xref: /linux/fs/namespace.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/acct.h>
20 #include <linux/capability.h>
21 #include <linux/cpumask.h>
22 #include <linux/module.h>
23 #include <linux/sysfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/mnt_namespace.h>
26 #include <linux/namei.h>
27 #include <linux/nsproxy.h>
28 #include <linux/security.h>
29 #include <linux/mount.h>
30 #include <linux/ramfs.h>
31 #include <linux/log2.h>
32 #include <linux/idr.h>
33 #include <linux/fs_struct.h>
34 #include <linux/fsnotify.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include "pnode.h"
38 #include "internal.h"
39 
40 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
41 #define HASH_SIZE (1UL << HASH_SHIFT)
42 
43 static int event;
44 static DEFINE_IDA(mnt_id_ida);
45 static DEFINE_IDA(mnt_group_ida);
46 static DEFINE_SPINLOCK(mnt_id_lock);
47 static int mnt_id_start = 0;
48 static int mnt_group_start = 1;
49 
50 static struct list_head *mount_hashtable __read_mostly;
51 static struct kmem_cache *mnt_cache __read_mostly;
52 static struct rw_semaphore namespace_sem;
53 
54 /* /sys/fs */
55 struct kobject *fs_kobj;
56 EXPORT_SYMBOL_GPL(fs_kobj);
57 
58 /*
59  * vfsmount lock may be taken for read to prevent changes to the
60  * vfsmount hash, ie. during mountpoint lookups or walking back
61  * up the tree.
62  *
63  * It should be taken for write in all cases where the vfsmount
64  * tree or hash is modified or when a vfsmount structure is modified.
65  */
66 DEFINE_BRLOCK(vfsmount_lock);
67 
68 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
69 {
70 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
71 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
72 	tmp = tmp + (tmp >> HASH_SHIFT);
73 	return tmp & (HASH_SIZE - 1);
74 }
75 
76 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
77 
78 /*
79  * allocation is serialized by namespace_sem, but we need the spinlock to
80  * serialize with freeing.
81  */
82 static int mnt_alloc_id(struct vfsmount *mnt)
83 {
84 	int res;
85 
86 retry:
87 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
88 	spin_lock(&mnt_id_lock);
89 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
90 	if (!res)
91 		mnt_id_start = mnt->mnt_id + 1;
92 	spin_unlock(&mnt_id_lock);
93 	if (res == -EAGAIN)
94 		goto retry;
95 
96 	return res;
97 }
98 
99 static void mnt_free_id(struct vfsmount *mnt)
100 {
101 	int id = mnt->mnt_id;
102 	spin_lock(&mnt_id_lock);
103 	ida_remove(&mnt_id_ida, id);
104 	if (mnt_id_start > id)
105 		mnt_id_start = id;
106 	spin_unlock(&mnt_id_lock);
107 }
108 
109 /*
110  * Allocate a new peer group ID
111  *
112  * mnt_group_ida is protected by namespace_sem
113  */
114 static int mnt_alloc_group_id(struct vfsmount *mnt)
115 {
116 	int res;
117 
118 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
119 		return -ENOMEM;
120 
121 	res = ida_get_new_above(&mnt_group_ida,
122 				mnt_group_start,
123 				&mnt->mnt_group_id);
124 	if (!res)
125 		mnt_group_start = mnt->mnt_group_id + 1;
126 
127 	return res;
128 }
129 
130 /*
131  * Release a peer group ID
132  */
133 void mnt_release_group_id(struct vfsmount *mnt)
134 {
135 	int id = mnt->mnt_group_id;
136 	ida_remove(&mnt_group_ida, id);
137 	if (mnt_group_start > id)
138 		mnt_group_start = id;
139 	mnt->mnt_group_id = 0;
140 }
141 
142 struct vfsmount *alloc_vfsmnt(const char *name)
143 {
144 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
145 	if (mnt) {
146 		int err;
147 
148 		err = mnt_alloc_id(mnt);
149 		if (err)
150 			goto out_free_cache;
151 
152 		if (name) {
153 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
154 			if (!mnt->mnt_devname)
155 				goto out_free_id;
156 		}
157 
158 		atomic_set(&mnt->mnt_count, 1);
159 		INIT_LIST_HEAD(&mnt->mnt_hash);
160 		INIT_LIST_HEAD(&mnt->mnt_child);
161 		INIT_LIST_HEAD(&mnt->mnt_mounts);
162 		INIT_LIST_HEAD(&mnt->mnt_list);
163 		INIT_LIST_HEAD(&mnt->mnt_expire);
164 		INIT_LIST_HEAD(&mnt->mnt_share);
165 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
166 		INIT_LIST_HEAD(&mnt->mnt_slave);
167 #ifdef CONFIG_FSNOTIFY
168 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
169 #endif
170 #ifdef CONFIG_SMP
171 		mnt->mnt_writers = alloc_percpu(int);
172 		if (!mnt->mnt_writers)
173 			goto out_free_devname;
174 #else
175 		mnt->mnt_writers = 0;
176 #endif
177 	}
178 	return mnt;
179 
180 #ifdef CONFIG_SMP
181 out_free_devname:
182 	kfree(mnt->mnt_devname);
183 #endif
184 out_free_id:
185 	mnt_free_id(mnt);
186 out_free_cache:
187 	kmem_cache_free(mnt_cache, mnt);
188 	return NULL;
189 }
190 
191 /*
192  * Most r/o checks on a fs are for operations that take
193  * discrete amounts of time, like a write() or unlink().
194  * We must keep track of when those operations start
195  * (for permission checks) and when they end, so that
196  * we can determine when writes are able to occur to
197  * a filesystem.
198  */
199 /*
200  * __mnt_is_readonly: check whether a mount is read-only
201  * @mnt: the mount to check for its write status
202  *
203  * This shouldn't be used directly ouside of the VFS.
204  * It does not guarantee that the filesystem will stay
205  * r/w, just that it is right *now*.  This can not and
206  * should not be used in place of IS_RDONLY(inode).
207  * mnt_want/drop_write() will _keep_ the filesystem
208  * r/w.
209  */
210 int __mnt_is_readonly(struct vfsmount *mnt)
211 {
212 	if (mnt->mnt_flags & MNT_READONLY)
213 		return 1;
214 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
215 		return 1;
216 	return 0;
217 }
218 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
219 
220 static inline void inc_mnt_writers(struct vfsmount *mnt)
221 {
222 #ifdef CONFIG_SMP
223 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
224 #else
225 	mnt->mnt_writers++;
226 #endif
227 }
228 
229 static inline void dec_mnt_writers(struct vfsmount *mnt)
230 {
231 #ifdef CONFIG_SMP
232 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
233 #else
234 	mnt->mnt_writers--;
235 #endif
236 }
237 
238 static unsigned int count_mnt_writers(struct vfsmount *mnt)
239 {
240 #ifdef CONFIG_SMP
241 	unsigned int count = 0;
242 	int cpu;
243 
244 	for_each_possible_cpu(cpu) {
245 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
246 	}
247 
248 	return count;
249 #else
250 	return mnt->mnt_writers;
251 #endif
252 }
253 
254 /*
255  * Most r/o checks on a fs are for operations that take
256  * discrete amounts of time, like a write() or unlink().
257  * We must keep track of when those operations start
258  * (for permission checks) and when they end, so that
259  * we can determine when writes are able to occur to
260  * a filesystem.
261  */
262 /**
263  * mnt_want_write - get write access to a mount
264  * @mnt: the mount on which to take a write
265  *
266  * This tells the low-level filesystem that a write is
267  * about to be performed to it, and makes sure that
268  * writes are allowed before returning success.  When
269  * the write operation is finished, mnt_drop_write()
270  * must be called.  This is effectively a refcount.
271  */
272 int mnt_want_write(struct vfsmount *mnt)
273 {
274 	int ret = 0;
275 
276 	preempt_disable();
277 	inc_mnt_writers(mnt);
278 	/*
279 	 * The store to inc_mnt_writers must be visible before we pass
280 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
281 	 * incremented count after it has set MNT_WRITE_HOLD.
282 	 */
283 	smp_mb();
284 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
285 		cpu_relax();
286 	/*
287 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
288 	 * be set to match its requirements. So we must not load that until
289 	 * MNT_WRITE_HOLD is cleared.
290 	 */
291 	smp_rmb();
292 	if (__mnt_is_readonly(mnt)) {
293 		dec_mnt_writers(mnt);
294 		ret = -EROFS;
295 		goto out;
296 	}
297 out:
298 	preempt_enable();
299 	return ret;
300 }
301 EXPORT_SYMBOL_GPL(mnt_want_write);
302 
303 /**
304  * mnt_clone_write - get write access to a mount
305  * @mnt: the mount on which to take a write
306  *
307  * This is effectively like mnt_want_write, except
308  * it must only be used to take an extra write reference
309  * on a mountpoint that we already know has a write reference
310  * on it. This allows some optimisation.
311  *
312  * After finished, mnt_drop_write must be called as usual to
313  * drop the reference.
