1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 35 #include "pnode.h" 36 #include "internal.h" 37 38 /* Maximum number of mounts in a mount namespace */ 39 unsigned int sysctl_mount_max __read_mostly = 100000; 40 41 static unsigned int m_hash_mask __read_mostly; 42 static unsigned int m_hash_shift __read_mostly; 43 static unsigned int mp_hash_mask __read_mostly; 44 static unsigned int mp_hash_shift __read_mostly; 45 46 static __initdata unsigned long mhash_entries; 47 static int __init set_mhash_entries(char *str) 48 { 49 if (!str) 50 return 0; 51 mhash_entries = simple_strtoul(str, &str, 0); 52 return 1; 53 } 54 __setup("mhash_entries=", set_mhash_entries); 55 56 static __initdata unsigned long mphash_entries; 57 static int __init set_mphash_entries(char *str) 58 { 59 if (!str) 60 return 0; 61 mphash_entries = simple_strtoul(str, &str, 0); 62 return 1; 63 } 64 __setup("mphash_entries=", set_mphash_entries); 65 66 static u64 event; 67 static DEFINE_IDA(mnt_id_ida); 68 static DEFINE_IDA(mnt_group_ida); 69 70 static struct hlist_head *mount_hashtable __read_mostly; 71 static struct hlist_head *mountpoint_hashtable __read_mostly; 72 static struct kmem_cache *mnt_cache __read_mostly; 73 static DECLARE_RWSEM(namespace_sem); 74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 76 77 struct mount_kattr { 78 unsigned int attr_set; 79 unsigned int attr_clr; 80 unsigned int propagation; 81 unsigned int lookup_flags; 82 bool recurse; 83 struct user_namespace *mnt_userns; 84 }; 85 86 /* /sys/fs */ 87 struct kobject *fs_kobj; 88 EXPORT_SYMBOL_GPL(fs_kobj); 89 90 /* 91 * vfsmount lock may be taken for read to prevent changes to the 92 * vfsmount hash, ie. during mountpoint lookups or walking back 93 * up the tree. 94 * 95 * It should be taken for write in all cases where the vfsmount 96 * tree or hash is modified or when a vfsmount structure is modified. 97 */ 98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 99 100 static inline void lock_mount_hash(void) 101 { 102 write_seqlock(&mount_lock); 103 } 104 105 static inline void unlock_mount_hash(void) 106 { 107 write_sequnlock(&mount_lock); 108 } 109 110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 111 { 112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 114 tmp = tmp + (tmp >> m_hash_shift); 115 return &mount_hashtable[tmp & m_hash_mask]; 116 } 117 118 static inline struct hlist_head *mp_hash(struct dentry *dentry) 119 { 120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 121 tmp = tmp + (tmp >> mp_hash_shift); 122 return &mountpoint_hashtable[tmp & mp_hash_mask]; 123 } 124 125 static int mnt_alloc_id(struct mount *mnt) 126 { 127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 128 129 if (res < 0) 130 return res; 131 mnt->mnt_id = res; 132 return 0; 133 } 134 135 static void mnt_free_id(struct mount *mnt) 136 { 137 ida_free(&mnt_id_ida, mnt->mnt_id); 138 } 139 140 /* 141 * Allocate a new peer group ID 142 */ 143 static int mnt_alloc_group_id(struct mount *mnt) 144 { 145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_group_id = res; 150 return 0; 151 } 152 153 /* 154 * Release a peer group ID 155 */ 156 void mnt_release_group_id(struct mount *mnt) 157 { 158 ida_free(&mnt_group_ida, mnt->mnt_group_id); 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static struct mount *alloc_vfsmnt(const char *name) 196 { 197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 198 if (mnt) { 199 int err; 200 201 err = mnt_alloc_id(mnt); 202 if (err) 203 goto out_free_cache; 204 205 if (name) { 206 mnt->mnt_devname = kstrdup_const(name, 207 GFP_KERNEL_ACCOUNT); 208 if (!mnt->mnt_devname) 209 goto out_free_id; 210 } 211 212 #ifdef CONFIG_SMP 213 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 214 if (!mnt->mnt_pcp) 215 goto out_free_devname; 216 217 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 218 #else 219 mnt->mnt_count = 1; 220 mnt->mnt_writers = 0; 221 #endif 222 223 INIT_HLIST_NODE(&mnt->mnt_hash); 224 INIT_LIST_HEAD(&mnt->mnt_child); 225 INIT_LIST_HEAD(&mnt->mnt_mounts); 226 INIT_LIST_HEAD(&mnt->mnt_list); 227 INIT_LIST_HEAD(&mnt->mnt_expire); 228 INIT_LIST_HEAD(&mnt->mnt_share); 229 INIT_LIST_HEAD(&mnt->mnt_slave_list); 230 INIT_LIST_HEAD(&mnt->mnt_slave); 231 INIT_HLIST_NODE(&mnt->mnt_mp_list); 232 INIT_LIST_HEAD(&mnt->mnt_umounting); 233 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 234 mnt->mnt.mnt_userns = &init_user_ns; 235 } 236 return mnt; 237 238 #ifdef CONFIG_SMP 239 out_free_devname: 240 kfree_const(mnt->mnt_devname); 241 #endif 242 out_free_id: 243 mnt_free_id(mnt); 244 out_free_cache: 245 kmem_cache_free(mnt_cache, mnt); 246 return NULL; 247 } 248 249 /* 250 * Most r/o checks on a fs are for operations that take 251 * discrete amounts of time, like a write() or unlink(). 252 * We must keep track of when those operations start 253 * (for permission checks) and when they end, so that 254 * we can determine when writes are able to occur to 255 * a filesystem. 256 */ 257 /* 258 * __mnt_is_readonly: check whether a mount is read-only 259 * @mnt: the mount to check for its write status 260 * 261 * This shouldn't be used directly ouside of the VFS. 262 * It does not guarantee that the filesystem will stay 263 * r/w, just that it is right *now*. This can not and 264 * should not be used in place of IS_RDONLY(inode). 265 * mnt_want/drop_write() will _keep_ the filesystem 266 * r/w. 267 */ 268 bool __mnt_is_readonly(struct vfsmount *mnt) 269 { 270 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 271 } 272 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 273 274 static inline void mnt_inc_writers(struct mount *mnt) 275 { 276 #ifdef CONFIG_SMP 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 278 #else 279 mnt->mnt_writers++; 280 #endif 281 } 282 283 static inline void mnt_dec_writers(struct mount *mnt) 284 { 285 #ifdef CONFIG_SMP 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 287 #else 288 mnt->mnt_writers--; 289 #endif 290 } 291 292 static unsigned int mnt_get_writers(struct mount *mnt) 293 { 294 #ifdef CONFIG_SMP 295 unsigned int count = 0; 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 300 } 301 302 return count; 303 #else 304 return mnt->mnt_writers; 305 #endif 306 } 307 308 static int mnt_is_readonly(struct vfsmount *mnt) 309 { 310 if (mnt->mnt_sb->s_readonly_remount) 311 return 1; 312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 313 smp_rmb(); 314 return __mnt_is_readonly(mnt); 315 } 316 317 /* 318 * Most r/o & frozen checks on a fs are for operations that take discrete 319 * amounts of time, like a write() or unlink(). We must keep track of when 320 * those operations start (for permission checks) and when they end, so that we 321 * can determine when writes are able to occur to a filesystem. 322 */ 323 /** 324 * __mnt_want_write - get write access to a mount without freeze protection 325 * @m: the mount on which to take a write 326 * 327 * This tells the low-level filesystem that a write is about to be performed to 328 * it, and makes sure that writes are allowed (mnt it read-write) before 329 * returning success. This operation does not protect against filesystem being 330 * frozen. When the write operation is finished, __mnt_drop_write() must be 331 * called. This is effectively a refcount. 332 */ 333 int __mnt_want_write(struct vfsmount *m) 334 { 335 struct mount *mnt = real_mount(m); 336 int ret = 0; 337 338 preempt_disable(); 339 mnt_inc_writers(mnt); 340 /* 341 * The store to mnt_inc_writers must be visible before we pass 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 343 * incremented count after it has set MNT_WRITE_HOLD. 344 */ 345 smp_mb(); 346 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 347 cpu_relax(); 348 /* 349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 350 * be set to match its requirements. So we must not load that until 351 * MNT_WRITE_HOLD is cleared. 352 */ 353 smp_rmb(); 354 if (mnt_is_readonly(m)) { 355 mnt_dec_writers(mnt); 356 ret = -EROFS; 357 } 358 preempt_enable(); 359 360 return ret; 361 } 362 363 /** 364 * mnt_want_write - get write access to a mount 365 * @m: the mount on which to take a write 366 * 367 * This tells the low-level filesystem that a write is about to be performed to 368 * it, and makes sure that writes are allowed (mount is read-write, filesystem 369 * is not frozen) before returning success. When the write operation is 370 * finished, mnt_drop_write() must be called. This is effectively a refcount. 371 */ 372 int mnt_want_write(struct vfsmount *m) 373 { 374 int ret; 375 376 sb_start_write(m->mnt_sb); 377 ret = __mnt_want_write(m); 378 if (ret) 379 sb_end_write(m->mnt_sb); 380 return ret; 381 } 382 EXPORT_SYMBOL_GPL(mnt_want_write); 383 384 /** 385 * __mnt_want_write_file - get write access to a file's mount 386 * @file: the file who's mount on which to take a write 387 * 388 * This is like __mnt_want_write, but if the file is already open for writing it 389 * skips incrementing mnt_writers (since the open file already has a reference) 390 * and instead only does the check for emergency r/o remounts. This must be 391 * paired with __mnt_drop_write_file. 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (file->f_mode & FMODE_WRITER) { 396 /* 397 * Superblock may have become readonly while there are still 398 * writable fd's, e.g. due to a fs error with errors=remount-ro 399 */ 400 if (__mnt_is_readonly(file->f_path.mnt)) 401 return -EROFS; 402 return 0; 403 } 404 return __mnt_want_write(file->f_path.mnt); 405 } 406 407 /** 408 * mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like mnt_want_write, but if the file is already open for writing it 412 * skips incrementing mnt_writers (since the open file already has a reference) 413 * and instead only does the freeze protection and the check for emergency r/o 414 * remounts. This must be paired with mnt_drop_write_file. 415 */ 416 int mnt_want_write_file(struct file *file) 417 { 418 int ret; 419 420 sb_start_write(file_inode(file)->i_sb); 421 ret = __mnt_want_write_file(file); 422 if (ret) 423 sb_end_write(file_inode(file)->i_sb); 424 return ret; 425 } 426 EXPORT_SYMBOL_GPL(mnt_want_write_file); 427 428 /** 429 * __mnt_drop_write - give up write access to a mount 430 * @mnt: the mount on which to give up write access 431 * 432 * Tells the low-level filesystem that we are done 433 * performing writes to it. Must be matched with 434 * __mnt_want_write() call above. 