(mnt);
795 	if (likely(mnt_get_count(mnt)))
796 		return;
797 	br_write_lock(vfsmount_lock);
798 #endif
799 	if (unlikely(mnt->mnt_pinned)) {
800 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
801 		mnt->mnt_pinned = 0;
802 		br_write_unlock(vfsmount_lock);
803 		acct_auto_close_mnt(mnt);
804 		goto put_again;
805 	}
806 	br_write_unlock(vfsmount_lock);
807 	mntfree(mnt);
808 }
809 
810 void mntput(struct vfsmount *mnt)
811 {
812 	if (mnt) {
813 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
814 		if (unlikely(mnt->mnt_expiry_mark))
815 			mnt->mnt_expiry_mark = 0;
816 		mntput_no_expire(mnt);
817 	}
818 }
819 EXPORT_SYMBOL(mntput);
820 
821 struct vfsmount *mntget(struct vfsmount *mnt)
822 {
823 	if (mnt)
824 		mnt_inc_count(mnt);
825 	return mnt;
826 }
827 EXPORT_SYMBOL(mntget);
828 
829 void mnt_pin(struct vfsmount *mnt)
830 {
831 	br_write_lock(vfsmount_lock);
832 	mnt->mnt_pinned++;
833 	br_write_unlock(vfsmount_lock);
834 }
835 EXPORT_SYMBOL(mnt_pin);
836 
837 void mnt_unpin(struct vfsmount *mnt)
838 {
839 	br_write_lock(vfsmount_lock);
840 	if (mnt->mnt_pinned) {
841 		mnt_inc_count(mnt);
842 		mnt->mnt_pinned--;
843 	}
844 	br_write_unlock(vfsmount_lock);
845 }
846 EXPORT_SYMBOL(mnt_unpin);
847 
848 static inline void mangle(struct seq_file *m, const char *s)
849 {
850 	seq_escape(m, s, " \t\n\\");
851 }
852 
853 /*
854  * Simple .show_options callback for filesystems which don't want to
855  * implement more complex mount option showing.
856  *
857  * See also save_mount_options().
858  */
859 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
860 {
861 	const char *options;
862 
863 	rcu_read_lock();
864 	options = rcu_dereference(mnt->mnt_sb->s_options);
865 
866 	if (options != NULL && options[0]) {
867 		seq_putc(m, ',');
868 		mangle(m, options);
869 	}
870 	rcu_read_unlock();
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL(generic_show_options);
875 
876 /*
877  * If filesystem uses generic_show_options(), this function should be
878  * called from the fill_super() callback.
879  *
880  * The .remount_fs callback usually needs to be handled in a special
881  * way, to make sure, that previous options are not overwritten if the
882  * remount fails.
883  *
884  * Also note, that if the filesystem's .remount_fs function doesn't
885  * reset all options to their default value, but changes only newly
886  * given options, then the displayed options will not reflect reality
887  * any more.
888  */
889 void save_mount_options(struct super_block *sb, char *options)
890 {
891 	BUG_ON(sb->s_options);
892 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
893 }
894 EXPORT_SYMBOL(save_mount_options);
895 
896 void replace_mount_options(struct super_block *sb, char *options)
897 {
898 	char *old = sb->s_options;
899 	rcu_assign_pointer(sb->s_options, options);
900 	if (old) {
901 		synchronize_rcu();
902 		kfree(old);
903 	}
904 }
905 EXPORT_SYMBOL(replace_mount_options);
906 
907 #ifdef CONFIG_PROC_FS
908 /* iterator */
909 static void *m_start(struct seq_file *m, loff_t *pos)
910 {
911 	struct proc_mounts *p = m->private;
912 
913 	down_read(&namespace_sem);
914 	return seq_list_start(&p->ns->list, *pos);
915 }
916 
917 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
918 {
919 	struct proc_mounts *p = m->private;
920 
921 	return seq_list_next(v, &p->ns->list, pos);
922 }
923 
924 static void m_stop(struct seq_file *m, void *v)
925 {
926 	up_read(&namespace_sem);
927 }
928 
929 int mnt_had_events(struct proc_mounts *p)
930 {
931 	struct mnt_namespace *ns = p->ns;
932 	int res = 0;
933 
934 	br_read_lock(vfsmount_lock);
935 	if (p->m.poll_event != ns->event) {
936 		p->m.poll_event = ns->event;
937 		res = 1;
938 	}
939 	br_read_unlock(vfsmount_lock);
940 
941 	return res;
942 }
943 
944 struct proc_fs_info {
945 	int flag;
946 	const char *str;
947 };
948 
949 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
950 {
951 	static const struct proc_fs_info fs_info[] = {
952 		{ MS_SYNCHRONOUS, ",sync" },
953 		{ MS_DIRSYNC, ",dirsync" },
954 		{ MS_MANDLOCK, ",mand" },
955 		{ 0, NULL }
956 	};
957 	const struct proc_fs_info *fs_infop;
958 
959 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
960 		if (sb->s_flags & fs_infop->flag)
961 			seq_puts(m, fs_infop->str);
962 	}
963 
964 	return security_sb_show_options(m, sb);
965 }
966 
967 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
968 {
969 	static const struct proc_fs_info mnt_info[] = {
970 		{ MNT_NOSUID, ",nosuid" },
971 		{ MNT_NODEV, ",nodev" },
972 		{ MNT_NOEXEC, ",noexec" },
973 		{ MNT_NOATIME, ",noatime" },
974 		{ MNT_NODIRATIME, ",nodiratime" },
975 		{ MNT_RELATIME, ",relatime" },
976 		{ 0, NULL }
977 	};
978 	const struct proc_fs_info *fs_infop;
979 
980 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
981 		if (mnt->mnt_flags & fs_infop->flag)
982 			seq_puts(m, fs_infop->str);
983 	}
984 }
985 
986 static void show_type(struct seq_file *m, struct super_block *sb)
987 {
988 	mangle(m, sb->s_type->name);
989 	if (sb->s_subtype && sb->s_subtype[0]) {
990 		seq_putc(m, '.');
991 		mangle(m, sb->s_subtype);
992 	}
993 }
994 
995 static int show_vfsmnt(struct seq_file *m, void *v)
996 {
997 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
998 	int err = 0;
999 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1000 
1001 	if (mnt->mnt_sb->s_op->show_devname) {
1002 		err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1003 		if (err)
1004 			goto out;
1005 	} else {
1006 		mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1007 	}
1008 	seq_putc(m, ' ');
1009 	seq_path(m, &mnt_path, " \t\n\\");
1010 	seq_putc(m, ' ');
1011 	show_type(m, mnt->mnt_sb);
1012 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1013 	err = show_sb_opts(m, mnt->mnt_sb);
1014 	if (err)
1015 		goto out;
1016 	show_mnt_opts(m, mnt);
1017 	if (mnt->mnt_sb->s_op->show_options)
1018 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
1019 	seq_puts(m, " 0 0\n");
1020 out:
1021 	return err;
1022 }
1023 
1024 const struct seq_operations mounts_op = {
1025 	.start	= m_start,
1026 	.next	= m_next,
1027 	.stop	= m_stop,
1028 	.show	= show_vfsmnt
1029 };
1030 
1031 static int show_mountinfo(struct seq_file *m, void *v)
1032 {
1033 	struct proc_mounts *p = m->private;
1034 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1035 	struct super_block *sb = mnt->mnt_sb;
1036 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1037 	struct path root = p->root;
1038 	int err = 0;
1039 
1040 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1041 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
1042 	if (sb->s_op->show_path)
1043 		err = sb->s_op->show_path(m, mnt);
1044 	else
1045 		seq_dentry(m, mnt->mnt_root, " \t\n\\");
1046 	if (err)
1047 		goto out;
1048 	seq_putc(m, ' ');
1049 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
1050 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1051 		/*
1052 		 * Mountpoint is outside root, discard that one.  Ugly,
1053 		 * but less so than trying to do that in iterator in a
1054 		 * race-free way (due to renames).
