xref: /linux/fs/namespace.c (revision d26aed5eba16bf5a4aa86bc717edf0b5ed192b93)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_RWLOCK(mnt_ns_tree_lock);
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
84 
85 struct mount_kattr {
86 	unsigned int attr_set;
87 	unsigned int attr_clr;
88 	unsigned int propagation;
89 	unsigned int lookup_flags;
90 	bool recurse;
91 	struct user_namespace *mnt_userns;
92 	struct mnt_idmap *mnt_idmap;
93 };
94 
95 /* /sys/fs */
96 struct kobject *fs_kobj __ro_after_init;
97 EXPORT_SYMBOL_GPL(fs_kobj);
98 
99 /*
100  * vfsmount lock may be taken for read to prevent changes to the
101  * vfsmount hash, ie. during mountpoint lookups or walking back
102  * up the tree.
103  *
104  * It should be taken for write in all cases where the vfsmount
105  * tree or hash is modified or when a vfsmount structure is modified.
106  */
107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
108 
109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
110 {
111 	u64 seq_b = ns->seq;
112 
113 	if (seq < seq_b)
114 		return -1;
115 	if (seq > seq_b)
116 		return 1;
117 	return 0;
118 }
119 
120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 	if (!node)
123 		return NULL;
124 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126 
127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
128 {
129 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 	u64 seq_a = ns_a->seq;
132 
133 	return mnt_ns_cmp(seq_a, ns_b) < 0;
134 }
135 
136 static void mnt_ns_tree_add(struct mnt_namespace *ns)
137 {
138 	guard(write_lock)(&mnt_ns_tree_lock);
139 	rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
140 }
141 
142 static void mnt_ns_release(struct mnt_namespace *ns)
143 {
144 	lockdep_assert_not_held(&mnt_ns_tree_lock);
145 
146 	/* keep alive for {list,stat}mount() */
147 	if (refcount_dec_and_test(&ns->passive)) {
148 		put_user_ns(ns->user_ns);
149 		kfree(ns);
150 	}
151 }
152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
153 
154 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
155 {
156 	/* remove from global mount namespace list */
157 	if (!is_anon_ns(ns)) {
158 		guard(write_lock)(&mnt_ns_tree_lock);
159 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
160 	}
161 
162 	mnt_ns_release(ns);
163 }
164 
165 /*
166  * Returns the mount namespace which either has the specified id, or has the
167  * next smallest id afer the specified one.
168  */
169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
170 {
171 	struct rb_node *node = mnt_ns_tree.rb_node;
172 	struct mnt_namespace *ret = NULL;
173 
174 	lockdep_assert_held(&mnt_ns_tree_lock);
175 
176 	while (node) {
177 		struct mnt_namespace *n = node_to_mnt_ns(node);
178 
179 		if (mnt_ns_id <= n->seq) {
180 			ret = node_to_mnt_ns(node);
181 			if (mnt_ns_id == n->seq)
182 				break;
183 			node = node->rb_left;
184 		} else {
185 			node = node->rb_right;
186 		}
187 	}
188 	return ret;
189 }
190 
191 /*
192  * Lookup a mount namespace by id and take a passive reference count. Taking a
193  * passive reference means the mount namespace can be emptied if e.g., the last
194  * task holding an active reference exits. To access the mounts of the
195  * namespace the @namespace_sem must first be acquired. If the namespace has
196  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
197  * see that the mount rbtree of the namespace is empty.
198  */
199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
200 {
201        struct mnt_namespace *ns;
202 
203        guard(read_lock)(&mnt_ns_tree_lock);
204        ns = mnt_ns_find_id_at(mnt_ns_id);
205        if (!ns || ns->seq != mnt_ns_id)
206                return NULL;
207 
208        refcount_inc(&ns->passive);
209        return ns;
210 }
211 
212 static inline void lock_mount_hash(void)
213 {
214 	write_seqlock(&mount_lock);
215 }
216 
217 static inline void unlock_mount_hash(void)
218 {
219 	write_sequnlock(&mount_lock);
220 }
221 
222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
223 {
224 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
225 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
226 	tmp = tmp + (tmp >> m_hash_shift);
227 	return &mount_hashtable[tmp & m_hash_mask];
228 }
229 
230 static inline struct hlist_head *mp_hash(struct dentry *dentry)
231 {
232 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
233 	tmp = tmp + (tmp >> mp_hash_shift);
234 	return &mountpoint_hashtable[tmp & mp_hash_mask];
235 }
236 
237 static int mnt_alloc_id(struct mount *mnt)
238 {
239 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
240 
241 	if (res < 0)
242 		return res;
243 	mnt->mnt_id = res;
244 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
245 	return 0;
246 }
247 
248 static void mnt_free_id(struct mount *mnt)
249 {
250 	ida_free(&mnt_id_ida, mnt->mnt_id);
251 }
252 
253 /*
254  * Allocate a new peer group ID
255  */
256 static int mnt_alloc_group_id(struct mount *mnt)
257 {
258 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
259 
260 	if (res < 0)
261 		return res;
262 	mnt->mnt_group_id = res;
263 	return 0;
264 }
265 
266 /*
267  * Release a peer group ID
268  */
269 void mnt_release_group_id(struct mount *mnt)
270 {
271 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
272 	mnt->mnt_group_id = 0;
273 }
274 
275 /*
276  * vfsmount lock must be held for read
277  */
278 static inline void mnt_add_count(struct mount *mnt, int n)
279 {
280 #ifdef CONFIG_SMP
281 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
282 #else
283 	preempt_disable();
284 	mnt->mnt_count += n;
285 	preempt_enable();
286 #endif
287 }
288 
289 /*
290  * vfsmount lock must be held for write
291  */
292 int mnt_get_count(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_count;
305 #endif
306 }
307 
308 static struct mount *alloc_vfsmnt(const char *name)
309 {
310 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
311 	if (mnt) {
312 		int err;
313 
314 		err = mnt_alloc_id(mnt);
315 		if (err)
316 			goto out_free_cache;
317 
318 		if (name) {
319 			mnt->mnt_devname = kstrdup_const(name,
320 							 GFP_KERNEL_ACCOUNT);
321 			if (!mnt->mnt_devname)
322 				goto out_free_id;
323 		}
324 
325 #ifdef CONFIG_SMP
326 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
327 		if (!mnt->mnt_pcp)
328 			goto out_free_devname;
329 
330 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
331 #else
332 		mnt->mnt_count = 1;
333 		mnt->mnt_writers = 0;
334 #endif
335 
336 		INIT_HLIST_NODE(&mnt->mnt_hash);
337 		INIT_LIST_HEAD(&mnt->mnt_child);
338 		INIT_LIST_HEAD(&mnt->mnt_mounts);
339 		INIT_LIST_HEAD(&mnt->mnt_list);
340 		INIT_LIST_HEAD(&mnt->mnt_expire);
341 		INIT_LIST_HEAD(&mnt->mnt_share);
342 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
343 		INIT_LIST_HEAD(&mnt->mnt_slave);
344 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
345 		INIT_LIST_HEAD(&mnt->mnt_umounting);
346 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
347 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
348 	}
349 	return mnt;
350 
351 #ifdef CONFIG_SMP
352 out_free_devname:
353 	kfree_const(mnt->mnt_devname);
354 #endif
355 out_free_id:
356 	mnt_free_id(mnt);
357 out_free_cache:
358 	kmem_cache_free(mnt_cache, mnt);
359 	return NULL;
360 }
361 
362 /*
363  * Most r/o checks on a fs are for operations that take
364  * discrete amounts of time, like a write() or unlink().
365  * We must keep track of when those operations start
366  * (for permission checks) and when they end, so that
367  * we can determine when writes are able to occur to
368  * a filesystem.
369  */
370 /*
371  * __mnt_is_readonly: check whether a mount is read-only
372  * @mnt: the mount to check for its write status
373  *
374  * This shouldn't be used directly ouside of the VFS.
375  * It does not guarantee that the filesystem will stay
376  * r/w, just that it is right *now*.  This can not and
377  * should not be used in place of IS_RDONLY(inode).
378  * mnt_want/drop_write() will _keep_ the filesystem
379  * r/w.
380  */
381 bool __mnt_is_readonly(struct vfsmount *mnt)
382 {
383 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
384 }
385 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
386 
387 static inline void mnt_inc_writers(struct mount *mnt)
388 {
389 #ifdef CONFIG_SMP
390 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
391 #else
392 	mnt->mnt_writers++;
393 #endif
394 }
395 
396 static inline void mnt_dec_writers(struct mount *mnt)
397 {
398 #ifdef CONFIG_SMP
399 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
400 #else
401 	mnt->mnt_writers--;
402 #endif
403 }
404 
405 static unsigned int mnt_get_writers(struct mount *mnt)
406 {
407 #ifdef CONFIG_SMP
408 	unsigned int count = 0;
409 	int cpu;
410 
411 	for_each_possible_cpu(cpu) {
412 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
413 	}
414 
415 	return count;
416 #else
417 	return mnt->mnt_writers;
418 #endif
419 }
420 
421 static int mnt_is_readonly(struct vfsmount *mnt)
422 {
423 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
424 		return 1;
425 	/*
426 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
427 	 * making sure if we don't see s_readonly_remount set yet, we also will
428 	 * not see any superblock / mount flag changes done by remount.
429 	 * It also pairs with the barrier in sb_end_ro_state_change()
430 	 * assuring that if we see s_readonly_remount already cleared, we will
431 	 * see the values of superblock / mount flags updated by remount.
432 	 */
433 	smp_rmb();
434 	return __mnt_is_readonly(mnt);
435 }
436 
437 /*
438  * Most r/o & frozen checks on a fs are for operations that take discrete
439  * amounts of time, like a write() or unlink().  We must keep track of when
440  * those operations start (for permission checks) and when they end, so that we
441  * can determine when writes are able to occur to a filesystem.
442  */
443 /**
444  * mnt_get_write_access - get write access to a mount without freeze protection
445  * @m: the mount on which to take a write
446  *
447  * This tells the low-level filesystem that a write is about to be performed to
448  * it, and makes sure that writes are allowed (mnt it read-write) before
449  * returning success. This operation does not protect against filesystem being
450  * frozen. When the write operation is finished, mnt_put_write_access() must be
451  * called. This is effectively a refcount.
452  */
453 int mnt_get_write_access(struct vfsmount *m)
454 {
455 	struct mount *mnt = real_mount(m);
456 	int ret = 0;
457 
458 	preempt_disable();
459 	mnt_inc_writers(mnt);
460 	/*
461 	 * The store to mnt_inc_writers must be visible before we pass
462 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
463 	 * incremented count after it has set MNT_WRITE_HOLD.
464 	 */
465 	smp_mb();
466 	might_lock(&mount_lock.lock);
467 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
468 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
469 			cpu_relax();
470 		} else {
471 			/*
472 			 * This prevents priority inversion, if the task
473 			 * setting MNT_WRITE_HOLD got preempted on a remote
474 			 * CPU, and it prevents life lock if the task setting
475 			 * MNT_WRITE_HOLD has a lower priority and is bound to
476 			 * the same CPU as the task that is spinning here.
477 			 */
478 			preempt_enable();
479 			lock_mount_hash();
480 			unlock_mount_hash();
481 			preempt_disable();
482 		}
483 	}
484 	/*
485 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
486 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
487 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
488 	 * mnt_is_readonly() and bail in case we are racing with remount
489 	 * read-only.
490 	 */
491 	smp_rmb();
492 	if (mnt_is_readonly(m)) {
493 		mnt_dec_writers(mnt);
494 		ret = -EROFS;
495 	}
496 	preempt_enable();
497 
498 	return ret;
499 }
500 EXPORT_SYMBOL_GPL(mnt_get_write_access);
501 
502 /**
503  * mnt_want_write - get write access to a mount
504  * @m: the mount on which to take a write
505  *
506  * This tells the low-level filesystem that a write is about to be performed to
507  * it, and makes sure that writes are allowed (mount is read-write, filesystem
508  * is not frozen) before returning success.  When the write operation is
509  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
510  */
511 int mnt_want_write(struct vfsmount *m)
512 {
513 	int ret;
514 
515 	sb_start_write(m->mnt_sb);
516 	ret = mnt_get_write_access(m);
517 	if (ret)
518 		sb_end_write(m->mnt_sb);
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(mnt_want_write);
522 
523 /**
524  * mnt_get_write_access_file - get write access to a file's mount
525  * @file: the file who's mount on which to take a write
526  *
527  * This is like mnt_get_write_access, but if @file is already open for write it
528  * skips incrementing mnt_writers (since the open file already has a reference)
529  * and instead only does the check for emergency r/o remounts.  This must be
530  * paired with mnt_put_write_access_file.
531  */
532 int mnt_get_write_access_file(struct file *file)
533 {
534 	if (file->f_mode & FMODE_WRITER) {
535 		/*
536 		 * Superblock may have become readonly while there are still
537 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
538 		 */
539 		if (__mnt_is_readonly(file->f_path.mnt))
540 			return -EROFS;
541 		return 0;
542 	}
543 	return mnt_get_write_access(file->f_path.mnt);
544 }
545 
546 /**
547  * mnt_want_write_file - get write access to a file's mount
548  * @file: the file who's mount on which to take a write
549  *
550  * This is like mnt_want_write, but if the file is already open for writing it
551  * skips incrementing mnt_writers (since the open file already has a reference)
552  * and instead only does the freeze protection and the check for emergency r/o
553  * remounts.  This must be paired with mnt_drop_write_file.
554  */
555 int mnt_want_write_file(struct file *file)
556 {
557 	int ret;
558 
559 	sb_start_write(file_inode(file)->i_sb);
560 	ret = mnt_get_write_access_file(file);
561 	if (ret)
562 		sb_end_write(file_inode(file)->i_sb);
563 	return ret;
564 }
565 EXPORT_SYMBOL_GPL(mnt_want_write_file);
566 
567 /**
568  * mnt_put_write_access - give up write access to a mount
569  * @mnt: the mount on which to give up write access
570  *
571  * Tells the low-level filesystem that we are done
572  * performing writes to it.  Must be matched with
573  * mnt_get_write_access() call above.
574  */
575 void mnt_put_write_access(struct vfsmount *mnt)
576 {
577 	preempt_disable();
578 	mnt_dec_writers(real_mount(mnt));
579 	preempt_enable();
580 }
581 EXPORT_SYMBOL_GPL(mnt_put_write_access);
582 
583 /**
584  * mnt_drop_write - give up write access to a mount
585  * @mnt: the mount on which to give up write access
586  *
587  * Tells the low-level filesystem that we are done performing writes to it and
588  * also allows filesystem to be frozen again.  Must be matched with
589  * mnt_want_write() call above.
590  */
591 void mnt_drop_write(struct vfsmount *mnt)
592 {
593 	mnt_put_write_access(mnt);
594 	sb_end_write(mnt->mnt_sb);
595 }
596 EXPORT_SYMBOL_GPL(mnt_drop_write);
597 
598 void mnt_put_write_access_file(struct file *file)
599 {
600 	if (!(file->f_mode & FMODE_WRITER))
601 		mnt_put_write_access(file->f_path.mnt);
602 }
603 
604 void mnt_drop_write_file(struct file *file)
605 {
606 	mnt_put_write_access_file(file);
607 	sb_end_write(file_inode(file)->i_sb);
608 }
609 EXPORT_SYMBOL(mnt_drop_write_file);
610 
611 /**
612  * mnt_hold_writers - prevent write access to the given mount
613  * @mnt: mnt to prevent write access to
614  *
615  * Prevents write access to @mnt if there are no active writers for @mnt.
616  * This function needs to be called and return successfully before changing
617  * properties of @mnt that need to remain stable for callers with write access
618  * to @mnt.
619  *
620  * After this functions has been called successfully callers must pair it with
621  * a call to mnt_unhold_writers() in order to stop preventing write access to
622  * @mnt.
623  *
624  * Context: This function expects lock_mount_hash() to be held serializing
625  *          setting MNT_WRITE_HOLD.
626  * Return: On success 0 is returned.
627  *	   On error, -EBUSY is returned.
628  */
629 static inline int mnt_hold_writers(struct mount *mnt)
630 {
631 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
632 	/*
633 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
634 	 * should be visible before we do.
635 	 */
636 	smp_mb();
637 
638 	/*
639 	 * With writers on hold, if this value is zero, then there are
640 	 * definitely no active writers (although held writers may subsequently
641 	 * increment the count, they'll have to wait, and decrement it after
642 	 * seeing MNT_READONLY).
643 	 *
644 	 * It is OK to have counter incremented on one CPU and decremented on
645 	 * another: the sum will add up correctly. The danger would be when we
646 	 * sum up each counter, if we read a counter before it is incremented,
647 	 * but then read another CPU's count which it has been subsequently
648 	 * decremented from -- we would see more decrements than we should.
649 	 * MNT_WRITE_HOLD protects against this scenario, because
650 	 * mnt_want_write first increments count, then smp_mb, then spins on
651 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
652 	 * we're counting up here.
653 	 */
654 	if (mnt_get_writers(mnt) > 0)
655 		return -EBUSY;
656 
657 	return 0;
658 }
659 
660 /**
661  * mnt_unhold_writers - stop preventing write access to the given mount
662  * @mnt: mnt to stop preventing write access to
663  *
664  * Stop preventing write access to @mnt allowing callers to gain write access
665  * to @mnt again.
666  *
667  * This function can only be called after a successful call to
668  * mnt_hold_writers().
669  *
670  * Context: This function expects lock_mount_hash() to be held.
671  */
672 static inline void mnt_unhold_writers(struct mount *mnt)
673 {
674 	/*
675 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
676 	 * that become unheld will see MNT_READONLY.
677 	 */
678 	smp_wmb();
679 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
680 }
681 
682 static int mnt_make_readonly(struct mount *mnt)
683 {
684 	int ret;
685 
686 	ret = mnt_hold_writers(mnt);
687 	if (!ret)
688 		mnt->mnt.mnt_flags |= MNT_READONLY;
689 	mnt_unhold_writers(mnt);
690 	return ret;
691 }
692 
693 int sb_prepare_remount_readonly(struct super_block *sb)
694 {
695 	struct mount *mnt;
696 	int err = 0;
697 
698 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
699 	if (atomic_long_read(&sb->s_remove_count))
700 		return -EBUSY;
701 
702 	lock_mount_hash();
703 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
704 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
705 			err = mnt_hold_writers(mnt);
706 			if (err)
707 				break;
708 		}
709 	}
710 	if (!err && atomic_long_read(&sb->s_remove_count))
711 		err = -EBUSY;
712 
713 	if (!err)
714 		sb_start_ro_state_change(sb);
715 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
716 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
717 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
718 	}
719 	unlock_mount_hash();
720 
721 	return err;
722 }
723 
724 static void free_vfsmnt(struct mount *mnt)
725 {
726 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
727 	kfree_const(mnt->mnt_devname);
728 #ifdef CONFIG_SMP
729 	free_percpu(mnt->mnt_pcp);
730 #endif
731 	kmem_cache_free(mnt_cache, mnt);
732 }
733 
734 static void delayed_free_vfsmnt(struct rcu_head *head)
735 {
736 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
737 }
738 
739 /* call under rcu_read_lock */
740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
741 {
742 	struct mount *mnt;
743 	if (read_seqretry(&mount_lock, seq))
744 		return 1;
745 	if (bastard == NULL)
746 		return 0;
747 	mnt = real_mount(bastard);
748 	mnt_add_count(mnt, 1);
749 	smp_mb();			// see mntput_no_expire()
750 	if (likely(!read_seqretry(&mount_lock, seq)))
751 		return 0;
752 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
753 		mnt_add_count(mnt, -1);
754 		return 1;
755 	}
756 	lock_mount_hash();
757 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
758 		mnt_add_count(mnt, -1);
759 		unlock_mount_hash();
760 		return 1;
761 	}
762 	unlock_mount_hash();
763 	/* caller will mntput() */
764 	return -1;
765 }
766 
767 /* call under rcu_read_lock */
768 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
769 {
770 	int res = __legitimize_mnt(bastard, seq);
771 	if (likely(!res))
772 		return true;
773 	if (unlikely(res < 0)) {
774 		rcu_read_unlock();
775 		mntput(bastard);
776 		rcu_read_lock();
777 	}
778 	return false;
779 }
780 
781 /**
782  * __lookup_mnt - find first child mount
783  * @mnt:	parent mount
784  * @dentry:	mountpoint
785  *
786  * If @mnt has a child mount @c mounted @dentry find and return it.
787  *
788  * Note that the child mount @c need not be unique. There are cases
789  * where shadow mounts are created. For example, during mount
790  * propagation when a source mount @mnt whose root got overmounted by a
791  * mount @o after path lookup but before @namespace_sem could be
792  * acquired gets copied and propagated. So @mnt gets copied including
793  * @o. When @mnt is propagated to a destination mount @d that already
794  * has another mount @n mounted at the same mountpoint then the source
795  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
796  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
797  * on @dentry.
798  *
799  * Return: The first child of @mnt mounted @dentry or NULL.
800  */
801 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
802 {
803 	struct hlist_head *head = m_hash(mnt, dentry);
804 	struct mount *p;
805 
806 	hlist_for_each_entry_rcu(p, head, mnt_hash)
807 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
808 			return p;
809 	return NULL;
810 }
811 
812 /*
813  * lookup_mnt - Return the first child mount mounted at path
814  *
815  * "First" means first mounted chronologically.  If you create the
816  * following mounts:
817  *
818  * mount /dev/sda1 /mnt
819  * mount /dev/sda2 /mnt
820  * mount /dev/sda3 /mnt
821  *
822  * Then lookup_mnt() on the base /mnt dentry in the root mount will
823  * return successively the root dentry and vfsmount of /dev/sda1, then
824  * /dev/sda2, then /dev/sda3, then NULL.