435 */ 436 void __mnt_drop_write(struct vfsmount *mnt) 437 { 438 preempt_disable(); 439 mnt_dec_writers(real_mount(mnt)); 440 preempt_enable(); 441 } 442 443 /** 444 * mnt_drop_write - give up write access to a mount 445 * @mnt: the mount on which to give up write access 446 * 447 * Tells the low-level filesystem that we are done performing writes to it and 448 * also allows filesystem to be frozen again. Must be matched with 449 * mnt_want_write() call above. 450 */ 451 void mnt_drop_write(struct vfsmount *mnt) 452 { 453 __mnt_drop_write(mnt); 454 sb_end_write(mnt->mnt_sb); 455 } 456 EXPORT_SYMBOL_GPL(mnt_drop_write); 457 458 void __mnt_drop_write_file(struct file *file) 459 { 460 if (!(file->f_mode & FMODE_WRITER)) 461 __mnt_drop_write(file->f_path.mnt); 462 } 463 464 void mnt_drop_write_file(struct file *file) 465 { 466 __mnt_drop_write_file(file); 467 sb_end_write(file_inode(file)->i_sb); 468 } 469 EXPORT_SYMBOL(mnt_drop_write_file); 470 471 static inline int mnt_hold_writers(struct mount *mnt) 472 { 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 474 /* 475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 476 * should be visible before we do. 477 */ 478 smp_mb(); 479 480 /* 481 * With writers on hold, if this value is zero, then there are 482 * definitely no active writers (although held writers may subsequently 483 * increment the count, they'll have to wait, and decrement it after 484 * seeing MNT_READONLY). 485 * 486 * It is OK to have counter incremented on one CPU and decremented on 487 * another: the sum will add up correctly. The danger would be when we 488 * sum up each counter, if we read a counter before it is incremented, 489 * but then read another CPU's count which it has been subsequently 490 * decremented from -- we would see more decrements than we should. 491 * MNT_WRITE_HOLD protects against this scenario, because 492 * mnt_want_write first increments count, then smp_mb, then spins on 493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 494 * we're counting up here. 495 */ 496 if (mnt_get_writers(mnt) > 0) 497 return -EBUSY; 498 499 return 0; 500 } 501 502 static inline void mnt_unhold_writers(struct mount *mnt) 503 { 504 /* 505 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 506 * that become unheld will see MNT_READONLY. 507 */ 508 smp_wmb(); 509 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 510 } 511 512 static int mnt_make_readonly(struct mount *mnt) 513 { 514 int ret; 515 516 ret = mnt_hold_writers(mnt); 517 if (!ret) 518 mnt->mnt.mnt_flags |= MNT_READONLY; 519 mnt_unhold_writers(mnt); 520 return ret; 521 } 522 523 int sb_prepare_remount_readonly(struct super_block *sb) 524 { 525 struct mount *mnt; 526 int err = 0; 527 528 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 529 if (atomic_long_read(&sb->s_remove_count)) 530 return -EBUSY; 531 532 lock_mount_hash(); 533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 534 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 535 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 536 smp_mb(); 537 if (mnt_get_writers(mnt) > 0) { 538 err = -EBUSY; 539 break; 540 } 541 } 542 } 543 if (!err && atomic_long_read(&sb->s_remove_count)) 544 err = -EBUSY; 545 546 if (!err) { 547 sb->s_readonly_remount = 1; 548 smp_wmb(); 549 } 550 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 551 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 552 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 553 } 554 unlock_mount_hash(); 555 556 return err; 557 } 558 559 static void free_vfsmnt(struct mount *mnt) 560 { 561 struct user_namespace *mnt_userns; 562 563 mnt_userns = mnt_user_ns(&mnt->mnt); 564 if (mnt_userns != &init_user_ns) 565 put_user_ns(mnt_userns); 566 kfree_const(mnt->mnt_devname); 567 #ifdef CONFIG_SMP 568 free_percpu(mnt->mnt_pcp); 569 #endif 570 kmem_cache_free(mnt_cache, mnt); 571 } 572 573 static void delayed_free_vfsmnt(struct rcu_head *head) 574 { 575 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 576 } 577 578 /* call under rcu_read_lock */ 579 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 580 { 581 struct mount *mnt; 582 if (read_seqretry(&mount_lock, seq)) 583 return 1; 584 if (bastard == NULL) 585 return 0; 586 mnt = real_mount(bastard); 587 mnt_add_count(mnt, 1); 588 smp_mb(); // see mntput_no_expire() 589 if (likely(!read_seqretry(&mount_lock, seq))) 590 return 0; 591 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 592 mnt_add_count(mnt, -1); 593 return 1; 594 } 595 lock_mount_hash(); 596 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 597 mnt_add_count(mnt, -1); 598 unlock_mount_hash(); 599 return 1; 600 } 601 unlock_mount_hash(); 602 /* caller will mntput() */ 603 return -1; 604 } 605 606 /* call under rcu_read_lock */ 607 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 608 { 609 int res = __legitimize_mnt(bastard, seq); 610 if (likely(!res)) 611 return true; 612 if (unlikely(res < 0)) { 613 rcu_read_unlock(); 614 mntput(bastard); 615 rcu_read_lock(); 616 } 617 return false; 618 } 619 620 /* 621 * find the first mount at @dentry on vfsmount @mnt. 622 * call under rcu_read_lock() 623 */ 624 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 625 { 626 struct hlist_head *head = m_hash(mnt, dentry); 627 struct mount *p; 628 629 hlist_for_each_entry_rcu(p, head, mnt_hash) 630 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 631 return p; 632 return NULL; 633 } 634 635 /* 636 * lookup_mnt - Return the first child mount mounted at path 637 * 638 * "First" means first mounted chronologically. If you create the 639 * following mounts: 640 * 641 * mount /dev/sda1 /mnt 642 * mount /dev/sda2 /mnt 643 * mount /dev/sda3 /mnt 644 * 645 * Then lookup_mnt() on the base /mnt dentry in the root mount will 646 * return successively the root dentry and vfsmount of /dev/sda1, then 647 * /dev/sda2, then /dev/sda3, then NULL. 648 * 649 * lookup_mnt takes a reference to the found vfsmount. 650 */ 651 struct vfsmount *lookup_mnt(const struct path *path) 652 { 653 struct mount *child_mnt; 654 struct vfsmount *m; 655 unsigned seq; 656 657 rcu_read_lock(); 658 do { 659 seq = read_seqbegin(&mount_lock); 660 child_mnt = __lookup_mnt(path->mnt, path->dentry); 661 m = child_mnt ? &child_mnt->mnt : NULL; 662 } while (!legitimize_mnt(m, seq)); 663 rcu_read_unlock(); 664 return m; 665 } 666 667 static inline void lock_ns_list(struct mnt_namespace *ns) 668 { 669 spin_lock(&ns->ns_lock); 670 } 671 672 static inline void unlock_ns_list(struct mnt_namespace *ns) 673 { 674 spin_unlock(&ns->ns_lock); 675 } 676 677 static inline bool mnt_is_cursor(struct mount *mnt) 678 { 679 return mnt->mnt.mnt_flags & MNT_CURSOR; 680 } 681 682 /* 683 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 684 * current mount namespace. 685 * 686 * The common case is dentries are not mountpoints at all and that 687 * test is handled inline. For the slow case when we are actually 688 * dealing with a mountpoint of some kind, walk through all of the 689 * mounts in the current mount namespace and test to see if the dentry 690 * is a mountpoint. 691 * 692 * The mount_hashtable is not usable in the context because we 693 * need to identify all mounts that may be in the current mount 694 * namespace not just a mount that happens to have some specified 695 * parent mount. 696 */ 697 bool __is_local_mountpoint(struct dentry *dentry) 698 { 699 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 700 struct mount *mnt; 701 bool is_covered = false; 702 703 down_read(&namespace_sem); 704 lock_ns_list(ns); 705 list_for_each_entry(mnt, &ns->list, mnt_list) { 706 if (mnt_is_cursor(mnt)) 707 continue; 708 is_covered = (mnt->mnt_mountpoint == dentry); 709 if (is_covered) 710 break; 711 } 712 unlock_ns_list(ns); 713 up_read(&namespace_sem); 714 715 return is_covered; 716 } 717 718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 719 { 720 struct hlist_head *chain = mp_hash(dentry); 721 struct mountpoint *mp; 722 723 hlist_for_each_entry(mp, chain, m_hash) { 724 if (mp->m_dentry == dentry) { 725 mp->m_count++; 726 return mp; 727 } 728 } 729 return NULL; 730 } 731 732 static struct mountpoint *get_mountpoint(struct dentry *dentry) 733 { 734 struct mountpoint *mp, *new = NULL; 735 int ret; 736 737 if (d_mountpoint(dentry)) { 738 /* might be worth a WARN_ON() */ 739 if (d_unlinked(dentry)) 740 return ERR_PTR(-ENOENT); 741 mountpoint: 742 read_seqlock_excl(&mount_lock); 743 mp = lookup_mountpoint(dentry); 744 read_sequnlock_excl(&mount_lock); 745 if (mp) 746 goto done; 747 } 748 749 if (!new) 750 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 751 if (!new) 752 return ERR_PTR(-ENOMEM); 753 754 755 /* Exactly one processes may set d_mounted */ 756 ret = d_set_mounted(dentry); 757 758 /* Someone else set d_mounted? */ 759 if (ret == -EBUSY) 760 goto mountpoint; 761 762 /* The dentry is not available as a mountpoint? */ 763 mp = ERR_PTR(ret); 764 if (ret) 765 goto done; 766 767 /* Add the new mountpoint to the hash table */ 768 read_seqlock_excl(&mount_lock); 769 new->m_dentry = dget(dentry); 770 new->m_count = 1; 771 hlist_add_head(&new->m_hash, mp_hash(dentry)); 772 INIT_HLIST_HEAD(&new->m_list); 773 read_sequnlock_excl(&mount_lock); 774 775 mp = new; 776 new = NULL; 777 done: 778 kfree(new); 779 return mp; 780 } 781 782 /* 783 * vfsmount lock must be held. Additionally, the caller is responsible 784 * for serializing calls for given disposal list. 785 */ 786 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 787 { 788 if (!