1055 		 */
1056 		return SEQ_SKIP;
1057 	}
1058 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1059 	show_mnt_opts(m, mnt);
1060 
1061 	/* Tagged fields ("foo:X" or "bar") */
1062 	if (IS_MNT_SHARED(mnt))
1063 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
1064 	if (IS_MNT_SLAVE(mnt)) {
1065 		int master = mnt->mnt_master->mnt_group_id;
1066 		int dom = get_dominating_id(mnt, &p->root);
1067 		seq_printf(m, " master:%i", master);
1068 		if (dom && dom != master)
1069 			seq_printf(m, " propagate_from:%i", dom);
1070 	}
1071 	if (IS_MNT_UNBINDABLE(mnt))
1072 		seq_puts(m, " unbindable");
1073 
1074 	/* Filesystem specific data */
1075 	seq_puts(m, " - ");
1076 	show_type(m, sb);
1077 	seq_putc(m, ' ');
1078 	if (sb->s_op->show_devname)
1079 		err = sb->s_op->show_devname(m, mnt);
1080 	else
1081 		mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1082 	if (err)
1083 		goto out;
1084 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1085 	err = show_sb_opts(m, sb);
1086 	if (err)
1087 		goto out;
1088 	if (sb->s_op->show_options)
1089 		err = sb->s_op->show_options(m, mnt);
1090 	seq_putc(m, '\n');
1091 out:
1092 	return err;
1093 }
1094 
1095 const struct seq_operations mountinfo_op = {
1096 	.start	= m_start,
1097 	.next	= m_next,
1098 	.stop	= m_stop,
1099 	.show	= show_mountinfo,
1100 };
1101 
1102 static int show_vfsstat(struct seq_file *m, void *v)
1103 {
1104 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1105 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1106 	int err = 0;
1107 
1108 	/* device */
1109 	if (mnt->mnt_sb->s_op->show_devname) {
1110 		err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1111 	} else {
1112 		if (mnt->mnt_devname) {
1113 			seq_puts(m, "device ");
1114 			mangle(m, mnt->mnt_devname);
1115 		} else
1116 			seq_puts(m, "no device");
1117 	}
1118 
1119 	/* mount point */
1120 	seq_puts(m, " mounted on ");
1121 	seq_path(m, &mnt_path, " \t\n\\");
1122 	seq_putc(m, ' ');
1123 
1124 	/* file system type */
1125 	seq_puts(m, "with fstype ");
1126 	show_type(m, mnt->mnt_sb);
1127 
1128 	/* optional statistics */
1129 	if (mnt->mnt_sb->s_op->show_stats) {
1130 		seq_putc(m, ' ');
1131 		if (!err)
1132 			err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1133 	}
1134 
1135 	seq_putc(m, '\n');
1136 	return err;
1137 }
1138 
1139 const struct seq_operations mountstats_op = {
1140 	.start	= m_start,
1141 	.next	= m_next,
1142 	.stop	= m_stop,
1143 	.show	= show_vfsstat,
1144 };
1145 #endif  /* CONFIG_PROC_FS */
1146 
1147 /**
1148  * may_umount_tree - check if a mount tree is busy
1149  * @mnt: root of mount tree
1150  *
1151  * This is called to check if a tree of mounts has any
1152  * open files, pwds, chroots or sub mounts that are
1153  * busy.
1154  */
1155 int may_umount_tree(struct vfsmount *mnt)
1156 {
1157 	int actual_refs = 0;
1158 	int minimum_refs = 0;
1159 	struct vfsmount *p;
1160 
1161 	/* write lock needed for mnt_get_count */
1162 	br_write_lock(vfsmount_lock);
1163 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1164 		actual_refs += mnt_get_count(p);
1165 		minimum_refs += 2;
1166 	}
1167 	br_write_unlock(vfsmount_lock);
1168 
1169 	if (actual_refs > minimum_refs)
1170 		return 0;
1171 
1172 	return 1;
1173 }
1174 
1175 EXPORT_SYMBOL(may_umount_tree);
1176 
1177 /**
1178  * may_umount - check if a mount point is busy
1179  * @mnt: root of mount
1180  *
1181  * This is called to check if a mount point has any
1182  * open files, pwds, chroots or sub mounts. If the
1183  * mount has sub mounts this will return busy
1184  * regardless of whether the sub mounts are busy.
1185  *
1186  * Doesn't take quota and stuff into account. IOW, in some cases it will
1187  * give false negatives. The main reason why it's here is that we need
1188  * a non-destructive way to look for easily umountable filesystems.
1189  */
1190 int may_umount(struct vfsmount *mnt)
1191 {
1192 	int ret = 1;
1193 	down_read(&namespace_sem);
1194 	br_write_lock(vfsmount_lock);
1195 	if (propagate_mount_busy(mnt, 2))
1196 		ret = 0;
1197 	br_write_unlock(vfsmount_lock);
1198 	up_read(&namespace_sem);
1199 	return ret;
1200 }
1201 
1202 EXPORT_SYMBOL(may_umount);
1203 
1204 void release_mounts(struct list_head *head)
1205 {
1206 	struct vfsmount *mnt;
1207 	while (!list_empty(head)) {
1208 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1209 		list_del_init(&mnt->mnt_hash);
1210 		if (mnt->mnt_parent != mnt) {
1211 			struct dentry *dentry;
1212 			struct vfsmount *m;
1213 
1214 			br_write_lock(vfsmount_lock);
1215 			dentry = mnt->mnt_mountpoint;
1216 			m = mnt->mnt_parent;
1217 			mnt->mnt_mountpoint = mnt->mnt_root;
1218 			mnt->mnt_parent = mnt;
1219 			m->mnt_ghosts--;
1220 			br_write_unlock(vfsmount_lock);
1221 			dput(dentry);
1222 			mntput(m);
1223 		}
1224 		mntput(mnt);
1225 	}
1226 }
1227 
1228 /*
1229  * vfsmount lock must be held for write
1230  * namespace_sem must be held for write
1231  */
1232 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1233 {
1234 	LIST_HEAD(tmp_list);
1235 	struct vfsmount *p;
1236 
1237 	for (p = mnt; p; p = next_mnt(p, mnt))
1238 		list_move(&p->mnt_hash, &tmp_list);
1239 
1240 	if (propagate)
1241 		propagate_umount(&tmp_list);
1242 
1243 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1244 		list_del_init(&p->mnt_expire);
1245 		list_del_init(&p->mnt_list);
1246 		__touch_mnt_namespace(p->mnt_ns);
1247 		p->mnt_ns = NULL;
1248 		__mnt_make_shortterm(p);
1249 		list_del_init(&p->mnt_child);
1250 		if (p->mnt_parent != p) {
1251 			p->mnt_parent->mnt_ghosts++;
1252 			dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1253 		}
1254 		change_mnt_propagation(p, MS_PRIVATE);
1255 	}
1256 	list_splice(&tmp_list, kill);
1257 }
1258 
1259 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1260 
1261 static int do_umount(struct vfsmount *mnt, int flags)
1262 {
1263 	struct super_block *sb = mnt->mnt_sb;
1264 	int retval;
1265 	LIST_HEAD(umount_list);
1266 
1267 	retval = security_sb_umount(mnt, flags);
1268 	if (retval)
1269 		return retval;
1270 
1271 	/*
1272 	 * Allow userspace to request a mountpoint be expired rather than
1273 	 * unmounting unconditionally. Unmount only happens if:
1274 	 *  (1) the mark is already set (the mark is cleared by mntput())
1275 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1276 	 */
1277 	if (flags & MNT_EXPIRE) {
1278 		if (mnt == current->fs->root.mnt ||
1279 		    flags & (MNT_FORCE | MNT_DETACH))
1280 			return -EINVAL;
1281 
1282 		/*
1283 		 * probably don't strictly need the lock here if we examined
1284 		 * all race cases, but it's a slowpath.
