1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 static DEFINE_SPINLOCK(mnt_id_lock); 65 static int mnt_id_start = 0; 66 static int mnt_group_start = 1; 67 68 static struct hlist_head *mount_hashtable __read_mostly; 69 static struct hlist_head *mountpoint_hashtable __read_mostly; 70 static struct kmem_cache *mnt_cache __read_mostly; 71 static DECLARE_RWSEM(namespace_sem); 72 73 /* /sys/fs */ 74 struct kobject *fs_kobj; 75 EXPORT_SYMBOL_GPL(fs_kobj); 76 77 /* 78 * vfsmount lock may be taken for read to prevent changes to the 79 * vfsmount hash, ie. during mountpoint lookups or walking back 80 * up the tree. 81 * 82 * It should be taken for write in all cases where the vfsmount 83 * tree or hash is modified or when a vfsmount structure is modified. 84 */ 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 86 87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 88 { 89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> m_hash_shift); 92 return &mount_hashtable[tmp & m_hash_mask]; 93 } 94 95 static inline struct hlist_head *mp_hash(struct dentry *dentry) 96 { 97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 98 tmp = tmp + (tmp >> mp_hash_shift); 99 return &mountpoint_hashtable[tmp & mp_hash_mask]; 100 } 101 102 static int mnt_alloc_id(struct mount *mnt) 103 { 104 int res; 105 106 retry: 107 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 108 spin_lock(&mnt_id_lock); 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 110 if (!res) 111 mnt_id_start = mnt->mnt_id + 1; 112 spin_unlock(&mnt_id_lock); 113 if (res == -EAGAIN) 114 goto retry; 115 116 return res; 117 } 118 119 static void mnt_free_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_id; 122 spin_lock(&mnt_id_lock); 123 ida_remove(&mnt_id_ida, id); 124 if (mnt_id_start > id) 125 mnt_id_start = id; 126 spin_unlock(&mnt_id_lock); 127 } 128 129 /* 130 * Allocate a new peer group ID 131 * 132 * mnt_group_ida is protected by namespace_sem 133 */ 134 static int mnt_alloc_group_id(struct mount *mnt) 135 { 136 int res; 137 138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 139 return -ENOMEM; 140 141 res = ida_get_new_above(&mnt_group_ida, 142 mnt_group_start, 143 &mnt->mnt_group_id); 144 if (!res) 145 mnt_group_start = mnt->mnt_group_id + 1; 146 147 return res; 148 } 149 150 /* 151 * Release a peer group ID 152 */ 153 void mnt_release_group_id(struct mount *mnt) 154 { 155 int id = mnt->mnt_group_id; 156 ida_remove(&mnt_group_ida, id); 157 if (mnt_group_start > id) 158 mnt_group_start = id; 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 unsigned int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 unsigned int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static void drop_mountpoint(struct fs_pin *p) 196 { 197 struct mount *m = container_of(p, struct mount, mnt_umount); 198 dput(m->mnt_ex_mountpoint); 199 pin_remove(p); 200 mntput(&m->mnt); 201 } 202 203 static struct mount *alloc_vfsmnt(const char *name) 204 { 205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 206 if (mnt) { 207 int err; 208 209 err = mnt_alloc_id(mnt); 210 if (err) 211 goto out_free_cache; 212 213 if (name) { 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 215 if (!mnt->mnt_devname) 216 goto out_free_id; 217 } 218 219 #ifdef CONFIG_SMP 220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 221 if (!mnt->mnt_pcp) 222 goto out_free_devname; 223 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 225 #else 226 mnt->mnt_count = 1; 227 mnt->mnt_writers = 0; 228 #endif 229 230 INIT_HLIST_NODE(&mnt->mnt_hash); 231 INIT_LIST_HEAD(&mnt->mnt_child); 232 INIT_LIST_HEAD(&mnt->mnt_mounts); 233 INIT_LIST_HEAD(&mnt->mnt_list); 234 INIT_LIST_HEAD(&mnt->mnt_expire); 235 INIT_LIST_HEAD(&mnt->mnt_share); 236 INIT_LIST_HEAD(&mnt->mnt_slave_list); 237 INIT_LIST_HEAD(&mnt->mnt_slave); 238 INIT_HLIST_NODE(&mnt->mnt_mp_list); 239 INIT_LIST_HEAD(&mnt->mnt_umounting); 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (mnt->mnt_sb->s_flags & MS_RDONLY) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 */ 440 int mnt_want_write_file(struct file *file) 441 { 442 int ret; 443 444 sb_start_write(file->f_path.mnt->mnt_sb); 445 ret = __mnt_want_write_file(file); 446 if (ret) 447 sb_end_write(file->f_path.mnt->mnt_sb); 448 return ret; 449 } 450 EXPORT_SYMBOL_GPL(mnt_want_write_file); 451 452 /** 453 * __mnt_drop_write - give up write access to a mount 454 * @mnt: the mount on which to give up write access 455 * 456 * Tells the low-level filesystem that we are done 457 * performing writes to it. Must be matched with 458 * __mnt_want_write() call above. 459 */ 460 void __mnt_drop_write(struct vfsmount *mnt) 461 { 462 preempt_disable(); 463 mnt_dec_writers(real_mount(mnt)); 464 preempt_enable(); 465 } 466 467 /** 468 * mnt_drop_write - give up write access to a mount 469 * @mnt: the mount on which to give up write access 470 * 471 * Tells the low-level filesystem that we are done performing writes to it and 472 * also allows filesystem to be frozen again. Must be matched with 473 * mnt_want_write() call above. 474 */ 475 void mnt_drop_write(struct vfsmount *mnt) 476 { 477 __mnt_drop_write(mnt); 478 sb_end_write(mnt->mnt_sb); 479 } 480 EXPORT_SYMBOL_GPL(mnt_drop_write); 481 482 void __mnt_drop_write_file(struct file *file) 483 { 484 __mnt_drop_write(file->f_path.mnt); 485 } 486 487 void mnt_drop_write_file(struct file *file) 488 { 489 mnt_drop_write(file->f_path.mnt); 490 } 491 EXPORT_SYMBOL(mnt_drop_write_file); 492 493 static int mnt_make_readonly(struct mount *mnt) 494 { 495 int ret = 0; 496 497 lock_mount_hash(); 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 499 /* 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 501 * should be visible before we do. 502 */ 503 smp_mb(); 504 505 /* 506 * With writers on hold, if this value is zero, then there are 507 * definitely no active writers (although held writers may subsequently 508 * increment the count, they'll have to wait, and decrement it after 509 * seeing MNT_READONLY). 510 * 511 * It is OK to have counter incremented on one CPU and decremented on 512 * another: the sum will add up correctly. The danger would be when we 513 * sum up each counter, if we read a counter before it is incremented, 514 * but then read another CPU's count which it has been subsequently 515 * decremented from -- we would see more decrements than we should. 516 * MNT_WRITE_HOLD protects against this scenario, because 517 * mnt_want_write first increments count, then smp_mb, then spins on 518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 519 * we're counting up here. 520 */ 521 if (mnt_get_writers(mnt) > 0) 522 ret = -EBUSY; 523 else 524 mnt->mnt.mnt_flags |= MNT_READONLY; 525 /* 526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 527 * that become unheld will see MNT_READONLY. 528 */ 529 smp_wmb(); 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 531 unlock_mount_hash(); 532 return ret; 533 } 534 535 static void __mnt_unmake_readonly(struct mount *mnt) 536 { 537 lock_mount_hash(); 538 mnt->mnt.mnt_flags &= ~MNT_READONLY; 539 unlock_mount_hash(); 540 } 541 542 int sb_prepare_remount_readonly(struct super_block *sb) 543 { 544 struct mount *mnt; 545 int err = 0; 546 547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 548 if (atomic_long_read(&sb->s_remove_count)) 549 return -EBUSY; 550 551 lock_mount_hash(); 552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 555 smp_mb(); 556 if (mnt_get_writers(mnt) > 0) { 557 err = -EBUSY; 558 break; 559 } 560 } 561 } 562 if (!err && atomic_long_read(&sb->s_remove_count)) 563 err = -EBUSY; 564 565 if (!err) { 566 sb->s_readonly_remount = 1; 567 smp_wmb(); 568 } 569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 572 } 573 unlock_mount_hash(); 574 575 return err; 576 } 577 578 static void free_vfsmnt(struct mount *mnt) 579 { 580 kfree_const(mnt->mnt_devname); 581 #ifdef CONFIG_SMP 582 free_percpu(mnt->mnt_pcp); 583 #endif 584 kmem_cache_free(mnt_cache, mnt); 585 } 586 587 static void delayed_free_vfsmnt(struct rcu_head *head) 588 { 589 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 590 } 591 592 /* call under rcu_read_lock */ 593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 594 { 595 struct mount *mnt; 596 if (read_seqretry(&mount_lock, seq)) 597 return 1; 598 if (bastard == NULL) 599 return 0; 600 mnt = real_mount(bastard); 601 mnt_add_count(mnt, 1); 602 if (likely(!read_seqretry(&mount_lock, seq))) 603 return 0; 604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 605 mnt_add_count(mnt, -1); 606 return 1; 607 } 608 return -1; 609 } 610 611 /* call under rcu_read_lock */ 612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 613 { 614 int res = __legitimize_mnt(bastard, seq); 615 if (likely(!res)) 616 return true; 617 if (unlikely(res < 0)) { 618 rcu_read_unlock(); 619 mntput(bastard); 620 rcu_read_lock(); 621 } 622 return false; 623 } 624 625 /* 626 * find the first mount at @dentry on vfsmount @mnt. 627 * call under rcu_read_lock() 628 */ 629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 630 { 631 struct hlist_head *head = m_hash(mnt, dentry); 632 struct mount *p; 633 634 hlist_for_each_entry_rcu(p, head, mnt_hash) 635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 636 return p; 637 return NULL; 638 } 639 640 /* 641 * lookup_mnt - Return the first child mount mounted at path 642 * 643 * "First" means first mounted chronologically. If you create the 644 * following mounts: 645 * 646 * mount /dev/sda1 /mnt 647 * mount /dev/sda2 /mnt 648 * mount /dev/sda3 /mnt 649 * 650 * Then lookup_mnt() on the base /mnt dentry in the root mount will 651 * return successively the root dentry and vfsmount of /dev/sda1, then 652 * /dev/sda2, then /dev/sda3, then NULL. 653 * 654 * lookup_mnt takes a reference to the found vfsmount. 655 */ 656 struct vfsmount *lookup_mnt(const struct path *path) 657 { 658 struct mount *child_mnt; 659 struct vfsmount *m; 660 unsigned seq; 661 662 rcu_read_lock(); 663 do { 664 seq = read_seqbegin(&mount_lock); 665 child_mnt = __lookup_mnt(path->mnt, path->dentry); 666 m = child_mnt ? &child_mnt->mnt : NULL; 667 } while (!legitimize_mnt(m, seq)); 668 rcu_read_unlock(); 669 return m; 670 } 671 672 /* 673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 674 * current mount namespace. 675 * 676 * The common case is dentries are not mountpoints at all and that 677 * test is handled inline. For the slow case when we are actually 678 * dealing with a mountpoint of some kind, walk through all of the 679 * mounts in the current mount namespace and test to see if the dentry 680 * is a mountpoint. 681 * 682 * The mount_hashtable is not usable in the context because we 683 * need to identify all mounts that may be in the current mount 684 * namespace not just a mount that happens to have some specified 685 * parent mount. 