314  */
315 int mnt_clone_write(struct vfsmount *mnt)
316 {
317 	/* superblock may be r/o */
318 	if (__mnt_is_readonly(mnt))
319 		return -EROFS;
320 	preempt_disable();
321 	inc_mnt_writers(mnt);
322 	preempt_enable();
323 	return 0;
324 }
325 EXPORT_SYMBOL_GPL(mnt_clone_write);
326 
327 /**
328  * mnt_want_write_file - get write access to a file's mount
329  * @file: the file who's mount on which to take a write
330  *
331  * This is like mnt_want_write, but it takes a file and can
332  * do some optimisations if the file is open for write already
333  */
334 int mnt_want_write_file(struct file *file)
335 {
336 	struct inode *inode = file->f_dentry->d_inode;
337 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
338 		return mnt_want_write(file->f_path.mnt);
339 	else
340 		return mnt_clone_write(file->f_path.mnt);
341 }
342 EXPORT_SYMBOL_GPL(mnt_want_write_file);
343 
344 /**
345  * mnt_drop_write - give up write access to a mount
346  * @mnt: the mount on which to give up write access
347  *
348  * Tells the low-level filesystem that we are done
349  * performing writes to it.  Must be matched with
350  * mnt_want_write() call above.
351  */
352 void mnt_drop_write(struct vfsmount *mnt)
353 {
354 	preempt_disable();
355 	dec_mnt_writers(mnt);
356 	preempt_enable();
357 }
358 EXPORT_SYMBOL_GPL(mnt_drop_write);
359 
360 static int mnt_make_readonly(struct vfsmount *mnt)
361 {
362 	int ret = 0;
363 
364 	br_write_lock(vfsmount_lock);
365 	mnt->mnt_flags |= MNT_WRITE_HOLD;
366 	/*
367 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
368 	 * should be visible before we do.
369 	 */
370 	smp_mb();
371 
372 	/*
373 	 * With writers on hold, if this value is zero, then there are
374 	 * definitely no active writers (although held writers may subsequently
375 	 * increment the count, they'll have to wait, and decrement it after
376 	 * seeing MNT_READONLY).
377 	 *
378 	 * It is OK to have counter incremented on one CPU and decremented on
379 	 * another: the sum will add up correctly. The danger would be when we
380 	 * sum up each counter, if we read a counter before it is incremented,
381 	 * but then read another CPU's count which it has been subsequently
382 	 * decremented from -- we would see more decrements than we should.
383 	 * MNT_WRITE_HOLD protects against this scenario, because
384 	 * mnt_want_write first increments count, then smp_mb, then spins on
385 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
386 	 * we're counting up here.
387 	 */
388 	if (count_mnt_writers(mnt) > 0)
389 		ret = -EBUSY;
390 	else
391 		mnt->mnt_flags |= MNT_READONLY;
392 	/*
393 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
394 	 * that become unheld will see MNT_READONLY.
395 	 */
396 	smp_wmb();
397 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
398 	br_write_unlock(vfsmount_lock);
399 	return ret;
400 }
401 
402 static void __mnt_unmake_readonly(struct vfsmount *mnt)
403 {
404 	br_write_lock(vfsmount_lock);
405 	mnt->mnt_flags &= ~MNT_READONLY;
406 	br_write_unlock(vfsmount_lock);
407 }
408 
409 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
410 {
411 	mnt->mnt_sb = sb;
412 	mnt->mnt_root = dget(sb->s_root);
413 }
414 
415 EXPORT_SYMBOL(simple_set_mnt);
416 
417 void free_vfsmnt(struct vfsmount *mnt)
418 {
419 	kfree(mnt->mnt_devname);
420 	mnt_free_id(mnt);
421 #ifdef CONFIG_SMP
422 	free_percpu(mnt->mnt_writers);
423 #endif
424 	kmem_cache_free(mnt_cache, mnt);
425 }
426 
427 /*
428  * find the first or last mount at @dentry on vfsmount @mnt depending on
429  * @dir. If @dir is set return the first mount else return the last mount.
430  * vfsmount_lock must be held for read or write.
431  */
432 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
433 			      int dir)
434 {
435 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
436 	struct list_head *tmp = head;
437 	struct vfsmount *p, *found = NULL;
438 
439 	for (;;) {
440 		tmp = dir ? tmp->next : tmp->prev;
441 		p = NULL;
442 		if (tmp == head)
443 			break;
444 		p = list_entry(tmp, struct vfsmount, mnt_hash);
445 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
446 			found = p;
447 			break;
448 		}
449 	}
450 	return found;
451 }
452 
453 /*
454  * lookup_mnt increments the ref count before returning
455  * the vfsmount struct.
456  */
457 struct vfsmount *lookup_mnt(struct path *path)
458 {
459 	struct vfsmount *child_mnt;
460 
461 	br_read_lock(vfsmount_lock);
462 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
463 		mntget(child_mnt);
464 	br_read_unlock(vfsmount_lock);
465 	return child_mnt;
466 }
467 
468 static inline int check_mnt(struct vfsmount *mnt)
469 {
470 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
471 }
472 
473 /*
474  * vfsmount lock must be held for write
475  */
476 static void touch_mnt_namespace(struct mnt_namespace *ns)
477 {
478 	if (ns) {
479 		ns->event = ++event;
480 		wake_up_interruptible(&ns->poll);
481 	}
482 }
483 
484 /*
485  * vfsmount lock must be held for write
486  */
487 static void __touch_mnt_namespace(struct mnt_namespace *ns)
488 {
489 	if (ns && ns->event != event) {
490 		ns->event = event;
491 		wake_up_interruptible(&ns->poll);
492 	}
493 }
494 
495 /*
496  * vfsmount lock must be held for write
497  */
498 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
499 {
500 	old_path->dentry = mnt->mnt_mountpoint;
501 	old_path->mnt = mnt->mnt_parent;
502 	mnt->mnt_parent = mnt;
503 	mnt->mnt_mountpoint = mnt->mnt_root;
504 	list_del_init(&mnt->mnt_child);
505 	list_del_init(&mnt->mnt_hash);
506 	old_path->dentry->d_mounted--;
507 }
508 
509 /*
510  * vfsmount lock must be held for write
511  */
512 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
513 			struct vfsmount *child_mnt)
514 {
515 	child_mnt->mnt_parent = mntget(mnt);
516 	child_mnt->mnt_mountpoint = dget(dentry);
517 	dentry->d_mounted++;
518 }
519 
520 /*
521  * vfsmount lock must be held for write
522  */
523 static void attach_mnt(struct vfsmount *mnt, struct path *path)
524 {
525 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
526 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
527 			hash(path->mnt, path->dentry));
528 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
529 }
530 
531 /*
532  * vfsmount lock must be held for write
533  */
534 static void commit_tree(struct vfsmount *mnt)
535 {
536 	struct vfsmount *parent = mnt->mnt_parent;
537 	struct vfsmount *m;
538 	LIST_HEAD(head);
539 	struct mnt_namespace *n = parent->mnt_ns;
540 
541 	BUG_ON(parent == mnt);
542 
543 	list_add_tail(&head, &mnt->mnt_list);
544 	list_for_each_entry(m, &head, mnt_list)
545 		m->mnt_ns = n;
546 	list_splice(&head, n->list.prev);
547 
548 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
549 				hash(parent, mnt->mnt_mountpoint));
550 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
551 	touch_mnt_namespace(n);
552 }
553 
554 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
555 {
556 	struct list_head *next = p->mnt_mounts.next;
557 	if (next == &p->mnt_mounts) {
558 		while (1) {
559 			if (p == root)
560 				return NULL;
561 			next = p->mnt_child.next;
562 			if (next != &p->mnt_parent->mnt_mounts)
563 				break;
564 			p = p->mnt_parent;
565 		}
566 	}
567 	return list_entry(next, struct vfsmount, mnt_child);
568 }
569 
570 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
571 {
572 	struct list_head *prev = p->mnt_mounts.prev;
573 	while (prev != &p->mnt_mounts) {
574 		p = list_entry(prev, struct vfsmount, mnt_child);
575 		prev = p->mnt_mounts.prev;
576 	}
577 	return p;
578 }
579 
580 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
581 					int flag)
582 {
583 	struct super_block *sb = old->mnt_sb;
584 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
585 
586 	if (mnt) {
587 		if (flag & (CL_SLAVE | CL_PRIVATE))
588 			mnt->mnt_group_id = 0; /* not a peer of original */
589 		else
590 			mnt->mnt_group_id = old->mnt_group_id;
591 
592 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
593 			int err = mnt_alloc_group_id(mnt);
594 			if (err)
595 				goto out_free;
596 		}
597 
598 		mnt->mnt_flags = old->mnt_flags;
599 		atomic_inc(&sb->s_active);
600 		mnt->mnt_sb = sb;
601 		mnt->mnt_root = dget(root);
602 		mnt->mnt_mountpoint = mnt->mnt_root;
603 		mnt->mnt_parent = mnt;
604 
605 		if (flag & CL_SLAVE) {
606 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
607 			mnt->mnt_master = old;
608 			CLEAR_MNT_SHARED(mnt);
609 		} else if (!(flag & CL_PRIVATE)) {
610 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
611 				list_add(&mnt->mnt_share, &old->mnt_share);
612 			if (IS_MNT_SLAVE(old))
613 				list_add(&mnt->mnt_slave, &old->mnt_slave);
614 			mnt->mnt_master = old->mnt_master;
615 		}
616 		if (flag & CL_MAKE_SHARED)
617 			set_mnt_shared(mnt);
618 
619 		/* stick the duplicate mount on the same expiry list
620 		 * as the original if that was on one */
621 		if (flag & CL_EXPIRE) {
622 			if (!list_empty(&old->mnt_expire))
623 				list_add(&mnt->mnt_expire, &old->mnt_expire);
624 		}
625 	}
626 	return mnt;
627 
628  out_free:
629 	free_vfsmnt(mnt);
630 	return NULL;
631 }
632 
633 static inline void __mntput(struct vfsmount *mnt)
634 {
635 	struct super_block *sb = mnt->mnt_sb;
636 	/*
637 	 * This probably indicates that somebody messed
638 	 * up a mnt_want/drop_write() pair.  If this
639 	 * happens, the filesystem was probably unable
640 	 * to make r/w->r/o transitions.