1285 		 */
1286 		br_write_lock(vfsmount_lock);
1287 		if (mnt_get_count(mnt) != 2) {
1288 			br_write_unlock(vfsmount_lock);
1289 			return -EBUSY;
1290 		}
1291 		br_write_unlock(vfsmount_lock);
1292 
1293 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1294 			return -EAGAIN;
1295 	}
1296 
1297 	/*
1298 	 * If we may have to abort operations to get out of this
1299 	 * mount, and they will themselves hold resources we must
1300 	 * allow the fs to do things. In the Unix tradition of
1301 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1302 	 * might fail to complete on the first run through as other tasks
1303 	 * must return, and the like. Thats for the mount program to worry
1304 	 * about for the moment.
1305 	 */
1306 
1307 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1308 		sb->s_op->umount_begin(sb);
1309 	}
1310 
1311 	/*
1312 	 * No sense to grab the lock for this test, but test itself looks
1313 	 * somewhat bogus. Suggestions for better replacement?
1314 	 * Ho-hum... In principle, we might treat that as umount + switch
1315 	 * to rootfs. GC would eventually take care of the old vfsmount.
1316 	 * Actually it makes sense, especially if rootfs would contain a
1317 	 * /reboot - static binary that would close all descriptors and
1318 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1319 	 */
1320 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1321 		/*
1322 		 * Special case for "unmounting" root ...
1323 		 * we just try to remount it readonly.
1324 		 */
1325 		down_write(&sb->s_umount);
1326 		if (!(sb->s_flags & MS_RDONLY))
1327 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1328 		up_write(&sb->s_umount);
1329 		return retval;
1330 	}
1331 
1332 	down_write(&namespace_sem);
1333 	br_write_lock(vfsmount_lock);
1334 	event++;
1335 
1336 	if (!(flags & MNT_DETACH))
1337 		shrink_submounts(mnt, &umount_list);
1338 
1339 	retval = -EBUSY;
1340 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1341 		if (!list_empty(&mnt->mnt_list))
1342 			umount_tree(mnt, 1, &umount_list);
1343 		retval = 0;
1344 	}
1345 	br_write_unlock(vfsmount_lock);
1346 	up_write(&namespace_sem);
1347 	release_mounts(&umount_list);
1348 	return retval;
1349 }
1350 
1351 /*
1352  * Now umount can handle mount points as well as block devices.
1353  * This is important for filesystems which use unnamed block devices.
1354  *
1355  * We now support a flag for forced unmount like the other 'big iron'
1356  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1357  */
1358 
1359 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1360 {
1361 	struct path path;
1362 	int retval;
1363 	int lookup_flags = 0;
1364 
1365 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1366 		return -EINVAL;
1367 
1368 	if (!(flags & UMOUNT_NOFOLLOW))
1369 		lookup_flags |= LOOKUP_FOLLOW;
1370 
1371 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1372 	if (retval)
1373 		goto out;
1374 	retval = -EINVAL;
1375 	if (path.dentry != path.mnt->mnt_root)
1376 		goto dput_and_out;
1377 	if (!check_mnt(path.mnt))
1378 		goto dput_and_out;
1379 
1380 	retval = -EPERM;
1381 	if (!capable(CAP_SYS_ADMIN))
1382 		goto dput_and_out;
1383 
1384 	retval = do_umount(path.mnt, flags);
1385 dput_and_out:
1386 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1387 	dput(path.dentry);
1388 	mntput_no_expire(path.mnt);
1389 out:
1390 	return retval;
1391 }
1392 
1393 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1394 
1395 /*
1396  *	The 2.0 compatible umount. No flags.
1397  */
1398 SYSCALL_DEFINE1(oldumount, char __user *, name)
1399 {
1400 	return sys_umount(name, 0);
1401 }
1402 
1403 #endif
1404 
1405 static int mount_is_safe(struct path *path)
1406 {
1407 	if (capable(CAP_SYS_ADMIN))
1408 		return 0;
1409 	return -EPERM;
1410 #ifdef notyet
1411 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1412 		return -EPERM;
1413 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1414 		if (current_uid() != path->dentry->d_inode->i_uid)
1415 			return -EPERM;
1416 	}
1417 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1418 		return -EPERM;
1419 	return 0;
1420 #endif
1421 }
1422 
1423 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1424 					int flag)
1425 {
1426 	struct vfsmount *res, *p, *q, *r, *s;
1427 	struct path path;
1428 
1429 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1430 		return NULL;
1431 
1432 	res = q = clone_mnt(mnt, dentry, flag);
1433 	if (!q)
1434 		goto Enomem;
1435 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1436 
1437 	p = mnt;
1438 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1439 		if (!is_subdir(r->mnt_mountpoint, dentry))
1440 			continue;
1441 
1442 		for (s = r; s; s = next_mnt(s, r)) {
1443 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1444 				s = skip_mnt_tree(s);
1445 				continue;
1446 			}
1447 			while (p != s->mnt_parent) {
1448 				p = p->mnt_parent;
1449 				q = q->mnt_parent;
1450 			}
1451 			p = s;
1452 			path.mnt = q;
1453 			path.dentry = p->mnt_mountpoint;
1454 			q = clone_mnt(p, p->mnt_root, flag);
1455 			if (!q)
1456 				goto Enomem;
1457 			br_write_lock(vfsmount_lock);
1458 			list_add_tail(&q->mnt_list, &res->mnt_list);
1459 			attach_mnt(q, &path);
1460 			br_write_unlock(vfsmount_lock);
1461 		}
1462 	}
1463 	return res;
1464 Enomem:
1465 	if (res) {
1466 		LIST_HEAD(umount_list);
1467 		br_write_lock(vfsmount_lock);
1468 		umount_tree(res, 0, &umount_list);
1469 		br_write_unlock(vfsmount_lock);
1470 		release_mounts(&umount_list);
1471 	}
1472 	return NULL;
1473 }
1474 
1475 struct vfsmount *collect_mounts(struct path *path)
1476 {
1477 	struct vfsmount *tree;
1478 	down_write(&namespace_sem);
1479 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1480 	up_write(&namespace_sem);
1481 	return tree;
1482 }
1483 
1484 void drop_collected_mounts(struct vfsmount *mnt)
1485 {
1486 	LIST_HEAD(umount_list);
1487 	down_write(&namespace_sem);
1488 	br_write_lock(vfsmount_lock);
1489 	umount_tree(mnt, 0, &umount_list);
1490 	br_write_unlock(vfsmount_lock);
1491 	up_write(&namespace_sem);
1492 	release_mounts(&umount_list);
1493 }
1494 
1495 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1496 		   struct vfsmount *root)
1497 {
1498 	struct vfsmount *mnt;
1499 	int res = f(root, arg);
1500 	if (res)
1501 		return res;
1502 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1503 		res = f(mnt, arg);
1504 		if (res)
1505 			return res;
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1511 {
1512 	struct vfsmount *p;
1513 
1514 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1515 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1516 			mnt_release_group_id(p);
1517 	}
1518 }
1519 
1520 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1521 {
1522 	struct vfsmount *p;
1523 
1524 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1525 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1526 			int err = mnt_alloc_group_id(p);
1527 			if (err) {
1528 				cleanup_group_ids(mnt, p);
1529 				return err;
1530 			}
1531 		}
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  *  @source_mnt : mount tree to be attached
1539  *  @nd         : place the mount tree @source_mnt is attached
1540  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1541  *  		   store the parent mount and mountpoint dentry.