686 */ 687 bool __is_local_mountpoint(struct dentry *dentry) 688 { 689 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 690 struct mount *mnt; 691 bool is_covered = false; 692 693 if (!d_mountpoint(dentry)) 694 goto out; 695 696 down_read(&namespace_sem); 697 list_for_each_entry(mnt, &ns->list, mnt_list) { 698 is_covered = (mnt->mnt_mountpoint == dentry); 699 if (is_covered) 700 break; 701 } 702 up_read(&namespace_sem); 703 out: 704 return is_covered; 705 } 706 707 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 708 { 709 struct hlist_head *chain = mp_hash(dentry); 710 struct mountpoint *mp; 711 712 hlist_for_each_entry(mp, chain, m_hash) { 713 if (mp->m_dentry == dentry) { 714 /* might be worth a WARN_ON() */ 715 if (d_unlinked(dentry)) 716 return ERR_PTR(-ENOENT); 717 mp->m_count++; 718 return mp; 719 } 720 } 721 return NULL; 722 } 723 724 static struct mountpoint *get_mountpoint(struct dentry *dentry) 725 { 726 struct mountpoint *mp, *new = NULL; 727 int ret; 728 729 if (d_mountpoint(dentry)) { 730 mountpoint: 731 read_seqlock_excl(&mount_lock); 732 mp = lookup_mountpoint(dentry); 733 read_sequnlock_excl(&mount_lock); 734 if (mp) 735 goto done; 736 } 737 738 if (!new) 739 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 740 if (!new) 741 return ERR_PTR(-ENOMEM); 742 743 744 /* Exactly one processes may set d_mounted */ 745 ret = d_set_mounted(dentry); 746 747 /* Someone else set d_mounted? */ 748 if (ret == -EBUSY) 749 goto mountpoint; 750 751 /* The dentry is not available as a mountpoint? */ 752 mp = ERR_PTR(ret); 753 if (ret) 754 goto done; 755 756 /* Add the new mountpoint to the hash table */ 757 read_seqlock_excl(&mount_lock); 758 new->m_dentry = dentry; 759 new->m_count = 1; 760 hlist_add_head(&new->m_hash, mp_hash(dentry)); 761 INIT_HLIST_HEAD(&new->m_list); 762 read_sequnlock_excl(&mount_lock); 763 764 mp = new; 765 new = NULL; 766 done: 767 kfree(new); 768 return mp; 769 } 770 771 static void put_mountpoint(struct mountpoint *mp) 772 { 773 if (!--mp->m_count) { 774 struct dentry *dentry = mp->m_dentry; 775 BUG_ON(!hlist_empty(&mp->m_list)); 776 spin_lock(&dentry->d_lock); 777 dentry->d_flags &= ~DCACHE_MOUNTED; 778 spin_unlock(&dentry->d_lock); 779 hlist_del(&mp->m_hash); 780 kfree(mp); 781 } 782 } 783 784 static inline int check_mnt(struct mount *mnt) 785 { 786 return mnt->mnt_ns == current->nsproxy->mnt_ns; 787 } 788 789 /* 790 * vfsmount lock must be held for write 791 */ 792 static void touch_mnt_namespace(struct mnt_namespace *ns) 793 { 794 if (ns) { 795 ns->event = ++event; 796 wake_up_interruptible(&ns->poll); 797 } 798 } 799 800 /* 801 * vfsmount lock must be held for write 802 */ 803 static void __touch_mnt_namespace(struct mnt_namespace *ns) 804 { 805 if (ns && ns->event != event) { 806 ns->event = event; 807 wake_up_interruptible(&ns->poll); 808 } 809 } 810 811 /* 812 * vfsmount lock must be held for write 813 */ 814 static void unhash_mnt(struct mount *mnt) 815 { 816 mnt->mnt_parent = mnt; 817 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 818 list_del_init(&mnt->mnt_child); 819 hlist_del_init_rcu(&mnt->mnt_hash); 820 hlist_del_init(&mnt->mnt_mp_list); 821 put_mountpoint(mnt->mnt_mp); 822 mnt->mnt_mp = NULL; 823 } 824 825 /* 826 * vfsmount lock must be held for write 827 */ 828 static void detach_mnt(struct mount *mnt, struct path *old_path) 829 { 830 old_path->dentry = mnt->mnt_mountpoint; 831 old_path->mnt = &mnt->mnt_parent->mnt; 832 unhash_mnt(mnt); 833 } 834 835 /* 836 * vfsmount lock must be held for write 837 */ 838 static void umount_mnt(struct mount *mnt) 839 { 840 /* old mountpoint will be dropped when we can do that */ 841 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 842 unhash_mnt(mnt); 843 } 844 845 /* 846 * vfsmount lock must be held for write 847 */ 848 void mnt_set_mountpoint(struct mount *mnt, 849 struct mountpoint *mp, 850 struct mount *child_mnt) 851 { 852 mp->m_count++; 853 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 854 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 855 child_mnt->mnt_parent = mnt; 856 child_mnt->mnt_mp = mp; 857 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 858 } 859 860 static void __attach_mnt(struct mount *mnt, struct mount *parent) 861 { 862 hlist_add_head_rcu(&mnt->mnt_hash, 863 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 864 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 865 } 866 867 /* 868 * vfsmount lock must be held for write 869 */ 870 static void attach_mnt(struct mount *mnt, 871 struct mount *parent, 872 struct mountpoint *mp) 873 { 874 mnt_set_mountpoint(parent, mp, mnt); 875 __attach_mnt(mnt, parent); 876 } 877 878 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 879 { 880 struct mountpoint *old_mp = mnt->mnt_mp; 881 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 882 struct mount *old_parent = mnt->mnt_parent; 883 884 list_del_init(&mnt->mnt_child); 885 hlist_del_init(&mnt->mnt_mp_list); 886 hlist_del_init_rcu(&mnt->mnt_hash); 887 888 attach_mnt(mnt, parent, mp); 889 890 put_mountpoint(old_mp); 891 892 /* 893 * Safely avoid even the suggestion this code might sleep or 894 * lock the mount hash by taking advantage of the knowledge that 895 * mnt_change_mountpoint will not release the final reference 896 * to a mountpoint. 897 * 898 * During mounting, the mount passed in as the parent mount will 899 * continue to use the old mountpoint and during unmounting, the 900 * old mountpoint will continue to exist until namespace_unlock, 901 * which happens well after mnt_change_mountpoint. 902 */ 903 spin_lock(&old_mountpoint->d_lock); 904 old_mountpoint->d_lockref.count--; 905 spin_unlock(&old_mountpoint->d_lock); 906 907 mnt_add_count(old_parent, -1); 908 } 909 910 /* 911 * vfsmount lock must be held for write 912 */ 913 static void commit_tree(struct mount *mnt) 914 { 915 struct mount *parent = mnt->mnt_parent; 916 struct mount *m; 917 LIST_HEAD(head); 918 struct mnt_namespace *n = parent->mnt_ns; 919 920 BUG_ON(parent == mnt); 921 922 list_add_tail(&head, &mnt->mnt_list); 923 list_for_each_entry(m, &head, mnt_list) 924 m->mnt_ns = n; 925 926 list_splice(&head, n->list.prev); 927 928 n->mounts += n->pending_mounts; 929 n->pending_mounts = 0; 930 931 __attach_mnt(mnt, parent); 932 touch_mnt_namespace(n); 933 } 934 935 static struct mount *next_mnt(struct mount *p, struct mount *root) 936 { 937 struct list_head *next = p->mnt_mounts.next; 938 if (next == &p->mnt_mounts) { 939 while (1) { 940 if (p == root) 941 return NULL; 942 next = p->mnt_child.next; 943 if (next != &p->mnt_parent->mnt_mounts) 944 break; 945 p = p->mnt_parent; 946 } 947 } 948 return list_entry(next, struct mount, mnt_child); 949 } 950 951 static struct mount *skip_mnt_tree(struct mount *p) 952 { 953 struct list_head *prev = p->mnt_mounts.prev; 954 while (prev != &p->mnt_mounts) { 955 p = list_entry(prev, struct mount, mnt_child); 956 prev = p->mnt_mounts.prev; 957 } 958 return p; 959 } 960 961 struct vfsmount * 962 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 963 { 964 struct mount *mnt; 965 struct dentry *root; 966 967 if (!type) 968 return ERR_PTR(-ENODEV); 969 970 mnt = alloc_vfsmnt(name); 971 if (!mnt) 972 return ERR_PTR(-ENOMEM); 973 974 if (flags & MS_KERNMOUNT) 975 mnt->mnt.mnt_flags = MNT_INTERNAL; 976 977 root = mount_fs(type, flags, name, data); 978 if (IS_ERR(root)) { 979 mnt_free_id(mnt); 980 free_vfsmnt(mnt); 981 return ERR_CAST(root); 982 } 983 984 mnt->mnt.mnt_root = root; 985 mnt->mnt.mnt_sb = root->d_sb; 986 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 987 mnt->mnt_parent = mnt; 988 lock_mount_hash(); 989 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 990 unlock_mount_hash(); 991 return &mnt->mnt; 992 } 993 EXPORT_SYMBOL_GPL(vfs_kern_mount); 994 995 struct vfsmount * 996 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 997 const char *name, void *data) 998 { 999 /* Until it is worked out how to pass the user namespace 1000 * through from the parent mount to the submount don't support 1001 * unprivileged mounts with submounts. 1002 */ 1003 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1004 return ERR_PTR(-EPERM); 1005 1006 return vfs_kern_mount(type, MS_SUBMOUNT, name, data); 1007 } 1008 EXPORT_SYMBOL_GPL(vfs_submount); 1009 1010 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1011 int flag) 1012 { 1013 struct super_block *sb = old->mnt.mnt_sb; 1014 struct mount *mnt; 1015 int err; 1016 1017 mnt = alloc_vfsmnt(old->mnt_devname); 1018 if (!mnt) 1019 return ERR_PTR(-ENOMEM); 1020 1021 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1022 mnt->mnt_group_id = 0; /* not a peer of original */ 1023 else 1024 mnt->mnt_group_id = old->mnt_group_id; 1025 1026 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1027 err = mnt_alloc_group_id(mnt); 1028 if (err) 1029 goto out_free; 1030 } 1031 1032 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 1033 /* Don't allow unprivileged users to change mount flags */ 1034 if (flag & CL_UNPRIVILEGED) { 1035 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1036 1037 if (mnt->mnt.mnt_flags & MNT_READONLY) 1038 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1039 1040 if (mnt->mnt.mnt_flags & MNT_NODEV) 1041 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1042 1043 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1045 1046 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1048 } 1049 1050 /* Don't allow unprivileged users to reveal what is under a mount */ 1051 if ((flag & CL_UNPRIVILEGED) && 1052 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1053 mnt->mnt.mnt_flags |= MNT_LOCKED; 1054 1055 atomic_inc(&sb->s_active); 1056 mnt->mnt.mnt_sb = sb; 1057 mnt->mnt.mnt_root = dget(root); 1058 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1059 mnt->mnt_parent = mnt; 1060 lock_mount_hash(); 1061 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1062 unlock_mount_hash(); 1063 1064 if ((flag & CL_SLAVE) || 1065 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1066 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1067 mnt->mnt_master = old; 1068 CLEAR_MNT_SHARED(mnt); 1069 } else if (!(flag & CL_PRIVATE)) { 1070 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1071 list_add(&mnt->mnt_share, &old->mnt_share); 1072 if (IS_MNT_SLAVE(old)) 1073 list_add(&mnt->mnt_slave, &old->mnt_slave); 1074 mnt->mnt_master = old->mnt_master; 1075 } else { 1076 CLEAR_MNT_SHARED(mnt); 1077 } 1078 if (flag & CL_MAKE_SHARED) 1079 set_mnt_shared(mnt); 1080 1081 /* stick the duplicate mount on the same expiry list 1082 * as the original if that was on one */ 1083 if (flag & CL_EXPIRE) { 1084 if (!list_empty(&old->mnt_expire)) 1085 list_add(&mnt->mnt_expire, &old->mnt_expire); 1086 } 1087 1088 return mnt; 1089 1090 out_free: 1091 mnt_free_id(mnt); 1092 free_vfsmnt(mnt); 1093 return ERR_PTR(err); 1094 } 1095 1096 static void cleanup_mnt(struct mount *mnt) 1097 { 1098 /* 1099 * This probably indicates that somebody messed 1100 * up a mnt_want/drop_write() pair. If this 1101 * happens, the filesystem was probably unable 1102 * to make r/w->r/o transitions. 