xref: /linux/fs/namespace.c (revision d257f9bf06129613de539ea71ecea60848b662cd)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res;
105 
106 retry:
107 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 	spin_lock(&mnt_id_lock);
109 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 	if (!res)
111 		mnt_id_start = mnt->mnt_id + 1;
112 	spin_unlock(&mnt_id_lock);
113 	if (res == -EAGAIN)
114 		goto retry;
115 
116 	return res;
117 }
118 
119 static void mnt_free_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_id;
122 	spin_lock(&mnt_id_lock);
123 	ida_remove(&mnt_id_ida, id);
124 	if (mnt_id_start > id)
125 		mnt_id_start = id;
126 	spin_unlock(&mnt_id_lock);
127 }
128 
129 /*
130  * Allocate a new peer group ID
131  *
132  * mnt_group_ida is protected by namespace_sem
133  */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 	int res;
137 
138 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 		return -ENOMEM;
140 
141 	res = ida_get_new_above(&mnt_group_ida,
142 				mnt_group_start,
143 				&mnt->mnt_group_id);
144 	if (!res)
145 		mnt_group_start = mnt->mnt_group_id + 1;
146 
147 	return res;
148 }
149 
150 /*
151  * Release a peer group ID
152  */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 	int id = mnt->mnt_group_id;
156 	ida_remove(&mnt_group_ida, id);
157 	if (mnt_group_start > id)
158 		mnt_group_start = id;
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	unsigned int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 	struct mount *m = container_of(p, struct mount, mnt_umount);
198 	dput(m->mnt_ex_mountpoint);
199 	pin_remove(p);
200 	mntput(&m->mnt);
201 }
202 
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 	if (mnt) {
207 		int err;
208 
209 		err = mnt_alloc_id(mnt);
210 		if (err)
211 			goto out_free_cache;
212 
213 		if (name) {
214 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 
230 		INIT_HLIST_NODE(&mnt->mnt_hash);
231 		INIT_LIST_HEAD(&mnt->mnt_child);
232 		INIT_LIST_HEAD(&mnt->mnt_mounts);
233 		INIT_LIST_HEAD(&mnt->mnt_list);
234 		INIT_LIST_HEAD(&mnt->mnt_expire);
235 		INIT_LIST_HEAD(&mnt->mnt_share);
236 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 		INIT_LIST_HEAD(&mnt->mnt_slave);
238 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 		INIT_LIST_HEAD(&mnt->mnt_umounting);
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  */
440 int mnt_want_write_file(struct file *file)
441 {
442 	int ret;
443 
444 	sb_start_write(file->f_path.mnt->mnt_sb);
445 	ret = __mnt_want_write_file(file);
446 	if (ret)
447 		sb_end_write(file->f_path.mnt->mnt_sb);
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451 
452 /**
453  * __mnt_drop_write - give up write access to a mount
454  * @mnt: the mount on which to give up write access
455  *
456  * Tells the low-level filesystem that we are done
457  * performing writes to it.  Must be matched with
458  * __mnt_want_write() call above.
459  */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 	preempt_disable();
463 	mnt_dec_writers(real_mount(mnt));
464 	preempt_enable();
465 }
466 
467 /**
468  * mnt_drop_write - give up write access to a mount
469  * @mnt: the mount on which to give up write access
470  *
471  * Tells the low-level filesystem that we are done performing writes to it and
472  * also allows filesystem to be frozen again.  Must be matched with
473  * mnt_want_write() call above.
474  */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 	__mnt_drop_write(mnt);
478 	sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481 
482 void __mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write(file->f_path.mnt);
485 }
486 
487 void mnt_drop_write_file(struct file *file)
488 {
489 	mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492 
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 	int ret = 0;
496 
497 	lock_mount_hash();
498 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 	/*
500 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 	 * should be visible before we do.
502 	 */
503 	smp_mb();
504 
505 	/*
506 	 * With writers on hold, if this value is zero, then there are
507 	 * definitely no active writers (although held writers may subsequently
508 	 * increment the count, they'll have to wait, and decrement it after
509 	 * seeing MNT_READONLY).
510 	 *
511 	 * It is OK to have counter incremented on one CPU and decremented on
512 	 * another: the sum will add up correctly. The danger would be when we
513 	 * sum up each counter, if we read a counter before it is incremented,
514 	 * but then read another CPU's count which it has been subsequently
515 	 * decremented from -- we would see more decrements than we should.
516 	 * MNT_WRITE_HOLD protects against this scenario, because
517 	 * mnt_want_write first increments count, then smp_mb, then spins on
518 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 	 * we're counting up here.
520 	 */
521 	if (mnt_get_writers(mnt) > 0)
522 		ret = -EBUSY;
523 	else
524 		mnt->mnt.mnt_flags |= MNT_READONLY;
525 	/*
526 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 	 * that become unheld will see MNT_READONLY.
528 	 */
529 	smp_wmb();
530 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 	unlock_mount_hash();
532 	return ret;
533 }
534 
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 	lock_mount_hash();
538 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 	unlock_mount_hash();
540 }
541 
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 	struct mount *mnt;
545 	int err = 0;
546 
547 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
548 	if (atomic_long_read(&sb->s_remove_count))
549 		return -EBUSY;
550 
551 	lock_mount_hash();
552 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 			smp_mb();
556 			if (mnt_get_writers(mnt) > 0) {
557 				err = -EBUSY;
558 				break;
559 			}
560 		}
561 	}
562 	if (!err && atomic_long_read(&sb->s_remove_count))
563 		err = -EBUSY;
564 
565 	if (!err) {
566 		sb->s_readonly_remount = 1;
567 		smp_wmb();
568 	}
569 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 	}
573 	unlock_mount_hash();
574 
575 	return err;
576 }
577 
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 	kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 	free_percpu(mnt->mnt_pcp);
583 #endif
584 	kmem_cache_free(mnt_cache, mnt);
585 }
586 
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591 
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 	struct mount *mnt;
596 	if (read_seqretry(&mount_lock, seq))
597 		return 1;
598 	if (bastard == NULL)
599 		return 0;
600 	mnt = real_mount(bastard);
601 	mnt_add_count(mnt, 1);
602 	if (likely(!read_seqretry(&mount_lock, seq)))
603 		return 0;
604 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 		mnt_add_count(mnt, -1);
606 		return 1;
607 	}
608 	return -1;
609 }
610 
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 	int res = __legitimize_mnt(bastard, seq);
615 	if (likely(!res))
616 		return true;
617 	if (unlikely(res < 0)) {
618 		rcu_read_unlock();
619 		mntput(bastard);
620 		rcu_read_lock();
621 	}
622 	return false;
623 }
624 
625 /*
626  * find the first mount at @dentry on vfsmount @mnt.
627  * call under rcu_read_lock()
628  */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 	struct hlist_head *head = m_hash(mnt, dentry);
632 	struct mount *p;
633 
634 	hlist_for_each_entry_rcu(p, head, mnt_hash)
635 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 			return p;
637 	return NULL;
638 }
639 
640 /*
641  * lookup_mnt - Return the first child mount mounted at path
642  *
643  * "First" means first mounted chronologically.  If you create the
644  * following mounts:
645  *
646  * mount /dev/sda1 /mnt
647  * mount /dev/sda2 /mnt
648  * mount /dev/sda3 /mnt
649  *
650  * Then lookup_mnt() on the base /mnt dentry in the root mount will
651  * return successively the root dentry and vfsmount of /dev/sda1, then
652  * /dev/sda2, then /dev/sda3, then NULL.
653  *
654  * lookup_mnt takes a reference to the found vfsmount.
655  */
656 struct vfsmount *lookup_mnt(const struct path *path)
657 {
658 	struct mount *child_mnt;
659 	struct vfsmount *m;
660 	unsigned seq;
661 
662 	rcu_read_lock();
663 	do {
664 		seq = read_seqbegin(&mount_lock);
665 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 		m = child_mnt ? &child_mnt->mnt : NULL;
667 	} while (!legitimize_mnt(m, seq));
668 	rcu_read_unlock();
669 	return m;
670 }
671 
672 /*
673  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674  *                         current mount namespace.
675  *
676  * The common case is dentries are not mountpoints at all and that
677  * test is handled inline.  For the slow case when we are actually
678  * dealing with a mountpoint of some kind, walk through all of the
679  * mounts in the current mount namespace and test to see if the dentry
680  * is a mountpoint.
681  *
682  * The mount_hashtable is not usable in the context because we
683  * need to identify all mounts that may be in the current mount
684  * namespace not just a mount that happens to have some specified
685  * parent mount.
686  */
687 bool __is_local_mountpoint(struct dentry *dentry)
688 {
689 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 	struct mount *mnt;
691 	bool is_covered = false;
692 
693 	if (!d_mountpoint(dentry))
694 		goto out;
695 
696 	down_read(&namespace_sem);
697 	list_for_each_entry(mnt, &ns->list, mnt_list) {
698 		is_covered = (mnt->mnt_mountpoint == dentry);
699 		if (is_covered)
700 			break;
701 	}
702 	up_read(&namespace_sem);
703 out:
704 	return is_covered;
705 }
706 
707 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
708 {
709 	struct hlist_head *chain = mp_hash(dentry);
710 	struct mountpoint *mp;
711 
712 	hlist_for_each_entry(mp, chain, m_hash) {
713 		if (mp->m_dentry == dentry) {
714 			/* might be worth a WARN_ON() */
715 			if (d_unlinked(dentry))
716 				return ERR_PTR(-ENOENT);
717 			mp->m_count++;
718 			return mp;
719 		}
720 	}
721 	return NULL;
722 }
723 
724 static struct mountpoint *get_mountpoint(struct dentry *dentry)
725 {
726 	struct mountpoint *mp, *new = NULL;
727 	int ret;
728 
729 	if (d_mountpoint(dentry)) {
730 mountpoint:
731 		read_seqlock_excl(&mount_lock);
732 		mp = lookup_mountpoint(dentry);
733 		read_sequnlock_excl(&mount_lock);
734 		if (mp)
735 			goto done;
736 	}
737 
738 	if (!new)
739 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 	if (!new)
741 		return ERR_PTR(-ENOMEM);
742 
743 
744 	/* Exactly one processes may set d_mounted */
745 	ret = d_set_mounted(dentry);
746 
747 	/* Someone else set d_mounted? */
748 	if (ret == -EBUSY)
749 		goto mountpoint;
750 
751 	/* The dentry is not available as a mountpoint? */
752 	mp = ERR_PTR(ret);
753 	if (ret)
754 		goto done;
755 
756 	/* Add the new mountpoint to the hash table */
757 	read_seqlock_excl(&mount_lock);
758 	new->m_dentry = dentry;
759 	new->m_count = 1;
760 	hlist_add_head(&new->m_hash, mp_hash(dentry));
761 	INIT_HLIST_HEAD(&new->m_list);
762 	read_sequnlock_excl(&mount_lock);
763 
764 	mp = new;
765 	new = NULL;
766 done:
767 	kfree(new);
768 	return mp;
769 }
770 
771 static void put_mountpoint(struct mountpoint *mp)
772 {
773 	if (!--mp->m_count) {
774 		struct dentry *dentry = mp->m_dentry;
775 		BUG_ON(!hlist_empty(&mp->m_list));
776 		spin_lock(&dentry->d_lock);
777 		dentry->d_flags &= ~DCACHE_MOUNTED;
778 		spin_unlock(&dentry->d_lock);
779 		hlist_del(&mp->m_hash);
780 		kfree(mp);
781 	}
782 }
783 
784 static inline int check_mnt(struct mount *mnt)
785 {
786 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
787 }
788 
789 /*
790  * vfsmount lock must be held for write
791  */
792 static void touch_mnt_namespace(struct mnt_namespace *ns)
793 {
794 	if (ns) {
795 		ns->event = ++event;
796 		wake_up_interruptible(&ns->poll);
797 	}
798 }
799 
800 /*
801  * vfsmount lock must be held for write
802  */
803 static void __touch_mnt_namespace(struct mnt_namespace *ns)
804 {
805 	if (ns && ns->event != event) {
806 		ns->event = event;
807 		wake_up_interruptible(&ns->poll);
808 	}
809 }
810 
811 /*
812  * vfsmount lock must be held for write
813  */
814 static void unhash_mnt(struct mount *mnt)
815 {
816 	mnt->mnt_parent = mnt;
817 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
818 	list_del_init(&mnt->mnt_child);
819 	hlist_del_init_rcu(&mnt->mnt_hash);
820 	hlist_del_init(&mnt->mnt_mp_list);
821 	put_mountpoint(mnt->mnt_mp);
822 	mnt->mnt_mp = NULL;
823 }
824 
825 /*
826  * vfsmount lock must be held for write
827  */
828 static void detach_mnt(struct mount *mnt, struct path *old_path)
829 {
830 	old_path->dentry = mnt->mnt_mountpoint;
831 	old_path->mnt = &mnt->mnt_parent->mnt;
832 	unhash_mnt(mnt);
833 }
834 
835 /*
836  * vfsmount lock must be held for write
837  */
838 static void umount_mnt(struct mount *mnt)
839 {
840 	/* old mountpoint will be dropped when we can do that */
841 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
842 	unhash_mnt(mnt);
843 }
844 
845 /*
846  * vfsmount lock must be held for write
847  */
848 void mnt_set_mountpoint(struct mount *mnt,
849 			struct mountpoint *mp,
850 			struct mount *child_mnt)
851 {
852 	mp->m_count++;
853 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
854 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
855 	child_mnt->mnt_parent = mnt;
856 	child_mnt->mnt_mp = mp;
857 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
858 }
859 
860 static void __attach_mnt(struct mount *mnt, struct mount *parent)
861 {
862 	hlist_add_head_rcu(&mnt->mnt_hash,
863 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
864 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
865 }
866 
867 /*
868  * vfsmount lock must be held for write
869  */
870 static void attach_mnt(struct mount *mnt,
871 			struct mount *parent,
872 			struct mountpoint *mp)
873 {
874 	mnt_set_mountpoint(parent, mp, mnt);
875 	__attach_mnt(mnt, parent);
876 }
877 
878 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
879 {
880 	struct mountpoint *old_mp = mnt->mnt_mp;
881 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
882 	struct mount *old_parent = mnt->mnt_parent;
883 
884 	list_del_init(&mnt->mnt_child);
885 	hlist_del_init(&mnt->mnt_mp_list);
886 	hlist_del_init_rcu(&mnt->mnt_hash);
887 
888 	attach_mnt(mnt, parent, mp);
889 
890 	put_mountpoint(old_mp);
891 
892 	/*
893 	 * Safely avoid even the suggestion this code might sleep or
894 	 * lock the mount hash by taking advantage of the knowledge that
895 	 * mnt_change_mountpoint will not release the final reference
896 	 * to a mountpoint.