1542  *  		   (done when source_mnt is moved)
1543  *
1544  *  NOTE: in the table below explains the semantics when a source mount
1545  *  of a given type is attached to a destination mount of a given type.
1546  * ---------------------------------------------------------------------------
1547  * |         BIND MOUNT OPERATION                                            |
1548  * |**************************************************************************
1549  * | source-->| shared        |       private  |       slave    | unbindable |
1550  * | dest     |               |                |                |            |
1551  * |   |      |               |                |                |            |
1552  * |   v      |               |                |                |            |
1553  * |**************************************************************************
1554  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1555  * |          |               |                |                |            |
1556  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1557  * ***************************************************************************
1558  * A bind operation clones the source mount and mounts the clone on the
1559  * destination mount.
1560  *
1561  * (++)  the cloned mount is propagated to all the mounts in the propagation
1562  * 	 tree of the destination mount and the cloned mount is added to
1563  * 	 the peer group of the source mount.
1564  * (+)   the cloned mount is created under the destination mount and is marked
1565  *       as shared. The cloned mount is added to the peer group of the source
1566  *       mount.
1567  * (+++) the mount is propagated to all the mounts in the propagation tree
1568  *       of the destination mount and the cloned mount is made slave
1569  *       of the same master as that of the source mount. The cloned mount
1570  *       is marked as 'shared and slave'.
1571  * (*)   the cloned mount is made a slave of the same master as that of the
1572  * 	 source mount.
1573  *
1574  * ---------------------------------------------------------------------------
1575  * |         		MOVE MOUNT OPERATION                                 |
1576  * |**************************************************************************
1577  * | source-->| shared        |       private  |       slave    | unbindable |
1578  * | dest     |               |                |                |            |
1579  * |   |      |               |                |                |            |
1580  * |   v      |               |                |                |            |
1581  * |**************************************************************************
1582  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1583  * |          |               |                |                |            |
1584  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1585  * ***************************************************************************
1586  *
1587  * (+)  the mount is moved to the destination. And is then propagated to
1588  * 	all the mounts in the propagation tree of the destination mount.
1589  * (+*)  the mount is moved to the destination.
1590  * (+++)  the mount is moved to the destination and is then propagated to
1591  * 	all the mounts belonging to the destination mount's propagation tree.
1592  * 	the mount is marked as 'shared and slave'.
1593  * (*)	the mount continues to be a slave at the new location.
1594  *
1595  * if the source mount is a tree, the operations explained above is
1596  * applied to each mount in the tree.
1597  * Must be called without spinlocks held, since this function can sleep
1598  * in allocations.
1599  */
1600 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1601 			struct path *path, struct path *parent_path)
1602 {
1603 	LIST_HEAD(tree_list);
1604 	struct vfsmount *dest_mnt = path->mnt;
1605 	struct dentry *dest_dentry = path->dentry;
1606 	struct vfsmount *child, *p;
1607 	int err;
1608 
1609 	if (IS_MNT_SHARED(dest_mnt)) {
1610 		err = invent_group_ids(source_mnt, true);
1611 		if (err)
1612 			goto out;
1613 	}
1614 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1615 	if (err)
1616 		goto out_cleanup_ids;
1617 
1618 	br_write_lock(vfsmount_lock);
1619 
1620 	if (IS_MNT_SHARED(dest_mnt)) {
1621 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1622 			set_mnt_shared(p);
1623 	}
1624 	if (parent_path) {
1625 		detach_mnt(source_mnt, parent_path);
1626 		attach_mnt(source_mnt, path);
1627 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1628 	} else {
1629 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1630 		commit_tree(source_mnt);
1631 	}
1632 
1633 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1634 		list_del_init(&child->mnt_hash);
1635 		commit_tree(child);
1636 	}
1637 	br_write_unlock(vfsmount_lock);
1638 
1639 	return 0;
1640 
1641  out_cleanup_ids:
1642 	if (IS_MNT_SHARED(dest_mnt))
1643 		cleanup_group_ids(source_mnt, NULL);
1644  out:
1645 	return err;
1646 }
1647 
1648 static int lock_mount(struct path *path)
1649 {
1650 	struct vfsmount *mnt;
1651 retry:
1652 	mutex_lock(&path->dentry->d_inode->i_mutex);
1653 	if (unlikely(cant_mount(path->dentry))) {
1654 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1655 		return -ENOENT;
1656 	}
1657 	down_write(&namespace_sem);
1658 	mnt = lookup_mnt(path);
1659 	if (likely(!mnt))
1660 		return 0;
1661 	up_write(&namespace_sem);
1662 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1663 	path_put(path);
1664 	path->mnt = mnt;
1665 	path->dentry = dget(mnt->mnt_root);
1666 	goto retry;
1667 }
1668 
1669 static void unlock_mount(struct path *path)
1670 {
1671 	up_write(&namespace_sem);
1672 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1673 }
1674 
1675 static int graft_tree(struct vfsmount *mnt, struct path *path)
1676 {
1677 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1678 		return -EINVAL;
1679 
1680 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1681 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1682 		return -ENOTDIR;
1683 
1684 	if (d_unlinked(path->dentry))
1685 		return -ENOENT;
1686 
1687 	return attach_recursive_mnt(mnt, path, NULL);
1688 }
1689 
1690 /*
1691  * Sanity check the flags to change_mnt_propagation.
1692  */
1693 
1694 static int flags_to_propagation_type(int flags)
1695 {
1696 	int type = flags & ~(MS_REC | MS_SILENT);
1697 
1698 	/* Fail if any non-propagation flags are set */
1699 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1700 		return 0;
1701 	/* Only one propagation flag should be set */
1702 	if (!is_power_of_2(type))
1703 		return 0;
1704 	return type;
1705 }
1706 
1707 /*
1708  * recursively change the type of the mountpoint.
1709  */
1710 static int do_change_type(struct path *path, int flag)
1711 {
1712 	struct vfsmount *m, *mnt = path->mnt;
1713 	int recurse = flag & MS_REC;
1714 	int type;
1715 	int err = 0;
1716 
1717 	if (!capable(CAP_SYS_ADMIN))
1718 		return -EPERM;
1719 
1720 	if (path->dentry != path->mnt->mnt_root)
1721 		return -EINVAL;
1722 
1723 	type = flags_to_propagation_type(flag);
1724 	if (!type)
1725 		return -EINVAL;
1726 
1727 	down_write(&namespace_sem);
1728 	if (type == MS_SHARED) {
1729 		err = invent_group_ids(mnt, recurse);
1730 		if (err)
1731 			goto out_unlock;
1732 	}
1733 
1734 	br_write_lock(vfsmount_lock);
1735 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1736 		change_mnt_propagation(m, type);
1737 	br_write_unlock(vfsmount_lock);
1738 
1739  out_unlock:
1740 	up_write(&namespace_sem);
1741 	return err;
1742 }
1743 
1744 /*
1745  * do loopback mount.
