1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 }; 86 87 /* /sys/fs */ 88 struct kobject *fs_kobj; 89 EXPORT_SYMBOL_GPL(fs_kobj); 90 91 /* 92 * vfsmount lock may be taken for read to prevent changes to the 93 * vfsmount hash, ie. during mountpoint lookups or walking back 94 * up the tree. 95 * 96 * It should be taken for write in all cases where the vfsmount 97 * tree or hash is modified or when a vfsmount structure is modified. 98 */ 99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 100 101 static inline void lock_mount_hash(void) 102 { 103 write_seqlock(&mount_lock); 104 } 105 106 static inline void unlock_mount_hash(void) 107 { 108 write_sequnlock(&mount_lock); 109 } 110 111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 112 { 113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 115 tmp = tmp + (tmp >> m_hash_shift); 116 return &mount_hashtable[tmp & m_hash_mask]; 117 } 118 119 static inline struct hlist_head *mp_hash(struct dentry *dentry) 120 { 121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 122 tmp = tmp + (tmp >> mp_hash_shift); 123 return &mountpoint_hashtable[tmp & mp_hash_mask]; 124 } 125 126 static int mnt_alloc_id(struct mount *mnt) 127 { 128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 129 130 if (res < 0) 131 return res; 132 mnt->mnt_id = res; 133 return 0; 134 } 135 136 static void mnt_free_id(struct mount *mnt) 137 { 138 ida_free(&mnt_id_ida, mnt->mnt_id); 139 } 140 141 /* 142 * Allocate a new peer group ID 143 */ 144 static int mnt_alloc_group_id(struct mount *mnt) 145 { 146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 147 148 if (res < 0) 149 return res; 150 mnt->mnt_group_id = res; 151 return 0; 152 } 153 154 /* 155 * Release a peer group ID 156 */ 157 void mnt_release_group_id(struct mount *mnt) 158 { 159 ida_free(&mnt_group_ida, mnt->mnt_group_id); 160 mnt->mnt_group_id = 0; 161 } 162 163 /* 164 * vfsmount lock must be held for read 165 */ 166 static inline void mnt_add_count(struct mount *mnt, int n) 167 { 168 #ifdef CONFIG_SMP 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 170 #else 171 preempt_disable(); 172 mnt->mnt_count += n; 173 preempt_enable(); 174 #endif 175 } 176 177 /* 178 * vfsmount lock must be held for write 179 */ 180 int mnt_get_count(struct mount *mnt) 181 { 182 #ifdef CONFIG_SMP 183 int count = 0; 184 int cpu; 185 186 for_each_possible_cpu(cpu) { 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 188 } 189 190 return count; 191 #else 192 return mnt->mnt_count; 193 #endif 194 } 195 196 static struct mount *alloc_vfsmnt(const char *name) 197 { 198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 199 if (mnt) { 200 int err; 201 202 err = mnt_alloc_id(mnt); 203 if (err) 204 goto out_free_cache; 205 206 if (name) { 207 mnt->mnt_devname = kstrdup_const(name, 208 GFP_KERNEL_ACCOUNT); 209 if (!mnt->mnt_devname) 210 goto out_free_id; 211 } 212 213 #ifdef CONFIG_SMP 214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 215 if (!mnt->mnt_pcp) 216 goto out_free_devname; 217 218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 219 #else 220 mnt->mnt_count = 1; 221 mnt->mnt_writers = 0; 222 #endif 223 224 INIT_HLIST_NODE(&mnt->mnt_hash); 225 INIT_LIST_HEAD(&mnt->mnt_child); 226 INIT_LIST_HEAD(&mnt->mnt_mounts); 227 INIT_LIST_HEAD(&mnt->mnt_list); 228 INIT_LIST_HEAD(&mnt->mnt_expire); 229 INIT_LIST_HEAD(&mnt->mnt_share); 230 INIT_LIST_HEAD(&mnt->mnt_slave_list); 231 INIT_LIST_HEAD(&mnt->mnt_slave); 232 INIT_HLIST_NODE(&mnt->mnt_mp_list); 233 INIT_LIST_HEAD(&mnt->mnt_umounting); 234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 235 mnt->mnt.mnt_userns = &init_user_ns; 236 } 237 return mnt; 238 239 #ifdef CONFIG_SMP 240 out_free_devname: 241 kfree_const(mnt->mnt_devname); 242 #endif 243 out_free_id: 244 mnt_free_id(mnt); 245 out_free_cache: 246 kmem_cache_free(mnt_cache, mnt); 247 return NULL; 248 } 249 250 /* 251 * Most r/o checks on a fs are for operations that take 252 * discrete amounts of time, like a write() or unlink(). 253 * We must keep track of when those operations start 254 * (for permission checks) and when they end, so that 255 * we can determine when writes are able to occur to 256 * a filesystem. 257 */ 258 /* 259 * __mnt_is_readonly: check whether a mount is read-only 260 * @mnt: the mount to check for its write status 261 * 262 * This shouldn't be used directly ouside of the VFS. 263 * It does not guarantee that the filesystem will stay 264 * r/w, just that it is right *now*. This can not and 265 * should not be used in place of IS_RDONLY(inode). 266 * mnt_want/drop_write() will _keep_ the filesystem 267 * r/w. 268 */ 269 bool __mnt_is_readonly(struct vfsmount *mnt) 270 { 271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 272 } 273 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 274 275 static inline void mnt_inc_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 279 #else 280 mnt->mnt_writers++; 281 #endif 282 } 283 284 static inline void mnt_dec_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers--; 290 #endif 291 } 292 293 static unsigned int mnt_get_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 unsigned int count = 0; 297 int cpu; 298 299 for_each_possible_cpu(cpu) { 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 301 } 302 303 return count; 304 #else 305 return mnt->mnt_writers; 306 #endif 307 } 308 309 static int mnt_is_readonly(struct vfsmount *mnt) 310 { 311 if (mnt->mnt_sb->s_readonly_remount) 312 return 1; 313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 314 smp_rmb(); 315 return __mnt_is_readonly(mnt); 316 } 317 318 /* 319 * Most r/o & frozen checks on a fs are for operations that take discrete 320 * amounts of time, like a write() or unlink(). We must keep track of when 321 * those operations start (for permission checks) and when they end, so that we 322 * can determine when writes are able to occur to a filesystem. 323 */ 324 /** 325 * __mnt_want_write - get write access to a mount without freeze protection 326 * @m: the mount on which to take a write 327 * 328 * This tells the low-level filesystem that a write is about to be performed to 329 * it, and makes sure that writes are allowed (mnt it read-write) before 330 * returning success. This operation does not protect against filesystem being 331 * frozen. When the write operation is finished, __mnt_drop_write() must be 332 * called. This is effectively a refcount. 333 */ 334 int __mnt_want_write(struct vfsmount *m) 335 { 336 struct mount *mnt = real_mount(m); 337 int ret = 0; 338 339 preempt_disable(); 340 mnt_inc_writers(mnt); 341 /* 342 * The store to mnt_inc_writers must be visible before we pass 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 344 * incremented count after it has set MNT_WRITE_HOLD. 345 */ 346 smp_mb(); 347 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 348 cpu_relax(); 349 /* 350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 351 * be set to match its requirements. So we must not load that until 352 * MNT_WRITE_HOLD is cleared. 353 */ 354 smp_rmb(); 355 if (mnt_is_readonly(m)) { 356 mnt_dec_writers(mnt); 357 ret = -EROFS; 358 } 359 preempt_enable(); 360 361 return ret; 362 } 363 364 /** 365 * mnt_want_write - get write access to a mount 366 * @m: the mount on which to take a write 367 * 368 * This tells the low-level filesystem that a write is about to be performed to 369 * it, and makes sure that writes are allowed (mount is read-write, filesystem 370 * is not frozen) before returning success. When the write operation is 371 * finished, mnt_drop_write() must be called. This is effectively a refcount. 372 */ 373 int mnt_want_write(struct vfsmount *m) 374 { 375 int ret; 376 377 sb_start_write(m->mnt_sb); 378 ret = __mnt_want_write(m); 379 if (ret) 380 sb_end_write(m->mnt_sb); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(mnt_want_write); 384 385 /** 386 * __mnt_want_write_file - get write access to a file's mount 387 * @file: the file who's mount on which to take a write 388 * 389 * This is like __mnt_want_write, but if the file is already open for writing it 390 * skips incrementing mnt_writers (since the open file already has a reference) 391 * and instead only does the check for emergency r/o remounts. This must be 392 * paired with __mnt_drop_write_file. 393 */ 394 int __mnt_want_write_file(struct file *file) 395 { 396 if (file->f_mode & FMODE_WRITER) { 397 /* 398 * Superblock may have become readonly while there are still 399 * writable fd's, e.g. due to a fs error with errors=remount-ro 400 */ 401 if (__mnt_is_readonly(file->f_path.mnt)) 402 return -EROFS; 403 return 0; 404 } 405 return __mnt_want_write(file->f_path.mnt); 406 } 407 408 /** 409 * mnt_want_write_file - get write access to a file's mount 410 * @file: the file who's mount on which to take a write 411 * 412 * This is like mnt_want_write, but if the file is already open for writing it 413 * skips incrementing mnt_writers (since the open file already has a reference) 414 * and instead only does the freeze protection and the check for emergency r/o 415 * remounts. This must be paired with mnt_drop_write_file. 416 */ 417 int mnt_want_write_file(struct file *file) 418 { 419 int ret; 420 421 sb_start_write(file_inode(file)->i_sb); 422 ret = __mnt_want_write_file(file); 423 if (ret) 424 sb_end_write(file_inode(file)->i_sb); 425 return ret; 426 } 427 EXPORT_SYMBOL_GPL(mnt_want_write_file); 428 429 /** 430 * __mnt_drop_write - give up write access to a mount 431 * @mnt: the mount on which to give up write access 432 * 433 * Tells the low-level filesystem that we are done 434 * performing writes to it. Must be matched with 435 * __mnt_want_write() call above. 436 */ 437 void __mnt_drop_write(struct vfsmount *mnt) 438 { 439 preempt_disable(); 440 mnt_dec_writers(real_mount(mnt)); 441 preempt_enable(); 442 } 443 444 /** 445 * mnt_drop_write - give up write access to a mount 446 * @mnt: the mount on which to give up write access 447 * 448 * Tells the low-level filesystem that we are done performing writes to it and 449 * also allows filesystem to be frozen again. Must be matched with 450 * mnt_want_write() call above. 451 */ 452 void mnt_drop_write(struct vfsmount *mnt) 453 { 454 __mnt_drop_write(mnt); 455 sb_end_write(mnt->mnt_sb); 456 } 457 EXPORT_SYMBOL_GPL(mnt_drop_write); 458 459 void __mnt_drop_write_file(struct file *file) 460 { 461 if (!(file->f_mode & FMODE_WRITER)) 462 __mnt_drop_write(file->f_path.mnt); 463 } 464 465 void mnt_drop_write_file(struct file *file) 466 { 467 __mnt_drop_write_file(file); 468 sb_end_write(file_inode(file)->i_sb); 469 } 470 EXPORT_SYMBOL(mnt_drop_write_file); 471 472 /** 473 * mnt_hold_writers - prevent write access to the given mount 474 * @mnt: mnt to prevent write access to 475 * 476 * Prevents write access to @mnt if there are no active writers for @mnt. 477 * This function needs to be called and return successfully before changing 478 * properties of @mnt that need to remain stable for callers with write access 479 * to @mnt. 480 * 481 * After this functions has been called successfully callers must pair it with 482 * a call to mnt_unhold_writers() in order to stop preventing write access to 483 * @mnt. 484 * 485 * Context: This function expects lock_mount_hash() to be held serializing 486 * setting MNT_WRITE_HOLD. 487 * Return: On success 0 is returned. 488 * On error, -EBUSY is returned. 489 */ 490 static inline int mnt_hold_writers(struct mount *mnt) 491 { 492 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 493 /* 494 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 495 * should be visible before we do. 496 */ 497 smp_mb(); 498 499 /* 500 * With writers on hold, if this value is zero, then there are 501 * definitely no active writers (although held writers may subsequently 502 * increment the count, they'll have to wait, and decrement it after 503 * seeing MNT_READONLY). 504 * 505 * It is OK to have counter incremented on one CPU and decremented on 506 * another: the sum will add up correctly. The danger would be when we 507 * sum up each counter, if we read a counter before it is incremented, 508 * but then read another CPU's count which it has been subsequently 509 * decremented from -- we would see more decrements than we should. 510 * MNT_WRITE_HOLD protects against this scenario, because 511 * mnt_want_write first increments count, then smp_mb, then spins on 512 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 513 * we're counting up here. 514 */ 515 if (mnt_get_writers(mnt) > 0) 516 return -EBUSY; 517 518 return 0; 519 } 520 521 /** 522 * mnt_unhold_writers - stop preventing write access to the given mount 523 * @mnt: mnt to stop preventing write access to 524 * 525 * Stop preventing write access to @mnt allowing callers to gain write access 526 * to @mnt again. 527 * 528 * This function can only be called after a successful call to 529 * mnt_hold_writers(). 530 * 531 * Context: This function expects lock_mount_hash() to be held. 532 */ 533 static inline void mnt_unhold_writers(struct mount *mnt) 534 { 535 /* 536 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 537 * that become unheld will see MNT_READONLY. 538 */ 539 smp_wmb(); 540 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 541 } 542 543 static int mnt_make_readonly(struct mount *mnt) 544 { 545 int ret; 546 547 ret = mnt_hold_writers(mnt); 548 if (!ret) 549 mnt->mnt.mnt_flags |= MNT_READONLY; 550 mnt_unhold_writers(mnt); 551 return ret; 552 } 553 554 int sb_prepare_remount_readonly(struct super_block *sb) 555 { 556 struct mount *mnt; 557 int err = 0; 558 559 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 560 if (atomic_long_read(&sb->s_remove_count)) 561 return -EBUSY; 562 563 lock_mount_hash(); 564 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 565 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 566 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 567 smp_mb(); 568 if (mnt_get_writers(mnt) > 0) { 569 err = -EBUSY; 570 break; 571 } 572 } 573 } 574 if (!err && atomic_long_read(&sb->s_remove_count)) 575 err = -EBUSY; 576 577 if (!err) { 578 sb->s_readonly_remount = 1; 579 smp_wmb(); 580 } 581 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 582 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 583 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 584 } 585 unlock_mount_hash(); 586 587 return err; 588 } 589 590 static void free_vfsmnt(struct mount *mnt) 591 { 592 struct user_namespace *mnt_userns; 593 594 mnt_userns = mnt_user_ns(&mnt->mnt); 595 if (!initial_idmapping(mnt_userns)) 596 put_user_ns(mnt_userns); 597 kfree_const(mnt->mnt_devname); 598 #ifdef CONFIG_SMP 599 free_percpu(mnt->mnt_pcp); 600 #endif 601 kmem_cache_free(mnt_cache, mnt); 602 } 603 604 static void delayed_free_vfsmnt(struct rcu_head *head) 605 { 606 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 607 } 608 609 /* call under rcu_read_lock */ 610 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 611 { 612 struct mount *mnt; 613 if (read_seqretry(&mount_lock, seq)) 614 return 1; 615 if (bastard == NULL) 616 return 0; 617 mnt = real_mount(bastard); 618 mnt_add_count(mnt, 1); 619 smp_mb(); // see mntput_no_expire() 620 if (likely(!read_seqretry(&mount_lock, seq))) 621 return 0; 622 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 623 mnt_add_count(mnt, -1); 624 return 1; 625 } 626 lock_mount_hash(); 627 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 628 mnt_add_count(mnt, -1); 629 unlock_mount_hash(); 630 return 1; 631 } 632 unlock_mount_hash(); 633 /* caller will mntput() */ 634 return -1; 635 } 636 637 /* call under rcu_read_lock */ 638 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 639 { 640 int res = __legitimize_mnt(bastard, seq); 641 if (likely(!res)) 642 return true; 643 if (unlikely(res < 0)) { 644 rcu_read_unlock(); 645 mntput(bastard); 646 rcu_read_lock(); 647 } 648 return false; 649 } 650 651 /* 652 * find the first mount at @dentry on vfsmount @mnt. 653 * call under rcu_read_lock() 654 */ 655 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 656 { 657 struct hlist_head *head = m_hash(mnt, dentry); 658 struct mount *p; 659 660 hlist_for_each_entry_rcu(p, head, mnt_hash) 661 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 662 return p; 663 return NULL; 664 } 665 666 /* 667 * lookup_mnt - Return the first child mount mounted at path 668 * 669 * "First" means first mounted chronologically. If you create the 670 * following mounts: 671 * 672 * mount /dev/sda1 /mnt 673 * mount /dev/sda2 /mnt 674 * mount /dev/sda3 /mnt 675 * 676 * Then lookup_mnt() on the base /mnt dentry in the root mount will 677 * return successively the root dentry and vfsmount of /dev/sda1, then 678 * /dev/sda2, then /dev/sda3, then NULL. 679 * 680 * lookup_mnt takes a reference to the found vfsmount. 