897 	 *
898 	 * During mounting, the mount passed in as the parent mount will
899 	 * continue to use the old mountpoint and during unmounting, the
900 	 * old mountpoint will continue to exist until namespace_unlock,
901 	 * which happens well after mnt_change_mountpoint.
902 	 */
903 	spin_lock(&old_mountpoint->d_lock);
904 	old_mountpoint->d_lockref.count--;
905 	spin_unlock(&old_mountpoint->d_lock);
906 
907 	mnt_add_count(old_parent, -1);
908 }
909 
910 /*
911  * vfsmount lock must be held for write
912  */
913 static void commit_tree(struct mount *mnt)
914 {
915 	struct mount *parent = mnt->mnt_parent;
916 	struct mount *m;
917 	LIST_HEAD(head);
918 	struct mnt_namespace *n = parent->mnt_ns;
919 
920 	BUG_ON(parent == mnt);
921 
922 	list_add_tail(&head, &mnt->mnt_list);
923 	list_for_each_entry(m, &head, mnt_list)
924 		m->mnt_ns = n;
925 
926 	list_splice(&head, n->list.prev);
927 
928 	n->mounts += n->pending_mounts;
929 	n->pending_mounts = 0;
930 
931 	__attach_mnt(mnt, parent);
932 	touch_mnt_namespace(n);
933 }
934 
935 static struct mount *next_mnt(struct mount *p, struct mount *root)
936 {
937 	struct list_head *next = p->mnt_mounts.next;
938 	if (next == &p->mnt_mounts) {
939 		while (1) {
940 			if (p == root)
941 				return NULL;
942 			next = p->mnt_child.next;
943 			if (next != &p->mnt_parent->mnt_mounts)
944 				break;
945 			p = p->mnt_parent;
946 		}
947 	}
948 	return list_entry(next, struct mount, mnt_child);
949 }
950 
951 static struct mount *skip_mnt_tree(struct mount *p)
952 {
953 	struct list_head *prev = p->mnt_mounts.prev;
954 	while (prev != &p->mnt_mounts) {
955 		p = list_entry(prev, struct mount, mnt_child);
956 		prev = p->mnt_mounts.prev;
957 	}
958 	return p;
959 }
960 
961 struct vfsmount *
962 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
963 {
964 	struct mount *mnt;
965 	struct dentry *root;
966 
967 	if (!type)
968 		return ERR_PTR(-ENODEV);
969 
970 	mnt = alloc_vfsmnt(name);
971 	if (!mnt)
972 		return ERR_PTR(-ENOMEM);
973 
974 	if (flags & MS_KERNMOUNT)
975 		mnt->mnt.mnt_flags = MNT_INTERNAL;
976 
977 	root = mount_fs(type, flags, name, data);
978 	if (IS_ERR(root)) {
979 		mnt_free_id(mnt);
980 		free_vfsmnt(mnt);
981 		return ERR_CAST(root);
982 	}
983 
984 	mnt->mnt.mnt_root = root;
985 	mnt->mnt.mnt_sb = root->d_sb;
986 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
987 	mnt->mnt_parent = mnt;
988 	lock_mount_hash();
989 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
990 	unlock_mount_hash();
991 	return &mnt->mnt;
992 }
993 EXPORT_SYMBOL_GPL(vfs_kern_mount);
994 
995 struct vfsmount *
996 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
997 	     const char *name, void *data)
998 {
999 	/* Until it is worked out how to pass the user namespace
1000 	 * through from the parent mount to the submount don't support
1001 	 * unprivileged mounts with submounts.
1002 	 */
1003 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1004 		return ERR_PTR(-EPERM);
1005 
1006 	return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1007 }
1008 EXPORT_SYMBOL_GPL(vfs_submount);
1009 
1010 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1011 					int flag)
1012 {
1013 	struct super_block *sb = old->mnt.mnt_sb;
1014 	struct mount *mnt;
1015 	int err;
1016 
1017 	mnt = alloc_vfsmnt(old->mnt_devname);
1018 	if (!mnt)
1019 		return ERR_PTR(-ENOMEM);
1020 
1021 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1022 		mnt->mnt_group_id = 0; /* not a peer of original */
1023 	else
1024 		mnt->mnt_group_id = old->mnt_group_id;
1025 
1026 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1027 		err = mnt_alloc_group_id(mnt);
1028 		if (err)
1029 			goto out_free;
1030 	}
1031 
1032 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1033 	/* Don't allow unprivileged users to change mount flags */
1034 	if (flag & CL_UNPRIVILEGED) {
1035 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036 
1037 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1038 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039 
1040 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1041 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042 
1043 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1044 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045 
1046 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1047 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1048 	}
1049 
1050 	/* Don't allow unprivileged users to reveal what is under a mount */
1051 	if ((flag & CL_UNPRIVILEGED) &&
1052 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1053 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1054 
1055 	atomic_inc(&sb->s_active);
1056 	mnt->mnt.mnt_sb = sb;
1057 	mnt->mnt.mnt_root = dget(root);
1058 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1059 	mnt->mnt_parent = mnt;
1060 	lock_mount_hash();
1061 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1062 	unlock_mount_hash();
1063 
1064 	if ((flag & CL_SLAVE) ||
1065 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1066 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1067 		mnt->mnt_master = old;
1068 		CLEAR_MNT_SHARED(mnt);
1069 	} else if (!(flag & CL_PRIVATE)) {
1070 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1071 			list_add(&mnt->mnt_share, &old->mnt_share);
1072 		if (IS_MNT_SLAVE(old))
1073 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1074 		mnt->mnt_master = old->mnt_master;
1075 	} else {
1076 		CLEAR_MNT_SHARED(mnt);
1077 	}
1078 	if (flag & CL_MAKE_SHARED)
1079 		set_mnt_shared(mnt);
1080 
1081 	/* stick the duplicate mount on the same expiry list
1082 	 * as the original if that was on one */
1083 	if (flag & CL_EXPIRE) {
1084 		if (!list_empty(&old->mnt_expire))
1085 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 	}
1087 
1088 	return mnt;
1089 
1090  out_free:
1091 	mnt_free_id(mnt);
1092 	free_vfsmnt(mnt);
1093 	return ERR_PTR(err);
1094 }
1095 
1096 static void cleanup_mnt(struct mount *mnt)
1097 {
1098 	/*
1099 	 * This probably indicates that somebody messed
1100 	 * up a mnt_want/drop_write() pair.  If this
1101 	 * happens, the filesystem was probably unable
1102 	 * to make r/w->r/o transitions.
1103 	 */
1104 	/*
1105 	 * The locking used to deal with mnt_count decrement provides barriers,
1106 	 * so mnt_get_writers() below is safe.
1107 	 */
1108 	WARN_ON(mnt_get_writers(mnt));
1109 	if (unlikely(mnt->mnt_pins.first))
1110 		mnt_pin_kill(mnt);
1111 	fsnotify_vfsmount_delete(&mnt->mnt);
1112 	dput(mnt->mnt.mnt_root);
1113 	deactivate_super(mnt->mnt.mnt_sb);
1114 	mnt_free_id(mnt);
1115 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116 }
1117 
1118 static void __cleanup_mnt(struct rcu_head *head)
1119 {
1120 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121 }
1122 
1123 static LLIST_HEAD(delayed_mntput_list);
1124 static void delayed_mntput(struct work_struct *unused)
1125 {
1126 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 	struct llist_node *next;
1128 
1129 	for (; node; node = next) {
1130 		next = llist_next(node);
1131 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 	}
1133 }
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135 
1136 static void mntput_no_expire(struct mount *mnt)
1137 {
1138 	rcu_read_lock();
1139 	mnt_add_count(mnt, -1);
1140 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 		rcu_read_unlock();
1142 		return;
1143 	}
1144 	lock_mount_hash();
1145 	if (mnt_get_count(mnt)) {
1146 		rcu_read_unlock();
1147 		unlock_mount_hash();
1148 		return;
1149 	}
1150 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 		rcu_read_unlock();
1152 		unlock_mount_hash();
1153 		return;
1154 	}
1155 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 	rcu_read_unlock();
1157 
1158 	list_del(&mnt->mnt_instance);
1159 
1160 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 		struct mount *p, *tmp;
1162 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1163 			umount_mnt(p);
1164 		}
1165 	}
1166 	unlock_mount_hash();
1167 
1168 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 		struct task_struct *task = current;
1170 		if (likely(!(task->flags & PF_KTHREAD))) {
1171 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 				return;
1174 		}
1175 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 			schedule_delayed_work(&delayed_mntput_work, 1);
1177 		return;
1178 	}
1179 	cleanup_mnt(mnt);
1180 }
1181 
1182 void mntput(struct vfsmount *mnt)
1183 {
1184 	if (mnt) {
1185 		struct mount *m = real_mount(mnt);
1186 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1187 		if (unlikely(m->mnt_expiry_mark))
1188 			m->mnt_expiry_mark = 0;
1189 		mntput_no_expire(m);
1190 	}
1191 }
1192 EXPORT_SYMBOL(mntput);
1193 
1194 struct vfsmount *mntget(struct vfsmount *mnt)
1195 {
1196 	if (mnt)
1197 		mnt_add_count(real_mount(mnt), 1);
1198 	return mnt;
1199 }
1200 EXPORT_SYMBOL(mntget);
1201 
1202 /* path_is_mountpoint() - Check if path is a mount in the current
1203  *                          namespace.