825  *
826  * lookup_mnt takes a reference to the found vfsmount.
827  */
828 struct vfsmount *lookup_mnt(const struct path *path)
829 {
830 	struct mount *child_mnt;
831 	struct vfsmount *m;
832 	unsigned seq;
833 
834 	rcu_read_lock();
835 	do {
836 		seq = read_seqbegin(&mount_lock);
837 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
838 		m = child_mnt ? &child_mnt->mnt : NULL;
839 	} while (!legitimize_mnt(m, seq));
840 	rcu_read_unlock();
841 	return m;
842 }
843 
844 /*
845  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
846  *                         current mount namespace.
847  *
848  * The common case is dentries are not mountpoints at all and that
849  * test is handled inline.  For the slow case when we are actually
850  * dealing with a mountpoint of some kind, walk through all of the
851  * mounts in the current mount namespace and test to see if the dentry
852  * is a mountpoint.
853  *
854  * The mount_hashtable is not usable in the context because we
855  * need to identify all mounts that may be in the current mount
856  * namespace not just a mount that happens to have some specified
857  * parent mount.
858  */
859 bool __is_local_mountpoint(struct dentry *dentry)
860 {
861 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
862 	struct mount *mnt, *n;
863 	bool is_covered = false;
864 
865 	down_read(&namespace_sem);
866 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
867 		is_covered = (mnt->mnt_mountpoint == dentry);
868 		if (is_covered)
869 			break;
870 	}
871 	up_read(&namespace_sem);
872 
873 	return is_covered;
874 }
875 
876 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
877 {
878 	struct hlist_head *chain = mp_hash(dentry);
879 	struct mountpoint *mp;
880 
881 	hlist_for_each_entry(mp, chain, m_hash) {
882 		if (mp->m_dentry == dentry) {
883 			mp->m_count++;
884 			return mp;
885 		}
886 	}
887 	return NULL;
888 }
889 
890 static struct mountpoint *get_mountpoint(struct dentry *dentry)
891 {
892 	struct mountpoint *mp, *new = NULL;
893 	int ret;
894 
895 	if (d_mountpoint(dentry)) {
896 		/* might be worth a WARN_ON() */
897 		if (d_unlinked(dentry))
898 			return ERR_PTR(-ENOENT);
899 mountpoint:
900 		read_seqlock_excl(&mount_lock);
901 		mp = lookup_mountpoint(dentry);
902 		read_sequnlock_excl(&mount_lock);
903 		if (mp)
904 			goto done;
905 	}
906 
907 	if (!new)
908 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
909 	if (!new)
910 		return ERR_PTR(-ENOMEM);
911 
912 
913 	/* Exactly one processes may set d_mounted */
914 	ret = d_set_mounted(dentry);
915 
916 	/* Someone else set d_mounted? */
917 	if (ret == -EBUSY)
918 		goto mountpoint;
919 
920 	/* The dentry is not available as a mountpoint? */
921 	mp = ERR_PTR(ret);
922 	if (ret)
923 		goto done;
924 
925 	/* Add the new mountpoint to the hash table */
926 	read_seqlock_excl(&mount_lock);
927 	new->m_dentry = dget(dentry);
928 	new->m_count = 1;
929 	hlist_add_head(&new->m_hash, mp_hash(dentry));
930 	INIT_HLIST_HEAD(&new->m_list);
931 	read_sequnlock_excl(&mount_lock);
932 
933 	mp = new;
934 	new = NULL;
935 done:
936 	kfree(new);
937 	return mp;
938 }
939 
940 /*
941  * vfsmount lock must be held.  Additionally, the caller is responsible
942  * for serializing calls for given disposal list.
943  */
944 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
945 {
946 	if (!--mp->m_count) {
947 		struct dentry *dentry = mp->m_dentry;
948 		BUG_ON(!hlist_empty(&mp->m_list));
949 		spin_lock(&dentry->d_lock);
950 		dentry->d_flags &= ~DCACHE_MOUNTED;
951 		spin_unlock(&dentry->d_lock);
952 		dput_to_list(dentry, list);
953 		hlist_del(&mp->m_hash);
954 		kfree(mp);
955 	}
956 }
957 
958 /* called with namespace_lock and vfsmount lock */
959 static void put_mountpoint(struct mountpoint *mp)
960 {
961 	__put_mountpoint(mp, &ex_mountpoints);
962 }
963 
964 static inline int check_mnt(struct mount *mnt)
965 {
966 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
967 }
968 
969 /*
970  * vfsmount lock must be held for write
971  */
972 static void touch_mnt_namespace(struct mnt_namespace *ns)
973 {
974 	if (ns) {
975 		ns->event = ++event;
976 		wake_up_interruptible(&ns->poll);
977 	}
978 }
979 
980 /*
981  * vfsmount lock must be held for write
982  */
983 static void __touch_mnt_namespace(struct mnt_namespace *ns)
984 {
985 	if (ns && ns->event != event) {
986 		ns->event = event;
987 		wake_up_interruptible(&ns->poll);
988 	}
989 }
990 
991 /*
992  * vfsmount lock must be held for write
993  */
994 static struct mountpoint *unhash_mnt(struct mount *mnt)
995 {
996 	struct mountpoint *mp;
997 	mnt->mnt_parent = mnt;
998 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
999 	list_del_init(&mnt->mnt_child);
1000 	hlist_del_init_rcu(&mnt->mnt_hash);
1001 	hlist_del_init(&mnt->mnt_mp_list);
1002 	mp = mnt->mnt_mp;
1003 	mnt->mnt_mp = NULL;
1004 	return mp;
1005 }
1006 
1007 /*
1008  * vfsmount lock must be held for write
1009  */
1010 static void umount_mnt(struct mount *mnt)
1011 {
1012 	put_mountpoint(unhash_mnt(mnt));
1013 }
1014 
1015 /*
1016  * vfsmount lock must be held for write
1017  */
1018 void mnt_set_mountpoint(struct mount *mnt,
1019 			struct mountpoint *mp,
1020 			struct mount *child_mnt)
1021 {
1022 	mp->m_count++;
1023 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1024 	child_mnt->mnt_mountpoint = mp->m_dentry;
1025 	child_mnt->mnt_parent = mnt;
1026 	child_mnt->mnt_mp = mp;
1027 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029 
1030 /**
1031  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1032  *
1033  * @new_parent: the source mount
1034  * @top_mnt:    the mount beneath which @new_parent is mounted
1035  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1036  *
1037  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1038  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1039  * @new_mp. And mount @new_parent on the old parent and old
1040  * mountpoint of @top_mnt.
1041  *
1042  * Context: This function expects namespace_lock() and lock_mount_hash()
1043  *          to have been acquired in that order.
1044  */
1045 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1046 				       struct mount *top_mnt,
1047 				       struct mountpoint *new_mp)
1048 {
1049 	struct mount *old_top_parent = top_mnt->mnt_parent;
1050 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1051 
1052 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1053 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1054 }
1055 
1056 
1057 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1058 {
1059 	hlist_add_head_rcu(&mnt->mnt_hash,
1060 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1061 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1062 }
1063 
1064 /**
1065  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1066  *              list of child mounts
1067  * @parent:  the parent
1068  * @mnt:     the new mount
1069  * @mp:      the new mountpoint
1070  * @beneath: whether to mount @mnt beneath or on top of @parent
1071  *
1072  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1073  * to @parent's child mount list and to @mount_hashtable.
1074  *
1075  * If @beneath is true, remove @mnt from its current parent and
1076  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1077  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1078  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1079  *
1080  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1081  * to the correct parent.
1082  *
1083  * Context: This function expects namespace_lock() and lock_mount_hash()
1084  *          to have been acquired in that order.
1085  */
1086 static void attach_mnt(struct mount *mnt, struct mount *parent,
1087 		       struct mountpoint *mp, bool beneath)
1088 {
1089 	if (beneath)
1090 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1091 	else
1092 		mnt_set_mountpoint(parent, mp, mnt);
1093 	/*
1094 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1095 	 * beneath @parent then @mnt will need to be attached to
1096 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1097 	 * isn't the same mount as @parent.
1098 	 */
1099 	__attach_mnt(mnt, mnt->mnt_parent);
1100 }
1101 
1102 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1103 {
1104 	struct mountpoint *old_mp = mnt->mnt_mp;
1105 	struct mount *old_parent = mnt->mnt_parent;
1106 
1107 	list_del_init(&mnt->mnt_child);
1108 	hlist_del_init(&mnt->mnt_mp_list);
1109 	hlist_del_init_rcu(&mnt->mnt_hash);
1110 
1111 	attach_mnt(mnt, parent, mp, false);
1112 
1113 	put_mountpoint(old_mp);
1114 	mnt_add_count(old_parent, -1);
1115 }
1116 
1117 static inline struct mount *node_to_mount(struct rb_node *node)
1118 {
1119 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1120 }
1121 
1122 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1123 {
1124 	struct rb_node **link = &ns->mounts.rb_node;
1125 	struct rb_node *parent = NULL;
1126 
1127 	WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1128 	mnt->mnt_ns = ns;
1129 	while (*link) {
1130 		parent = *link;
1131 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1132 			link = &parent->rb_left;
1133 		else
1134 			link = &parent->rb_right;
1135 	}
1136 	rb_link_node(&mnt->mnt_node, parent, link);
1137 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1138 	mnt->mnt.mnt_flags |= MNT_ONRB;
1139 }
1140 
1141 /*
1142  * vfsmount lock must be held for write
1143  */
1144 static void commit_tree(struct mount *mnt)
1145 {
1146 	struct mount *parent = mnt->mnt_parent;
1147 	struct mount *m;
1148 	LIST_HEAD(head);
1149 	struct mnt_namespace *n = parent->mnt_ns;
1150 
1151 	BUG_ON(parent == mnt);
1152 
1153 	list_add_tail(&head, &mnt->mnt_list);
1154 	while (!list_empty(&head)) {
1155 		m = list_first_entry(&head, typeof(*m), mnt_list);
1156 		list_del(&m->mnt_list);
1157 
1158 		mnt_add_to_ns(n, m);
1159 	}
1160 	n->nr_mounts += n->pending_mounts;
1161 	n->pending_mounts = 0;
1162 
1163 	__attach_mnt(mnt, parent);
1164 	touch_mnt_namespace(n);
1165 }
1166 
1167 static struct mount *next_mnt(struct mount *p, struct mount *root)
1168 {
1169 	struct list_head *next = p->mnt_mounts.next;
1170 	if (next == &p->mnt_mounts) {
1171 		while (1) {
1172 			if (p == root)
1173 				return NULL;
1174 			next = p->mnt_child.next;
1175 			if (next != &p->mnt_parent->mnt_mounts)
1176 				break;
1177 			p = p->mnt_parent;
1178 		}
1179 	}
1180 	return list_entry(next, struct mount, mnt_child);
1181 }
1182 
1183 static struct mount *skip_mnt_tree(struct mount *p)
1184 {
1185 	struct list_head *prev = p->mnt_mounts.prev;
1186 	while (prev != &p->mnt_mounts) {
1187 		p = list_entry(prev, struct mount, mnt_child);
1188 		prev = p->mnt_mounts.prev;
1189 	}
1190 	return p;
1191 }
1192 
1193 /**
1194  * vfs_create_mount - Create a mount for a configured superblock
1195  * @fc: The configuration context with the superblock attached
1196  *
1197  * Create a mount to an already configured superblock.  If necessary, the
1198  * caller should invoke vfs_get_tree() before calling this.
1199  *
1200  * Note that this does not attach the mount to anything.
1201  */
1202 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1203 {
1204 	struct mount *mnt;
1205 
1206 	if (!fc->root)
1207 		return ERR_PTR(-EINVAL);
1208 
1209 	mnt = alloc_vfsmnt(fc->source ?: "none");
1210 	if (!mnt)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	if (fc->sb_flags & SB_KERNMOUNT)
1214 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1215 
1216 	atomic_inc(&fc->root->d_sb->s_active);
1217 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1218 	mnt->mnt.mnt_root	= dget(fc->root);
1219 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1220 	mnt->mnt_parent		= mnt;
1221 
1222 	lock_mount_hash();
1223 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1224 	unlock_mount_hash();
1225 	return &mnt->mnt;
1226 }
1227 EXPORT_SYMBOL(vfs_create_mount);
1228 
1229 struct vfsmount *fc_mount(struct fs_context *fc)
1230 {
1231 	int err = vfs_get_tree(fc);
1232 	if (!err) {
1233 		up_write(&fc->root->d_sb->s_umount);
1234 		return vfs_create_mount(fc);
1235 	}
1236 	return ERR_PTR(err);
1237 }
1238 EXPORT_SYMBOL(fc_mount);
1239 
1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1241 				int flags, const char *name,
1242 				void *data)
1243 {
1244 	struct fs_context *fc;
1245 	struct vfsmount *mnt;
1246 	int ret = 0;
1247 
1248 	if (!type)
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	fc = fs_context_for_mount(type, flags);
1252 	if (IS_ERR(fc))
1253 		return ERR_CAST(fc);
1254 
1255 	if (name)
1256 		ret = vfs_parse_fs_string(fc, "source",
1257 					  name, strlen(name));
1258 	if (!ret)
1259 		ret = parse_monolithic_mount_data(fc, data);
1260 	if (!ret)
1261 		mnt = fc_mount(fc);
1262 	else
1263 		mnt = ERR_PTR(ret);
1264 
1265 	put_fs_context(fc);
1266 	return mnt;
1267 }
1268 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1269 
1270 struct vfsmount *
1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1272 	     const char *name, void *data)
1273 {
1274 	/* Until it is worked out how to pass the user namespace
1275 	 * through from the parent mount to the submount don't support
1276 	 * unprivileged mounts with submounts.
1277 	 */
1278 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1279 		return ERR_PTR(-EPERM);
1280 
1281 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1282 }
1283 EXPORT_SYMBOL_GPL(vfs_submount);
1284 
1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1286 					int flag)
1287 {
1288 	struct super_block *sb = old->mnt.mnt_sb;
1289 	struct mount *mnt;
1290 	int err;
1291 
1292 	mnt = alloc_vfsmnt(old->mnt_devname);
1293 	if (!mnt)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1297 		mnt->mnt_group_id = 0; /* not a peer of original */
1298 	else
1299 		mnt->mnt_group_id = old->mnt_group_id;
1300 
1301 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1302 		err = mnt_alloc_group_id(mnt);
1303 		if (err)
1304 			goto out_free;
1305 	}
1306 
1307 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1308 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1309 
1310 	atomic_inc(&sb->s_active);
1311 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1312 
1313 	mnt->mnt.mnt_sb = sb;
1314 	mnt->mnt.mnt_root = dget(root);
1315 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1316 	mnt->mnt_parent = mnt;
1317 	lock_mount_hash();
1318 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1319 	unlock_mount_hash();
1320 
1321 	if ((flag & CL_SLAVE) ||
1322 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1323 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1324 		mnt->mnt_master = old;
1325 		CLEAR_MNT_SHARED(mnt);
1326 	} else if (!(flag & CL_PRIVATE)) {
1327 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1328 			list_add(&mnt->mnt_share, &old->mnt_share);
1329 		if (IS_MNT_SLAVE(old))
1330 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1331 		mnt->mnt_master = old->mnt_master;
1332 	} else {
1333 		CLEAR_MNT_SHARED(mnt);
1334 	}
1335 	if (flag & CL_MAKE_SHARED)
1336 		set_mnt_shared(mnt);
1337 
1338 	/* stick the duplicate mount on the same expiry list
1339 	 * as the original if that was on one */
1340 	if (flag & CL_EXPIRE) {
1341 		if (!list_empty(&old->mnt_expire))
1342 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1343 	}
1344 
1345 	return mnt;
1346 
1347  out_free:
1348 	mnt_free_id(mnt);
1349 	free_vfsmnt(mnt);
1350 	return ERR_PTR(err);
1351 }
1352 
1353 static void cleanup_mnt(struct mount *mnt)
1354 {
1355 	struct hlist_node *p;
1356 	struct mount *m;
1357 	/*
1358 	 * The warning here probably indicates that somebody messed
1359 	 * up a mnt_want/drop_write() pair.  If this happens, the
1360 	 * filesystem was probably unable to make r/w->r/o transitions.
1361 	 * The locking used to deal with mnt_count decrement provides barriers,
1362 	 * so mnt_get_writers() below is safe.
1363 	 */
1364 	WARN_ON(mnt_get_writers(mnt));
1365 	if (unlikely(mnt->mnt_pins.first))
1366 		mnt_pin_kill(mnt);
1367 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1368 		hlist_del(&m->mnt_umount);
1369 		mntput(&m->mnt);
1370 	}
1371 	fsnotify_vfsmount_delete(&mnt->mnt);
1372 	dput(mnt->mnt.mnt_root);
1373 	deactivate_super(mnt->mnt.mnt_sb);
1374 	mnt_free_id(mnt);
1375 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1376 }
1377 
1378 static void __cleanup_mnt(struct rcu_head *head)
1379 {
1380 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1381 }
1382 
1383 static LLIST_HEAD(delayed_mntput_list);
1384 static void delayed_mntput(struct work_struct *unused)
1385 {
1386 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1387 	struct mount *m, *t;
1388 
1389 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1390 		cleanup_mnt(m);
1391 }
1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1393 
1394 static void mntput_no_expire(struct mount *mnt)
1395 {
1396 	LIST_HEAD(list);
1397 	int count;
1398 
1399 	rcu_read_lock();
1400 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1401 		/*
1402 		 * Since we don't do lock_mount_hash() here,
1403 		 * ->mnt_ns can change under us.  However, if it's
1404 		 * non-NULL, then there's a reference that won't
1405 		 * be dropped until after an RCU delay done after
1406 		 * turning ->mnt_ns NULL.  So if we observe it
1407 		 * non-NULL under rcu_read_lock(), the reference
1408 		 * we are dropping is not the final one.
1409 		 */
1410 		mnt_add_count(mnt, -1);
1411 		rcu_read_unlock();
1412 		return;
1413 	}
1414 	lock_mount_hash();
1415 	/*
1416 	 * make sure that if __legitimize_mnt() has not seen us grab
1417 	 * mount_lock, we'll see their refcount increment here.
1418 	 */
1419 	smp_mb();
1420 	mnt_add_count(mnt, -1);
1421 	count = mnt_get_count(mnt);
1422 	if (count != 0) {
1423 		WARN_ON(count < 0);
1424 		rcu_read_unlock();
1425 		unlock_mount_hash();
1426 		return;
1427 	}
1428 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1429 		rcu_read_unlock();
1430 		unlock_mount_hash();
1431 		return;
1432 	}
1433 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1434 	rcu_read_unlock();
1435 
1436 	list_del(&mnt->mnt_instance);
1437 
1438 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1439 		struct mount *p, *tmp;
1440 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1441 			__put_mountpoint(unhash_mnt(p), &list);
1442 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1443 		}
1444 	}
1445 	unlock_mount_hash();
1446 	shrink_dentry_list(&list);
1447 
1448 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1449 		struct task_struct *task = current;
1450 		if (likely(!(task->flags & PF_KTHREAD))) {
1451 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1452 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1453 				return;
1454 		}
1455 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1456 			schedule_delayed_work(&delayed_mntput_work, 1);
1457 		return;
1458 	}
1459 	cleanup_mnt(mnt);
1460 }
1461 
1462 void mntput(struct vfsmount *mnt)
1463 {
1464 	if (mnt) {
1465 		struct mount *m = real_mount(mnt);
1466 		/* avoid cacheline pingpong */
1467 		if (unlikely(m->mnt_expiry_mark))
1468 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1469 		mntput_no_expire(m);
1470 	}
1471 }
1472 EXPORT_SYMBOL(mntput);
1473 
1474 struct vfsmount *mntget(struct vfsmount *mnt)
1475 {
1476 	if (mnt)
1477 		mnt_add_count(real_mount(mnt), 1);
1478 	return mnt;
1479 }
1480 EXPORT_SYMBOL(mntget);
1481 
1482 /*
1483  * Make a mount point inaccessible to new lookups.
1484  * Because there may still be current users, the caller MUST WAIT
1485  * for an RCU grace period before destroying the mount point.
1486  */
1487 void mnt_make_shortterm(struct vfsmount *mnt)
1488 {
1489 	if (mnt)
1490 		real_mount(mnt)->mnt_ns = NULL;
1491 }
1492 
1493 /**
1494  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1495  * @path: path to check
1496  *
1497  *  d_mountpoint() can only be used reliably to establish if a dentry is
1498  *  not mounted in any namespace and that common case is handled inline.
1499  *  d_mountpoint() isn't aware of the possibility there may be multiple
1500  *  mounts using a given dentry in a different namespace. This function
1501  *  checks if the passed in path is a mountpoint rather than the dentry
1502  *  alone.
1503  */
1504 bool path_is_mountpoint(const struct path *path)
1505 {
1506 	unsigned seq;
1507 	bool res;
1508 
1509 	if (!d_mountpoint(path->dentry))
1510 		return false;
1511 
1512 	rcu_read_lock();
1513 	do {
1514 		seq = read_seqbegin(&mount_lock);
1515 		res = __path_is_mountpoint(path);
1516 	} while (read_seqretry(&mount_lock, seq));
1517 	rcu_read_unlock();
1518 
1519 	return res;
1520 }
1521 EXPORT_SYMBOL(path_is_mountpoint);
1522 
1523 struct vfsmount *mnt_clone_internal(const struct path *path)
1524 {
1525 	struct mount *p;
1526 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1527 	if (IS_ERR(p))
1528 		return ERR_CAST(p);
1529 	p->mnt.mnt_flags |= MNT_INTERNAL;
1530 	return &p->mnt;
1531 }
1532 
1533 /*
1534  * Returns the mount which either has the specified mnt_id, or has the next
1535  * smallest id afer the specified one.