681 */ 682 struct vfsmount *lookup_mnt(const struct path *path) 683 { 684 struct mount *child_mnt; 685 struct vfsmount *m; 686 unsigned seq; 687 688 rcu_read_lock(); 689 do { 690 seq = read_seqbegin(&mount_lock); 691 child_mnt = __lookup_mnt(path->mnt, path->dentry); 692 m = child_mnt ? &child_mnt->mnt : NULL; 693 } while (!legitimize_mnt(m, seq)); 694 rcu_read_unlock(); 695 return m; 696 } 697 698 static inline void lock_ns_list(struct mnt_namespace *ns) 699 { 700 spin_lock(&ns->ns_lock); 701 } 702 703 static inline void unlock_ns_list(struct mnt_namespace *ns) 704 { 705 spin_unlock(&ns->ns_lock); 706 } 707 708 static inline bool mnt_is_cursor(struct mount *mnt) 709 { 710 return mnt->mnt.mnt_flags & MNT_CURSOR; 711 } 712 713 /* 714 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 715 * current mount namespace. 716 * 717 * The common case is dentries are not mountpoints at all and that 718 * test is handled inline. For the slow case when we are actually 719 * dealing with a mountpoint of some kind, walk through all of the 720 * mounts in the current mount namespace and test to see if the dentry 721 * is a mountpoint. 722 * 723 * The mount_hashtable is not usable in the context because we 724 * need to identify all mounts that may be in the current mount 725 * namespace not just a mount that happens to have some specified 726 * parent mount. 727 */ 728 bool __is_local_mountpoint(struct dentry *dentry) 729 { 730 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 731 struct mount *mnt; 732 bool is_covered = false; 733 734 down_read(&namespace_sem); 735 lock_ns_list(ns); 736 list_for_each_entry(mnt, &ns->list, mnt_list) { 737 if (mnt_is_cursor(mnt)) 738 continue; 739 is_covered = (mnt->mnt_mountpoint == dentry); 740 if (is_covered) 741 break; 742 } 743 unlock_ns_list(ns); 744 up_read(&namespace_sem); 745 746 return is_covered; 747 } 748 749 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 750 { 751 struct hlist_head *chain = mp_hash(dentry); 752 struct mountpoint *mp; 753 754 hlist_for_each_entry(mp, chain, m_hash) { 755 if (mp->m_dentry == dentry) { 756 mp->m_count++; 757 return mp; 758 } 759 } 760 return NULL; 761 } 762 763 static struct mountpoint *get_mountpoint(struct dentry *dentry) 764 { 765 struct mountpoint *mp, *new = NULL; 766 int ret; 767 768 if (d_mountpoint(dentry)) { 769 /* might be worth a WARN_ON() */ 770 if (d_unlinked(dentry)) 771 return ERR_PTR(-ENOENT); 772 mountpoint: 773 read_seqlock_excl(&mount_lock); 774 mp = lookup_mountpoint(dentry); 775 read_sequnlock_excl(&mount_lock); 776 if (mp) 777 goto done; 778 } 779 780 if (!new) 781 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 782 if (!new) 783 return ERR_PTR(-ENOMEM); 784 785 786 /* Exactly one processes may set d_mounted */ 787 ret = d_set_mounted(dentry); 788 789 /* Someone else set d_mounted? */ 790 if (ret == -EBUSY) 791 goto mountpoint; 792 793 /* The dentry is not available as a mountpoint? */ 794 mp = ERR_PTR(ret); 795 if (ret) 796 goto done; 797 798 /* Add the new mountpoint to the hash table */ 799 read_seqlock_excl(&mount_lock); 800 new->m_dentry = dget(dentry); 801 new->m_count = 1; 802 hlist_add_head(&new->m_hash, mp_hash(dentry)); 803 INIT_HLIST_HEAD(&new->m_list); 804 read_sequnlock_excl(&mount_lock); 805 806 mp = new; 807 new = NULL; 808 done: 809 kfree(new); 810 return mp; 811 } 812 813 /* 814 * vfsmount lock must be held. Additionally, the caller is responsible 815 * for serializing calls for given disposal list. 816 */ 817 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 818 { 819 if (!--mp->m_count) { 820 struct dentry *dentry = mp->m_dentry; 821 BUG_ON(!hlist_empty(&mp->m_list)); 822 spin_lock(&dentry->d_lock); 823 dentry->d_flags &= ~DCACHE_MOUNTED; 824 spin_unlock(&dentry->d_lock); 825 dput_to_list(dentry, list); 826 hlist_del(&mp->m_hash); 827 kfree(mp); 828 } 829 } 830 831 /* called with namespace_lock and vfsmount lock */ 832 static void put_mountpoint(struct mountpoint *mp) 833 { 834 __put_mountpoint(mp, &ex_mountpoints); 835 } 836 837 static inline int check_mnt(struct mount *mnt) 838 { 839 return mnt->mnt_ns == current->nsproxy->mnt_ns; 840 } 841 842 /* 843 * vfsmount lock must be held for write 844 */ 845 static void touch_mnt_namespace(struct mnt_namespace *ns) 846 { 847 if (ns) { 848 ns->event = ++event; 849 wake_up_interruptible(&ns->poll); 850 } 851 } 852 853 /* 854 * vfsmount lock must be held for write 855 */ 856 static void __touch_mnt_namespace(struct mnt_namespace *ns) 857 { 858 if (ns && ns->event != event) { 859 ns->event = event; 860 wake_up_interruptible(&ns->poll); 861 } 862 } 863 864 /* 865 * vfsmount lock must be held for write 866 */ 867 static struct mountpoint *unhash_mnt(struct mount *mnt) 868 { 869 struct mountpoint *mp; 870 mnt->mnt_parent = mnt; 871 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 872 list_del_init(&mnt->mnt_child); 873 hlist_del_init_rcu(&mnt->mnt_hash); 874 hlist_del_init(&mnt->mnt_mp_list); 875 mp = mnt->mnt_mp; 876 mnt->mnt_mp = NULL; 877 return mp; 878 } 879 880 /* 881 * vfsmount lock must be held for write 882 */ 883 static void umount_mnt(struct mount *mnt) 884 { 885 put_mountpoint(unhash_mnt(mnt)); 886 } 887 888 /* 889 * vfsmount lock must be held for write 890 */ 891 void mnt_set_mountpoint(struct mount *mnt, 892 struct mountpoint *mp, 893 struct mount *child_mnt) 894 { 895 mp->m_count++; 896 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 897 child_mnt->mnt_mountpoint = mp->m_dentry; 898 child_mnt->mnt_parent = mnt; 899 child_mnt->mnt_mp = mp; 900 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 901 } 902 903 static void __attach_mnt(struct mount *mnt, struct mount *parent) 904 { 905 hlist_add_head_rcu(&mnt->mnt_hash, 906 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 907 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 908 } 909 910 /* 911 * vfsmount lock must be held for write 912 */ 913 static void attach_mnt(struct mount *mnt, 914 struct mount *parent, 915 struct mountpoint *mp) 916 { 917 mnt_set_mountpoint(parent, mp, mnt); 918 __attach_mnt(mnt, parent); 919 } 920 921 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 922 { 923 struct mountpoint *old_mp = mnt->mnt_mp; 924 struct mount *old_parent = mnt->mnt_parent; 925 926 list_del_init(&mnt->mnt_child); 927 hlist_del_init(&mnt->mnt_mp_list); 928 hlist_del_init_rcu(&mnt->mnt_hash); 929 930 attach_mnt(mnt, parent, mp); 931 932 put_mountpoint(old_mp); 933 mnt_add_count(old_parent, -1); 934 } 935 936 /* 937 * vfsmount lock must be held for write 938 */ 939 static void commit_tree(struct mount *mnt) 940 { 941 struct mount *parent = mnt->mnt_parent; 942 struct mount *m; 943 LIST_HEAD(head); 944 struct mnt_namespace *n = parent->mnt_ns; 945 946 BUG_ON(parent == mnt); 947 948 list_add_tail(&head, &mnt->mnt_list); 949 list_for_each_entry(m, &head, mnt_list) 950 m->mnt_ns = n; 951 952 list_splice(&head, n->list.prev); 953 954 n->mounts += n->pending_mounts; 955 n->pending_mounts = 0; 956 957 __attach_mnt(mnt, parent); 958 touch_mnt_namespace(n); 959 } 960 961 static struct mount *next_mnt(struct mount *p, struct mount *root) 962 { 963 struct list_head *next = p->mnt_mounts.next; 964 if (next == &p->mnt_mounts) { 965 while (1) { 966 if (p == root) 967 return NULL; 968 next = p->mnt_child.next; 969 if (next != &p->mnt_parent->mnt_mounts) 970 break; 971 p = p->mnt_parent; 972 } 973 } 974 return list_entry(next, struct mount, mnt_child); 975 } 976 977 static struct mount *skip_mnt_tree(struct mount *p) 978 { 979 struct list_head *prev = p->mnt_mounts.prev; 980 while (prev != &p->mnt_mounts) { 981 p = list_entry(prev, struct mount, mnt_child); 982 prev = p->mnt_mounts.prev; 983 } 984 return p; 985 } 986 987 /** 988 * vfs_create_mount - Create a mount for a configured superblock 989 * @fc: The configuration context with the superblock attached 990 * 991 * Create a mount to an already configured superblock. If necessary, the 992 * caller should invoke vfs_get_tree() before calling this. 993 * 994 * Note that this does not attach the mount to anything. 995 */ 996 struct vfsmount *vfs_create_mount(struct fs_context *fc) 997 { 998 struct mount *mnt; 999 struct user_namespace *fs_userns; 1000 1001 if (!fc->root) 1002 return ERR_PTR(-EINVAL); 1003 1004 mnt = alloc_vfsmnt(fc->source ?: "none"); 1005 if (!mnt) 1006 return ERR_PTR(-ENOMEM); 1007 1008 if (fc->sb_flags & SB_KERNMOUNT) 1009 mnt->mnt.mnt_flags = MNT_INTERNAL; 1010 1011 atomic_inc(&fc->root->d_sb->s_active); 1012 mnt->mnt.mnt_sb = fc->root->d_sb; 1013 mnt->mnt.mnt_root = dget(fc->root); 1014 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1015 mnt->mnt_parent = mnt; 1016 1017 fs_userns = mnt->mnt.mnt_sb->s_user_ns; 1018 if (!initial_idmapping(fs_userns)) 1019 mnt->mnt.mnt_userns = get_user_ns(fs_userns); 1020 1021 lock_mount_hash(); 1022 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1023 unlock_mount_hash(); 1024 return &mnt->mnt; 1025 } 1026 EXPORT_SYMBOL(vfs_create_mount); 1027 1028 struct vfsmount *fc_mount(struct fs_context *fc) 1029 { 1030 int err = vfs_get_tree(fc); 1031 if (!err) { 1032 up_write(&fc->root->d_sb->s_umount); 1033 return vfs_create_mount(fc); 1034 } 1035 return ERR_PTR(err); 1036 } 1037 EXPORT_SYMBOL(fc_mount); 1038 1039 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1040 int flags, const char *name, 1041 void *data) 1042 { 1043 struct fs_context *fc; 1044 struct vfsmount *mnt; 1045 int ret = 0; 1046 1047 if (!type) 1048 return ERR_PTR(-EINVAL); 1049 1050 fc = fs_context_for_mount(type, flags); 1051 if (IS_ERR(fc)) 1052 return ERR_CAST(fc); 1053 1054 if (name) 1055 ret = vfs_parse_fs_string(fc, "source", 1056 name, strlen(name)); 1057 if (!ret) 1058 ret = parse_monolithic_mount_data(fc, data); 1059 if (!ret) 1060 mnt = fc_mount(fc); 1061 else 1062 mnt = ERR_PTR(ret); 1063 1064 put_fs_context(fc); 1065 return mnt; 1066 } 1067 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1068 1069 struct vfsmount * 1070 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1071 const char *name, void *data) 1072 { 1073 /* Until it is worked out how to pass the user namespace 1074 * through from the parent mount to the submount don't support 1075 * unprivileged mounts with submounts. 1076 */ 1077 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1078 return ERR_PTR(-EPERM); 1079 1080 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1081 } 1082 EXPORT_SYMBOL_GPL(vfs_submount); 1083 1084 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1085 int flag) 1086 { 1087 struct super_block *sb = old->mnt.mnt_sb; 1088 struct mount *mnt; 1089 int err; 1090 1091 mnt = alloc_vfsmnt(old->mnt_devname); 1092 if (!mnt) 1093 return ERR_PTR(-ENOMEM); 1094 1095 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1096 mnt->mnt_group_id = 0; /* not a peer of original */ 1097 else 1098 mnt->mnt_group_id = old->mnt_group_id; 1099 1100 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1101 err = mnt_alloc_group_id(mnt); 1102 if (err) 1103 goto out_free; 1104 } 1105 1106 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1107 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1108 1109 atomic_inc(&sb->s_active); 1110 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1111 if (!initial_idmapping(mnt->mnt.mnt_userns)) 1112 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1113 mnt->mnt.mnt_sb = sb; 1114 mnt->mnt.mnt_root = dget(root); 1115 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1116 mnt->mnt_parent = mnt; 1117 lock_mount_hash(); 1118 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1119 unlock_mount_hash(); 1120 1121 if ((flag & CL_SLAVE) || 1122 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1123 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1124 mnt->mnt_master = old; 1125 CLEAR_MNT_SHARED(mnt); 1126 } else if (!(flag & CL_PRIVATE)) { 1127 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1128 list_add(&mnt->mnt_share, &old->mnt_share); 1129 if (IS_MNT_SLAVE(old)) 1130 list_add(&mnt->mnt_slave, &old->mnt_slave); 1131 mnt->mnt_master = old->mnt_master; 1132 } else { 1133 CLEAR_MNT_SHARED(mnt); 1134 } 1135 if (flag & CL_MAKE_SHARED) 1136 set_mnt_shared(mnt); 1137 1138 /* stick the duplicate mount on the same expiry list 1139 * as the original if that was on one */ 1140 if (flag & CL_EXPIRE) { 1141 if (!list_empty(&old->mnt_expire)) 1142 list_add(&mnt->mnt_expire, &old->mnt_expire); 1143 } 1144 1145 return mnt; 1146 1147 out_free: 1148 mnt_free_id(mnt); 1149 free_vfsmnt(mnt); 1150 return ERR_PTR(err); 1151 } 1152 1153 static void cleanup_mnt(struct mount *mnt) 1154 { 1155 struct hlist_node *p; 1156 struct mount *m; 1157 /* 1158 * The warning here probably indicates that somebody messed 1159 * up a mnt_want/drop_write() pair. If this happens, the 1160 * filesystem was probably unable to make r/w->r/o transitions. 1161 * The locking used to deal with mnt_count decrement provides barriers, 1162 * so mnt_get_writers() below is safe. 1163 */ 1164 WARN_ON(mnt_get_writers(mnt)); 1165 if (unlikely(mnt->mnt_pins.first)) 1166 mnt_pin_kill(mnt); 1167 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1168 hlist_del(&m->mnt_umount); 1169 mntput(&m->mnt); 1170 } 1171 fsnotify_vfsmount_delete(&mnt->mnt); 1172 dput(mnt->mnt.mnt_root); 1173 deactivate_super(mnt->mnt.mnt_sb); 1174 mnt_free_id(mnt); 1175 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1176 } 1177 1178 static void __cleanup_mnt(struct rcu_head *head) 1179 { 1180 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1181 } 1182 1183 static LLIST_HEAD(delayed_mntput_list); 1184 static void delayed_mntput(struct work_struct *unused) 1185 { 1186 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1187 struct mount *m, *t; 1188 1189 llist_for_each_entry_safe(m, t, node, mnt_llist) 1190 cleanup_mnt(m); 1191 } 1192 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1193 1194 static void mntput_no_expire(struct mount *mnt) 1195 { 1196 LIST_HEAD(list); 1197 int count; 1198 1199 rcu_read_lock(); 1200 if (likely(READ_ONCE(mnt->mnt_ns))) { 1201 /* 1202 * Since we don't do lock_mount_hash() here, 1203 * ->mnt_ns can change under us. However, if it's 1204 * non-NULL, then there's a reference that won't 1205 * be dropped until after an RCU delay done after 1206 * turning ->mnt_ns NULL. So if we observe it 1207 * non-NULL under rcu_read_lock(), the reference 1208 * we are dropping is not the final one. 1209 */ 1210 mnt_add_count(mnt, -1); 1211 rcu_read_unlock(); 1212 return; 1213 } 1214 lock_mount_hash(); 1215 /* 1216 * make sure that if __legitimize_mnt() has not seen us grab 1217 * mount_lock, we'll see their refcount increment here. 1218 */ 1219 smp_mb(); 1220 mnt_add_count(mnt, -1); 1221 count = mnt_get_count(mnt); 1222 if (count != 0) { 1223 WARN_ON(count < 0); 1224 rcu_read_unlock(); 1225 unlock_mount_hash(); 1226 return; 1227 } 1228 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1229 rcu_read_unlock(); 1230 unlock_mount_hash(); 1231 return; 1232 } 1233 mnt->mnt.mnt_flags |= MNT_DOOMED; 1234 rcu_read_unlock(); 1235 1236 list_del(&mnt->mnt_instance); 1237 1238 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1239 struct mount *p, *tmp; 1240 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1241 __put_mountpoint(unhash_mnt(p), &list); 1242 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1243 } 1244 } 1245 unlock_mount_hash(); 1246 shrink_dentry_list(&list); 1247 1248 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1249 struct task_struct *task = current; 1250 if (likely(!