1103 */ 1104 /* 1105 * The locking used to deal with mnt_count decrement provides barriers, 1106 * so mnt_get_writers() below is safe. 1107 */ 1108 WARN_ON(mnt_get_writers(mnt)); 1109 if (unlikely(mnt->mnt_pins.first)) 1110 mnt_pin_kill(mnt); 1111 fsnotify_vfsmount_delete(&mnt->mnt); 1112 dput(mnt->mnt.mnt_root); 1113 deactivate_super(mnt->mnt.mnt_sb); 1114 mnt_free_id(mnt); 1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1116 } 1117 1118 static void __cleanup_mnt(struct rcu_head *head) 1119 { 1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1121 } 1122 1123 static LLIST_HEAD(delayed_mntput_list); 1124 static void delayed_mntput(struct work_struct *unused) 1125 { 1126 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1127 struct llist_node *next; 1128 1129 for (; node; node = next) { 1130 next = llist_next(node); 1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1132 } 1133 } 1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1135 1136 static void mntput_no_expire(struct mount *mnt) 1137 { 1138 rcu_read_lock(); 1139 mnt_add_count(mnt, -1); 1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1141 rcu_read_unlock(); 1142 return; 1143 } 1144 lock_mount_hash(); 1145 if (mnt_get_count(mnt)) { 1146 rcu_read_unlock(); 1147 unlock_mount_hash(); 1148 return; 1149 } 1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1151 rcu_read_unlock(); 1152 unlock_mount_hash(); 1153 return; 1154 } 1155 mnt->mnt.mnt_flags |= MNT_DOOMED; 1156 rcu_read_unlock(); 1157 1158 list_del(&mnt->mnt_instance); 1159 1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1161 struct mount *p, *tmp; 1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1163 umount_mnt(p); 1164 } 1165 } 1166 unlock_mount_hash(); 1167 1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1169 struct task_struct *task = current; 1170 if (likely(!(task->flags & PF_KTHREAD))) { 1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1172 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1173 return; 1174 } 1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1176 schedule_delayed_work(&delayed_mntput_work, 1); 1177 return; 1178 } 1179 cleanup_mnt(mnt); 1180 } 1181 1182 void mntput(struct vfsmount *mnt) 1183 { 1184 if (mnt) { 1185 struct mount *m = real_mount(mnt); 1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1187 if (unlikely(m->mnt_expiry_mark)) 1188 m->mnt_expiry_mark = 0; 1189 mntput_no_expire(m); 1190 } 1191 } 1192 EXPORT_SYMBOL(mntput); 1193 1194 struct vfsmount *mntget(struct vfsmount *mnt) 1195 { 1196 if (mnt) 1197 mnt_add_count(real_mount(mnt), 1); 1198 return mnt; 1199 } 1200 EXPORT_SYMBOL(mntget); 1201 1202 /* path_is_mountpoint() - Check if path is a mount in the current 1203 * namespace. 1204 * 1205 * d_mountpoint() can only be used reliably to establish if a dentry is 1206 * not mounted in any namespace and that common case is handled inline. 1207 * d_mountpoint() isn't aware of the possibility there may be multiple 1208 * mounts using a given dentry in a different namespace. This function 1209 * checks if the passed in path is a mountpoint rather than the dentry 1210 * alone. 1211 */ 1212 bool path_is_mountpoint(const struct path *path) 1213 { 1214 unsigned seq; 1215 bool res; 1216 1217 if (!d_mountpoint(path->dentry)) 1218 return false; 1219 1220 rcu_read_lock(); 1221 do { 1222 seq = read_seqbegin(&mount_lock); 1223 res = __path_is_mountpoint(path); 1224 } while (read_seqretry(&mount_lock, seq)); 1225 rcu_read_unlock(); 1226 1227 return res; 1228 } 1229 EXPORT_SYMBOL(path_is_mountpoint); 1230 1231 struct vfsmount *mnt_clone_internal(const struct path *path) 1232 { 1233 struct mount *p; 1234 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1235 if (IS_ERR(p)) 1236 return ERR_CAST(p); 1237 p->mnt.mnt_flags |= MNT_INTERNAL; 1238 return &p->mnt; 1239 } 1240 1241 #ifdef CONFIG_PROC_FS 1242 /* iterator; we want it to have access to namespace_sem, thus here... */ 1243 static void *m_start(struct seq_file *m, loff_t *pos) 1244 { 1245 struct proc_mounts *p = m->private; 1246 1247 down_read(&namespace_sem); 1248 if (p->cached_event == p->ns->event) { 1249 void *v = p->cached_mount; 1250 if (*pos == p->cached_index) 1251 return v; 1252 if (*pos == p->cached_index + 1) { 1253 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1254 return p->cached_mount = v; 1255 } 1256 } 1257 1258 p->cached_event = p->ns->event; 1259 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1260 p->cached_index = *pos; 1261 return p->cached_mount; 1262 } 1263 1264 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1265 { 1266 struct proc_mounts *p = m->private; 1267 1268 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1269 p->cached_index = *pos; 1270 return p->cached_mount; 1271 } 1272 1273 static void m_stop(struct seq_file *m, void *v) 1274 { 1275 up_read(&namespace_sem); 1276 } 1277 1278 static int m_show(struct seq_file *m, void *v) 1279 { 1280 struct proc_mounts *p = m->private; 1281 struct mount *r = list_entry(v, struct mount, mnt_list); 1282 return p->show(m, &r->mnt); 1283 } 1284 1285 const struct seq_operations mounts_op = { 1286 .start = m_start, 1287 .next = m_next, 1288 .stop = m_stop, 1289 .show = m_show, 1290 }; 1291 #endif /* CONFIG_PROC_FS */ 1292 1293 /** 1294 * may_umount_tree - check if a mount tree is busy 1295 * @mnt: root of mount tree 1296 * 1297 * This is called to check if a tree of mounts has any 1298 * open files, pwds, chroots or sub mounts that are 1299 * busy. 1300 */ 1301 int may_umount_tree(struct vfsmount *m) 1302 { 1303 struct mount *mnt = real_mount(m); 1304 int actual_refs = 0; 1305 int minimum_refs = 0; 1306 struct mount *p; 1307 BUG_ON(!m); 1308 1309 /* write lock needed for mnt_get_count */ 1310 lock_mount_hash(); 1311 for (p = mnt; p; p = next_mnt(p, mnt)) { 1312 actual_refs += mnt_get_count(p); 1313 minimum_refs += 2; 1314 } 1315 unlock_mount_hash(); 1316 1317 if (actual_refs > minimum_refs) 1318 return 0; 1319 1320 return 1; 1321 } 1322 1323 EXPORT_SYMBOL(may_umount_tree); 1324 1325 /** 1326 * may_umount - check if a mount point is busy 1327 * @mnt: root of mount 1328 * 1329 * This is called to check if a mount point has any 1330 * open files, pwds, chroots or sub mounts. If the 1331 * mount has sub mounts this will return busy 1332 * regardless of whether the sub mounts are busy. 1333 * 1334 * Doesn't take quota and stuff into account. IOW, in some cases it will 1335 * give false negatives. The main reason why it's here is that we need 1336 * a non-destructive way to look for easily umountable filesystems. 1337 */ 1338 int may_umount(struct vfsmount *mnt) 1339 { 1340 int ret = 1; 1341 down_read(&namespace_sem); 1342 lock_mount_hash(); 1343 if (propagate_mount_busy(real_mount(mnt), 2)) 1344 ret = 0; 1345 unlock_mount_hash(); 1346 up_read(&namespace_sem); 1347 return ret; 1348 } 1349 1350 EXPORT_SYMBOL(may_umount); 1351 1352 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1353 1354 static void namespace_unlock(void) 1355 { 1356 struct hlist_head head; 1357 1358 hlist_move_list(&unmounted, &head); 1359 1360 up_write(&namespace_sem); 1361 1362 if (likely(hlist_empty(&head))) 1363 return; 1364 1365 synchronize_rcu(); 1366 1367 group_pin_kill(&head); 1368 } 1369 1370 static inline void namespace_lock(void) 1371 { 1372 down_write(&namespace_sem); 1373 } 1374 1375 enum umount_tree_flags { 1376 UMOUNT_SYNC = 1, 1377 UMOUNT_PROPAGATE = 2, 1378 UMOUNT_CONNECTED = 4, 1379 }; 1380 1381 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1382 { 1383 /* Leaving mounts connected is only valid for lazy umounts */ 1384 if (how & UMOUNT_SYNC) 1385 return true; 1386 1387 /* A mount without a parent has nothing to be connected to */ 1388 if (!mnt_has_parent(mnt)) 1389 return true; 1390 1391 /* Because the reference counting rules change when mounts are 1392 * unmounted and connected, umounted mounts may not be 1393 * connected to mounted mounts. 1394 */ 1395 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1396 return true; 1397 1398 /* Has it been requested that the mount remain connected? */ 1399 if (how & UMOUNT_CONNECTED) 1400 return false; 1401 1402 /* Is the mount locked such that it needs to remain connected? */ 1403 if (IS_MNT_LOCKED(mnt)) 1404 return false; 1405 1406 /* By default disconnect the mount */ 1407 return true; 1408 } 1409 1410 /* 1411 * mount_lock must be held 1412 * namespace_sem must be held for write 1413 */ 1414 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1415 { 1416 LIST_HEAD(tmp_list); 1417 struct mount *p; 1418 1419 if (how & UMOUNT_PROPAGATE) 1420 propagate_mount_unlock(mnt); 1421 1422 /* Gather the mounts to umount */ 1423 for (p = mnt; p; p = next_mnt(p, mnt)) { 1424 p->mnt.mnt_flags |= MNT_UMOUNT; 1425 list_move(&p->mnt_list, &tmp_list); 1426 } 1427 1428 /* Hide the mounts from mnt_mounts */ 1429 list_for_each_entry(p, &tmp_list, mnt_list) { 1430 list_del_init(&p->mnt_child); 1431 } 1432 1433 /* Add propogated mounts to the tmp_list */ 1434 if (how & UMOUNT_PROPAGATE) 1435 propagate_umount(&tmp_list); 1436 1437 while (!list_empty(&tmp_list)) { 1438 struct mnt_namespace *ns; 1439 bool disconnect; 1440 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1441 list_del_init(&p->mnt_expire); 1442 list_del_init(&p->mnt_list); 1443 ns = p->mnt_ns; 1444 if (ns) { 1445 ns->mounts--; 1446 __touch_mnt_namespace(ns); 1447 } 1448 p->mnt_ns = NULL; 1449 if (how & UMOUNT_SYNC) 1450 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1451 1452 disconnect = disconnect_mount(p, how); 1453 1454 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1455 disconnect ? &unmounted : NULL); 1456 if (mnt_has_parent(p)) { 1457 mnt_add_count(p->mnt_parent, -1); 1458 if (!disconnect) { 1459 /* Don't forget about p */ 1460 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1461 } else { 1462 umount_mnt(p); 1463 } 1464 } 1465 change_mnt_propagation(p, MS_PRIVATE); 1466 } 1467 } 1468 1469 static void shrink_submounts(struct mount *mnt); 1470 1471 static int do_umount(struct mount *mnt, int flags) 1472 { 1473 struct super_block *sb = mnt->mnt.mnt_sb; 1474 int retval; 1475 1476 retval = security_sb_umount(&mnt->mnt, flags); 1477 if (retval) 1478 return retval; 1479 1480 /* 1481 * Allow userspace to request a mountpoint be expired rather than 1482 * unmounting unconditionally. Unmount only happens if: 1483 * (1) the mark is already set (the mark is cleared by mntput()) 1484 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1485 */ 1486 if (flags & MNT_EXPIRE) { 1487 if (&mnt->mnt == current->fs->root.mnt || 1488 flags & (MNT_FORCE | MNT_DETACH)) 1489 return -EINVAL; 1490 1491 /* 1492 * probably don't strictly need the lock here if we examined 1493 * all race cases, but it's a slowpath. 