1204  *
1205  *  d_mountpoint() can only be used reliably to establish if a dentry is
1206  *  not mounted in any namespace and that common case is handled inline.
1207  *  d_mountpoint() isn't aware of the possibility there may be multiple
1208  *  mounts using a given dentry in a different namespace. This function
1209  *  checks if the passed in path is a mountpoint rather than the dentry
1210  *  alone.
1211  */
1212 bool path_is_mountpoint(const struct path *path)
1213 {
1214 	unsigned seq;
1215 	bool res;
1216 
1217 	if (!d_mountpoint(path->dentry))
1218 		return false;
1219 
1220 	rcu_read_lock();
1221 	do {
1222 		seq = read_seqbegin(&mount_lock);
1223 		res = __path_is_mountpoint(path);
1224 	} while (read_seqretry(&mount_lock, seq));
1225 	rcu_read_unlock();
1226 
1227 	return res;
1228 }
1229 EXPORT_SYMBOL(path_is_mountpoint);
1230 
1231 struct vfsmount *mnt_clone_internal(const struct path *path)
1232 {
1233 	struct mount *p;
1234 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1235 	if (IS_ERR(p))
1236 		return ERR_CAST(p);
1237 	p->mnt.mnt_flags |= MNT_INTERNAL;
1238 	return &p->mnt;
1239 }
1240 
1241 #ifdef CONFIG_PROC_FS
1242 /* iterator; we want it to have access to namespace_sem, thus here... */
1243 static void *m_start(struct seq_file *m, loff_t *pos)
1244 {
1245 	struct proc_mounts *p = m->private;
1246 
1247 	down_read(&namespace_sem);
1248 	if (p->cached_event == p->ns->event) {
1249 		void *v = p->cached_mount;
1250 		if (*pos == p->cached_index)
1251 			return v;
1252 		if (*pos == p->cached_index + 1) {
1253 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1254 			return p->cached_mount = v;
1255 		}
1256 	}
1257 
1258 	p->cached_event = p->ns->event;
1259 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1260 	p->cached_index = *pos;
1261 	return p->cached_mount;
1262 }
1263 
1264 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1265 {
1266 	struct proc_mounts *p = m->private;
1267 
1268 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1269 	p->cached_index = *pos;
1270 	return p->cached_mount;
1271 }
1272 
1273 static void m_stop(struct seq_file *m, void *v)
1274 {
1275 	up_read(&namespace_sem);
1276 }
1277 
1278 static int m_show(struct seq_file *m, void *v)
1279 {
1280 	struct proc_mounts *p = m->private;
1281 	struct mount *r = list_entry(v, struct mount, mnt_list);
1282 	return p->show(m, &r->mnt);
1283 }
1284 
1285 const struct seq_operations mounts_op = {
1286 	.start	= m_start,
1287 	.next	= m_next,
1288 	.stop	= m_stop,
1289 	.show	= m_show,
1290 };
1291 #endif  /* CONFIG_PROC_FS */
1292 
1293 /**
1294  * may_umount_tree - check if a mount tree is busy
1295  * @mnt: root of mount tree
1296  *
1297  * This is called to check if a tree of mounts has any
1298  * open files, pwds, chroots or sub mounts that are
1299  * busy.
1300  */
1301 int may_umount_tree(struct vfsmount *m)
1302 {
1303 	struct mount *mnt = real_mount(m);
1304 	int actual_refs = 0;
1305 	int minimum_refs = 0;
1306 	struct mount *p;
1307 	BUG_ON(!m);
1308 
1309 	/* write lock needed for mnt_get_count */
1310 	lock_mount_hash();
1311 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1312 		actual_refs += mnt_get_count(p);
1313 		minimum_refs += 2;
1314 	}
1315 	unlock_mount_hash();
1316 
1317 	if (actual_refs > minimum_refs)
1318 		return 0;
1319 
1320 	return 1;
1321 }
1322 
1323 EXPORT_SYMBOL(may_umount_tree);
1324 
1325 /**
1326  * may_umount - check if a mount point is busy
1327  * @mnt: root of mount
1328  *
1329  * This is called to check if a mount point has any
1330  * open files, pwds, chroots or sub mounts. If the
1331  * mount has sub mounts this will return busy
1332  * regardless of whether the sub mounts are busy.
1333  *
1334  * Doesn't take quota and stuff into account. IOW, in some cases it will
1335  * give false negatives. The main reason why it's here is that we need
1336  * a non-destructive way to look for easily umountable filesystems.
1337  */
1338 int may_umount(struct vfsmount *mnt)
1339 {
1340 	int ret = 1;
1341 	down_read(&namespace_sem);
1342 	lock_mount_hash();
1343 	if (propagate_mount_busy(real_mount(mnt), 2))
1344 		ret = 0;
1345 	unlock_mount_hash();
1346 	up_read(&namespace_sem);
1347 	return ret;
1348 }
1349 
1350 EXPORT_SYMBOL(may_umount);
1351 
1352 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1353 
1354 static void namespace_unlock(void)
1355 {
1356 	struct hlist_head head;
1357 
1358 	hlist_move_list(&unmounted, &head);
1359 
1360 	up_write(&namespace_sem);
1361 
1362 	if (likely(hlist_empty(&head)))
1363 		return;
1364 
1365 	synchronize_rcu();
1366 
1367 	group_pin_kill(&head);
1368 }
1369 
1370 static inline void namespace_lock(void)
1371 {
1372 	down_write(&namespace_sem);
1373 }
1374 
1375 enum umount_tree_flags {
1376 	UMOUNT_SYNC = 1,
1377 	UMOUNT_PROPAGATE = 2,
1378 	UMOUNT_CONNECTED = 4,
1379 };
1380 
1381 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1382 {
1383 	/* Leaving mounts connected is only valid for lazy umounts */
1384 	if (how & UMOUNT_SYNC)
1385 		return true;
1386 
1387 	/* A mount without a parent has nothing to be connected to */
1388 	if (!mnt_has_parent(mnt))
1389 		return true;
1390 
1391 	/* Because the reference counting rules change when mounts are
1392 	 * unmounted and connected, umounted mounts may not be
1393 	 * connected to mounted mounts.
1394 	 */
1395 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1396 		return true;
1397 
1398 	/* Has it been requested that the mount remain connected? */
1399 	if (how & UMOUNT_CONNECTED)
1400 		return false;
1401 
1402 	/* Is the mount locked such that it needs to remain connected? */
1403 	if (IS_MNT_LOCKED(mnt))
1404 		return false;
1405 
1406 	/* By default disconnect the mount */
1407 	return true;
1408 }
1409 
1410 /*
1411  * mount_lock must be held
1412  * namespace_sem must be held for write
1413  */
1414 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1415 {
1416 	LIST_HEAD(tmp_list);
1417 	struct mount *p;
1418 
1419 	if (how & UMOUNT_PROPAGATE)
1420 		propagate_mount_unlock(mnt);
1421 
1422 	/* Gather the mounts to umount */
1423 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1424 		p->mnt.mnt_flags |= MNT_UMOUNT;
1425 		list_move(&p->mnt_list, &tmp_list);
1426 	}
1427 
1428 	/* Hide the mounts from mnt_mounts */
1429 	list_for_each_entry(p, &tmp_list, mnt_list) {
1430 		list_del_init(&p->mnt_child);
1431 	}
1432 
1433 	/* Add propogated mounts to the tmp_list */
1434 	if (how & UMOUNT_PROPAGATE)
1435 		propagate_umount(&tmp_list);
1436 
1437 	while (!list_empty(&tmp_list)) {
1438 		struct mnt_namespace *ns;
1439 		bool disconnect;
1440 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1441 		list_del_init(&p->mnt_expire);
1442 		list_del_init(&p->mnt_list);
1443 		ns = p->mnt_ns;
1444 		if (ns) {
1445 			ns->mounts--;
1446 			__touch_mnt_namespace(ns);
1447 		}
1448 		p->mnt_ns = NULL;
1449 		if (how & UMOUNT_SYNC)
1450 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1451 
1452 		disconnect = disconnect_mount(p, how);
1453 
1454 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1455 				 disconnect ? &unmounted : NULL);
1456 		if (mnt_has_parent(p)) {
1457 			mnt_add_count(p->mnt_parent, -1);
1458 			if (!disconnect) {
1459 				/* Don't forget about p */
1460 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1461 			} else {
1462 				umount_mnt(p);
1463 			}
1464 		}
1465 		change_mnt_propagation(p, MS_PRIVATE);
1466 	}
1467 }
1468 
1469 static void shrink_submounts(struct mount *mnt);
1470 
1471 static int do_umount(struct mount *mnt, int flags)
1472 {
1473 	struct super_block *sb = mnt->mnt.mnt_sb;
1474 	int retval;
1475 
1476 	retval = security_sb_umount(&mnt->mnt, flags);
1477 	if (retval)
1478 		return retval;
1479 
1480 	/*
1481 	 * Allow userspace to request a mountpoint be expired rather than
1482 	 * unmounting unconditionally. Unmount only happens if:
1483 	 *  (1) the mark is already set (the mark is cleared by mntput())
1484 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1485 	 */
1486 	if (flags & MNT_EXPIRE) {
1487 		if (&mnt->mnt == current->fs->root.mnt ||
1488 		    flags & (MNT_FORCE | MNT_DETACH))
1489 			return -EINVAL;
1490 
1491 		/*
1492 		 * probably don't strictly need the lock here if we examined
1493 		 * all race cases, but it's a slowpath.
1494 		 */
1495 		lock_mount_hash();
1496 		if (mnt_get_count(mnt) != 2) {
1497 			unlock_mount_hash();
1498 			return -EBUSY;
1499 		}
1500 		unlock_mount_hash();
1501 
1502 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1503 			return -EAGAIN;
1504 	}
1505 
1506 	/*
1507 	 * If we may have to abort operations to get out of this
1508 	 * mount, and they will themselves hold resources we must
1509 	 * allow the fs to do things. In the Unix tradition of
1510 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1511 	 * might fail to complete on the first run through as other tasks
1512 	 * must return, and the like. Thats for the mount program to worry
1513 	 * about for the moment.
1514 	 */
1515 
1516 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1517 		sb->s_op->umount_begin(sb);
1518 	}
1519 
1520 	/*
1521 	 * No sense to grab the lock for this test, but test itself looks
1522 	 * somewhat bogus. Suggestions for better replacement?
1523 	 * Ho-hum... In principle, we might treat that as umount + switch
1524 	 * to rootfs. GC would eventually take care of the old vfsmount.
1525 	 * Actually it makes sense, especially if rootfs would contain a
1526 	 * /reboot - static binary that would close all descriptors and
1527 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1528 	 */
1529 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1530 		/*
1531 		 * Special case for "unmounting" root ...
1532 		 * we just try to remount it readonly.