(task->flags & PF_KTHREAD))) { 1251 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1252 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1253 return; 1254 } 1255 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1256 schedule_delayed_work(&delayed_mntput_work, 1); 1257 return; 1258 } 1259 cleanup_mnt(mnt); 1260 } 1261 1262 void mntput(struct vfsmount *mnt) 1263 { 1264 if (mnt) { 1265 struct mount *m = real_mount(mnt); 1266 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1267 if (unlikely(m->mnt_expiry_mark)) 1268 m->mnt_expiry_mark = 0; 1269 mntput_no_expire(m); 1270 } 1271 } 1272 EXPORT_SYMBOL(mntput); 1273 1274 struct vfsmount *mntget(struct vfsmount *mnt) 1275 { 1276 if (mnt) 1277 mnt_add_count(real_mount(mnt), 1); 1278 return mnt; 1279 } 1280 EXPORT_SYMBOL(mntget); 1281 1282 /** 1283 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1284 * @path: path to check 1285 * 1286 * d_mountpoint() can only be used reliably to establish if a dentry is 1287 * not mounted in any namespace and that common case is handled inline. 1288 * d_mountpoint() isn't aware of the possibility there may be multiple 1289 * mounts using a given dentry in a different namespace. This function 1290 * checks if the passed in path is a mountpoint rather than the dentry 1291 * alone. 1292 */ 1293 bool path_is_mountpoint(const struct path *path) 1294 { 1295 unsigned seq; 1296 bool res; 1297 1298 if (!d_mountpoint(path->dentry)) 1299 return false; 1300 1301 rcu_read_lock(); 1302 do { 1303 seq = read_seqbegin(&mount_lock); 1304 res = __path_is_mountpoint(path); 1305 } while (read_seqretry(&mount_lock, seq)); 1306 rcu_read_unlock(); 1307 1308 return res; 1309 } 1310 EXPORT_SYMBOL(path_is_mountpoint); 1311 1312 struct vfsmount *mnt_clone_internal(const struct path *path) 1313 { 1314 struct mount *p; 1315 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1316 if (IS_ERR(p)) 1317 return ERR_CAST(p); 1318 p->mnt.mnt_flags |= MNT_INTERNAL; 1319 return &p->mnt; 1320 } 1321 1322 #ifdef CONFIG_PROC_FS 1323 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1324 struct list_head *p) 1325 { 1326 struct mount *mnt, *ret = NULL; 1327 1328 lock_ns_list(ns); 1329 list_for_each_continue(p, &ns->list) { 1330 mnt = list_entry(p, typeof(*mnt), mnt_list); 1331 if (!mnt_is_cursor(mnt)) { 1332 ret = mnt; 1333 break; 1334 } 1335 } 1336 unlock_ns_list(ns); 1337 1338 return ret; 1339 } 1340 1341 /* iterator; we want it to have access to namespace_sem, thus here... */ 1342 static void *m_start(struct seq_file *m, loff_t *pos) 1343 { 1344 struct proc_mounts *p = m->private; 1345 struct list_head *prev; 1346 1347 down_read(&namespace_sem); 1348 if (!*pos) { 1349 prev = &p->ns->list; 1350 } else { 1351 prev = &p->cursor.mnt_list; 1352 1353 /* Read after we'd reached the end? */ 1354 if (list_empty(prev)) 1355 return NULL; 1356 } 1357 1358 return mnt_list_next(p->ns, prev); 1359 } 1360 1361 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1362 { 1363 struct proc_mounts *p = m->private; 1364 struct mount *mnt = v; 1365 1366 ++*pos; 1367 return mnt_list_next(p->ns, &mnt->mnt_list); 1368 } 1369 1370 static void m_stop(struct seq_file *m, void *v) 1371 { 1372 struct proc_mounts *p = m->private; 1373 struct mount *mnt = v; 1374 1375 lock_ns_list(p->ns); 1376 if (mnt) 1377 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1378 else 1379 list_del_init(&p->cursor.mnt_list); 1380 unlock_ns_list(p->ns); 1381 up_read(&namespace_sem); 1382 } 1383 1384 static int m_show(struct seq_file *m, void *v) 1385 { 1386 struct proc_mounts *p = m->private; 1387 struct mount *r = v; 1388 return p->show(m, &r->mnt); 1389 } 1390 1391 const struct seq_operations mounts_op = { 1392 .start = m_start, 1393 .next = m_next, 1394 .stop = m_stop, 1395 .show = m_show, 1396 }; 1397 1398 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1399 { 1400 down_read(&namespace_sem); 1401 lock_ns_list(ns); 1402 list_del(&cursor->mnt_list); 1403 unlock_ns_list(ns); 1404 up_read(&namespace_sem); 1405 } 1406 #endif /* CONFIG_PROC_FS */ 1407 1408 /** 1409 * may_umount_tree - check if a mount tree is busy 1410 * @m: root of mount tree 1411 * 1412 * This is called to check if a tree of mounts has any 1413 * open files, pwds, chroots or sub mounts that are 1414 * busy. 1415 */ 1416 int may_umount_tree(struct vfsmount *m) 1417 { 1418 struct mount *mnt = real_mount(m); 1419 int actual_refs = 0; 1420 int minimum_refs = 0; 1421 struct mount *p; 1422 BUG_ON(!m); 1423 1424 /* write lock needed for mnt_get_count */ 1425 lock_mount_hash(); 1426 for (p = mnt; p; p = next_mnt(p, mnt)) { 1427 actual_refs += mnt_get_count(p); 1428 minimum_refs += 2; 1429 } 1430 unlock_mount_hash(); 1431 1432 if (actual_refs > minimum_refs) 1433 return 0; 1434 1435 return 1; 1436 } 1437 1438 EXPORT_SYMBOL(may_umount_tree); 1439 1440 /** 1441 * may_umount - check if a mount point is busy 1442 * @mnt: root of mount 1443 * 1444 * This is called to check if a mount point has any 1445 * open files, pwds, chroots or sub mounts. If the 1446 * mount has sub mounts this will return busy 1447 * regardless of whether the sub mounts are busy. 1448 * 1449 * Doesn't take quota and stuff into account. IOW, in some cases it will 1450 * give false negatives. The main reason why it's here is that we need 1451 * a non-destructive way to look for easily umountable filesystems. 1452 */ 1453 int may_umount(struct vfsmount *mnt) 1454 { 1455 int ret = 1; 1456 down_read(&namespace_sem); 1457 lock_mount_hash(); 1458 if (propagate_mount_busy(real_mount(mnt), 2)) 1459 ret = 0; 1460 unlock_mount_hash(); 1461 up_read(&namespace_sem); 1462 return ret; 1463 } 1464 1465 EXPORT_SYMBOL(may_umount); 1466 1467 static void namespace_unlock(void) 1468 { 1469 struct hlist_head head; 1470 struct hlist_node *p; 1471 struct mount *m; 1472 LIST_HEAD(list); 1473 1474 hlist_move_list(&unmounted, &head); 1475 list_splice_init(&ex_mountpoints, &list); 1476 1477 up_write(&namespace_sem); 1478 1479 shrink_dentry_list(&list); 1480 1481 if (likely(hlist_empty(&head))) 1482 return; 1483 1484 synchronize_rcu_expedited(); 1485 1486 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1487 hlist_del(&m->mnt_umount); 1488 mntput(&m->mnt); 1489 } 1490 } 1491 1492 static inline void namespace_lock(void) 1493 { 1494 down_write(&namespace_sem); 1495 } 1496 1497 enum umount_tree_flags { 1498 UMOUNT_SYNC = 1, 1499 UMOUNT_PROPAGATE = 2, 1500 UMOUNT_CONNECTED = 4, 1501 }; 1502 1503 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1504 { 1505 /* Leaving mounts connected is only valid for lazy umounts */ 1506 if (how & UMOUNT_SYNC) 1507 return true; 1508 1509 /* A mount without a parent has nothing to be connected to */ 1510 if (!mnt_has_parent(mnt)) 1511 return true; 1512 1513 /* Because the reference counting rules change when mounts are 1514 * unmounted and connected, umounted mounts may not be 1515 * connected to mounted mounts. 1516 */ 1517 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1518 return true; 1519 1520 /* Has it been requested that the mount remain connected? */ 1521 if (how & UMOUNT_CONNECTED) 1522 return false; 1523 1524 /* Is the mount locked such that it needs to remain connected? */ 1525 if (IS_MNT_LOCKED(mnt)) 1526 return false; 1527 1528 /* By default disconnect the mount */ 1529 return true; 1530 } 1531 1532 /* 1533 * mount_lock must be held 1534 * namespace_sem must be held for write 1535 */ 1536 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1537 { 1538 LIST_HEAD(tmp_list); 1539 struct mount *p; 1540 1541 if (how & UMOUNT_PROPAGATE) 1542 propagate_mount_unlock(mnt); 1543 1544 /* Gather the mounts to umount */ 1545 for (p = mnt; p; p = next_mnt(p, mnt)) { 1546 p->mnt.mnt_flags |= MNT_UMOUNT; 1547 list_move(&p->mnt_list, &tmp_list); 1548 } 1549 1550 /* Hide the mounts from mnt_mounts */ 1551 list_for_each_entry(p, &tmp_list, mnt_list) { 1552 list_del_init(&p->mnt_child); 1553 } 1554 1555 /* Add propogated mounts to the tmp_list */ 1556 if (how & UMOUNT_PROPAGATE) 1557 propagate_umount(&tmp_list); 1558 1559 while (!list_empty(&tmp_list)) { 1560 struct mnt_namespace *ns; 1561 bool disconnect; 1562 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1563 list_del_init(&p->mnt_expire); 1564 list_del_init(&p->mnt_list); 1565 ns = p->mnt_ns; 1566 if (ns) { 1567 ns->mounts--; 1568 __touch_mnt_namespace(ns); 1569 } 1570 p->mnt_ns = NULL; 1571 if (how & UMOUNT_SYNC) 1572 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1573 1574 disconnect = disconnect_mount(p, how); 1575 if (mnt_has_parent(p)) { 1576 mnt_add_count(p->mnt_parent, -1); 1577 if (!disconnect) { 1578 /* Don't forget about p */ 1579 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1580 } else { 1581 umount_mnt(p); 1582 } 1583 } 1584 change_mnt_propagation(p, MS_PRIVATE); 1585 if (disconnect) 1586 hlist_add_head(&p->mnt_umount, &unmounted); 1587 } 1588 } 1589 1590 static void shrink_submounts(struct mount *mnt); 1591 1592 static int do_umount_root(struct super_block *sb) 1593 { 1594 int ret = 0; 1595 1596 down_write(&sb->s_umount); 1597 if (!sb_rdonly(sb)) { 1598 struct fs_context *fc; 1599 1600 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1601 SB_RDONLY); 1602 if (IS_ERR(fc)) { 1603 ret = PTR_ERR(fc); 1604 } else { 1605 ret = parse_monolithic_mount_data(fc, NULL); 1606 if (!ret) 1607 ret = reconfigure_super(fc); 1608 put_fs_context(fc); 1609 } 1610 } 1611 up_write(&sb->s_umount); 1612 return ret; 1613 } 1614 1615 static int do_umount(struct mount *mnt, int flags) 1616 { 1617 struct super_block *sb = mnt->mnt.mnt_sb; 1618 int retval; 1619 1620 retval = security_sb_umount(&mnt->mnt, flags); 1621 if (retval) 1622 return retval; 1623 1624 /* 1625 * Allow userspace to request a mountpoint be expired rather than 1626 * unmounting unconditionally. Unmount only happens if: 1627 * (1) the mark is already set (the mark is cleared by mntput()) 1628 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1629 */ 1630 if (flags & MNT_EXPIRE) { 1631 if (&mnt->mnt == current->fs->root.mnt || 1632 flags & (MNT_FORCE | MNT_DETACH)) 1633 return -EINVAL; 1634 1635 /* 1636 * probably don't strictly need the lock here if we examined 1637 * all race cases, but it's a slowpath. 1638 */ 1639 lock_mount_hash(); 1640 if (mnt_get_count(mnt) != 2) { 1641 unlock_mount_hash(); 1642 return -EBUSY; 1643 } 1644 unlock_mount_hash(); 1645 1646 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1647 return -EAGAIN; 1648 } 1649 1650 /* 1651 * If we may have to abort operations to get out of this 1652 * mount, and they will themselves hold resources we must 1653 * allow the fs to do things. In the Unix tradition of 1654 * 'Gee thats tricky lets do it in userspace' the umount_begin 1655 * might fail to complete on the first run through as other tasks 1656 * must return, and the like. Thats for the mount program to worry 1657 * about for the moment. 1658 */ 1659 1660 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1661 sb->s_op->umount_begin(sb); 1662 } 1663 1664 /* 1665 * No sense to grab the lock for this test, but test itself looks 1666 * somewhat bogus. Suggestions for better replacement? 1667 * Ho-hum... In principle, we might treat that as umount + switch 1668 * to rootfs. GC would eventually take care of the old vfsmount. 1669 * Actually it makes sense, especially if rootfs would contain a 1670 * /reboot - static binary that would close all descriptors and 1671 * call reboot(9). Then init(8) could umount root and exec /reboot. 1672 */ 1673 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1674 /* 1675 * Special case for "unmounting" root ... 1676 * we just try to remount it readonly. 1677 */ 1678 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1679 return -EPERM; 1680 return do_umount_root(sb); 1681 } 1682 1683 namespace_lock(); 1684 lock_mount_hash(); 1685 1686 /* Recheck MNT_LOCKED with the locks held */ 1687 retval = -EINVAL; 1688 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1689 goto out; 1690 1691 event++; 1692 if (flags & MNT_DETACH) { 1693 if (!list_empty(&mnt->mnt_list)) 1694 umount_tree(mnt, UMOUNT_PROPAGATE); 1695 retval = 0; 1696 } else { 1697 shrink_submounts(mnt); 1698 retval = -EBUSY; 1699 if (!propagate_mount_busy(mnt, 2)) { 1700 if (!list_empty(&mnt->mnt_list)) 1701 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1702 retval = 0; 1703 } 1704 } 1705 out: 1706 unlock_mount_hash(); 1707 namespace_unlock(); 1708 return retval; 1709 } 1710 1711 /* 1712 * __detach_mounts - lazily unmount all mounts on the specified dentry 1713 * 1714 * During unlink, rmdir, and d_drop it is possible to loose the path 1715 * to an existing mountpoint, and wind up leaking the mount. 1716 * detach_mounts allows lazily unmounting those mounts instead of 1717 * leaking them. 1718 * 1719 * The caller may hold dentry->d_inode->i_mutex. 1720 */ 1721 void __detach_mounts(struct dentry *dentry) 1722 { 1723 struct mountpoint *mp; 1724 struct mount *mnt; 1725 1726 namespace_lock(); 1727 lock_mount_hash(); 1728 mp = lookup_mountpoint(dentry); 1729 if (!mp) 1730 goto out_unlock; 1731 1732 event++; 1733 while (!hlist_empty(&mp->m_list)) { 1734 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1735 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1736 umount_mnt(mnt); 1737 hlist_add_head(&mnt->mnt_umount, &unmounted); 1738 } 1739 else umount_tree(mnt, UMOUNT_CONNECTED); 1740 } 1741 put_mountpoint(mp); 1742 out_unlock: 1743 unlock_mount_hash(); 1744 namespace_unlock(); 1745 } 1746 1747 /* 1748 * Is the caller allowed to modify his namespace? 1749 */ 1750 static inline bool may_mount(void) 1751 { 1752 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1753 } 1754 1755 static void warn_mandlock(void) 1756 { 1757 pr_warn_once("=======================================================\n" 1758 "WARNING: The mand mount option has been deprecated and\n" 1759 " and is ignored by this kernel. Remove the mand\n" 1760 " option from the mount to silence this warning.\n" 1761 "=======================================================\n"); 1762 } 1763 1764 static int can_umount(const struct path *path, int flags) 1765 { 1766 struct mount *mnt = real_mount(path->mnt); 1767 1768 if (!may_mount()) 1769 return -EPERM; 1770 if (path->dentry != path->mnt->mnt_root) 1771 return -EINVAL; 1772 if (!check_mnt(mnt)) 1773 return -EINVAL; 1774 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1775 return -EINVAL; 1776 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1777 return -EPERM; 1778 return 0; 1779 } 1780 1781 // caller is responsible for flags being sane 1782 int path_umount(struct path *path, int flags) 1783 { 1784 struct mount *mnt = real_mount(path->mnt); 1785 int ret; 1786 1787 ret = can_umount(path, flags); 1788 if (!ret) 1789 ret = do_umount(mnt, flags); 1790 1791 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1792 dput(path->dentry); 1793 mntput_no_expire(mnt); 1794 return ret; 1795 } 1796 1797 static int ksys_umount(char __user *name, int flags) 1798 { 1799 int lookup_flags = LOOKUP_MOUNTPOINT; 1800 struct path path; 1801 int ret; 1802 1803 // basic validity checks done first 1804 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1805 return -EINVAL; 1806 1807 if (!