1746  */
1747 static int do_loopback(struct path *path, char *old_name,
1748 				int recurse)
1749 {
1750 	LIST_HEAD(umount_list);
1751 	struct path old_path;
1752 	struct vfsmount *mnt = NULL;
1753 	int err = mount_is_safe(path);
1754 	if (err)
1755 		return err;
1756 	if (!old_name || !*old_name)
1757 		return -EINVAL;
1758 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1759 	if (err)
1760 		return err;
1761 
1762 	err = lock_mount(path);
1763 	if (err)
1764 		goto out;
1765 
1766 	err = -EINVAL;
1767 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1768 		goto out2;
1769 
1770 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1771 		goto out2;
1772 
1773 	err = -ENOMEM;
1774 	if (recurse)
1775 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1776 	else
1777 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1778 
1779 	if (!mnt)
1780 		goto out2;
1781 
1782 	err = graft_tree(mnt, path);
1783 	if (err) {
1784 		br_write_lock(vfsmount_lock);
1785 		umount_tree(mnt, 0, &umount_list);
1786 		br_write_unlock(vfsmount_lock);
1787 	}
1788 out2:
1789 	unlock_mount(path);
1790 	release_mounts(&umount_list);
1791 out:
1792 	path_put(&old_path);
1793 	return err;
1794 }
1795 
1796 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1797 {
1798 	int error = 0;
1799 	int readonly_request = 0;
1800 
1801 	if (ms_flags & MS_RDONLY)
1802 		readonly_request = 1;
1803 	if (readonly_request == __mnt_is_readonly(mnt))
1804 		return 0;
1805 
1806 	if (readonly_request)
1807 		error = mnt_make_readonly(mnt);
1808 	else
1809 		__mnt_unmake_readonly(mnt);
1810 	return error;
1811 }
1812 
1813 /*
1814  * change filesystem flags. dir should be a physical root of filesystem.
1815  * If you've mounted a non-root directory somewhere and want to do remount
1816  * on it - tough luck.
1817  */
1818 static int do_remount(struct path *path, int flags, int mnt_flags,
1819 		      void *data)
1820 {
1821 	int err;
1822 	struct super_block *sb = path->mnt->mnt_sb;
1823 
1824 	if (!capable(CAP_SYS_ADMIN))
1825 		return -EPERM;
1826 
1827 	if (!check_mnt(path->mnt))
1828 		return -EINVAL;
1829 
1830 	if (path->dentry != path->mnt->mnt_root)
1831 		return -EINVAL;
1832 
1833 	err = security_sb_remount(sb, data);
1834 	if (err)
1835 		return err;
1836 
1837 	down_write(&sb->s_umount);
1838 	if (flags & MS_BIND)
1839 		err = change_mount_flags(path->mnt, flags);
1840 	else
1841 		err = do_remount_sb(sb, flags, data, 0);
1842 	if (!err) {
1843 		br_write_lock(vfsmount_lock);
1844 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1845 		path->mnt->mnt_flags = mnt_flags;
1846 		br_write_unlock(vfsmount_lock);
1847 	}
1848 	up_write(&sb->s_umount);
1849 	if (!err) {
1850 		br_write_lock(vfsmount_lock);
1851 		touch_mnt_namespace(path->mnt->mnt_ns);
1852 		br_write_unlock(vfsmount_lock);
1853 	}
1854 	return err;
1855 }
1856 
1857 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1858 {
1859 	struct vfsmount *p;
1860 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1861 		if (IS_MNT_UNBINDABLE(p))
1862 			return 1;
1863 	}
1864 	return 0;
1865 }
1866 
1867 static int do_move_mount(struct path *path, char *old_name)
1868 {
1869 	struct path old_path, parent_path;
1870 	struct vfsmount *p;
1871 	int err = 0;
1872 	if (!capable(CAP_SYS_ADMIN))
1873 		return -EPERM;
1874 	if (!old_name || !*old_name)
1875 		return -EINVAL;
1876 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1877 	if (err)
1878 		return err;
1879 
1880 	err = lock_mount(path);
1881 	if (err < 0)
1882 		goto out;
1883 
1884 	err = -EINVAL;
1885 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1886 		goto out1;
1887 
1888 	if (d_unlinked(path->dentry))
1889 		goto out1;
1890 
1891 	err = -EINVAL;
1892 	if (old_path.dentry != old_path.mnt->mnt_root)
1893 		goto out1;
1894 
1895 	if (old_path.mnt == old_path.mnt->mnt_parent)
1896 		goto out1;
1897 
1898 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1899 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1900 		goto out1;
1901 	/*
1902 	 * Don't move a mount residing in a shared parent.
1903 	 */
1904 	if (old_path.mnt->mnt_parent &&
1905 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1906 		goto out1;
1907 	/*
1908 	 * Don't move a mount tree containing unbindable mounts to a destination
1909 	 * mount which is shared.
1910 	 */
1911 	if (IS_MNT_SHARED(path->mnt) &&
1912 	    tree_contains_unbindable(old_path.mnt))
1913 		goto out1;
1914 	err = -ELOOP;
1915 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1916 		if (p == old_path.mnt)
1917 			goto out1;
1918 
1919 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1920 	if (err)
1921 		goto out1;
1922 
1923 	/* if the mount is moved, it should no longer be expire
1924 	 * automatically */
1925 	list_del_init(&old_path.mnt->mnt_expire);
1926 out1:
1927 	unlock_mount(path);
1928 out:
1929 	if (!err)
1930 		path_put(&parent_path);
1931 	path_put(&old_path);
1932 	return err;
1933 }
1934 
1935 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1936 {
1937 	int err;
1938 	const char *subtype = strchr(fstype, '.');
1939 	if (subtype) {
1940 		subtype++;
1941 		err = -EINVAL;
1942 		if (!subtype[0])
1943 			goto err;
1944 	} else
1945 		subtype = "";
1946 
1947 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1948 	err = -ENOMEM;
1949 	if (!mnt->mnt_sb->s_subtype)
1950 		goto err;
1951 	return mnt;
1952 
1953  err:
1954 	mntput(mnt);
1955 	return ERR_PTR(err);
1956 }
1957 
1958 struct vfsmount *
1959 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1960 {
1961 	struct file_system_type *type = get_fs_type(fstype);
1962 	struct vfsmount *mnt;
1963 	if (!type)
1964 		return ERR_PTR(-ENODEV);
1965 	mnt = vfs_kern_mount(type, flags, name, data);
1966 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1967 	    !mnt->mnt_sb->s_subtype)
1968 		mnt = fs_set_subtype(mnt, fstype);
1969 	put_filesystem(type);
1970 	return mnt;
1971 }
1972 EXPORT_SYMBOL_GPL(do_kern_mount);
1973 
1974 /*
1975  * add a mount into a namespace's mount tree
1976  */
1977 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1978 {
1979 	int err;
1980 
1981 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1982 
1983 	err = lock_mount(path);
1984 	if (err)
1985 		return err;
1986 
1987 	err = -EINVAL;
1988 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1989 		goto unlock;
1990 
1991 	/* Refuse the same filesystem on the same mount point */
1992 	err = -EBUSY;
1993 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1994 	    path->mnt->mnt_root == path->dentry)
1995 		goto unlock;
1996 
1997 	err = -EINVAL;
1998 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1999 		goto unlock;
2000 
2001 	newmnt->mnt_flags = mnt_flags;
2002 	err = graft_tree(newmnt, path);
2003 
2004 unlock:
2005 	unlock_mount(path);
2006 	return err;
2007 }
2008 
2009 /*
2010  * create a new mount for userspace and request it to be added into the
2011  * namespace's tree
2012  */
2013 static int do_new_mount(struct path *path, char *type, int flags,
2014 			int mnt_flags, char *name, void *data)
2015 {
2016 	struct vfsmount *mnt;
2017 	int err;
2018 
2019 	if (!type)
2020 		return -EINVAL;
2021 
2022 	/* we need capabilities... */
2023 	if (!capable(CAP_SYS_ADMIN))
2024 		return -EPERM;
2025 
2026 	mnt = do_kern_mount(type, flags, name, data);
2027 	if (IS_ERR(mnt))
2028 		return PTR_ERR(mnt);
2029 
2030 	err = do_add_mount(mnt, path, mnt_flags);
2031 	if (err)
2032 		mntput(mnt);
2033 	return err;
2034 }
2035 
2036 int finish_automount(struct vfsmount *m, struct path *path)
2037 {
2038 	int err;
2039 	/* The new mount record should have at least 2 refs to prevent it being
2040 	 * expired before we get a chance to add it
2041 	 */
2042 	BUG_ON(mnt_get_count(m) < 2);
2043 
2044 	if (m->mnt_sb == path->mnt->mnt_sb &&
2045 	    m->mnt_root == path->dentry) {
2046 		err = -ELOOP;
2047 		goto fail;
2048 	}
2049 
2050 	err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2051 	if (!err)
2052 		return 0;
2053 fail:
2054 	/* remove m from any expiration list it may be on */
2055 	if (!list_empty(&m->mnt_expire)) {
2056 		down_write(&namespace_sem);
2057 		br_write_lock(vfsmount_lock);
2058 		list_del_init(&m->mnt_expire);
2059 		br_write_unlock(vfsmount_lock);
2060 		up_write(&namespace_sem);
2061 	}
2062 	mntput(m);
2063 	mntput(m);
2064 	return err;
2065 }
2066 
2067 /**
2068  * mnt_set_expiry - Put a mount on an expiration list
2069  * @mnt: The mount to list.