1494 */ 1495 lock_mount_hash(); 1496 if (mnt_get_count(mnt) != 2) { 1497 unlock_mount_hash(); 1498 return -EBUSY; 1499 } 1500 unlock_mount_hash(); 1501 1502 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1503 return -EAGAIN; 1504 } 1505 1506 /* 1507 * If we may have to abort operations to get out of this 1508 * mount, and they will themselves hold resources we must 1509 * allow the fs to do things. In the Unix tradition of 1510 * 'Gee thats tricky lets do it in userspace' the umount_begin 1511 * might fail to complete on the first run through as other tasks 1512 * must return, and the like. Thats for the mount program to worry 1513 * about for the moment. 1514 */ 1515 1516 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1517 sb->s_op->umount_begin(sb); 1518 } 1519 1520 /* 1521 * No sense to grab the lock for this test, but test itself looks 1522 * somewhat bogus. Suggestions for better replacement? 1523 * Ho-hum... In principle, we might treat that as umount + switch 1524 * to rootfs. GC would eventually take care of the old vfsmount. 1525 * Actually it makes sense, especially if rootfs would contain a 1526 * /reboot - static binary that would close all descriptors and 1527 * call reboot(9). Then init(8) could umount root and exec /reboot. 1528 */ 1529 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1530 /* 1531 * Special case for "unmounting" root ... 1532 * we just try to remount it readonly. 1533 */ 1534 if (!capable(CAP_SYS_ADMIN)) 1535 return -EPERM; 1536 down_write(&sb->s_umount); 1537 if (!(sb->s_flags & MS_RDONLY)) 1538 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1539 up_write(&sb->s_umount); 1540 return retval; 1541 } 1542 1543 namespace_lock(); 1544 lock_mount_hash(); 1545 event++; 1546 1547 if (flags & MNT_DETACH) { 1548 if (!list_empty(&mnt->mnt_list)) 1549 umount_tree(mnt, UMOUNT_PROPAGATE); 1550 retval = 0; 1551 } else { 1552 shrink_submounts(mnt); 1553 retval = -EBUSY; 1554 if (!propagate_mount_busy(mnt, 2)) { 1555 if (!list_empty(&mnt->mnt_list)) 1556 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1557 retval = 0; 1558 } 1559 } 1560 unlock_mount_hash(); 1561 namespace_unlock(); 1562 return retval; 1563 } 1564 1565 /* 1566 * __detach_mounts - lazily unmount all mounts on the specified dentry 1567 * 1568 * During unlink, rmdir, and d_drop it is possible to loose the path 1569 * to an existing mountpoint, and wind up leaking the mount. 1570 * detach_mounts allows lazily unmounting those mounts instead of 1571 * leaking them. 1572 * 1573 * The caller may hold dentry->d_inode->i_mutex. 1574 */ 1575 void __detach_mounts(struct dentry *dentry) 1576 { 1577 struct mountpoint *mp; 1578 struct mount *mnt; 1579 1580 namespace_lock(); 1581 lock_mount_hash(); 1582 mp = lookup_mountpoint(dentry); 1583 if (IS_ERR_OR_NULL(mp)) 1584 goto out_unlock; 1585 1586 event++; 1587 while (!hlist_empty(&mp->m_list)) { 1588 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1589 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1590 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1591 umount_mnt(mnt); 1592 } 1593 else umount_tree(mnt, UMOUNT_CONNECTED); 1594 } 1595 put_mountpoint(mp); 1596 out_unlock: 1597 unlock_mount_hash(); 1598 namespace_unlock(); 1599 } 1600 1601 /* 1602 * Is the caller allowed to modify his namespace? 1603 */ 1604 static inline bool may_mount(void) 1605 { 1606 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1607 } 1608 1609 static inline bool may_mandlock(void) 1610 { 1611 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1612 return false; 1613 #endif 1614 return capable(CAP_SYS_ADMIN); 1615 } 1616 1617 /* 1618 * Now umount can handle mount points as well as block devices. 1619 * This is important for filesystems which use unnamed block devices. 1620 * 1621 * We now support a flag for forced unmount like the other 'big iron' 1622 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1623 */ 1624 1625 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1626 { 1627 struct path path; 1628 struct mount *mnt; 1629 int retval; 1630 int lookup_flags = 0; 1631 1632 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1633 return -EINVAL; 1634 1635 if (!may_mount()) 1636 return -EPERM; 1637 1638 if (!(flags & UMOUNT_NOFOLLOW)) 1639 lookup_flags |= LOOKUP_FOLLOW; 1640 1641 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1642 if (retval) 1643 goto out; 1644 mnt = real_mount(path.mnt); 1645 retval = -EINVAL; 1646 if (path.dentry != path.mnt->mnt_root) 1647 goto dput_and_out; 1648 if (!check_mnt(mnt)) 1649 goto dput_and_out; 1650 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1651 goto dput_and_out; 1652 retval = -EPERM; 1653 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1654 goto dput_and_out; 1655 1656 retval = do_umount(mnt, flags); 1657 dput_and_out: 1658 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1659 dput(path.dentry); 1660 mntput_no_expire(mnt); 1661 out: 1662 return retval; 1663 } 1664 1665 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1666 1667 /* 1668 * The 2.0 compatible umount. No flags. 1669 */ 1670 SYSCALL_DEFINE1(oldumount, char __user *, name) 1671 { 1672 return sys_umount(name, 0); 1673 } 1674 1675 #endif 1676 1677 static bool is_mnt_ns_file(struct dentry *dentry) 1678 { 1679 /* Is this a proxy for a mount namespace? */ 1680 return dentry->d_op == &ns_dentry_operations && 1681 dentry->d_fsdata == &mntns_operations; 1682 } 1683 1684 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1685 { 1686 return container_of(ns, struct mnt_namespace, ns); 1687 } 1688 1689 static bool mnt_ns_loop(struct dentry *dentry) 1690 { 1691 /* Could bind mounting the mount namespace inode cause a 1692 * mount namespace loop? 1693 */ 1694 struct mnt_namespace *mnt_ns; 1695 if (!is_mnt_ns_file(dentry)) 1696 return false; 1697 1698 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1699 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1700 } 1701 1702 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1703 int flag) 1704 { 1705 struct mount *res, *p, *q, *r, *parent; 1706 1707 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1708 return ERR_PTR(-EINVAL); 1709 1710 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1711 return ERR_PTR(-EINVAL); 1712 1713 res = q = clone_mnt(mnt, dentry, flag); 1714 if (IS_ERR(q)) 1715 return q; 1716 1717 q->mnt_mountpoint = mnt->mnt_mountpoint; 1718 1719 p = mnt; 1720 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1721 struct mount *s; 1722 if (!is_subdir(r->mnt_mountpoint, dentry)) 1723 continue; 1724 1725 for (s = r; s; s = next_mnt(s, r)) { 1726 if (!(flag & CL_COPY_UNBINDABLE) && 1727 IS_MNT_UNBINDABLE(s)) { 1728 s = skip_mnt_tree(s); 1729 continue; 1730 } 1731 if (!(flag & CL_COPY_MNT_NS_FILE) && 1732 is_mnt_ns_file(s->mnt.mnt_root)) { 1733 s = skip_mnt_tree(s); 1734 continue; 1735 } 1736 while (p != s->mnt_parent) { 1737 p = p->mnt_parent; 1738 q = q->mnt_parent; 1739 } 1740 p = s; 1741 parent = q; 1742 q = clone_mnt(p, p->mnt.mnt_root, flag); 1743 if (IS_ERR(q)) 1744 goto out; 1745 lock_mount_hash(); 1746 list_add_tail(&q->mnt_list, &res->mnt_list); 1747 attach_mnt(q, parent, p->mnt_mp); 1748 unlock_mount_hash(); 1749 } 1750 } 1751 return res; 1752 out: 1753 if (res) { 1754 lock_mount_hash(); 1755 umount_tree(res, UMOUNT_SYNC); 1756 unlock_mount_hash(); 1757 } 1758 return q; 1759 } 1760 1761 /* Caller should check returned pointer for errors */ 1762 1763 struct vfsmount *collect_mounts(const struct path *path) 1764 { 1765 struct mount *tree; 1766 namespace_lock(); 1767 if (!check_mnt(real_mount(path->mnt))) 1768 tree = ERR_PTR(-EINVAL); 1769 else 1770 tree = copy_tree(real_mount(path->mnt), path->dentry, 1771 CL_COPY_ALL | CL_PRIVATE); 1772 namespace_unlock(); 1773 if (IS_ERR(tree)) 1774 return ERR_CAST(tree); 1775 return &tree->mnt; 1776 } 1777 1778 void drop_collected_mounts(struct vfsmount *mnt) 1779 { 1780 namespace_lock(); 1781 lock_mount_hash(); 1782 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1783 unlock_mount_hash(); 1784 namespace_unlock(); 1785 } 1786 1787 /** 1788 * clone_private_mount - create a private clone of a path 1789 * 1790 * This creates a new vfsmount, which will be the clone of @path. The new will 1791 * not be attached anywhere in the namespace and will be private (i.e. changes 1792 * to the originating mount won't be propagated into this). 1793 * 1794 * Release with mntput(). 1795 */ 1796 struct vfsmount *clone_private_mount(const struct path *path) 1797 { 1798 struct mount *old_mnt = real_mount(path->mnt); 1799 struct mount *new_mnt; 1800 1801 if (IS_MNT_UNBINDABLE(old_mnt)) 1802 return ERR_PTR(-EINVAL); 1803 1804 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1805 if (IS_ERR(new_mnt)) 1806 return ERR_CAST(new_mnt); 1807 1808 return &new_mnt->mnt; 1809 } 1810 EXPORT_SYMBOL_GPL(clone_private_mount); 1811 1812 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1813 struct vfsmount *root) 1814 { 1815 struct mount *mnt; 1816 int res = f(root, arg); 1817 if (res) 1818 return res; 1819 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1820 res = f(&mnt->mnt, arg); 1821 if (res) 1822 return res; 1823 } 1824 return 0; 1825 } 1826 1827 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1828 { 1829 struct mount *p; 1830 1831 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1832 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1833 mnt_release_group_id(p); 1834 } 1835 } 1836 1837 static int invent_group_ids(struct mount *mnt, bool recurse) 1838 { 1839 struct mount *p; 1840 1841 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1842 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1843 int err = mnt_alloc_group_id(p); 1844 if (err) { 1845 cleanup_group_ids(mnt, p); 1846 return err; 1847 } 1848 } 1849 } 1850 1851 return 0; 1852 } 1853 1854 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1855 { 1856 unsigned int max = READ_ONCE(sysctl_mount_max); 1857 unsigned int mounts = 0, old, pending, sum; 1858 struct mount *p; 1859 1860 for (p = mnt; p; p = next_mnt(p, mnt)) 1861 mounts++; 1862 1863 old = ns->mounts; 1864 pending = ns->pending_mounts; 1865 sum = old + pending; 1866 if ((old > sum) || 1867 (pending > sum) || 1868 (max < sum) || 1869 (mounts > (max - sum))) 1870 return -ENOSPC; 1871 1872 ns->pending_mounts = pending + mounts; 1873 return 0; 1874 } 1875 1876 /* 1877 * @source_mnt : mount tree to be attached 1878 * @nd : place the mount tree @source_mnt is attached 1879 * @parent_nd : if non-null, detach the source_mnt from its parent and 1880 * store the parent mount and mountpoint dentry. 1881 * (done when source_mnt is moved) 1882 * 1883 * NOTE: in the table below explains the semantics when a source mount 1884 * of a given type is attached to a destination mount of a given type. 1885 * --------------------------------------------------------------------------- 1886 * | BIND MOUNT OPERATION | 1887 * |************************************************************************** 1888 * | source-->| shared | private | slave | unbindable | 1889 * | dest | | | | | 1890 * | | | | | | | 1891 * | v | | | | | 1892 * |************************************************************************** 1893 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1894 * | | | | | | 1895 * |non-shared| shared (+) | private | slave (*) | invalid | 1896 * *************************************************************************** 1897 * A bind operation clones the source mount and mounts the clone on the 1898 * destination mount. 