(flags & UMOUNT_NOFOLLOW)) 1808 lookup_flags |= LOOKUP_FOLLOW; 1809 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1810 if (ret) 1811 return ret; 1812 return path_umount(&path, flags); 1813 } 1814 1815 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1816 { 1817 return ksys_umount(name, flags); 1818 } 1819 1820 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1821 1822 /* 1823 * The 2.0 compatible umount. No flags. 1824 */ 1825 SYSCALL_DEFINE1(oldumount, char __user *, name) 1826 { 1827 return ksys_umount(name, 0); 1828 } 1829 1830 #endif 1831 1832 static bool is_mnt_ns_file(struct dentry *dentry) 1833 { 1834 /* Is this a proxy for a mount namespace? */ 1835 return dentry->d_op == &ns_dentry_operations && 1836 dentry->d_fsdata == &mntns_operations; 1837 } 1838 1839 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1840 { 1841 return container_of(ns, struct mnt_namespace, ns); 1842 } 1843 1844 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1845 { 1846 return &mnt->ns; 1847 } 1848 1849 static bool mnt_ns_loop(struct dentry *dentry) 1850 { 1851 /* Could bind mounting the mount namespace inode cause a 1852 * mount namespace loop? 1853 */ 1854 struct mnt_namespace *mnt_ns; 1855 if (!is_mnt_ns_file(dentry)) 1856 return false; 1857 1858 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1859 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1860 } 1861 1862 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1863 int flag) 1864 { 1865 struct mount *res, *p, *q, *r, *parent; 1866 1867 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1868 return ERR_PTR(-EINVAL); 1869 1870 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1871 return ERR_PTR(-EINVAL); 1872 1873 res = q = clone_mnt(mnt, dentry, flag); 1874 if (IS_ERR(q)) 1875 return q; 1876 1877 q->mnt_mountpoint = mnt->mnt_mountpoint; 1878 1879 p = mnt; 1880 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1881 struct mount *s; 1882 if (!is_subdir(r->mnt_mountpoint, dentry)) 1883 continue; 1884 1885 for (s = r; s; s = next_mnt(s, r)) { 1886 if (!(flag & CL_COPY_UNBINDABLE) && 1887 IS_MNT_UNBINDABLE(s)) { 1888 if (s->mnt.mnt_flags & MNT_LOCKED) { 1889 /* Both unbindable and locked. */ 1890 q = ERR_PTR(-EPERM); 1891 goto out; 1892 } else { 1893 s = skip_mnt_tree(s); 1894 continue; 1895 } 1896 } 1897 if (!(flag & CL_COPY_MNT_NS_FILE) && 1898 is_mnt_ns_file(s->mnt.mnt_root)) { 1899 s = skip_mnt_tree(s); 1900 continue; 1901 } 1902 while (p != s->mnt_parent) { 1903 p = p->mnt_parent; 1904 q = q->mnt_parent; 1905 } 1906 p = s; 1907 parent = q; 1908 q = clone_mnt(p, p->mnt.mnt_root, flag); 1909 if (IS_ERR(q)) 1910 goto out; 1911 lock_mount_hash(); 1912 list_add_tail(&q->mnt_list, &res->mnt_list); 1913 attach_mnt(q, parent, p->mnt_mp); 1914 unlock_mount_hash(); 1915 } 1916 } 1917 return res; 1918 out: 1919 if (res) { 1920 lock_mount_hash(); 1921 umount_tree(res, UMOUNT_SYNC); 1922 unlock_mount_hash(); 1923 } 1924 return q; 1925 } 1926 1927 /* Caller should check returned pointer for errors */ 1928 1929 struct vfsmount *collect_mounts(const struct path *path) 1930 { 1931 struct mount *tree; 1932 namespace_lock(); 1933 if (!check_mnt(real_mount(path->mnt))) 1934 tree = ERR_PTR(-EINVAL); 1935 else 1936 tree = copy_tree(real_mount(path->mnt), path->dentry, 1937 CL_COPY_ALL | CL_PRIVATE); 1938 namespace_unlock(); 1939 if (IS_ERR(tree)) 1940 return ERR_CAST(tree); 1941 return &tree->mnt; 1942 } 1943 1944 static void free_mnt_ns(struct mnt_namespace *); 1945 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1946 1947 void dissolve_on_fput(struct vfsmount *mnt) 1948 { 1949 struct mnt_namespace *ns; 1950 namespace_lock(); 1951 lock_mount_hash(); 1952 ns = real_mount(mnt)->mnt_ns; 1953 if (ns) { 1954 if (is_anon_ns(ns)) 1955 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1956 else 1957 ns = NULL; 1958 } 1959 unlock_mount_hash(); 1960 namespace_unlock(); 1961 if (ns) 1962 free_mnt_ns(ns); 1963 } 1964 1965 void drop_collected_mounts(struct vfsmount *mnt) 1966 { 1967 namespace_lock(); 1968 lock_mount_hash(); 1969 umount_tree(real_mount(mnt), 0); 1970 unlock_mount_hash(); 1971 namespace_unlock(); 1972 } 1973 1974 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1975 { 1976 struct mount *child; 1977 1978 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1979 if (!is_subdir(child->mnt_mountpoint, dentry)) 1980 continue; 1981 1982 if (child->mnt.mnt_flags & MNT_LOCKED) 1983 return true; 1984 } 1985 return false; 1986 } 1987 1988 /** 1989 * clone_private_mount - create a private clone of a path 1990 * @path: path to clone 1991 * 1992 * This creates a new vfsmount, which will be the clone of @path. The new mount 1993 * will not be attached anywhere in the namespace and will be private (i.e. 1994 * changes to the originating mount won't be propagated into this). 1995 * 1996 * Release with mntput(). 1997 */ 1998 struct vfsmount *clone_private_mount(const struct path *path) 1999 { 2000 struct mount *old_mnt = real_mount(path->mnt); 2001 struct mount *new_mnt; 2002 2003 down_read(&namespace_sem); 2004 if (IS_MNT_UNBINDABLE(old_mnt)) 2005 goto invalid; 2006 2007 if (!check_mnt(old_mnt)) 2008 goto invalid; 2009 2010 if (has_locked_children(old_mnt, path->dentry)) 2011 goto invalid; 2012 2013 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2014 up_read(&namespace_sem); 2015 2016 if (IS_ERR(new_mnt)) 2017 return ERR_CAST(new_mnt); 2018 2019 /* Longterm mount to be removed by kern_unmount*() */ 2020 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2021 2022 return &new_mnt->mnt; 2023 2024 invalid: 2025 up_read(&namespace_sem); 2026 return ERR_PTR(-EINVAL); 2027 } 2028 EXPORT_SYMBOL_GPL(clone_private_mount); 2029 2030 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2031 struct vfsmount *root) 2032 { 2033 struct mount *mnt; 2034 int res = f(root, arg); 2035 if (res) 2036 return res; 2037 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2038 res = f(&mnt->mnt, arg); 2039 if (res) 2040 return res; 2041 } 2042 return 0; 2043 } 2044 2045 static void lock_mnt_tree(struct mount *mnt) 2046 { 2047 struct mount *p; 2048 2049 for (p = mnt; p; p = next_mnt(p, mnt)) { 2050 int flags = p->mnt.mnt_flags; 2051 /* Don't allow unprivileged users to change mount flags */ 2052 flags |= MNT_LOCK_ATIME; 2053 2054 if (flags & MNT_READONLY) 2055 flags |= MNT_LOCK_READONLY; 2056 2057 if (flags & MNT_NODEV) 2058 flags |= MNT_LOCK_NODEV; 2059 2060 if (flags & MNT_NOSUID) 2061 flags |= MNT_LOCK_NOSUID; 2062 2063 if (flags & MNT_NOEXEC) 2064 flags |= MNT_LOCK_NOEXEC; 2065 /* Don't allow unprivileged users to reveal what is under a mount */ 2066 if (list_empty(&p->mnt_expire)) 2067 flags |= MNT_LOCKED; 2068 p->mnt.mnt_flags = flags; 2069 } 2070 } 2071 2072 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2073 { 2074 struct mount *p; 2075 2076 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2077 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2078 mnt_release_group_id(p); 2079 } 2080 } 2081 2082 static int invent_group_ids(struct mount *mnt, bool recurse) 2083 { 2084 struct mount *p; 2085 2086 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2087 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2088 int err = mnt_alloc_group_id(p); 2089 if (err) { 2090 cleanup_group_ids(mnt, p); 2091 return err; 2092 } 2093 } 2094 } 2095 2096 return 0; 2097 } 2098 2099 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2100 { 2101 unsigned int max = READ_ONCE(sysctl_mount_max); 2102 unsigned int mounts = 0, old, pending, sum; 2103 struct mount *p; 2104 2105 for (p = mnt; p; p = next_mnt(p, mnt)) 2106 mounts++; 2107 2108 old = ns->mounts; 2109 pending = ns->pending_mounts; 2110 sum = old + pending; 2111 if ((old > sum) || 2112 (pending > sum) || 2113 (max < sum) || 2114 (mounts > (max - sum))) 2115 return -ENOSPC; 2116 2117 ns->pending_mounts = pending + mounts; 2118 return 0; 2119 } 2120 2121 /* 2122 * @source_mnt : mount tree to be attached 2123 * @nd : place the mount tree @source_mnt is attached 2124 * @parent_nd : if non-null, detach the source_mnt from its parent and 2125 * store the parent mount and mountpoint dentry. 2126 * (done when source_mnt is moved) 2127 * 2128 * NOTE: in the table below explains the semantics when a source mount 2129 * of a given type is attached to a destination mount of a given type. 2130 * --------------------------------------------------------------------------- 2131 * | BIND MOUNT OPERATION | 2132 * |************************************************************************** 2133 * | source-->| shared | private | slave | unbindable | 2134 * | dest | | | | | 2135 * | | | | | | | 2136 * | v | | | | | 2137 * |************************************************************************** 2138 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2139 * | | | | | | 2140 * |non-shared| shared (+) | private | slave (*) | invalid | 2141 * *************************************************************************** 2142 * A bind operation clones the source mount and mounts the clone on the 2143 * destination mount. 2144 * 2145 * (++) the cloned mount is propagated to all the mounts in the propagation 2146 * tree of the destination mount and the cloned mount is added to 2147 * the peer group of the source mount. 2148 * (+) the cloned mount is created under the destination mount and is marked 2149 * as shared. The cloned mount is added to the peer group of the source 2150 * mount. 2151 * (+++) the mount is propagated to all the mounts in the propagation tree 2152 * of the destination mount and the cloned mount is made slave 2153 * of the same master as that of the source mount. The cloned mount 2154 * is marked as 'shared and slave'. 2155 * (*) the cloned mount is made a slave of the same master as that of the 2156 * source mount. 2157 * 2158 * --------------------------------------------------------------------------- 2159 * | MOVE MOUNT OPERATION | 2160 * |************************************************************************** 2161 * | source-->| shared | private | slave | unbindable | 2162 * | dest | | | | | 2163 * | | | | | | | 2164 * | v | | | | | 2165 * |************************************************************************** 2166 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2167 * | | | | | | 2168 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2169 * *************************************************************************** 2170 * 2171 * (+) the mount is moved to the destination. And is then propagated to 2172 * all the mounts in the propagation tree of the destination mount. 2173 * (+*) the mount is moved to the destination. 2174 * (+++) the mount is moved to the destination and is then propagated to 2175 * all the mounts belonging to the destination mount's propagation tree. 2176 * the mount is marked as 'shared and slave'. 2177 * (*) the mount continues to be a slave at the new location. 2178 * 2179 * if the source mount is a tree, the operations explained above is 2180 * applied to each mount in the tree. 2181 * Must be called without spinlocks held, since this function can sleep 2182 * in allocations. 2183 */ 2184 static int attach_recursive_mnt(struct mount *source_mnt, 2185 struct mount *dest_mnt, 2186 struct mountpoint *dest_mp, 2187 bool moving) 2188 { 2189 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2190 HLIST_HEAD(tree_list); 2191 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2192 struct mountpoint *smp; 2193 struct mount *child, *p; 2194 struct hlist_node *n; 2195 int err; 2196 2197 /* Preallocate a mountpoint in case the new mounts need 2198 * to be tucked under other mounts. 2199 */ 2200 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2201 if (IS_ERR(smp)) 2202 return PTR_ERR(smp); 2203 2204 /* Is there space to add these mounts to the mount namespace? */ 2205 if (!moving) { 2206 err = count_mounts(ns, source_mnt); 2207 if (err) 2208 goto out; 2209 } 2210 2211 if (IS_MNT_SHARED(dest_mnt)) { 2212 err = invent_group_ids(source_mnt, true); 2213 if (err) 2214 goto out; 2215 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2216 lock_mount_hash(); 2217 if (err) 2218 goto out_cleanup_ids; 2219 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2220 set_mnt_shared(p); 2221 } else { 2222 lock_mount_hash(); 2223 } 2224 if (moving) { 2225 unhash_mnt(source_mnt); 2226 attach_mnt(source_mnt, dest_mnt, dest_mp); 2227 touch_mnt_namespace(source_mnt->mnt_ns); 2228 } else { 2229 if (source_mnt->mnt_ns) { 2230 /* move from anon - the caller will destroy */ 2231 list_del_init(&source_mnt->mnt_ns->list); 2232 } 2233 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2234 commit_tree(source_mnt); 2235 } 2236 2237 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2238 struct mount *q; 2239 hlist_del_init(&child->mnt_hash); 2240 q = __lookup_mnt(&child->mnt_parent->mnt, 2241 child->mnt_mountpoint); 2242 if (q) 2243 mnt_change_mountpoint(child, smp, q); 2244 /* Notice when we are propagating across user namespaces */ 2245 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2246 lock_mnt_tree(child); 2247 child->mnt.mnt_flags &= ~MNT_LOCKED; 2248 commit_tree(child); 2249 } 2250 put_mountpoint(smp); 2251 unlock_mount_hash(); 2252 2253 return 0; 2254 2255 out_cleanup_ids: 2256 while (!hlist_empty(&tree_list)) { 2257 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2258 child->mnt_parent->mnt_ns->pending_mounts = 0; 2259 umount_tree(child, UMOUNT_SYNC); 2260 } 2261 unlock_mount_hash(); 2262 cleanup_group_ids(source_mnt, NULL); 2263 out: 2264 ns->pending_mounts = 0; 2265 2266 read_seqlock_excl(&mount_lock); 2267 put_mountpoint(smp); 2268 read_sequnlock_excl(&mount_lock); 2269 2270 return err; 2271 } 2272 2273 static struct mountpoint *lock_mount(struct path *path) 2274 { 2275 struct vfsmount *mnt; 2276 struct dentry *dentry = path->dentry; 2277 retry: 2278 inode_lock(dentry->d_inode); 2279 if (unlikely(cant_mount(dentry))) { 2280 inode_unlock(dentry->d_inode); 2281 return ERR_PTR(-ENOENT); 2282 } 2283 namespace_lock(); 2284 mnt = lookup_mnt(path); 2285 if (likely(!mnt)) { 2286 struct mountpoint *mp = get_mountpoint(dentry); 2287 if (IS_ERR(mp)) { 2288 namespace_unlock(); 2289 inode_unlock(dentry->d_inode); 2290 return mp; 2291 } 2292 return mp; 2293 } 2294 namespace_unlock(); 2295 inode_unlock(path->dentry->d_inode); 2296 path_put(path); 2297 path->mnt = mnt; 2298 dentry = path->dentry = dget(mnt->mnt_root); 2299 goto retry; 2300 } 2301 2302 static void unlock_mount(struct mountpoint *where) 2303 { 2304 struct dentry *dentry = where->m_dentry; 2305 2306 read_seqlock_excl(&mount_lock); 2307 put_mountpoint(where); 2308 read_sequnlock_excl(&mount_lock); 2309 2310 namespace_unlock(); 2311 inode_unlock(dentry->d_inode); 2312 } 2313 2314 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2315 { 2316 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2317 return -EINVAL; 2318 2319 if (d_is_dir(mp->m_dentry) != 2320 d_is_dir(mnt->mnt.mnt_root)) 2321 return -ENOTDIR; 2322 2323 return attach_recursive_mnt(mnt, p, mp, false); 2324 } 2325 2326 /* 2327 * Sanity check the flags to change_mnt_propagation. 2328 */ 2329 2330 static int flags_to_propagation_type(int ms_flags) 2331 { 2332 int type = ms_flags & ~(MS_REC | MS_SILENT); 2333 2334 /* Fail if any non-propagation flags are set */ 2335 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2336 return 0; 2337 /* Only one propagation flag should be set */ 2338 if (!is_power_of_2(type)) 2339 return 0; 2340 return type; 2341 } 2342 2343 /* 2344 * recursively change the type of the mountpoint. 