1536  */
1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1538 {
1539 	struct rb_node *node = ns->mounts.rb_node;
1540 	struct mount *ret = NULL;
1541 
1542 	while (node) {
1543 		struct mount *m = node_to_mount(node);
1544 
1545 		if (mnt_id <= m->mnt_id_unique) {
1546 			ret = node_to_mount(node);
1547 			if (mnt_id == m->mnt_id_unique)
1548 				break;
1549 			node = node->rb_left;
1550 		} else {
1551 			node = node->rb_right;
1552 		}
1553 	}
1554 	return ret;
1555 }
1556 
1557 /*
1558  * Returns the mount which either has the specified mnt_id, or has the next
1559  * greater id before the specified one.
1560  */
1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1562 {
1563 	struct rb_node *node = ns->mounts.rb_node;
1564 	struct mount *ret = NULL;
1565 
1566 	while (node) {
1567 		struct mount *m = node_to_mount(node);
1568 
1569 		if (mnt_id >= m->mnt_id_unique) {
1570 			ret = node_to_mount(node);
1571 			if (mnt_id == m->mnt_id_unique)
1572 				break;
1573 			node = node->rb_right;
1574 		} else {
1575 			node = node->rb_left;
1576 		}
1577 	}
1578 	return ret;
1579 }
1580 
1581 #ifdef CONFIG_PROC_FS
1582 
1583 /* iterator; we want it to have access to namespace_sem, thus here... */
1584 static void *m_start(struct seq_file *m, loff_t *pos)
1585 {
1586 	struct proc_mounts *p = m->private;
1587 
1588 	down_read(&namespace_sem);
1589 
1590 	return mnt_find_id_at(p->ns, *pos);
1591 }
1592 
1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1594 {
1595 	struct mount *next = NULL, *mnt = v;
1596 	struct rb_node *node = rb_next(&mnt->mnt_node);
1597 
1598 	++*pos;
1599 	if (node) {
1600 		next = node_to_mount(node);
1601 		*pos = next->mnt_id_unique;
1602 	}
1603 	return next;
1604 }
1605 
1606 static void m_stop(struct seq_file *m, void *v)
1607 {
1608 	up_read(&namespace_sem);
1609 }
1610 
1611 static int m_show(struct seq_file *m, void *v)
1612 {
1613 	struct proc_mounts *p = m->private;
1614 	struct mount *r = v;
1615 	return p->show(m, &r->mnt);
1616 }
1617 
1618 const struct seq_operations mounts_op = {
1619 	.start	= m_start,
1620 	.next	= m_next,
1621 	.stop	= m_stop,
1622 	.show	= m_show,
1623 };
1624 
1625 #endif  /* CONFIG_PROC_FS */
1626 
1627 /**
1628  * may_umount_tree - check if a mount tree is busy
1629  * @m: root of mount tree
1630  *
1631  * This is called to check if a tree of mounts has any
1632  * open files, pwds, chroots or sub mounts that are
1633  * busy.
1634  */
1635 int may_umount_tree(struct vfsmount *m)
1636 {
1637 	struct mount *mnt = real_mount(m);
1638 	int actual_refs = 0;
1639 	int minimum_refs = 0;
1640 	struct mount *p;
1641 	BUG_ON(!m);
1642 
1643 	/* write lock needed for mnt_get_count */
1644 	lock_mount_hash();
1645 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1646 		actual_refs += mnt_get_count(p);
1647 		minimum_refs += 2;
1648 	}
1649 	unlock_mount_hash();
1650 
1651 	if (actual_refs > minimum_refs)
1652 		return 0;
1653 
1654 	return 1;
1655 }
1656 
1657 EXPORT_SYMBOL(may_umount_tree);
1658 
1659 /**
1660  * may_umount - check if a mount point is busy
1661  * @mnt: root of mount
1662  *
1663  * This is called to check if a mount point has any
1664  * open files, pwds, chroots or sub mounts. If the
1665  * mount has sub mounts this will return busy
1666  * regardless of whether the sub mounts are busy.
1667  *
1668  * Doesn't take quota and stuff into account. IOW, in some cases it will
1669  * give false negatives. The main reason why it's here is that we need
1670  * a non-destructive way to look for easily umountable filesystems.
1671  */
1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 	int ret = 1;
1675 	down_read(&namespace_sem);
1676 	lock_mount_hash();
1677 	if (propagate_mount_busy(real_mount(mnt), 2))
1678 		ret = 0;
1679 	unlock_mount_hash();
1680 	up_read(&namespace_sem);
1681 	return ret;
1682 }
1683 
1684 EXPORT_SYMBOL(may_umount);
1685 
1686 static void namespace_unlock(void)
1687 {
1688 	struct hlist_head head;
1689 	struct hlist_node *p;
1690 	struct mount *m;
1691 	LIST_HEAD(list);
1692 
1693 	hlist_move_list(&unmounted, &head);
1694 	list_splice_init(&ex_mountpoints, &list);
1695 
1696 	up_write(&namespace_sem);
1697 
1698 	shrink_dentry_list(&list);
1699 
1700 	if (likely(hlist_empty(&head)))
1701 		return;
1702 
1703 	synchronize_rcu_expedited();
1704 
1705 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1706 		hlist_del(&m->mnt_umount);
1707 		mntput(&m->mnt);
1708 	}
1709 }
1710 
1711 static inline void namespace_lock(void)
1712 {
1713 	down_write(&namespace_sem);
1714 }
1715 
1716 enum umount_tree_flags {
1717 	UMOUNT_SYNC = 1,
1718 	UMOUNT_PROPAGATE = 2,
1719 	UMOUNT_CONNECTED = 4,
1720 };
1721 
1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1723 {
1724 	/* Leaving mounts connected is only valid for lazy umounts */
1725 	if (how & UMOUNT_SYNC)
1726 		return true;
1727 
1728 	/* A mount without a parent has nothing to be connected to */
1729 	if (!mnt_has_parent(mnt))
1730 		return true;
1731 
1732 	/* Because the reference counting rules change when mounts are
1733 	 * unmounted and connected, umounted mounts may not be
1734 	 * connected to mounted mounts.
1735 	 */
1736 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1737 		return true;
1738 
1739 	/* Has it been requested that the mount remain connected? */
1740 	if (how & UMOUNT_CONNECTED)
1741 		return false;
1742 
1743 	/* Is the mount locked such that it needs to remain connected? */
1744 	if (IS_MNT_LOCKED(mnt))
1745 		return false;
1746 
1747 	/* By default disconnect the mount */
1748 	return true;
1749 }
1750 
1751 /*
1752  * mount_lock must be held
1753  * namespace_sem must be held for write
1754  */
1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1756 {
1757 	LIST_HEAD(tmp_list);
1758 	struct mount *p;
1759 
1760 	if (how & UMOUNT_PROPAGATE)
1761 		propagate_mount_unlock(mnt);
1762 
1763 	/* Gather the mounts to umount */
1764 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1765 		p->mnt.mnt_flags |= MNT_UMOUNT;
1766 		if (p->mnt.mnt_flags & MNT_ONRB)
1767 			move_from_ns(p, &tmp_list);
1768 		else
1769 			list_move(&p->mnt_list, &tmp_list);
1770 	}
1771 
1772 	/* Hide the mounts from mnt_mounts */
1773 	list_for_each_entry(p, &tmp_list, mnt_list) {
1774 		list_del_init(&p->mnt_child);
1775 	}
1776 
1777 	/* Add propagated mounts to the tmp_list */
1778 	if (how & UMOUNT_PROPAGATE)
1779 		propagate_umount(&tmp_list);
1780 
1781 	while (!list_empty(&tmp_list)) {
1782 		struct mnt_namespace *ns;
1783 		bool disconnect;
1784 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1785 		list_del_init(&p->mnt_expire);
1786 		list_del_init(&p->mnt_list);
1787 		ns = p->mnt_ns;
1788 		if (ns) {
1789 			ns->nr_mounts--;
1790 			__touch_mnt_namespace(ns);
1791 		}
1792 		p->mnt_ns = NULL;
1793 		if (how & UMOUNT_SYNC)
1794 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1795 
1796 		disconnect = disconnect_mount(p, how);
1797 		if (mnt_has_parent(p)) {
1798 			mnt_add_count(p->mnt_parent, -1);
1799 			if (!disconnect) {
1800 				/* Don't forget about p */
1801 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1802 			} else {
1803 				umount_mnt(p);
1804 			}
1805 		}
1806 		change_mnt_propagation(p, MS_PRIVATE);
1807 		if (disconnect)
1808 			hlist_add_head(&p->mnt_umount, &unmounted);
1809 	}
1810 }
1811 
1812 static void shrink_submounts(struct mount *mnt);
1813 
1814 static int do_umount_root(struct super_block *sb)
1815 {
1816 	int ret = 0;
1817 
1818 	down_write(&sb->s_umount);
1819 	if (!sb_rdonly(sb)) {
1820 		struct fs_context *fc;
1821 
1822 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1823 						SB_RDONLY);
1824 		if (IS_ERR(fc)) {
1825 			ret = PTR_ERR(fc);
1826 		} else {
1827 			ret = parse_monolithic_mount_data(fc, NULL);
1828 			if (!ret)
1829 				ret = reconfigure_super(fc);
1830 			put_fs_context(fc);
1831 		}
1832 	}
1833 	up_write(&sb->s_umount);
1834 	return ret;
1835 }
1836 
1837 static int do_umount(struct mount *mnt, int flags)
1838 {
1839 	struct super_block *sb = mnt->mnt.mnt_sb;
1840 	int retval;
1841 
1842 	retval = security_sb_umount(&mnt->mnt, flags);
1843 	if (retval)
1844 		return retval;
1845 
1846 	/*
1847 	 * Allow userspace to request a mountpoint be expired rather than
1848 	 * unmounting unconditionally. Unmount only happens if:
1849 	 *  (1) the mark is already set (the mark is cleared by mntput())
1850 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1851 	 */
1852 	if (flags & MNT_EXPIRE) {
1853 		if (&mnt->mnt == current->fs->root.mnt ||
1854 		    flags & (MNT_FORCE | MNT_DETACH))
1855 			return -EINVAL;
1856 
1857 		/*
1858 		 * probably don't strictly need the lock here if we examined
1859 		 * all race cases, but it's a slowpath.
1860 		 */
1861 		lock_mount_hash();
1862 		if (mnt_get_count(mnt) != 2) {
1863 			unlock_mount_hash();
1864 			return -EBUSY;
1865 		}
1866 		unlock_mount_hash();
1867 
1868 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1869 			return -EAGAIN;
1870 	}
1871 
1872 	/*
1873 	 * If we may have to abort operations to get out of this
1874 	 * mount, and they will themselves hold resources we must
1875 	 * allow the fs to do things. In the Unix tradition of
1876 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1877 	 * might fail to complete on the first run through as other tasks
1878 	 * must return, and the like. Thats for the mount program to worry
1879 	 * about for the moment.
1880 	 */
1881 
1882 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1883 		sb->s_op->umount_begin(sb);
1884 	}
1885 
1886 	/*
1887 	 * No sense to grab the lock for this test, but test itself looks
1888 	 * somewhat bogus. Suggestions for better replacement?
1889 	 * Ho-hum... In principle, we might treat that as umount + switch
1890 	 * to rootfs. GC would eventually take care of the old vfsmount.
1891 	 * Actually it makes sense, especially if rootfs would contain a
1892 	 * /reboot - static binary that would close all descriptors and
1893 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1894 	 */
1895 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1896 		/*
1897 		 * Special case for "unmounting" root ...
1898 		 * we just try to remount it readonly.
1899 		 */
1900 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1901 			return -EPERM;
1902 		return do_umount_root(sb);
1903 	}
1904 
1905 	namespace_lock();
1906 	lock_mount_hash();
1907 
1908 	/* Recheck MNT_LOCKED with the locks held */
1909 	retval = -EINVAL;
1910 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1911 		goto out;
1912 
1913 	event++;
1914 	if (flags & MNT_DETACH) {
1915 		if (mnt->mnt.mnt_flags & MNT_ONRB ||
1916 		    !list_empty(&mnt->mnt_list))
1917 			umount_tree(mnt, UMOUNT_PROPAGATE);
1918 		retval = 0;
1919 	} else {
1920 		shrink_submounts(mnt);
1921 		retval = -EBUSY;
1922 		if (!propagate_mount_busy(mnt, 2)) {
1923 			if (mnt->mnt.mnt_flags & MNT_ONRB ||
1924 			    !list_empty(&mnt->mnt_list))
1925 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1926 			retval = 0;
1927 		}
1928 	}
1929 out:
1930 	unlock_mount_hash();
1931 	namespace_unlock();
1932 	return retval;
1933 }
1934 
1935 /*
1936  * __detach_mounts - lazily unmount all mounts on the specified dentry
1937  *
1938  * During unlink, rmdir, and d_drop it is possible to loose the path
1939  * to an existing mountpoint, and wind up leaking the mount.
1940  * detach_mounts allows lazily unmounting those mounts instead of
1941  * leaking them.
1942  *
1943  * The caller may hold dentry->d_inode->i_mutex.
1944  */
1945 void __detach_mounts(struct dentry *dentry)
1946 {
1947 	struct mountpoint *mp;
1948 	struct mount *mnt;
1949 
1950 	namespace_lock();
1951 	lock_mount_hash();
1952 	mp = lookup_mountpoint(dentry);
1953 	if (!mp)
1954 		goto out_unlock;
1955 
1956 	event++;
1957 	while (!hlist_empty(&mp->m_list)) {
1958 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1959 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1960 			umount_mnt(mnt);
1961 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1962 		}
1963 		else umount_tree(mnt, UMOUNT_CONNECTED);
1964 	}
1965 	put_mountpoint(mp);
1966 out_unlock:
1967 	unlock_mount_hash();
1968 	namespace_unlock();
1969 }
1970 
1971 /*
1972  * Is the caller allowed to modify his namespace?
1973  */
1974 bool may_mount(void)
1975 {
1976 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1977 }
1978 
1979 static void warn_mandlock(void)
1980 {
1981 	pr_warn_once("=======================================================\n"
1982 		     "WARNING: The mand mount option has been deprecated and\n"
1983 		     "         and is ignored by this kernel. Remove the mand\n"
1984 		     "         option from the mount to silence this warning.\n"
1985 		     "=======================================================\n");
1986 }
1987 
1988 static int can_umount(const struct path *path, int flags)
1989 {
1990 	struct mount *mnt = real_mount(path->mnt);
1991 
1992 	if (!may_mount())
1993 		return -EPERM;
1994 	if (!path_mounted(path))
1995 		return -EINVAL;
1996 	if (!check_mnt(mnt))
1997 		return -EINVAL;
1998 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1999 		return -EINVAL;
2000 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2001 		return -EPERM;
2002 	return 0;
2003 }
2004 
2005 // caller is responsible for flags being sane
2006 int path_umount(struct path *path, int flags)
2007 {
2008 	struct mount *mnt = real_mount(path->mnt);
2009 	int ret;
2010 
2011 	ret = can_umount(path, flags);
2012 	if (!ret)
2013 		ret = do_umount(mnt, flags);
2014 
2015 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2016 	dput(path->dentry);
2017 	mntput_no_expire(mnt);
2018 	return ret;
2019 }
2020 
2021 static int ksys_umount(char __user *name, int flags)
2022 {
2023 	int lookup_flags = LOOKUP_MOUNTPOINT;
2024 	struct path path;
2025 	int ret;
2026 
2027 	// basic validity checks done first
2028 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2029 		return -EINVAL;
2030 
2031 	if (!(flags & UMOUNT_NOFOLLOW))
2032 		lookup_flags |= LOOKUP_FOLLOW;
2033 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2034 	if (ret)
2035 		return ret;
2036 	return path_umount(&path, flags);
2037 }
2038 
2039 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2040 {
2041 	return ksys_umount(name, flags);
2042 }
2043 
2044 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2045 
2046 /*
2047  *	The 2.0 compatible umount. No flags.
2048  */
2049 SYSCALL_DEFINE1(oldumount, char __user *, name)
2050 {
2051 	return ksys_umount(name, 0);
2052 }
2053 
2054 #endif
2055 
2056 static bool is_mnt_ns_file(struct dentry *dentry)
2057 {
2058 	/* Is this a proxy for a mount namespace? */
2059 	return dentry->d_op == &ns_dentry_operations &&
2060 	       dentry->d_fsdata == &mntns_operations;
2061 }
2062 
2063 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2064 {
2065 	return &mnt->ns;
2066 }
2067 
2068 struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous)
2069 {
2070 	guard(read_lock)(&mnt_ns_tree_lock);
2071 	for (;;) {
2072 		struct rb_node *node;
2073 
2074 		if (previous)
2075 			node = rb_prev(&mntns->mnt_ns_tree_node);
2076 		else
2077 			node = rb_next(&mntns->mnt_ns_tree_node);
2078 		if (!node)
2079 			return ERR_PTR(-ENOENT);
2080 
2081 		mntns = node_to_mnt_ns(node);
2082 		node = &mntns->mnt_ns_tree_node;
2083 
2084 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2085 			continue;
2086 
2087 		/*
2088 		 * Holding mnt_ns_tree_lock prevents the mount namespace from
2089 		 * being freed but it may well be on it's deathbed. We want an
2090 		 * active reference, not just a passive one here as we're
2091 		 * persisting the mount namespace.
2092 		 */
2093 		if (!refcount_inc_not_zero(&mntns->ns.count))
2094 			continue;
2095 
2096 		return mntns;
2097 	}
2098 }
2099 
2100 static bool mnt_ns_loop(struct dentry *dentry)
2101 {
2102 	/* Could bind mounting the mount namespace inode cause a
2103 	 * mount namespace loop?
2104 	 */
2105 	struct mnt_namespace *mnt_ns;
2106 	if (!is_mnt_ns_file(dentry))
2107 		return false;
2108 
2109 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2110 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2111 }
2112 
2113 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2114 					int flag)
2115 {
2116 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2117 		*dst_parent, *dst_mnt;
2118 
2119 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2120 		return ERR_PTR(-EINVAL);
2121 
2122 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2123 		return ERR_PTR(-EINVAL);
2124 
2125 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2126 	if (IS_ERR(dst_mnt))
2127 		return dst_mnt;
2128 
2129 	src_parent = src_root;
2130 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2131 
2132 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2133 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2134 			continue;
2135 
2136 		for (src_mnt = src_root_child; src_mnt;
2137 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2138 			if (!(flag & CL_COPY_UNBINDABLE) &&
2139 			    IS_MNT_UNBINDABLE(src_mnt)) {
2140 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2141 					/* Both unbindable and locked. */
2142 					dst_mnt = ERR_PTR(-EPERM);
2143 					goto out;
2144 				} else {
2145 					src_mnt = skip_mnt_tree(src_mnt);
2146 					continue;
2147 				}
2148 			}
2149 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2150 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2151 				src_mnt = skip_mnt_tree(src_mnt);
2152 				continue;
2153 			}
2154 			while (src_parent != src_mnt->mnt_parent) {
2155 				src_parent = src_parent->mnt_parent;
2156 				dst_mnt = dst_mnt->mnt_parent;
2157 			}
2158 
2159 			src_parent = src_mnt;
2160 			dst_parent = dst_mnt;
2161 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2162 			if (IS_ERR(dst_mnt))
2163 				goto out;
2164 			lock_mount_hash();
2165 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2166 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2167 			unlock_mount_hash();
2168 		}
2169 	}
2170 	return res;
2171 
2172 out:
2173 	if (res) {
2174 		lock_mount_hash();
2175 		umount_tree(res, UMOUNT_SYNC);
2176 		unlock_mount_hash();
2177 	}
2178 	return dst_mnt;
2179 }
2180 
2181 /* Caller should check returned pointer for errors */
2182 
2183 struct vfsmount *collect_mounts(const struct path *path)
2184 {
2185 	struct mount *tree;
2186 	namespace_lock();
2187 	if (!check_mnt(real_mount(path->mnt)))
2188 		tree = ERR_PTR(-EINVAL);
2189 	else
2190 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2191 				 CL_COPY_ALL | CL_PRIVATE);
2192 	namespace_unlock();
2193 	if (IS_ERR(tree))
2194 		return ERR_CAST(tree);
2195 	return &tree->mnt;
2196 }
2197 
2198 static void free_mnt_ns(struct mnt_namespace *);
2199 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2200 
2201 void dissolve_on_fput(struct vfsmount *mnt)
2202 {
2203 	struct mnt_namespace *ns;
2204 	namespace_lock();
2205 	lock_mount_hash();
2206 	ns = real_mount(mnt)->mnt_ns;
2207 	if (ns) {
2208 		if (is_anon_ns(ns))
2209 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2210 		else
2211 			ns = NULL;
2212 	}
2213 	unlock_mount_hash();
2214 	namespace_unlock();
2215 	if (ns)
2216 		free_mnt_ns(ns);
2217 }
2218 
2219 void drop_collected_mounts(struct vfsmount *mnt)
2220 {
2221 	namespace_lock();
2222 	lock_mount_hash();
2223 	umount_tree(real_mount(mnt), 0);
2224 	unlock_mount_hash();
2225 	namespace_unlock();
2226 }
2227 
2228 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2229 {
2230 	struct mount *child;
2231 
2232 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2233 		if (!is_subdir(child->mnt_mountpoint, dentry))
2234 			continue;
2235 
2236 		if (child->mnt.mnt_flags & MNT_LOCKED)
2237 			return true;
2238 	}
2239 	return false;
2240 }
2241 
2242 /**
2243  * clone_private_mount - create a private clone of a path
2244  * @path: path to clone
2245  *
2246  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2247  * will not be attached anywhere in the namespace and will be private (i.e.