1899 * 1900 * (++) the cloned mount is propagated to all the mounts in the propagation 1901 * tree of the destination mount and the cloned mount is added to 1902 * the peer group of the source mount. 1903 * (+) the cloned mount is created under the destination mount and is marked 1904 * as shared. The cloned mount is added to the peer group of the source 1905 * mount. 1906 * (+++) the mount is propagated to all the mounts in the propagation tree 1907 * of the destination mount and the cloned mount is made slave 1908 * of the same master as that of the source mount. The cloned mount 1909 * is marked as 'shared and slave'. 1910 * (*) the cloned mount is made a slave of the same master as that of the 1911 * source mount. 1912 * 1913 * --------------------------------------------------------------------------- 1914 * | MOVE MOUNT OPERATION | 1915 * |************************************************************************** 1916 * | source-->| shared | private | slave | unbindable | 1917 * | dest | | | | | 1918 * | | | | | | | 1919 * | v | | | | | 1920 * |************************************************************************** 1921 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1922 * | | | | | | 1923 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1924 * *************************************************************************** 1925 * 1926 * (+) the mount is moved to the destination. And is then propagated to 1927 * all the mounts in the propagation tree of the destination mount. 1928 * (+*) the mount is moved to the destination. 1929 * (+++) the mount is moved to the destination and is then propagated to 1930 * all the mounts belonging to the destination mount's propagation tree. 1931 * the mount is marked as 'shared and slave'. 1932 * (*) the mount continues to be a slave at the new location. 1933 * 1934 * if the source mount is a tree, the operations explained above is 1935 * applied to each mount in the tree. 1936 * Must be called without spinlocks held, since this function can sleep 1937 * in allocations. 1938 */ 1939 static int attach_recursive_mnt(struct mount *source_mnt, 1940 struct mount *dest_mnt, 1941 struct mountpoint *dest_mp, 1942 struct path *parent_path) 1943 { 1944 HLIST_HEAD(tree_list); 1945 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1946 struct mountpoint *smp; 1947 struct mount *child, *p; 1948 struct hlist_node *n; 1949 int err; 1950 1951 /* Preallocate a mountpoint in case the new mounts need 1952 * to be tucked under other mounts. 1953 */ 1954 smp = get_mountpoint(source_mnt->mnt.mnt_root); 1955 if (IS_ERR(smp)) 1956 return PTR_ERR(smp); 1957 1958 /* Is there space to add these mounts to the mount namespace? */ 1959 if (!parent_path) { 1960 err = count_mounts(ns, source_mnt); 1961 if (err) 1962 goto out; 1963 } 1964 1965 if (IS_MNT_SHARED(dest_mnt)) { 1966 err = invent_group_ids(source_mnt, true); 1967 if (err) 1968 goto out; 1969 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1970 lock_mount_hash(); 1971 if (err) 1972 goto out_cleanup_ids; 1973 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1974 set_mnt_shared(p); 1975 } else { 1976 lock_mount_hash(); 1977 } 1978 if (parent_path) { 1979 detach_mnt(source_mnt, parent_path); 1980 attach_mnt(source_mnt, dest_mnt, dest_mp); 1981 touch_mnt_namespace(source_mnt->mnt_ns); 1982 } else { 1983 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1984 commit_tree(source_mnt); 1985 } 1986 1987 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1988 struct mount *q; 1989 hlist_del_init(&child->mnt_hash); 1990 q = __lookup_mnt(&child->mnt_parent->mnt, 1991 child->mnt_mountpoint); 1992 if (q) 1993 mnt_change_mountpoint(child, smp, q); 1994 commit_tree(child); 1995 } 1996 put_mountpoint(smp); 1997 unlock_mount_hash(); 1998 1999 return 0; 2000 2001 out_cleanup_ids: 2002 while (!hlist_empty(&tree_list)) { 2003 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2004 child->mnt_parent->mnt_ns->pending_mounts = 0; 2005 umount_tree(child, UMOUNT_SYNC); 2006 } 2007 unlock_mount_hash(); 2008 cleanup_group_ids(source_mnt, NULL); 2009 out: 2010 ns->pending_mounts = 0; 2011 2012 read_seqlock_excl(&mount_lock); 2013 put_mountpoint(smp); 2014 read_sequnlock_excl(&mount_lock); 2015 2016 return err; 2017 } 2018 2019 static struct mountpoint *lock_mount(struct path *path) 2020 { 2021 struct vfsmount *mnt; 2022 struct dentry *dentry = path->dentry; 2023 retry: 2024 inode_lock(dentry->d_inode); 2025 if (unlikely(cant_mount(dentry))) { 2026 inode_unlock(dentry->d_inode); 2027 return ERR_PTR(-ENOENT); 2028 } 2029 namespace_lock(); 2030 mnt = lookup_mnt(path); 2031 if (likely(!mnt)) { 2032 struct mountpoint *mp = get_mountpoint(dentry); 2033 if (IS_ERR(mp)) { 2034 namespace_unlock(); 2035 inode_unlock(dentry->d_inode); 2036 return mp; 2037 } 2038 return mp; 2039 } 2040 namespace_unlock(); 2041 inode_unlock(path->dentry->d_inode); 2042 path_put(path); 2043 path->mnt = mnt; 2044 dentry = path->dentry = dget(mnt->mnt_root); 2045 goto retry; 2046 } 2047 2048 static void unlock_mount(struct mountpoint *where) 2049 { 2050 struct dentry *dentry = where->m_dentry; 2051 2052 read_seqlock_excl(&mount_lock); 2053 put_mountpoint(where); 2054 read_sequnlock_excl(&mount_lock); 2055 2056 namespace_unlock(); 2057 inode_unlock(dentry->d_inode); 2058 } 2059 2060 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2061 { 2062 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 2063 return -EINVAL; 2064 2065 if (d_is_dir(mp->m_dentry) != 2066 d_is_dir(mnt->mnt.mnt_root)) 2067 return -ENOTDIR; 2068 2069 return attach_recursive_mnt(mnt, p, mp, NULL); 2070 } 2071 2072 /* 2073 * Sanity check the flags to change_mnt_propagation. 2074 */ 2075 2076 static int flags_to_propagation_type(int flags) 2077 { 2078 int type = flags & ~(MS_REC | MS_SILENT); 2079 2080 /* Fail if any non-propagation flags are set */ 2081 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2082 return 0; 2083 /* Only one propagation flag should be set */ 2084 if (!is_power_of_2(type)) 2085 return 0; 2086 return type; 2087 } 2088 2089 /* 2090 * recursively change the type of the mountpoint. 2091 */ 2092 static int do_change_type(struct path *path, int flag) 2093 { 2094 struct mount *m; 2095 struct mount *mnt = real_mount(path->mnt); 2096 int recurse = flag & MS_REC; 2097 int type; 2098 int err = 0; 2099 2100 if (path->dentry != path->mnt->mnt_root) 2101 return -EINVAL; 2102 2103 type = flags_to_propagation_type(flag); 2104 if (!type) 2105 return -EINVAL; 2106 2107 namespace_lock(); 2108 if (type == MS_SHARED) { 2109 err = invent_group_ids(mnt, recurse); 2110 if (err) 2111 goto out_unlock; 2112 } 2113 2114 lock_mount_hash(); 2115 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2116 change_mnt_propagation(m, type); 2117 unlock_mount_hash(); 2118 2119 out_unlock: 2120 namespace_unlock(); 2121 return err; 2122 } 2123 2124 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2125 { 2126 struct mount *child; 2127 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2128 if (!is_subdir(child->mnt_mountpoint, dentry)) 2129 continue; 2130 2131 if (child->mnt.mnt_flags & MNT_LOCKED) 2132 return true; 2133 } 2134 return false; 2135 } 2136 2137 /* 2138 * do loopback mount. 2139 */ 2140 static int do_loopback(struct path *path, const char *old_name, 2141 int recurse) 2142 { 2143 struct path old_path; 2144 struct mount *mnt = NULL, *old, *parent; 2145 struct mountpoint *mp; 2146 int err; 2147 if (!old_name || !*old_name) 2148 return -EINVAL; 2149 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2150 if (err) 2151 return err; 2152 2153 err = -EINVAL; 2154 if (mnt_ns_loop(old_path.dentry)) 2155 goto out; 2156 2157 mp = lock_mount(path); 2158 err = PTR_ERR(mp); 2159 if (IS_ERR(mp)) 2160 goto out; 2161 2162 old = real_mount(old_path.mnt); 2163 parent = real_mount(path->mnt); 2164 2165 err = -EINVAL; 2166 if (IS_MNT_UNBINDABLE(old)) 2167 goto out2; 2168 2169 if (!check_mnt(parent)) 2170 goto out2; 2171 2172 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2173 goto out2; 2174 2175 if (!recurse && has_locked_children(old, old_path.dentry)) 2176 goto out2; 2177 2178 if (recurse) 2179 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2180 else 2181 mnt = clone_mnt(old, old_path.dentry, 0); 2182 2183 if (IS_ERR(mnt)) { 2184 err = PTR_ERR(mnt); 2185 goto out2; 2186 } 2187 2188 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2189 2190 err = graft_tree(mnt, parent, mp); 2191 if (err) { 2192 lock_mount_hash(); 2193 umount_tree(mnt, UMOUNT_SYNC); 2194 unlock_mount_hash(); 2195 } 2196 out2: 2197 unlock_mount(mp); 2198 out: 2199 path_put(&old_path); 2200 return err; 2201 } 2202 2203 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2204 { 2205 int error = 0; 2206 int readonly_request = 0; 2207 2208 if (ms_flags & MS_RDONLY) 2209 readonly_request = 1; 2210 if (readonly_request == __mnt_is_readonly(mnt)) 2211 return 0; 2212 2213 if (readonly_request) 2214 error = mnt_make_readonly(real_mount(mnt)); 2215 else 2216 __mnt_unmake_readonly(real_mount(mnt)); 2217 return error; 2218 } 2219 2220 /* 2221 * change filesystem flags. dir should be a physical root of filesystem. 2222 * If you've mounted a non-root directory somewhere and want to do remount 2223 * on it - tough luck. 2224 */ 2225 static int do_remount(struct path *path, int flags, int mnt_flags, 2226 void *data) 2227 { 2228 int err; 2229 struct super_block *sb = path->mnt->mnt_sb; 2230 struct mount *mnt = real_mount(path->mnt); 2231 2232 if (!check_mnt(mnt)) 2233 return -EINVAL; 2234 2235 if (path->dentry != path->mnt->mnt_root) 2236 return -EINVAL; 2237 2238 /* Don't allow changing of locked mnt flags. 2239 * 2240 * No locks need to be held here while testing the various 2241 * MNT_LOCK flags because those flags can never be cleared 2242 * once they are set. 2243 */ 2244 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2245 !(mnt_flags & MNT_READONLY)) { 2246 return -EPERM; 2247 } 2248 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2249 !(mnt_flags & MNT_NODEV)) { 2250 return -EPERM; 2251 } 2252 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2253 !(mnt_flags & MNT_NOSUID)) { 2254 return -EPERM; 2255 } 2256 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2257 !