2345 */ 2346 static int do_change_type(struct path *path, int ms_flags) 2347 { 2348 struct mount *m; 2349 struct mount *mnt = real_mount(path->mnt); 2350 int recurse = ms_flags & MS_REC; 2351 int type; 2352 int err = 0; 2353 2354 if (path->dentry != path->mnt->mnt_root) 2355 return -EINVAL; 2356 2357 type = flags_to_propagation_type(ms_flags); 2358 if (!type) 2359 return -EINVAL; 2360 2361 namespace_lock(); 2362 if (type == MS_SHARED) { 2363 err = invent_group_ids(mnt, recurse); 2364 if (err) 2365 goto out_unlock; 2366 } 2367 2368 lock_mount_hash(); 2369 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2370 change_mnt_propagation(m, type); 2371 unlock_mount_hash(); 2372 2373 out_unlock: 2374 namespace_unlock(); 2375 return err; 2376 } 2377 2378 static struct mount *__do_loopback(struct path *old_path, int recurse) 2379 { 2380 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2381 2382 if (IS_MNT_UNBINDABLE(old)) 2383 return mnt; 2384 2385 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2386 return mnt; 2387 2388 if (!recurse && has_locked_children(old, old_path->dentry)) 2389 return mnt; 2390 2391 if (recurse) 2392 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2393 else 2394 mnt = clone_mnt(old, old_path->dentry, 0); 2395 2396 if (!IS_ERR(mnt)) 2397 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2398 2399 return mnt; 2400 } 2401 2402 /* 2403 * do loopback mount. 2404 */ 2405 static int do_loopback(struct path *path, const char *old_name, 2406 int recurse) 2407 { 2408 struct path old_path; 2409 struct mount *mnt = NULL, *parent; 2410 struct mountpoint *mp; 2411 int err; 2412 if (!old_name || !*old_name) 2413 return -EINVAL; 2414 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2415 if (err) 2416 return err; 2417 2418 err = -EINVAL; 2419 if (mnt_ns_loop(old_path.dentry)) 2420 goto out; 2421 2422 mp = lock_mount(path); 2423 if (IS_ERR(mp)) { 2424 err = PTR_ERR(mp); 2425 goto out; 2426 } 2427 2428 parent = real_mount(path->mnt); 2429 if (!check_mnt(parent)) 2430 goto out2; 2431 2432 mnt = __do_loopback(&old_path, recurse); 2433 if (IS_ERR(mnt)) { 2434 err = PTR_ERR(mnt); 2435 goto out2; 2436 } 2437 2438 err = graft_tree(mnt, parent, mp); 2439 if (err) { 2440 lock_mount_hash(); 2441 umount_tree(mnt, UMOUNT_SYNC); 2442 unlock_mount_hash(); 2443 } 2444 out2: 2445 unlock_mount(mp); 2446 out: 2447 path_put(&old_path); 2448 return err; 2449 } 2450 2451 static struct file *open_detached_copy(struct path *path, bool recursive) 2452 { 2453 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2454 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2455 struct mount *mnt, *p; 2456 struct file *file; 2457 2458 if (IS_ERR(ns)) 2459 return ERR_CAST(ns); 2460 2461 namespace_lock(); 2462 mnt = __do_loopback(path, recursive); 2463 if (IS_ERR(mnt)) { 2464 namespace_unlock(); 2465 free_mnt_ns(ns); 2466 return ERR_CAST(mnt); 2467 } 2468 2469 lock_mount_hash(); 2470 for (p = mnt; p; p = next_mnt(p, mnt)) { 2471 p->mnt_ns = ns; 2472 ns->mounts++; 2473 } 2474 ns->root = mnt; 2475 list_add_tail(&ns->list, &mnt->mnt_list); 2476 mntget(&mnt->mnt); 2477 unlock_mount_hash(); 2478 namespace_unlock(); 2479 2480 mntput(path->mnt); 2481 path->mnt = &mnt->mnt; 2482 file = dentry_open(path, O_PATH, current_cred()); 2483 if (IS_ERR(file)) 2484 dissolve_on_fput(path->mnt); 2485 else 2486 file->f_mode |= FMODE_NEED_UNMOUNT; 2487 return file; 2488 } 2489 2490 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2491 { 2492 struct file *file; 2493 struct path path; 2494 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2495 bool detached = flags & OPEN_TREE_CLONE; 2496 int error; 2497 int fd; 2498 2499 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2500 2501 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2502 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2503 OPEN_TREE_CLOEXEC)) 2504 return -EINVAL; 2505 2506 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2507 return -EINVAL; 2508 2509 if (flags & AT_NO_AUTOMOUNT) 2510 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2511 if (flags & AT_SYMLINK_NOFOLLOW) 2512 lookup_flags &= ~LOOKUP_FOLLOW; 2513 if (flags & AT_EMPTY_PATH) 2514 lookup_flags |= LOOKUP_EMPTY; 2515 2516 if (detached && !may_mount()) 2517 return -EPERM; 2518 2519 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2520 if (fd < 0) 2521 return fd; 2522 2523 error = user_path_at(dfd, filename, lookup_flags, &path); 2524 if (unlikely(error)) { 2525 file = ERR_PTR(error); 2526 } else { 2527 if (detached) 2528 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2529 else 2530 file = dentry_open(&path, O_PATH, current_cred()); 2531 path_put(&path); 2532 } 2533 if (IS_ERR(file)) { 2534 put_unused_fd(fd); 2535 return PTR_ERR(file); 2536 } 2537 fd_install(fd, file); 2538 return fd; 2539 } 2540 2541 /* 2542 * Don't allow locked mount flags to be cleared. 2543 * 2544 * No locks need to be held here while testing the various MNT_LOCK 2545 * flags because those flags can never be cleared once they are set. 2546 */ 2547 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2548 { 2549 unsigned int fl = mnt->mnt.mnt_flags; 2550 2551 if ((fl & MNT_LOCK_READONLY) && 2552 !(mnt_flags & MNT_READONLY)) 2553 return false; 2554 2555 if ((fl & MNT_LOCK_NODEV) && 2556 !(mnt_flags & MNT_NODEV)) 2557 return false; 2558 2559 if ((fl & MNT_LOCK_NOSUID) && 2560 !(mnt_flags & MNT_NOSUID)) 2561 return false; 2562 2563 if ((fl & MNT_LOCK_NOEXEC) && 2564 !(mnt_flags & MNT_NOEXEC)) 2565 return false; 2566 2567 if ((fl & MNT_LOCK_ATIME) && 2568 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2569 return false; 2570 2571 return true; 2572 } 2573 2574 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2575 { 2576 bool readonly_request = (mnt_flags & MNT_READONLY); 2577 2578 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2579 return 0; 2580 2581 if (readonly_request) 2582 return mnt_make_readonly(mnt); 2583 2584 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2585 return 0; 2586 } 2587 2588 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2589 { 2590 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2591 mnt->mnt.mnt_flags = mnt_flags; 2592 touch_mnt_namespace(mnt->mnt_ns); 2593 } 2594 2595 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2596 { 2597 struct super_block *sb = mnt->mnt_sb; 2598 2599 if (!__mnt_is_readonly(mnt) && 2600 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2601 char *buf = (char *)__get_free_page(GFP_KERNEL); 2602 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2603 struct tm tm; 2604 2605 time64_to_tm(sb->s_time_max, 0, &tm); 2606 2607 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2608 sb->s_type->name, 2609 is_mounted(mnt) ? "remounted" : "mounted", 2610 mntpath, 2611 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2612 2613 free_page((unsigned long)buf); 2614 } 2615 } 2616 2617 /* 2618 * Handle reconfiguration of the mountpoint only without alteration of the 2619 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2620 * to mount(2). 2621 */ 2622 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2623 { 2624 struct super_block *sb = path->mnt->mnt_sb; 2625 struct mount *mnt = real_mount(path->mnt); 2626 int ret; 2627 2628 if (!check_mnt(mnt)) 2629 return -EINVAL; 2630 2631 if (path->dentry != mnt->mnt.mnt_root) 2632 return -EINVAL; 2633 2634 if (!can_change_locked_flags(mnt, mnt_flags)) 2635 return -EPERM; 2636 2637 /* 2638 * We're only checking whether the superblock is read-only not 2639 * changing it, so only take down_read(&sb->s_umount). 2640 */ 2641 down_read(&sb->s_umount); 2642 lock_mount_hash(); 2643 ret = change_mount_ro_state(mnt, mnt_flags); 2644 if (ret == 0) 2645 set_mount_attributes(mnt, mnt_flags); 2646 unlock_mount_hash(); 2647 up_read(&sb->s_umount); 2648 2649 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2650 2651 return ret; 2652 } 2653 2654 /* 2655 * change filesystem flags. dir should be a physical root of filesystem. 2656 * If you've mounted a non-root directory somewhere and want to do remount 2657 * on it - tough luck. 2658 */ 2659 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2660 int mnt_flags, void *data) 2661 { 2662 int err; 2663 struct super_block *sb = path->mnt->mnt_sb; 2664 struct mount *mnt = real_mount(path->mnt); 2665 struct fs_context *fc; 2666 2667 if (!check_mnt(mnt)) 2668 return -EINVAL; 2669 2670 if (path->dentry != path->mnt->mnt_root) 2671 return -EINVAL; 2672 2673 if (!can_change_locked_flags(mnt, mnt_flags)) 2674 return -EPERM; 2675 2676 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2677 if (IS_ERR(fc)) 2678 return PTR_ERR(fc); 2679 2680 fc->oldapi = true; 2681 err = parse_monolithic_mount_data(fc, data); 2682 if (!err) { 2683 down_write(&sb->s_umount); 2684 err = -EPERM; 2685 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2686 err = reconfigure_super(fc); 2687 if (!err) { 2688 lock_mount_hash(); 2689 set_mount_attributes(mnt, mnt_flags); 2690 unlock_mount_hash(); 2691 } 2692 } 2693 up_write(&sb->s_umount); 2694 } 2695 2696 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2697 2698 put_fs_context(fc); 2699 return err; 2700 } 2701 2702 static inline int tree_contains_unbindable(struct mount *mnt) 2703 { 2704 struct mount *p; 2705 for (p = mnt; p; p = next_mnt(p, mnt)) { 2706 if (IS_MNT_UNBINDABLE(p)) 2707 return 1; 2708 } 2709 return 0; 2710 } 2711 2712 /* 2713 * Check that there aren't references to earlier/same mount namespaces in the 2714 * specified subtree. Such references can act as pins for mount namespaces 2715 * that aren't checked by the mount-cycle checking code, thereby allowing 2716 * cycles to be made. 2717 */ 2718 static bool check_for_nsfs_mounts(struct mount *subtree) 2719 { 2720 struct mount *p; 2721 bool ret = false; 2722 2723 lock_mount_hash(); 2724 for (p = subtree; p; p = next_mnt(p, subtree)) 2725 if (mnt_ns_loop(p->mnt.mnt_root)) 2726 goto out; 2727 2728 ret = true; 2729 out: 2730 unlock_mount_hash(); 2731 return ret; 2732 } 2733 2734 static int do_set_group(struct path *from_path, struct path *to_path) 2735 { 2736 struct mount *from, *to; 2737 int err; 2738 2739 from = real_mount(from_path->mnt); 2740 to = real_mount(to_path->mnt); 2741 2742 namespace_lock(); 2743 2744 err = -EINVAL; 2745 /* To and From must be mounted */ 2746 if (!is_mounted(&from->mnt)) 2747 goto out; 2748 if (!is_mounted(&to->mnt)) 2749 goto out; 2750 2751 err = -EPERM; 2752 /* We should be allowed to modify mount namespaces of both mounts */ 2753 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2754 goto out; 2755 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2756 goto out; 2757 2758 err = -EINVAL; 2759 /* To and From paths should be mount roots */ 2760 if (from_path->dentry != from_path->mnt->mnt_root) 2761 goto out; 2762 if (to_path->dentry != to_path->mnt->mnt_root) 2763 goto out; 2764 2765 /* Setting sharing groups is only allowed across same superblock */ 2766 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2767 goto out; 2768 2769 /* From mount root should be wider than To mount root */ 2770 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2771 goto out; 2772 2773 /* From mount should not have locked children in place of To's root */ 2774 if (has_locked_children(from, to->mnt.mnt_root)) 2775 goto out; 2776 2777 /* Setting sharing groups is only allowed on private mounts */ 2778 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2779 goto out; 2780 2781 /* From should not be private */ 2782 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2783 goto out; 2784 2785 if (IS_MNT_SLAVE(from)) { 2786 struct mount *m = from->mnt_master; 2787 2788 list_add(&to->mnt_slave, &m->mnt_slave_list); 2789 to->mnt_master = m; 2790 } 2791 2792 if (IS_MNT_SHARED(from)) { 2793 to->mnt_group_id = from->mnt_group_id; 2794 list_add(&to->mnt_share, &from->mnt_share); 2795 lock_mount_hash(); 2796 set_mnt_shared(to); 2797 unlock_mount_hash(); 2798 } 2799 2800 err = 0; 2801 out: 2802 namespace_unlock(); 2803 return err; 2804 } 2805 2806 static int do_move_mount(struct path *old_path, struct path *new_path) 2807 { 2808 struct mnt_namespace *ns; 2809 struct mount *p; 2810 struct mount *old; 2811 struct mount *parent; 2812 struct mountpoint *mp, *old_mp; 2813 int err; 2814 bool attached; 2815 2816 mp = lock_mount(new_path); 2817 if (IS_ERR(mp)) 2818 return PTR_ERR(mp); 2819 2820 old = real_mount(old_path->mnt); 2821 p = real_mount(new_path->mnt); 2822 parent = old->mnt_parent; 2823 attached = mnt_has_parent(old); 2824 old_mp = old->mnt_mp; 2825 ns = old->mnt_ns; 2826 2827 err = -EINVAL; 2828 /* The mountpoint must be in our namespace. */ 2829 if (!check_mnt(p)) 2830 goto out; 2831 2832 /* The thing moved must be mounted... */ 2833 if (!is_mounted(&old->mnt)) 2834 goto out; 2835 2836 /* ... and either ours or the root of anon namespace */ 2837 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2838 goto out; 2839 2840 if (old->mnt.mnt_flags & MNT_LOCKED) 2841 goto out; 2842 2843 if (old_path->dentry != old_path->mnt->mnt_root) 2844 goto out; 2845 2846 if (d_is_dir(new_path->dentry) != 2847 d_is_dir(old_path->dentry)) 2848 goto out; 2849 /* 2850 * Don't move a mount residing in a shared parent. 2851 */ 2852 if (attached && IS_MNT_SHARED(parent)) 2853 goto out; 2854 /* 2855 * Don't move a mount tree containing unbindable mounts to a destination 2856 * mount which is shared. 2857 */ 2858 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2859 goto out; 2860 err = -ELOOP; 2861 if (!check_for_nsfs_mounts(old)) 2862 goto out; 2863 for (; mnt_has_parent(p); p = p->mnt_parent) 2864 if (p == old) 2865 goto out; 2866 2867 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2868 attached); 2869 if (err) 2870 goto out; 2871 2872 /* if the mount is moved, it should no longer be expire 2873 * automatically */ 2874 list_del_init(&old->mnt_expire); 2875 if (attached) 2876 put_mountpoint(old_mp); 2877 out: 2878 unlock_mount(mp); 2879 if (!err) { 2880 if (attached) 2881 mntput_no_expire(parent); 2882 else 2883 free_mnt_ns(ns); 2884 } 2885 return err; 2886 } 2887 2888 static int do_move_mount_old(struct path *path, const char *old_name) 2889 { 2890 struct path old_path; 2891 int err; 2892 2893 if (!old_name || !*old_name) 2894 return -EINVAL; 2895 2896 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2897 if (err) 2898 return err; 2899 2900 err = do_move_mount(&old_path, path); 2901 path_put(&old_path); 2902 return err; 2903 } 2904 2905 /* 2906 * add a mount into a namespace's mount tree 2907 */ 2908 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2909 struct path *path, int mnt_flags) 2910 { 2911 struct mount *parent = real_mount(path->mnt); 2912 2913 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2914 2915 if (unlikely(!check_mnt(parent))) { 2916 /* that's acceptable only for automounts done in private ns */ 2917 if (!