2248  * changes to the originating mount won't be propagated into this).
2249  *
2250  * Release with mntput().
2251  */
2252 struct vfsmount *clone_private_mount(const struct path *path)
2253 {
2254 	struct mount *old_mnt = real_mount(path->mnt);
2255 	struct mount *new_mnt;
2256 
2257 	down_read(&namespace_sem);
2258 	if (IS_MNT_UNBINDABLE(old_mnt))
2259 		goto invalid;
2260 
2261 	if (!check_mnt(old_mnt))
2262 		goto invalid;
2263 
2264 	if (has_locked_children(old_mnt, path->dentry))
2265 		goto invalid;
2266 
2267 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2268 	up_read(&namespace_sem);
2269 
2270 	if (IS_ERR(new_mnt))
2271 		return ERR_CAST(new_mnt);
2272 
2273 	/* Longterm mount to be removed by kern_unmount*() */
2274 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2275 
2276 	return &new_mnt->mnt;
2277 
2278 invalid:
2279 	up_read(&namespace_sem);
2280 	return ERR_PTR(-EINVAL);
2281 }
2282 EXPORT_SYMBOL_GPL(clone_private_mount);
2283 
2284 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2285 		   struct vfsmount *root)
2286 {
2287 	struct mount *mnt;
2288 	int res = f(root, arg);
2289 	if (res)
2290 		return res;
2291 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2292 		res = f(&mnt->mnt, arg);
2293 		if (res)
2294 			return res;
2295 	}
2296 	return 0;
2297 }
2298 
2299 static void lock_mnt_tree(struct mount *mnt)
2300 {
2301 	struct mount *p;
2302 
2303 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2304 		int flags = p->mnt.mnt_flags;
2305 		/* Don't allow unprivileged users to change mount flags */
2306 		flags |= MNT_LOCK_ATIME;
2307 
2308 		if (flags & MNT_READONLY)
2309 			flags |= MNT_LOCK_READONLY;
2310 
2311 		if (flags & MNT_NODEV)
2312 			flags |= MNT_LOCK_NODEV;
2313 
2314 		if (flags & MNT_NOSUID)
2315 			flags |= MNT_LOCK_NOSUID;
2316 
2317 		if (flags & MNT_NOEXEC)
2318 			flags |= MNT_LOCK_NOEXEC;
2319 		/* Don't allow unprivileged users to reveal what is under a mount */
2320 		if (list_empty(&p->mnt_expire))
2321 			flags |= MNT_LOCKED;
2322 		p->mnt.mnt_flags = flags;
2323 	}
2324 }
2325 
2326 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2327 {
2328 	struct mount *p;
2329 
2330 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2331 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2332 			mnt_release_group_id(p);
2333 	}
2334 }
2335 
2336 static int invent_group_ids(struct mount *mnt, bool recurse)
2337 {
2338 	struct mount *p;
2339 
2340 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2341 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2342 			int err = mnt_alloc_group_id(p);
2343 			if (err) {
2344 				cleanup_group_ids(mnt, p);
2345 				return err;
2346 			}
2347 		}
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2354 {
2355 	unsigned int max = READ_ONCE(sysctl_mount_max);
2356 	unsigned int mounts = 0;
2357 	struct mount *p;
2358 
2359 	if (ns->nr_mounts >= max)
2360 		return -ENOSPC;
2361 	max -= ns->nr_mounts;
2362 	if (ns->pending_mounts >= max)
2363 		return -ENOSPC;
2364 	max -= ns->pending_mounts;
2365 
2366 	for (p = mnt; p; p = next_mnt(p, mnt))
2367 		mounts++;
2368 
2369 	if (mounts > max)
2370 		return -ENOSPC;
2371 
2372 	ns->pending_mounts += mounts;
2373 	return 0;
2374 }
2375 
2376 enum mnt_tree_flags_t {
2377 	MNT_TREE_MOVE = BIT(0),
2378 	MNT_TREE_BENEATH = BIT(1),
2379 };
2380 
2381 /**
2382  * attach_recursive_mnt - attach a source mount tree
2383  * @source_mnt: mount tree to be attached
2384  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2385  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2386  * @flags:      modify how @source_mnt is supposed to be attached
2387  *
2388  *  NOTE: in the table below explains the semantics when a source mount
2389  *  of a given type is attached to a destination mount of a given type.
2390  * ---------------------------------------------------------------------------
2391  * |         BIND MOUNT OPERATION                                            |
2392  * |**************************************************************************
2393  * | source-->| shared        |       private  |       slave    | unbindable |
2394  * | dest     |               |                |                |            |
2395  * |   |      |               |                |                |            |
2396  * |   v      |               |                |                |            |
2397  * |**************************************************************************
2398  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2399  * |          |               |                |                |            |
2400  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2401  * ***************************************************************************
2402  * A bind operation clones the source mount and mounts the clone on the
2403  * destination mount.
2404  *
2405  * (++)  the cloned mount is propagated to all the mounts in the propagation
2406  * 	 tree of the destination mount and the cloned mount is added to
2407  * 	 the peer group of the source mount.
2408  * (+)   the cloned mount is created under the destination mount and is marked
2409  *       as shared. The cloned mount is added to the peer group of the source
2410  *       mount.
2411  * (+++) the mount is propagated to all the mounts in the propagation tree
2412  *       of the destination mount and the cloned mount is made slave
2413  *       of the same master as that of the source mount. The cloned mount
2414  *       is marked as 'shared and slave'.
2415  * (*)   the cloned mount is made a slave of the same master as that of the
2416  * 	 source mount.
2417  *
2418  * ---------------------------------------------------------------------------
2419  * |         		MOVE MOUNT OPERATION                                 |
2420  * |**************************************************************************
2421  * | source-->| shared        |       private  |       slave    | unbindable |
2422  * | dest     |               |                |                |            |
2423  * |   |      |               |                |                |            |
2424  * |   v      |               |                |                |            |
2425  * |**************************************************************************
2426  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2427  * |          |               |                |                |            |
2428  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2429  * ***************************************************************************
2430  *
2431  * (+)  the mount is moved to the destination. And is then propagated to
2432  * 	all the mounts in the propagation tree of the destination mount.
2433  * (+*)  the mount is moved to the destination.
2434  * (+++)  the mount is moved to the destination and is then propagated to
2435  * 	all the mounts belonging to the destination mount's propagation tree.
2436  * 	the mount is marked as 'shared and slave'.
2437  * (*)	the mount continues to be a slave at the new location.
2438  *
2439  * if the source mount is a tree, the operations explained above is
2440  * applied to each mount in the tree.
2441  * Must be called without spinlocks held, since this function can sleep
2442  * in allocations.
2443  *
2444  * Context: The function expects namespace_lock() to be held.
2445  * Return: If @source_mnt was successfully attached 0 is returned.
2446  *         Otherwise a negative error code is returned.
2447  */
2448 static int attach_recursive_mnt(struct mount *source_mnt,
2449 				struct mount *top_mnt,
2450 				struct mountpoint *dest_mp,
2451 				enum mnt_tree_flags_t flags)
2452 {
2453 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2454 	HLIST_HEAD(tree_list);
2455 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2456 	struct mountpoint *smp;
2457 	struct mount *child, *dest_mnt, *p;
2458 	struct hlist_node *n;
2459 	int err = 0;
2460 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2461 
2462 	/*
2463 	 * Preallocate a mountpoint in case the new mounts need to be
2464 	 * mounted beneath mounts on the same mountpoint.
2465 	 */
2466 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2467 	if (IS_ERR(smp))
2468 		return PTR_ERR(smp);
2469 
2470 	/* Is there space to add these mounts to the mount namespace? */
2471 	if (!moving) {
2472 		err = count_mounts(ns, source_mnt);
2473 		if (err)
2474 			goto out;
2475 	}
2476 
2477 	if (beneath)
2478 		dest_mnt = top_mnt->mnt_parent;
2479 	else
2480 		dest_mnt = top_mnt;
2481 
2482 	if (IS_MNT_SHARED(dest_mnt)) {
2483 		err = invent_group_ids(source_mnt, true);
2484 		if (err)
2485 			goto out;
2486 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2487 	}
2488 	lock_mount_hash();
2489 	if (err)
2490 		goto out_cleanup_ids;
2491 
2492 	if (IS_MNT_SHARED(dest_mnt)) {
2493 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2494 			set_mnt_shared(p);
2495 	}
2496 
2497 	if (moving) {
2498 		if (beneath)
2499 			dest_mp = smp;
2500 		unhash_mnt(source_mnt);
2501 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2502 		touch_mnt_namespace(source_mnt->mnt_ns);
2503 	} else {
2504 		if (source_mnt->mnt_ns) {
2505 			LIST_HEAD(head);
2506 
2507 			/* move from anon - the caller will destroy */
2508 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2509 				move_from_ns(p, &head);
2510 			list_del_init(&head);
2511 		}
2512 		if (beneath)
2513 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2514 		else
2515 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2516 		commit_tree(source_mnt);
2517 	}
2518 
2519 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2520 		struct mount *q;
2521 		hlist_del_init(&child->mnt_hash);
2522 		q = __lookup_mnt(&child->mnt_parent->mnt,
2523 				 child->mnt_mountpoint);
2524 		if (q)
2525 			mnt_change_mountpoint(child, smp, q);
2526 		/* Notice when we are propagating across user namespaces */
2527 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2528 			lock_mnt_tree(child);
2529 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2530 		commit_tree(child);
2531 	}
2532 	put_mountpoint(smp);
2533 	unlock_mount_hash();
2534 
2535 	return 0;
2536 
2537  out_cleanup_ids:
2538 	while (!hlist_empty(&tree_list)) {
2539 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2540 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2541 		umount_tree(child, UMOUNT_SYNC);
2542 	}
2543 	unlock_mount_hash();
2544 	cleanup_group_ids(source_mnt, NULL);
2545  out:
2546 	ns->pending_mounts = 0;
2547 
2548 	read_seqlock_excl(&mount_lock);
2549 	put_mountpoint(smp);
2550 	read_sequnlock_excl(&mount_lock);
2551 
2552 	return err;
2553 }
2554 
2555 /**
2556  * do_lock_mount - lock mount and mountpoint
2557  * @path:    target path
2558  * @beneath: whether the intention is to mount beneath @path
2559  *
2560  * Follow the mount stack on @path until the top mount @mnt is found. If
2561  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2562  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2563  * until nothing is stacked on top of it anymore.
2564  *
2565  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2566  * against concurrent removal of the new mountpoint from another mount
2567  * namespace.
2568  *
2569  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2570  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2571  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2572  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2573  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2574  * on top of it for @beneath.
2575  *
2576  * In addition, @beneath needs to make sure that @mnt hasn't been
2577  * unmounted or moved from its current mountpoint in between dropping
2578  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2579  * being unmounted would be detected later by e.g., calling
2580  * check_mnt(mnt) in the function it's called from. For the @beneath
2581  * case however, it's useful to detect it directly in do_lock_mount().
2582  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2583  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2584  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2585  *
2586  * Return: Either the target mountpoint on the top mount or the top
2587  *         mount's mountpoint.
2588  */
2589 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2590 {
2591 	struct vfsmount *mnt = path->mnt;
2592 	struct dentry *dentry;
2593 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2594 
2595 	for (;;) {
2596 		struct mount *m;
2597 
2598 		if (beneath) {
2599 			m = real_mount(mnt);
2600 			read_seqlock_excl(&mount_lock);
2601 			dentry = dget(m->mnt_mountpoint);
2602 			read_sequnlock_excl(&mount_lock);
2603 		} else {
2604 			dentry = path->dentry;
2605 		}
2606 
2607 		inode_lock(dentry->d_inode);
2608 		if (unlikely(cant_mount(dentry))) {
2609 			inode_unlock(dentry->d_inode);
2610 			goto out;
2611 		}
2612 
2613 		namespace_lock();
2614 
2615 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2616 			namespace_unlock();
2617 			inode_unlock(dentry->d_inode);
2618 			goto out;
2619 		}
2620 
2621 		mnt = lookup_mnt(path);
2622 		if (likely(!mnt))
2623 			break;
2624 
2625 		namespace_unlock();
2626 		inode_unlock(dentry->d_inode);
2627 		if (beneath)
2628 			dput(dentry);
2629 		path_put(path);
2630 		path->mnt = mnt;
2631 		path->dentry = dget(mnt->mnt_root);
2632 	}
2633 
2634 	mp = get_mountpoint(dentry);
2635 	if (IS_ERR(mp)) {
2636 		namespace_unlock();
2637 		inode_unlock(dentry->d_inode);
2638 	}
2639 
2640 out:
2641 	if (beneath)
2642 		dput(dentry);
2643 
2644 	return mp;
2645 }
2646 
2647 static inline struct mountpoint *lock_mount(struct path *path)
2648 {
2649 	return do_lock_mount(path, false);
2650 }
2651 
2652 static void unlock_mount(struct mountpoint *where)
2653 {
2654 	struct dentry *dentry = where->m_dentry;
2655 
2656 	read_seqlock_excl(&mount_lock);
2657 	put_mountpoint(where);
2658 	read_sequnlock_excl(&mount_lock);
2659 
2660 	namespace_unlock();
2661 	inode_unlock(dentry->d_inode);
2662 }
2663 
2664 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2665 {
2666 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2667 		return -EINVAL;
2668 
2669 	if (d_is_dir(mp->m_dentry) !=
2670 	      d_is_dir(mnt->mnt.mnt_root))
2671 		return -ENOTDIR;
2672 
2673 	return attach_recursive_mnt(mnt, p, mp, 0);
2674 }
2675 
2676 /*
2677  * Sanity check the flags to change_mnt_propagation.
2678  */
2679 
2680 static int flags_to_propagation_type(int ms_flags)
2681 {
2682 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2683 
2684 	/* Fail if any non-propagation flags are set */
2685 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2686 		return 0;
2687 	/* Only one propagation flag should be set */
2688 	if (!is_power_of_2(type))
2689 		return 0;
2690 	return type;
2691 }
2692 
2693 /*
2694  * recursively change the type of the mountpoint.
2695  */
2696 static int do_change_type(struct path *path, int ms_flags)
2697 {
2698 	struct mount *m;
2699 	struct mount *mnt = real_mount(path->mnt);
2700 	int recurse = ms_flags & MS_REC;
2701 	int type;
2702 	int err = 0;
2703 
2704 	if (!path_mounted(path))
2705 		return -EINVAL;
2706 
2707 	type = flags_to_propagation_type(ms_flags);
2708 	if (!type)
2709 		return -EINVAL;
2710 
2711 	namespace_lock();
2712 	if (type == MS_SHARED) {
2713 		err = invent_group_ids(mnt, recurse);
2714 		if (err)
2715 			goto out_unlock;
2716 	}
2717 
2718 	lock_mount_hash();
2719 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2720 		change_mnt_propagation(m, type);
2721 	unlock_mount_hash();
2722 
2723  out_unlock:
2724 	namespace_unlock();
2725 	return err;
2726 }
2727 
2728 static struct mount *__do_loopback(struct path *old_path, int recurse)
2729 {
2730 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2731 
2732 	if (IS_MNT_UNBINDABLE(old))
2733 		return mnt;
2734 
2735 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2736 		return mnt;
2737 
2738 	if (!recurse && has_locked_children(old, old_path->dentry))
2739 		return mnt;
2740 
2741 	if (recurse)
2742 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2743 	else
2744 		mnt = clone_mnt(old, old_path->dentry, 0);
2745 
2746 	if (!IS_ERR(mnt))
2747 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2748 
2749 	return mnt;
2750 }
2751 
2752 /*
2753  * do loopback mount.
2754  */
2755 static int do_loopback(struct path *path, const char *old_name,
2756 				int recurse)
2757 {
2758 	struct path old_path;
2759 	struct mount *mnt = NULL, *parent;
2760 	struct mountpoint *mp;
2761 	int err;
2762 	if (!old_name || !*old_name)
2763 		return -EINVAL;
2764 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2765 	if (err)
2766 		return err;
2767 
2768 	err = -EINVAL;
2769 	if (mnt_ns_loop(old_path.dentry))
2770 		goto out;
2771 
2772 	mp = lock_mount(path);
2773 	if (IS_ERR(mp)) {
2774 		err = PTR_ERR(mp);
2775 		goto out;
2776 	}
2777 
2778 	parent = real_mount(path->mnt);
2779 	if (!check_mnt(parent))
2780 		goto out2;
2781 
2782 	mnt = __do_loopback(&old_path, recurse);
2783 	if (IS_ERR(mnt)) {
2784 		err = PTR_ERR(mnt);
2785 		goto out2;
2786 	}
2787 
2788 	err = graft_tree(mnt, parent, mp);
2789 	if (err) {
2790 		lock_mount_hash();
2791 		umount_tree(mnt, UMOUNT_SYNC);
2792 		unlock_mount_hash();
2793 	}
2794 out2:
2795 	unlock_mount(mp);
2796 out:
2797 	path_put(&old_path);
2798 	return err;
2799 }
2800 
2801 static struct file *open_detached_copy(struct path *path, bool recursive)
2802 {
2803 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2804 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2805 	struct mount *mnt, *p;
2806 	struct file *file;
2807 
2808 	if (IS_ERR(ns))
2809 		return ERR_CAST(ns);
2810 
2811 	namespace_lock();
2812 	mnt = __do_loopback(path, recursive);
2813 	if (IS_ERR(mnt)) {
2814 		namespace_unlock();
2815 		free_mnt_ns(ns);
2816 		return ERR_CAST(mnt);
2817 	}
2818 
2819 	lock_mount_hash();
2820 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2821 		mnt_add_to_ns(ns, p);
2822 		ns->nr_mounts++;
2823 	}
2824 	ns->root = mnt;
2825 	mntget(&mnt->mnt);
2826 	unlock_mount_hash();
2827 	namespace_unlock();
2828 
2829 	mntput(path->mnt);
2830 	path->mnt = &mnt->mnt;
2831 	file = dentry_open(path, O_PATH, current_cred());
2832 	if (IS_ERR(file))
2833 		dissolve_on_fput(path->mnt);
2834 	else
2835 		file->f_mode |= FMODE_NEED_UNMOUNT;
2836 	return file;
2837 }
2838 
2839 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2840 {
2841 	struct file *file;
2842 	struct path path;
2843 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2844 	bool detached = flags & OPEN_TREE_CLONE;
2845 	int error;
2846 	int fd;
2847 
2848 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2849 
2850 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2851 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2852 		      OPEN_TREE_CLOEXEC))
2853 		return -EINVAL;
2854 
2855 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2856 		return -EINVAL;
2857 
2858 	if (flags & AT_NO_AUTOMOUNT)
2859 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2860 	if (flags & AT_SYMLINK_NOFOLLOW)
2861 		lookup_flags &= ~LOOKUP_FOLLOW;
2862 	if (flags & AT_EMPTY_PATH)
2863 		lookup_flags |= LOOKUP_EMPTY;
2864 
2865 	if (detached && !may_mount())
2866 		return -EPERM;
2867 
2868 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2869 	if (fd < 0)
2870 		return fd;
2871 
2872 	error = user_path_at(dfd, filename, lookup_flags, &path);
2873 	if (unlikely(error)) {
2874 		file = ERR_PTR(error);
2875 	} else {
2876 		if (detached)
2877 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2878 		else
2879 			file = dentry_open(&path, O_PATH, current_cred());
2880 		path_put(&path);
2881 	}
2882 	if (IS_ERR(file)) {
2883 		put_unused_fd(fd);
2884 		return PTR_ERR(file);
2885 	}
2886 	fd_install(fd, file);
2887 	return fd;
2888 }
2889 
2890 /*
2891  * Don't allow locked mount flags to be cleared.
2892  *
2893  * No locks need to be held here while testing the various MNT_LOCK
2894  * flags because those flags can never be cleared once they are set.
2895  */
2896 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2897 {
2898 	unsigned int fl = mnt->mnt.mnt_flags;
2899 
2900 	if ((fl & MNT_LOCK_READONLY) &&
2901 	    !(mnt_flags & MNT_READONLY))
2902 		return false;
2903 
2904 	if ((fl & MNT_LOCK_NODEV) &&
2905 	    !(mnt_flags & MNT_NODEV))
2906 		return false;
2907 
2908 	if ((fl & MNT_LOCK_NOSUID) &&
2909 	    !(mnt_flags & MNT_NOSUID))
2910 		return false;
2911 
2912 	if ((fl & MNT_LOCK_NOEXEC) &&
2913 	    !(mnt_flags & MNT_NOEXEC))
2914 		return false;
2915 
2916 	if ((fl & MNT_LOCK_ATIME) &&
2917 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2918 		return false;
2919 
2920 	return true;
2921 }
2922 
2923 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2924 {
2925 	bool readonly_request = (mnt_flags & MNT_READONLY);
2926 
2927 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2928 		return 0;
2929 
2930 	if (readonly_request)
2931 		return mnt_make_readonly(mnt);
2932 
2933 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2934 	return 0;
2935 }
2936 
2937 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2938 {
2939 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2940 	mnt->mnt.mnt_flags = mnt_flags;
2941 	touch_mnt_namespace(mnt->mnt_ns);
2942 }
2943 
2944 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2945 {
2946 	struct super_block *sb = mnt->mnt_sb;
2947 
2948 	if (!__mnt_is_readonly(mnt) &&
2949 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2950 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2951 		char *buf, *mntpath;
2952 
2953 		buf = (char *)__get_free_page(GFP_KERNEL);
2954 		if (buf)
2955 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2956 		else
2957 			mntpath = ERR_PTR(-ENOMEM);
2958 		if (IS_ERR(mntpath))
2959 			mntpath = "(unknown)";
2960 
2961 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2962 			sb->s_type->name,
2963 			is_mounted(mnt) ? "remounted" : "mounted",
2964 			mntpath, &sb->s_time_max,
2965 			(unsigned long long)sb->s_time_max);
2966 
2967 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2968 		if (buf)
2969 			free_page((unsigned long)buf);
2970 	}
2971 }
2972 
2973 /*
2974  * Handle reconfiguration of the mountpoint only without alteration of the
2975  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2976  * to mount(2).