2070  * @expiry_list: The list to add the mount to.
2071  */
2072 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2073 {
2074 	down_write(&namespace_sem);
2075 	br_write_lock(vfsmount_lock);
2076 
2077 	list_add_tail(&mnt->mnt_expire, expiry_list);
2078 
2079 	br_write_unlock(vfsmount_lock);
2080 	up_write(&namespace_sem);
2081 }
2082 EXPORT_SYMBOL(mnt_set_expiry);
2083 
2084 /*
2085  * process a list of expirable mountpoints with the intent of discarding any
2086  * mountpoints that aren't in use and haven't been touched since last we came
2087  * here
2088  */
2089 void mark_mounts_for_expiry(struct list_head *mounts)
2090 {
2091 	struct vfsmount *mnt, *next;
2092 	LIST_HEAD(graveyard);
2093 	LIST_HEAD(umounts);
2094 
2095 	if (list_empty(mounts))
2096 		return;
2097 
2098 	down_write(&namespace_sem);
2099 	br_write_lock(vfsmount_lock);
2100 
2101 	/* extract from the expiration list every vfsmount that matches the
2102 	 * following criteria:
2103 	 * - only referenced by its parent vfsmount
2104 	 * - still marked for expiry (marked on the last call here; marks are
2105 	 *   cleared by mntput())
2106 	 */
2107 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2108 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2109 			propagate_mount_busy(mnt, 1))
2110 			continue;
2111 		list_move(&mnt->mnt_expire, &graveyard);
2112 	}
2113 	while (!list_empty(&graveyard)) {
2114 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2115 		touch_mnt_namespace(mnt->mnt_ns);
2116 		umount_tree(mnt, 1, &umounts);
2117 	}
2118 	br_write_unlock(vfsmount_lock);
2119 	up_write(&namespace_sem);
2120 
2121 	release_mounts(&umounts);
2122 }
2123 
2124 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2125 
2126 /*
2127  * Ripoff of 'select_parent()'
2128  *
2129  * search the list of submounts for a given mountpoint, and move any
2130  * shrinkable submounts to the 'graveyard' list.
2131  */
2132 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2133 {
2134 	struct vfsmount *this_parent = parent;
2135 	struct list_head *next;
2136 	int found = 0;
2137 
2138 repeat:
2139 	next = this_parent->mnt_mounts.next;
2140 resume:
2141 	while (next != &this_parent->mnt_mounts) {
2142 		struct list_head *tmp = next;
2143 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2144 
2145 		next = tmp->next;
2146 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2147 			continue;
2148 		/*
2149 		 * Descend a level if the d_mounts list is non-empty.
2150 		 */
2151 		if (!list_empty(&mnt->mnt_mounts)) {
2152 			this_parent = mnt;
2153 			goto repeat;
2154 		}
2155 
2156 		if (!propagate_mount_busy(mnt, 1)) {
2157 			list_move_tail(&mnt->mnt_expire, graveyard);
2158 			found++;
2159 		}
2160 	}
2161 	/*
2162 	 * All done at this level ... ascend and resume the search
2163 	 */
2164 	if (this_parent != parent) {
2165 		next = this_parent->mnt_child.next;
2166 		this_parent = this_parent->mnt_parent;
2167 		goto resume;
2168 	}
2169 	return found;
2170 }
2171 
2172 /*
2173  * process a list of expirable mountpoints with the intent of discarding any
2174  * submounts of a specific parent mountpoint
2175  *
2176  * vfsmount_lock must be held for write
2177  */
2178 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2179 {
2180 	LIST_HEAD(graveyard);
2181 	struct vfsmount *m;
2182 
2183 	/* extract submounts of 'mountpoint' from the expiration list */
2184 	while (select_submounts(mnt, &graveyard)) {
2185 		while (!list_empty(&graveyard)) {
2186 			m = list_first_entry(&graveyard, struct vfsmount,
2187 						mnt_expire);
2188 			touch_mnt_namespace(m->mnt_ns);
2189 			umount_tree(m, 1, umounts);
2190 		}
2191 	}
2192 }
2193 
2194 /*
2195  * Some copy_from_user() implementations do not return the exact number of
2196  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2197  * Note that this function differs from copy_from_user() in that it will oops
2198  * on bad values of `to', rather than returning a short copy.
2199  */
2200 static long exact_copy_from_user(void *to, const void __user * from,
2201 				 unsigned long n)
2202 {
2203 	char *t = to;
2204 	const char __user *f = from;
2205 	char c;
2206 
2207 	if (!access_ok(VERIFY_READ, from, n))
2208 		return n;
2209 
2210 	while (n) {
2211 		if (__get_user(c, f)) {
2212 			memset(t, 0, n);
2213 			break;
2214 		}
2215 		*t++ = c;
2216 		f++;
2217 		n--;
2218 	}
2219 	return n;
2220 }
2221 
2222 int copy_mount_options(const void __user * data, unsigned long *where)
2223 {
2224 	int i;
2225 	unsigned long page;
2226 	unsigned long size;
2227 
2228 	*where = 0;
2229 	if (!data)
2230 		return 0;
2231 
2232 	if (!(page = __get_free_page(GFP_KERNEL)))
2233 		return -ENOMEM;
2234 
2235 	/* We only care that *some* data at the address the user
2236 	 * gave us is valid.  Just in case, we'll zero
2237 	 * the remainder of the page.
2238 	 */
2239 	/* copy_from_user cannot cross TASK_SIZE ! */
2240 	size = TASK_SIZE - (unsigned long)data;
2241 	if (size > PAGE_SIZE)
2242 		size = PAGE_SIZE;
2243 
2244 	i = size - exact_copy_from_user((void *)page, data, size);
2245 	if (!i) {
2246 		free_page(page);
2247 		return -EFAULT;
2248 	}
2249 	if (i != PAGE_SIZE)
2250 		memset((char *)page + i, 0, PAGE_SIZE - i);
2251 	*where = page;
2252 	return 0;
2253 }
2254 
2255 int copy_mount_string(const void __user *data, char **where)
2256 {
2257 	char *tmp;
2258 
2259 	if (!data) {
2260 		*where = NULL;
2261 		return 0;
2262 	}
2263 
2264 	tmp = strndup_user(data, PAGE_SIZE);
2265 	if (IS_ERR(tmp))
2266 		return PTR_ERR(tmp);
2267 
2268 	*where = tmp;
2269 	return 0;
2270 }
2271 
2272 /*
2273  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2274  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2275  *
2276  * data is a (void *) that can point to any structure up to
2277  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2278  * information (or be NULL).