(mnt_flags & MNT_SHRINKABLE)) 2918 return -EINVAL; 2919 /* ... and for those we'd better have mountpoint still alive */ 2920 if (!parent->mnt_ns) 2921 return -EINVAL; 2922 } 2923 2924 /* Refuse the same filesystem on the same mount point */ 2925 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2926 path->mnt->mnt_root == path->dentry) 2927 return -EBUSY; 2928 2929 if (d_is_symlink(newmnt->mnt.mnt_root)) 2930 return -EINVAL; 2931 2932 newmnt->mnt.mnt_flags = mnt_flags; 2933 return graft_tree(newmnt, parent, mp); 2934 } 2935 2936 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2937 2938 /* 2939 * Create a new mount using a superblock configuration and request it 2940 * be added to the namespace tree. 2941 */ 2942 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2943 unsigned int mnt_flags) 2944 { 2945 struct vfsmount *mnt; 2946 struct mountpoint *mp; 2947 struct super_block *sb = fc->root->d_sb; 2948 int error; 2949 2950 error = security_sb_kern_mount(sb); 2951 if (!error && mount_too_revealing(sb, &mnt_flags)) 2952 error = -EPERM; 2953 2954 if (unlikely(error)) { 2955 fc_drop_locked(fc); 2956 return error; 2957 } 2958 2959 up_write(&sb->s_umount); 2960 2961 mnt = vfs_create_mount(fc); 2962 if (IS_ERR(mnt)) 2963 return PTR_ERR(mnt); 2964 2965 mnt_warn_timestamp_expiry(mountpoint, mnt); 2966 2967 mp = lock_mount(mountpoint); 2968 if (IS_ERR(mp)) { 2969 mntput(mnt); 2970 return PTR_ERR(mp); 2971 } 2972 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2973 unlock_mount(mp); 2974 if (error < 0) 2975 mntput(mnt); 2976 return error; 2977 } 2978 2979 /* 2980 * create a new mount for userspace and request it to be added into the 2981 * namespace's tree 2982 */ 2983 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2984 int mnt_flags, const char *name, void *data) 2985 { 2986 struct file_system_type *type; 2987 struct fs_context *fc; 2988 const char *subtype = NULL; 2989 int err = 0; 2990 2991 if (!fstype) 2992 return -EINVAL; 2993 2994 type = get_fs_type(fstype); 2995 if (!type) 2996 return -ENODEV; 2997 2998 if (type->fs_flags & FS_HAS_SUBTYPE) { 2999 subtype = strchr(fstype, '.'); 3000 if (subtype) { 3001 subtype++; 3002 if (!*subtype) { 3003 put_filesystem(type); 3004 return -EINVAL; 3005 } 3006 } 3007 } 3008 3009 fc = fs_context_for_mount(type, sb_flags); 3010 put_filesystem(type); 3011 if (IS_ERR(fc)) 3012 return PTR_ERR(fc); 3013 3014 if (subtype) 3015 err = vfs_parse_fs_string(fc, "subtype", 3016 subtype, strlen(subtype)); 3017 if (!err && name) 3018 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3019 if (!err) 3020 err = parse_monolithic_mount_data(fc, data); 3021 if (!err && !mount_capable(fc)) 3022 err = -EPERM; 3023 if (!err) 3024 err = vfs_get_tree(fc); 3025 if (!err) 3026 err = do_new_mount_fc(fc, path, mnt_flags); 3027 3028 put_fs_context(fc); 3029 return err; 3030 } 3031 3032 int finish_automount(struct vfsmount *m, struct path *path) 3033 { 3034 struct dentry *dentry = path->dentry; 3035 struct mountpoint *mp; 3036 struct mount *mnt; 3037 int err; 3038 3039 if (!m) 3040 return 0; 3041 if (IS_ERR(m)) 3042 return PTR_ERR(m); 3043 3044 mnt = real_mount(m); 3045 /* The new mount record should have at least 2 refs to prevent it being 3046 * expired before we get a chance to add it 3047 */ 3048 BUG_ON(mnt_get_count(mnt) < 2); 3049 3050 if (m->mnt_sb == path->mnt->mnt_sb && 3051 m->mnt_root == dentry) { 3052 err = -ELOOP; 3053 goto discard; 3054 } 3055 3056 /* 3057 * we don't want to use lock_mount() - in this case finding something 3058 * that overmounts our mountpoint to be means "quitely drop what we've 3059 * got", not "try to mount it on top". 3060 */ 3061 inode_lock(dentry->d_inode); 3062 namespace_lock(); 3063 if (unlikely(cant_mount(dentry))) { 3064 err = -ENOENT; 3065 goto discard_locked; 3066 } 3067 rcu_read_lock(); 3068 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3069 rcu_read_unlock(); 3070 err = 0; 3071 goto discard_locked; 3072 } 3073 rcu_read_unlock(); 3074 mp = get_mountpoint(dentry); 3075 if (IS_ERR(mp)) { 3076 err = PTR_ERR(mp); 3077 goto discard_locked; 3078 } 3079 3080 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3081 unlock_mount(mp); 3082 if (unlikely(err)) 3083 goto discard; 3084 mntput(m); 3085 return 0; 3086 3087 discard_locked: 3088 namespace_unlock(); 3089 inode_unlock(dentry->d_inode); 3090 discard: 3091 /* remove m from any expiration list it may be on */ 3092 if (!list_empty(&mnt->mnt_expire)) { 3093 namespace_lock(); 3094 list_del_init(&mnt->mnt_expire); 3095 namespace_unlock(); 3096 } 3097 mntput(m); 3098 mntput(m); 3099 return err; 3100 } 3101 3102 /** 3103 * mnt_set_expiry - Put a mount on an expiration list 3104 * @mnt: The mount to list. 3105 * @expiry_list: The list to add the mount to. 3106 */ 3107 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3108 { 3109 namespace_lock(); 3110 3111 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3112 3113 namespace_unlock(); 3114 } 3115 EXPORT_SYMBOL(mnt_set_expiry); 3116 3117 /* 3118 * process a list of expirable mountpoints with the intent of discarding any 3119 * mountpoints that aren't in use and haven't been touched since last we came 3120 * here 3121 */ 3122 void mark_mounts_for_expiry(struct list_head *mounts) 3123 { 3124 struct mount *mnt, *next; 3125 LIST_HEAD(graveyard); 3126 3127 if (list_empty(mounts)) 3128 return; 3129 3130 namespace_lock(); 3131 lock_mount_hash(); 3132 3133 /* extract from the expiration list every vfsmount that matches the 3134 * following criteria: 3135 * - only referenced by its parent vfsmount 3136 * - still marked for expiry (marked on the last call here; marks are 3137 * cleared by mntput()) 3138 */ 3139 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3140 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3141 propagate_mount_busy(mnt, 1)) 3142 continue; 3143 list_move(&mnt->mnt_expire, &graveyard); 3144 } 3145 while (!list_empty(&graveyard)) { 3146 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3147 touch_mnt_namespace(mnt->mnt_ns); 3148 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3149 } 3150 unlock_mount_hash(); 3151 namespace_unlock(); 3152 } 3153 3154 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3155 3156 /* 3157 * Ripoff of 'select_parent()' 3158 * 3159 * search the list of submounts for a given mountpoint, and move any 3160 * shrinkable submounts to the 'graveyard' list. 3161 */ 3162 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3163 { 3164 struct mount *this_parent = parent; 3165 struct list_head *next; 3166 int found = 0; 3167 3168 repeat: 3169 next = this_parent->mnt_mounts.next; 3170 resume: 3171 while (next != &this_parent->mnt_mounts) { 3172 struct list_head *tmp = next; 3173 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3174 3175 next = tmp->next; 3176 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3177 continue; 3178 /* 3179 * Descend a level if the d_mounts list is non-empty. 3180 */ 3181 if (!list_empty(&mnt->mnt_mounts)) { 3182 this_parent = mnt; 3183 goto repeat; 3184 } 3185 3186 if (!propagate_mount_busy(mnt, 1)) { 3187 list_move_tail(&mnt->mnt_expire, graveyard); 3188 found++; 3189 } 3190 } 3191 /* 3192 * All done at this level ... ascend and resume the search 3193 */ 3194 if (this_parent != parent) { 3195 next = this_parent->mnt_child.next; 3196 this_parent = this_parent->mnt_parent; 3197 goto resume; 3198 } 3199 return found; 3200 } 3201 3202 /* 3203 * process a list of expirable mountpoints with the intent of discarding any 3204 * submounts of a specific parent mountpoint 3205 * 3206 * mount_lock must be held for write 3207 */ 3208 static void shrink_submounts(struct mount *mnt) 3209 { 3210 LIST_HEAD(graveyard); 3211 struct mount *m; 3212 3213 /* extract submounts of 'mountpoint' from the expiration list */ 3214 while (select_submounts(mnt, &graveyard)) { 3215 while (!list_empty(&graveyard)) { 3216 m = list_first_entry(&graveyard, struct mount, 3217 mnt_expire); 3218 touch_mnt_namespace(m->mnt_ns); 3219 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3220 } 3221 } 3222 } 3223 3224 static void *copy_mount_options(const void __user * data) 3225 { 3226 char *copy; 3227 unsigned left, offset; 3228 3229 if (!data) 3230 return NULL; 3231 3232 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3233 if (!copy) 3234 return ERR_PTR(-ENOMEM); 3235 3236 left = copy_from_user(copy, data, PAGE_SIZE); 3237 3238 /* 3239 * Not all architectures have an exact copy_from_user(). Resort to 3240 * byte at a time. 3241 */ 3242 offset = PAGE_SIZE - left; 3243 while (left) { 3244 char c; 3245 if (get_user(c, (const char __user *)data + offset)) 3246 break; 3247 copy[offset] = c; 3248 left--; 3249 offset++; 3250 } 3251 3252 if (left == PAGE_SIZE) { 3253 kfree(copy); 3254 return ERR_PTR(-EFAULT); 3255 } 3256 3257 return copy; 3258 } 3259 3260 static char *copy_mount_string(const void __user *data) 3261 { 3262 return data ? strndup_user(data, PATH_MAX) : NULL; 3263 } 3264 3265 /* 3266 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3267 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3268 * 3269 * data is a (void *) that can point to any structure up to 3270 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3271 * information (or be NULL). 3272 * 3273 * Pre-0.97 versions of mount() didn't have a flags word. 3274 * When the flags word was introduced its top half was required 3275 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3276 * Therefore, if this magic number is present, it carries no information 3277 * and must be discarded. 3278 */ 3279 int path_mount(const char *dev_name, struct path *path, 3280 const char *type_page, unsigned long flags, void *data_page) 3281 { 3282 unsigned int mnt_flags = 0, sb_flags; 3283 int ret; 3284 3285 /* Discard magic */ 3286 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3287 flags &= ~MS_MGC_MSK; 3288 3289 /* Basic sanity checks */ 3290 if (data_page) 3291 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3292 3293 if (flags & MS_NOUSER) 3294 return -EINVAL; 3295 3296 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3297 if (ret) 3298 return ret; 3299 if (!may_mount()) 3300 return -EPERM; 3301 if (flags & SB_MANDLOCK) 3302 warn_mandlock(); 3303 3304 /* Default to relatime unless overriden */ 3305 if (!(flags & MS_NOATIME)) 3306 mnt_flags |= MNT_RELATIME; 3307 3308 /* Separate the per-mountpoint flags */ 3309 if (flags & MS_NOSUID) 3310 mnt_flags |= MNT_NOSUID; 3311 if (flags & MS_NODEV) 3312 mnt_flags |= MNT_NODEV; 3313 if (flags & MS_NOEXEC) 3314 mnt_flags |= MNT_NOEXEC; 3315 if (flags & MS_NOATIME) 3316 mnt_flags |= MNT_NOATIME; 3317 if (flags & MS_NODIRATIME) 3318 mnt_flags |= MNT_NODIRATIME; 3319 if (flags & MS_STRICTATIME) 3320 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3321 if (flags & MS_RDONLY) 3322 mnt_flags |= MNT_READONLY; 3323 if (flags & MS_NOSYMFOLLOW) 3324 mnt_flags |= MNT_NOSYMFOLLOW; 3325 3326 /* The default atime for remount is preservation */ 3327 if ((flags & MS_REMOUNT) && 3328 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3329 MS_STRICTATIME)) == 0)) { 3330 mnt_flags &= ~MNT_ATIME_MASK; 3331 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3332 } 3333 3334 sb_flags = flags & (SB_RDONLY | 3335 SB_SYNCHRONOUS | 3336 SB_MANDLOCK | 3337 SB_DIRSYNC | 3338 SB_SILENT | 3339 SB_POSIXACL | 3340 SB_LAZYTIME | 3341 SB_I_VERSION); 3342 3343 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3344 return do_reconfigure_mnt(path, mnt_flags); 3345 if (flags & MS_REMOUNT) 3346 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3347 if (flags & MS_BIND) 3348 return do_loopback(path, dev_name, flags & MS_REC); 3349 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3350 return do_change_type(path, flags); 3351 if (flags & MS_MOVE) 3352 return do_move_mount_old(path, dev_name); 3353 3354 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3355 data_page); 3356 } 3357 3358 long do_mount(const char *dev_name, const char __user *dir_name, 3359 const char *type_page, unsigned long flags, void *data_page) 3360 { 3361 struct path path; 3362 int ret; 3363 3364 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3365 if (ret) 3366 return ret; 3367 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3368 path_put(&path); 3369 return ret; 3370 } 3371 3372 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3373 { 3374 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3375 } 3376 3377 static void dec_mnt_namespaces(struct ucounts *ucounts) 3378 { 3379 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3380 } 3381 3382 static void free_mnt_ns(struct mnt_namespace *ns) 3383 { 3384 if (!is_anon_ns(ns)) 3385 ns_free_inum(&ns->ns); 3386 dec_mnt_namespaces(ns->ucounts); 3387 put_user_ns(ns->user_ns); 3388 kfree(ns); 3389 } 3390 3391 /* 3392 * Assign a sequence number so we can detect when we attempt to bind 3393 * mount a reference to an older mount namespace into the current 3394 * mount namespace, preventing reference counting loops. A 64bit 3395 * number incrementing at 10Ghz will take 12,427 years to wrap which 3396 * is effectively never, so we can ignore the possibility. 3397 */ 3398 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3399 3400 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3401 { 3402 struct mnt_namespace *new_ns; 3403 struct ucounts *ucounts; 3404 int ret; 3405 3406 ucounts = inc_mnt_namespaces(user_ns); 3407 if (!ucounts) 3408 return ERR_PTR(-ENOSPC); 3409 3410 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3411 if (!new_ns) { 3412 dec_mnt_namespaces(ucounts); 3413 return ERR_PTR(-ENOMEM); 3414 } 3415 if (!anon) { 3416 ret = ns_alloc_inum(&new_ns->ns); 3417 if (ret) { 3418 kfree(new_ns); 3419 dec_mnt_namespaces(ucounts); 3420 return ERR_PTR(ret); 3421 } 3422 } 3423 new_ns->ns.ops = &mntns_operations; 3424 if (!anon) 3425 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3426 refcount_set(&new_ns->ns.count, 1); 3427 INIT_LIST_HEAD(&new_ns->list); 3428 init_waitqueue_head(&new_ns->poll); 3429 spin_lock_init(&new_ns->ns_lock); 3430 new_ns->user_ns = get_user_ns(user_ns); 3431 new_ns->ucounts = ucounts; 3432 return new_ns; 3433 } 3434 3435 __latent_entropy 3436 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3437 struct user_namespace *user_ns, struct fs_struct *new_fs) 3438 { 3439 struct mnt_namespace *new_ns; 3440 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3441 struct mount *p, *q; 3442 struct mount *old; 3443 struct mount *new; 3444 int copy_flags; 3445 3446 BUG_ON(!ns); 3447 3448 if (likely(!(flags & CLONE_NEWNS))) { 3449 get_mnt_ns(ns); 3450 return ns; 3451 } 3452 3453 old = ns->root; 3454 3455 new_ns = alloc_mnt_ns(user_ns, false); 3456 if (IS_ERR(new_ns)) 3457 return new_ns; 3458 3459 namespace_lock(); 3460 /* First pass: copy the tree topology */ 3461 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3462 if (user_ns != ns->user_ns) 3463 copy_flags |= CL_SHARED_TO_SLAVE; 3464 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3465 if (IS_ERR(new)) { 3466 namespace_unlock(); 3467 free_mnt_ns(new_ns); 3468 return ERR_CAST(new); 3469 } 3470 if (user_ns != ns->user_ns) { 3471 lock_mount_hash(); 3472 lock_mnt_tree(new); 3473 unlock_mount_hash(); 3474 } 3475 new_ns->root = new; 3476 list_add_tail(&new_ns->list, &new->mnt_list); 3477 3478 /* 3479 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3480 * as belonging to new namespace. We have already acquired a private 3481 * fs_struct, so tsk->fs->lock is not needed. 