--mp->m_count) { 789 struct dentry *dentry = mp->m_dentry; 790 BUG_ON(!hlist_empty(&mp->m_list)); 791 spin_lock(&dentry->d_lock); 792 dentry->d_flags &= ~DCACHE_MOUNTED; 793 spin_unlock(&dentry->d_lock); 794 dput_to_list(dentry, list); 795 hlist_del(&mp->m_hash); 796 kfree(mp); 797 } 798 } 799 800 /* called with namespace_lock and vfsmount lock */ 801 static void put_mountpoint(struct mountpoint *mp) 802 { 803 __put_mountpoint(mp, &ex_mountpoints); 804 } 805 806 static inline int check_mnt(struct mount *mnt) 807 { 808 return mnt->mnt_ns == current->nsproxy->mnt_ns; 809 } 810 811 /* 812 * vfsmount lock must be held for write 813 */ 814 static void touch_mnt_namespace(struct mnt_namespace *ns) 815 { 816 if (ns) { 817 ns->event = ++event; 818 wake_up_interruptible(&ns->poll); 819 } 820 } 821 822 /* 823 * vfsmount lock must be held for write 824 */ 825 static void __touch_mnt_namespace(struct mnt_namespace *ns) 826 { 827 if (ns && ns->event != event) { 828 ns->event = event; 829 wake_up_interruptible(&ns->poll); 830 } 831 } 832 833 /* 834 * vfsmount lock must be held for write 835 */ 836 static struct mountpoint *unhash_mnt(struct mount *mnt) 837 { 838 struct mountpoint *mp; 839 mnt->mnt_parent = mnt; 840 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 841 list_del_init(&mnt->mnt_child); 842 hlist_del_init_rcu(&mnt->mnt_hash); 843 hlist_del_init(&mnt->mnt_mp_list); 844 mp = mnt->mnt_mp; 845 mnt->mnt_mp = NULL; 846 return mp; 847 } 848 849 /* 850 * vfsmount lock must be held for write 851 */ 852 static void umount_mnt(struct mount *mnt) 853 { 854 put_mountpoint(unhash_mnt(mnt)); 855 } 856 857 /* 858 * vfsmount lock must be held for write 859 */ 860 void mnt_set_mountpoint(struct mount *mnt, 861 struct mountpoint *mp, 862 struct mount *child_mnt) 863 { 864 mp->m_count++; 865 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 866 child_mnt->mnt_mountpoint = mp->m_dentry; 867 child_mnt->mnt_parent = mnt; 868 child_mnt->mnt_mp = mp; 869 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 870 } 871 872 static void __attach_mnt(struct mount *mnt, struct mount *parent) 873 { 874 hlist_add_head_rcu(&mnt->mnt_hash, 875 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 876 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 877 } 878 879 /* 880 * vfsmount lock must be held for write 881 */ 882 static void attach_mnt(struct mount *mnt, 883 struct mount *parent, 884 struct mountpoint *mp) 885 { 886 mnt_set_mountpoint(parent, mp, mnt); 887 __attach_mnt(mnt, parent); 888 } 889 890 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 891 { 892 struct mountpoint *old_mp = mnt->mnt_mp; 893 struct mount *old_parent = mnt->mnt_parent; 894 895 list_del_init(&mnt->mnt_child); 896 hlist_del_init(&mnt->mnt_mp_list); 897 hlist_del_init_rcu(&mnt->mnt_hash); 898 899 attach_mnt(mnt, parent, mp); 900 901 put_mountpoint(old_mp); 902 mnt_add_count(old_parent, -1); 903 } 904 905 /* 906 * vfsmount lock must be held for write 907 */ 908 static void commit_tree(struct mount *mnt) 909 { 910 struct mount *parent = mnt->mnt_parent; 911 struct mount *m; 912 LIST_HEAD(head); 913 struct mnt_namespace *n = parent->mnt_ns; 914 915 BUG_ON(parent == mnt); 916 917 list_add_tail(&head, &mnt->mnt_list); 918 list_for_each_entry(m, &head, mnt_list) 919 m->mnt_ns = n; 920 921 list_splice(&head, n->list.prev); 922 923 n->mounts += n->pending_mounts; 924 n->pending_mounts = 0; 925 926 __attach_mnt(mnt, parent); 927 touch_mnt_namespace(n); 928 } 929 930 static struct mount *next_mnt(struct mount *p, struct mount *root) 931 { 932 struct list_head *next = p->mnt_mounts.next; 933 if (next == &p->mnt_mounts) { 934 while (1) { 935 if (p == root) 936 return NULL; 937 next = p->mnt_child.next; 938 if (next != &p->mnt_parent->mnt_mounts) 939 break; 940 p = p->mnt_parent; 941 } 942 } 943 return list_entry(next, struct mount, mnt_child); 944 } 945 946 static struct mount *skip_mnt_tree(struct mount *p) 947 { 948 struct list_head *prev = p->mnt_mounts.prev; 949 while (prev != &p->mnt_mounts) { 950 p = list_entry(prev, struct mount, mnt_child); 951 prev = p->mnt_mounts.prev; 952 } 953 return p; 954 } 955 956 /** 957 * vfs_create_mount - Create a mount for a configured superblock 958 * @fc: The configuration context with the superblock attached 959 * 960 * Create a mount to an already configured superblock. If necessary, the 961 * caller should invoke vfs_get_tree() before calling this. 962 * 963 * Note that this does not attach the mount to anything. 964 */ 965 struct vfsmount *vfs_create_mount(struct fs_context *fc) 966 { 967 struct mount *mnt; 968 969 if (!fc->root) 970 return ERR_PTR(-EINVAL); 971 972 mnt = alloc_vfsmnt(fc->source ?: "none"); 973 if (!mnt) 974 return ERR_PTR(-ENOMEM); 975 976 if (fc->sb_flags & SB_KERNMOUNT) 977 mnt->mnt.mnt_flags = MNT_INTERNAL; 978 979 atomic_inc(&fc->root->d_sb->s_active); 980 mnt->mnt.mnt_sb = fc->root->d_sb; 981 mnt->mnt.mnt_root = dget(fc->root); 982 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 983 mnt->mnt_parent = mnt; 984 985 lock_mount_hash(); 986 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 987 unlock_mount_hash(); 988 return &mnt->mnt; 989 } 990 EXPORT_SYMBOL(vfs_create_mount); 991 992 struct vfsmount *fc_mount(struct fs_context *fc) 993 { 994 int err = vfs_get_tree(fc); 995 if (!err) { 996 up_write(&fc->root->d_sb->s_umount); 997 return vfs_create_mount(fc); 998 } 999 return ERR_PTR(err); 1000 } 1001 EXPORT_SYMBOL(fc_mount); 1002 1003 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1004 int flags, const char *name, 1005 void *data) 1006 { 1007 struct fs_context *fc; 1008 struct vfsmount *mnt; 1009 int ret = 0; 1010 1011 if (!type) 1012 return ERR_PTR(-EINVAL); 1013 1014 fc = fs_context_for_mount(type, flags); 1015 if (IS_ERR(fc)) 1016 return ERR_CAST(fc); 1017 1018 if (name) 1019 ret = vfs_parse_fs_string(fc, "source", 1020 name, strlen(name)); 1021 if (!ret) 1022 ret = parse_monolithic_mount_data(fc, data); 1023 if (!ret) 1024 mnt = fc_mount(fc); 1025 else 1026 mnt = ERR_PTR(ret); 1027 1028 put_fs_context(fc); 1029 return mnt; 1030 } 1031 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1032 1033 struct vfsmount * 1034 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1035 const char *name, void *data) 1036 { 1037 /* Until it is worked out how to pass the user namespace 1038 * through from the parent mount to the submount don't support 1039 * unprivileged mounts with submounts. 1040 */ 1041 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1042 return ERR_PTR(-EPERM); 1043 1044 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1045 } 1046 EXPORT_SYMBOL_GPL(vfs_submount); 1047 1048 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1049 int flag) 1050 { 1051 struct super_block *sb = old->mnt.mnt_sb; 1052 struct mount *mnt; 1053 int err; 1054 1055 mnt = alloc_vfsmnt(old->mnt_devname); 1056 if (!mnt) 1057 return ERR_PTR(-ENOMEM); 1058 1059 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1060 mnt->mnt_group_id = 0; /* not a peer of original */ 1061 else 1062 mnt->mnt_group_id = old->mnt_group_id; 1063 1064 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1065 err = mnt_alloc_group_id(mnt); 1066 if (err) 1067 goto out_free; 1068 } 1069 1070 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1071 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1072 1073 atomic_inc(&sb->s_active); 1074 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1075 if (mnt->mnt.mnt_userns != &init_user_ns) 1076 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1077 mnt->mnt.mnt_sb = sb; 1078 mnt->mnt.mnt_root = dget(root); 1079 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1080 mnt->mnt_parent = mnt; 1081 lock_mount_hash(); 1082 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1083 unlock_mount_hash(); 1084 1085 if ((flag & CL_SLAVE) || 1086 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1087 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1088 mnt->mnt_master = old; 1089 CLEAR_MNT_SHARED(mnt); 1090 } else if (!(flag & CL_PRIVATE)) { 1091 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1092 list_add(&mnt->mnt_share, &old->mnt_share); 1093 if (IS_MNT_SLAVE(old)) 1094 list_add(&mnt->mnt_slave, &old->mnt_slave); 1095 mnt->mnt_master = old->mnt_master; 1096 } else { 1097 CLEAR_MNT_SHARED(mnt); 1098 } 1099 if (flag & CL_MAKE_SHARED) 1100 set_mnt_shared(mnt); 1101 1102 /* stick the duplicate mount on the same expiry list 1103 * as the original if that was on one */ 1104 if (flag & CL_EXPIRE) { 1105 if (!list_empty(&old->mnt_expire)) 1106 list_add(&mnt->mnt_expire, &old->mnt_expire); 1107 } 1108 1109 return mnt; 1110 1111 out_free: 1112 mnt_free_id(mnt); 1113 free_vfsmnt(mnt); 1114 return ERR_PTR(err); 1115 } 1116 1117 static void cleanup_mnt(struct mount *mnt) 1118 { 1119 struct hlist_node *p; 1120 struct mount *m; 1121 /* 1122 * The warning here probably indicates that somebody messed 1123 * up a mnt_want/drop_write() pair. If this happens, the 1124 * filesystem was probably unable to make r/w->r/o transitions. 1125 * The locking used to deal with mnt_count decrement provides barriers, 1126 * so mnt_get_writers() below is safe. 1127 */ 1128 WARN_ON(mnt_get_writers(mnt)); 1129 if (unlikely(mnt->mnt_pins.first)) 1130 mnt_pin_kill(mnt); 1131 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1132 hlist_del(&m->mnt_umount); 1133 mntput(&m->mnt); 1134 } 1135 fsnotify_vfsmount_delete(&mnt->mnt); 1136 dput(mnt->mnt.mnt_root); 1137 deactivate_super(mnt->mnt.mnt_sb); 1138 mnt_free_id(mnt); 1139 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1140 } 1141 1142 static void __cleanup_mnt(struct rcu_head *head) 1143 { 1144 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1145 } 1146 1147 static LLIST_HEAD(delayed_mntput_list); 1148 static void delayed_mntput(struct work_struct *unused) 1149 { 1150 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1151 struct mount *m, *t; 1152 1153 llist_for_each_entry_safe(m, t, node, mnt_llist) 1154 cleanup_mnt(m); 1155 } 1156 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1157 1158 static void mntput_no_expire(struct mount *mnt) 1159 { 1160 LIST_HEAD(list); 1161 int count; 1162 1163 rcu_read_lock(); 1164 if (likely(READ_ONCE(mnt->mnt_ns))) { 1165 /* 1166 * Since we don't do lock_mount_hash() here, 1167 * ->mnt_ns can change under us. However, if it's 1168 * non-NULL, then there's a reference that won't 1169 * be dropped until after an RCU delay done after 1170 * turning ->mnt_ns NULL. So if we observe it 1171 * non-NULL under rcu_read_lock(), the reference 1172 * we are dropping is not the final one. 1173 */ 1174 mnt_add_count(mnt, -1); 1175 rcu_read_unlock(); 1176 return; 1177 } 1178 lock_mount_hash(); 1179 /* 1180 * make sure that if __legitimize_mnt() has not seen us grab 1181 * mount_lock, we'll see their refcount increment here. 1182 */ 1183 smp_mb(); 1184 mnt_add_count(mnt, -1); 1185 count = mnt_get_count(mnt); 1186 if (count != 0) { 1187 WARN_ON(count < 0); 1188 rcu_read_unlock(); 1189 unlock_mount_hash(); 1190 return; 1191 } 1192 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1193 rcu_read_unlock(); 1194 unlock_mount_hash(); 1195 return; 1196 } 1197 mnt->mnt.mnt_flags |= MNT_DOOMED; 1198 rcu_read_unlock(); 1199 1200 list_del(&mnt->mnt_instance); 1201 1202 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1203 struct mount *p, *tmp; 1204 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1205 __put_mountpoint(unhash_mnt(p), &list); 1206 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1207 } 1208 } 1209 unlock_mount_hash(); 1210 shrink_dentry_list(&list); 1211 1212 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1213 struct task_struct *task = current; 1214 if (likely(!