641 	 */
642 	/*
643 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
644 	 * provides barriers, so count_mnt_writers() below is safe.  AV
645 	 */
646 	WARN_ON(count_mnt_writers(mnt));
647 	fsnotify_vfsmount_delete(mnt);
648 	dput(mnt->mnt_root);
649 	free_vfsmnt(mnt);
650 	deactivate_super(sb);
651 }
652 
653 void mntput_no_expire(struct vfsmount *mnt)
654 {
655 repeat:
656 	if (atomic_add_unless(&mnt->mnt_count, -1, 1))
657 		return;
658 	br_write_lock(vfsmount_lock);
659 	if (!atomic_dec_and_test(&mnt->mnt_count)) {
660 		br_write_unlock(vfsmount_lock);
661 		return;
662 	}
663 	if (likely(!mnt->mnt_pinned)) {
664 		br_write_unlock(vfsmount_lock);
665 		__mntput(mnt);
666 		return;
667 	}
668 	atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
669 	mnt->mnt_pinned = 0;
670 	br_write_unlock(vfsmount_lock);
671 	acct_auto_close_mnt(mnt);
672 	goto repeat;
673 }
674 EXPORT_SYMBOL(mntput_no_expire);
675 
676 void mnt_pin(struct vfsmount *mnt)
677 {
678 	br_write_lock(vfsmount_lock);
679 	mnt->mnt_pinned++;
680 	br_write_unlock(vfsmount_lock);
681 }
682 
683 EXPORT_SYMBOL(mnt_pin);
684 
685 void mnt_unpin(struct vfsmount *mnt)
686 {
687 	br_write_lock(vfsmount_lock);
688 	if (mnt->mnt_pinned) {
689 		atomic_inc(&mnt->mnt_count);
690 		mnt->mnt_pinned--;
691 	}
692 	br_write_unlock(vfsmount_lock);
693 }
694 
695 EXPORT_SYMBOL(mnt_unpin);
696 
697 static inline void mangle(struct seq_file *m, const char *s)
698 {
699 	seq_escape(m, s, " \t\n\\");
700 }
701 
702 /*
703  * Simple .show_options callback for filesystems which don't want to
704  * implement more complex mount option showing.
705  *
706  * See also save_mount_options().
707  */
708 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
709 {
710 	const char *options;
711 
712 	rcu_read_lock();
713 	options = rcu_dereference(mnt->mnt_sb->s_options);
714 
715 	if (options != NULL && options[0]) {
716 		seq_putc(m, ',');
717 		mangle(m, options);
718 	}
719 	rcu_read_unlock();
720 
721 	return 0;
722 }
723 EXPORT_SYMBOL(generic_show_options);
724 
725 /*
726  * If filesystem uses generic_show_options(), this function should be
727  * called from the fill_super() callback.
728  *
729  * The .remount_fs callback usually needs to be handled in a special
730  * way, to make sure, that previous options are not overwritten if the
731  * remount fails.
732  *
733  * Also note, that if the filesystem's .remount_fs function doesn't
734  * reset all options to their default value, but changes only newly
735  * given options, then the displayed options will not reflect reality
736  * any more.
737  */
738 void save_mount_options(struct super_block *sb, char *options)
739 {
740 	BUG_ON(sb->s_options);
741 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
742 }
743 EXPORT_SYMBOL(save_mount_options);
744 
745 void replace_mount_options(struct super_block *sb, char *options)
746 {
747 	char *old = sb->s_options;
748 	rcu_assign_pointer(sb->s_options, options);
749 	if (old) {
750 		synchronize_rcu();
751 		kfree(old);
752 	}
753 }
754 EXPORT_SYMBOL(replace_mount_options);
755 
756 #ifdef CONFIG_PROC_FS
757 /* iterator */
758 static void *m_start(struct seq_file *m, loff_t *pos)
759 {
760 	struct proc_mounts *p = m->private;
761 
762 	down_read(&namespace_sem);
763 	return seq_list_start(&p->ns->list, *pos);
764 }
765 
766 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
767 {
768 	struct proc_mounts *p = m->private;
769 
770 	return seq_list_next(v, &p->ns->list, pos);
771 }
772 
773 static void m_stop(struct seq_file *m, void *v)
774 {
775 	up_read(&namespace_sem);
776 }
777 
778 int mnt_had_events(struct proc_mounts *p)
779 {
780 	struct mnt_namespace *ns = p->ns;
781 	int res = 0;
782 
783 	br_read_lock(vfsmount_lock);
784 	if (p->event != ns->event) {
785 		p->event = ns->event;
786 		res = 1;
787 	}
788 	br_read_unlock(vfsmount_lock);
789 
790 	return res;
791 }
792 
793 struct proc_fs_info {
794 	int flag;
795 	const char *str;
796 };
797 
798 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
799 {
800 	static const struct proc_fs_info fs_info[] = {
801 		{ MS_SYNCHRONOUS, ",sync" },
802 		{ MS_DIRSYNC, ",dirsync" },
803 		{ MS_MANDLOCK, ",mand" },
804 		{ 0, NULL }
805 	};
806 	const struct proc_fs_info *fs_infop;
807 
808 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
809 		if (sb->s_flags & fs_infop->flag)
810 			seq_puts(m, fs_infop->str);
811 	}
812 
813 	return security_sb_show_options(m, sb);
814 }
815 
816 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
817 {
818 	static const struct proc_fs_info mnt_info[] = {
819 		{ MNT_NOSUID, ",nosuid" },
820 		{ MNT_NODEV, ",nodev" },
821 		{ MNT_NOEXEC, ",noexec" },
822 		{ MNT_NOATIME, ",noatime" },
823 		{ MNT_NODIRATIME, ",nodiratime" },
824 		{ MNT_RELATIME, ",relatime" },
825 		{ 0, NULL }
826 	};
827 	const struct proc_fs_info *fs_infop;
828 
829 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
830 		if (mnt->mnt_flags & fs_infop->flag)
831 			seq_puts(m, fs_infop->str);
832 	}
833 }
834 
835 static void show_type(struct seq_file *m, struct super_block *sb)
836 {
837 	mangle(m, sb->s_type->name);
838 	if (sb->s_subtype && sb->s_subtype[0]) {
839 		seq_putc(m, '.');
840 		mangle(m, sb->s_subtype);
841 	}
842 }
843 
844 static int show_vfsmnt(struct seq_file *m, void *v)
845 {
846 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
847 	int err = 0;
848 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
849 
850 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
851 	seq_putc(m, ' ');
852 	seq_path(m, &mnt_path, " \t\n\\");
853 	seq_putc(m, ' ');
854 	show_type(m, mnt->mnt_sb);
855 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
856 	err = show_sb_opts(m, mnt->mnt_sb);
857 	if (err)
858 		goto out;
859 	show_mnt_opts(m, mnt);
860 	if (mnt->mnt_sb->s_op->show_options)
861 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
862 	seq_puts(m, " 0 0\n");
863 out:
864 	return err;
865 }
866 
867 const struct seq_operations mounts_op = {
868 	.start	= m_start,
869 	.next	= m_next,
870 	.stop	= m_stop,
871 	.show	= show_vfsmnt
872 };
873 
874 static int show_mountinfo(struct seq_file *m, void *v)
875 {
876 	struct proc_mounts *p = m->private;
877 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
878 	struct super_block *sb = mnt->mnt_sb;
879 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
880 	struct path root = p->root;
881 	int err = 0;
882 
883 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
884 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
885 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
886 	seq_putc(m, ' ');
887 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
888 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
889 		/*
890 		 * Mountpoint is outside root, discard that one.  Ugly,
891 		 * but less so than trying to do that in iterator in a
892 		 * race-free way (due to renames).