2279  *
2280  * Pre-0.97 versions of mount() didn't have a flags word.
2281  * When the flags word was introduced its top half was required
2282  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2283  * Therefore, if this magic number is present, it carries no information
2284  * and must be discarded.
2285  */
2286 long do_mount(char *dev_name, char *dir_name, char *type_page,
2287 		  unsigned long flags, void *data_page)
2288 {
2289 	struct path path;
2290 	int retval = 0;
2291 	int mnt_flags = 0;
2292 
2293 	/* Discard magic */
2294 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2295 		flags &= ~MS_MGC_MSK;
2296 
2297 	/* Basic sanity checks */
2298 
2299 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2300 		return -EINVAL;
2301 
2302 	if (data_page)
2303 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2304 
2305 	/* ... and get the mountpoint */
2306 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2307 	if (retval)
2308 		return retval;
2309 
2310 	retval = security_sb_mount(dev_name, &path,
2311 				   type_page, flags, data_page);
2312 	if (retval)
2313 		goto dput_out;
2314 
2315 	/* Default to relatime unless overriden */
2316 	if (!(flags & MS_NOATIME))
2317 		mnt_flags |= MNT_RELATIME;
2318 
2319 	/* Separate the per-mountpoint flags */
2320 	if (flags & MS_NOSUID)
2321 		mnt_flags |= MNT_NOSUID;
2322 	if (flags & MS_NODEV)
2323 		mnt_flags |= MNT_NODEV;
2324 	if (flags & MS_NOEXEC)
2325 		mnt_flags |= MNT_NOEXEC;
2326 	if (flags & MS_NOATIME)
2327 		mnt_flags |= MNT_NOATIME;
2328 	if (flags & MS_NODIRATIME)
2329 		mnt_flags |= MNT_NODIRATIME;
2330 	if (flags & MS_STRICTATIME)
2331 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2332 	if (flags & MS_RDONLY)
2333 		mnt_flags |= MNT_READONLY;
2334 
2335 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2336 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2337 		   MS_STRICTATIME);
2338 
2339 	if (flags & MS_REMOUNT)
2340 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2341 				    data_page);
2342 	else if (flags & MS_BIND)
2343 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2344 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2345 		retval = do_change_type(&path, flags);
2346 	else if (flags & MS_MOVE)
2347 		retval = do_move_mount(&path, dev_name);
2348 	else
2349 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2350 				      dev_name, data_page);
2351 dput_out:
2352 	path_put(&path);
2353 	return retval;
2354 }
2355 
2356 static struct mnt_namespace *alloc_mnt_ns(void)
2357 {
2358 	struct mnt_namespace *new_ns;
2359 
2360 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2361 	if (!new_ns)
2362 		return ERR_PTR(-ENOMEM);
2363 	atomic_set(&new_ns->count, 1);
2364 	new_ns->root = NULL;
2365 	INIT_LIST_HEAD(&new_ns->list);
2366 	init_waitqueue_head(&new_ns->poll);
2367 	new_ns->event = 0;
2368 	return new_ns;
2369 }
2370 
2371 void mnt_make_longterm(struct vfsmount *mnt)
2372 {
2373 	__mnt_make_longterm(mnt);
2374 }
2375 
2376 void mnt_make_shortterm(struct vfsmount *mnt)
2377 {
2378 #ifdef CONFIG_SMP
2379 	if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2380 		return;
2381 	br_write_lock(vfsmount_lock);
2382 	atomic_dec(&mnt->mnt_longterm);
2383 	br_write_unlock(vfsmount_lock);
2384 #endif
2385 }
2386 
2387 /*
2388  * Allocate a new namespace structure and populate it with contents
2389  * copied from the namespace of the passed in task structure.
2390  */
2391 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2392 		struct fs_struct *fs)
2393 {
2394 	struct mnt_namespace *new_ns;
2395 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2396 	struct vfsmount *p, *q;
2397 
2398 	new_ns = alloc_mnt_ns();
2399 	if (IS_ERR(new_ns))
2400 		return new_ns;
2401 
2402 	down_write(&namespace_sem);
2403 	/* First pass: copy the tree topology */
2404 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2405 					CL_COPY_ALL | CL_EXPIRE);
2406 	if (!new_ns->root) {
2407 		up_write(&namespace_sem);
2408 		kfree(new_ns);
2409 		return ERR_PTR(-ENOMEM);
2410 	}
2411 	br_write_lock(vfsmount_lock);
2412 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2413 	br_write_unlock(vfsmount_lock);
2414 
2415 	/*
2416 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2417 	 * as belonging to new namespace.  We have already acquired a private
2418 	 * fs_struct, so tsk->fs->lock is not needed.
2419 	 */
2420 	p = mnt_ns->root;
2421 	q = new_ns->root;
2422 	while (p) {
2423 		q->mnt_ns = new_ns;
2424 		__mnt_make_longterm(q);
2425 		if (fs) {
2426 			if (p == fs->root.mnt) {
2427 				fs->root.mnt = mntget(q);
2428 				__mnt_make_longterm(q);
2429 				mnt_make_shortterm(p);
2430 				rootmnt = p;
2431 			}
2432 			if (p == fs->pwd.mnt) {
2433 				fs->pwd.mnt = mntget(q);
2434 				__mnt_make_longterm(q);
2435 				mnt_make_shortterm(p);
2436 				pwdmnt = p;
2437 			}
2438 		}
2439 		p = next_mnt(p, mnt_ns->root);
2440 		q = next_mnt(q, new_ns->root);
2441 	}
2442 	up_write(&namespace_sem);
2443 
2444 	if (rootmnt)
2445 		mntput(rootmnt);
2446 	if (pwdmnt)
2447 		mntput(pwdmnt);
2448 
2449 	return new_ns;
2450 }
2451 
2452 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2453 		struct fs_struct *new_fs)
2454 {
2455 	struct mnt_namespace *new_ns;
2456 
2457 	BUG_ON(!ns);
2458 	get_mnt_ns(ns);
2459 
2460 	if (!(flags & CLONE_NEWNS))
2461 		return ns;
2462 
2463 	new_ns = dup_mnt_ns(ns, new_fs);
2464 
2465 	put_mnt_ns(ns);
2466 	return new_ns;
2467 }
2468 
2469 /**
2470  * create_mnt_ns - creates a private namespace and adds a root filesystem
2471  * @mnt: pointer to the new root filesystem mountpoint
2472  */
2473 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2474 {
2475 	struct mnt_namespace *new_ns;
2476 
2477 	new_ns = alloc_mnt_ns();
2478 	if (!IS_ERR(new_ns)) {
2479 		mnt->mnt_ns = new_ns;
2480 		__mnt_make_longterm(mnt);
2481 		new_ns->root = mnt;
2482 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2483 	}
2484 	return new_ns;
2485 }
2486 EXPORT_SYMBOL(create_mnt_ns);
2487 
2488 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2489 		char __user *, type, unsigned long, flags, void __user *, data)
2490 {
2491 	int ret;
2492 	char *kernel_type;
2493 	char *kernel_dir;
2494 	char *kernel_dev;
2495 	unsigned long data_page;
2496 
2497 	ret = copy_mount_string(type, &kernel_type);
2498 	if (ret < 0)
2499 		goto out_type;
2500 
2501 	kernel_dir = getname(dir_name);
2502 	if (IS_ERR(kernel_dir)) {
2503 		ret = PTR_ERR(kernel_dir);
2504 		goto out_dir;
2505 	}
2506 
2507 	ret = copy_mount_string(dev_name, &kernel_dev);
2508 	if (ret < 0)
2509 		goto out_dev;
2510 
2511 	ret = copy_mount_options(data, &data_page);
2512 	if (ret < 0)
2513 		goto out_data;
2514 
2515 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2516 		(void *) data_page);
2517 
2518 	free_page(data_page);
2519 out_data:
2520 	kfree(kernel_dev);
2521 out_dev:
2522 	putname(kernel_dir);
2523 out_dir:
2524 	kfree(kernel_type);
2525 out_type:
2526 	return ret;
2527 }
2528 
2529 /*
2530  * pivot_root Semantics:
2531  * Moves the root file system of the current process to the directory put_old,
2532  * makes new_root as the new root file system of the current process, and sets
2533  * root/cwd of all processes which had them on the current root to new_root.