2977  */
2978 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2979 {
2980 	struct super_block *sb = path->mnt->mnt_sb;
2981 	struct mount *mnt = real_mount(path->mnt);
2982 	int ret;
2983 
2984 	if (!check_mnt(mnt))
2985 		return -EINVAL;
2986 
2987 	if (!path_mounted(path))
2988 		return -EINVAL;
2989 
2990 	if (!can_change_locked_flags(mnt, mnt_flags))
2991 		return -EPERM;
2992 
2993 	/*
2994 	 * We're only checking whether the superblock is read-only not
2995 	 * changing it, so only take down_read(&sb->s_umount).
2996 	 */
2997 	down_read(&sb->s_umount);
2998 	lock_mount_hash();
2999 	ret = change_mount_ro_state(mnt, mnt_flags);
3000 	if (ret == 0)
3001 		set_mount_attributes(mnt, mnt_flags);
3002 	unlock_mount_hash();
3003 	up_read(&sb->s_umount);
3004 
3005 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3006 
3007 	return ret;
3008 }
3009 
3010 /*
3011  * change filesystem flags. dir should be a physical root of filesystem.
3012  * If you've mounted a non-root directory somewhere and want to do remount
3013  * on it - tough luck.
3014  */
3015 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3016 		      int mnt_flags, void *data)
3017 {
3018 	int err;
3019 	struct super_block *sb = path->mnt->mnt_sb;
3020 	struct mount *mnt = real_mount(path->mnt);
3021 	struct fs_context *fc;
3022 
3023 	if (!check_mnt(mnt))
3024 		return -EINVAL;
3025 
3026 	if (!path_mounted(path))
3027 		return -EINVAL;
3028 
3029 	if (!can_change_locked_flags(mnt, mnt_flags))
3030 		return -EPERM;
3031 
3032 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3033 	if (IS_ERR(fc))
3034 		return PTR_ERR(fc);
3035 
3036 	/*
3037 	 * Indicate to the filesystem that the remount request is coming
3038 	 * from the legacy mount system call.
3039 	 */
3040 	fc->oldapi = true;
3041 
3042 	err = parse_monolithic_mount_data(fc, data);
3043 	if (!err) {
3044 		down_write(&sb->s_umount);
3045 		err = -EPERM;
3046 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3047 			err = reconfigure_super(fc);
3048 			if (!err) {
3049 				lock_mount_hash();
3050 				set_mount_attributes(mnt, mnt_flags);
3051 				unlock_mount_hash();
3052 			}
3053 		}
3054 		up_write(&sb->s_umount);
3055 	}
3056 
3057 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3058 
3059 	put_fs_context(fc);
3060 	return err;
3061 }
3062 
3063 static inline int tree_contains_unbindable(struct mount *mnt)
3064 {
3065 	struct mount *p;
3066 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3067 		if (IS_MNT_UNBINDABLE(p))
3068 			return 1;
3069 	}
3070 	return 0;
3071 }
3072 
3073 /*
3074  * Check that there aren't references to earlier/same mount namespaces in the
3075  * specified subtree.  Such references can act as pins for mount namespaces
3076  * that aren't checked by the mount-cycle checking code, thereby allowing
3077  * cycles to be made.
3078  */
3079 static bool check_for_nsfs_mounts(struct mount *subtree)
3080 {
3081 	struct mount *p;
3082 	bool ret = false;
3083 
3084 	lock_mount_hash();
3085 	for (p = subtree; p; p = next_mnt(p, subtree))
3086 		if (mnt_ns_loop(p->mnt.mnt_root))
3087 			goto out;
3088 
3089 	ret = true;
3090 out:
3091 	unlock_mount_hash();
3092 	return ret;
3093 }
3094 
3095 static int do_set_group(struct path *from_path, struct path *to_path)
3096 {
3097 	struct mount *from, *to;
3098 	int err;
3099 
3100 	from = real_mount(from_path->mnt);
3101 	to = real_mount(to_path->mnt);
3102 
3103 	namespace_lock();
3104 
3105 	err = -EINVAL;
3106 	/* To and From must be mounted */
3107 	if (!is_mounted(&from->mnt))
3108 		goto out;
3109 	if (!is_mounted(&to->mnt))
3110 		goto out;
3111 
3112 	err = -EPERM;
3113 	/* We should be allowed to modify mount namespaces of both mounts */
3114 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3115 		goto out;
3116 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3117 		goto out;
3118 
3119 	err = -EINVAL;
3120 	/* To and From paths should be mount roots */
3121 	if (!path_mounted(from_path))
3122 		goto out;
3123 	if (!path_mounted(to_path))
3124 		goto out;
3125 
3126 	/* Setting sharing groups is only allowed across same superblock */
3127 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3128 		goto out;
3129 
3130 	/* From mount root should be wider than To mount root */
3131 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3132 		goto out;
3133 
3134 	/* From mount should not have locked children in place of To's root */
3135 	if (has_locked_children(from, to->mnt.mnt_root))
3136 		goto out;
3137 
3138 	/* Setting sharing groups is only allowed on private mounts */
3139 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3140 		goto out;
3141 
3142 	/* From should not be private */
3143 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3144 		goto out;
3145 
3146 	if (IS_MNT_SLAVE(from)) {
3147 		struct mount *m = from->mnt_master;
3148 
3149 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3150 		to->mnt_master = m;
3151 	}
3152 
3153 	if (IS_MNT_SHARED(from)) {
3154 		to->mnt_group_id = from->mnt_group_id;
3155 		list_add(&to->mnt_share, &from->mnt_share);
3156 		lock_mount_hash();
3157 		set_mnt_shared(to);
3158 		unlock_mount_hash();
3159 	}
3160 
3161 	err = 0;
3162 out:
3163 	namespace_unlock();
3164 	return err;
3165 }
3166 
3167 /**
3168  * path_overmounted - check if path is overmounted
3169  * @path: path to check
3170  *
3171  * Check if path is overmounted, i.e., if there's a mount on top of
3172  * @path->mnt with @path->dentry as mountpoint.
3173  *
3174  * Context: This function expects namespace_lock() to be held.
3175  * Return: If path is overmounted true is returned, false if not.
3176  */
3177 static inline bool path_overmounted(const struct path *path)
3178 {
3179 	rcu_read_lock();
3180 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3181 		rcu_read_unlock();
3182 		return true;
3183 	}
3184 	rcu_read_unlock();
3185 	return false;
3186 }
3187 
3188 /**
3189  * can_move_mount_beneath - check that we can mount beneath the top mount
3190  * @from: mount to mount beneath
3191  * @to:   mount under which to mount
3192  * @mp:   mountpoint of @to
3193  *
3194  * - Make sure that @to->dentry is actually the root of a mount under
3195  *   which we can mount another mount.
3196  * - Make sure that nothing can be mounted beneath the caller's current
3197  *   root or the rootfs of the namespace.
3198  * - Make sure that the caller can unmount the topmost mount ensuring
3199  *   that the caller could reveal the underlying mountpoint.
3200  * - Ensure that nothing has been mounted on top of @from before we
3201  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3202  * - Prevent mounting beneath a mount if the propagation relationship
3203  *   between the source mount, parent mount, and top mount would lead to
3204  *   nonsensical mount trees.
3205  *
3206  * Context: This function expects namespace_lock() to be held.
3207  * Return: On success 0, and on error a negative error code is returned.
3208  */
3209 static int can_move_mount_beneath(const struct path *from,
3210 				  const struct path *to,
3211 				  const struct mountpoint *mp)
3212 {
3213 	struct mount *mnt_from = real_mount(from->mnt),
3214 		     *mnt_to = real_mount(to->mnt),
3215 		     *parent_mnt_to = mnt_to->mnt_parent;
3216 
3217 	if (!mnt_has_parent(mnt_to))
3218 		return -EINVAL;
3219 
3220 	if (!path_mounted(to))
3221 		return -EINVAL;
3222 
3223 	if (IS_MNT_LOCKED(mnt_to))
3224 		return -EINVAL;
3225 
3226 	/* Avoid creating shadow mounts during mount propagation. */
3227 	if (path_overmounted(from))
3228 		return -EINVAL;
3229 
3230 	/*
3231 	 * Mounting beneath the rootfs only makes sense when the
3232 	 * semantics of pivot_root(".", ".") are used.
3233 	 */
3234 	if (&mnt_to->mnt == current->fs->root.mnt)
3235 		return -EINVAL;
3236 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3237 		return -EINVAL;
3238 
3239 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3240 		if (p == mnt_to)
3241 			return -EINVAL;
3242 
3243 	/*
3244 	 * If the parent mount propagates to the child mount this would
3245 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3246 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3247 	 * defeats the whole purpose of mounting beneath another mount.
3248 	 */
3249 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3250 		return -EINVAL;
3251 
3252 	/*
3253 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3254 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3255 	 * Afterwards @mnt_from would be mounted on top of
3256 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3257 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3258 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3259 	 * remounted on top of @c. Afterwards, @mnt_from would be
3260 	 * covered by a copy @c of @mnt_from and @c would be covered by
3261 	 * @mnt_from itself. This defeats the whole purpose of mounting
3262 	 * @mnt_from beneath @mnt_to.
3263 	 */
3264 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3265 		return -EINVAL;
3266 
3267 	return 0;
3268 }
3269 
3270 static int do_move_mount(struct path *old_path, struct path *new_path,
3271 			 bool beneath)
3272 {
3273 	struct mnt_namespace *ns;
3274 	struct mount *p;
3275 	struct mount *old;
3276 	struct mount *parent;
3277 	struct mountpoint *mp, *old_mp;
3278 	int err;
3279 	bool attached;
3280 	enum mnt_tree_flags_t flags = 0;
3281 
3282 	mp = do_lock_mount(new_path, beneath);
3283 	if (IS_ERR(mp))
3284 		return PTR_ERR(mp);
3285 
3286 	old = real_mount(old_path->mnt);
3287 	p = real_mount(new_path->mnt);
3288 	parent = old->mnt_parent;
3289 	attached = mnt_has_parent(old);
3290 	if (attached)
3291 		flags |= MNT_TREE_MOVE;
3292 	old_mp = old->mnt_mp;
3293 	ns = old->mnt_ns;
3294 
3295 	err = -EINVAL;
3296 	/* The mountpoint must be in our namespace. */
3297 	if (!check_mnt(p))
3298 		goto out;
3299 
3300 	/* The thing moved must be mounted... */
3301 	if (!is_mounted(&old->mnt))
3302 		goto out;
3303 
3304 	/* ... and either ours or the root of anon namespace */
3305 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3306 		goto out;
3307 
3308 	if (old->mnt.mnt_flags & MNT_LOCKED)
3309 		goto out;
3310 
3311 	if (!path_mounted(old_path))
3312 		goto out;
3313 
3314 	if (d_is_dir(new_path->dentry) !=
3315 	    d_is_dir(old_path->dentry))
3316 		goto out;
3317 	/*
3318 	 * Don't move a mount residing in a shared parent.
3319 	 */
3320 	if (attached && IS_MNT_SHARED(parent))
3321 		goto out;
3322 
3323 	if (beneath) {
3324 		err = can_move_mount_beneath(old_path, new_path, mp);
3325 		if (err)
3326 			goto out;
3327 
3328 		err = -EINVAL;
3329 		p = p->mnt_parent;
3330 		flags |= MNT_TREE_BENEATH;
3331 	}
3332 
3333 	/*
3334 	 * Don't move a mount tree containing unbindable mounts to a destination
3335 	 * mount which is shared.
3336 	 */
3337 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3338 		goto out;
3339 	err = -ELOOP;
3340 	if (!check_for_nsfs_mounts(old))
3341 		goto out;
3342 	for (; mnt_has_parent(p); p = p->mnt_parent)
3343 		if (p == old)
3344 			goto out;
3345 
3346 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3347 	if (err)
3348 		goto out;
3349 
3350 	/* if the mount is moved, it should no longer be expire
3351 	 * automatically */
3352 	list_del_init(&old->mnt_expire);
3353 	if (attached)
3354 		put_mountpoint(old_mp);
3355 out:
3356 	unlock_mount(mp);
3357 	if (!err) {
3358 		if (attached)
3359 			mntput_no_expire(parent);
3360 		else
3361 			free_mnt_ns(ns);
3362 	}
3363 	return err;
3364 }
3365 
3366 static int do_move_mount_old(struct path *path, const char *old_name)
3367 {
3368 	struct path old_path;
3369 	int err;
3370 
3371 	if (!old_name || !*old_name)
3372 		return -EINVAL;
3373 
3374 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3375 	if (err)
3376 		return err;
3377 
3378 	err = do_move_mount(&old_path, path, false);
3379 	path_put(&old_path);
3380 	return err;
3381 }
3382 
3383 /*
3384  * add a mount into a namespace's mount tree
3385  */
3386 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3387 			const struct path *path, int mnt_flags)
3388 {
3389 	struct mount *parent = real_mount(path->mnt);
3390 
3391 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3392 
3393 	if (unlikely(!check_mnt(parent))) {
3394 		/* that's acceptable only for automounts done in private ns */
3395 		if (!(mnt_flags & MNT_SHRINKABLE))
3396 			return -EINVAL;
3397 		/* ... and for those we'd better have mountpoint still alive */
3398 		if (!parent->mnt_ns)
3399 			return -EINVAL;
3400 	}
3401 
3402 	/* Refuse the same filesystem on the same mount point */
3403 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3404 		return -EBUSY;
3405 
3406 	if (d_is_symlink(newmnt->mnt.mnt_root))
3407 		return -EINVAL;
3408 
3409 	newmnt->mnt.mnt_flags = mnt_flags;
3410 	return graft_tree(newmnt, parent, mp);
3411 }
3412 
3413 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3414 
3415 /*
3416  * Create a new mount using a superblock configuration and request it
3417  * be added to the namespace tree.
3418  */
3419 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3420 			   unsigned int mnt_flags)
3421 {
3422 	struct vfsmount *mnt;
3423 	struct mountpoint *mp;
3424 	struct super_block *sb = fc->root->d_sb;
3425 	int error;
3426 
3427 	error = security_sb_kern_mount(sb);
3428 	if (!error && mount_too_revealing(sb, &mnt_flags))
3429 		error = -EPERM;
3430 
3431 	if (unlikely(error)) {
3432 		fc_drop_locked(fc);
3433 		return error;
3434 	}
3435 
3436 	up_write(&sb->s_umount);
3437 
3438 	mnt = vfs_create_mount(fc);
3439 	if (IS_ERR(mnt))
3440 		return PTR_ERR(mnt);
3441 
3442 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3443 
3444 	mp = lock_mount(mountpoint);
3445 	if (IS_ERR(mp)) {
3446 		mntput(mnt);
3447 		return PTR_ERR(mp);
3448 	}
3449 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3450 	unlock_mount(mp);
3451 	if (error < 0)
3452 		mntput(mnt);
3453 	return error;
3454 }
3455 
3456 /*
3457  * create a new mount for userspace and request it to be added into the
3458  * namespace's tree
3459  */
3460 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3461 			int mnt_flags, const char *name, void *data)
3462 {
3463 	struct file_system_type *type;
3464 	struct fs_context *fc;
3465 	const char *subtype = NULL;
3466 	int err = 0;
3467 
3468 	if (!fstype)
3469 		return -EINVAL;
3470 
3471 	type = get_fs_type(fstype);
3472 	if (!type)
3473 		return -ENODEV;
3474 
3475 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3476 		subtype = strchr(fstype, '.');
3477 		if (subtype) {
3478 			subtype++;
3479 			if (!*subtype) {
3480 				put_filesystem(type);
3481 				return -EINVAL;
3482 			}
3483 		}
3484 	}
3485 
3486 	fc = fs_context_for_mount(type, sb_flags);
3487 	put_filesystem(type);
3488 	if (IS_ERR(fc))
3489 		return PTR_ERR(fc);
3490 
3491 	/*
3492 	 * Indicate to the filesystem that the mount request is coming
3493 	 * from the legacy mount system call.
3494 	 */
3495 	fc->oldapi = true;
3496 
3497 	if (subtype)
3498 		err = vfs_parse_fs_string(fc, "subtype",
3499 					  subtype, strlen(subtype));
3500 	if (!err && name)
3501 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3502 	if (!err)
3503 		err = parse_monolithic_mount_data(fc, data);
3504 	if (!err && !mount_capable(fc))
3505 		err = -EPERM;
3506 	if (!err)
3507 		err = vfs_get_tree(fc);
3508 	if (!err)
3509 		err = do_new_mount_fc(fc, path, mnt_flags);
3510 
3511 	put_fs_context(fc);
3512 	return err;
3513 }
3514 
3515 int finish_automount(struct vfsmount *m, const struct path *path)
3516 {
3517 	struct dentry *dentry = path->dentry;
3518 	struct mountpoint *mp;
3519 	struct mount *mnt;
3520 	int err;
3521 
3522 	if (!m)
3523 		return 0;
3524 	if (IS_ERR(m))
3525 		return PTR_ERR(m);
3526 
3527 	mnt = real_mount(m);
3528 	/* The new mount record should have at least 2 refs to prevent it being
3529 	 * expired before we get a chance to add it
3530 	 */
3531 	BUG_ON(mnt_get_count(mnt) < 2);
3532 
3533 	if (m->mnt_sb == path->mnt->mnt_sb &&
3534 	    m->mnt_root == dentry) {
3535 		err = -ELOOP;
3536 		goto discard;
3537 	}
3538 
3539 	/*
3540 	 * we don't want to use lock_mount() - in this case finding something
3541 	 * that overmounts our mountpoint to be means "quitely drop what we've
3542 	 * got", not "try to mount it on top".
3543 	 */
3544 	inode_lock(dentry->d_inode);
3545 	namespace_lock();
3546 	if (unlikely(cant_mount(dentry))) {
3547 		err = -ENOENT;
3548 		goto discard_locked;
3549 	}
3550 	if (path_overmounted(path)) {
3551 		err = 0;
3552 		goto discard_locked;
3553 	}
3554 	mp = get_mountpoint(dentry);
3555 	if (IS_ERR(mp)) {
3556 		err = PTR_ERR(mp);
3557 		goto discard_locked;
3558 	}
3559 
3560 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3561 	unlock_mount(mp);
3562 	if (unlikely(err))
3563 		goto discard;
3564 	mntput(m);
3565 	return 0;
3566 
3567 discard_locked:
3568 	namespace_unlock();
3569 	inode_unlock(dentry->d_inode);
3570 discard:
3571 	/* remove m from any expiration list it may be on */
3572 	if (!list_empty(&mnt->mnt_expire)) {
3573 		namespace_lock();
3574 		list_del_init(&mnt->mnt_expire);
3575 		namespace_unlock();
3576 	}
3577 	mntput(m);
3578 	mntput(m);
3579 	return err;
3580 }
3581 
3582 /**
3583  * mnt_set_expiry - Put a mount on an expiration list
3584  * @mnt: The mount to list.
3585  * @expiry_list: The list to add the mount to.
3586  */
3587 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3588 {
3589 	namespace_lock();
3590 
3591 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3592 
3593 	namespace_unlock();
3594 }
3595 EXPORT_SYMBOL(mnt_set_expiry);
3596 
3597 /*
3598  * process a list of expirable mountpoints with the intent of discarding any
3599  * mountpoints that aren't in use and haven't been touched since last we came
3600  * here
3601  */
3602 void mark_mounts_for_expiry(struct list_head *mounts)
3603 {
3604 	struct mount *mnt, *next;
3605 	LIST_HEAD(graveyard);
3606 
3607 	if (list_empty(mounts))
3608 		return;
3609 
3610 	namespace_lock();
3611 	lock_mount_hash();
3612 
3613 	/* extract from the expiration list every vfsmount that matches the
3614 	 * following criteria:
3615 	 * - only referenced by its parent vfsmount
3616 	 * - still marked for expiry (marked on the last call here; marks are
3617 	 *   cleared by mntput())
3618 	 */
3619 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3620 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3621 			propagate_mount_busy(mnt, 1))
3622 			continue;
3623 		list_move(&mnt->mnt_expire, &graveyard);
3624 	}
3625 	while (!list_empty(&graveyard)) {
3626 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3627 		touch_mnt_namespace(mnt->mnt_ns);
3628 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3629 	}
3630 	unlock_mount_hash();
3631 	namespace_unlock();
3632 }
3633 
3634 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3635 
3636 /*
3637  * Ripoff of 'select_parent()'
3638  *
3639  * search the list of submounts for a given mountpoint, and move any
3640  * shrinkable submounts to the 'graveyard' list.
3641  */
3642 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3643 {
3644 	struct mount *this_parent = parent;
3645 	struct list_head *next;
3646 	int found = 0;
3647 
3648 repeat:
3649 	next = this_parent->mnt_mounts.next;
3650 resume:
3651 	while (next != &this_parent->mnt_mounts) {
3652 		struct list_head *tmp = next;
3653 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3654 
3655 		next = tmp->next;
3656 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3657 			continue;
3658 		/*
3659 		 * Descend a level if the d_mounts list is non-empty.