893 		 */
894 		return SEQ_SKIP;
895 	}
896 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
897 	show_mnt_opts(m, mnt);
898 
899 	/* Tagged fields ("foo:X" or "bar") */
900 	if (IS_MNT_SHARED(mnt))
901 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
902 	if (IS_MNT_SLAVE(mnt)) {
903 		int master = mnt->mnt_master->mnt_group_id;
904 		int dom = get_dominating_id(mnt, &p->root);
905 		seq_printf(m, " master:%i", master);
906 		if (dom && dom != master)
907 			seq_printf(m, " propagate_from:%i", dom);
908 	}
909 	if (IS_MNT_UNBINDABLE(mnt))
910 		seq_puts(m, " unbindable");
911 
912 	/* Filesystem specific data */
913 	seq_puts(m, " - ");
914 	show_type(m, sb);
915 	seq_putc(m, ' ');
916 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
917 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
918 	err = show_sb_opts(m, sb);
919 	if (err)
920 		goto out;
921 	if (sb->s_op->show_options)
922 		err = sb->s_op->show_options(m, mnt);
923 	seq_putc(m, '\n');
924 out:
925 	return err;
926 }
927 
928 const struct seq_operations mountinfo_op = {
929 	.start	= m_start,
930 	.next	= m_next,
931 	.stop	= m_stop,
932 	.show	= show_mountinfo,
933 };
934 
935 static int show_vfsstat(struct seq_file *m, void *v)
936 {
937 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
938 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
939 	int err = 0;
940 
941 	/* device */
942 	if (mnt->mnt_devname) {
943 		seq_puts(m, "device ");
944 		mangle(m, mnt->mnt_devname);
945 	} else
946 		seq_puts(m, "no device");
947 
948 	/* mount point */
949 	seq_puts(m, " mounted on ");
950 	seq_path(m, &mnt_path, " \t\n\\");
951 	seq_putc(m, ' ');
952 
953 	/* file system type */
954 	seq_puts(m, "with fstype ");
955 	show_type(m, mnt->mnt_sb);
956 
957 	/* optional statistics */
958 	if (mnt->mnt_sb->s_op->show_stats) {
959 		seq_putc(m, ' ');
960 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
961 	}
962 
963 	seq_putc(m, '\n');
964 	return err;
965 }
966 
967 const struct seq_operations mountstats_op = {
968 	.start	= m_start,
969 	.next	= m_next,
970 	.stop	= m_stop,
971 	.show	= show_vfsstat,
972 };
973 #endif  /* CONFIG_PROC_FS */
974 
975 /**
976  * may_umount_tree - check if a mount tree is busy
977  * @mnt: root of mount tree
978  *
979  * This is called to check if a tree of mounts has any
980  * open files, pwds, chroots or sub mounts that are
981  * busy.
982  */
983 int may_umount_tree(struct vfsmount *mnt)
984 {
985 	int actual_refs = 0;
986 	int minimum_refs = 0;
987 	struct vfsmount *p;
988 
989 	br_read_lock(vfsmount_lock);
990 	for (p = mnt; p; p = next_mnt(p, mnt)) {
991 		actual_refs += atomic_read(&p->mnt_count);
992 		minimum_refs += 2;
993 	}
994 	br_read_unlock(vfsmount_lock);
995 
996 	if (actual_refs > minimum_refs)
997 		return 0;
998 
999 	return 1;
1000 }
1001 
1002 EXPORT_SYMBOL(may_umount_tree);
1003 
1004 /**
1005  * may_umount - check if a mount point is busy
1006  * @mnt: root of mount
1007  *
1008  * This is called to check if a mount point has any
1009  * open files, pwds, chroots or sub mounts. If the
1010  * mount has sub mounts this will return busy
1011  * regardless of whether the sub mounts are busy.
1012  *
1013  * Doesn't take quota and stuff into account. IOW, in some cases it will
1014  * give false negatives. The main reason why it's here is that we need
1015  * a non-destructive way to look for easily umountable filesystems.
1016  */
1017 int may_umount(struct vfsmount *mnt)
1018 {
1019 	int ret = 1;
1020 	down_read(&namespace_sem);
1021 	br_read_lock(vfsmount_lock);
1022 	if (propagate_mount_busy(mnt, 2))
1023 		ret = 0;
1024 	br_read_unlock(vfsmount_lock);
1025 	up_read(&namespace_sem);
1026 	return ret;
1027 }
1028 
1029 EXPORT_SYMBOL(may_umount);
1030 
1031 void release_mounts(struct list_head *head)
1032 {
1033 	struct vfsmount *mnt;
1034 	while (!list_empty(head)) {
1035 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1036 		list_del_init(&mnt->mnt_hash);
1037 		if (mnt->mnt_parent != mnt) {
1038 			struct dentry *dentry;
1039 			struct vfsmount *m;
1040 
1041 			br_write_lock(vfsmount_lock);
1042 			dentry = mnt->mnt_mountpoint;
1043 			m = mnt->mnt_parent;
1044 			mnt->mnt_mountpoint = mnt->mnt_root;
1045 			mnt->mnt_parent = mnt;
1046 			m->mnt_ghosts--;
1047 			br_write_unlock(vfsmount_lock);
1048 			dput(dentry);
1049 			mntput(m);
1050 		}
1051 		mntput(mnt);
1052 	}
1053 }
1054 
1055 /*
1056  * vfsmount lock must be held for write
1057  * namespace_sem must be held for write
1058  */
1059 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1060 {
1061 	struct vfsmount *p;
1062 
1063 	for (p = mnt; p; p = next_mnt(p, mnt))
1064 		list_move(&p->mnt_hash, kill);
1065 
1066 	if (propagate)
1067 		propagate_umount(kill);
1068 
1069 	list_for_each_entry(p, kill, mnt_hash) {
1070 		list_del_init(&p->mnt_expire);
1071 		list_del_init(&p->mnt_list);
1072 		__touch_mnt_namespace(p->mnt_ns);
1073 		p->mnt_ns = NULL;
1074 		list_del_init(&p->mnt_child);
1075 		if (p->mnt_parent != p) {
1076 			p->mnt_parent->mnt_ghosts++;
1077 			p->mnt_mountpoint->d_mounted--;
1078 		}
1079 		change_mnt_propagation(p, MS_PRIVATE);
1080 	}
1081 }
1082 
1083 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1084 
1085 static int do_umount(struct vfsmount *mnt, int flags)
1086 {
1087 	struct super_block *sb = mnt->mnt_sb;
1088 	int retval;
1089 	LIST_HEAD(umount_list);
1090 
1091 	retval = security_sb_umount(mnt, flags);
1092 	if (retval)
1093 		return retval;
1094 
1095 	/*
1096 	 * Allow userspace to request a mountpoint be expired rather than
1097 	 * unmounting unconditionally. Unmount only happens if:
1098 	 *  (1) the mark is already set (the mark is cleared by mntput())
1099 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1100 	 */
1101 	if (flags & MNT_EXPIRE) {
1102 		if (mnt == current->fs->root.mnt ||
1103 		    flags & (MNT_FORCE | MNT_DETACH))
1104 			return -EINVAL;
1105 
1106 		if (atomic_read(&mnt->mnt_count) != 2)
1107 			return -EBUSY;
1108 
1109 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1110 			return -EAGAIN;
1111 	}
1112 
1113 	/*
1114 	 * If we may have to abort operations to get out of this
1115 	 * mount, and they will themselves hold resources we must
1116 	 * allow the fs to do things. In the Unix tradition of
1117 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1118 	 * might fail to complete on the first run through as other tasks
1119 	 * must return, and the like. Thats for the mount program to worry
1120 	 * about for the moment.
1121 	 */
1122 
1123 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1124 		sb->s_op->umount_begin(sb);
1125 	}
1126 
1127 	/*
1128 	 * No sense to grab the lock for this test, but test itself looks
1129 	 * somewhat bogus. Suggestions for better replacement?
1130 	 * Ho-hum... In principle, we might treat that as umount + switch
1131 	 * to rootfs. GC would eventually take care of the old vfsmount.
1132 	 * Actually it makes sense, especially if rootfs would contain a
1133 	 * /reboot - static binary that would close all descriptors and
1134 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1135 	 */
1136 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1137 		/*
1138 		 * Special case for "unmounting" root ...
1139 		 * we just try to remount it readonly.
1140 		 */
1141 		down_write(&sb->s_umount);
1142 		if (!(sb->s_flags & MS_RDONLY))
1143 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1144 		up_write(&sb->s_umount);
1145 		return retval;
1146 	}
1147 
1148 	down_write(&namespace_sem);
1149 	br_write_lock(vfsmount_lock);
1150 	event++;
1151 
1152 	if (!(flags & MNT_DETACH))
1153 		shrink_submounts(mnt, &umount_list);
1154 
1155 	retval = -EBUSY;
1156 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1157 		if (!list_empty(&mnt->mnt_list))
1158 			umount_tree(mnt, 1, &umount_list);
1159 		retval = 0;
1160 	}
1161 	br_write_unlock(vfsmount_lock);
1162 	up_write(&namespace_sem);
1163 	release_mounts(&umount_list);
1164 	return retval;
1165 }
1166 
1167 /*
1168  * Now umount can handle mount points as well as block devices.
1169  * This is important for filesystems which use unnamed block devices.
1170  *
1171  * We now support a flag for forced unmount like the other 'big iron'
1172  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1173  */
1174 
1175 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1176 {
1177 	struct path path;
1178 	int retval;
1179 	int lookup_flags = 0;
1180 
1181 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1182 		return -EINVAL;
1183 
1184 	if (!(flags & UMOUNT_NOFOLLOW))
1185 		lookup_flags |= LOOKUP_FOLLOW;
1186 
1187 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1188 	if (retval)
1189 		goto out;
1190 	retval = -EINVAL;
1191 	if (path.dentry != path.mnt->mnt_root)
1192 		goto dput_and_out;
1193 	if (!check_mnt(path.mnt))
1194 		goto dput_and_out;
1195 
1196 	retval = -EPERM;
1197 	if (!capable(CAP_SYS_ADMIN))
1198 		goto dput_and_out;
1199 
1200 	retval = do_umount(path.mnt, flags);
1201 dput_and_out:
1202 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1203 	dput(path.dentry);
1204 	mntput_no_expire(path.mnt);
1205 out:
1206 	return retval;
1207 }
1208 
1209 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1210 
1211 /*
1212  *	The 2.0 compatible umount. No flags.