1533 		 */
1534 		if (!capable(CAP_SYS_ADMIN))
1535 			return -EPERM;
1536 		down_write(&sb->s_umount);
1537 		if (!(sb->s_flags & MS_RDONLY))
1538 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1539 		up_write(&sb->s_umount);
1540 		return retval;
1541 	}
1542 
1543 	namespace_lock();
1544 	lock_mount_hash();
1545 	event++;
1546 
1547 	if (flags & MNT_DETACH) {
1548 		if (!list_empty(&mnt->mnt_list))
1549 			umount_tree(mnt, UMOUNT_PROPAGATE);
1550 		retval = 0;
1551 	} else {
1552 		shrink_submounts(mnt);
1553 		retval = -EBUSY;
1554 		if (!propagate_mount_busy(mnt, 2)) {
1555 			if (!list_empty(&mnt->mnt_list))
1556 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1557 			retval = 0;
1558 		}
1559 	}
1560 	unlock_mount_hash();
1561 	namespace_unlock();
1562 	return retval;
1563 }
1564 
1565 /*
1566  * __detach_mounts - lazily unmount all mounts on the specified dentry
1567  *
1568  * During unlink, rmdir, and d_drop it is possible to loose the path
1569  * to an existing mountpoint, and wind up leaking the mount.
1570  * detach_mounts allows lazily unmounting those mounts instead of
1571  * leaking them.
1572  *
1573  * The caller may hold dentry->d_inode->i_mutex.
1574  */
1575 void __detach_mounts(struct dentry *dentry)
1576 {
1577 	struct mountpoint *mp;
1578 	struct mount *mnt;
1579 
1580 	namespace_lock();
1581 	lock_mount_hash();
1582 	mp = lookup_mountpoint(dentry);
1583 	if (IS_ERR_OR_NULL(mp))
1584 		goto out_unlock;
1585 
1586 	event++;
1587 	while (!hlist_empty(&mp->m_list)) {
1588 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1589 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1590 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1591 			umount_mnt(mnt);
1592 		}
1593 		else umount_tree(mnt, UMOUNT_CONNECTED);
1594 	}
1595 	put_mountpoint(mp);
1596 out_unlock:
1597 	unlock_mount_hash();
1598 	namespace_unlock();
1599 }
1600 
1601 /*
1602  * Is the caller allowed to modify his namespace?
1603  */
1604 static inline bool may_mount(void)
1605 {
1606 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1607 }
1608 
1609 static inline bool may_mandlock(void)
1610 {
1611 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1612 	return false;
1613 #endif
1614 	return capable(CAP_SYS_ADMIN);
1615 }
1616 
1617 /*
1618  * Now umount can handle mount points as well as block devices.
1619  * This is important for filesystems which use unnamed block devices.
1620  *
1621  * We now support a flag for forced unmount like the other 'big iron'
1622  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1623  */
1624 
1625 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1626 {
1627 	struct path path;
1628 	struct mount *mnt;
1629 	int retval;
1630 	int lookup_flags = 0;
1631 
1632 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1633 		return -EINVAL;
1634 
1635 	if (!may_mount())
1636 		return -EPERM;
1637 
1638 	if (!(flags & UMOUNT_NOFOLLOW))
1639 		lookup_flags |= LOOKUP_FOLLOW;
1640 
1641 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1642 	if (retval)
1643 		goto out;
1644 	mnt = real_mount(path.mnt);
1645 	retval = -EINVAL;
1646 	if (path.dentry != path.mnt->mnt_root)
1647 		goto dput_and_out;
1648 	if (!check_mnt(mnt))
1649 		goto dput_and_out;
1650 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1651 		goto dput_and_out;
1652 	retval = -EPERM;
1653 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1654 		goto dput_and_out;
1655 
1656 	retval = do_umount(mnt, flags);
1657 dput_and_out:
1658 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1659 	dput(path.dentry);
1660 	mntput_no_expire(mnt);
1661 out:
1662 	return retval;
1663 }
1664 
1665 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1666 
1667 /*
1668  *	The 2.0 compatible umount. No flags.
1669  */
1670 SYSCALL_DEFINE1(oldumount, char __user *, name)
1671 {
1672 	return sys_umount(name, 0);
1673 }
1674 
1675 #endif
1676 
1677 static bool is_mnt_ns_file(struct dentry *dentry)
1678 {
1679 	/* Is this a proxy for a mount namespace? */
1680 	return dentry->d_op == &ns_dentry_operations &&
1681 	       dentry->d_fsdata == &mntns_operations;
1682 }
1683 
1684 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1685 {
1686 	return container_of(ns, struct mnt_namespace, ns);
1687 }
1688 
1689 static bool mnt_ns_loop(struct dentry *dentry)
1690 {
1691 	/* Could bind mounting the mount namespace inode cause a
1692 	 * mount namespace loop?
1693 	 */
1694 	struct mnt_namespace *mnt_ns;
1695 	if (!is_mnt_ns_file(dentry))
1696 		return false;
1697 
1698 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1699 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1700 }
1701 
1702 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1703 					int flag)
1704 {
1705 	struct mount *res, *p, *q, *r, *parent;
1706 
1707 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1708 		return ERR_PTR(-EINVAL);
1709 
1710 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1711 		return ERR_PTR(-EINVAL);
1712 
1713 	res = q = clone_mnt(mnt, dentry, flag);
1714 	if (IS_ERR(q))
1715 		return q;
1716 
1717 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1718 
1719 	p = mnt;
1720 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1721 		struct mount *s;
1722 		if (!is_subdir(r->mnt_mountpoint, dentry))
1723 			continue;
1724 
1725 		for (s = r; s; s = next_mnt(s, r)) {
1726 			if (!(flag & CL_COPY_UNBINDABLE) &&
1727 			    IS_MNT_UNBINDABLE(s)) {
1728 				s = skip_mnt_tree(s);
1729 				continue;
1730 			}
1731 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1732 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1733 				s = skip_mnt_tree(s);
1734 				continue;
1735 			}
1736 			while (p != s->mnt_parent) {
1737 				p = p->mnt_parent;
1738 				q = q->mnt_parent;
1739 			}
1740 			p = s;
1741 			parent = q;
1742 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1743 			if (IS_ERR(q))
1744 				goto out;
1745 			lock_mount_hash();
1746 			list_add_tail(&q->mnt_list, &res->mnt_list);
1747 			attach_mnt(q, parent, p->mnt_mp);
1748 			unlock_mount_hash();
1749 		}
1750 	}
1751 	return res;
1752 out:
1753 	if (res) {
1754 		lock_mount_hash();
1755 		umount_tree(res, UMOUNT_SYNC);
1756 		unlock_mount_hash();
1757 	}
1758 	return q;
1759 }
1760 
1761 /* Caller should check returned pointer for errors */
1762 
1763 struct vfsmount *collect_mounts(const struct path *path)
1764 {
1765 	struct mount *tree;
1766 	namespace_lock();
1767 	if (!check_mnt(real_mount(path->mnt)))
1768 		tree = ERR_PTR(-EINVAL);
1769 	else
1770 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1771 				 CL_COPY_ALL | CL_PRIVATE);
1772 	namespace_unlock();
1773 	if (IS_ERR(tree))
1774 		return ERR_CAST(tree);
1775 	return &tree->mnt;
1776 }
1777 
1778 void drop_collected_mounts(struct vfsmount *mnt)
1779 {
1780 	namespace_lock();
1781 	lock_mount_hash();
1782 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1783 	unlock_mount_hash();
1784 	namespace_unlock();
1785 }
1786 
1787 /**
1788  * clone_private_mount - create a private clone of a path
1789  *
1790  * This creates a new vfsmount, which will be the clone of @path.  The new will
1791  * not be attached anywhere in the namespace and will be private (i.e. changes
1792  * to the originating mount won't be propagated into this).
1793  *
1794  * Release with mntput().
1795  */
1796 struct vfsmount *clone_private_mount(const struct path *path)
1797 {
1798 	struct mount *old_mnt = real_mount(path->mnt);
1799 	struct mount *new_mnt;
1800 
1801 	if (IS_MNT_UNBINDABLE(old_mnt))
1802 		return ERR_PTR(-EINVAL);
1803 
1804 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1805 	if (IS_ERR(new_mnt))
1806 		return ERR_CAST(new_mnt);
1807 
1808 	return &new_mnt->mnt;
1809 }
1810 EXPORT_SYMBOL_GPL(clone_private_mount);
1811 
1812 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1813 		   struct vfsmount *root)
1814 {
1815 	struct mount *mnt;
1816 	int res = f(root, arg);
1817 	if (res)
1818 		return res;
1819 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1820 		res = f(&mnt->mnt, arg);
1821 		if (res)
1822 			return res;
1823 	}
1824 	return 0;
1825 }
1826 
1827 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1828 {
1829 	struct mount *p;
1830 
1831 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1832 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1833 			mnt_release_group_id(p);
1834 	}
1835 }
1836 
1837 static int invent_group_ids(struct mount *mnt, bool recurse)
1838 {
1839 	struct mount *p;
1840 
1841 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1842 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1843 			int err = mnt_alloc_group_id(p);
1844 			if (err) {
1845 				cleanup_group_ids(mnt, p);
1846 				return err;
1847 			}
1848 		}
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1855 {
1856 	unsigned int max = READ_ONCE(sysctl_mount_max);
1857 	unsigned int mounts = 0, old, pending, sum;
1858 	struct mount *p;
1859 
1860 	for (p = mnt; p; p = next_mnt(p, mnt))
1861 		mounts++;
1862 
1863 	old = ns->mounts;
1864 	pending = ns->pending_mounts;
1865 	sum = old + pending;
1866 	if ((old > sum) ||
1867 	    (pending > sum) ||
1868 	    (max < sum) ||
1869 	    (mounts > (max - sum)))
1870 		return -ENOSPC;
1871 
1872 	ns->pending_mounts = pending + mounts;
1873 	return 0;
1874 }
1875 
1876 /*
1877  *  @source_mnt : mount tree to be attached
1878  *  @nd         : place the mount tree @source_mnt is attached
1879  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1880  *  		   store the parent mount and mountpoint dentry.
1881  *  		   (done when source_mnt is moved)
1882  *
1883  *  NOTE: in the table below explains the semantics when a source mount
1884  *  of a given type is attached to a destination mount of a given type.
1885  * ---------------------------------------------------------------------------
1886  * |         BIND MOUNT OPERATION                                            |
1887  * |**************************************************************************
1888  * | source-->| shared        |       private  |       slave    | unbindable |
1889  * | dest     |               |                |                |            |
1890  * |   |      |               |                |                |            |
1891  * |   v      |               |                |                |            |
1892  * |**************************************************************************
1893  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1894  * |          |               |                |                |            |
1895  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1896  * ***************************************************************************
1897  * A bind operation clones the source mount and mounts the clone on the
1898  * destination mount.
1899  *
1900  * (++)  the cloned mount is propagated to all the mounts in the propagation
1901  * 	 tree of the destination mount and the cloned mount is added to
1902  * 	 the peer group of the source mount.
1903  * (+)   the cloned mount is created under the destination mount and is marked
1904  *       as shared. The cloned mount is added to the peer group of the source
1905  *       mount.
1906  * (+++) the mount is propagated to all the mounts in the propagation tree
1907  *       of the destination mount and the cloned mount is made slave
1908  *       of the same master as that of the source mount. The cloned mount
1909  *       is marked as 'shared and slave'.
1910  * (*)   the cloned mount is made a slave of the same master as that of the
1911  * 	 source mount.
1912  *
1913  * ---------------------------------------------------------------------------
1914  * |         		MOVE MOUNT OPERATION                                 |
1915  * |**************************************************************************
1916  * | source-->| shared        |       private  |       slave    | unbindable |
1917  * | dest     |               |                |                |            |
1918  * |   |      |               |                |                |            |
1919  * |   v      |               |                |                |            |
1920  * |**************************************************************************
1921  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1922  * |          |               |                |                |            |
1923  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1924  * ***************************************************************************
1925  *
1926  * (+)  the mount is moved to the destination. And is then propagated to
1927  * 	all the mounts in the propagation tree of the destination mount.