(task->flags & PF_KTHREAD))) { 1215 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1216 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1217 return; 1218 } 1219 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1220 schedule_delayed_work(&delayed_mntput_work, 1); 1221 return; 1222 } 1223 cleanup_mnt(mnt); 1224 } 1225 1226 void mntput(struct vfsmount *mnt) 1227 { 1228 if (mnt) { 1229 struct mount *m = real_mount(mnt); 1230 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1231 if (unlikely(m->mnt_expiry_mark)) 1232 m->mnt_expiry_mark = 0; 1233 mntput_no_expire(m); 1234 } 1235 } 1236 EXPORT_SYMBOL(mntput); 1237 1238 struct vfsmount *mntget(struct vfsmount *mnt) 1239 { 1240 if (mnt) 1241 mnt_add_count(real_mount(mnt), 1); 1242 return mnt; 1243 } 1244 EXPORT_SYMBOL(mntget); 1245 1246 /** 1247 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1248 * @path: path to check 1249 * 1250 * d_mountpoint() can only be used reliably to establish if a dentry is 1251 * not mounted in any namespace and that common case is handled inline. 1252 * d_mountpoint() isn't aware of the possibility there may be multiple 1253 * mounts using a given dentry in a different namespace. This function 1254 * checks if the passed in path is a mountpoint rather than the dentry 1255 * alone. 1256 */ 1257 bool path_is_mountpoint(const struct path *path) 1258 { 1259 unsigned seq; 1260 bool res; 1261 1262 if (!d_mountpoint(path->dentry)) 1263 return false; 1264 1265 rcu_read_lock(); 1266 do { 1267 seq = read_seqbegin(&mount_lock); 1268 res = __path_is_mountpoint(path); 1269 } while (read_seqretry(&mount_lock, seq)); 1270 rcu_read_unlock(); 1271 1272 return res; 1273 } 1274 EXPORT_SYMBOL(path_is_mountpoint); 1275 1276 struct vfsmount *mnt_clone_internal(const struct path *path) 1277 { 1278 struct mount *p; 1279 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1280 if (IS_ERR(p)) 1281 return ERR_CAST(p); 1282 p->mnt.mnt_flags |= MNT_INTERNAL; 1283 return &p->mnt; 1284 } 1285 1286 #ifdef CONFIG_PROC_FS 1287 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1288 struct list_head *p) 1289 { 1290 struct mount *mnt, *ret = NULL; 1291 1292 lock_ns_list(ns); 1293 list_for_each_continue(p, &ns->list) { 1294 mnt = list_entry(p, typeof(*mnt), mnt_list); 1295 if (!mnt_is_cursor(mnt)) { 1296 ret = mnt; 1297 break; 1298 } 1299 } 1300 unlock_ns_list(ns); 1301 1302 return ret; 1303 } 1304 1305 /* iterator; we want it to have access to namespace_sem, thus here... */ 1306 static void *m_start(struct seq_file *m, loff_t *pos) 1307 { 1308 struct proc_mounts *p = m->private; 1309 struct list_head *prev; 1310 1311 down_read(&namespace_sem); 1312 if (!*pos) { 1313 prev = &p->ns->list; 1314 } else { 1315 prev = &p->cursor.mnt_list; 1316 1317 /* Read after we'd reached the end? */ 1318 if (list_empty(prev)) 1319 return NULL; 1320 } 1321 1322 return mnt_list_next(p->ns, prev); 1323 } 1324 1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1326 { 1327 struct proc_mounts *p = m->private; 1328 struct mount *mnt = v; 1329 1330 ++*pos; 1331 return mnt_list_next(p->ns, &mnt->mnt_list); 1332 } 1333 1334 static void m_stop(struct seq_file *m, void *v) 1335 { 1336 struct proc_mounts *p = m->private; 1337 struct mount *mnt = v; 1338 1339 lock_ns_list(p->ns); 1340 if (mnt) 1341 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1342 else 1343 list_del_init(&p->cursor.mnt_list); 1344 unlock_ns_list(p->ns); 1345 up_read(&namespace_sem); 1346 } 1347 1348 static int m_show(struct seq_file *m, void *v) 1349 { 1350 struct proc_mounts *p = m->private; 1351 struct mount *r = v; 1352 return p->show(m, &r->mnt); 1353 } 1354 1355 const struct seq_operations mounts_op = { 1356 .start = m_start, 1357 .next = m_next, 1358 .stop = m_stop, 1359 .show = m_show, 1360 }; 1361 1362 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1363 { 1364 down_read(&namespace_sem); 1365 lock_ns_list(ns); 1366 list_del(&cursor->mnt_list); 1367 unlock_ns_list(ns); 1368 up_read(&namespace_sem); 1369 } 1370 #endif /* CONFIG_PROC_FS */ 1371 1372 /** 1373 * may_umount_tree - check if a mount tree is busy 1374 * @m: root of mount tree 1375 * 1376 * This is called to check if a tree of mounts has any 1377 * open files, pwds, chroots or sub mounts that are 1378 * busy. 1379 */ 1380 int may_umount_tree(struct vfsmount *m) 1381 { 1382 struct mount *mnt = real_mount(m); 1383 int actual_refs = 0; 1384 int minimum_refs = 0; 1385 struct mount *p; 1386 BUG_ON(!m); 1387 1388 /* write lock needed for mnt_get_count */ 1389 lock_mount_hash(); 1390 for (p = mnt; p; p = next_mnt(p, mnt)) { 1391 actual_refs += mnt_get_count(p); 1392 minimum_refs += 2; 1393 } 1394 unlock_mount_hash(); 1395 1396 if (actual_refs > minimum_refs) 1397 return 0; 1398 1399 return 1; 1400 } 1401 1402 EXPORT_SYMBOL(may_umount_tree); 1403 1404 /** 1405 * may_umount - check if a mount point is busy 1406 * @mnt: root of mount 1407 * 1408 * This is called to check if a mount point has any 1409 * open files, pwds, chroots or sub mounts. If the 1410 * mount has sub mounts this will return busy 1411 * regardless of whether the sub mounts are busy. 1412 * 1413 * Doesn't take quota and stuff into account. IOW, in some cases it will 1414 * give false negatives. The main reason why it's here is that we need 1415 * a non-destructive way to look for easily umountable filesystems. 1416 */ 1417 int may_umount(struct vfsmount *mnt) 1418 { 1419 int ret = 1; 1420 down_read(&namespace_sem); 1421 lock_mount_hash(); 1422 if (propagate_mount_busy(real_mount(mnt), 2)) 1423 ret = 0; 1424 unlock_mount_hash(); 1425 up_read(&namespace_sem); 1426 return ret; 1427 } 1428 1429 EXPORT_SYMBOL(may_umount); 1430 1431 static void namespace_unlock(void) 1432 { 1433 struct hlist_head head; 1434 struct hlist_node *p; 1435 struct mount *m; 1436 LIST_HEAD(list); 1437 1438 hlist_move_list(&unmounted, &head); 1439 list_splice_init(&ex_mountpoints, &list); 1440 1441 up_write(&namespace_sem); 1442 1443 shrink_dentry_list(&list); 1444 1445 if (likely(hlist_empty(&head))) 1446 return; 1447 1448 synchronize_rcu_expedited(); 1449 1450 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1451 hlist_del(&m->mnt_umount); 1452 mntput(&m->mnt); 1453 } 1454 } 1455 1456 static inline void namespace_lock(void) 1457 { 1458 down_write(&namespace_sem); 1459 } 1460 1461 enum umount_tree_flags { 1462 UMOUNT_SYNC = 1, 1463 UMOUNT_PROPAGATE = 2, 1464 UMOUNT_CONNECTED = 4, 1465 }; 1466 1467 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1468 { 1469 /* Leaving mounts connected is only valid for lazy umounts */ 1470 if (how & UMOUNT_SYNC) 1471 return true; 1472 1473 /* A mount without a parent has nothing to be connected to */ 1474 if (!mnt_has_parent(mnt)) 1475 return true; 1476 1477 /* Because the reference counting rules change when mounts are 1478 * unmounted and connected, umounted mounts may not be 1479 * connected to mounted mounts. 1480 */ 1481 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1482 return true; 1483 1484 /* Has it been requested that the mount remain connected? */ 1485 if (how & UMOUNT_CONNECTED) 1486 return false; 1487 1488 /* Is the mount locked such that it needs to remain connected? */ 1489 if (IS_MNT_LOCKED(mnt)) 1490 return false; 1491 1492 /* By default disconnect the mount */ 1493 return true; 1494 } 1495 1496 /* 1497 * mount_lock must be held 1498 * namespace_sem must be held for write 1499 */ 1500 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1501 { 1502 LIST_HEAD(tmp_list); 1503 struct mount *p; 1504 1505 if (how & UMOUNT_PROPAGATE) 1506 propagate_mount_unlock(mnt); 1507 1508 /* Gather the mounts to umount */ 1509 for (p = mnt; p; p = next_mnt(p, mnt)) { 1510 p->mnt.mnt_flags |= MNT_UMOUNT; 1511 list_move(&p->mnt_list, &tmp_list); 1512 } 1513 1514 /* Hide the mounts from mnt_mounts */ 1515 list_for_each_entry(p, &tmp_list, mnt_list) { 1516 list_del_init(&p->mnt_child); 1517 } 1518 1519 /* Add propogated mounts to the tmp_list */ 1520 if (how & UMOUNT_PROPAGATE) 1521 propagate_umount(&tmp_list); 1522 1523 while (!list_empty(&tmp_list)) { 1524 struct mnt_namespace *ns; 1525 bool disconnect; 1526 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1527 list_del_init(&p->mnt_expire); 1528 list_del_init(&p->mnt_list); 1529 ns = p->mnt_ns; 1530 if (ns) { 1531 ns->mounts--; 1532 __touch_mnt_namespace(ns); 1533 } 1534 p->mnt_ns = NULL; 1535 if (how & UMOUNT_SYNC) 1536 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1537 1538 disconnect = disconnect_mount(p, how); 1539 if (mnt_has_parent(p)) { 1540 mnt_add_count(p->mnt_parent, -1); 1541 if (!disconnect) { 1542 /* Don't forget about p */ 1543 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1544 } else { 1545 umount_mnt(p); 1546 } 1547 } 1548 change_mnt_propagation(p, MS_PRIVATE); 1549 if (disconnect) 1550 hlist_add_head(&p->mnt_umount, &unmounted); 1551 } 1552 } 1553 1554 static void shrink_submounts(struct mount *mnt); 1555 1556 static int do_umount_root(struct super_block *sb) 1557 { 1558 int ret = 0; 1559 1560 down_write(&sb->s_umount); 1561 if (!sb_rdonly(sb)) { 1562 struct fs_context *fc; 1563 1564 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1565 SB_RDONLY); 1566 if (IS_ERR(fc)) { 1567 ret = PTR_ERR(fc); 1568 } else { 1569 ret = parse_monolithic_mount_data(fc, NULL); 1570 if (!ret) 1571 ret = reconfigure_super(fc); 1572 put_fs_context(fc); 1573 } 1574 } 1575 up_write(&sb->s_umount); 1576 return ret; 1577 } 1578 1579 static int do_umount(struct mount *mnt, int flags) 1580 { 1581 struct super_block *sb = mnt->mnt.mnt_sb; 1582 int retval; 1583 1584 retval = security_sb_umount(&mnt->mnt, flags); 1585 if (retval) 1586 return retval; 1587 1588 /* 1589 * Allow userspace to request a mountpoint be expired rather than 1590 * unmounting unconditionally. Unmount only happens if: 1591 * (1) the mark is already set (the mark is cleared by mntput()) 1592 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1593 */ 1594 if (flags & MNT_EXPIRE) { 1595 if (&mnt->mnt == current->fs->root.mnt || 1596 flags & (MNT_FORCE | MNT_DETACH)) 1597 return -EINVAL; 1598 1599 /* 1600 * probably don't strictly need the lock here if we examined 1601 * all race cases, but it's a slowpath. 