1213  */
1214 SYSCALL_DEFINE1(oldumount, char __user *, name)
1215 {
1216 	return sys_umount(name, 0);
1217 }
1218 
1219 #endif
1220 
1221 static int mount_is_safe(struct path *path)
1222 {
1223 	if (capable(CAP_SYS_ADMIN))
1224 		return 0;
1225 	return -EPERM;
1226 #ifdef notyet
1227 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1228 		return -EPERM;
1229 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1230 		if (current_uid() != path->dentry->d_inode->i_uid)
1231 			return -EPERM;
1232 	}
1233 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1234 		return -EPERM;
1235 	return 0;
1236 #endif
1237 }
1238 
1239 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1240 					int flag)
1241 {
1242 	struct vfsmount *res, *p, *q, *r, *s;
1243 	struct path path;
1244 
1245 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1246 		return NULL;
1247 
1248 	res = q = clone_mnt(mnt, dentry, flag);
1249 	if (!q)
1250 		goto Enomem;
1251 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1252 
1253 	p = mnt;
1254 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1255 		if (!is_subdir(r->mnt_mountpoint, dentry))
1256 			continue;
1257 
1258 		for (s = r; s; s = next_mnt(s, r)) {
1259 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1260 				s = skip_mnt_tree(s);
1261 				continue;
1262 			}
1263 			while (p != s->mnt_parent) {
1264 				p = p->mnt_parent;
1265 				q = q->mnt_parent;
1266 			}
1267 			p = s;
1268 			path.mnt = q;
1269 			path.dentry = p->mnt_mountpoint;
1270 			q = clone_mnt(p, p->mnt_root, flag);
1271 			if (!q)
1272 				goto Enomem;
1273 			br_write_lock(vfsmount_lock);
1274 			list_add_tail(&q->mnt_list, &res->mnt_list);
1275 			attach_mnt(q, &path);
1276 			br_write_unlock(vfsmount_lock);
1277 		}
1278 	}
1279 	return res;
1280 Enomem:
1281 	if (res) {
1282 		LIST_HEAD(umount_list);
1283 		br_write_lock(vfsmount_lock);
1284 		umount_tree(res, 0, &umount_list);
1285 		br_write_unlock(vfsmount_lock);
1286 		release_mounts(&umount_list);
1287 	}
1288 	return NULL;
1289 }
1290 
1291 struct vfsmount *collect_mounts(struct path *path)
1292 {
1293 	struct vfsmount *tree;
1294 	down_write(&namespace_sem);
1295 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1296 	up_write(&namespace_sem);
1297 	return tree;
1298 }
1299 
1300 void drop_collected_mounts(struct vfsmount *mnt)
1301 {
1302 	LIST_HEAD(umount_list);
1303 	down_write(&namespace_sem);
1304 	br_write_lock(vfsmount_lock);
1305 	umount_tree(mnt, 0, &umount_list);
1306 	br_write_unlock(vfsmount_lock);
1307 	up_write(&namespace_sem);
1308 	release_mounts(&umount_list);
1309 }
1310 
1311 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1312 		   struct vfsmount *root)
1313 {
1314 	struct vfsmount *mnt;
1315 	int res = f(root, arg);
1316 	if (res)
1317 		return res;
1318 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1319 		res = f(mnt, arg);
1320 		if (res)
1321 			return res;
1322 	}
1323 	return 0;
1324 }
1325 
1326 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1327 {
1328 	struct vfsmount *p;
1329 
1330 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1331 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1332 			mnt_release_group_id(p);
1333 	}
1334 }
1335 
1336 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1337 {
1338 	struct vfsmount *p;
1339 
1340 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1341 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1342 			int err = mnt_alloc_group_id(p);
1343 			if (err) {
1344 				cleanup_group_ids(mnt, p);
1345 				return err;
1346 			}
1347 		}
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 /*
1354  *  @source_mnt : mount tree to be attached
1355  *  @nd         : place the mount tree @source_mnt is attached
1356  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1357  *  		   store the parent mount and mountpoint dentry.
1358  *  		   (done when source_mnt is moved)
1359  *
1360  *  NOTE: in the table below explains the semantics when a source mount
1361  *  of a given type is attached to a destination mount of a given type.
1362  * ---------------------------------------------------------------------------
1363  * |         BIND MOUNT OPERATION                                            |
1364  * |**************************************************************************
1365  * | source-->| shared        |       private  |       slave    | unbindable |
1366  * | dest     |               |                |                |            |
1367  * |   |      |               |                |                |            |
1368  * |   v      |               |                |                |            |
1369  * |**************************************************************************
1370  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1371  * |          |               |                |                |            |
1372  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1373  * ***************************************************************************
1374  * A bind operation clones the source mount and mounts the clone on the
1375  * destination mount.
1376  *
1377  * (++)  the cloned mount is propagated to all the mounts in the propagation
1378  * 	 tree of the destination mount and the cloned mount is added to
1379  * 	 the peer group of the source mount.
1380  * (+)   the cloned mount is created under the destination mount and is marked
1381  *       as shared. The cloned mount is added to the peer group of the source
1382  *       mount.
1383  * (+++) the mount is propagated to all the mounts in the propagation tree
1384  *       of the destination mount and the cloned mount is made slave
1385  *       of the same master as that of the source mount. The cloned mount
1386  *       is marked as 'shared and slave'.
1387  * (*)   the cloned mount is made a slave of the same master as that of the
1388  * 	 source mount.
1389  *
1390  * ---------------------------------------------------------------------------
1391  * |         		MOVE MOUNT OPERATION                                 |
1392  * |**************************************************************************
1393  * | source-->| shared        |       private  |       slave    | unbindable |
1394  * | dest     |               |                |                |            |
1395  * |   |      |               |                |                |            |
1396  * |   v      |               |                |                |            |
1397  * |**************************************************************************
1398  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1399  * |          |               |                |                |            |
1400  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1401  * ***************************************************************************
1402  *
1403  * (+)  the mount is moved to the destination. And is then propagated to
1404  * 	all the mounts in the propagation tree of the destination mount.
1405  * (+*)  the mount is moved to the destination.
1406  * (+++)  the mount is moved to the destination and is then propagated to
1407  * 	all the mounts belonging to the destination mount's propagation tree.
1408  * 	the mount is marked as 'shared and slave'.
1409  * (*)	the mount continues to be a slave at the new location.
1410  *
1411  * if the source mount is a tree, the operations explained above is
1412  * applied to each mount in the tree.
1413  * Must be called without spinlocks held, since this function can sleep
1414  * in allocations.
1415  */
1416 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1417 			struct path *path, struct path *parent_path)
1418 {
1419 	LIST_HEAD(tree_list);
1420 	struct vfsmount *dest_mnt = path->mnt;
1421 	struct dentry *dest_dentry = path->dentry;
1422 	struct vfsmount *child, *p;
1423 	int err;
1424 
1425 	if (IS_MNT_SHARED(dest_mnt)) {
1426 		err = invent_group_ids(source_mnt, true);
1427 		if (err)
1428 			goto out;
1429 	}
1430 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1431 	if (err)
1432 		goto out_cleanup_ids;
1433 
1434 	br_write_lock(vfsmount_lock);
1435 
1436 	if (IS_MNT_SHARED(dest_mnt)) {
1437 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1438 			set_mnt_shared(p);
1439 	}
1440 	if (parent_path) {
1441 		detach_mnt(source_mnt, parent_path);
1442 		attach_mnt(source_mnt, path);
1443 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1444 	} else {
1445 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1446 		commit_tree(source_mnt);
1447 	}
1448 
1449 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1450 		list_del_init(&child->mnt_hash);
1451 		commit_tree(child);
1452 	}
1453 	br_write_unlock(vfsmount_lock);
1454 
1455 	return 0;
1456 
1457  out_cleanup_ids:
1458 	if (IS_MNT_SHARED(dest_mnt))
1459 		cleanup_group_ids(source_mnt, NULL);
1460  out:
1461 	return err;
1462 }
1463 
1464 static int graft_tree(struct vfsmount *mnt, struct path *path)
1465 {
1466 	int err;
1467 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1468 		return -EINVAL;
1469 
1470 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1471 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1472 		return -ENOTDIR;
1473 
1474 	err = -ENOENT;
1475 	mutex_lock(&path->dentry->d_inode->i_mutex);
1476 	if (cant_mount(path->dentry))
1477 		goto out_unlock;
1478 
1479 	if (!d_unlinked(path->dentry))
1480 		err = attach_recursive_mnt(mnt, path, NULL);
1481 out_unlock:
1482 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1483 	return err;
1484 }
1485 
1486 /*
1487  * recursively change the type of the mountpoint.
1488  */
1489 static int do_change_type(struct path *path, int flag)
1490 {
1491 	struct vfsmount *m, *mnt = path->mnt;
1492 	int recurse = flag & MS_REC;
1493 	int type = flag & ~MS_REC;
1494 	int err = 0;
1495 
1496 	if (!capable(CAP_SYS_ADMIN))
1497 		return -EPERM;
1498 
1499 	if (path->dentry != path->mnt->mnt_root)
1500 		return -EINVAL;
1501 
1502 	down_write(&namespace_sem);
1503 	if (type == MS_SHARED) {
1504 		err = invent_group_ids(mnt, recurse);
1505 		if (err)
1506 			goto out_unlock;
1507 	}
1508 
1509 	br_write_lock(vfsmount_lock);
1510 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1511 		change_mnt_propagation(m, type);
1512 	br_write_unlock(vfsmount_lock);
1513 
1514  out_unlock:
1515 	up_write(&namespace_sem);
1516 	return err;
1517 }
1518 
1519 /*
1520  * do loopback mount.