1928  * (+*)  the mount is moved to the destination.
1929  * (+++)  the mount is moved to the destination and is then propagated to
1930  * 	all the mounts belonging to the destination mount's propagation tree.
1931  * 	the mount is marked as 'shared and slave'.
1932  * (*)	the mount continues to be a slave at the new location.
1933  *
1934  * if the source mount is a tree, the operations explained above is
1935  * applied to each mount in the tree.
1936  * Must be called without spinlocks held, since this function can sleep
1937  * in allocations.
1938  */
1939 static int attach_recursive_mnt(struct mount *source_mnt,
1940 			struct mount *dest_mnt,
1941 			struct mountpoint *dest_mp,
1942 			struct path *parent_path)
1943 {
1944 	HLIST_HEAD(tree_list);
1945 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1946 	struct mountpoint *smp;
1947 	struct mount *child, *p;
1948 	struct hlist_node *n;
1949 	int err;
1950 
1951 	/* Preallocate a mountpoint in case the new mounts need
1952 	 * to be tucked under other mounts.
1953 	 */
1954 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
1955 	if (IS_ERR(smp))
1956 		return PTR_ERR(smp);
1957 
1958 	/* Is there space to add these mounts to the mount namespace? */
1959 	if (!parent_path) {
1960 		err = count_mounts(ns, source_mnt);
1961 		if (err)
1962 			goto out;
1963 	}
1964 
1965 	if (IS_MNT_SHARED(dest_mnt)) {
1966 		err = invent_group_ids(source_mnt, true);
1967 		if (err)
1968 			goto out;
1969 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1970 		lock_mount_hash();
1971 		if (err)
1972 			goto out_cleanup_ids;
1973 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1974 			set_mnt_shared(p);
1975 	} else {
1976 		lock_mount_hash();
1977 	}
1978 	if (parent_path) {
1979 		detach_mnt(source_mnt, parent_path);
1980 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1981 		touch_mnt_namespace(source_mnt->mnt_ns);
1982 	} else {
1983 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1984 		commit_tree(source_mnt);
1985 	}
1986 
1987 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1988 		struct mount *q;
1989 		hlist_del_init(&child->mnt_hash);
1990 		q = __lookup_mnt(&child->mnt_parent->mnt,
1991 				 child->mnt_mountpoint);
1992 		if (q)
1993 			mnt_change_mountpoint(child, smp, q);
1994 		commit_tree(child);
1995 	}
1996 	put_mountpoint(smp);
1997 	unlock_mount_hash();
1998 
1999 	return 0;
2000 
2001  out_cleanup_ids:
2002 	while (!hlist_empty(&tree_list)) {
2003 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2004 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2005 		umount_tree(child, UMOUNT_SYNC);
2006 	}
2007 	unlock_mount_hash();
2008 	cleanup_group_ids(source_mnt, NULL);
2009  out:
2010 	ns->pending_mounts = 0;
2011 
2012 	read_seqlock_excl(&mount_lock);
2013 	put_mountpoint(smp);
2014 	read_sequnlock_excl(&mount_lock);
2015 
2016 	return err;
2017 }
2018 
2019 static struct mountpoint *lock_mount(struct path *path)
2020 {
2021 	struct vfsmount *mnt;
2022 	struct dentry *dentry = path->dentry;
2023 retry:
2024 	inode_lock(dentry->d_inode);
2025 	if (unlikely(cant_mount(dentry))) {
2026 		inode_unlock(dentry->d_inode);
2027 		return ERR_PTR(-ENOENT);
2028 	}
2029 	namespace_lock();
2030 	mnt = lookup_mnt(path);
2031 	if (likely(!mnt)) {
2032 		struct mountpoint *mp = get_mountpoint(dentry);
2033 		if (IS_ERR(mp)) {
2034 			namespace_unlock();
2035 			inode_unlock(dentry->d_inode);
2036 			return mp;
2037 		}
2038 		return mp;
2039 	}
2040 	namespace_unlock();
2041 	inode_unlock(path->dentry->d_inode);
2042 	path_put(path);
2043 	path->mnt = mnt;
2044 	dentry = path->dentry = dget(mnt->mnt_root);
2045 	goto retry;
2046 }
2047 
2048 static void unlock_mount(struct mountpoint *where)
2049 {
2050 	struct dentry *dentry = where->m_dentry;
2051 
2052 	read_seqlock_excl(&mount_lock);
2053 	put_mountpoint(where);
2054 	read_sequnlock_excl(&mount_lock);
2055 
2056 	namespace_unlock();
2057 	inode_unlock(dentry->d_inode);
2058 }
2059 
2060 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2061 {
2062 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2063 		return -EINVAL;
2064 
2065 	if (d_is_dir(mp->m_dentry) !=
2066 	      d_is_dir(mnt->mnt.mnt_root))
2067 		return -ENOTDIR;
2068 
2069 	return attach_recursive_mnt(mnt, p, mp, NULL);
2070 }
2071 
2072 /*
2073  * Sanity check the flags to change_mnt_propagation.
2074  */
2075 
2076 static int flags_to_propagation_type(int flags)
2077 {
2078 	int type = flags & ~(MS_REC | MS_SILENT);
2079 
2080 	/* Fail if any non-propagation flags are set */
2081 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2082 		return 0;
2083 	/* Only one propagation flag should be set */
2084 	if (!is_power_of_2(type))
2085 		return 0;
2086 	return type;
2087 }
2088 
2089 /*
2090  * recursively change the type of the mountpoint.
2091  */
2092 static int do_change_type(struct path *path, int flag)
2093 {
2094 	struct mount *m;
2095 	struct mount *mnt = real_mount(path->mnt);
2096 	int recurse = flag & MS_REC;
2097 	int type;
2098 	int err = 0;
2099 
2100 	if (path->dentry != path->mnt->mnt_root)
2101 		return -EINVAL;
2102 
2103 	type = flags_to_propagation_type(flag);
2104 	if (!type)
2105 		return -EINVAL;
2106 
2107 	namespace_lock();
2108 	if (type == MS_SHARED) {
2109 		err = invent_group_ids(mnt, recurse);
2110 		if (err)
2111 			goto out_unlock;
2112 	}
2113 
2114 	lock_mount_hash();
2115 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2116 		change_mnt_propagation(m, type);
2117 	unlock_mount_hash();
2118 
2119  out_unlock:
2120 	namespace_unlock();
2121 	return err;
2122 }
2123 
2124 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2125 {
2126 	struct mount *child;
2127 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2128 		if (!is_subdir(child->mnt_mountpoint, dentry))
2129 			continue;
2130 
2131 		if (child->mnt.mnt_flags & MNT_LOCKED)
2132 			return true;
2133 	}
2134 	return false;
2135 }
2136 
2137 /*
2138  * do loopback mount.
2139  */
2140 static int do_loopback(struct path *path, const char *old_name,
2141 				int recurse)
2142 {
2143 	struct path old_path;
2144 	struct mount *mnt = NULL, *old, *parent;
2145 	struct mountpoint *mp;
2146 	int err;
2147 	if (!old_name || !*old_name)
2148 		return -EINVAL;
2149 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2150 	if (err)
2151 		return err;
2152 
2153 	err = -EINVAL;
2154 	if (mnt_ns_loop(old_path.dentry))
2155 		goto out;
2156 
2157 	mp = lock_mount(path);
2158 	err = PTR_ERR(mp);
2159 	if (IS_ERR(mp))
2160 		goto out;
2161 
2162 	old = real_mount(old_path.mnt);
2163 	parent = real_mount(path->mnt);
2164 
2165 	err = -EINVAL;
2166 	if (IS_MNT_UNBINDABLE(old))
2167 		goto out2;
2168 
2169 	if (!check_mnt(parent))
2170 		goto out2;
2171 
2172 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2173 		goto out2;
2174 
2175 	if (!recurse && has_locked_children(old, old_path.dentry))
2176 		goto out2;
2177 
2178 	if (recurse)
2179 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2180 	else
2181 		mnt = clone_mnt(old, old_path.dentry, 0);
2182 
2183 	if (IS_ERR(mnt)) {
2184 		err = PTR_ERR(mnt);
2185 		goto out2;
2186 	}
2187 
2188 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2189 
2190 	err = graft_tree(mnt, parent, mp);
2191 	if (err) {
2192 		lock_mount_hash();
2193 		umount_tree(mnt, UMOUNT_SYNC);
2194 		unlock_mount_hash();
2195 	}
2196 out2:
2197 	unlock_mount(mp);
2198 out:
2199 	path_put(&old_path);
2200 	return err;
2201 }
2202 
2203 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2204 {
2205 	int error = 0;
2206 	int readonly_request = 0;
2207 
2208 	if (ms_flags & MS_RDONLY)
2209 		readonly_request = 1;
2210 	if (readonly_request == __mnt_is_readonly(mnt))
2211 		return 0;
2212 
2213 	if (readonly_request)
2214 		error = mnt_make_readonly(real_mount(mnt));
2215 	else
2216 		__mnt_unmake_readonly(real_mount(mnt));
2217 	return error;
2218 }
2219 
2220 /*
2221  * change filesystem flags. dir should be a physical root of filesystem.
2222  * If you've mounted a non-root directory somewhere and want to do remount
2223  * on it - tough luck.
2224  */
2225 static int do_remount(struct path *path, int flags, int mnt_flags,
2226 		      void *data)
2227 {
2228 	int err;
2229 	struct super_block *sb = path->mnt->mnt_sb;
2230 	struct mount *mnt = real_mount(path->mnt);
2231 
2232 	if (!check_mnt(mnt))
2233 		return -EINVAL;
2234 
2235 	if (path->dentry != path->mnt->mnt_root)
2236 		return -EINVAL;
2237 
2238 	/* Don't allow changing of locked mnt flags.
2239 	 *
2240 	 * No locks need to be held here while testing the various
2241 	 * MNT_LOCK flags because those flags can never be cleared
2242 	 * once they are set.
2243 	 */
2244 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2245 	    !(mnt_flags & MNT_READONLY)) {
2246 		return -EPERM;
2247 	}
2248 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2249 	    !(mnt_flags & MNT_NODEV)) {
2250 		return -EPERM;
2251 	}
2252 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2253 	    !(mnt_flags & MNT_NOSUID)) {
2254 		return -EPERM;
2255 	}
2256 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2257 	    !(mnt_flags & MNT_NOEXEC)) {
2258 		return -EPERM;
2259 	}
2260 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2261 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2262 		return -EPERM;
2263 	}
2264 
2265 	err = security_sb_remount(sb, data);
2266 	if (err)
2267 		return err;
2268 
2269 	down_write(&sb->s_umount);
2270 	if (flags & MS_BIND)
2271 		err = change_mount_flags(path->mnt, flags);
2272 	else if (!capable(CAP_SYS_ADMIN))
2273 		err = -EPERM;
2274 	else
2275 		err = do_remount_sb(sb, flags, data, 0);
2276 	if (!err) {
2277 		lock_mount_hash();
2278 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2279 		mnt->mnt.mnt_flags = mnt_flags;
2280 		touch_mnt_namespace(mnt->mnt_ns);
2281 		unlock_mount_hash();
2282 	}
2283 	up_write(&sb->s_umount);
2284 	return err;
2285 }
2286 
2287 static inline int tree_contains_unbindable(struct mount *mnt)
2288 {
2289 	struct mount *p;
2290 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2291 		if (IS_MNT_UNBINDABLE(p))
2292 			return 1;
2293 	}
2294 	return 0;
2295 }
2296 
2297 static int do_move_mount(struct path *path, const char *old_name)
2298 {
2299 	struct path old_path, parent_path;
2300 	struct mount *p;
2301 	struct mount *old;
2302 	struct mountpoint *mp;
2303 	int err;
2304 	if (!old_name || !*old_name)
2305 		return -EINVAL;
2306 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2307 	if (err)
2308 		return err;
2309 
2310 	mp = lock_mount(path);
2311 	err = PTR_ERR(mp);
2312 	if (IS_ERR(mp))
2313 		goto out;
2314 
2315 	old = real_mount(old_path.mnt);
2316 	p = real_mount(path->mnt);
2317 
2318 	err = -EINVAL;
2319 	if (!check_mnt(p) || !check_mnt(old))
2320 		goto out1;
2321 
2322 	if (old->mnt.mnt_flags & MNT_LOCKED)
2323 		goto out1;
2324 
2325 	err = -EINVAL;
2326 	if (old_path.dentry != old_path.mnt->mnt_root)
2327 		goto out1;
2328 
2329 	if (!mnt_has_parent(old))
2330 		goto out1;
2331 
2332 	if (d_is_dir(path->dentry) !=
2333 	      d_is_dir(old_path.dentry))
2334 		goto out1;
2335 	/*
2336 	 * Don't move a mount residing in a shared parent.