(mnt_flags & MNT_NOEXEC)) { 2258 return -EPERM; 2259 } 2260 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2261 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2262 return -EPERM; 2263 } 2264 2265 err = security_sb_remount(sb, data); 2266 if (err) 2267 return err; 2268 2269 down_write(&sb->s_umount); 2270 if (flags & MS_BIND) 2271 err = change_mount_flags(path->mnt, flags); 2272 else if (!capable(CAP_SYS_ADMIN)) 2273 err = -EPERM; 2274 else 2275 err = do_remount_sb(sb, flags, data, 0); 2276 if (!err) { 2277 lock_mount_hash(); 2278 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2279 mnt->mnt.mnt_flags = mnt_flags; 2280 touch_mnt_namespace(mnt->mnt_ns); 2281 unlock_mount_hash(); 2282 } 2283 up_write(&sb->s_umount); 2284 return err; 2285 } 2286 2287 static inline int tree_contains_unbindable(struct mount *mnt) 2288 { 2289 struct mount *p; 2290 for (p = mnt; p; p = next_mnt(p, mnt)) { 2291 if (IS_MNT_UNBINDABLE(p)) 2292 return 1; 2293 } 2294 return 0; 2295 } 2296 2297 static int do_move_mount(struct path *path, const char *old_name) 2298 { 2299 struct path old_path, parent_path; 2300 struct mount *p; 2301 struct mount *old; 2302 struct mountpoint *mp; 2303 int err; 2304 if (!old_name || !*old_name) 2305 return -EINVAL; 2306 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2307 if (err) 2308 return err; 2309 2310 mp = lock_mount(path); 2311 err = PTR_ERR(mp); 2312 if (IS_ERR(mp)) 2313 goto out; 2314 2315 old = real_mount(old_path.mnt); 2316 p = real_mount(path->mnt); 2317 2318 err = -EINVAL; 2319 if (!check_mnt(p) || !check_mnt(old)) 2320 goto out1; 2321 2322 if (old->mnt.mnt_flags & MNT_LOCKED) 2323 goto out1; 2324 2325 err = -EINVAL; 2326 if (old_path.dentry != old_path.mnt->mnt_root) 2327 goto out1; 2328 2329 if (!mnt_has_parent(old)) 2330 goto out1; 2331 2332 if (d_is_dir(path->dentry) != 2333 d_is_dir(old_path.dentry)) 2334 goto out1; 2335 /* 2336 * Don't move a mount residing in a shared parent. 2337 */ 2338 if (IS_MNT_SHARED(old->mnt_parent)) 2339 goto out1; 2340 /* 2341 * Don't move a mount tree containing unbindable mounts to a destination 2342 * mount which is shared. 2343 */ 2344 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2345 goto out1; 2346 err = -ELOOP; 2347 for (; mnt_has_parent(p); p = p->mnt_parent) 2348 if (p == old) 2349 goto out1; 2350 2351 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2352 if (err) 2353 goto out1; 2354 2355 /* if the mount is moved, it should no longer be expire 2356 * automatically */ 2357 list_del_init(&old->mnt_expire); 2358 out1: 2359 unlock_mount(mp); 2360 out: 2361 if (!err) 2362 path_put(&parent_path); 2363 path_put(&old_path); 2364 return err; 2365 } 2366 2367 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2368 { 2369 int err; 2370 const char *subtype = strchr(fstype, '.'); 2371 if (subtype) { 2372 subtype++; 2373 err = -EINVAL; 2374 if (!subtype[0]) 2375 goto err; 2376 } else 2377 subtype = ""; 2378 2379 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2380 err = -ENOMEM; 2381 if (!mnt->mnt_sb->s_subtype) 2382 goto err; 2383 return mnt; 2384 2385 err: 2386 mntput(mnt); 2387 return ERR_PTR(err); 2388 } 2389 2390 /* 2391 * add a mount into a namespace's mount tree 2392 */ 2393 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2394 { 2395 struct mountpoint *mp; 2396 struct mount *parent; 2397 int err; 2398 2399 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2400 2401 mp = lock_mount(path); 2402 if (IS_ERR(mp)) 2403 return PTR_ERR(mp); 2404 2405 parent = real_mount(path->mnt); 2406 err = -EINVAL; 2407 if (unlikely(!check_mnt(parent))) { 2408 /* that's acceptable only for automounts done in private ns */ 2409 if (!(mnt_flags & MNT_SHRINKABLE)) 2410 goto unlock; 2411 /* ... and for those we'd better have mountpoint still alive */ 2412 if (!parent->mnt_ns) 2413 goto unlock; 2414 } 2415 2416 /* Refuse the same filesystem on the same mount point */ 2417 err = -EBUSY; 2418 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2419 path->mnt->mnt_root == path->dentry) 2420 goto unlock; 2421 2422 err = -EINVAL; 2423 if (d_is_symlink(newmnt->mnt.mnt_root)) 2424 goto unlock; 2425 2426 newmnt->mnt.mnt_flags = mnt_flags; 2427 err = graft_tree(newmnt, parent, mp); 2428 2429 unlock: 2430 unlock_mount(mp); 2431 return err; 2432 } 2433 2434 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2435 2436 /* 2437 * create a new mount for userspace and request it to be added into the 2438 * namespace's tree 2439 */ 2440 static int do_new_mount(struct path *path, const char *fstype, int flags, 2441 int mnt_flags, const char *name, void *data) 2442 { 2443 struct file_system_type *type; 2444 struct vfsmount *mnt; 2445 int err; 2446 2447 if (!fstype) 2448 return -EINVAL; 2449 2450 type = get_fs_type(fstype); 2451 if (!type) 2452 return -ENODEV; 2453 2454 mnt = vfs_kern_mount(type, flags, name, data); 2455 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2456 !mnt->mnt_sb->s_subtype) 2457 mnt = fs_set_subtype(mnt, fstype); 2458 2459 put_filesystem(type); 2460 if (IS_ERR(mnt)) 2461 return PTR_ERR(mnt); 2462 2463 if (mount_too_revealing(mnt, &mnt_flags)) { 2464 mntput(mnt); 2465 return -EPERM; 2466 } 2467 2468 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2469 if (err) 2470 mntput(mnt); 2471 return err; 2472 } 2473 2474 int finish_automount(struct vfsmount *m, struct path *path) 2475 { 2476 struct mount *mnt = real_mount(m); 2477 int err; 2478 /* The new mount record should have at least 2 refs to prevent it being 2479 * expired before we get a chance to add it 2480 */ 2481 BUG_ON(mnt_get_count(mnt) < 2); 2482 2483 if (m->mnt_sb == path->mnt->mnt_sb && 2484 m->mnt_root == path->dentry) { 2485 err = -ELOOP; 2486 goto fail; 2487 } 2488 2489 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2490 if (!err) 2491 return 0; 2492 fail: 2493 /* remove m from any expiration list it may be on */ 2494 if (!list_empty(&mnt->mnt_expire)) { 2495 namespace_lock(); 2496 list_del_init(&mnt->mnt_expire); 2497 namespace_unlock(); 2498 } 2499 mntput(m); 2500 mntput(m); 2501 return err; 2502 } 2503 2504 /** 2505 * mnt_set_expiry - Put a mount on an expiration list 2506 * @mnt: The mount to list. 2507 * @expiry_list: The list to add the mount to. 2508 */ 2509 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2510 { 2511 namespace_lock(); 2512 2513 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2514 2515 namespace_unlock(); 2516 } 2517 EXPORT_SYMBOL(mnt_set_expiry); 2518 2519 /* 2520 * process a list of expirable mountpoints with the intent of discarding any 2521 * mountpoints that aren't in use and haven't been touched since last we came 2522 * here 2523 */ 2524 void mark_mounts_for_expiry(struct list_head *mounts) 2525 { 2526 struct mount *mnt, *next; 2527 LIST_HEAD(graveyard); 2528 2529 if (list_empty(mounts)) 2530 return; 2531 2532 namespace_lock(); 2533 lock_mount_hash(); 2534 2535 /* extract from the expiration list every vfsmount that matches the 2536 * following criteria: 2537 * - only referenced by its parent vfsmount 2538 * - still marked for expiry (marked on the last call here; marks are 2539 * cleared by mntput()) 2540 */ 2541 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2542 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2543 propagate_mount_busy(mnt, 1)) 2544 continue; 2545 list_move(&mnt->mnt_expire, &graveyard); 2546 } 2547 while (!list_empty(&graveyard)) { 2548 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2549 touch_mnt_namespace(mnt->mnt_ns); 2550 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2551 } 2552 unlock_mount_hash(); 2553 namespace_unlock(); 2554 } 2555 2556 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2557 2558 /* 2559 * Ripoff of 'select_parent()' 2560 * 2561 * search the list of submounts for a given mountpoint, and move any 2562 * shrinkable submounts to the 'graveyard' list. 2563 */ 2564 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2565 { 2566 struct mount *this_parent = parent; 2567 struct list_head *next; 2568 int found = 0; 2569 2570 repeat: 2571 next = this_parent->mnt_mounts.next; 2572 resume: 2573 while (next != &this_parent->mnt_mounts) { 2574 struct list_head *tmp = next; 2575 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2576 2577 next = tmp->next; 2578 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2579 continue; 2580 /* 2581 * Descend a level if the d_mounts list is non-empty. 2582 */ 2583 if (!list_empty(&mnt->mnt_mounts)) { 2584 this_parent = mnt; 2585 goto repeat; 2586 } 2587 2588 if (!propagate_mount_busy(mnt, 1)) { 2589 list_move_tail(&mnt->mnt_expire, graveyard); 2590 found++; 2591 } 2592 } 2593 /* 2594 * All done at this level ... ascend and resume the search 2595 */ 2596 if (this_parent != parent) { 2597 next = this_parent->mnt_child.next; 2598 this_parent = this_parent->mnt_parent; 2599 goto resume; 2600 } 2601 return found; 2602 } 2603 2604 /* 2605 * process a list of expirable mountpoints with the intent of discarding any 2606 * submounts of a specific parent mountpoint 2607 * 2608 * mount_lock must be held for write 2609 */ 2610 static void shrink_submounts(struct mount *mnt) 2611 { 2612 LIST_HEAD(graveyard); 2613 struct mount *m; 2614 2615 /* extract submounts of 'mountpoint' from the expiration list */ 2616 while (select_submounts(mnt, &graveyard)) { 2617 while (!list_empty(&graveyard)) { 2618 m = list_first_entry(&graveyard, struct mount, 2619 mnt_expire); 2620 touch_mnt_namespace(m->mnt_ns); 2621 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2622 } 2623 } 2624 } 2625 2626 /* 2627 * Some copy_from_user() implementations do not return the exact number of 2628 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2629 * Note that this function differs from copy_from_user() in that it will oops 2630 * on bad values of `to', rather than returning a short copy. 2631 */ 2632 static long exact_copy_from_user(void *to, const void __user * from, 2633 unsigned long n) 2634 { 2635 char *t = to; 2636 const char __user *f = from; 2637 char c; 2638 2639 if (!access_ok(VERIFY_READ, from, n)) 2640 return n; 2641 2642 while (n) { 2643 if (__get_user(c, f)) { 2644 memset(t, 0, n); 2645 break; 2646 } 2647 *t++ = c; 2648 f++; 2649 n--; 2650 } 2651 return n; 2652 } 2653 2654 void *copy_mount_options(const void __user * data) 2655 { 2656 int i; 2657 unsigned long size; 2658 char *copy; 2659 2660 if (!data) 2661 return NULL; 2662 2663 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2664 if (!copy) 2665 return ERR_PTR(-ENOMEM); 2666 2667 /* We only care that *some* data at the address the user 2668 * gave us is valid. Just in case, we'll zero 2669 * the remainder of the page. 2670 */ 2671 /* copy_from_user cannot cross TASK_SIZE ! */ 2672 size = TASK_SIZE - (unsigned long)data; 2673 if (size > PAGE_SIZE) 2674 size = PAGE_SIZE; 2675 2676 i = size - exact_copy_from_user(copy, data, size); 2677 if (!i) { 2678 kfree(copy); 2679 return ERR_PTR(-EFAULT); 2680 } 2681 if (i != PAGE_SIZE) 2682 memset(copy + i, 0, PAGE_SIZE - i); 2683 return copy; 2684 } 2685 2686 char *copy_mount_string(const void __user *data) 2687 { 2688 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2689 } 2690 2691 /* 2692 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2693 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2694 * 2695 * data is a (void *) that can point to any structure up to 2696 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2697 * information (or be NULL). 