3482 */ 3483 p = old; 3484 q = new; 3485 while (p) { 3486 q->mnt_ns = new_ns; 3487 new_ns->mounts++; 3488 if (new_fs) { 3489 if (&p->mnt == new_fs->root.mnt) { 3490 new_fs->root.mnt = mntget(&q->mnt); 3491 rootmnt = &p->mnt; 3492 } 3493 if (&p->mnt == new_fs->pwd.mnt) { 3494 new_fs->pwd.mnt = mntget(&q->mnt); 3495 pwdmnt = &p->mnt; 3496 } 3497 } 3498 p = next_mnt(p, old); 3499 q = next_mnt(q, new); 3500 if (!q) 3501 break; 3502 while (p->mnt.mnt_root != q->mnt.mnt_root) 3503 p = next_mnt(p, old); 3504 } 3505 namespace_unlock(); 3506 3507 if (rootmnt) 3508 mntput(rootmnt); 3509 if (pwdmnt) 3510 mntput(pwdmnt); 3511 3512 return new_ns; 3513 } 3514 3515 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3516 { 3517 struct mount *mnt = real_mount(m); 3518 struct mnt_namespace *ns; 3519 struct super_block *s; 3520 struct path path; 3521 int err; 3522 3523 ns = alloc_mnt_ns(&init_user_ns, true); 3524 if (IS_ERR(ns)) { 3525 mntput(m); 3526 return ERR_CAST(ns); 3527 } 3528 mnt->mnt_ns = ns; 3529 ns->root = mnt; 3530 ns->mounts++; 3531 list_add(&mnt->mnt_list, &ns->list); 3532 3533 err = vfs_path_lookup(m->mnt_root, m, 3534 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3535 3536 put_mnt_ns(ns); 3537 3538 if (err) 3539 return ERR_PTR(err); 3540 3541 /* trade a vfsmount reference for active sb one */ 3542 s = path.mnt->mnt_sb; 3543 atomic_inc(&s->s_active); 3544 mntput(path.mnt); 3545 /* lock the sucker */ 3546 down_write(&s->s_umount); 3547 /* ... and return the root of (sub)tree on it */ 3548 return path.dentry; 3549 } 3550 EXPORT_SYMBOL(mount_subtree); 3551 3552 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3553 char __user *, type, unsigned long, flags, void __user *, data) 3554 { 3555 int ret; 3556 char *kernel_type; 3557 char *kernel_dev; 3558 void *options; 3559 3560 kernel_type = copy_mount_string(type); 3561 ret = PTR_ERR(kernel_type); 3562 if (IS_ERR(kernel_type)) 3563 goto out_type; 3564 3565 kernel_dev = copy_mount_string(dev_name); 3566 ret = PTR_ERR(kernel_dev); 3567 if (IS_ERR(kernel_dev)) 3568 goto out_dev; 3569 3570 options = copy_mount_options(data); 3571 ret = PTR_ERR(options); 3572 if (IS_ERR(options)) 3573 goto out_data; 3574 3575 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3576 3577 kfree(options); 3578 out_data: 3579 kfree(kernel_dev); 3580 out_dev: 3581 kfree(kernel_type); 3582 out_type: 3583 return ret; 3584 } 3585 3586 #define FSMOUNT_VALID_FLAGS \ 3587 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3588 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3589 MOUNT_ATTR_NOSYMFOLLOW) 3590 3591 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3592 3593 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3594 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3595 3596 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3597 { 3598 unsigned int mnt_flags = 0; 3599 3600 if (attr_flags & MOUNT_ATTR_RDONLY) 3601 mnt_flags |= MNT_READONLY; 3602 if (attr_flags & MOUNT_ATTR_NOSUID) 3603 mnt_flags |= MNT_NOSUID; 3604 if (attr_flags & MOUNT_ATTR_NODEV) 3605 mnt_flags |= MNT_NODEV; 3606 if (attr_flags & MOUNT_ATTR_NOEXEC) 3607 mnt_flags |= MNT_NOEXEC; 3608 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3609 mnt_flags |= MNT_NODIRATIME; 3610 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3611 mnt_flags |= MNT_NOSYMFOLLOW; 3612 3613 return mnt_flags; 3614 } 3615 3616 /* 3617 * Create a kernel mount representation for a new, prepared superblock 3618 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3619 */ 3620 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3621 unsigned int, attr_flags) 3622 { 3623 struct mnt_namespace *ns; 3624 struct fs_context *fc; 3625 struct file *file; 3626 struct path newmount; 3627 struct mount *mnt; 3628 struct fd f; 3629 unsigned int mnt_flags = 0; 3630 long ret; 3631 3632 if (!may_mount()) 3633 return -EPERM; 3634 3635 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3636 return -EINVAL; 3637 3638 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3639 return -EINVAL; 3640 3641 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3642 3643 switch (attr_flags & MOUNT_ATTR__ATIME) { 3644 case MOUNT_ATTR_STRICTATIME: 3645 break; 3646 case MOUNT_ATTR_NOATIME: 3647 mnt_flags |= MNT_NOATIME; 3648 break; 3649 case MOUNT_ATTR_RELATIME: 3650 mnt_flags |= MNT_RELATIME; 3651 break; 3652 default: 3653 return -EINVAL; 3654 } 3655 3656 f = fdget(fs_fd); 3657 if (!f.file) 3658 return -EBADF; 3659 3660 ret = -EINVAL; 3661 if (f.file->f_op != &fscontext_fops) 3662 goto err_fsfd; 3663 3664 fc = f.file->private_data; 3665 3666 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3667 if (ret < 0) 3668 goto err_fsfd; 3669 3670 /* There must be a valid superblock or we can't mount it */ 3671 ret = -EINVAL; 3672 if (!fc->root) 3673 goto err_unlock; 3674 3675 ret = -EPERM; 3676 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3677 pr_warn("VFS: Mount too revealing\n"); 3678 goto err_unlock; 3679 } 3680 3681 ret = -EBUSY; 3682 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3683 goto err_unlock; 3684 3685 if (fc->sb_flags & SB_MANDLOCK) 3686 warn_mandlock(); 3687 3688 newmount.mnt = vfs_create_mount(fc); 3689 if (IS_ERR(newmount.mnt)) { 3690 ret = PTR_ERR(newmount.mnt); 3691 goto err_unlock; 3692 } 3693 newmount.dentry = dget(fc->root); 3694 newmount.mnt->mnt_flags = mnt_flags; 3695 3696 /* We've done the mount bit - now move the file context into more or 3697 * less the same state as if we'd done an fspick(). We don't want to 3698 * do any memory allocation or anything like that at this point as we 3699 * don't want to have to handle any errors incurred. 3700 */ 3701 vfs_clean_context(fc); 3702 3703 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3704 if (IS_ERR(ns)) { 3705 ret = PTR_ERR(ns); 3706 goto err_path; 3707 } 3708 mnt = real_mount(newmount.mnt); 3709 mnt->mnt_ns = ns; 3710 ns->root = mnt; 3711 ns->mounts = 1; 3712 list_add(&mnt->mnt_list, &ns->list); 3713 mntget(newmount.mnt); 3714 3715 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3716 * it, not just simply put it. 3717 */ 3718 file = dentry_open(&newmount, O_PATH, fc->cred); 3719 if (IS_ERR(file)) { 3720 dissolve_on_fput(newmount.mnt); 3721 ret = PTR_ERR(file); 3722 goto err_path; 3723 } 3724 file->f_mode |= FMODE_NEED_UNMOUNT; 3725 3726 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3727 if (ret >= 0) 3728 fd_install(ret, file); 3729 else 3730 fput(file); 3731 3732 err_path: 3733 path_put(&newmount); 3734 err_unlock: 3735 mutex_unlock(&fc->uapi_mutex); 3736 err_fsfd: 3737 fdput(f); 3738 return ret; 3739 } 3740 3741 /* 3742 * Move a mount from one place to another. In combination with 3743 * fsopen()/fsmount() this is used to install a new mount and in combination 3744 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3745 * a mount subtree. 3746 * 3747 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3748 */ 3749 SYSCALL_DEFINE5(move_mount, 3750 int, from_dfd, const char __user *, from_pathname, 3751 int, to_dfd, const char __user *, to_pathname, 3752 unsigned int, flags) 3753 { 3754 struct path from_path, to_path; 3755 unsigned int lflags; 3756 int ret = 0; 3757 3758 if (!may_mount()) 3759 return -EPERM; 3760 3761 if (flags & ~MOVE_MOUNT__MASK) 3762 return -EINVAL; 3763 3764 /* If someone gives a pathname, they aren't permitted to move 3765 * from an fd that requires unmount as we can't get at the flag 3766 * to clear it afterwards. 3767 */ 3768 lflags = 0; 3769 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3770 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3771 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3772 3773 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3774 if (ret < 0) 3775 return ret; 3776 3777 lflags = 0; 3778 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3779 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3780 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3781 3782 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3783 if (ret < 0) 3784 goto out_from; 3785 3786 ret = security_move_mount(&from_path, &to_path); 3787 if (ret < 0) 3788 goto out_to; 3789 3790 if (flags & MOVE_MOUNT_SET_GROUP) 3791 ret = do_set_group(&from_path, &to_path); 3792 else 3793 ret = do_move_mount(&from_path, &to_path); 3794 3795 out_to: 3796 path_put(&to_path); 3797 out_from: 3798 path_put(&from_path); 3799 return ret; 3800 } 3801 3802 /* 3803 * Return true if path is reachable from root 3804 * 3805 * namespace_sem or mount_lock is held 3806 */ 3807 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3808 const struct path *root) 3809 { 3810 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3811 dentry = mnt->mnt_mountpoint; 3812 mnt = mnt->mnt_parent; 3813 } 3814 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3815 } 3816 3817 bool path_is_under(const struct path *path1, const struct path *path2) 3818 { 3819 bool res; 3820 read_seqlock_excl(&mount_lock); 3821 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3822 read_sequnlock_excl(&mount_lock); 3823 return res; 3824 } 3825 EXPORT_SYMBOL(path_is_under); 3826 3827 /* 3828 * pivot_root Semantics: 3829 * Moves the root file system of the current process to the directory put_old, 3830 * makes new_root as the new root file system of the current process, and sets 3831 * root/cwd of all processes which had them on the current root to new_root. 3832 * 3833 * Restrictions: 3834 * The new_root and put_old must be directories, and must not be on the 3835 * same file system as the current process root. The put_old must be 3836 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3837 * pointed to by put_old must yield the same directory as new_root. No other 3838 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3839 * 3840 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3841 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3842 * in this situation. 3843 * 3844 * Notes: 3845 * - we don't move root/cwd if they are not at the root (reason: if something 3846 * cared enough to change them, it's probably wrong to force them elsewhere) 3847 * - it's okay to pick a root that isn't the root of a file system, e.g. 3848 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3849 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3850 * first. 3851 */ 3852 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3853 const char __user *, put_old) 3854 { 3855 struct path new, old, root; 3856 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3857 struct mountpoint *old_mp, *root_mp; 3858 int error; 3859 3860 if (!may_mount()) 3861 return -EPERM; 3862 3863 error = user_path_at(AT_FDCWD, new_root, 3864 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3865 if (error) 3866 goto out0; 3867 3868 error = user_path_at(AT_FDCWD, put_old, 3869 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3870 if (error) 3871 goto out1; 3872 3873 error = security_sb_pivotroot(&old, &new); 3874 if (error) 3875 goto out2; 3876 3877 get_fs_root(current->fs, &root); 3878 old_mp = lock_mount(&old); 3879 error = PTR_ERR(old_mp); 3880 if (IS_ERR(old_mp)) 3881 goto out3; 3882 3883 error = -EINVAL; 3884 new_mnt = real_mount(new.mnt); 3885 root_mnt = real_mount(root.mnt); 3886 old_mnt = real_mount(old.mnt); 3887 ex_parent = new_mnt->mnt_parent; 3888 root_parent = root_mnt->mnt_parent; 3889 if (IS_MNT_SHARED(old_mnt) || 3890 IS_MNT_SHARED(ex_parent) || 3891 IS_MNT_SHARED(root_parent)) 3892 goto out4; 3893 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3894 goto out4; 3895 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3896 goto out4; 3897 error = -ENOENT; 3898 if (d_unlinked(new.dentry)) 3899 goto out4; 3900 error = -EBUSY; 3901 if (new_mnt == root_mnt || old_mnt == root_mnt) 3902 goto out4; /* loop, on the same file system */ 3903 error = -EINVAL; 3904 if (root.mnt->mnt_root != root.dentry) 3905 goto out4; /* not a mountpoint */ 3906 if (!mnt_has_parent(root_mnt)) 3907 goto out4; /* not attached */ 3908 if (new.mnt->mnt_root != new.dentry) 3909 goto out4; /* not a mountpoint */ 3910 if (!mnt_has_parent(new_mnt)) 3911 goto out4; /* not attached */ 3912 /* make sure we can reach put_old from new_root */ 3913 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3914 goto out4; 3915 /* make certain new is below the root */ 3916 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3917 goto out4; 3918 lock_mount_hash(); 3919 umount_mnt(new_mnt); 3920 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3921 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3922 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3923 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3924 } 3925 /* mount old root on put_old */ 3926 attach_mnt(root_mnt, old_mnt, old_mp); 3927 /* mount new_root on / */ 3928 attach_mnt(new_mnt, root_parent, root_mp); 3929 mnt_add_count(root_parent, -1); 3930 touch_mnt_namespace(current->nsproxy->mnt_ns); 3931 /* A moved mount should not expire automatically */ 3932 list_del_init(&new_mnt->mnt_expire); 3933 put_mountpoint(root_mp); 3934 unlock_mount_hash(); 3935 chroot_fs_refs(&root, &new); 3936 error = 0; 3937 out4: 3938 unlock_mount(old_mp); 3939 if (!error) 3940 mntput_no_expire(ex_parent); 3941 out3: 3942 path_put(&root); 3943 out2: 3944 path_put(&old); 3945 out1: 3946 path_put(&new); 3947 out0: 3948 return error; 3949 } 3950 3951 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3952 { 3953 unsigned int flags = mnt->mnt.mnt_flags; 3954 3955 /* flags to clear */ 3956 flags &= ~kattr->attr_clr; 3957 /* flags to raise */ 3958 flags |= kattr->attr_set; 3959 3960 return flags; 3961 } 3962 3963 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3964 { 3965 struct vfsmount *m = &mnt->mnt; 3966 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 3967 3968 if (!kattr->mnt_userns) 3969 return 0; 3970 3971 /* 3972 * Creating an idmapped mount with the filesystem wide idmapping 3973 * doesn't make sense so block that. We don't allow mushy semantics. 3974 */ 3975 if (kattr->mnt_userns == fs_userns) 3976 return -EINVAL; 3977 3978 /* 3979 * Once a mount has been idmapped we don't allow it to change its 3980 * mapping. It makes things simpler and callers can just create 3981 * another bind-mount they can idmap if they want to. 3982 */ 3983 if (is_idmapped_mnt(m)) 3984 return -EPERM; 3985 3986 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3987 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3988 return -EINVAL; 3989 3990 /* We're not controlling the superblock. */ 3991 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 3992 return -EPERM; 3993 3994 /* Mount has already been visible in the filesystem hierarchy. */ 3995 if (!is_anon_ns(mnt->mnt_ns)) 3996 return -EINVAL; 3997 3998 return 0; 3999 } 4000 4001 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 4002 struct mount *mnt, int *err) 4003 { 4004 struct mount *m = mnt, *last = NULL; 4005 4006 if (!is_mounted(&m->mnt)) { 4007 *err = -EINVAL; 4008 goto out; 4009 } 4010 4011 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 4012 *err = -EINVAL; 4013 goto out; 4014 } 4015 4016 do { 4017 unsigned int flags; 4018 4019 flags = recalc_flags(kattr, m); 4020 if (!can_change_locked_flags(m, flags)) { 4021 *err = -EPERM; 4022 goto out; 4023 } 4024 4025 *err = can_idmap_mount(kattr, m); 4026 if (*err) 4027 goto out; 4028 4029 last = m; 4030 4031 if ((kattr->attr_set & MNT_READONLY) && 4032 !(m->mnt.mnt_flags & MNT_READONLY)) { 4033 *err = mnt_hold_writers(m); 4034 if (*err) 4035 goto out; 4036 } 4037 } while (kattr->recurse && (m = next_mnt(m, mnt))); 4038 4039 out: 4040 return last; 4041 } 4042 4043 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4044 { 4045 struct user_namespace *mnt_userns, *old_mnt_userns; 4046 4047 if (!kattr->mnt_userns) 4048 return; 4049 4050 /* 4051 * We're the only ones able to change the mount's idmapping. So 4052 * mnt->mnt.mnt_userns is stable and we can retrieve it directly. 4053 */ 4054 old_mnt_userns = mnt->mnt.mnt_userns; 4055 4056 mnt_userns = get_user_ns(kattr->mnt_userns); 4057 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 4058 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 4059 4060 /* 4061 * If this is an idmapped filesystem drop the reference we've taken 4062 * in vfs_create_mount() before. 4063 */ 4064 if (!initial_idmapping(old_mnt_userns)) 4065 put_user_ns(old_mnt_userns); 4066 } 4067 4068 static void mount_setattr_commit(struct mount_kattr *kattr, 4069 struct mount *mnt, struct mount *last, 4070 int err) 4071 { 4072 struct mount *m = mnt; 4073 4074 do { 4075 if (!err) { 4076 unsigned int flags; 4077 4078 do_idmap_mount(kattr, m); 4079 flags = recalc_flags(kattr, m); 4080 WRITE_ONCE(m->mnt.mnt_flags, flags); 4081 } 4082 4083 /* 4084 * We either set MNT_READONLY above so make it visible 4085 * before ~MNT_WRITE_HOLD or we failed to recursively 4086 * apply mount options. 4087 */ 4088 if ((kattr->attr_set & MNT_READONLY) && 4089 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 4090 mnt_unhold_writers(m); 4091 4092 if (!err && kattr->propagation) 4093 change_mnt_propagation(m, kattr->propagation); 4094 4095 /* 4096 * On failure, only cleanup until we found the first mount 4097 * we failed to handle. 