2337 	 */
2338 	if (IS_MNT_SHARED(old->mnt_parent))
2339 		goto out1;
2340 	/*
2341 	 * Don't move a mount tree containing unbindable mounts to a destination
2342 	 * mount which is shared.
2343 	 */
2344 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2345 		goto out1;
2346 	err = -ELOOP;
2347 	for (; mnt_has_parent(p); p = p->mnt_parent)
2348 		if (p == old)
2349 			goto out1;
2350 
2351 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2352 	if (err)
2353 		goto out1;
2354 
2355 	/* if the mount is moved, it should no longer be expire
2356 	 * automatically */
2357 	list_del_init(&old->mnt_expire);
2358 out1:
2359 	unlock_mount(mp);
2360 out:
2361 	if (!err)
2362 		path_put(&parent_path);
2363 	path_put(&old_path);
2364 	return err;
2365 }
2366 
2367 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2368 {
2369 	int err;
2370 	const char *subtype = strchr(fstype, '.');
2371 	if (subtype) {
2372 		subtype++;
2373 		err = -EINVAL;
2374 		if (!subtype[0])
2375 			goto err;
2376 	} else
2377 		subtype = "";
2378 
2379 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2380 	err = -ENOMEM;
2381 	if (!mnt->mnt_sb->s_subtype)
2382 		goto err;
2383 	return mnt;
2384 
2385  err:
2386 	mntput(mnt);
2387 	return ERR_PTR(err);
2388 }
2389 
2390 /*
2391  * add a mount into a namespace's mount tree
2392  */
2393 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2394 {
2395 	struct mountpoint *mp;
2396 	struct mount *parent;
2397 	int err;
2398 
2399 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2400 
2401 	mp = lock_mount(path);
2402 	if (IS_ERR(mp))
2403 		return PTR_ERR(mp);
2404 
2405 	parent = real_mount(path->mnt);
2406 	err = -EINVAL;
2407 	if (unlikely(!check_mnt(parent))) {
2408 		/* that's acceptable only for automounts done in private ns */
2409 		if (!(mnt_flags & MNT_SHRINKABLE))
2410 			goto unlock;
2411 		/* ... and for those we'd better have mountpoint still alive */
2412 		if (!parent->mnt_ns)
2413 			goto unlock;
2414 	}
2415 
2416 	/* Refuse the same filesystem on the same mount point */
2417 	err = -EBUSY;
2418 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2419 	    path->mnt->mnt_root == path->dentry)
2420 		goto unlock;
2421 
2422 	err = -EINVAL;
2423 	if (d_is_symlink(newmnt->mnt.mnt_root))
2424 		goto unlock;
2425 
2426 	newmnt->mnt.mnt_flags = mnt_flags;
2427 	err = graft_tree(newmnt, parent, mp);
2428 
2429 unlock:
2430 	unlock_mount(mp);
2431 	return err;
2432 }
2433 
2434 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2435 
2436 /*
2437  * create a new mount for userspace and request it to be added into the
2438  * namespace's tree
2439  */
2440 static int do_new_mount(struct path *path, const char *fstype, int flags,
2441 			int mnt_flags, const char *name, void *data)
2442 {
2443 	struct file_system_type *type;
2444 	struct vfsmount *mnt;
2445 	int err;
2446 
2447 	if (!fstype)
2448 		return -EINVAL;
2449 
2450 	type = get_fs_type(fstype);
2451 	if (!type)
2452 		return -ENODEV;
2453 
2454 	mnt = vfs_kern_mount(type, flags, name, data);
2455 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2456 	    !mnt->mnt_sb->s_subtype)
2457 		mnt = fs_set_subtype(mnt, fstype);
2458 
2459 	put_filesystem(type);
2460 	if (IS_ERR(mnt))
2461 		return PTR_ERR(mnt);
2462 
2463 	if (mount_too_revealing(mnt, &mnt_flags)) {
2464 		mntput(mnt);
2465 		return -EPERM;
2466 	}
2467 
2468 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2469 	if (err)
2470 		mntput(mnt);
2471 	return err;
2472 }
2473 
2474 int finish_automount(struct vfsmount *m, struct path *path)
2475 {
2476 	struct mount *mnt = real_mount(m);
2477 	int err;
2478 	/* The new mount record should have at least 2 refs to prevent it being
2479 	 * expired before we get a chance to add it
2480 	 */
2481 	BUG_ON(mnt_get_count(mnt) < 2);
2482 
2483 	if (m->mnt_sb == path->mnt->mnt_sb &&
2484 	    m->mnt_root == path->dentry) {
2485 		err = -ELOOP;
2486 		goto fail;
2487 	}
2488 
2489 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2490 	if (!err)
2491 		return 0;
2492 fail:
2493 	/* remove m from any expiration list it may be on */
2494 	if (!list_empty(&mnt->mnt_expire)) {
2495 		namespace_lock();
2496 		list_del_init(&mnt->mnt_expire);
2497 		namespace_unlock();
2498 	}
2499 	mntput(m);
2500 	mntput(m);
2501 	return err;
2502 }
2503 
2504 /**
2505  * mnt_set_expiry - Put a mount on an expiration list
2506  * @mnt: The mount to list.
2507  * @expiry_list: The list to add the mount to.
2508  */
2509 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2510 {
2511 	namespace_lock();
2512 
2513 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2514 
2515 	namespace_unlock();
2516 }
2517 EXPORT_SYMBOL(mnt_set_expiry);
2518 
2519 /*
2520  * process a list of expirable mountpoints with the intent of discarding any
2521  * mountpoints that aren't in use and haven't been touched since last we came
2522  * here
2523  */
2524 void mark_mounts_for_expiry(struct list_head *mounts)
2525 {
2526 	struct mount *mnt, *next;
2527 	LIST_HEAD(graveyard);
2528 
2529 	if (list_empty(mounts))
2530 		return;
2531 
2532 	namespace_lock();
2533 	lock_mount_hash();
2534 
2535 	/* extract from the expiration list every vfsmount that matches the
2536 	 * following criteria:
2537 	 * - only referenced by its parent vfsmount
2538 	 * - still marked for expiry (marked on the last call here; marks are
2539 	 *   cleared by mntput())
2540 	 */
2541 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2542 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2543 			propagate_mount_busy(mnt, 1))
2544 			continue;
2545 		list_move(&mnt->mnt_expire, &graveyard);
2546 	}
2547 	while (!list_empty(&graveyard)) {
2548 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2549 		touch_mnt_namespace(mnt->mnt_ns);
2550 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2551 	}
2552 	unlock_mount_hash();
2553 	namespace_unlock();
2554 }
2555 
2556 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2557 
2558 /*
2559  * Ripoff of 'select_parent()'
2560  *
2561  * search the list of submounts for a given mountpoint, and move any
2562  * shrinkable submounts to the 'graveyard' list.
2563  */
2564 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2565 {
2566 	struct mount *this_parent = parent;
2567 	struct list_head *next;
2568 	int found = 0;
2569 
2570 repeat:
2571 	next = this_parent->mnt_mounts.next;
2572 resume:
2573 	while (next != &this_parent->mnt_mounts) {
2574 		struct list_head *tmp = next;
2575 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2576 
2577 		next = tmp->next;
2578 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2579 			continue;
2580 		/*
2581 		 * Descend a level if the d_mounts list is non-empty.
2582 		 */
2583 		if (!list_empty(&mnt->mnt_mounts)) {
2584 			this_parent = mnt;
2585 			goto repeat;
2586 		}
2587 
2588 		if (!propagate_mount_busy(mnt, 1)) {
2589 			list_move_tail(&mnt->mnt_expire, graveyard);
2590 			found++;
2591 		}
2592 	}
2593 	/*
2594 	 * All done at this level ... ascend and resume the search
2595 	 */
2596 	if (this_parent != parent) {
2597 		next = this_parent->mnt_child.next;
2598 		this_parent = this_parent->mnt_parent;
2599 		goto resume;
2600 	}
2601 	return found;
2602 }
2603 
2604 /*
2605  * process a list of expirable mountpoints with the intent of discarding any
2606  * submounts of a specific parent mountpoint
2607  *
2608  * mount_lock must be held for write
2609  */
2610 static void shrink_submounts(struct mount *mnt)
2611 {
2612 	LIST_HEAD(graveyard);
2613 	struct mount *m;
2614 
2615 	/* extract submounts of 'mountpoint' from the expiration list */
2616 	while (select_submounts(mnt, &graveyard)) {
2617 		while (!list_empty(&graveyard)) {
2618 			m = list_first_entry(&graveyard, struct mount,
2619 						mnt_expire);
2620 			touch_mnt_namespace(m->mnt_ns);
2621 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2622 		}
2623 	}
2624 }
2625 
2626 /*
2627  * Some copy_from_user() implementations do not return the exact number of
2628  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2629  * Note that this function differs from copy_from_user() in that it will oops
2630  * on bad values of `to', rather than returning a short copy.
2631  */
2632 static long exact_copy_from_user(void *to, const void __user * from,
2633 				 unsigned long n)
2634 {
2635 	char *t = to;
2636 	const char __user *f = from;
2637 	char c;
2638 
2639 	if (!access_ok(VERIFY_READ, from, n))
2640 		return n;
2641 
2642 	while (n) {
2643 		if (__get_user(c, f)) {
2644 			memset(t, 0, n);
2645 			break;
2646 		}
2647 		*t++ = c;
2648 		f++;
2649 		n--;
2650 	}
2651 	return n;
2652 }
2653 
2654 void *copy_mount_options(const void __user * data)
2655 {
2656 	int i;
2657 	unsigned long size;
2658 	char *copy;
2659 
2660 	if (!data)
2661 		return NULL;
2662 
2663 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2664 	if (!copy)
2665 		return ERR_PTR(-ENOMEM);
2666 
2667 	/* We only care that *some* data at the address the user
2668 	 * gave us is valid.  Just in case, we'll zero
2669 	 * the remainder of the page.
2670 	 */
2671 	/* copy_from_user cannot cross TASK_SIZE ! */
2672 	size = TASK_SIZE - (unsigned long)data;
2673 	if (size > PAGE_SIZE)
2674 		size = PAGE_SIZE;
2675 
2676 	i = size - exact_copy_from_user(copy, data, size);
2677 	if (!i) {
2678 		kfree(copy);
2679 		return ERR_PTR(-EFAULT);
2680 	}
2681 	if (i != PAGE_SIZE)
2682 		memset(copy + i, 0, PAGE_SIZE - i);
2683 	return copy;
2684 }
2685 
2686 char *copy_mount_string(const void __user *data)
2687 {
2688 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2689 }
2690 
2691 /*
2692  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2693  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2694  *
2695  * data is a (void *) that can point to any structure up to
2696  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2697  * information (or be NULL).