2534  *
2535  * Restrictions:
2536  * The new_root and put_old must be directories, and  must not be on the
2537  * same file  system as the current process root. The put_old  must  be
2538  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2539  * pointed to by put_old must yield the same directory as new_root. No other
2540  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2541  *
2542  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2543  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2544  * in this situation.
2545  *
2546  * Notes:
2547  *  - we don't move root/cwd if they are not at the root (reason: if something
2548  *    cared enough to change them, it's probably wrong to force them elsewhere)
2549  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2550  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2551  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2552  *    first.
2553  */
2554 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2555 		const char __user *, put_old)
2556 {
2557 	struct vfsmount *tmp;
2558 	struct path new, old, parent_path, root_parent, root;
2559 	int error;
2560 
2561 	if (!capable(CAP_SYS_ADMIN))
2562 		return -EPERM;
2563 
2564 	error = user_path_dir(new_root, &new);
2565 	if (error)
2566 		goto out0;
2567 
2568 	error = user_path_dir(put_old, &old);
2569 	if (error)
2570 		goto out1;
2571 
2572 	error = security_sb_pivotroot(&old, &new);
2573 	if (error)
2574 		goto out2;
2575 
2576 	get_fs_root(current->fs, &root);
2577 	error = lock_mount(&old);
2578 	if (error)
2579 		goto out3;
2580 
2581 	error = -EINVAL;
2582 	if (IS_MNT_SHARED(old.mnt) ||
2583 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2584 		IS_MNT_SHARED(root.mnt->mnt_parent))
2585 		goto out4;
2586 	if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2587 		goto out4;
2588 	error = -ENOENT;
2589 	if (d_unlinked(new.dentry))
2590 		goto out4;
2591 	if (d_unlinked(old.dentry))
2592 		goto out4;
2593 	error = -EBUSY;
2594 	if (new.mnt == root.mnt ||
2595 	    old.mnt == root.mnt)
2596 		goto out4; /* loop, on the same file system  */
2597 	error = -EINVAL;
2598 	if (root.mnt->mnt_root != root.dentry)
2599 		goto out4; /* not a mountpoint */
2600 	if (root.mnt->mnt_parent == root.mnt)
2601 		goto out4; /* not attached */
2602 	if (new.mnt->mnt_root != new.dentry)
2603 		goto out4; /* not a mountpoint */
2604 	if (new.mnt->mnt_parent == new.mnt)
2605 		goto out4; /* not attached */
2606 	/* make sure we can reach put_old from new_root */
2607 	tmp = old.mnt;
2608 	if (tmp != new.mnt) {
2609 		for (;;) {
2610 			if (tmp->mnt_parent == tmp)
2611 				goto out4; /* already mounted on put_old */
2612 			if (tmp->mnt_parent == new.mnt)
2613 				break;
2614 			tmp = tmp->mnt_parent;
2615 		}
2616 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2617 			goto out4;
2618 	} else if (!is_subdir(old.dentry, new.dentry))
2619 		goto out4;
2620 	br_write_lock(vfsmount_lock);
2621 	detach_mnt(new.mnt, &parent_path);
2622 	detach_mnt(root.mnt, &root_parent);
2623 	/* mount old root on put_old */
2624 	attach_mnt(root.mnt, &old);
2625 	/* mount new_root on / */
2626 	attach_mnt(new.mnt, &root_parent);
2627 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2628 	br_write_unlock(vfsmount_lock);
2629 	chroot_fs_refs(&root, &new);
2630 	error = 0;
2631 out4:
2632 	unlock_mount(&old);
2633 	if (!error) {
2634 		path_put(&root_parent);
2635 		path_put(&parent_path);
2636 	}
2637 out3:
2638 	path_put(&root);
2639 out2:
2640 	path_put(&old);
2641 out1:
2642 	path_put(&new);
2643 out0:
2644 	return error;
2645 }
2646 
2647 static void __init init_mount_tree(void)
2648 {
2649 	struct vfsmount *mnt;
2650 	struct mnt_namespace *ns;
2651 	struct path root;
2652 
2653 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2654 	if (IS_ERR(mnt))
2655 		panic("Can't create rootfs");
2656 
2657 	ns = create_mnt_ns(mnt);
2658 	if (IS_ERR(ns))
2659 		panic("Can't allocate initial namespace");
2660 
2661 	init_task.nsproxy->mnt_ns = ns;
2662 	get_mnt_ns(ns);
2663 
2664 	root.mnt = ns->root;
2665 	root.dentry = ns->root->mnt_root;
2666 
2667 	set_fs_pwd(current->fs, &root);
2668 	set_fs_root(current->fs, &root);
2669 }
2670 
2671 void __init mnt_init(void)
2672 {
2673 	unsigned u;
2674 	int err;
2675 
2676 	init_rwsem(&namespace_sem);
2677 
2678 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2679 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2680 
2681 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2682 
2683 	if (!mount_hashtable)
2684 		panic("Failed to allocate mount hash table\n");
2685 
2686 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2687 
2688 	for (u = 0; u < HASH_SIZE; u++)
2689 		INIT_LIST_HEAD(&mount_hashtable[u]);
2690 
2691 	br_lock_init(vfsmount_lock);
2692 
2693 	err = sysfs_init();
2694 	if (err)
2695 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2696 			__func__, err);
2697 	fs_kobj = kobject_create_and_add("fs", NULL);
2698 	if (!fs_kobj)
2699 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2700 	init_rootfs();
2701 	init_mount_tree();
2702 }
2703 
2704 void put_mnt_ns(struct mnt_namespace *ns)
2705 {
2706 	LIST_HEAD(umount_list);
2707 
2708 	if (!atomic_dec_and_test(&ns->count))
2709 		return;
2710 	down_write(&namespace_sem);
2711 	br_write_lock(vfsmount_lock);
2712 	umount_tree(ns->root, 0, &umount_list);
2713 	br_write_unlock(vfsmount_lock);
2714 	up_write(&namespace_sem);
2715 	release_mounts(&umount_list);
2716 	kfree(ns);
2717 }
2718 EXPORT_SYMBOL(put_mnt_ns);
2719 
2720 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2721 {
2722 	struct vfsmount *mnt;
2723 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2724 	if (!IS_ERR(mnt)) {
2725 		/*
2726 		 * it is a longterm mount, don't release mnt until
2727 		 * we unmount before file sys is unregistered
2728 		*/
2729 		mnt_make_longterm(mnt);
2730 	}
2731 	return mnt;
2732 }
2733 EXPORT_SYMBOL_GPL(kern_mount_data);
2734 
2735 void kern_unmount(struct vfsmount *mnt)
2736 {
2737 	/* release long term mount so mount point can be released */
2738 	if (!IS_ERR_OR_NULL(mnt)) {
2739 		mnt_make_shortterm(mnt);
2740 		mntput(mnt);
2741 	}
2742 }
2743 EXPORT_SYMBOL(kern_unmount);
2744