3660 		 */
3661 		if (!list_empty(&mnt->mnt_mounts)) {
3662 			this_parent = mnt;
3663 			goto repeat;
3664 		}
3665 
3666 		if (!propagate_mount_busy(mnt, 1)) {
3667 			list_move_tail(&mnt->mnt_expire, graveyard);
3668 			found++;
3669 		}
3670 	}
3671 	/*
3672 	 * All done at this level ... ascend and resume the search
3673 	 */
3674 	if (this_parent != parent) {
3675 		next = this_parent->mnt_child.next;
3676 		this_parent = this_parent->mnt_parent;
3677 		goto resume;
3678 	}
3679 	return found;
3680 }
3681 
3682 /*
3683  * process a list of expirable mountpoints with the intent of discarding any
3684  * submounts of a specific parent mountpoint
3685  *
3686  * mount_lock must be held for write
3687  */
3688 static void shrink_submounts(struct mount *mnt)
3689 {
3690 	LIST_HEAD(graveyard);
3691 	struct mount *m;
3692 
3693 	/* extract submounts of 'mountpoint' from the expiration list */
3694 	while (select_submounts(mnt, &graveyard)) {
3695 		while (!list_empty(&graveyard)) {
3696 			m = list_first_entry(&graveyard, struct mount,
3697 						mnt_expire);
3698 			touch_mnt_namespace(m->mnt_ns);
3699 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3700 		}
3701 	}
3702 }
3703 
3704 static void *copy_mount_options(const void __user * data)
3705 {
3706 	char *copy;
3707 	unsigned left, offset;
3708 
3709 	if (!data)
3710 		return NULL;
3711 
3712 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3713 	if (!copy)
3714 		return ERR_PTR(-ENOMEM);
3715 
3716 	left = copy_from_user(copy, data, PAGE_SIZE);
3717 
3718 	/*
3719 	 * Not all architectures have an exact copy_from_user(). Resort to
3720 	 * byte at a time.
3721 	 */
3722 	offset = PAGE_SIZE - left;
3723 	while (left) {
3724 		char c;
3725 		if (get_user(c, (const char __user *)data + offset))
3726 			break;
3727 		copy[offset] = c;
3728 		left--;
3729 		offset++;
3730 	}
3731 
3732 	if (left == PAGE_SIZE) {
3733 		kfree(copy);
3734 		return ERR_PTR(-EFAULT);
3735 	}
3736 
3737 	return copy;
3738 }
3739 
3740 static char *copy_mount_string(const void __user *data)
3741 {
3742 	return data ? strndup_user(data, PATH_MAX) : NULL;
3743 }
3744 
3745 /*
3746  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3747  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3748  *
3749  * data is a (void *) that can point to any structure up to
3750  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3751  * information (or be NULL).
3752  *
3753  * Pre-0.97 versions of mount() didn't have a flags word.
3754  * When the flags word was introduced its top half was required
3755  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3756  * Therefore, if this magic number is present, it carries no information
3757  * and must be discarded.
3758  */
3759 int path_mount(const char *dev_name, struct path *path,
3760 		const char *type_page, unsigned long flags, void *data_page)
3761 {
3762 	unsigned int mnt_flags = 0, sb_flags;
3763 	int ret;
3764 
3765 	/* Discard magic */
3766 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3767 		flags &= ~MS_MGC_MSK;
3768 
3769 	/* Basic sanity checks */
3770 	if (data_page)
3771 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3772 
3773 	if (flags & MS_NOUSER)
3774 		return -EINVAL;
3775 
3776 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3777 	if (ret)
3778 		return ret;
3779 	if (!may_mount())
3780 		return -EPERM;
3781 	if (flags & SB_MANDLOCK)
3782 		warn_mandlock();
3783 
3784 	/* Default to relatime unless overriden */
3785 	if (!(flags & MS_NOATIME))
3786 		mnt_flags |= MNT_RELATIME;
3787 
3788 	/* Separate the per-mountpoint flags */
3789 	if (flags & MS_NOSUID)
3790 		mnt_flags |= MNT_NOSUID;
3791 	if (flags & MS_NODEV)
3792 		mnt_flags |= MNT_NODEV;
3793 	if (flags & MS_NOEXEC)
3794 		mnt_flags |= MNT_NOEXEC;
3795 	if (flags & MS_NOATIME)
3796 		mnt_flags |= MNT_NOATIME;
3797 	if (flags & MS_NODIRATIME)
3798 		mnt_flags |= MNT_NODIRATIME;
3799 	if (flags & MS_STRICTATIME)
3800 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3801 	if (flags & MS_RDONLY)
3802 		mnt_flags |= MNT_READONLY;
3803 	if (flags & MS_NOSYMFOLLOW)
3804 		mnt_flags |= MNT_NOSYMFOLLOW;
3805 
3806 	/* The default atime for remount is preservation */
3807 	if ((flags & MS_REMOUNT) &&
3808 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3809 		       MS_STRICTATIME)) == 0)) {
3810 		mnt_flags &= ~MNT_ATIME_MASK;
3811 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3812 	}
3813 
3814 	sb_flags = flags & (SB_RDONLY |
3815 			    SB_SYNCHRONOUS |
3816 			    SB_MANDLOCK |
3817 			    SB_DIRSYNC |
3818 			    SB_SILENT |
3819 			    SB_POSIXACL |
3820 			    SB_LAZYTIME |
3821 			    SB_I_VERSION);
3822 
3823 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3824 		return do_reconfigure_mnt(path, mnt_flags);
3825 	if (flags & MS_REMOUNT)
3826 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3827 	if (flags & MS_BIND)
3828 		return do_loopback(path, dev_name, flags & MS_REC);
3829 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3830 		return do_change_type(path, flags);
3831 	if (flags & MS_MOVE)
3832 		return do_move_mount_old(path, dev_name);
3833 
3834 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3835 			    data_page);
3836 }
3837 
3838 long do_mount(const char *dev_name, const char __user *dir_name,
3839 		const char *type_page, unsigned long flags, void *data_page)
3840 {
3841 	struct path path;
3842 	int ret;
3843 
3844 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3845 	if (ret)
3846 		return ret;
3847 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3848 	path_put(&path);
3849 	return ret;
3850 }
3851 
3852 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3853 {
3854 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3855 }
3856 
3857 static void dec_mnt_namespaces(struct ucounts *ucounts)
3858 {
3859 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3860 }
3861 
3862 static void free_mnt_ns(struct mnt_namespace *ns)
3863 {
3864 	if (!is_anon_ns(ns))
3865 		ns_free_inum(&ns->ns);
3866 	dec_mnt_namespaces(ns->ucounts);
3867 	mnt_ns_tree_remove(ns);
3868 }
3869 
3870 /*
3871  * Assign a sequence number so we can detect when we attempt to bind
3872  * mount a reference to an older mount namespace into the current
3873  * mount namespace, preventing reference counting loops.  A 64bit
3874  * number incrementing at 10Ghz will take 12,427 years to wrap which
3875  * is effectively never, so we can ignore the possibility.
3876  */
3877 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3878 
3879 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3880 {
3881 	struct mnt_namespace *new_ns;
3882 	struct ucounts *ucounts;
3883 	int ret;
3884 
3885 	ucounts = inc_mnt_namespaces(user_ns);
3886 	if (!ucounts)
3887 		return ERR_PTR(-ENOSPC);
3888 
3889 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3890 	if (!new_ns) {
3891 		dec_mnt_namespaces(ucounts);
3892 		return ERR_PTR(-ENOMEM);
3893 	}
3894 	if (!anon) {
3895 		ret = ns_alloc_inum(&new_ns->ns);
3896 		if (ret) {
3897 			kfree(new_ns);
3898 			dec_mnt_namespaces(ucounts);
3899 			return ERR_PTR(ret);
3900 		}
3901 	}
3902 	new_ns->ns.ops = &mntns_operations;
3903 	if (!anon)
3904 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3905 	refcount_set(&new_ns->ns.count, 1);
3906 	refcount_set(&new_ns->passive, 1);
3907 	new_ns->mounts = RB_ROOT;
3908 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3909 	init_waitqueue_head(&new_ns->poll);
3910 	new_ns->user_ns = get_user_ns(user_ns);
3911 	new_ns->ucounts = ucounts;
3912 	return new_ns;
3913 }
3914 
3915 __latent_entropy
3916 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3917 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3918 {
3919 	struct mnt_namespace *new_ns;
3920 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3921 	struct mount *p, *q;
3922 	struct mount *old;
3923 	struct mount *new;
3924 	int copy_flags;
3925 
3926 	BUG_ON(!ns);
3927 
3928 	if (likely(!(flags & CLONE_NEWNS))) {
3929 		get_mnt_ns(ns);
3930 		return ns;
3931 	}
3932 
3933 	old = ns->root;
3934 
3935 	new_ns = alloc_mnt_ns(user_ns, false);
3936 	if (IS_ERR(new_ns))
3937 		return new_ns;
3938 
3939 	namespace_lock();
3940 	/* First pass: copy the tree topology */
3941 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3942 	if (user_ns != ns->user_ns)
3943 		copy_flags |= CL_SHARED_TO_SLAVE;
3944 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3945 	if (IS_ERR(new)) {
3946 		namespace_unlock();
3947 		free_mnt_ns(new_ns);
3948 		return ERR_CAST(new);
3949 	}
3950 	if (user_ns != ns->user_ns) {
3951 		lock_mount_hash();
3952 		lock_mnt_tree(new);
3953 		unlock_mount_hash();
3954 	}
3955 	new_ns->root = new;
3956 
3957 	/*
3958 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3959 	 * as belonging to new namespace.  We have already acquired a private
3960 	 * fs_struct, so tsk->fs->lock is not needed.
3961 	 */
3962 	p = old;
3963 	q = new;
3964 	while (p) {
3965 		mnt_add_to_ns(new_ns, q);
3966 		new_ns->nr_mounts++;
3967 		if (new_fs) {
3968 			if (&p->mnt == new_fs->root.mnt) {
3969 				new_fs->root.mnt = mntget(&q->mnt);
3970 				rootmnt = &p->mnt;
3971 			}
3972 			if (&p->mnt == new_fs->pwd.mnt) {
3973 				new_fs->pwd.mnt = mntget(&q->mnt);
3974 				pwdmnt = &p->mnt;
3975 			}
3976 		}
3977 		p = next_mnt(p, old);
3978 		q = next_mnt(q, new);
3979 		if (!q)
3980 			break;
3981 		// an mntns binding we'd skipped?
3982 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3983 			p = next_mnt(skip_mnt_tree(p), old);
3984 	}
3985 	mnt_ns_tree_add(new_ns);
3986 	namespace_unlock();
3987 
3988 	if (rootmnt)
3989 		mntput(rootmnt);
3990 	if (pwdmnt)
3991 		mntput(pwdmnt);
3992 
3993 	return new_ns;
3994 }
3995 
3996 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3997 {
3998 	struct mount *mnt = real_mount(m);
3999 	struct mnt_namespace *ns;
4000 	struct super_block *s;
4001 	struct path path;
4002 	int err;
4003 
4004 	ns = alloc_mnt_ns(&init_user_ns, true);
4005 	if (IS_ERR(ns)) {
4006 		mntput(m);
4007 		return ERR_CAST(ns);
4008 	}
4009 	ns->root = mnt;
4010 	ns->nr_mounts++;
4011 	mnt_add_to_ns(ns, mnt);
4012 
4013 	err = vfs_path_lookup(m->mnt_root, m,
4014 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4015 
4016 	put_mnt_ns(ns);
4017 
4018 	if (err)
4019 		return ERR_PTR(err);
4020 
4021 	/* trade a vfsmount reference for active sb one */
4022 	s = path.mnt->mnt_sb;
4023 	atomic_inc(&s->s_active);
4024 	mntput(path.mnt);
4025 	/* lock the sucker */
4026 	down_write(&s->s_umount);
4027 	/* ... and return the root of (sub)tree on it */
4028 	return path.dentry;
4029 }
4030 EXPORT_SYMBOL(mount_subtree);
4031 
4032 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4033 		char __user *, type, unsigned long, flags, void __user *, data)
4034 {
4035 	int ret;
4036 	char *kernel_type;
4037 	char *kernel_dev;
4038 	void *options;
4039 
4040 	kernel_type = copy_mount_string(type);
4041 	ret = PTR_ERR(kernel_type);
4042 	if (IS_ERR(kernel_type))
4043 		goto out_type;
4044 
4045 	kernel_dev = copy_mount_string(dev_name);
4046 	ret = PTR_ERR(kernel_dev);
4047 	if (IS_ERR(kernel_dev))
4048 		goto out_dev;
4049 
4050 	options = copy_mount_options(data);
4051 	ret = PTR_ERR(options);
4052 	if (IS_ERR(options))
4053 		goto out_data;
4054 
4055 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4056 
4057 	kfree(options);
4058 out_data:
4059 	kfree(kernel_dev);
4060 out_dev:
4061 	kfree(kernel_type);
4062 out_type:
4063 	return ret;
4064 }
4065 
4066 #define FSMOUNT_VALID_FLAGS                                                    \
4067 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4068 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4069 	 MOUNT_ATTR_NOSYMFOLLOW)
4070 
4071 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4072 
4073 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4074 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4075 
4076 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4077 {
4078 	unsigned int mnt_flags = 0;
4079 
4080 	if (attr_flags & MOUNT_ATTR_RDONLY)
4081 		mnt_flags |= MNT_READONLY;
4082 	if (attr_flags & MOUNT_ATTR_NOSUID)
4083 		mnt_flags |= MNT_NOSUID;
4084 	if (attr_flags & MOUNT_ATTR_NODEV)
4085 		mnt_flags |= MNT_NODEV;
4086 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4087 		mnt_flags |= MNT_NOEXEC;
4088 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4089 		mnt_flags |= MNT_NODIRATIME;
4090 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4091 		mnt_flags |= MNT_NOSYMFOLLOW;
4092 
4093 	return mnt_flags;
4094 }
4095 
4096 /*
4097  * Create a kernel mount representation for a new, prepared superblock
4098  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4099  */
4100 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4101 		unsigned int, attr_flags)
4102 {
4103 	struct mnt_namespace *ns;
4104 	struct fs_context *fc;
4105 	struct file *file;
4106 	struct path newmount;
4107 	struct mount *mnt;
4108 	struct fd f;
4109 	unsigned int mnt_flags = 0;
4110 	long ret;
4111 
4112 	if (!may_mount())
4113 		return -EPERM;
4114 
4115 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4116 		return -EINVAL;
4117 
4118 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4119 		return -EINVAL;
4120 
4121 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4122 
4123 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4124 	case MOUNT_ATTR_STRICTATIME:
4125 		break;
4126 	case MOUNT_ATTR_NOATIME:
4127 		mnt_flags |= MNT_NOATIME;
4128 		break;
4129 	case MOUNT_ATTR_RELATIME:
4130 		mnt_flags |= MNT_RELATIME;
4131 		break;
4132 	default:
4133 		return -EINVAL;
4134 	}
4135 
4136 	f = fdget(fs_fd);
4137 	if (!fd_file(f))
4138 		return -EBADF;
4139 
4140 	ret = -EINVAL;
4141 	if (fd_file(f)->f_op != &fscontext_fops)
4142 		goto err_fsfd;
4143 
4144 	fc = fd_file(f)->private_data;
4145 
4146 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4147 	if (ret < 0)
4148 		goto err_fsfd;
4149 
4150 	/* There must be a valid superblock or we can't mount it */
4151 	ret = -EINVAL;
4152 	if (!fc->root)
4153 		goto err_unlock;
4154 
4155 	ret = -EPERM;
4156 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4157 		pr_warn("VFS: Mount too revealing\n");
4158 		goto err_unlock;
4159 	}
4160 
4161 	ret = -EBUSY;
4162 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4163 		goto err_unlock;
4164 
4165 	if (fc->sb_flags & SB_MANDLOCK)
4166 		warn_mandlock();
4167 
4168 	newmount.mnt = vfs_create_mount(fc);
4169 	if (IS_ERR(newmount.mnt)) {
4170 		ret = PTR_ERR(newmount.mnt);
4171 		goto err_unlock;
4172 	}
4173 	newmount.dentry = dget(fc->root);
4174 	newmount.mnt->mnt_flags = mnt_flags;
4175 
4176 	/* We've done the mount bit - now move the file context into more or
4177 	 * less the same state as if we'd done an fspick().  We don't want to
4178 	 * do any memory allocation or anything like that at this point as we
4179 	 * don't want to have to handle any errors incurred.
4180 	 */
4181 	vfs_clean_context(fc);
4182 
4183 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4184 	if (IS_ERR(ns)) {
4185 		ret = PTR_ERR(ns);
4186 		goto err_path;
4187 	}
4188 	mnt = real_mount(newmount.mnt);
4189 	ns->root = mnt;
4190 	ns->nr_mounts = 1;
4191 	mnt_add_to_ns(ns, mnt);
4192 	mntget(newmount.mnt);
4193 
4194 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4195 	 * it, not just simply put it.
4196 	 */
4197 	file = dentry_open(&newmount, O_PATH, fc->cred);
4198 	if (IS_ERR(file)) {
4199 		dissolve_on_fput(newmount.mnt);
4200 		ret = PTR_ERR(file);
4201 		goto err_path;
4202 	}
4203 	file->f_mode |= FMODE_NEED_UNMOUNT;
4204 
4205 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4206 	if (ret >= 0)
4207 		fd_install(ret, file);
4208 	else
4209 		fput(file);
4210 
4211 err_path:
4212 	path_put(&newmount);
4213 err_unlock:
4214 	mutex_unlock(&fc->uapi_mutex);
4215 err_fsfd:
4216 	fdput(f);
4217 	return ret;
4218 }
4219 
4220 /*
4221  * Move a mount from one place to another.  In combination with
4222  * fsopen()/fsmount() this is used to install a new mount and in combination
4223  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4224  * a mount subtree.
4225  *
4226  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4227  */
4228 SYSCALL_DEFINE5(move_mount,
4229 		int, from_dfd, const char __user *, from_pathname,
4230 		int, to_dfd, const char __user *, to_pathname,
4231 		unsigned int, flags)
4232 {
4233 	struct path from_path, to_path;
4234 	unsigned int lflags;
4235 	int ret = 0;
4236 
4237 	if (!may_mount())
4238 		return -EPERM;
4239 
4240 	if (flags & ~MOVE_MOUNT__MASK)
4241 		return -EINVAL;
4242 
4243 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4244 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4245 		return -EINVAL;
4246 
4247 	/* If someone gives a pathname, they aren't permitted to move
4248 	 * from an fd that requires unmount as we can't get at the flag
4249 	 * to clear it afterwards.
4250 	 */
4251 	lflags = 0;
4252 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4253 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4254 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4255 
4256 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4257 	if (ret < 0)
4258 		return ret;
4259 
4260 	lflags = 0;
4261 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4262 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4263 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4264 
4265 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4266 	if (ret < 0)
4267 		goto out_from;
4268 
4269 	ret = security_move_mount(&from_path, &to_path);
4270 	if (ret < 0)
4271 		goto out_to;
4272 
4273 	if (flags & MOVE_MOUNT_SET_GROUP)
4274 		ret = do_set_group(&from_path, &to_path);
4275 	else
4276 		ret = do_move_mount(&from_path, &to_path,
4277 				    (flags & MOVE_MOUNT_BENEATH));
4278 
4279 out_to:
4280 	path_put(&to_path);
4281 out_from:
4282 	path_put(&from_path);
4283 	return ret;
4284 }
4285 
4286 /*
4287  * Return true if path is reachable from root
4288  *
4289  * namespace_sem or mount_lock is held
4290  */
4291 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4292 			 const struct path *root)
4293 {
4294 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4295 		dentry = mnt->mnt_mountpoint;
4296 		mnt = mnt->mnt_parent;
4297 	}
4298 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4299 }
4300 
4301 bool path_is_under(const struct path *path1, const struct path *path2)
4302 {
4303 	bool res;
4304 	read_seqlock_excl(&mount_lock);
4305 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4306 	read_sequnlock_excl(&mount_lock);
4307 	return res;
4308 }
4309 EXPORT_SYMBOL(path_is_under);
4310 
4311 /*
4312  * pivot_root Semantics:
4313  * Moves the root file system of the current process to the directory put_old,
4314  * makes new_root as the new root file system of the current process, and sets
4315  * root/cwd of all processes which had them on the current root to new_root.
4316  *
4317  * Restrictions:
4318  * The new_root and put_old must be directories, and  must not be on the
4319  * same file  system as the current process root. The put_old  must  be
4320  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4321  * pointed to by put_old must yield the same directory as new_root. No other
4322  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4323  *
4324  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4325  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4326  * in this situation.
4327  *
4328  * Notes:
4329  *  - we don't move root/cwd if they are not at the root (reason: if something
4330  *    cared enough to change them, it's probably wrong to force them elsewhere)
4331  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4332  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4333  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4334  *    first.