2698  *
2699  * Pre-0.97 versions of mount() didn't have a flags word.
2700  * When the flags word was introduced its top half was required
2701  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2702  * Therefore, if this magic number is present, it carries no information
2703  * and must be discarded.
2704  */
2705 long do_mount(const char *dev_name, const char __user *dir_name,
2706 		const char *type_page, unsigned long flags, void *data_page)
2707 {
2708 	struct path path;
2709 	int retval = 0;
2710 	int mnt_flags = 0;
2711 
2712 	/* Discard magic */
2713 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2714 		flags &= ~MS_MGC_MSK;
2715 
2716 	/* Basic sanity checks */
2717 	if (data_page)
2718 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2719 
2720 	/* ... and get the mountpoint */
2721 	retval = user_path(dir_name, &path);
2722 	if (retval)
2723 		return retval;
2724 
2725 	retval = security_sb_mount(dev_name, &path,
2726 				   type_page, flags, data_page);
2727 	if (!retval && !may_mount())
2728 		retval = -EPERM;
2729 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2730 		retval = -EPERM;
2731 	if (retval)
2732 		goto dput_out;
2733 
2734 	/* Default to relatime unless overriden */
2735 	if (!(flags & MS_NOATIME))
2736 		mnt_flags |= MNT_RELATIME;
2737 
2738 	/* Separate the per-mountpoint flags */
2739 	if (flags & MS_NOSUID)
2740 		mnt_flags |= MNT_NOSUID;
2741 	if (flags & MS_NODEV)
2742 		mnt_flags |= MNT_NODEV;
2743 	if (flags & MS_NOEXEC)
2744 		mnt_flags |= MNT_NOEXEC;
2745 	if (flags & MS_NOATIME)
2746 		mnt_flags |= MNT_NOATIME;
2747 	if (flags & MS_NODIRATIME)
2748 		mnt_flags |= MNT_NODIRATIME;
2749 	if (flags & MS_STRICTATIME)
2750 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2751 	if (flags & MS_RDONLY)
2752 		mnt_flags |= MNT_READONLY;
2753 
2754 	/* The default atime for remount is preservation */
2755 	if ((flags & MS_REMOUNT) &&
2756 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2757 		       MS_STRICTATIME)) == 0)) {
2758 		mnt_flags &= ~MNT_ATIME_MASK;
2759 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2760 	}
2761 
2762 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2763 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2764 		   MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2765 
2766 	if (flags & MS_REMOUNT)
2767 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2768 				    data_page);
2769 	else if (flags & MS_BIND)
2770 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2771 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2772 		retval = do_change_type(&path, flags);
2773 	else if (flags & MS_MOVE)
2774 		retval = do_move_mount(&path, dev_name);
2775 	else
2776 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2777 				      dev_name, data_page);
2778 dput_out:
2779 	path_put(&path);
2780 	return retval;
2781 }
2782 
2783 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2784 {
2785 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2786 }
2787 
2788 static void dec_mnt_namespaces(struct ucounts *ucounts)
2789 {
2790 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2791 }
2792 
2793 static void free_mnt_ns(struct mnt_namespace *ns)
2794 {
2795 	ns_free_inum(&ns->ns);
2796 	dec_mnt_namespaces(ns->ucounts);
2797 	put_user_ns(ns->user_ns);
2798 	kfree(ns);
2799 }
2800 
2801 /*
2802  * Assign a sequence number so we can detect when we attempt to bind
2803  * mount a reference to an older mount namespace into the current
2804  * mount namespace, preventing reference counting loops.  A 64bit
2805  * number incrementing at 10Ghz will take 12,427 years to wrap which
2806  * is effectively never, so we can ignore the possibility.
2807  */
2808 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2809 
2810 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2811 {
2812 	struct mnt_namespace *new_ns;
2813 	struct ucounts *ucounts;
2814 	int ret;
2815 
2816 	ucounts = inc_mnt_namespaces(user_ns);
2817 	if (!ucounts)
2818 		return ERR_PTR(-ENOSPC);
2819 
2820 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2821 	if (!new_ns) {
2822 		dec_mnt_namespaces(ucounts);
2823 		return ERR_PTR(-ENOMEM);
2824 	}
2825 	ret = ns_alloc_inum(&new_ns->ns);
2826 	if (ret) {
2827 		kfree(new_ns);
2828 		dec_mnt_namespaces(ucounts);
2829 		return ERR_PTR(ret);
2830 	}
2831 	new_ns->ns.ops = &mntns_operations;
2832 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2833 	atomic_set(&new_ns->count, 1);
2834 	new_ns->root = NULL;
2835 	INIT_LIST_HEAD(&new_ns->list);
2836 	init_waitqueue_head(&new_ns->poll);
2837 	new_ns->event = 0;
2838 	new_ns->user_ns = get_user_ns(user_ns);
2839 	new_ns->ucounts = ucounts;
2840 	new_ns->mounts = 0;
2841 	new_ns->pending_mounts = 0;
2842 	return new_ns;
2843 }
2844 
2845 __latent_entropy
2846 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2847 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2848 {
2849 	struct mnt_namespace *new_ns;
2850 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2851 	struct mount *p, *q;
2852 	struct mount *old;
2853 	struct mount *new;
2854 	int copy_flags;
2855 
2856 	BUG_ON(!ns);
2857 
2858 	if (likely(!(flags & CLONE_NEWNS))) {
2859 		get_mnt_ns(ns);
2860 		return ns;
2861 	}
2862 
2863 	old = ns->root;
2864 
2865 	new_ns = alloc_mnt_ns(user_ns);
2866 	if (IS_ERR(new_ns))
2867 		return new_ns;
2868 
2869 	namespace_lock();
2870 	/* First pass: copy the tree topology */
2871 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2872 	if (user_ns != ns->user_ns)
2873 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2874 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2875 	if (IS_ERR(new)) {
2876 		namespace_unlock();
2877 		free_mnt_ns(new_ns);
2878 		return ERR_CAST(new);
2879 	}
2880 	new_ns->root = new;
2881 	list_add_tail(&new_ns->list, &new->mnt_list);
2882 
2883 	/*
2884 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2885 	 * as belonging to new namespace.  We have already acquired a private
2886 	 * fs_struct, so tsk->fs->lock is not needed.
2887 	 */
2888 	p = old;
2889 	q = new;
2890 	while (p) {
2891 		q->mnt_ns = new_ns;
2892 		new_ns->mounts++;
2893 		if (new_fs) {
2894 			if (&p->mnt == new_fs->root.mnt) {
2895 				new_fs->root.mnt = mntget(&q->mnt);
2896 				rootmnt = &p->mnt;
2897 			}
2898 			if (&p->mnt == new_fs->pwd.mnt) {
2899 				new_fs->pwd.mnt = mntget(&q->mnt);
2900 				pwdmnt = &p->mnt;
2901 			}
2902 		}
2903 		p = next_mnt(p, old);
2904 		q = next_mnt(q, new);
2905 		if (!q)
2906 			break;
2907 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2908 			p = next_mnt(p, old);
2909 	}
2910 	namespace_unlock();
2911 
2912 	if (rootmnt)
2913 		mntput(rootmnt);
2914 	if (pwdmnt)
2915 		mntput(pwdmnt);
2916 
2917 	return new_ns;
2918 }
2919 
2920 /**
2921  * create_mnt_ns - creates a private namespace and adds a root filesystem
2922  * @mnt: pointer to the new root filesystem mountpoint
2923  */
2924 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2925 {
2926 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2927 	if (!IS_ERR(new_ns)) {
2928 		struct mount *mnt = real_mount(m);
2929 		mnt->mnt_ns = new_ns;
2930 		new_ns->root = mnt;
2931 		new_ns->mounts++;
2932 		list_add(&mnt->mnt_list, &new_ns->list);
2933 	} else {
2934 		mntput(m);
2935 	}
2936 	return new_ns;
2937 }
2938 
2939 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2940 {
2941 	struct mnt_namespace *ns;
2942 	struct super_block *s;
2943 	struct path path;
2944 	int err;
2945 
2946 	ns = create_mnt_ns(mnt);
2947 	if (IS_ERR(ns))
2948 		return ERR_CAST(ns);
2949 
2950 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2951 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2952 
2953 	put_mnt_ns(ns);
2954 
2955 	if (err)
2956 		return ERR_PTR(err);
2957 
2958 	/* trade a vfsmount reference for active sb one */
2959 	s = path.mnt->mnt_sb;
2960 	atomic_inc(&s->s_active);
2961 	mntput(path.mnt);
2962 	/* lock the sucker */
2963 	down_write(&s->s_umount);
2964 	/* ... and return the root of (sub)tree on it */
2965 	return path.dentry;
2966 }
2967 EXPORT_SYMBOL(mount_subtree);
2968 
2969 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2970 		char __user *, type, unsigned long, flags, void __user *, data)
2971 {
2972 	int ret;
2973 	char *kernel_type;
2974 	char *kernel_dev;
2975 	void *options;
2976 
2977 	kernel_type = copy_mount_string(type);
2978 	ret = PTR_ERR(kernel_type);
2979 	if (IS_ERR(kernel_type))
2980 		goto out_type;
2981 
2982 	kernel_dev = copy_mount_string(dev_name);
2983 	ret = PTR_ERR(kernel_dev);
2984 	if (IS_ERR(kernel_dev))
2985 		goto out_dev;
2986 
2987 	options = copy_mount_options(data);
2988 	ret = PTR_ERR(options);
2989 	if (IS_ERR(options))
2990 		goto out_data;
2991 
2992 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2993 
2994 	kfree(options);
2995 out_data:
2996 	kfree(kernel_dev);
2997 out_dev:
2998 	kfree(kernel_type);
2999 out_type:
3000 	return ret;
3001 }
3002 
3003 /*
3004  * Return true if path is reachable from root
3005  *
3006  * namespace_sem or mount_lock is held
3007  */
3008 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3009 			 const struct path *root)
3010 {
3011 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3012 		dentry = mnt->mnt_mountpoint;
3013 		mnt = mnt->mnt_parent;
3014 	}
3015 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3016 }
3017 
3018 bool path_is_under(const struct path *path1, const struct path *path2)
3019 {
3020 	bool res;
3021 	read_seqlock_excl(&mount_lock);
3022 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3023 	read_sequnlock_excl(&mount_lock);
3024 	return res;
3025 }
3026 EXPORT_SYMBOL(path_is_under);
3027 
3028 /*
3029  * pivot_root Semantics:
3030  * Moves the root file system of the current process to the directory put_old,
3031  * makes new_root as the new root file system of the current process, and sets
3032  * root/cwd of all processes which had them on the current root to new_root.
3033  *
3034  * Restrictions:
3035  * The new_root and put_old must be directories, and  must not be on the
3036  * same file  system as the current process root. The put_old  must  be
3037  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3038  * pointed to by put_old must yield the same directory as new_root. No other
3039  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3040  *
3041  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3042  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3043  * in this situation.
3044  *
3045  * Notes:
3046  *  - we don't move root/cwd if they are not at the root (reason: if something
3047  *    cared enough to change them, it's probably wrong to force them elsewhere)
3048  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3049  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3050  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3051  *    first.