1602 */ 1603 lock_mount_hash(); 1604 if (mnt_get_count(mnt) != 2) { 1605 unlock_mount_hash(); 1606 return -EBUSY; 1607 } 1608 unlock_mount_hash(); 1609 1610 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1611 return -EAGAIN; 1612 } 1613 1614 /* 1615 * If we may have to abort operations to get out of this 1616 * mount, and they will themselves hold resources we must 1617 * allow the fs to do things. In the Unix tradition of 1618 * 'Gee thats tricky lets do it in userspace' the umount_begin 1619 * might fail to complete on the first run through as other tasks 1620 * must return, and the like. Thats for the mount program to worry 1621 * about for the moment. 1622 */ 1623 1624 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1625 sb->s_op->umount_begin(sb); 1626 } 1627 1628 /* 1629 * No sense to grab the lock for this test, but test itself looks 1630 * somewhat bogus. Suggestions for better replacement? 1631 * Ho-hum... In principle, we might treat that as umount + switch 1632 * to rootfs. GC would eventually take care of the old vfsmount. 1633 * Actually it makes sense, especially if rootfs would contain a 1634 * /reboot - static binary that would close all descriptors and 1635 * call reboot(9). Then init(8) could umount root and exec /reboot. 1636 */ 1637 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1638 /* 1639 * Special case for "unmounting" root ... 1640 * we just try to remount it readonly. 1641 */ 1642 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1643 return -EPERM; 1644 return do_umount_root(sb); 1645 } 1646 1647 namespace_lock(); 1648 lock_mount_hash(); 1649 1650 /* Recheck MNT_LOCKED with the locks held */ 1651 retval = -EINVAL; 1652 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1653 goto out; 1654 1655 event++; 1656 if (flags & MNT_DETACH) { 1657 if (!list_empty(&mnt->mnt_list)) 1658 umount_tree(mnt, UMOUNT_PROPAGATE); 1659 retval = 0; 1660 } else { 1661 shrink_submounts(mnt); 1662 retval = -EBUSY; 1663 if (!propagate_mount_busy(mnt, 2)) { 1664 if (!list_empty(&mnt->mnt_list)) 1665 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1666 retval = 0; 1667 } 1668 } 1669 out: 1670 unlock_mount_hash(); 1671 namespace_unlock(); 1672 return retval; 1673 } 1674 1675 /* 1676 * __detach_mounts - lazily unmount all mounts on the specified dentry 1677 * 1678 * During unlink, rmdir, and d_drop it is possible to loose the path 1679 * to an existing mountpoint, and wind up leaking the mount. 1680 * detach_mounts allows lazily unmounting those mounts instead of 1681 * leaking them. 1682 * 1683 * The caller may hold dentry->d_inode->i_mutex. 1684 */ 1685 void __detach_mounts(struct dentry *dentry) 1686 { 1687 struct mountpoint *mp; 1688 struct mount *mnt; 1689 1690 namespace_lock(); 1691 lock_mount_hash(); 1692 mp = lookup_mountpoint(dentry); 1693 if (!mp) 1694 goto out_unlock; 1695 1696 event++; 1697 while (!hlist_empty(&mp->m_list)) { 1698 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1699 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1700 umount_mnt(mnt); 1701 hlist_add_head(&mnt->mnt_umount, &unmounted); 1702 } 1703 else umount_tree(mnt, UMOUNT_CONNECTED); 1704 } 1705 put_mountpoint(mp); 1706 out_unlock: 1707 unlock_mount_hash(); 1708 namespace_unlock(); 1709 } 1710 1711 /* 1712 * Is the caller allowed to modify his namespace? 1713 */ 1714 static inline bool may_mount(void) 1715 { 1716 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1717 } 1718 1719 static void warn_mandlock(void) 1720 { 1721 pr_warn_once("=======================================================\n" 1722 "WARNING: The mand mount option has been deprecated and\n" 1723 " and is ignored by this kernel. Remove the mand\n" 1724 " option from the mount to silence this warning.\n" 1725 "=======================================================\n"); 1726 } 1727 1728 static int can_umount(const struct path *path, int flags) 1729 { 1730 struct mount *mnt = real_mount(path->mnt); 1731 1732 if (!may_mount()) 1733 return -EPERM; 1734 if (path->dentry != path->mnt->mnt_root) 1735 return -EINVAL; 1736 if (!check_mnt(mnt)) 1737 return -EINVAL; 1738 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1739 return -EINVAL; 1740 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1741 return -EPERM; 1742 return 0; 1743 } 1744 1745 // caller is responsible for flags being sane 1746 int path_umount(struct path *path, int flags) 1747 { 1748 struct mount *mnt = real_mount(path->mnt); 1749 int ret; 1750 1751 ret = can_umount(path, flags); 1752 if (!ret) 1753 ret = do_umount(mnt, flags); 1754 1755 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1756 dput(path->dentry); 1757 mntput_no_expire(mnt); 1758 return ret; 1759 } 1760 1761 static int ksys_umount(char __user *name, int flags) 1762 { 1763 int lookup_flags = LOOKUP_MOUNTPOINT; 1764 struct path path; 1765 int ret; 1766 1767 // basic validity checks done first 1768 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1769 return -EINVAL; 1770 1771 if (!(flags & UMOUNT_NOFOLLOW)) 1772 lookup_flags |= LOOKUP_FOLLOW; 1773 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1774 if (ret) 1775 return ret; 1776 return path_umount(&path, flags); 1777 } 1778 1779 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1780 { 1781 return ksys_umount(name, flags); 1782 } 1783 1784 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1785 1786 /* 1787 * The 2.0 compatible umount. No flags. 1788 */ 1789 SYSCALL_DEFINE1(oldumount, char __user *, name) 1790 { 1791 return ksys_umount(name, 0); 1792 } 1793 1794 #endif 1795 1796 static bool is_mnt_ns_file(struct dentry *dentry) 1797 { 1798 /* Is this a proxy for a mount namespace? */ 1799 return dentry->d_op == &ns_dentry_operations && 1800 dentry->d_fsdata == &mntns_operations; 1801 } 1802 1803 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1804 { 1805 return container_of(ns, struct mnt_namespace, ns); 1806 } 1807 1808 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1809 { 1810 return &mnt->ns; 1811 } 1812 1813 static bool mnt_ns_loop(struct dentry *dentry) 1814 { 1815 /* Could bind mounting the mount namespace inode cause a 1816 * mount namespace loop? 1817 */ 1818 struct mnt_namespace *mnt_ns; 1819 if (!is_mnt_ns_file(dentry)) 1820 return false; 1821 1822 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1823 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1824 } 1825 1826 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1827 int flag) 1828 { 1829 struct mount *res, *p, *q, *r, *parent; 1830 1831 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1832 return ERR_PTR(-EINVAL); 1833 1834 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1835 return ERR_PTR(-EINVAL); 1836 1837 res = q = clone_mnt(mnt, dentry, flag); 1838 if (IS_ERR(q)) 1839 return q; 1840 1841 q->mnt_mountpoint = mnt->mnt_mountpoint; 1842 1843 p = mnt; 1844 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1845 struct mount *s; 1846 if (!is_subdir(r->mnt_mountpoint, dentry)) 1847 continue; 1848 1849 for (s = r; s; s = next_mnt(s, r)) { 1850 if (!(flag & CL_COPY_UNBINDABLE) && 1851 IS_MNT_UNBINDABLE(s)) { 1852 if (s->mnt.mnt_flags & MNT_LOCKED) { 1853 /* Both unbindable and locked. */ 1854 q = ERR_PTR(-EPERM); 1855 goto out; 1856 } else { 1857 s = skip_mnt_tree(s); 1858 continue; 1859 } 1860 } 1861 if (!(flag & CL_COPY_MNT_NS_FILE) && 1862 is_mnt_ns_file(s->mnt.mnt_root)) { 1863 s = skip_mnt_tree(s); 1864 continue; 1865 } 1866 while (p != s->mnt_parent) { 1867 p = p->mnt_parent; 1868 q = q->mnt_parent; 1869 } 1870 p = s; 1871 parent = q; 1872 q = clone_mnt(p, p->mnt.mnt_root, flag); 1873 if (IS_ERR(q)) 1874 goto out; 1875 lock_mount_hash(); 1876 list_add_tail(&q->mnt_list, &res->mnt_list); 1877 attach_mnt(q, parent, p->mnt_mp); 1878 unlock_mount_hash(); 1879 } 1880 } 1881 return res; 1882 out: 1883 if (res) { 1884 lock_mount_hash(); 1885 umount_tree(res, UMOUNT_SYNC); 1886 unlock_mount_hash(); 1887 } 1888 return q; 1889 } 1890 1891 /* Caller should check returned pointer for errors */ 1892 1893 struct vfsmount *collect_mounts(const struct path *path) 1894 { 1895 struct mount *tree; 1896 namespace_lock(); 1897 if (!check_mnt(real_mount(path->mnt))) 1898 tree = ERR_PTR(-EINVAL); 1899 else 1900 tree = copy_tree(real_mount(path->mnt), path->dentry, 1901 CL_COPY_ALL | CL_PRIVATE); 1902 namespace_unlock(); 1903 if (IS_ERR(tree)) 1904 return ERR_CAST(tree); 1905 return &tree->mnt; 1906 } 1907 1908 static void free_mnt_ns(struct mnt_namespace *); 1909 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1910 1911 void dissolve_on_fput(struct vfsmount *mnt) 1912 { 1913 struct mnt_namespace *ns; 1914 namespace_lock(); 1915 lock_mount_hash(); 1916 ns = real_mount(mnt)->mnt_ns; 1917 if (ns) { 1918 if (is_anon_ns(ns)) 1919 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1920 else 1921 ns = NULL; 1922 } 1923 unlock_mount_hash(); 1924 namespace_unlock(); 1925 if (ns) 1926 free_mnt_ns(ns); 1927 } 1928 1929 void drop_collected_mounts(struct vfsmount *mnt) 1930 { 1931 namespace_lock(); 1932 lock_mount_hash(); 1933 umount_tree(real_mount(mnt), 0); 1934 unlock_mount_hash(); 1935 namespace_unlock(); 1936 } 1937 1938 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1939 { 1940 struct mount *child; 1941 1942 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1943 if (!is_subdir(child->mnt_mountpoint, dentry)) 1944 continue; 1945 1946 if (child->mnt.mnt_flags & MNT_LOCKED) 1947 return true; 1948 } 1949 return false; 1950 } 1951 1952 /** 1953 * clone_private_mount - create a private clone of a path 1954 * @path: path to clone 1955 * 1956 * This creates a new vfsmount, which will be the clone of @path. The new mount 1957 * will not be attached anywhere in the namespace and will be private (i.e. 1958 * changes to the originating mount won't be propagated into this). 1959 * 1960 * Release with mntput(). 