4335  */
4336 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4337 		const char __user *, put_old)
4338 {
4339 	struct path new, old, root;
4340 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4341 	struct mountpoint *old_mp, *root_mp;
4342 	int error;
4343 
4344 	if (!may_mount())
4345 		return -EPERM;
4346 
4347 	error = user_path_at(AT_FDCWD, new_root,
4348 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4349 	if (error)
4350 		goto out0;
4351 
4352 	error = user_path_at(AT_FDCWD, put_old,
4353 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4354 	if (error)
4355 		goto out1;
4356 
4357 	error = security_sb_pivotroot(&old, &new);
4358 	if (error)
4359 		goto out2;
4360 
4361 	get_fs_root(current->fs, &root);
4362 	old_mp = lock_mount(&old);
4363 	error = PTR_ERR(old_mp);
4364 	if (IS_ERR(old_mp))
4365 		goto out3;
4366 
4367 	error = -EINVAL;
4368 	new_mnt = real_mount(new.mnt);
4369 	root_mnt = real_mount(root.mnt);
4370 	old_mnt = real_mount(old.mnt);
4371 	ex_parent = new_mnt->mnt_parent;
4372 	root_parent = root_mnt->mnt_parent;
4373 	if (IS_MNT_SHARED(old_mnt) ||
4374 		IS_MNT_SHARED(ex_parent) ||
4375 		IS_MNT_SHARED(root_parent))
4376 		goto out4;
4377 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4378 		goto out4;
4379 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4380 		goto out4;
4381 	error = -ENOENT;
4382 	if (d_unlinked(new.dentry))
4383 		goto out4;
4384 	error = -EBUSY;
4385 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4386 		goto out4; /* loop, on the same file system  */
4387 	error = -EINVAL;
4388 	if (!path_mounted(&root))
4389 		goto out4; /* not a mountpoint */
4390 	if (!mnt_has_parent(root_mnt))
4391 		goto out4; /* not attached */
4392 	if (!path_mounted(&new))
4393 		goto out4; /* not a mountpoint */
4394 	if (!mnt_has_parent(new_mnt))
4395 		goto out4; /* not attached */
4396 	/* make sure we can reach put_old from new_root */
4397 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4398 		goto out4;
4399 	/* make certain new is below the root */
4400 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4401 		goto out4;
4402 	lock_mount_hash();
4403 	umount_mnt(new_mnt);
4404 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4405 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4406 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4407 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4408 	}
4409 	/* mount old root on put_old */
4410 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4411 	/* mount new_root on / */
4412 	attach_mnt(new_mnt, root_parent, root_mp, false);
4413 	mnt_add_count(root_parent, -1);
4414 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4415 	/* A moved mount should not expire automatically */
4416 	list_del_init(&new_mnt->mnt_expire);
4417 	put_mountpoint(root_mp);
4418 	unlock_mount_hash();
4419 	chroot_fs_refs(&root, &new);
4420 	error = 0;
4421 out4:
4422 	unlock_mount(old_mp);
4423 	if (!error)
4424 		mntput_no_expire(ex_parent);
4425 out3:
4426 	path_put(&root);
4427 out2:
4428 	path_put(&old);
4429 out1:
4430 	path_put(&new);
4431 out0:
4432 	return error;
4433 }
4434 
4435 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4436 {
4437 	unsigned int flags = mnt->mnt.mnt_flags;
4438 
4439 	/*  flags to clear */
4440 	flags &= ~kattr->attr_clr;
4441 	/* flags to raise */
4442 	flags |= kattr->attr_set;
4443 
4444 	return flags;
4445 }
4446 
4447 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4448 {
4449 	struct vfsmount *m = &mnt->mnt;
4450 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4451 
4452 	if (!kattr->mnt_idmap)
4453 		return 0;
4454 
4455 	/*
4456 	 * Creating an idmapped mount with the filesystem wide idmapping
4457 	 * doesn't make sense so block that. We don't allow mushy semantics.
4458 	 */
4459 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4460 		return -EINVAL;
4461 
4462 	/*
4463 	 * Once a mount has been idmapped we don't allow it to change its
4464 	 * mapping. It makes things simpler and callers can just create
4465 	 * another bind-mount they can idmap if they want to.
4466 	 */
4467 	if (is_idmapped_mnt(m))
4468 		return -EPERM;
4469 
4470 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4471 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4472 		return -EINVAL;
4473 
4474 	/* The filesystem has turned off idmapped mounts. */
4475 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4476 		return -EINVAL;
4477 
4478 	/* We're not controlling the superblock. */
4479 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4480 		return -EPERM;
4481 
4482 	/* Mount has already been visible in the filesystem hierarchy. */
4483 	if (!is_anon_ns(mnt->mnt_ns))
4484 		return -EINVAL;
4485 
4486 	return 0;
4487 }
4488 
4489 /**
4490  * mnt_allow_writers() - check whether the attribute change allows writers
4491  * @kattr: the new mount attributes
4492  * @mnt: the mount to which @kattr will be applied
4493  *
4494  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4495  *
4496  * Return: true if writers need to be held, false if not
4497  */
4498 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4499 				     const struct mount *mnt)
4500 {
4501 	return (!(kattr->attr_set & MNT_READONLY) ||
4502 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4503 	       !kattr->mnt_idmap;
4504 }
4505 
4506 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4507 {
4508 	struct mount *m;
4509 	int err;
4510 
4511 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4512 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4513 			err = -EPERM;
4514 			break;
4515 		}
4516 
4517 		err = can_idmap_mount(kattr, m);
4518 		if (err)
4519 			break;
4520 
4521 		if (!mnt_allow_writers(kattr, m)) {
4522 			err = mnt_hold_writers(m);
4523 			if (err)
4524 				break;
4525 		}
4526 
4527 		if (!kattr->recurse)
4528 			return 0;
4529 	}
4530 
4531 	if (err) {
4532 		struct mount *p;
4533 
4534 		/*
4535 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4536 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4537 		 * mounts and needs to take care to include the first mount.
4538 		 */
4539 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4540 			/* If we had to hold writers unblock them. */
4541 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4542 				mnt_unhold_writers(p);
4543 
4544 			/*
4545 			 * We're done once the first mount we changed got
4546 			 * MNT_WRITE_HOLD unset.
4547 			 */
4548 			if (p == m)
4549 				break;
4550 		}
4551 	}
4552 	return err;
4553 }
4554 
4555 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4556 {
4557 	if (!kattr->mnt_idmap)
4558 		return;
4559 
4560 	/*
4561 	 * Pairs with smp_load_acquire() in mnt_idmap().
4562 	 *
4563 	 * Since we only allow a mount to change the idmapping once and
4564 	 * verified this in can_idmap_mount() we know that the mount has
4565 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4566 	 * references.
4567 	 */
4568 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4569 }
4570 
4571 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4572 {
4573 	struct mount *m;
4574 
4575 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4576 		unsigned int flags;
4577 
4578 		do_idmap_mount(kattr, m);
4579 		flags = recalc_flags(kattr, m);
4580 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4581 
4582 		/* If we had to hold writers unblock them. */
4583 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4584 			mnt_unhold_writers(m);
4585 
4586 		if (kattr->propagation)
4587 			change_mnt_propagation(m, kattr->propagation);
4588 		if (!kattr->recurse)
4589 			break;
4590 	}
4591 	touch_mnt_namespace(mnt->mnt_ns);
4592 }
4593 
4594 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4595 {
4596 	struct mount *mnt = real_mount(path->mnt);
4597 	int err = 0;
4598 
4599 	if (!path_mounted(path))
4600 		return -EINVAL;
4601 
4602 	if (kattr->mnt_userns) {
4603 		struct mnt_idmap *mnt_idmap;
4604 
4605 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4606 		if (IS_ERR(mnt_idmap))
4607 			return PTR_ERR(mnt_idmap);
4608 		kattr->mnt_idmap = mnt_idmap;
4609 	}
4610 
4611 	if (kattr->propagation) {
4612 		/*
4613 		 * Only take namespace_lock() if we're actually changing
4614 		 * propagation.
4615 		 */
4616 		namespace_lock();
4617 		if (kattr->propagation == MS_SHARED) {
4618 			err = invent_group_ids(mnt, kattr->recurse);
4619 			if (err) {
4620 				namespace_unlock();
4621 				return err;
4622 			}
4623 		}
4624 	}
4625 
4626 	err = -EINVAL;
4627 	lock_mount_hash();
4628 
4629 	/* Ensure that this isn't anything purely vfs internal. */
4630 	if (!is_mounted(&mnt->mnt))
4631 		goto out;
4632 
4633 	/*
4634 	 * If this is an attached mount make sure it's located in the callers
4635 	 * mount namespace. If it's not don't let the caller interact with it.
4636 	 *
4637 	 * If this mount doesn't have a parent it's most often simply a
4638 	 * detached mount with an anonymous mount namespace. IOW, something
4639 	 * that's simply not attached yet. But there are apparently also users
4640 	 * that do change mount properties on the rootfs itself. That obviously
4641 	 * neither has a parent nor is it a detached mount so we cannot
4642 	 * unconditionally check for detached mounts.
4643 	 */
4644 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4645 		goto out;
4646 
4647 	/*
4648 	 * First, we get the mount tree in a shape where we can change mount
4649 	 * properties without failure. If we succeeded to do so we commit all
4650 	 * changes and if we failed we clean up.
4651 	 */
4652 	err = mount_setattr_prepare(kattr, mnt);
4653 	if (!err)
4654 		mount_setattr_commit(kattr, mnt);
4655 
4656 out:
4657 	unlock_mount_hash();
4658 
4659 	if (kattr->propagation) {
4660 		if (err)
4661 			cleanup_group_ids(mnt, NULL);
4662 		namespace_unlock();
4663 	}
4664 
4665 	return err;
4666 }
4667 
4668 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4669 				struct mount_kattr *kattr, unsigned int flags)
4670 {
4671 	int err = 0;
4672 	struct ns_common *ns;
4673 	struct user_namespace *mnt_userns;
4674 	struct fd f;
4675 
4676 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4677 		return 0;
4678 
4679 	/*
4680 	 * We currently do not support clearing an idmapped mount. If this ever
4681 	 * is a use-case we can revisit this but for now let's keep it simple
4682 	 * and not allow it.
4683 	 */
4684 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4685 		return -EINVAL;
4686 
4687 	if (attr->userns_fd > INT_MAX)
4688 		return -EINVAL;
4689 
4690 	f = fdget(attr->userns_fd);
4691 	if (!fd_file(f))
4692 		return -EBADF;
4693 
4694 	if (!proc_ns_file(fd_file(f))) {
4695 		err = -EINVAL;
4696 		goto out_fput;
4697 	}
4698 
4699 	ns = get_proc_ns(file_inode(fd_file(f)));
4700 	if (ns->ops->type != CLONE_NEWUSER) {
4701 		err = -EINVAL;
4702 		goto out_fput;
4703 	}
4704 
4705 	/*
4706 	 * The initial idmapping cannot be used to create an idmapped
4707 	 * mount. We use the initial idmapping as an indicator of a mount
4708 	 * that is not idmapped. It can simply be passed into helpers that
4709 	 * are aware of idmapped mounts as a convenient shortcut. A user
4710 	 * can just create a dedicated identity mapping to achieve the same
4711 	 * result.
4712 	 */
4713 	mnt_userns = container_of(ns, struct user_namespace, ns);
4714 	if (mnt_userns == &init_user_ns) {
4715 		err = -EPERM;
4716 		goto out_fput;
4717 	}
4718 
4719 	/* We're not controlling the target namespace. */
4720 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4721 		err = -EPERM;
4722 		goto out_fput;
4723 	}
4724 
4725 	kattr->mnt_userns = get_user_ns(mnt_userns);
4726 
4727 out_fput:
4728 	fdput(f);
4729 	return err;
4730 }
4731 
4732 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4733 			     struct mount_kattr *kattr, unsigned int flags)
4734 {
4735 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4736 
4737 	if (flags & AT_NO_AUTOMOUNT)
4738 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4739 	if (flags & AT_SYMLINK_NOFOLLOW)
4740 		lookup_flags &= ~LOOKUP_FOLLOW;
4741 	if (flags & AT_EMPTY_PATH)
4742 		lookup_flags |= LOOKUP_EMPTY;
4743 
4744 	*kattr = (struct mount_kattr) {
4745 		.lookup_flags	= lookup_flags,
4746 		.recurse	= !!(flags & AT_RECURSIVE),
4747 	};
4748 
4749 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4750 		return -EINVAL;
4751 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4752 		return -EINVAL;
4753 	kattr->propagation = attr->propagation;
4754 
4755 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4756 		return -EINVAL;
4757 
4758 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4759 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4760 
4761 	/*
4762 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4763 	 * users wanting to transition to a different atime setting cannot
4764 	 * simply specify the atime setting in @attr_set, but must also
4765 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4766 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4767 	 * @attr_clr and that @attr_set can't have any atime bits set if
4768 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4769 	 */
4770 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4771 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4772 			return -EINVAL;
4773 
4774 		/*
4775 		 * Clear all previous time settings as they are mutually
4776 		 * exclusive.
4777 		 */
4778 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4779 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4780 		case MOUNT_ATTR_RELATIME:
4781 			kattr->attr_set |= MNT_RELATIME;
4782 			break;
4783 		case MOUNT_ATTR_NOATIME:
4784 			kattr->attr_set |= MNT_NOATIME;
4785 			break;
4786 		case MOUNT_ATTR_STRICTATIME:
4787 			break;
4788 		default:
4789 			return -EINVAL;
4790 		}
4791 	} else {
4792 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4793 			return -EINVAL;
4794 	}
4795 
4796 	return build_mount_idmapped(attr, usize, kattr, flags);
4797 }
4798 
4799 static void finish_mount_kattr(struct mount_kattr *kattr)
4800 {
4801 	put_user_ns(kattr->mnt_userns);
4802 	kattr->mnt_userns = NULL;
4803 
4804 	if (kattr->mnt_idmap)
4805 		mnt_idmap_put(kattr->mnt_idmap);
4806 }
4807 
4808 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4809 		unsigned int, flags, struct mount_attr __user *, uattr,
4810 		size_t, usize)
4811 {
4812 	int err;
4813 	struct path target;
4814 	struct mount_attr attr;
4815 	struct mount_kattr kattr;
4816 
4817 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4818 
4819 	if (flags & ~(AT_EMPTY_PATH |
4820 		      AT_RECURSIVE |
4821 		      AT_SYMLINK_NOFOLLOW |
4822 		      AT_NO_AUTOMOUNT))
4823 		return -EINVAL;
4824 
4825 	if (unlikely(usize > PAGE_SIZE))
4826 		return -E2BIG;
4827 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4828 		return -EINVAL;
4829 
4830 	if (!may_mount())
4831 		return -EPERM;
4832 
4833 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4834 	if (err)
4835 		return err;
4836 
4837 	/* Don't bother walking through the mounts if this is a nop. */
4838 	if (attr.attr_set == 0 &&
4839 	    attr.attr_clr == 0 &&
4840 	    attr.propagation == 0)
4841 		return 0;
4842 
4843 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4844 	if (err)
4845 		return err;
4846 
4847 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4848 	if (!err) {
4849 		err = do_mount_setattr(&target, &kattr);
4850 		path_put(&target);
4851 	}
4852 	finish_mount_kattr(&kattr);
4853 	return err;
4854 }
4855 
4856 int show_path(struct seq_file *m, struct dentry *root)
4857 {
4858 	if (root->d_sb->s_op->show_path)
4859 		return root->d_sb->s_op->show_path(m, root);
4860 
4861 	seq_dentry(m, root, " \t\n\\");
4862 	return 0;
4863 }
4864 
4865 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4866 {
4867 	struct mount *mnt = mnt_find_id_at(ns, id);
4868 
4869 	if (!mnt || mnt->mnt_id_unique != id)
4870 		return NULL;
4871 
4872 	return &mnt->mnt;
4873 }
4874 
4875 struct kstatmount {
4876 	struct statmount __user *buf;
4877 	size_t bufsize;
4878 	struct vfsmount *mnt;
4879 	u64 mask;
4880 	struct path root;
4881 	struct statmount sm;
4882 	struct seq_file seq;
4883 };
4884 
4885 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4886 {
4887 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4888 	u64 attr_flags = 0;
4889 
4890 	if (mnt_flags & MNT_READONLY)
4891 		attr_flags |= MOUNT_ATTR_RDONLY;
4892 	if (mnt_flags & MNT_NOSUID)
4893 		attr_flags |= MOUNT_ATTR_NOSUID;
4894 	if (mnt_flags & MNT_NODEV)
4895 		attr_flags |= MOUNT_ATTR_NODEV;
4896 	if (mnt_flags & MNT_NOEXEC)
4897 		attr_flags |= MOUNT_ATTR_NOEXEC;
4898 	if (mnt_flags & MNT_NODIRATIME)
4899 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4900 	if (mnt_flags & MNT_NOSYMFOLLOW)
4901 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4902 
4903 	if (mnt_flags & MNT_NOATIME)
4904 		attr_flags |= MOUNT_ATTR_NOATIME;
4905 	else if (mnt_flags & MNT_RELATIME)
4906 		attr_flags |= MOUNT_ATTR_RELATIME;
4907 	else
4908 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4909 
4910 	if (is_idmapped_mnt(mnt))
4911 		attr_flags |= MOUNT_ATTR_IDMAP;
4912 
4913 	return attr_flags;
4914 }
4915 
4916 static u64 mnt_to_propagation_flags(struct mount *m)
4917 {
4918 	u64 propagation = 0;
4919 
4920 	if (IS_MNT_SHARED(m))
4921 		propagation |= MS_SHARED;
4922 	if (IS_MNT_SLAVE(m))
4923 		propagation |= MS_SLAVE;
4924 	if (IS_MNT_UNBINDABLE(m))
4925 		propagation |= MS_UNBINDABLE;
4926 	if (!propagation)
4927 		propagation |= MS_PRIVATE;
4928 
4929 	return propagation;
4930 }
4931 
4932 static void statmount_sb_basic(struct kstatmount *s)
4933 {
4934 	struct super_block *sb = s->mnt->mnt_sb;
4935 
4936 	s->sm.mask |= STATMOUNT_SB_BASIC;
4937 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4938 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4939 	s->sm.sb_magic = sb->s_magic;
4940 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4941 }
4942 
4943 static void statmount_mnt_basic(struct kstatmount *s)
4944 {
4945 	struct mount *m = real_mount(s->mnt);
4946 
4947 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4948 	s->sm.mnt_id = m->mnt_id_unique;
4949 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4950 	s->sm.mnt_id_old = m->mnt_id;
4951 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4952 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4953 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4954 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4955 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4956 }
4957 
4958 static void statmount_propagate_from(struct kstatmount *s)
4959 {
4960 	struct mount *m = real_mount(s->mnt);
4961 
4962 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4963 	if (IS_MNT_SLAVE(m))
4964 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4965 }
4966 
4967 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4968 {
4969 	int ret;
4970 	size_t start = seq->count;
4971 
4972 	ret = show_path(seq, s->mnt->mnt_root);
4973 	if (ret)
4974 		return ret;
4975 
4976 	if (unlikely(seq_has_overflowed(seq)))
4977 		return -EAGAIN;
4978 
4979 	/*
4980          * Unescape the result. It would be better if supplied string was not
4981          * escaped in the first place, but that's a pretty invasive change.
4982          */
4983 	seq->buf[seq->count] = '\0';
4984 	seq->count = start;
4985 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4986 	return 0;
4987 }
4988 
4989 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4990 {
4991 	struct vfsmount *mnt = s->mnt;
4992 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4993 	int err;
4994 
4995 	err = seq_path_root(seq, &mnt_path, &s->root, "");
4996 	return err == SEQ_SKIP ? 0 : err;
4997 }
4998 
4999 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5000 {
5001 	struct super_block *sb = s->mnt->mnt_sb;
5002 
5003 	seq_puts(seq, sb->s_type->name);
5004 	return 0;
5005 }
5006 
5007 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5008 {
5009 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5010 	s->sm.mnt_ns_id = ns->seq;
5011 }
5012 
5013 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5014 {
5015 	struct vfsmount *mnt = s->mnt;
5016 	struct super_block *sb = mnt->mnt_sb;
5017 	int err;
5018 
5019 	if (sb->s_op->show_options) {
5020 		size_t start = seq->count;
5021 
5022 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5023 		if (err)
5024 			return err;
5025 
5026 		if (unlikely(seq_has_overflowed(seq)))
5027 			return -EAGAIN;
5028 
5029 		if (seq->count == start)
5030 			return 0;
5031 
5032 		/* skip leading comma */
5033 		memmove(seq->buf + start, seq->buf + start + 1,
5034 			seq->count - start - 1);
5035 		seq->count--;
5036 	}
5037 
5038 	return 0;
5039 }
5040 
5041 static int statmount_string(struct kstatmount *s, u64 flag)
5042 {
5043 	int ret;
5044 	size_t kbufsize;
5045 	struct seq_file *seq = &s->seq;
5046 	struct statmount *sm = &s->sm;
5047 
5048 	switch (flag) {
5049 	case STATMOUNT_FS_TYPE:
5050 		sm->fs_type = seq->count;
5051 		ret = statmount_fs_type(s, seq);
5052 		break;
5053 	case STATMOUNT_MNT_ROOT:
5054 		sm->mnt_root = seq->count;
5055 		ret = statmount_mnt_root(s, seq);
5056 		break;
5057 	case STATMOUNT_MNT_POINT:
5058 		sm->mnt_point = seq->count;
5059 		ret = statmount_mnt_point(s, seq);
5060 		break;
5061 	case STATMOUNT_MNT_OPTS:
5062 		sm->mnt_opts = seq->count;
5063 		ret = statmount_mnt_opts(s, seq);
5064 		break;
5065 	default:
5066 		WARN_ON_ONCE(true);
5067 		return -EINVAL;
5068 	}
5069 
5070 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5071 		return -EOVERFLOW;
5072 	if (kbufsize >= s->bufsize)
5073 		return -EOVERFLOW;
5074 
5075 	/* signal a retry */
5076 	if (unlikely(seq_has_overflowed(seq)))
5077 		return -EAGAIN;
5078 
5079 	if (ret)
5080 		return ret;
5081 
5082 	seq->buf[seq->count++] = '\0';
5083 	sm->mask |= flag;
5084 	return 0;
5085 }
5086 
5087 static int copy_statmount_to_user(struct kstatmount *s)
5088 {
5089 	struct statmount *sm = &s->sm;
5090 	struct seq_file *seq = &s->seq;
5091 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5092 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5093 
5094 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5095 		return -EFAULT;
5096 
5097 	/* Return the number of bytes copied to the buffer */
5098 	sm->size = copysize + seq->count;
5099 	if (copy_to_user(s->buf, sm, copysize))
5100 		return -EFAULT;
5101 
5102 	return 0;
5103 }
5104 
5105 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5106 {
5107 	struct rb_node *node;
5108 
5109 	if (reverse)
5110 		node = rb_prev(&curr->mnt_node);
5111 	else
5112 		node = rb_next(&curr->mnt_node);
5113 
5114 	return node_to_mount(node);
5115 }
5116 
5117 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5118 {
5119 	struct mount *first, *child;
5120 
5121 	rwsem_assert_held(&namespace_sem);
5122 
5123 	/* We're looking at our own ns, just use get_fs_root. */
5124 	if (ns == current->nsproxy->mnt_ns) {
5125 		get_fs_root(current->fs, root);
5126 		return 0;
5127 	}
5128 
5129 	/*
5130 	 * We have to find the first mount in our ns and use that, however it
5131 	 * may not exist, so handle that properly.