3052  */
3053 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3054 		const char __user *, put_old)
3055 {
3056 	struct path new, old, parent_path, root_parent, root;
3057 	struct mount *new_mnt, *root_mnt, *old_mnt;
3058 	struct mountpoint *old_mp, *root_mp;
3059 	int error;
3060 
3061 	if (!may_mount())
3062 		return -EPERM;
3063 
3064 	error = user_path_dir(new_root, &new);
3065 	if (error)
3066 		goto out0;
3067 
3068 	error = user_path_dir(put_old, &old);
3069 	if (error)
3070 		goto out1;
3071 
3072 	error = security_sb_pivotroot(&old, &new);
3073 	if (error)
3074 		goto out2;
3075 
3076 	get_fs_root(current->fs, &root);
3077 	old_mp = lock_mount(&old);
3078 	error = PTR_ERR(old_mp);
3079 	if (IS_ERR(old_mp))
3080 		goto out3;
3081 
3082 	error = -EINVAL;
3083 	new_mnt = real_mount(new.mnt);
3084 	root_mnt = real_mount(root.mnt);
3085 	old_mnt = real_mount(old.mnt);
3086 	if (IS_MNT_SHARED(old_mnt) ||
3087 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3088 		IS_MNT_SHARED(root_mnt->mnt_parent))
3089 		goto out4;
3090 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3091 		goto out4;
3092 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3093 		goto out4;
3094 	error = -ENOENT;
3095 	if (d_unlinked(new.dentry))
3096 		goto out4;
3097 	error = -EBUSY;
3098 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3099 		goto out4; /* loop, on the same file system  */
3100 	error = -EINVAL;
3101 	if (root.mnt->mnt_root != root.dentry)
3102 		goto out4; /* not a mountpoint */
3103 	if (!mnt_has_parent(root_mnt))
3104 		goto out4; /* not attached */
3105 	root_mp = root_mnt->mnt_mp;
3106 	if (new.mnt->mnt_root != new.dentry)
3107 		goto out4; /* not a mountpoint */
3108 	if (!mnt_has_parent(new_mnt))
3109 		goto out4; /* not attached */
3110 	/* make sure we can reach put_old from new_root */
3111 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3112 		goto out4;
3113 	/* make certain new is below the root */
3114 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3115 		goto out4;
3116 	root_mp->m_count++; /* pin it so it won't go away */
3117 	lock_mount_hash();
3118 	detach_mnt(new_mnt, &parent_path);
3119 	detach_mnt(root_mnt, &root_parent);
3120 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3121 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3122 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3123 	}
3124 	/* mount old root on put_old */
3125 	attach_mnt(root_mnt, old_mnt, old_mp);
3126 	/* mount new_root on / */
3127 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3128 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3129 	/* A moved mount should not expire automatically */
3130 	list_del_init(&new_mnt->mnt_expire);
3131 	put_mountpoint(root_mp);
3132 	unlock_mount_hash();
3133 	chroot_fs_refs(&root, &new);
3134 	error = 0;
3135 out4:
3136 	unlock_mount(old_mp);
3137 	if (!error) {
3138 		path_put(&root_parent);
3139 		path_put(&parent_path);
3140 	}
3141 out3:
3142 	path_put(&root);
3143 out2:
3144 	path_put(&old);
3145 out1:
3146 	path_put(&new);
3147 out0:
3148 	return error;
3149 }
3150 
3151 static void __init init_mount_tree(void)
3152 {
3153 	struct vfsmount *mnt;
3154 	struct mnt_namespace *ns;
3155 	struct path root;
3156 	struct file_system_type *type;
3157 
3158 	type = get_fs_type("rootfs");
3159 	if (!type)
3160 		panic("Can't find rootfs type");
3161 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3162 	put_filesystem(type);
3163 	if (IS_ERR(mnt))
3164 		panic("Can't create rootfs");
3165 
3166 	ns = create_mnt_ns(mnt);
3167 	if (IS_ERR(ns))
3168 		panic("Can't allocate initial namespace");
3169 
3170 	init_task.nsproxy->mnt_ns = ns;
3171 	get_mnt_ns(ns);
3172 
3173 	root.mnt = mnt;
3174 	root.dentry = mnt->mnt_root;
3175 	mnt->mnt_flags |= MNT_LOCKED;
3176 
3177 	set_fs_pwd(current->fs, &root);
3178 	set_fs_root(current->fs, &root);
3179 }
3180 
3181 void __init mnt_init(void)
3182 {
3183 	int err;
3184 
3185 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3186 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3187 
3188 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3189 				sizeof(struct hlist_head),
3190 				mhash_entries, 19,
3191 				HASH_ZERO,
3192 				&m_hash_shift, &m_hash_mask, 0, 0);
3193 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3194 				sizeof(struct hlist_head),
3195 				mphash_entries, 19,
3196 				HASH_ZERO,
3197 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3198 
3199 	if (!mount_hashtable || !mountpoint_hashtable)
3200 		panic("Failed to allocate mount hash table\n");
3201 
3202 	kernfs_init();
3203 
3204 	err = sysfs_init();
3205 	if (err)
3206 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3207 			__func__, err);
3208 	fs_kobj = kobject_create_and_add("fs", NULL);
3209 	if (!fs_kobj)
3210 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3211 	init_rootfs();
3212 	init_mount_tree();
3213 }
3214 
3215 void put_mnt_ns(struct mnt_namespace *ns)
3216 {
3217 	if (!atomic_dec_and_test(&ns->count))
3218 		return;
3219 	drop_collected_mounts(&ns->root->mnt);
3220 	free_mnt_ns(ns);
3221 }
3222 
3223 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3224 {
3225 	struct vfsmount *mnt;
3226 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3227 	if (!IS_ERR(mnt)) {
3228 		/*
3229 		 * it is a longterm mount, don't release mnt until
3230 		 * we unmount before file sys is unregistered
3231 		*/
3232 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3233 	}
3234 	return mnt;
3235 }
3236 EXPORT_SYMBOL_GPL(kern_mount_data);
3237 
3238 void kern_unmount(struct vfsmount *mnt)
3239 {
3240 	/* release long term mount so mount point can be released */
3241 	if (!IS_ERR_OR_NULL(mnt)) {
3242 		real_mount(mnt)->mnt_ns = NULL;
3243 		synchronize_rcu();	/* yecchhh... */
3244 		mntput(mnt);
3245 	}
3246 }
3247 EXPORT_SYMBOL(kern_unmount);
3248 
3249 bool our_mnt(struct vfsmount *mnt)
3250 {
3251 	return check_mnt(real_mount(mnt));
3252 }
3253 
3254 bool current_chrooted(void)
3255 {
3256 	/* Does the current process have a non-standard root */
3257 	struct path ns_root;
3258 	struct path fs_root;
3259 	bool chrooted;
3260 
3261 	/* Find the namespace root */
3262 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3263 	ns_root.dentry = ns_root.mnt->mnt_root;
3264 	path_get(&ns_root);
3265 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3266 		;
3267 
3268 	get_fs_root(current->fs, &fs_root);
3269 
3270 	chrooted = !path_equal(&fs_root, &ns_root);
3271 
3272 	path_put(&fs_root);
3273 	path_put(&ns_root);
3274 
3275 	return chrooted;
3276 }
3277 
3278 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3279 				int *new_mnt_flags)
3280 {
3281 	int new_flags = *new_mnt_flags;
3282 	struct mount *mnt;
3283 	bool visible = false;
3284 
3285 	down_read(&namespace_sem);
3286 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3287 		struct mount *child;
3288 		int mnt_flags;
3289 
3290 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3291 			continue;
3292 
3293 		/* This mount is not fully visible if it's root directory
3294 		 * is not the root directory of the filesystem.
3295 		 */
3296 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3297 			continue;
3298 
3299 		/* A local view of the mount flags */
3300 		mnt_flags = mnt->mnt.mnt_flags;
3301 
3302 		/* Don't miss readonly hidden in the superblock flags */
3303 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3304 			mnt_flags |= MNT_LOCK_READONLY;
3305 
3306 		/* Verify the mount flags are equal to or more permissive
3307 		 * than the proposed new mount.
3308 		 */
3309 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3310 		    !(new_flags & MNT_READONLY))
3311 			continue;
3312 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3313 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3314 			continue;
3315 
3316 		/* This mount is not fully visible if there are any
3317 		 * locked child mounts that cover anything except for
3318 		 * empty directories.
3319 		 */
3320 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3321 			struct inode *inode = child->mnt_mountpoint->d_inode;
3322 			/* Only worry about locked mounts */
3323 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3324 				continue;
3325 			/* Is the directory permanetly empty? */
3326 			if (!is_empty_dir_inode(inode))
3327 				goto next;
3328 		}
3329 		/* Preserve the locked attributes */
3330 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3331 					       MNT_LOCK_ATIME);
3332 		visible = true;
3333 		goto found;
3334 	next:	;
3335 	}
3336 found:
3337 	up_read(&namespace_sem);
3338 	return visible;
3339 }
3340 
3341 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3342 {
3343 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3344 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3345 	unsigned long s_iflags;
3346 
3347 	if (ns->user_ns == &init_user_ns)
3348 		return false;
3349 
3350 	/* Can this filesystem be too revealing? */
3351 	s_iflags = mnt->mnt_sb->s_iflags;
3352 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3353 		return false;
3354 
3355 	if ((s_iflags & required_iflags) != required_iflags) {
3356 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3357 			  required_iflags);
3358 		return true;
3359 	}
3360 
3361 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3362 }
3363 
3364 bool mnt_may_suid(struct vfsmount *mnt)
3365 {
3366 	/*
3367 	 * Foreign mounts (accessed via fchdir or through /proc
3368 	 * symlinks) are always treated as if they are nosuid.  This
3369 	 * prevents namespaces from trusting potentially unsafe
3370 	 * suid/sgid bits, file caps, or security labels that originate
3371 	 * in other namespaces.
3372 	 */
3373 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3374 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3375 }
3376 
3377 static struct ns_common *mntns_get(struct task_struct *task)
3378 {
3379 	struct ns_common *ns = NULL;
3380 	struct nsproxy *nsproxy;
3381 
3382 	task_lock(task);
3383 	nsproxy = task->nsproxy;
3384 	if (nsproxy) {
3385 		ns = &nsproxy->mnt_ns->ns;
3386 		get_mnt_ns(to_mnt_ns(ns));
3387 	}
3388 	task_unlock(task);
3389 
3390 	return ns;
3391 }
3392 
3393 static void mntns_put(struct ns_common *ns)
3394 {
3395 	put_mnt_ns(to_mnt_ns(ns));
3396 }
3397 
3398 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3399 {
3400 	struct fs_struct *fs = current->fs;
3401 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3402 	struct path root;
3403 	int err;
3404 
3405 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3406 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3407 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3408 		return -EPERM;
3409 
3410 	if (fs->users != 1)
3411 		return -EINVAL;
3412 
3413 	get_mnt_ns(mnt_ns);
3414 	old_mnt_ns = nsproxy->mnt_ns;
3415 	nsproxy->mnt_ns = mnt_ns;
3416 
3417 	/* Find the root */
3418 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3419 				"/", LOOKUP_DOWN, &root);
3420 	if (err) {
3421 		/* revert to old namespace */
3422 		nsproxy->mnt_ns = old_mnt_ns;
3423 		put_mnt_ns(mnt_ns);
3424 		return err;
3425 	}
3426 
3427 	put_mnt_ns(old_mnt_ns);
3428 
3429 	/* Update the pwd and root */
3430 	set_fs_pwd(fs, &root);
3431 	set_fs_root(fs, &root);
3432 
3433 	path_put(&root);
3434 	return 0;
3435 }
3436 
3437 static struct user_namespace *mntns_owner(struct ns_common *ns)
3438 {
3439 	return to_mnt_ns(ns)->user_ns;
3440 }
3441 
3442 const struct proc_ns_operations mntns_operations = {
3443 	.name		= "mnt",
3444 	.type		= CLONE_NEWNS,
3445 	.get		= mntns_get,
3446 	.put		= mntns_put,
3447 	.install	= mntns_install,
3448 	.owner		= mntns_owner,
3449 };
3450