2698 * 2699 * Pre-0.97 versions of mount() didn't have a flags word. 2700 * When the flags word was introduced its top half was required 2701 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2702 * Therefore, if this magic number is present, it carries no information 2703 * and must be discarded. 2704 */ 2705 long do_mount(const char *dev_name, const char __user *dir_name, 2706 const char *type_page, unsigned long flags, void *data_page) 2707 { 2708 struct path path; 2709 int retval = 0; 2710 int mnt_flags = 0; 2711 2712 /* Discard magic */ 2713 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2714 flags &= ~MS_MGC_MSK; 2715 2716 /* Basic sanity checks */ 2717 if (data_page) 2718 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2719 2720 /* ... and get the mountpoint */ 2721 retval = user_path(dir_name, &path); 2722 if (retval) 2723 return retval; 2724 2725 retval = security_sb_mount(dev_name, &path, 2726 type_page, flags, data_page); 2727 if (!retval && !may_mount()) 2728 retval = -EPERM; 2729 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock()) 2730 retval = -EPERM; 2731 if (retval) 2732 goto dput_out; 2733 2734 /* Default to relatime unless overriden */ 2735 if (!(flags & MS_NOATIME)) 2736 mnt_flags |= MNT_RELATIME; 2737 2738 /* Separate the per-mountpoint flags */ 2739 if (flags & MS_NOSUID) 2740 mnt_flags |= MNT_NOSUID; 2741 if (flags & MS_NODEV) 2742 mnt_flags |= MNT_NODEV; 2743 if (flags & MS_NOEXEC) 2744 mnt_flags |= MNT_NOEXEC; 2745 if (flags & MS_NOATIME) 2746 mnt_flags |= MNT_NOATIME; 2747 if (flags & MS_NODIRATIME) 2748 mnt_flags |= MNT_NODIRATIME; 2749 if (flags & MS_STRICTATIME) 2750 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2751 if (flags & MS_RDONLY) 2752 mnt_flags |= MNT_READONLY; 2753 2754 /* The default atime for remount is preservation */ 2755 if ((flags & MS_REMOUNT) && 2756 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2757 MS_STRICTATIME)) == 0)) { 2758 mnt_flags &= ~MNT_ATIME_MASK; 2759 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2760 } 2761 2762 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2763 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2764 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT); 2765 2766 if (flags & MS_REMOUNT) 2767 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2768 data_page); 2769 else if (flags & MS_BIND) 2770 retval = do_loopback(&path, dev_name, flags & MS_REC); 2771 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2772 retval = do_change_type(&path, flags); 2773 else if (flags & MS_MOVE) 2774 retval = do_move_mount(&path, dev_name); 2775 else 2776 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2777 dev_name, data_page); 2778 dput_out: 2779 path_put(&path); 2780 return retval; 2781 } 2782 2783 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2784 { 2785 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2786 } 2787 2788 static void dec_mnt_namespaces(struct ucounts *ucounts) 2789 { 2790 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2791 } 2792 2793 static void free_mnt_ns(struct mnt_namespace *ns) 2794 { 2795 ns_free_inum(&ns->ns); 2796 dec_mnt_namespaces(ns->ucounts); 2797 put_user_ns(ns->user_ns); 2798 kfree(ns); 2799 } 2800 2801 /* 2802 * Assign a sequence number so we can detect when we attempt to bind 2803 * mount a reference to an older mount namespace into the current 2804 * mount namespace, preventing reference counting loops. A 64bit 2805 * number incrementing at 10Ghz will take 12,427 years to wrap which 2806 * is effectively never, so we can ignore the possibility. 2807 */ 2808 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2809 2810 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2811 { 2812 struct mnt_namespace *new_ns; 2813 struct ucounts *ucounts; 2814 int ret; 2815 2816 ucounts = inc_mnt_namespaces(user_ns); 2817 if (!ucounts) 2818 return ERR_PTR(-ENOSPC); 2819 2820 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2821 if (!new_ns) { 2822 dec_mnt_namespaces(ucounts); 2823 return ERR_PTR(-ENOMEM); 2824 } 2825 ret = ns_alloc_inum(&new_ns->ns); 2826 if (ret) { 2827 kfree(new_ns); 2828 dec_mnt_namespaces(ucounts); 2829 return ERR_PTR(ret); 2830 } 2831 new_ns->ns.ops = &mntns_operations; 2832 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2833 atomic_set(&new_ns->count, 1); 2834 new_ns->root = NULL; 2835 INIT_LIST_HEAD(&new_ns->list); 2836 init_waitqueue_head(&new_ns->poll); 2837 new_ns->event = 0; 2838 new_ns->user_ns = get_user_ns(user_ns); 2839 new_ns->ucounts = ucounts; 2840 new_ns->mounts = 0; 2841 new_ns->pending_mounts = 0; 2842 return new_ns; 2843 } 2844 2845 __latent_entropy 2846 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2847 struct user_namespace *user_ns, struct fs_struct *new_fs) 2848 { 2849 struct mnt_namespace *new_ns; 2850 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2851 struct mount *p, *q; 2852 struct mount *old; 2853 struct mount *new; 2854 int copy_flags; 2855 2856 BUG_ON(!ns); 2857 2858 if (likely(!(flags & CLONE_NEWNS))) { 2859 get_mnt_ns(ns); 2860 return ns; 2861 } 2862 2863 old = ns->root; 2864 2865 new_ns = alloc_mnt_ns(user_ns); 2866 if (IS_ERR(new_ns)) 2867 return new_ns; 2868 2869 namespace_lock(); 2870 /* First pass: copy the tree topology */ 2871 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2872 if (user_ns != ns->user_ns) 2873 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2874 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2875 if (IS_ERR(new)) { 2876 namespace_unlock(); 2877 free_mnt_ns(new_ns); 2878 return ERR_CAST(new); 2879 } 2880 new_ns->root = new; 2881 list_add_tail(&new_ns->list, &new->mnt_list); 2882 2883 /* 2884 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2885 * as belonging to new namespace. We have already acquired a private 2886 * fs_struct, so tsk->fs->lock is not needed. 2887 */ 2888 p = old; 2889 q = new; 2890 while (p) { 2891 q->mnt_ns = new_ns; 2892 new_ns->mounts++; 2893 if (new_fs) { 2894 if (&p->mnt == new_fs->root.mnt) { 2895 new_fs->root.mnt = mntget(&q->mnt); 2896 rootmnt = &p->mnt; 2897 } 2898 if (&p->mnt == new_fs->pwd.mnt) { 2899 new_fs->pwd.mnt = mntget(&q->mnt); 2900 pwdmnt = &p->mnt; 2901 } 2902 } 2903 p = next_mnt(p, old); 2904 q = next_mnt(q, new); 2905 if (!q) 2906 break; 2907 while (p->mnt.mnt_root != q->mnt.mnt_root) 2908 p = next_mnt(p, old); 2909 } 2910 namespace_unlock(); 2911 2912 if (rootmnt) 2913 mntput(rootmnt); 2914 if (pwdmnt) 2915 mntput(pwdmnt); 2916 2917 return new_ns; 2918 } 2919 2920 /** 2921 * create_mnt_ns - creates a private namespace and adds a root filesystem 2922 * @mnt: pointer to the new root filesystem mountpoint 2923 */ 2924 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2925 { 2926 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2927 if (!IS_ERR(new_ns)) { 2928 struct mount *mnt = real_mount(m); 2929 mnt->mnt_ns = new_ns; 2930 new_ns->root = mnt; 2931 new_ns->mounts++; 2932 list_add(&mnt->mnt_list, &new_ns->list); 2933 } else { 2934 mntput(m); 2935 } 2936 return new_ns; 2937 } 2938 2939 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2940 { 2941 struct mnt_namespace *ns; 2942 struct super_block *s; 2943 struct path path; 2944 int err; 2945 2946 ns = create_mnt_ns(mnt); 2947 if (IS_ERR(ns)) 2948 return ERR_CAST(ns); 2949 2950 err = vfs_path_lookup(mnt->mnt_root, mnt, 2951 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2952 2953 put_mnt_ns(ns); 2954 2955 if (err) 2956 return ERR_PTR(err); 2957 2958 /* trade a vfsmount reference for active sb one */ 2959 s = path.mnt->mnt_sb; 2960 atomic_inc(&s->s_active); 2961 mntput(path.mnt); 2962 /* lock the sucker */ 2963 down_write(&s->s_umount); 2964 /* ... and return the root of (sub)tree on it */ 2965 return path.dentry; 2966 } 2967 EXPORT_SYMBOL(mount_subtree); 2968 2969 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2970 char __user *, type, unsigned long, flags, void __user *, data) 2971 { 2972 int ret; 2973 char *kernel_type; 2974 char *kernel_dev; 2975 void *options; 2976 2977 kernel_type = copy_mount_string(type); 2978 ret = PTR_ERR(kernel_type); 2979 if (IS_ERR(kernel_type)) 2980 goto out_type; 2981 2982 kernel_dev = copy_mount_string(dev_name); 2983 ret = PTR_ERR(kernel_dev); 2984 if (IS_ERR(kernel_dev)) 2985 goto out_dev; 2986 2987 options = copy_mount_options(data); 2988 ret = PTR_ERR(options); 2989 if (IS_ERR(options)) 2990 goto out_data; 2991 2992 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 2993 2994 kfree(options); 2995 out_data: 2996 kfree(kernel_dev); 2997 out_dev: 2998 kfree(kernel_type); 2999 out_type: 3000 return ret; 3001 } 3002 3003 /* 3004 * Return true if path is reachable from root 3005 * 3006 * namespace_sem or mount_lock is held 3007 */ 3008 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3009 const struct path *root) 3010 { 3011 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3012 dentry = mnt->mnt_mountpoint; 3013 mnt = mnt->mnt_parent; 3014 } 3015 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3016 } 3017 3018 bool path_is_under(const struct path *path1, const struct path *path2) 3019 { 3020 bool res; 3021 read_seqlock_excl(&mount_lock); 3022 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3023 read_sequnlock_excl(&mount_lock); 3024 return res; 3025 } 3026 EXPORT_SYMBOL(path_is_under); 3027 3028 /* 3029 * pivot_root Semantics: 3030 * Moves the root file system of the current process to the directory put_old, 3031 * makes new_root as the new root file system of the current process, and sets 3032 * root/cwd of all processes which had them on the current root to new_root. 3033 * 3034 * Restrictions: 3035 * The new_root and put_old must be directories, and must not be on the 3036 * same file system as the current process root. The put_old must be 3037 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3038 * pointed to by put_old must yield the same directory as new_root. No other 3039 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3040 * 3041 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3042 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3043 * in this situation. 3044 * 3045 * Notes: 3046 * - we don't move root/cwd if they are not at the root (reason: if something 3047 * cared enough to change them, it's probably wrong to force them elsewhere) 3048 * - it's okay to pick a root that isn't the root of a file system, e.g. 3049 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3050 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3051 * first. 