1961 */ 1962 struct vfsmount *clone_private_mount(const struct path *path) 1963 { 1964 struct mount *old_mnt = real_mount(path->mnt); 1965 struct mount *new_mnt; 1966 1967 down_read(&namespace_sem); 1968 if (IS_MNT_UNBINDABLE(old_mnt)) 1969 goto invalid; 1970 1971 if (!check_mnt(old_mnt)) 1972 goto invalid; 1973 1974 if (has_locked_children(old_mnt, path->dentry)) 1975 goto invalid; 1976 1977 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1978 up_read(&namespace_sem); 1979 1980 if (IS_ERR(new_mnt)) 1981 return ERR_CAST(new_mnt); 1982 1983 /* Longterm mount to be removed by kern_unmount*() */ 1984 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1985 1986 return &new_mnt->mnt; 1987 1988 invalid: 1989 up_read(&namespace_sem); 1990 return ERR_PTR(-EINVAL); 1991 } 1992 EXPORT_SYMBOL_GPL(clone_private_mount); 1993 1994 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1995 struct vfsmount *root) 1996 { 1997 struct mount *mnt; 1998 int res = f(root, arg); 1999 if (res) 2000 return res; 2001 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2002 res = f(&mnt->mnt, arg); 2003 if (res) 2004 return res; 2005 } 2006 return 0; 2007 } 2008 2009 static void lock_mnt_tree(struct mount *mnt) 2010 { 2011 struct mount *p; 2012 2013 for (p = mnt; p; p = next_mnt(p, mnt)) { 2014 int flags = p->mnt.mnt_flags; 2015 /* Don't allow unprivileged users to change mount flags */ 2016 flags |= MNT_LOCK_ATIME; 2017 2018 if (flags & MNT_READONLY) 2019 flags |= MNT_LOCK_READONLY; 2020 2021 if (flags & MNT_NODEV) 2022 flags |= MNT_LOCK_NODEV; 2023 2024 if (flags & MNT_NOSUID) 2025 flags |= MNT_LOCK_NOSUID; 2026 2027 if (flags & MNT_NOEXEC) 2028 flags |= MNT_LOCK_NOEXEC; 2029 /* Don't allow unprivileged users to reveal what is under a mount */ 2030 if (list_empty(&p->mnt_expire)) 2031 flags |= MNT_LOCKED; 2032 p->mnt.mnt_flags = flags; 2033 } 2034 } 2035 2036 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2037 { 2038 struct mount *p; 2039 2040 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2041 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2042 mnt_release_group_id(p); 2043 } 2044 } 2045 2046 static int invent_group_ids(struct mount *mnt, bool recurse) 2047 { 2048 struct mount *p; 2049 2050 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2051 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2052 int err = mnt_alloc_group_id(p); 2053 if (err) { 2054 cleanup_group_ids(mnt, p); 2055 return err; 2056 } 2057 } 2058 } 2059 2060 return 0; 2061 } 2062 2063 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2064 { 2065 unsigned int max = READ_ONCE(sysctl_mount_max); 2066 unsigned int mounts = 0, old, pending, sum; 2067 struct mount *p; 2068 2069 for (p = mnt; p; p = next_mnt(p, mnt)) 2070 mounts++; 2071 2072 old = ns->mounts; 2073 pending = ns->pending_mounts; 2074 sum = old + pending; 2075 if ((old > sum) || 2076 (pending > sum) || 2077 (max < sum) || 2078 (mounts > (max - sum))) 2079 return -ENOSPC; 2080 2081 ns->pending_mounts = pending + mounts; 2082 return 0; 2083 } 2084 2085 /* 2086 * @source_mnt : mount tree to be attached 2087 * @nd : place the mount tree @source_mnt is attached 2088 * @parent_nd : if non-null, detach the source_mnt from its parent and 2089 * store the parent mount and mountpoint dentry. 2090 * (done when source_mnt is moved) 2091 * 2092 * NOTE: in the table below explains the semantics when a source mount 2093 * of a given type is attached to a destination mount of a given type. 2094 * --------------------------------------------------------------------------- 2095 * | BIND MOUNT OPERATION | 2096 * |************************************************************************** 2097 * | source-->| shared | private | slave | unbindable | 2098 * | dest | | | | | 2099 * | | | | | | | 2100 * | v | | | | | 2101 * |************************************************************************** 2102 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2103 * | | | | | | 2104 * |non-shared| shared (+) | private | slave (*) | invalid | 2105 * *************************************************************************** 2106 * A bind operation clones the source mount and mounts the clone on the 2107 * destination mount. 2108 * 2109 * (++) the cloned mount is propagated to all the mounts in the propagation 2110 * tree of the destination mount and the cloned mount is added to 2111 * the peer group of the source mount. 2112 * (+) the cloned mount is created under the destination mount and is marked 2113 * as shared. The cloned mount is added to the peer group of the source 2114 * mount. 2115 * (+++) the mount is propagated to all the mounts in the propagation tree 2116 * of the destination mount and the cloned mount is made slave 2117 * of the same master as that of the source mount. The cloned mount 2118 * is marked as 'shared and slave'. 2119 * (*) the cloned mount is made a slave of the same master as that of the 2120 * source mount. 2121 * 2122 * --------------------------------------------------------------------------- 2123 * | MOVE MOUNT OPERATION | 2124 * |************************************************************************** 2125 * | source-->| shared | private | slave | unbindable | 2126 * | dest | | | | | 2127 * | | | | | | | 2128 * | v | | | | | 2129 * |************************************************************************** 2130 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2131 * | | | | | | 2132 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2133 * *************************************************************************** 2134 * 2135 * (+) the mount is moved to the destination. And is then propagated to 2136 * all the mounts in the propagation tree of the destination mount. 2137 * (+*) the mount is moved to the destination. 2138 * (+++) the mount is moved to the destination and is then propagated to 2139 * all the mounts belonging to the destination mount's propagation tree. 2140 * the mount is marked as 'shared and slave'. 2141 * (*) the mount continues to be a slave at the new location. 2142 * 2143 * if the source mount is a tree, the operations explained above is 2144 * applied to each mount in the tree. 2145 * Must be called without spinlocks held, since this function can sleep 2146 * in allocations. 2147 */ 2148 static int attach_recursive_mnt(struct mount *source_mnt, 2149 struct mount *dest_mnt, 2150 struct mountpoint *dest_mp, 2151 bool moving) 2152 { 2153 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2154 HLIST_HEAD(tree_list); 2155 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2156 struct mountpoint *smp; 2157 struct mount *child, *p; 2158 struct hlist_node *n; 2159 int err; 2160 2161 /* Preallocate a mountpoint in case the new mounts need 2162 * to be tucked under other mounts. 2163 */ 2164 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2165 if (IS_ERR(smp)) 2166 return PTR_ERR(smp); 2167 2168 /* Is there space to add these mounts to the mount namespace? */ 2169 if (!moving) { 2170 err = count_mounts(ns, source_mnt); 2171 if (err) 2172 goto out; 2173 } 2174 2175 if (IS_MNT_SHARED(dest_mnt)) { 2176 err = invent_group_ids(source_mnt, true); 2177 if (err) 2178 goto out; 2179 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2180 lock_mount_hash(); 2181 if (err) 2182 goto out_cleanup_ids; 2183 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2184 set_mnt_shared(p); 2185 } else { 2186 lock_mount_hash(); 2187 } 2188 if (moving) { 2189 unhash_mnt(source_mnt); 2190 attach_mnt(source_mnt, dest_mnt, dest_mp); 2191 touch_mnt_namespace(source_mnt->mnt_ns); 2192 } else { 2193 if (source_mnt->mnt_ns) { 2194 /* move from anon - the caller will destroy */ 2195 list_del_init(&source_mnt->mnt_ns->list); 2196 } 2197 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2198 commit_tree(source_mnt); 2199 } 2200 2201 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2202 struct mount *q; 2203 hlist_del_init(&child->mnt_hash); 2204 q = __lookup_mnt(&child->mnt_parent->mnt, 2205 child->mnt_mountpoint); 2206 if (q) 2207 mnt_change_mountpoint(child, smp, q); 2208 /* Notice when we are propagating across user namespaces */ 2209 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2210 lock_mnt_tree(child); 2211 child->mnt.mnt_flags &= ~MNT_LOCKED; 2212 commit_tree(child); 2213 } 2214 put_mountpoint(smp); 2215 unlock_mount_hash(); 2216 2217 return 0; 2218 2219 out_cleanup_ids: 2220 while (!hlist_empty(&tree_list)) { 2221 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2222 child->mnt_parent->mnt_ns->pending_mounts = 0; 2223 umount_tree(child, UMOUNT_SYNC); 2224 } 2225 unlock_mount_hash(); 2226 cleanup_group_ids(source_mnt, NULL); 2227 out: 2228 ns->pending_mounts = 0; 2229 2230 read_seqlock_excl(&mount_lock); 2231 put_mountpoint(smp); 2232 read_sequnlock_excl(&mount_lock); 2233 2234 return err; 2235 } 2236 2237 static struct mountpoint *lock_mount(struct path *path) 2238 { 2239 struct vfsmount *mnt; 2240 struct dentry *dentry = path->dentry; 2241 retry: 2242 inode_lock(dentry->d_inode); 2243 if (unlikely(cant_mount(dentry))) { 2244 inode_unlock(dentry->d_inode); 2245 return ERR_PTR(-ENOENT); 2246 } 2247 namespace_lock(); 2248 mnt = lookup_mnt(path); 2249 if (likely(!mnt)) { 2250 struct mountpoint *mp = get_mountpoint(dentry); 2251 if (IS_ERR(mp)) { 2252 namespace_unlock(); 2253 inode_unlock(dentry->d_inode); 2254 return mp; 2255 } 2256 return mp; 2257 } 2258 namespace_unlock(); 2259 inode_unlock(path->dentry->d_inode); 2260 path_put(path); 2261 path->mnt = mnt; 2262 dentry = path->dentry = dget(mnt->mnt_root); 2263 goto retry; 2264 } 2265 2266 static void unlock_mount(struct mountpoint *where) 2267 { 2268 struct dentry *dentry = where->m_dentry; 2269 2270 read_seqlock_excl(&mount_lock); 2271 put_mountpoint(where); 2272 read_sequnlock_excl(&mount_lock); 2273 2274 namespace_unlock(); 2275 inode_unlock(dentry->d_inode); 2276 } 2277 2278 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2279 { 2280 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2281 return -EINVAL; 2282 2283 if (d_is_dir(mp->m_dentry) != 2284 d_is_dir(mnt->mnt.mnt_root)) 2285 return -ENOTDIR; 2286 2287 return attach_recursive_mnt(mnt, p, mp, false); 2288 } 2289 2290 /* 2291 * Sanity check the flags to change_mnt_propagation. 2292 */ 2293 2294 static int flags_to_propagation_type(int ms_flags) 2295 { 2296 int type = ms_flags & ~(MS_REC | MS_SILENT); 2297 2298 /* Fail if any non-propagation flags are set */ 2299 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2300 return 0; 2301 /* Only one propagation flag should be set */ 2302 if (!is_power_of_2(type)) 2303 return 0; 2304 return type; 2305 } 2306 2307 /* 2308 * recursively change the type of the mountpoint. 