5132 	 */
5133 	if (RB_EMPTY_ROOT(&ns->mounts))
5134 		return -ENOENT;
5135 
5136 	first = child = ns->root;
5137 	for (;;) {
5138 		child = listmnt_next(child, false);
5139 		if (!child)
5140 			return -ENOENT;
5141 		if (child->mnt_parent == first)
5142 			break;
5143 	}
5144 
5145 	root->mnt = mntget(&child->mnt);
5146 	root->dentry = dget(root->mnt->mnt_root);
5147 	return 0;
5148 }
5149 
5150 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5151 			struct mnt_namespace *ns)
5152 {
5153 	struct path root __free(path_put) = {};
5154 	struct mount *m;
5155 	int err;
5156 
5157 	/* Has the namespace already been emptied? */
5158 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5159 		return -ENOENT;
5160 
5161 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5162 	if (!s->mnt)
5163 		return -ENOENT;
5164 
5165 	err = grab_requested_root(ns, &root);
5166 	if (err)
5167 		return err;
5168 
5169 	/*
5170 	 * Don't trigger audit denials. We just want to determine what
5171 	 * mounts to show users.
5172 	 */
5173 	m = real_mount(s->mnt);
5174 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5175 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5176 		return -EPERM;
5177 
5178 	err = security_sb_statfs(s->mnt->mnt_root);
5179 	if (err)
5180 		return err;
5181 
5182 	s->root = root;
5183 	if (s->mask & STATMOUNT_SB_BASIC)
5184 		statmount_sb_basic(s);
5185 
5186 	if (s->mask & STATMOUNT_MNT_BASIC)
5187 		statmount_mnt_basic(s);
5188 
5189 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5190 		statmount_propagate_from(s);
5191 
5192 	if (s->mask & STATMOUNT_FS_TYPE)
5193 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5194 
5195 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5196 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5197 
5198 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5199 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5200 
5201 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5202 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5203 
5204 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5205 		statmount_mnt_ns_id(s, ns);
5206 
5207 	if (err)
5208 		return err;
5209 
5210 	return 0;
5211 }
5212 
5213 static inline bool retry_statmount(const long ret, size_t *seq_size)
5214 {
5215 	if (likely(ret != -EAGAIN))
5216 		return false;
5217 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5218 		return false;
5219 	if (unlikely(*seq_size > MAX_RW_COUNT))
5220 		return false;
5221 	return true;
5222 }
5223 
5224 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5225 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS)
5226 
5227 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5228 			      struct statmount __user *buf, size_t bufsize,
5229 			      size_t seq_size)
5230 {
5231 	if (!access_ok(buf, bufsize))
5232 		return -EFAULT;
5233 
5234 	memset(ks, 0, sizeof(*ks));
5235 	ks->mask = kreq->param;
5236 	ks->buf = buf;
5237 	ks->bufsize = bufsize;
5238 
5239 	if (ks->mask & STATMOUNT_STRING_REQ) {
5240 		if (bufsize == sizeof(ks->sm))
5241 			return -EOVERFLOW;
5242 
5243 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5244 		if (!ks->seq.buf)
5245 			return -ENOMEM;
5246 
5247 		ks->seq.size = seq_size;
5248 	}
5249 
5250 	return 0;
5251 }
5252 
5253 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5254 			   struct mnt_id_req *kreq)
5255 {
5256 	int ret;
5257 	size_t usize;
5258 
5259 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5260 
5261 	ret = get_user(usize, &req->size);
5262 	if (ret)
5263 		return -EFAULT;
5264 	if (unlikely(usize > PAGE_SIZE))
5265 		return -E2BIG;
5266 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5267 		return -EINVAL;
5268 	memset(kreq, 0, sizeof(*kreq));
5269 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5270 	if (ret)
5271 		return ret;
5272 	if (kreq->spare != 0)
5273 		return -EINVAL;
5274 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5275 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5276 		return -EINVAL;
5277 	return 0;
5278 }
5279 
5280 /*
5281  * If the user requested a specific mount namespace id, look that up and return
5282  * that, or if not simply grab a passive reference on our mount namespace and
5283  * return that.
5284  */
5285 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5286 {
5287 	struct mnt_namespace *mnt_ns;
5288 
5289 	if (kreq->mnt_ns_id && kreq->spare)
5290 		return ERR_PTR(-EINVAL);
5291 
5292 	if (kreq->mnt_ns_id)
5293 		return lookup_mnt_ns(kreq->mnt_ns_id);
5294 
5295 	if (kreq->spare) {
5296 		struct ns_common *ns;
5297 
5298 		CLASS(fd, f)(kreq->spare);
5299 		if (fd_empty(f))
5300 			return ERR_PTR(-EBADF);
5301 
5302 		if (!proc_ns_file(fd_file(f)))
5303 			return ERR_PTR(-EINVAL);
5304 
5305 		ns = get_proc_ns(file_inode(fd_file(f)));
5306 		if (ns->ops->type != CLONE_NEWNS)
5307 			return ERR_PTR(-EINVAL);
5308 
5309 		mnt_ns = to_mnt_ns(ns);
5310 	} else {
5311 		mnt_ns = current->nsproxy->mnt_ns;
5312 	}
5313 
5314 	refcount_inc(&mnt_ns->passive);
5315 	return mnt_ns;
5316 }
5317 
5318 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5319 		struct statmount __user *, buf, size_t, bufsize,
5320 		unsigned int, flags)
5321 {
5322 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5323 	struct kstatmount *ks __free(kfree) = NULL;
5324 	struct mnt_id_req kreq;
5325 	/* We currently support retrieval of 3 strings. */
5326 	size_t seq_size = 3 * PATH_MAX;
5327 	int ret;
5328 
5329 	if (flags)
5330 		return -EINVAL;
5331 
5332 	ret = copy_mnt_id_req(req, &kreq);
5333 	if (ret)
5334 		return ret;
5335 
5336 	ns = grab_requested_mnt_ns(&kreq);
5337 	if (!ns)
5338 		return -ENOENT;
5339 
5340 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5341 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5342 		return -ENOENT;
5343 
5344 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5345 	if (!ks)
5346 		return -ENOMEM;
5347 
5348 retry:
5349 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5350 	if (ret)
5351 		return ret;
5352 
5353 	scoped_guard(rwsem_read, &namespace_sem)
5354 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5355 
5356 	if (!ret)
5357 		ret = copy_statmount_to_user(ks);
5358 	kvfree(ks->seq.buf);
5359 	if (retry_statmount(ret, &seq_size))
5360 		goto retry;
5361 	return ret;
5362 }
5363 
5364 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5365 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5366 			    bool reverse)
5367 {
5368 	struct path root __free(path_put) = {};
5369 	struct path orig;
5370 	struct mount *r, *first;
5371 	ssize_t ret;
5372 
5373 	rwsem_assert_held(&namespace_sem);
5374 
5375 	ret = grab_requested_root(ns, &root);
5376 	if (ret)
5377 		return ret;
5378 
5379 	if (mnt_parent_id == LSMT_ROOT) {
5380 		orig = root;
5381 	} else {
5382 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5383 		if (!orig.mnt)
5384 			return -ENOENT;
5385 		orig.dentry = orig.mnt->mnt_root;
5386 	}
5387 
5388 	/*
5389 	 * Don't trigger audit denials. We just want to determine what
5390 	 * mounts to show users.
5391 	 */
5392 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5393 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5394 		return -EPERM;
5395 
5396 	ret = security_sb_statfs(orig.dentry);
5397 	if (ret)
5398 		return ret;
5399 
5400 	if (!last_mnt_id) {
5401 		if (reverse)
5402 			first = node_to_mount(rb_last(&ns->mounts));
5403 		else
5404 			first = node_to_mount(rb_first(&ns->mounts));
5405 	} else {
5406 		if (reverse)
5407 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5408 		else
5409 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5410 	}
5411 
5412 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5413 		if (r->mnt_id_unique == mnt_parent_id)
5414 			continue;
5415 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5416 			continue;
5417 		*mnt_ids = r->mnt_id_unique;
5418 		mnt_ids++;
5419 		nr_mnt_ids--;
5420 		ret++;
5421 	}
5422 	return ret;
5423 }
5424 
5425 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5426 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5427 {
5428 	u64 *kmnt_ids __free(kvfree) = NULL;
5429 	const size_t maxcount = 1000000;
5430 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5431 	struct mnt_id_req kreq;
5432 	u64 last_mnt_id;
5433 	ssize_t ret;
5434 
5435 	if (flags & ~LISTMOUNT_REVERSE)
5436 		return -EINVAL;
5437 
5438 	/*
5439 	 * If the mount namespace really has more than 1 million mounts the
5440 	 * caller must iterate over the mount namespace (and reconsider their
5441 	 * system design...).
5442 	 */
5443 	if (unlikely(nr_mnt_ids > maxcount))
5444 		return -EOVERFLOW;
5445 
5446 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5447 		return -EFAULT;
5448 
5449 	ret = copy_mnt_id_req(req, &kreq);
5450 	if (ret)
5451 		return ret;
5452 
5453 	last_mnt_id = kreq.param;
5454 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5455 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5456 		return -EINVAL;
5457 
5458 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5459 				  GFP_KERNEL_ACCOUNT);
5460 	if (!kmnt_ids)
5461 		return -ENOMEM;
5462 
5463 	ns = grab_requested_mnt_ns(&kreq);
5464 	if (!ns)
5465 		return -ENOENT;
5466 
5467 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5468 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5469 		return -ENOENT;
5470 
5471 	scoped_guard(rwsem_read, &namespace_sem)
5472 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5473 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5474 	if (ret <= 0)
5475 		return ret;
5476 
5477 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5478 		return -EFAULT;
5479 
5480 	return ret;
5481 }
5482 
5483 static void __init init_mount_tree(void)
5484 {
5485 	struct vfsmount *mnt;
5486 	struct mount *m;
5487 	struct mnt_namespace *ns;
5488 	struct path root;
5489 
5490 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5491 	if (IS_ERR(mnt))
5492 		panic("Can't create rootfs");
5493 
5494 	ns = alloc_mnt_ns(&init_user_ns, false);
5495 	if (IS_ERR(ns))
5496 		panic("Can't allocate initial namespace");
5497 	m = real_mount(mnt);
5498 	ns->root = m;
5499 	ns->nr_mounts = 1;
5500 	mnt_add_to_ns(ns, m);
5501 	init_task.nsproxy->mnt_ns = ns;
5502 	get_mnt_ns(ns);
5503 
5504 	root.mnt = mnt;
5505 	root.dentry = mnt->mnt_root;
5506 	mnt->mnt_flags |= MNT_LOCKED;
5507 
5508 	set_fs_pwd(current->fs, &root);
5509 	set_fs_root(current->fs, &root);
5510 
5511 	mnt_ns_tree_add(ns);
5512 }
5513 
5514 void __init mnt_init(void)
5515 {
5516 	int err;
5517 
5518 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5519 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5520 
5521 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5522 				sizeof(struct hlist_head),
5523 				mhash_entries, 19,
5524 				HASH_ZERO,
5525 				&m_hash_shift, &m_hash_mask, 0, 0);
5526 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5527 				sizeof(struct hlist_head),
5528 				mphash_entries, 19,
5529 				HASH_ZERO,
5530 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5531 
5532 	if (!mount_hashtable || !mountpoint_hashtable)
5533 		panic("Failed to allocate mount hash table\n");
5534 
5535 	kernfs_init();
5536 
5537 	err = sysfs_init();
5538 	if (err)
5539 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5540 			__func__, err);
5541 	fs_kobj = kobject_create_and_add("fs", NULL);
5542 	if (!fs_kobj)
5543 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5544 	shmem_init();
5545 	init_rootfs();
5546 	init_mount_tree();
5547 }
5548 
5549 void put_mnt_ns(struct mnt_namespace *ns)
5550 {
5551 	if (!refcount_dec_and_test(&ns->ns.count))
5552 		return;
5553 	drop_collected_mounts(&ns->root->mnt);
5554 	free_mnt_ns(ns);
5555 }
5556 
5557 struct vfsmount *kern_mount(struct file_system_type *type)
5558 {
5559 	struct vfsmount *mnt;
5560 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5561 	if (!IS_ERR(mnt)) {
5562 		/*
5563 		 * it is a longterm mount, don't release mnt until
5564 		 * we unmount before file sys is unregistered
5565 		*/
5566 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5567 	}
5568 	return mnt;
5569 }
5570 EXPORT_SYMBOL_GPL(kern_mount);
5571 
5572 void kern_unmount(struct vfsmount *mnt)
5573 {
5574 	/* release long term mount so mount point can be released */
5575 	if (!IS_ERR(mnt)) {
5576 		mnt_make_shortterm(mnt);
5577 		synchronize_rcu();	/* yecchhh... */
5578 		mntput(mnt);
5579 	}
5580 }
5581 EXPORT_SYMBOL(kern_unmount);
5582 
5583 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5584 {
5585 	unsigned int i;
5586 
5587 	for (i = 0; i < num; i++)
5588 		mnt_make_shortterm(mnt[i]);
5589 	synchronize_rcu_expedited();
5590 	for (i = 0; i < num; i++)
5591 		mntput(mnt[i]);
5592 }
5593 EXPORT_SYMBOL(kern_unmount_array);
5594 
5595 bool our_mnt(struct vfsmount *mnt)
5596 {
5597 	return check_mnt(real_mount(mnt));
5598 }
5599 
5600 bool current_chrooted(void)
5601 {
5602 	/* Does the current process have a non-standard root */
5603 	struct path ns_root;
5604 	struct path fs_root;
5605 	bool chrooted;
5606 
5607 	/* Find the namespace root */
5608 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5609 	ns_root.dentry = ns_root.mnt->mnt_root;
5610 	path_get(&ns_root);
5611 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5612 		;
5613 
5614 	get_fs_root(current->fs, &fs_root);
5615 
5616 	chrooted = !path_equal(&fs_root, &ns_root);
5617 
5618 	path_put(&fs_root);
5619 	path_put(&ns_root);
5620 
5621 	return chrooted;
5622 }
5623 
5624 static bool mnt_already_visible(struct mnt_namespace *ns,
5625 				const struct super_block *sb,
5626 				int *new_mnt_flags)
5627 {
5628 	int new_flags = *new_mnt_flags;
5629 	struct mount *mnt, *n;
5630 	bool visible = false;
5631 
5632 	down_read(&namespace_sem);
5633 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5634 		struct mount *child;
5635 		int mnt_flags;
5636 
5637 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5638 			continue;
5639 
5640 		/* This mount is not fully visible if it's root directory
5641 		 * is not the root directory of the filesystem.
5642 		 */
5643 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5644 			continue;
5645 
5646 		/* A local view of the mount flags */
5647 		mnt_flags = mnt->mnt.mnt_flags;
5648 
5649 		/* Don't miss readonly hidden in the superblock flags */
5650 		if (sb_rdonly(mnt->mnt.mnt_sb))
5651 			mnt_flags |= MNT_LOCK_READONLY;
5652 
5653 		/* Verify the mount flags are equal to or more permissive
5654 		 * than the proposed new mount.
5655 		 */
5656 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5657 		    !(new_flags & MNT_READONLY))
5658 			continue;
5659 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5660 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5661 			continue;
5662 
5663 		/* This mount is not fully visible if there are any
5664 		 * locked child mounts that cover anything except for
5665 		 * empty directories.
5666 		 */
5667 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5668 			struct inode *inode = child->mnt_mountpoint->d_inode;
5669 			/* Only worry about locked mounts */
5670 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5671 				continue;
5672 			/* Is the directory permanently empty? */
5673 			if (!is_empty_dir_inode(inode))
5674 				goto next;
5675 		}
5676 		/* Preserve the locked attributes */
5677 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5678 					       MNT_LOCK_ATIME);
5679 		visible = true;
5680 		goto found;
5681 	next:	;
5682 	}
5683 found:
5684 	up_read(&namespace_sem);
5685 	return visible;
5686 }
5687 
5688 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5689 {
5690 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5691 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5692 	unsigned long s_iflags;
5693 
5694 	if (ns->user_ns == &init_user_ns)
5695 		return false;
5696 
5697 	/* Can this filesystem be too revealing? */
5698 	s_iflags = sb->s_iflags;
5699 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5700 		return false;
5701 
5702 	if ((s_iflags & required_iflags) != required_iflags) {
5703 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5704 			  required_iflags);
5705 		return true;
5706 	}
5707 
5708 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5709 }
5710 
5711 bool mnt_may_suid(struct vfsmount *mnt)
5712 {
5713 	/*
5714 	 * Foreign mounts (accessed via fchdir or through /proc
5715 	 * symlinks) are always treated as if they are nosuid.  This
5716 	 * prevents namespaces from trusting potentially unsafe
5717 	 * suid/sgid bits, file caps, or security labels that originate
5718 	 * in other namespaces.
5719 	 */
5720 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5721 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5722 }
5723 
5724 static struct ns_common *mntns_get(struct task_struct *task)
5725 {
5726 	struct ns_common *ns = NULL;
5727 	struct nsproxy *nsproxy;
5728 
5729 	task_lock(task);
5730 	nsproxy = task->nsproxy;
5731 	if (nsproxy) {
5732 		ns = &nsproxy->mnt_ns->ns;
5733 		get_mnt_ns(to_mnt_ns(ns));
5734 	}
5735 	task_unlock(task);
5736 
5737 	return ns;
5738 }
5739 
5740 static void mntns_put(struct ns_common *ns)
5741 {
5742 	put_mnt_ns(to_mnt_ns(ns));
5743 }
5744 
5745 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5746 {
5747 	struct nsproxy *nsproxy = nsset->nsproxy;
5748 	struct fs_struct *fs = nsset->fs;
5749 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5750 	struct user_namespace *user_ns = nsset->cred->user_ns;
5751 	struct path root;
5752 	int err;
5753 
5754 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5755 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5756 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5757 		return -EPERM;
5758 
5759 	if (is_anon_ns(mnt_ns))
5760 		return -EINVAL;
5761 
5762 	if (fs->users != 1)
5763 		return -EINVAL;
5764 
5765 	get_mnt_ns(mnt_ns);
5766 	old_mnt_ns = nsproxy->mnt_ns;
5767 	nsproxy->mnt_ns = mnt_ns;
5768 
5769 	/* Find the root */
5770 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5771 				"/", LOOKUP_DOWN, &root);
5772 	if (err) {
5773 		/* revert to old namespace */
5774 		nsproxy->mnt_ns = old_mnt_ns;
5775 		put_mnt_ns(mnt_ns);
5776 		return err;
5777 	}
5778 
5779 	put_mnt_ns(old_mnt_ns);
5780 
5781 	/* Update the pwd and root */
5782 	set_fs_pwd(fs, &root);
5783 	set_fs_root(fs, &root);
5784 
5785 	path_put(&root);
5786 	return 0;
5787 }
5788 
5789 static struct user_namespace *mntns_owner(struct ns_common *ns)
5790 {
5791 	return to_mnt_ns(ns)->user_ns;
5792 }
5793 
5794 const struct proc_ns_operations mntns_operations = {
5795 	.name		= "mnt",
5796 	.type		= CLONE_NEWNS,
5797 	.get		= mntns_get,
5798 	.put		= mntns_put,
5799 	.install	= mntns_install,
5800 	.owner		= mntns_owner,
5801 };
5802 
5803 #ifdef CONFIG_SYSCTL
5804 static struct ctl_table fs_namespace_sysctls[] = {
5805 	{
5806 		.procname	= "mount-max",
5807 		.data		= &sysctl_mount_max,
5808 		.maxlen		= sizeof(unsigned int),
5809 		.mode		= 0644,
5810 		.proc_handler	= proc_dointvec_minmax,
5811 		.extra1		= SYSCTL_ONE,
5812 	},
5813 };
5814 
5815 static int __init init_fs_namespace_sysctls(void)
5816 {
5817 	register_sysctl_init("fs", fs_namespace_sysctls);
5818 	return 0;
5819 }
5820 fs_initcall(init_fs_namespace_sysctls);
5821 
5822 #endif /* CONFIG_SYSCTL */
5823