1521  */
1522 static int do_loopback(struct path *path, char *old_name,
1523 				int recurse)
1524 {
1525 	struct path old_path;
1526 	struct vfsmount *mnt = NULL;
1527 	int err = mount_is_safe(path);
1528 	if (err)
1529 		return err;
1530 	if (!old_name || !*old_name)
1531 		return -EINVAL;
1532 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1533 	if (err)
1534 		return err;
1535 
1536 	down_write(&namespace_sem);
1537 	err = -EINVAL;
1538 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1539 		goto out;
1540 
1541 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1542 		goto out;
1543 
1544 	err = -ENOMEM;
1545 	if (recurse)
1546 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1547 	else
1548 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1549 
1550 	if (!mnt)
1551 		goto out;
1552 
1553 	err = graft_tree(mnt, path);
1554 	if (err) {
1555 		LIST_HEAD(umount_list);
1556 
1557 		br_write_lock(vfsmount_lock);
1558 		umount_tree(mnt, 0, &umount_list);
1559 		br_write_unlock(vfsmount_lock);
1560 		release_mounts(&umount_list);
1561 	}
1562 
1563 out:
1564 	up_write(&namespace_sem);
1565 	path_put(&old_path);
1566 	return err;
1567 }
1568 
1569 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1570 {
1571 	int error = 0;
1572 	int readonly_request = 0;
1573 
1574 	if (ms_flags & MS_RDONLY)
1575 		readonly_request = 1;
1576 	if (readonly_request == __mnt_is_readonly(mnt))
1577 		return 0;
1578 
1579 	if (readonly_request)
1580 		error = mnt_make_readonly(mnt);
1581 	else
1582 		__mnt_unmake_readonly(mnt);
1583 	return error;
1584 }
1585 
1586 /*
1587  * change filesystem flags. dir should be a physical root of filesystem.
1588  * If you've mounted a non-root directory somewhere and want to do remount
1589  * on it - tough luck.
1590  */
1591 static int do_remount(struct path *path, int flags, int mnt_flags,
1592 		      void *data)
1593 {
1594 	int err;
1595 	struct super_block *sb = path->mnt->mnt_sb;
1596 
1597 	if (!capable(CAP_SYS_ADMIN))
1598 		return -EPERM;
1599 
1600 	if (!check_mnt(path->mnt))
1601 		return -EINVAL;
1602 
1603 	if (path->dentry != path->mnt->mnt_root)
1604 		return -EINVAL;
1605 
1606 	down_write(&sb->s_umount);
1607 	if (flags & MS_BIND)
1608 		err = change_mount_flags(path->mnt, flags);
1609 	else
1610 		err = do_remount_sb(sb, flags, data, 0);
1611 	if (!err) {
1612 		br_write_lock(vfsmount_lock);
1613 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1614 		path->mnt->mnt_flags = mnt_flags;
1615 		br_write_unlock(vfsmount_lock);
1616 	}
1617 	up_write(&sb->s_umount);
1618 	if (!err) {
1619 		br_write_lock(vfsmount_lock);
1620 		touch_mnt_namespace(path->mnt->mnt_ns);
1621 		br_write_unlock(vfsmount_lock);
1622 	}
1623 	return err;
1624 }
1625 
1626 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1627 {
1628 	struct vfsmount *p;
1629 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1630 		if (IS_MNT_UNBINDABLE(p))
1631 			return 1;
1632 	}
1633 	return 0;
1634 }
1635 
1636 static int do_move_mount(struct path *path, char *old_name)
1637 {
1638 	struct path old_path, parent_path;
1639 	struct vfsmount *p;
1640 	int err = 0;
1641 	if (!capable(CAP_SYS_ADMIN))
1642 		return -EPERM;
1643 	if (!old_name || !*old_name)
1644 		return -EINVAL;
1645 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1646 	if (err)
1647 		return err;
1648 
1649 	down_write(&namespace_sem);
1650 	while (d_mountpoint(path->dentry) &&
1651 	       follow_down(path))
1652 		;
1653 	err = -EINVAL;
1654 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1655 		goto out;
1656 
1657 	err = -ENOENT;
1658 	mutex_lock(&path->dentry->d_inode->i_mutex);
1659 	if (cant_mount(path->dentry))
1660 		goto out1;
1661 
1662 	if (d_unlinked(path->dentry))
1663 		goto out1;
1664 
1665 	err = -EINVAL;
1666 	if (old_path.dentry != old_path.mnt->mnt_root)
1667 		goto out1;
1668 
1669 	if (old_path.mnt == old_path.mnt->mnt_parent)
1670 		goto out1;
1671 
1672 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1673 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1674 		goto out1;
1675 	/*
1676 	 * Don't move a mount residing in a shared parent.
1677 	 */
1678 	if (old_path.mnt->mnt_parent &&
1679 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1680 		goto out1;
1681 	/*
1682 	 * Don't move a mount tree containing unbindable mounts to a destination
1683 	 * mount which is shared.
1684 	 */
1685 	if (IS_MNT_SHARED(path->mnt) &&
1686 	    tree_contains_unbindable(old_path.mnt))
1687 		goto out1;
1688 	err = -ELOOP;
1689 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1690 		if (p == old_path.mnt)
1691 			goto out1;
1692 
1693 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1694 	if (err)
1695 		goto out1;
1696 
1697 	/* if the mount is moved, it should no longer be expire
1698 	 * automatically */
1699 	list_del_init(&old_path.mnt->mnt_expire);
1700 out1:
1701 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1702 out:
1703 	up_write(&namespace_sem);
1704 	if (!err)
1705 		path_put(&parent_path);
1706 	path_put(&old_path);
1707 	return err;
1708 }
1709 
1710 /*
1711  * create a new mount for userspace and request it to be added into the
1712  * namespace's tree
1713  */
1714 static int do_new_mount(struct path *path, char *type, int flags,
1715 			int mnt_flags, char *name, void *data)
1716 {
1717 	struct vfsmount *mnt;
1718 
1719 	if (!type)
1720 		return -EINVAL;
1721 
1722 	/* we need capabilities... */
1723 	if (!capable(CAP_SYS_ADMIN))
1724 		return -EPERM;
1725 
1726 	lock_kernel();
1727 	mnt = do_kern_mount(type, flags, name, data);
1728 	unlock_kernel();
1729 	if (IS_ERR(mnt))
1730 		return PTR_ERR(mnt);
1731 
1732 	return do_add_mount(mnt, path, mnt_flags, NULL);
1733 }
1734 
1735 /*
1736  * add a mount into a namespace's mount tree
1737  * - provide the option of adding the new mount to an expiration list
1738  */
1739 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1740 		 int mnt_flags, struct list_head *fslist)
1741 {
1742 	int err;
1743 
1744 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1745 
1746 	down_write(&namespace_sem);
1747 	/* Something was mounted here while we slept */
1748 	while (d_mountpoint(path->dentry) &&
1749 	       follow_down(path))
1750 		;
1751 	err = -EINVAL;
1752 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1753 		goto unlock;
1754 
1755 	/* Refuse the same filesystem on the same mount point */
1756 	err = -EBUSY;
1757 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1758 	    path->mnt->mnt_root == path->dentry)
1759 		goto unlock;
1760 
1761 	err = -EINVAL;
1762 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1763 		goto unlock;
1764 
1765 	newmnt->mnt_flags = mnt_flags;
1766 	if ((err = graft_tree(newmnt, path)))
1767 		goto unlock;
1768 
1769 	if (fslist) /* add to the specified expiration list */
1770 		list_add_tail(&newmnt->mnt_expire, fslist);
1771 
1772 	up_write(&namespace_sem);
1773 	return 0;
1774 
1775 unlock:
1776 	up_write(&namespace_sem);
1777 	mntput(newmnt);
1778 	return err;
1779 }
1780 
1781 EXPORT_SYMBOL_GPL(do_add_mount);
1782 
1783 /*
1784  * process a list of expirable mountpoints with the intent of discarding any
1785  * mountpoints that aren't in use and haven't been touched since last we came
1786  * here
1787  */
1788 void mark_mounts_for_expiry(struct list_head *mounts)
1789 {
1790 	struct vfsmount *mnt, *next;
1791 	LIST_HEAD(graveyard);
1792 	LIST_HEAD(umounts);
1793 
1794 	if (list_empty(mounts))
1795 		return;
1796 
1797 	down_write(&namespace_sem);
1798 	br_write_lock(vfsmount_lock);
1799 
1800 	/* extract from the expiration list every vfsmount that matches the
1801 	 * following criteria:
1802 	 * - only referenced by its parent vfsmount
1803 	 * - still marked for expiry (marked on the last call here; marks are
1804 	 *   cleared by mntput())
1805 	 */
1806 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1807 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1808 			propagate_mount_busy(mnt, 1))
1809 			continue;
1810 		list_move(&mnt->mnt_expire, &graveyard);
1811 	}
1812 	while (!list_empty(&graveyard)) {
1813 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1814 		touch_mnt_namespace(mnt->mnt_ns);
1815 		umount_tree(mnt, 1, &umounts);
1816 	}
1817 	br_write_unlock(vfsmount_lock);
1818 	up_write(&namespace_sem);
1819 
1820 	release_mounts(&umounts);
1821 }
1822 
1823 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1824 
1825 /*
1826  * Ripoff of 'select_parent()'
1827  *
1828  * search the list of submounts for a given mountpoint, and move any
1829  * shrinkable submounts to the 'graveyard' list.