2309 */ 2310 static int do_change_type(struct path *path, int ms_flags) 2311 { 2312 struct mount *m; 2313 struct mount *mnt = real_mount(path->mnt); 2314 int recurse = ms_flags & MS_REC; 2315 int type; 2316 int err = 0; 2317 2318 if (path->dentry != path->mnt->mnt_root) 2319 return -EINVAL; 2320 2321 type = flags_to_propagation_type(ms_flags); 2322 if (!type) 2323 return -EINVAL; 2324 2325 namespace_lock(); 2326 if (type == MS_SHARED) { 2327 err = invent_group_ids(mnt, recurse); 2328 if (err) 2329 goto out_unlock; 2330 } 2331 2332 lock_mount_hash(); 2333 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2334 change_mnt_propagation(m, type); 2335 unlock_mount_hash(); 2336 2337 out_unlock: 2338 namespace_unlock(); 2339 return err; 2340 } 2341 2342 static struct mount *__do_loopback(struct path *old_path, int recurse) 2343 { 2344 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2345 2346 if (IS_MNT_UNBINDABLE(old)) 2347 return mnt; 2348 2349 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2350 return mnt; 2351 2352 if (!recurse && has_locked_children(old, old_path->dentry)) 2353 return mnt; 2354 2355 if (recurse) 2356 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2357 else 2358 mnt = clone_mnt(old, old_path->dentry, 0); 2359 2360 if (!IS_ERR(mnt)) 2361 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2362 2363 return mnt; 2364 } 2365 2366 /* 2367 * do loopback mount. 2368 */ 2369 static int do_loopback(struct path *path, const char *old_name, 2370 int recurse) 2371 { 2372 struct path old_path; 2373 struct mount *mnt = NULL, *parent; 2374 struct mountpoint *mp; 2375 int err; 2376 if (!old_name || !*old_name) 2377 return -EINVAL; 2378 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2379 if (err) 2380 return err; 2381 2382 err = -EINVAL; 2383 if (mnt_ns_loop(old_path.dentry)) 2384 goto out; 2385 2386 mp = lock_mount(path); 2387 if (IS_ERR(mp)) { 2388 err = PTR_ERR(mp); 2389 goto out; 2390 } 2391 2392 parent = real_mount(path->mnt); 2393 if (!check_mnt(parent)) 2394 goto out2; 2395 2396 mnt = __do_loopback(&old_path, recurse); 2397 if (IS_ERR(mnt)) { 2398 err = PTR_ERR(mnt); 2399 goto out2; 2400 } 2401 2402 err = graft_tree(mnt, parent, mp); 2403 if (err) { 2404 lock_mount_hash(); 2405 umount_tree(mnt, UMOUNT_SYNC); 2406 unlock_mount_hash(); 2407 } 2408 out2: 2409 unlock_mount(mp); 2410 out: 2411 path_put(&old_path); 2412 return err; 2413 } 2414 2415 static struct file *open_detached_copy(struct path *path, bool recursive) 2416 { 2417 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2418 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2419 struct mount *mnt, *p; 2420 struct file *file; 2421 2422 if (IS_ERR(ns)) 2423 return ERR_CAST(ns); 2424 2425 namespace_lock(); 2426 mnt = __do_loopback(path, recursive); 2427 if (IS_ERR(mnt)) { 2428 namespace_unlock(); 2429 free_mnt_ns(ns); 2430 return ERR_CAST(mnt); 2431 } 2432 2433 lock_mount_hash(); 2434 for (p = mnt; p; p = next_mnt(p, mnt)) { 2435 p->mnt_ns = ns; 2436 ns->mounts++; 2437 } 2438 ns->root = mnt; 2439 list_add_tail(&ns->list, &mnt->mnt_list); 2440 mntget(&mnt->mnt); 2441 unlock_mount_hash(); 2442 namespace_unlock(); 2443 2444 mntput(path->mnt); 2445 path->mnt = &mnt->mnt; 2446 file = dentry_open(path, O_PATH, current_cred()); 2447 if (IS_ERR(file)) 2448 dissolve_on_fput(path->mnt); 2449 else 2450 file->f_mode |= FMODE_NEED_UNMOUNT; 2451 return file; 2452 } 2453 2454 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2455 { 2456 struct file *file; 2457 struct path path; 2458 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2459 bool detached = flags & OPEN_TREE_CLONE; 2460 int error; 2461 int fd; 2462 2463 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2464 2465 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2466 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2467 OPEN_TREE_CLOEXEC)) 2468 return -EINVAL; 2469 2470 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2471 return -EINVAL; 2472 2473 if (flags & AT_NO_AUTOMOUNT) 2474 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2475 if (flags & AT_SYMLINK_NOFOLLOW) 2476 lookup_flags &= ~LOOKUP_FOLLOW; 2477 if (flags & AT_EMPTY_PATH) 2478 lookup_flags |= LOOKUP_EMPTY; 2479 2480 if (detached && !may_mount()) 2481 return -EPERM; 2482 2483 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2484 if (fd < 0) 2485 return fd; 2486 2487 error = user_path_at(dfd, filename, lookup_flags, &path); 2488 if (unlikely(error)) { 2489 file = ERR_PTR(error); 2490 } else { 2491 if (detached) 2492 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2493 else 2494 file = dentry_open(&path, O_PATH, current_cred()); 2495 path_put(&path); 2496 } 2497 if (IS_ERR(file)) { 2498 put_unused_fd(fd); 2499 return PTR_ERR(file); 2500 } 2501 fd_install(fd, file); 2502 return fd; 2503 } 2504 2505 /* 2506 * Don't allow locked mount flags to be cleared. 2507 * 2508 * No locks need to be held here while testing the various MNT_LOCK 2509 * flags because those flags can never be cleared once they are set. 2510 */ 2511 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2512 { 2513 unsigned int fl = mnt->mnt.mnt_flags; 2514 2515 if ((fl & MNT_LOCK_READONLY) && 2516 !(mnt_flags & MNT_READONLY)) 2517 return false; 2518 2519 if ((fl & MNT_LOCK_NODEV) && 2520 !(mnt_flags & MNT_NODEV)) 2521 return false; 2522 2523 if ((fl & MNT_LOCK_NOSUID) && 2524 !(mnt_flags & MNT_NOSUID)) 2525 return false; 2526 2527 if ((fl & MNT_LOCK_NOEXEC) && 2528 !(mnt_flags & MNT_NOEXEC)) 2529 return false; 2530 2531 if ((fl & MNT_LOCK_ATIME) && 2532 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2533 return false; 2534 2535 return true; 2536 } 2537 2538 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2539 { 2540 bool readonly_request = (mnt_flags & MNT_READONLY); 2541 2542 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2543 return 0; 2544 2545 if (readonly_request) 2546 return mnt_make_readonly(mnt); 2547 2548 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2549 return 0; 2550 } 2551 2552 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2553 { 2554 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2555 mnt->mnt.mnt_flags = mnt_flags; 2556 touch_mnt_namespace(mnt->mnt_ns); 2557 } 2558 2559 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2560 { 2561 struct super_block *sb = mnt->mnt_sb; 2562 2563 if (!__mnt_is_readonly(mnt) && 2564 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2565 char *buf = (char *)__get_free_page(GFP_KERNEL); 2566 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2567 struct tm tm; 2568 2569 time64_to_tm(sb->s_time_max, 0, &tm); 2570 2571 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2572 sb->s_type->name, 2573 is_mounted(mnt) ? "remounted" : "mounted", 2574 mntpath, 2575 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2576 2577 free_page((unsigned long)buf); 2578 } 2579 } 2580 2581 /* 2582 * Handle reconfiguration of the mountpoint only without alteration of the 2583 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2584 * to mount(2). 2585 */ 2586 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2587 { 2588 struct super_block *sb = path->mnt->mnt_sb; 2589 struct mount *mnt = real_mount(path->mnt); 2590 int ret; 2591 2592 if (!check_mnt(mnt)) 2593 return -EINVAL; 2594 2595 if (path->dentry != mnt->mnt.mnt_root) 2596 return -EINVAL; 2597 2598 if (!can_change_locked_flags(mnt, mnt_flags)) 2599 return -EPERM; 2600 2601 /* 2602 * We're only checking whether the superblock is read-only not 2603 * changing it, so only take down_read(&sb->s_umount). 2604 */ 2605 down_read(&sb->s_umount); 2606 lock_mount_hash(); 2607 ret = change_mount_ro_state(mnt, mnt_flags); 2608 if (ret == 0) 2609 set_mount_attributes(mnt, mnt_flags); 2610 unlock_mount_hash(); 2611 up_read(&sb->s_umount); 2612 2613 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2614 2615 return ret; 2616 } 2617 2618 /* 2619 * change filesystem flags. dir should be a physical root of filesystem. 2620 * If you've mounted a non-root directory somewhere and want to do remount 2621 * on it - tough luck. 2622 */ 2623 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2624 int mnt_flags, void *data) 2625 { 2626 int err; 2627 struct super_block *sb = path->mnt->mnt_sb; 2628 struct mount *mnt = real_mount(path->mnt); 2629 struct fs_context *fc; 2630 2631 if (!check_mnt(mnt)) 2632 return -EINVAL; 2633 2634 if (path->dentry != path->mnt->mnt_root) 2635 return -EINVAL; 2636 2637 if (!can_change_locked_flags(mnt, mnt_flags)) 2638 return -EPERM; 2639 2640 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2641 if (IS_ERR(fc)) 2642 return PTR_ERR(fc); 2643 2644 fc->oldapi = true; 2645 err = parse_monolithic_mount_data(fc, data); 2646 if (!err) { 2647 down_write(&sb->s_umount); 2648 err = -EPERM; 2649 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2650 err = reconfigure_super(fc); 2651 if (!err) { 2652 lock_mount_hash(); 2653 set_mount_attributes(mnt, mnt_flags); 2654 unlock_mount_hash(); 2655 } 2656 } 2657 up_write(&sb->s_umount); 2658 } 2659 2660 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2661 2662 put_fs_context(fc); 2663 return err; 2664 } 2665 2666 static inline int tree_contains_unbindable(struct mount *mnt) 2667 { 2668 struct mount *p; 2669 for (p = mnt; p; p = next_mnt(p, mnt)) { 2670 if (IS_MNT_UNBINDABLE(p)) 2671 return 1; 2672 } 2673 return 0; 2674 } 2675 2676 /* 2677 * Check that there aren't references to earlier/same mount namespaces in the 2678 * specified subtree. Such references can act as pins for mount namespaces 2679 * that aren't checked by the mount-cycle checking code, thereby allowing 2680 * cycles to be made. 2681 */ 2682 static bool check_for_nsfs_mounts(struct mount *subtree) 2683 { 2684 struct mount *p; 2685 bool ret = false; 2686 2687 lock_mount_hash(); 2688 for (p = subtree; p; p = next_mnt(p, subtree)) 2689 if (mnt_ns_loop(p->mnt.mnt_root)) 2690 goto out; 2691 2692 ret = true; 2693 out: 2694 unlock_mount_hash(); 2695 return ret; 2696 } 2697 2698 static int do_set_group(struct path *from_path, struct path *to_path) 2699 { 2700 struct mount *from, *to; 2701 int err; 2702 2703 from = real_mount(from_path->mnt); 2704 to = real_mount(to_path->mnt); 2705 2706 namespace_lock(); 2707 2708 err = -EINVAL; 2709 /* To and From must be mounted */ 2710 if (!is_mounted(&from->mnt)) 2711 goto out; 2712 if (!is_mounted(&to->mnt)) 2713 goto out; 2714 2715 err = -EPERM; 2716 /* We should be allowed to modify mount namespaces of both mounts */ 2717 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2718 goto out; 2719 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2720 goto out; 2721 2722 err = -EINVAL; 2723 /* To and From paths should be mount