4098 */ 4099 if (err && m == last) 4100 break; 4101 } while (kattr->recurse && (m = next_mnt(m, mnt))); 4102 4103 if (!err) 4104 touch_mnt_namespace(mnt->mnt_ns); 4105 } 4106 4107 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4108 { 4109 struct mount *mnt = real_mount(path->mnt), *last = NULL; 4110 int err = 0; 4111 4112 if (path->dentry != mnt->mnt.mnt_root) 4113 return -EINVAL; 4114 4115 if (kattr->propagation) { 4116 /* 4117 * Only take namespace_lock() if we're actually changing 4118 * propagation. 4119 */ 4120 namespace_lock(); 4121 if (kattr->propagation == MS_SHARED) { 4122 err = invent_group_ids(mnt, kattr->recurse); 4123 if (err) { 4124 namespace_unlock(); 4125 return err; 4126 } 4127 } 4128 } 4129 4130 lock_mount_hash(); 4131 4132 /* 4133 * Get the mount tree in a shape where we can change mount 4134 * properties without failure. 4135 */ 4136 last = mount_setattr_prepare(kattr, mnt, &err); 4137 if (last) /* Commit all changes or revert to the old state. */ 4138 mount_setattr_commit(kattr, mnt, last, err); 4139 4140 unlock_mount_hash(); 4141 4142 if (kattr->propagation) { 4143 namespace_unlock(); 4144 if (err) 4145 cleanup_group_ids(mnt, NULL); 4146 } 4147 4148 return err; 4149 } 4150 4151 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4152 struct mount_kattr *kattr, unsigned int flags) 4153 { 4154 int err = 0; 4155 struct ns_common *ns; 4156 struct user_namespace *mnt_userns; 4157 struct file *file; 4158 4159 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4160 return 0; 4161 4162 /* 4163 * We currently do not support clearing an idmapped mount. If this ever 4164 * is a use-case we can revisit this but for now let's keep it simple 4165 * and not allow it. 4166 */ 4167 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4168 return -EINVAL; 4169 4170 if (attr->userns_fd > INT_MAX) 4171 return -EINVAL; 4172 4173 file = fget(attr->userns_fd); 4174 if (!file) 4175 return -EBADF; 4176 4177 if (!proc_ns_file(file)) { 4178 err = -EINVAL; 4179 goto out_fput; 4180 } 4181 4182 ns = get_proc_ns(file_inode(file)); 4183 if (ns->ops->type != CLONE_NEWUSER) { 4184 err = -EINVAL; 4185 goto out_fput; 4186 } 4187 4188 /* 4189 * The initial idmapping cannot be used to create an idmapped 4190 * mount. We use the initial idmapping as an indicator of a mount 4191 * that is not idmapped. It can simply be passed into helpers that 4192 * are aware of idmapped mounts as a convenient shortcut. A user 4193 * can just create a dedicated identity mapping to achieve the same 4194 * result. 4195 */ 4196 mnt_userns = container_of(ns, struct user_namespace, ns); 4197 if (initial_idmapping(mnt_userns)) { 4198 err = -EPERM; 4199 goto out_fput; 4200 } 4201 kattr->mnt_userns = get_user_ns(mnt_userns); 4202 4203 out_fput: 4204 fput(file); 4205 return err; 4206 } 4207 4208 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4209 struct mount_kattr *kattr, unsigned int flags) 4210 { 4211 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4212 4213 if (flags & AT_NO_AUTOMOUNT) 4214 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4215 if (flags & AT_SYMLINK_NOFOLLOW) 4216 lookup_flags &= ~LOOKUP_FOLLOW; 4217 if (flags & AT_EMPTY_PATH) 4218 lookup_flags |= LOOKUP_EMPTY; 4219 4220 *kattr = (struct mount_kattr) { 4221 .lookup_flags = lookup_flags, 4222 .recurse = !!(flags & AT_RECURSIVE), 4223 }; 4224 4225 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4226 return -EINVAL; 4227 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4228 return -EINVAL; 4229 kattr->propagation = attr->propagation; 4230 4231 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4232 return -EINVAL; 4233 4234 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4235 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4236 4237 /* 4238 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4239 * users wanting to transition to a different atime setting cannot 4240 * simply specify the atime setting in @attr_set, but must also 4241 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4242 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4243 * @attr_clr and that @attr_set can't have any atime bits set if 4244 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4245 */ 4246 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4247 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4248 return -EINVAL; 4249 4250 /* 4251 * Clear all previous time settings as they are mutually 4252 * exclusive. 4253 */ 4254 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4255 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4256 case MOUNT_ATTR_RELATIME: 4257 kattr->attr_set |= MNT_RELATIME; 4258 break; 4259 case MOUNT_ATTR_NOATIME: 4260 kattr->attr_set |= MNT_NOATIME; 4261 break; 4262 case MOUNT_ATTR_STRICTATIME: 4263 break; 4264 default: 4265 return -EINVAL; 4266 } 4267 } else { 4268 if (attr->attr_set & MOUNT_ATTR__ATIME) 4269 return -EINVAL; 4270 } 4271 4272 return build_mount_idmapped(attr, usize, kattr, flags); 4273 } 4274 4275 static void finish_mount_kattr(struct mount_kattr *kattr) 4276 { 4277 put_user_ns(kattr->mnt_userns); 4278 kattr->mnt_userns = NULL; 4279 } 4280 4281 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4282 unsigned int, flags, struct mount_attr __user *, uattr, 4283 size_t, usize) 4284 { 4285 int err; 4286 struct path target; 4287 struct mount_attr attr; 4288 struct mount_kattr kattr; 4289 4290 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4291 4292 if (flags & ~(AT_EMPTY_PATH | 4293 AT_RECURSIVE | 4294 AT_SYMLINK_NOFOLLOW | 4295 AT_NO_AUTOMOUNT)) 4296 return -EINVAL; 4297 4298 if (unlikely(usize > PAGE_SIZE)) 4299 return -E2BIG; 4300 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4301 return -EINVAL; 4302 4303 if (!may_mount()) 4304 return -EPERM; 4305 4306 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4307 if (err) 4308 return err; 4309 4310 /* Don't bother walking through the mounts if this is a nop. */ 4311 if (attr.attr_set == 0 && 4312 attr.attr_clr == 0 && 4313 attr.propagation == 0) 4314 return 0; 4315 4316 err = build_mount_kattr(&attr, usize, &kattr, flags); 4317 if (err) 4318 return err; 4319 4320 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4321 if (!err) { 4322 err = do_mount_setattr(&target, &kattr); 4323 path_put(&target); 4324 } 4325 finish_mount_kattr(&kattr); 4326 return err; 4327 } 4328 4329 static void __init init_mount_tree(void) 4330 { 4331 struct vfsmount *mnt; 4332 struct mount *m; 4333 struct mnt_namespace *ns; 4334 struct path root; 4335 4336 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4337 if (IS_ERR(mnt)) 4338 panic("Can't create rootfs"); 4339 4340 ns = alloc_mnt_ns(&init_user_ns, false); 4341 if (IS_ERR(ns)) 4342 panic("Can't allocate initial namespace"); 4343 m = real_mount(mnt); 4344 m->mnt_ns = ns; 4345 ns->root = m; 4346 ns->mounts = 1; 4347 list_add(&m->mnt_list, &ns->list); 4348 init_task.nsproxy->mnt_ns = ns; 4349 get_mnt_ns(ns); 4350 4351 root.mnt = mnt; 4352 root.dentry = mnt->mnt_root; 4353 mnt->mnt_flags |= MNT_LOCKED; 4354 4355 set_fs_pwd(current->fs, &root); 4356 set_fs_root(current->fs, &root); 4357 } 4358 4359 void __init mnt_init(void) 4360 { 4361 int err; 4362 4363 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4364 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4365 4366 mount_hashtable = alloc_large_system_hash("Mount-cache", 4367 sizeof(struct hlist_head), 4368 mhash_entries, 19, 4369 HASH_ZERO, 4370 &m_hash_shift, &m_hash_mask, 0, 0); 4371 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4372 sizeof(struct hlist_head), 4373 mphash_entries, 19, 4374 HASH_ZERO, 4375 &mp_hash_shift, &mp_hash_mask, 0, 0); 4376 4377 if (!mount_hashtable || !mountpoint_hashtable) 4378 panic("Failed to allocate mount hash table\n"); 4379 4380 kernfs_init(); 4381 4382 err = sysfs_init(); 4383 if (err) 4384 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4385 __func__, err); 4386 fs_kobj = kobject_create_and_add("fs", NULL); 4387 if (!fs_kobj) 4388 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4389 shmem_init(); 4390 init_rootfs(); 4391 init_mount_tree(); 4392 } 4393 4394 void put_mnt_ns(struct mnt_namespace *ns) 4395 { 4396 if (!refcount_dec_and_test(&ns->ns.count)) 4397 return; 4398 drop_collected_mounts(&ns->root->mnt); 4399 free_mnt_ns(ns); 4400 } 4401 4402 struct vfsmount *kern_mount(struct file_system_type *type) 4403 { 4404 struct vfsmount *mnt; 4405 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4406 if (!IS_ERR(mnt)) { 4407 /* 4408 * it is a longterm mount, don't release mnt until 4409 * we unmount before file sys is unregistered 4410 */ 4411 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4412 } 4413 return mnt; 4414 } 4415 EXPORT_SYMBOL_GPL(kern_mount); 4416 4417 void kern_unmount(struct vfsmount *mnt) 4418 { 4419 /* release long term mount so mount point can be released */ 4420 if (!IS_ERR_OR_NULL(mnt)) { 4421 real_mount(mnt)->mnt_ns = NULL; 4422 synchronize_rcu(); /* yecchhh... */ 4423 mntput(mnt); 4424 } 4425 } 4426 EXPORT_SYMBOL(kern_unmount); 4427 4428 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4429 { 4430 unsigned int i; 4431 4432 for (i = 0; i < num; i++) 4433 if (mnt[i]) 4434 real_mount(mnt[i])->mnt_ns = NULL; 4435 synchronize_rcu_expedited(); 4436 for (i = 0; i < num; i++) 4437 mntput(mnt[i]); 4438 } 4439 EXPORT_SYMBOL(kern_unmount_array); 4440 4441 bool our_mnt(struct vfsmount *mnt) 4442 { 4443 return check_mnt(real_mount(mnt)); 4444 } 4445 4446 bool current_chrooted(void) 4447 { 4448 /* Does the current process have a non-standard root */ 4449 struct path ns_root; 4450 struct path fs_root; 4451 bool chrooted; 4452 4453 /* Find the namespace root */ 4454 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4455 ns_root.dentry = ns_root.mnt->mnt_root; 4456 path_get(&ns_root); 4457 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4458 ; 4459 4460 get_fs_root(current->fs, &fs_root); 4461 4462 chrooted = !path_equal(&fs_root, &ns_root); 4463 4464 path_put(&fs_root); 4465 path_put(&ns_root); 4466 4467 return chrooted; 4468 } 4469 4470 static bool mnt_already_visible(struct mnt_namespace *ns, 4471 const struct super_block *sb, 4472 int *new_mnt_flags) 4473 { 4474 int new_flags = *new_mnt_flags; 4475 struct mount *mnt; 4476 bool visible = false; 4477 4478 down_read(&namespace_sem); 4479 lock_ns_list(ns); 4480 list_for_each_entry(mnt, &ns->list, mnt_list) { 4481 struct mount *child; 4482 int mnt_flags; 4483 4484 if (mnt_is_cursor(mnt)) 4485 continue; 4486 4487 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4488 continue; 4489 4490 /* This mount is not fully visible if it's root directory 4491 * is not the root directory of the filesystem. 4492 */ 4493 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4494 continue; 4495 4496 /* A local view of the mount flags */ 4497 mnt_flags = mnt->mnt.mnt_flags; 4498 4499 /* Don't miss readonly hidden in the superblock flags */ 4500 if (sb_rdonly(mnt->mnt.mnt_sb)) 4501 mnt_flags |= MNT_LOCK_READONLY; 4502 4503 /* Verify the mount flags are equal to or more permissive 4504 * than the proposed new mount. 4505 */ 4506 if ((mnt_flags & MNT_LOCK_READONLY) && 4507 !(new_flags & MNT_READONLY)) 4508 continue; 4509 if ((mnt_flags & MNT_LOCK_ATIME) && 4510 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4511 continue; 4512 4513 /* This mount is not fully visible if there are any 4514 * locked child mounts that cover anything except for 4515 * empty directories. 4516 */ 4517 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4518 struct inode *inode = child->mnt_mountpoint->d_inode; 4519 /* Only worry about locked mounts */ 4520 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4521 continue; 4522 /* Is the directory permanetly empty? */ 4523 if (!is_empty_dir_inode(inode)) 4524 goto next; 4525 } 4526 /* Preserve the locked attributes */ 4527 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4528 MNT_LOCK_ATIME); 4529 visible = true; 4530 goto found; 4531 next: ; 4532 } 4533 found: 4534 unlock_ns_list(ns); 4535 up_read(&namespace_sem); 4536 return visible; 4537 } 4538 4539 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4540 { 4541 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4542 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4543 unsigned long s_iflags; 4544 4545 if (ns->user_ns == &init_user_ns) 4546 return false; 4547 4548 /* Can this filesystem be too revealing? */ 4549 s_iflags = sb->s_iflags; 4550 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4551 return false; 4552 4553 if ((s_iflags & required_iflags) != required_iflags) { 4554 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4555 required_iflags); 4556 return true; 4557 } 4558 4559 return !mnt_already_visible(ns, sb, new_mnt_flags); 4560 } 4561 4562 bool mnt_may_suid(struct vfsmount *mnt) 4563 { 4564 /* 4565 * Foreign mounts (accessed via fchdir or through /proc 4566 * symlinks) are always treated as if they are nosuid. This 4567 * prevents namespaces from trusting potentially unsafe 4568 * suid/sgid bits, file caps, or security labels that originate 4569 * in other namespaces. 4570 */ 4571 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4572 current_in_userns(mnt->mnt_sb->s_user_ns); 4573 } 4574 4575 static struct ns_common *mntns_get(struct task_struct *task) 4576 { 4577 struct ns_common *ns = NULL; 4578 struct nsproxy *nsproxy; 4579 4580 task_lock(task); 4581 nsproxy = task->nsproxy; 4582 if (nsproxy) { 4583 ns = &nsproxy->mnt_ns->ns; 4584 get_mnt_ns(to_mnt_ns(ns)); 4585 } 4586 task_unlock(task); 4587 4588 return ns; 4589 } 4590 4591 static void mntns_put(struct ns_common *ns) 4592 { 4593 put_mnt_ns(to_mnt_ns(ns)); 4594 } 4595 4596 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4597 { 4598 struct nsproxy *nsproxy = nsset->nsproxy; 4599 struct fs_struct *fs = nsset->fs; 4600 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4601 struct user_namespace *user_ns = nsset->cred->user_ns; 4602 struct path root; 4603 int err; 4604 4605 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4606 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4607 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4608 return -EPERM; 4609 4610 if (is_anon_ns(mnt_ns)) 4611 return -EINVAL; 4612 4613 if (fs->users != 1) 4614 return -EINVAL; 4615 4616 get_mnt_ns(mnt_ns); 4617 old_mnt_ns = nsproxy->mnt_ns; 4618 nsproxy->mnt_ns = mnt_ns; 4619 4620 /* Find the root */ 4621 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4622 "/", LOOKUP_DOWN, &root); 4623 if (err) { 4624 /* revert to old namespace */ 4625 nsproxy->mnt_ns = old_mnt_ns; 4626 put_mnt_ns(mnt_ns); 4627 return err; 4628 } 4629 4630 put_mnt_ns(old_mnt_ns); 4631 4632 /* Update the pwd and root */ 4633 set_fs_pwd(fs, &root); 4634 set_fs_root(fs, &root); 4635 4636 path_put(&root); 4637 return 0; 4638 } 4639 4640 static struct user_namespace *mntns_owner(struct ns_common *ns) 4641 { 4642 return to_mnt_ns(ns)->user_ns; 4643 } 4644 4645 const struct proc_ns_operations mntns_operations = { 4646 .name = "mnt", 4647 .type = CLONE_NEWNS, 4648 .get = mntns_get, 4649 .put = mntns_put, 4650 .install = mntns_install, 4651 .owner = mntns_owner, 4652 }; 4653 4654 #ifdef CONFIG_SYSCTL 4655 static struct ctl_table fs_namespace_sysctls[] = { 4656 { 4657 .procname = "mount-max", 4658 .data = &sysctl_mount_max, 4659 .maxlen = sizeof(unsigned int), 4660 .mode = 0644, 4661 .proc_handler = proc_dointvec_minmax, 4662 .extra1 = SYSCTL_ONE, 4663 }, 4664 { } 4665 }; 4666 4667 static int __init init_fs_namespace_sysctls(void) 4668 { 4669 register_sysctl_init("fs", fs_namespace_sysctls); 4670 return 0; 4671 } 4672 fs_initcall(init_fs_namespace_sysctls); 4673 4674 #endif /* CONFIG_SYSCTL */ 4675