1830  */
1831 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1832 {
1833 	struct vfsmount *this_parent = parent;
1834 	struct list_head *next;
1835 	int found = 0;
1836 
1837 repeat:
1838 	next = this_parent->mnt_mounts.next;
1839 resume:
1840 	while (next != &this_parent->mnt_mounts) {
1841 		struct list_head *tmp = next;
1842 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1843 
1844 		next = tmp->next;
1845 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1846 			continue;
1847 		/*
1848 		 * Descend a level if the d_mounts list is non-empty.
1849 		 */
1850 		if (!list_empty(&mnt->mnt_mounts)) {
1851 			this_parent = mnt;
1852 			goto repeat;
1853 		}
1854 
1855 		if (!propagate_mount_busy(mnt, 1)) {
1856 			list_move_tail(&mnt->mnt_expire, graveyard);
1857 			found++;
1858 		}
1859 	}
1860 	/*
1861 	 * All done at this level ... ascend and resume the search
1862 	 */
1863 	if (this_parent != parent) {
1864 		next = this_parent->mnt_child.next;
1865 		this_parent = this_parent->mnt_parent;
1866 		goto resume;
1867 	}
1868 	return found;
1869 }
1870 
1871 /*
1872  * process a list of expirable mountpoints with the intent of discarding any
1873  * submounts of a specific parent mountpoint
1874  *
1875  * vfsmount_lock must be held for write
1876  */
1877 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1878 {
1879 	LIST_HEAD(graveyard);
1880 	struct vfsmount *m;
1881 
1882 	/* extract submounts of 'mountpoint' from the expiration list */
1883 	while (select_submounts(mnt, &graveyard)) {
1884 		while (!list_empty(&graveyard)) {
1885 			m = list_first_entry(&graveyard, struct vfsmount,
1886 						mnt_expire);
1887 			touch_mnt_namespace(m->mnt_ns);
1888 			umount_tree(m, 1, umounts);
1889 		}
1890 	}
1891 }
1892 
1893 /*
1894  * Some copy_from_user() implementations do not return the exact number of
1895  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1896  * Note that this function differs from copy_from_user() in that it will oops
1897  * on bad values of `to', rather than returning a short copy.
1898  */
1899 static long exact_copy_from_user(void *to, const void __user * from,
1900 				 unsigned long n)
1901 {
1902 	char *t = to;
1903 	const char __user *f = from;
1904 	char c;
1905 
1906 	if (!access_ok(VERIFY_READ, from, n))
1907 		return n;
1908 
1909 	while (n) {
1910 		if (__get_user(c, f)) {
1911 			memset(t, 0, n);
1912 			break;
1913 		}
1914 		*t++ = c;
1915 		f++;
1916 		n--;
1917 	}
1918 	return n;
1919 }
1920 
1921 int copy_mount_options(const void __user * data, unsigned long *where)
1922 {
1923 	int i;
1924 	unsigned long page;
1925 	unsigned long size;
1926 
1927 	*where = 0;
1928 	if (!data)
1929 		return 0;
1930 
1931 	if (!(page = __get_free_page(GFP_KERNEL)))
1932 		return -ENOMEM;
1933 
1934 	/* We only care that *some* data at the address the user
1935 	 * gave us is valid.  Just in case, we'll zero
1936 	 * the remainder of the page.
1937 	 */
1938 	/* copy_from_user cannot cross TASK_SIZE ! */
1939 	size = TASK_SIZE - (unsigned long)data;
1940 	if (size > PAGE_SIZE)
1941 		size = PAGE_SIZE;
1942 
1943 	i = size - exact_copy_from_user((void *)page, data, size);
1944 	if (!i) {
1945 		free_page(page);
1946 		return -EFAULT;
1947 	}
1948 	if (i != PAGE_SIZE)
1949 		memset((char *)page + i, 0, PAGE_SIZE - i);
1950 	*where = page;
1951 	return 0;
1952 }
1953 
1954 int copy_mount_string(const void __user *data, char **where)
1955 {
1956 	char *tmp;
1957 
1958 	if (!data) {
1959 		*where = NULL;
1960 		return 0;
1961 	}
1962 
1963 	tmp = strndup_user(data, PAGE_SIZE);
1964 	if (IS_ERR(tmp))
1965 		return PTR_ERR(tmp);
1966 
1967 	*where = tmp;
1968 	return 0;
1969 }
1970 
1971 /*
1972  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1973  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1974  *
1975  * data is a (void *) that can point to any structure up to
1976  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1977  * information (or be NULL).
1978  *
1979  * Pre-0.97 versions of mount() didn't have a flags word.
1980  * When the flags word was introduced its top half was required
1981  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1982  * Therefore, if this magic number is present, it carries no information
1983  * and must be discarded.
1984  */
1985 long do_mount(char *dev_name, char *dir_name, char *type_page,
1986 		  unsigned long flags, void *data_page)
1987 {
1988 	struct path path;
1989 	int retval = 0;
1990 	int mnt_flags = 0;
1991 
1992 	/* Discard magic */
1993 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1994 		flags &= ~MS_MGC_MSK;
1995 
1996 	/* Basic sanity checks */
1997 
1998 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1999 		return -EINVAL;
2000 
2001 	if (data_page)
2002 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2003 
2004 	/* ... and get the mountpoint */
2005 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2006 	if (retval)
2007 		return retval;
2008 
2009 	retval = security_sb_mount(dev_name, &path,
2010 				   type_page, flags, data_page);
2011 	if (retval)
2012 		goto dput_out;
2013 
2014 	/* Default to relatime unless overriden */
2015 	if (!(flags & MS_NOATIME))
2016 		mnt_flags |= MNT_RELATIME;
2017 
2018 	/* Separate the per-mountpoint flags */
2019 	if (flags & MS_NOSUID)
2020 		mnt_flags |= MNT_NOSUID;
2021 	if (flags & MS_NODEV)
2022 		mnt_flags |= MNT_NODEV;
2023 	if (flags & MS_NOEXEC)
2024 		mnt_flags |= MNT_NOEXEC;
2025 	if (flags & MS_NOATIME)
2026 		mnt_flags |= MNT_NOATIME;
2027 	if (flags & MS_NODIRATIME)
2028 		mnt_flags |= MNT_NODIRATIME;
2029 	if (flags & MS_STRICTATIME)
2030 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2031 	if (flags & MS_RDONLY)
2032 		mnt_flags |= MNT_READONLY;
2033 
2034 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2035 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2036 		   MS_STRICTATIME);
2037 
2038 	if (flags & MS_REMOUNT)
2039 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2040 				    data_page);
2041 	else if (flags & MS_BIND)
2042 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2043 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2044 		retval = do_change_type(&path, flags);
2045 	else if (flags & MS_MOVE)
2046 		retval = do_move_mount(&path, dev_name);
2047 	else
2048 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2049 				      dev_name, data_page);
2050 dput_out:
2051 	path_put(&path);
2052 	return retval;
2053 }
2054 
2055 static struct mnt_namespace *alloc_mnt_ns(void)
2056 {
2057 	struct mnt_namespace *new_ns;
2058 
2059 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2060 	if (!new_ns)
2061 		return ERR_PTR(-ENOMEM);
2062 	atomic_set(&new_ns->count, 1);
2063 	new_ns->root = NULL;
2064 	INIT_LIST_HEAD(&new_ns->list);
2065 	init_waitqueue_head(&new_ns->poll);
2066 	new_ns->event = 0;
2067 	return new_ns;
2068 }
2069 
2070 /*
2071  * Allocate a new namespace structure and populate it with contents
2072  * copied from the namespace of the passed in task structure.
2073  */
2074 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2075 		struct fs_struct *fs)
2076 {
2077 	struct mnt_namespace *new_ns;
2078 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2079 	struct vfsmount *p, *q;
2080 
2081 	new_ns = alloc_mnt_ns();
2082 	if (IS_ERR(new_ns))
2083 		return new_ns;
2084 
2085 	down_write(&namespace_sem);
2086 	/* First pass: copy the tree topology */
2087 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2088 					CL_COPY_ALL | CL_EXPIRE);
2089 	if (!new_ns->root) {
2090 		up_write(&namespace_sem);
2091 		kfree(new_ns);
2092 		return ERR_PTR(-ENOMEM);
2093 	}
2094 	br_write_lock(vfsmount_lock);
2095 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2096 	br_write_unlock(vfsmount_lock);
2097 
2098 	/*
2099 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2100 	 * as belonging to new namespace.  We have already acquired a private
2101 	 * fs_struct, so tsk->fs->lock is not needed.