3052 */ 3053 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3054 const char __user *, put_old) 3055 { 3056 struct path new, old, parent_path, root_parent, root; 3057 struct mount *new_mnt, *root_mnt, *old_mnt; 3058 struct mountpoint *old_mp, *root_mp; 3059 int error; 3060 3061 if (!may_mount()) 3062 return -EPERM; 3063 3064 error = user_path_dir(new_root, &new); 3065 if (error) 3066 goto out0; 3067 3068 error = user_path_dir(put_old, &old); 3069 if (error) 3070 goto out1; 3071 3072 error = security_sb_pivotroot(&old, &new); 3073 if (error) 3074 goto out2; 3075 3076 get_fs_root(current->fs, &root); 3077 old_mp = lock_mount(&old); 3078 error = PTR_ERR(old_mp); 3079 if (IS_ERR(old_mp)) 3080 goto out3; 3081 3082 error = -EINVAL; 3083 new_mnt = real_mount(new.mnt); 3084 root_mnt = real_mount(root.mnt); 3085 old_mnt = real_mount(old.mnt); 3086 if (IS_MNT_SHARED(old_mnt) || 3087 IS_MNT_SHARED(new_mnt->mnt_parent) || 3088 IS_MNT_SHARED(root_mnt->mnt_parent)) 3089 goto out4; 3090 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3091 goto out4; 3092 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3093 goto out4; 3094 error = -ENOENT; 3095 if (d_unlinked(new.dentry)) 3096 goto out4; 3097 error = -EBUSY; 3098 if (new_mnt == root_mnt || old_mnt == root_mnt) 3099 goto out4; /* loop, on the same file system */ 3100 error = -EINVAL; 3101 if (root.mnt->mnt_root != root.dentry) 3102 goto out4; /* not a mountpoint */ 3103 if (!mnt_has_parent(root_mnt)) 3104 goto out4; /* not attached */ 3105 root_mp = root_mnt->mnt_mp; 3106 if (new.mnt->mnt_root != new.dentry) 3107 goto out4; /* not a mountpoint */ 3108 if (!mnt_has_parent(new_mnt)) 3109 goto out4; /* not attached */ 3110 /* make sure we can reach put_old from new_root */ 3111 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3112 goto out4; 3113 /* make certain new is below the root */ 3114 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3115 goto out4; 3116 root_mp->m_count++; /* pin it so it won't go away */ 3117 lock_mount_hash(); 3118 detach_mnt(new_mnt, &parent_path); 3119 detach_mnt(root_mnt, &root_parent); 3120 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3121 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3122 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3123 } 3124 /* mount old root on put_old */ 3125 attach_mnt(root_mnt, old_mnt, old_mp); 3126 /* mount new_root on / */ 3127 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3128 touch_mnt_namespace(current->nsproxy->mnt_ns); 3129 /* A moved mount should not expire automatically */ 3130 list_del_init(&new_mnt->mnt_expire); 3131 put_mountpoint(root_mp); 3132 unlock_mount_hash(); 3133 chroot_fs_refs(&root, &new); 3134 error = 0; 3135 out4: 3136 unlock_mount(old_mp); 3137 if (!error) { 3138 path_put(&root_parent); 3139 path_put(&parent_path); 3140 } 3141 out3: 3142 path_put(&root); 3143 out2: 3144 path_put(&old); 3145 out1: 3146 path_put(&new); 3147 out0: 3148 return error; 3149 } 3150 3151 static void __init init_mount_tree(void) 3152 { 3153 struct vfsmount *mnt; 3154 struct mnt_namespace *ns; 3155 struct path root; 3156 struct file_system_type *type; 3157 3158 type = get_fs_type("rootfs"); 3159 if (!type) 3160 panic("Can't find rootfs type"); 3161 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3162 put_filesystem(type); 3163 if (IS_ERR(mnt)) 3164 panic("Can't create rootfs"); 3165 3166 ns = create_mnt_ns(mnt); 3167 if (IS_ERR(ns)) 3168 panic("Can't allocate initial namespace"); 3169 3170 init_task.nsproxy->mnt_ns = ns; 3171 get_mnt_ns(ns); 3172 3173 root.mnt = mnt; 3174 root.dentry = mnt->mnt_root; 3175 mnt->mnt_flags |= MNT_LOCKED; 3176 3177 set_fs_pwd(current->fs, &root); 3178 set_fs_root(current->fs, &root); 3179 } 3180 3181 void __init mnt_init(void) 3182 { 3183 int err; 3184 3185 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3186 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3187 3188 mount_hashtable = alloc_large_system_hash("Mount-cache", 3189 sizeof(struct hlist_head), 3190 mhash_entries, 19, 3191 HASH_ZERO, 3192 &m_hash_shift, &m_hash_mask, 0, 0); 3193 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3194 sizeof(struct hlist_head), 3195 mphash_entries, 19, 3196 HASH_ZERO, 3197 &mp_hash_shift, &mp_hash_mask, 0, 0); 3198 3199 if (!mount_hashtable || !mountpoint_hashtable) 3200 panic("Failed to allocate mount hash table\n"); 3201 3202 kernfs_init(); 3203 3204 err = sysfs_init(); 3205 if (err) 3206 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3207 __func__, err); 3208 fs_kobj = kobject_create_and_add("fs", NULL); 3209 if (!fs_kobj) 3210 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3211 init_rootfs(); 3212 init_mount_tree(); 3213 } 3214 3215 void put_mnt_ns(struct mnt_namespace *ns) 3216 { 3217 if (!atomic_dec_and_test(&ns->count)) 3218 return; 3219 drop_collected_mounts(&ns->root->mnt); 3220 free_mnt_ns(ns); 3221 } 3222 3223 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3224 { 3225 struct vfsmount *mnt; 3226 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3227 if (!IS_ERR(mnt)) { 3228 /* 3229 * it is a longterm mount, don't release mnt until 3230 * we unmount before file sys is unregistered 3231 */ 3232 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3233 } 3234 return mnt; 3235 } 3236 EXPORT_SYMBOL_GPL(kern_mount_data); 3237 3238 void kern_unmount(struct vfsmount *mnt) 3239 { 3240 /* release long term mount so mount point can be released */ 3241 if (!IS_ERR_OR_NULL(mnt)) { 3242 real_mount(mnt)->mnt_ns = NULL; 3243 synchronize_rcu(); /* yecchhh... */ 3244 mntput(mnt); 3245 } 3246 } 3247 EXPORT_SYMBOL(kern_unmount); 3248 3249 bool our_mnt(struct vfsmount *mnt) 3250 { 3251 return check_mnt(real_mount(mnt)); 3252 } 3253 3254 bool current_chrooted(void) 3255 { 3256 /* Does the current process have a non-standard root */ 3257 struct path ns_root; 3258 struct path fs_root; 3259 bool chrooted; 3260 3261 /* Find the namespace root */ 3262 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3263 ns_root.dentry = ns_root.mnt->mnt_root; 3264 path_get(&ns_root); 3265 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3266 ; 3267 3268 get_fs_root(current->fs, &fs_root); 3269 3270 chrooted = !path_equal(&fs_root, &ns_root); 3271 3272 path_put(&fs_root); 3273 path_put(&ns_root); 3274 3275 return chrooted; 3276 } 3277 3278 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3279 int *new_mnt_flags) 3280 { 3281 int new_flags = *new_mnt_flags; 3282 struct mount *mnt; 3283 bool visible = false; 3284 3285 down_read(&namespace_sem); 3286 list_for_each_entry(mnt, &ns->list, mnt_list) { 3287 struct mount *child; 3288 int mnt_flags; 3289 3290 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3291 continue; 3292 3293 /* This mount is not fully visible if it's root directory 3294 * is not the root directory of the filesystem. 3295 */ 3296 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3297 continue; 3298 3299 /* A local view of the mount flags */ 3300 mnt_flags = mnt->mnt.mnt_flags; 3301 3302 /* Don't miss readonly hidden in the superblock flags */ 3303 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) 3304 mnt_flags |= MNT_LOCK_READONLY; 3305 3306 /* Verify the mount flags are equal to or more permissive 3307 * than the proposed new mount. 3308 */ 3309 if ((mnt_flags & MNT_LOCK_READONLY) && 3310 !(new_flags & MNT_READONLY)) 3311 continue; 3312 if ((mnt_flags & MNT_LOCK_ATIME) && 3313 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3314 continue; 3315 3316 /* This mount is not fully visible if there are any 3317 * locked child mounts that cover anything except for 3318 * empty directories. 3319 */ 3320 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3321 struct inode *inode = child->mnt_mountpoint->d_inode; 3322 /* Only worry about locked mounts */ 3323 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3324 continue; 3325 /* Is the directory permanetly empty? */ 3326 if (!is_empty_dir_inode(inode)) 3327 goto next; 3328 } 3329 /* Preserve the locked attributes */ 3330 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3331 MNT_LOCK_ATIME); 3332 visible = true; 3333 goto found; 3334 next: ; 3335 } 3336 found: 3337 up_read(&namespace_sem); 3338 return visible; 3339 } 3340 3341 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3342 { 3343 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3344 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3345 unsigned long s_iflags; 3346 3347 if (ns->user_ns == &init_user_ns) 3348 return false; 3349 3350 /* Can this filesystem be too revealing? */ 3351 s_iflags = mnt->mnt_sb->s_iflags; 3352 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3353 return false; 3354 3355 if ((s_iflags & required_iflags) != required_iflags) { 3356 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3357 required_iflags); 3358 return true; 3359 } 3360 3361 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3362 } 3363 3364 bool mnt_may_suid(struct vfsmount *mnt) 3365 { 3366 /* 3367 * Foreign mounts (accessed via fchdir or through /proc 3368 * symlinks) are always treated as if they are nosuid. This 3369 * prevents namespaces from trusting potentially unsafe 3370 * suid/sgid bits, file caps, or security labels that originate 3371 * in other namespaces. 3372 */ 3373 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3374 current_in_userns(mnt->mnt_sb->s_user_ns); 3375 } 3376 3377 static struct ns_common *mntns_get(struct task_struct *task) 3378 { 3379 struct ns_common *ns = NULL; 3380 struct nsproxy *nsproxy; 3381 3382 task_lock(task); 3383 nsproxy = task->nsproxy; 3384 if (nsproxy) { 3385 ns = &nsproxy->mnt_ns->ns; 3386 get_mnt_ns(to_mnt_ns(ns)); 3387 } 3388 task_unlock(task); 3389 3390 return ns; 3391 } 3392 3393 static void mntns_put(struct ns_common *ns) 3394 { 3395 put_mnt_ns(to_mnt_ns(ns)); 3396 } 3397 3398 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3399 { 3400 struct fs_struct *fs = current->fs; 3401 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3402 struct path root; 3403 int err; 3404 3405 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3406 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3407 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3408 return -EPERM; 3409 3410 if (fs->users != 1) 3411 return -EINVAL; 3412 3413 get_mnt_ns(mnt_ns); 3414 old_mnt_ns = nsproxy->mnt_ns; 3415 nsproxy->mnt_ns = mnt_ns; 3416 3417 /* Find the root */ 3418 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3419 "/", LOOKUP_DOWN, &root); 3420 if (err) { 3421 /* revert to old namespace */ 3422 nsproxy->mnt_ns = old_mnt_ns; 3423 put_mnt_ns(mnt_ns); 3424 return err; 3425 } 3426 3427 put_mnt_ns(old_mnt_ns); 3428 3429 /* Update the pwd and root */ 3430 set_fs_pwd(fs, &root); 3431 set_fs_root(fs, &root); 3432 3433 path_put(&root); 3434 return 0; 3435 } 3436 3437 static struct user_namespace *mntns_owner(struct ns_common *ns) 3438 { 3439 return to_mnt_ns(ns)->user_ns; 3440 } 3441 3442 const struct proc_ns_operations mntns_operations = { 3443 .name = "mnt", 3444 .type = CLONE_NEWNS, 3445 .get = mntns_get, 3446 .put = mntns_put, 3447 .install = mntns_install, 3448 .owner = mntns_owner, 3449 }; 3450