2102 	 */
2103 	p = mnt_ns->root;
2104 	q = new_ns->root;
2105 	while (p) {
2106 		q->mnt_ns = new_ns;
2107 		if (fs) {
2108 			if (p == fs->root.mnt) {
2109 				rootmnt = p;
2110 				fs->root.mnt = mntget(q);
2111 			}
2112 			if (p == fs->pwd.mnt) {
2113 				pwdmnt = p;
2114 				fs->pwd.mnt = mntget(q);
2115 			}
2116 		}
2117 		p = next_mnt(p, mnt_ns->root);
2118 		q = next_mnt(q, new_ns->root);
2119 	}
2120 	up_write(&namespace_sem);
2121 
2122 	if (rootmnt)
2123 		mntput(rootmnt);
2124 	if (pwdmnt)
2125 		mntput(pwdmnt);
2126 
2127 	return new_ns;
2128 }
2129 
2130 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2131 		struct fs_struct *new_fs)
2132 {
2133 	struct mnt_namespace *new_ns;
2134 
2135 	BUG_ON(!ns);
2136 	get_mnt_ns(ns);
2137 
2138 	if (!(flags & CLONE_NEWNS))
2139 		return ns;
2140 
2141 	new_ns = dup_mnt_ns(ns, new_fs);
2142 
2143 	put_mnt_ns(ns);
2144 	return new_ns;
2145 }
2146 
2147 /**
2148  * create_mnt_ns - creates a private namespace and adds a root filesystem
2149  * @mnt: pointer to the new root filesystem mountpoint
2150  */
2151 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2152 {
2153 	struct mnt_namespace *new_ns;
2154 
2155 	new_ns = alloc_mnt_ns();
2156 	if (!IS_ERR(new_ns)) {
2157 		mnt->mnt_ns = new_ns;
2158 		new_ns->root = mnt;
2159 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2160 	}
2161 	return new_ns;
2162 }
2163 EXPORT_SYMBOL(create_mnt_ns);
2164 
2165 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2166 		char __user *, type, unsigned long, flags, void __user *, data)
2167 {
2168 	int ret;
2169 	char *kernel_type;
2170 	char *kernel_dir;
2171 	char *kernel_dev;
2172 	unsigned long data_page;
2173 
2174 	ret = copy_mount_string(type, &kernel_type);
2175 	if (ret < 0)
2176 		goto out_type;
2177 
2178 	kernel_dir = getname(dir_name);
2179 	if (IS_ERR(kernel_dir)) {
2180 		ret = PTR_ERR(kernel_dir);
2181 		goto out_dir;
2182 	}
2183 
2184 	ret = copy_mount_string(dev_name, &kernel_dev);
2185 	if (ret < 0)
2186 		goto out_dev;
2187 
2188 	ret = copy_mount_options(data, &data_page);
2189 	if (ret < 0)
2190 		goto out_data;
2191 
2192 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2193 		(void *) data_page);
2194 
2195 	free_page(data_page);
2196 out_data:
2197 	kfree(kernel_dev);
2198 out_dev:
2199 	putname(kernel_dir);
2200 out_dir:
2201 	kfree(kernel_type);
2202 out_type:
2203 	return ret;
2204 }
2205 
2206 /*
2207  * pivot_root Semantics:
2208  * Moves the root file system of the current process to the directory put_old,
2209  * makes new_root as the new root file system of the current process, and sets
2210  * root/cwd of all processes which had them on the current root to new_root.
2211  *
2212  * Restrictions:
2213  * The new_root and put_old must be directories, and  must not be on the
2214  * same file  system as the current process root. The put_old  must  be
2215  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2216  * pointed to by put_old must yield the same directory as new_root. No other
2217  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2218  *
2219  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2220  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2221  * in this situation.
2222  *
2223  * Notes:
2224  *  - we don't move root/cwd if they are not at the root (reason: if something
2225  *    cared enough to change them, it's probably wrong to force them elsewhere)
2226  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2227  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2228  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2229  *    first.
2230  */
2231 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2232 		const char __user *, put_old)
2233 {
2234 	struct vfsmount *tmp;
2235 	struct path new, old, parent_path, root_parent, root;
2236 	int error;
2237 
2238 	if (!capable(CAP_SYS_ADMIN))
2239 		return -EPERM;
2240 
2241 	error = user_path_dir(new_root, &new);
2242 	if (error)
2243 		goto out0;
2244 	error = -EINVAL;
2245 	if (!check_mnt(new.mnt))
2246 		goto out1;
2247 
2248 	error = user_path_dir(put_old, &old);
2249 	if (error)
2250 		goto out1;
2251 
2252 	error = security_sb_pivotroot(&old, &new);
2253 	if (error) {
2254 		path_put(&old);
2255 		goto out1;
2256 	}
2257 
2258 	get_fs_root(current->fs, &root);
2259 	down_write(&namespace_sem);
2260 	mutex_lock(&old.dentry->d_inode->i_mutex);
2261 	error = -EINVAL;
2262 	if (IS_MNT_SHARED(old.mnt) ||
2263 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2264 		IS_MNT_SHARED(root.mnt->mnt_parent))
2265 		goto out2;
2266 	if (!check_mnt(root.mnt))
2267 		goto out2;
2268 	error = -ENOENT;
2269 	if (cant_mount(old.dentry))
2270 		goto out2;
2271 	if (d_unlinked(new.dentry))
2272 		goto out2;
2273 	if (d_unlinked(old.dentry))
2274 		goto out2;
2275 	error = -EBUSY;
2276 	if (new.mnt == root.mnt ||
2277 	    old.mnt == root.mnt)
2278 		goto out2; /* loop, on the same file system  */
2279 	error = -EINVAL;
2280 	if (root.mnt->mnt_root != root.dentry)
2281 		goto out2; /* not a mountpoint */
2282 	if (root.mnt->mnt_parent == root.mnt)
2283 		goto out2; /* not attached */
2284 	if (new.mnt->mnt_root != new.dentry)
2285 		goto out2; /* not a mountpoint */
2286 	if (new.mnt->mnt_parent == new.mnt)
2287 		goto out2; /* not attached */
2288 	/* make sure we can reach put_old from new_root */
2289 	tmp = old.mnt;
2290 	br_write_lock(vfsmount_lock);
2291 	if (tmp != new.mnt) {
2292 		for (;;) {
2293 			if (tmp->mnt_parent == tmp)
2294 				goto out3; /* already mounted on put_old */
2295 			if (tmp->mnt_parent == new.mnt)
2296 				break;
2297 			tmp = tmp->mnt_parent;
2298 		}
2299 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2300 			goto out3;
2301 	} else if (!is_subdir(old.dentry, new.dentry))
2302 		goto out3;
2303 	detach_mnt(new.mnt, &parent_path);
2304 	detach_mnt(root.mnt, &root_parent);
2305 	/* mount old root on put_old */
2306 	attach_mnt(root.mnt, &old);
2307 	/* mount new_root on / */
2308 	attach_mnt(new.mnt, &root_parent);
2309 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2310 	br_write_unlock(vfsmount_lock);
2311 	chroot_fs_refs(&root, &new);
2312 	error = 0;
2313 	path_put(&root_parent);
2314 	path_put(&parent_path);
2315 out2:
2316 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2317 	up_write(&namespace_sem);
2318 	path_put(&root);
2319 	path_put(&old);
2320 out1:
2321 	path_put(&new);
2322 out0:
2323 	return error;
2324 out3:
2325 	br_write_unlock(vfsmount_lock);
2326 	goto out2;
2327 }
2328 
2329 static void __init init_mount_tree(void)
2330 {
2331 	struct vfsmount *mnt;
2332 	struct mnt_namespace *ns;
2333 	struct path root;
2334 
2335 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2336 	if (IS_ERR(mnt))
2337 		panic("Can't create rootfs");
2338 	ns = create_mnt_ns(mnt);
2339 	if (IS_ERR(ns))
2340 		panic("Can't allocate initial namespace");
2341 
2342 	init_task.nsproxy->mnt_ns = ns;
2343 	get_mnt_ns(ns);
2344 
2345 	root.mnt = ns->root;
2346 	root.dentry = ns->root->mnt_root;
2347 
2348 	set_fs_pwd(current->fs, &root);
2349 	set_fs_root(current->fs, &root);
2350 }
2351 
2352 void __init mnt_init(void)
2353 {
2354 	unsigned u;
2355 	int err;
2356 
2357 	init_rwsem(&namespace_sem);
2358 
2359 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2360 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2361 
2362 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2363 
2364 	if (!mount_hashtable)
2365 		panic("Failed to allocate mount hash table\n");
2366 
2367 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2368 
2369 	for (u = 0; u < HASH_SIZE; u++)
2370 		INIT_LIST_HEAD(&mount_hashtable[u]);
2371 
2372 	br_lock_init(vfsmount_lock);
2373 
2374 	err = sysfs_init();
2375 	if (err)
2376 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2377 			__func__, err);
2378 	fs_kobj = kobject_create_and_add("fs", NULL);
2379 	if (!fs_kobj)
2380 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2381 	init_rootfs();
2382 	init_mount_tree();
2383 }
2384 
2385 void put_mnt_ns(struct mnt_namespace *ns)
2386 {
2387 	LIST_HEAD(umount_list);
2388 
2389 	if (!atomic_dec_and_test(&ns->count))
2390 		return;
2391 	down_write(&namespace_sem);
2392 	br_write_lock(vfsmount_lock);
2393 	umount_tree(ns->root, 0, &umount_list);
2394 	br_write_unlock(vfsmount_lock);
2395 	up_write(&namespace_sem);
2396 	release_mounts(&umount_list);
2397 	kfree(ns);
2398 }
2399 EXPORT_SYMBOL(put_mnt_ns);
2400