roots */ 2724 if (from_path->dentry != from_path->mnt->mnt_root) 2725 goto out; 2726 if (to_path->dentry != to_path->mnt->mnt_root) 2727 goto out; 2728 2729 /* Setting sharing groups is only allowed across same superblock */ 2730 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2731 goto out; 2732 2733 /* From mount root should be wider than To mount root */ 2734 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2735 goto out; 2736 2737 /* From mount should not have locked children in place of To's root */ 2738 if (has_locked_children(from, to->mnt.mnt_root)) 2739 goto out; 2740 2741 /* Setting sharing groups is only allowed on private mounts */ 2742 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2743 goto out; 2744 2745 /* From should not be private */ 2746 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2747 goto out; 2748 2749 if (IS_MNT_SLAVE(from)) { 2750 struct mount *m = from->mnt_master; 2751 2752 list_add(&to->mnt_slave, &m->mnt_slave_list); 2753 to->mnt_master = m; 2754 } 2755 2756 if (IS_MNT_SHARED(from)) { 2757 to->mnt_group_id = from->mnt_group_id; 2758 list_add(&to->mnt_share, &from->mnt_share); 2759 lock_mount_hash(); 2760 set_mnt_shared(to); 2761 unlock_mount_hash(); 2762 } 2763 2764 err = 0; 2765 out: 2766 namespace_unlock(); 2767 return err; 2768 } 2769 2770 static int do_move_mount(struct path *old_path, struct path *new_path) 2771 { 2772 struct mnt_namespace *ns; 2773 struct mount *p; 2774 struct mount *old; 2775 struct mount *parent; 2776 struct mountpoint *mp, *old_mp; 2777 int err; 2778 bool attached; 2779 2780 mp = lock_mount(new_path); 2781 if (IS_ERR(mp)) 2782 return PTR_ERR(mp); 2783 2784 old = real_mount(old_path->mnt); 2785 p = real_mount(new_path->mnt); 2786 parent = old->mnt_parent; 2787 attached = mnt_has_parent(old); 2788 old_mp = old->mnt_mp; 2789 ns = old->mnt_ns; 2790 2791 err = -EINVAL; 2792 /* The mountpoint must be in our namespace. */ 2793 if (!check_mnt(p)) 2794 goto out; 2795 2796 /* The thing moved must be mounted... */ 2797 if (!is_mounted(&old->mnt)) 2798 goto out; 2799 2800 /* ... and either ours or the root of anon namespace */ 2801 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2802 goto out; 2803 2804 if (old->mnt.mnt_flags & MNT_LOCKED) 2805 goto out; 2806 2807 if (old_path->dentry != old_path->mnt->mnt_root) 2808 goto out; 2809 2810 if (d_is_dir(new_path->dentry) != 2811 d_is_dir(old_path->dentry)) 2812 goto out; 2813 /* 2814 * Don't move a mount residing in a shared parent. 2815 */ 2816 if (attached && IS_MNT_SHARED(parent)) 2817 goto out; 2818 /* 2819 * Don't move a mount tree containing unbindable mounts to a destination 2820 * mount which is shared. 2821 */ 2822 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2823 goto out; 2824 err = -ELOOP; 2825 if (!check_for_nsfs_mounts(old)) 2826 goto out; 2827 for (; mnt_has_parent(p); p = p->mnt_parent) 2828 if (p == old) 2829 goto out; 2830 2831 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2832 attached); 2833 if (err) 2834 goto out; 2835 2836 /* if the mount is moved, it should no longer be expire 2837 * automatically */ 2838 list_del_init(&old->mnt_expire); 2839 if (attached) 2840 put_mountpoint(old_mp); 2841 out: 2842 unlock_mount(mp); 2843 if (!err) { 2844 if (attached) 2845 mntput_no_expire(parent); 2846 else 2847 free_mnt_ns(ns); 2848 } 2849 return err; 2850 } 2851 2852 static int do_move_mount_old(struct path *path, const char *old_name) 2853 { 2854 struct path old_path; 2855 int err; 2856 2857 if (!old_name || !*old_name) 2858 return -EINVAL; 2859 2860 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2861 if (err) 2862 return err; 2863 2864 err = do_move_mount(&old_path, path); 2865 path_put(&old_path); 2866 return err; 2867 } 2868 2869 /* 2870 * add a mount into a namespace's mount tree 2871 */ 2872 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2873 struct path *path, int mnt_flags) 2874 { 2875 struct mount *parent = real_mount(path->mnt); 2876 2877 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2878 2879 if (unlikely(!check_mnt(parent))) { 2880 /* that's acceptable only for automounts done in private ns */ 2881 if (!(mnt_flags & MNT_SHRINKABLE)) 2882 return -EINVAL; 2883 /* ... and for those we'd better have mountpoint still alive */ 2884 if (!parent->mnt_ns) 2885 return -EINVAL; 2886 } 2887 2888 /* Refuse the same filesystem on the same mount point */ 2889 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2890 path->mnt->mnt_root == path->dentry) 2891 return -EBUSY; 2892 2893 if (d_is_symlink(newmnt->mnt.mnt_root)) 2894 return -EINVAL; 2895 2896 newmnt->mnt.mnt_flags = mnt_flags; 2897 return graft_tree(newmnt, parent, mp); 2898 } 2899 2900 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2901 2902 /* 2903 * Create a new mount using a superblock configuration and request it 2904 * be added to the namespace tree. 2905 */ 2906 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2907 unsigned int mnt_flags) 2908 { 2909 struct vfsmount *mnt; 2910 struct mountpoint *mp; 2911 struct super_block *sb = fc->root->d_sb; 2912 int error; 2913 2914 error = security_sb_kern_mount(sb); 2915 if (!error && mount_too_revealing(sb, &mnt_flags)) 2916 error = -EPERM; 2917 2918 if (unlikely(error)) { 2919 fc_drop_locked(fc); 2920 return error; 2921 } 2922 2923 up_write(&sb->s_umount); 2924 2925 mnt = vfs_create_mount(fc); 2926 if (IS_ERR(mnt)) 2927 return PTR_ERR(mnt); 2928 2929 mnt_warn_timestamp_expiry(mountpoint, mnt); 2930 2931 mp = lock_mount(mountpoint); 2932 if (IS_ERR(mp)) { 2933 mntput(mnt); 2934 return PTR_ERR(mp); 2935 } 2936 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2937 unlock_mount(mp); 2938 if (error < 0) 2939 mntput(mnt); 2940 return error; 2941 } 2942 2943 /* 2944 * create a new mount for userspace and request it to be added into the 2945 * namespace's tree 2946 */ 2947 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2948 int mnt_flags, const char *name, void *data) 2949 { 2950 struct file_system_type *type; 2951 struct fs_context *fc; 2952 const char *subtype = NULL; 2953 int err = 0; 2954 2955 if (!fstype) 2956 return -EINVAL; 2957 2958 type = get_fs_type(fstype); 2959 if (!type) 2960 return -ENODEV; 2961 2962 if (type->fs_flags & FS_HAS_SUBTYPE) { 2963 subtype = strchr(fstype, '.'); 2964 if (subtype) { 2965 subtype++; 2966 if (!*subtype) { 2967 put_filesystem(type); 2968 return -EINVAL; 2969 } 2970 } 2971 } 2972 2973 fc = fs_context_for_mount(type, sb_flags); 2974 put_filesystem(type); 2975 if (IS_ERR(fc)) 2976 return PTR_ERR(fc); 2977 2978 if (subtype) 2979 err = vfs_parse_fs_string(fc, "subtype", 2980 subtype, strlen(subtype)); 2981 if (!err && name) 2982 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2983 if (!err) 2984 err = parse_monolithic_mount_data(fc, data); 2985 if (!err && !mount_capable(fc)) 2986 err = -EPERM; 2987 if (!err) 2988 err = vfs_get_tree(fc); 2989 if (!err) 2990 err = do_new_mount_fc(fc, path, mnt_flags); 2991 2992 put_fs_context(fc); 2993 return err; 2994 } 2995 2996 int finish_automount(struct vfsmount *m, struct path *path) 2997 { 2998 struct dentry *dentry = path->dentry; 2999 struct mountpoint *mp; 3000 struct mount *mnt; 3001 int err; 3002 3003 if (!m) 3004 return 0; 3005 if (IS_ERR(m)) 3006 return PTR_ERR(m); 3007 3008 mnt = real_mount(m); 3009 /* The new mount record should have at least 2 refs to prevent it being 3010 * expired before we get a chance to add it 3011 */ 3012 BUG_ON(mnt_get_count(mnt) < 2); 3013 3014 if (m->mnt_sb == path->mnt->mnt_sb && 3015 m->mnt_root == dentry) { 3016 err = -ELOOP; 3017 goto discard; 3018 } 3019 3020 /* 3021 * we don't want to use lock_mount() - in this case finding something 3022 * that overmounts our mountpoint to be means "quitely drop what we've 3023 * got", not "try to mount it on top". 3024 */ 3025 inode_lock(dentry->d_inode); 3026 namespace_lock(); 3027 if (unlikely(cant_mount(dentry))) { 3028 err = -ENOENT; 3029 goto discard_locked; 3030 } 3031 rcu_read_lock(); 3032 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3033 rcu_read_unlock(); 3034 err = 0; 3035 goto discard_locked; 3036 } 3037 rcu_read_unlock(); 3038 mp = get_mountpoint(dentry); 3039 if (IS_ERR(mp)) { 3040 err = PTR_ERR(mp); 3041 goto discard_locked; 3042 } 3043 3044 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3045 unlock_mount(mp); 3046 if (unlikely(err)) 3047 goto discard; 3048 mntput(m); 3049 return 0; 3050 3051 discard_locked: 3052 namespace_unlock(); 3053 inode_unlock(dentry->d_inode); 3054 discard: 3055 /* remove m from any expiration list it may be on */ 3056 if (!list_empty(&mnt->mnt_expire)) { 3057 namespace_lock(); 3058 list_del_init(&mnt->mnt_expire); 3059 namespace_unlock(); 3060 } 3061 mntput(m); 3062 mntput(m); 3063 return err; 3064 } 3065 3066 /** 3067 * mnt_set_expiry - Put a mount on an expiration list 3068 * @mnt: The mount to list. 3069 * @expiry_list: The list to add the mount to. 3070 */ 3071 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3072 { 3073 namespace_lock(); 3074 3075 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3076 3077 namespace_unlock(); 3078 } 3079 EXPORT_SYMBOL(mnt_set_expiry); 3080 3081 /* 3082 * process a list of expirable mountpoints with the intent of discarding any 3083 * mountpoints that aren't in use and haven't been touched since last we came 3084 * here 3085 */ 3086 void mark_mounts_for_expiry(struct list_head *mounts) 3087 { 3088 struct mount *mnt, *next; 3089 LIST_HEAD(graveyard); 3090 3091 if (list_empty(mounts)) 3092 return; 3093 3094 namespace_lock(); 3095 lock_mount_hash(); 3096 3097 /* extract from the expiration list every vfsmount that matches the 3098 * following criteria: 3099 * - only referenced by its parent vfsmount 3100 * - still marked for expiry (marked on the last call here; marks are 3101 * cleared by mntput()) 3102 */ 3103 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3104 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3105 propagate_mount_busy(mnt, 1)) 3106 continue; 3107 list_move(&mnt->mnt_expire, &graveyard); 3108 } 3109 while (!list_empty(&graveyard)) { 3110 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3111 touch_mnt_namespace(mnt->mnt_ns); 3112 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3113 } 3114 unlock_mount_hash(); 3115 namespace_unlock(); 3116 } 3117 3118 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3119 3120 /* 3121 * Ripoff of 'select_parent()' 3122 * 3123 * search the list of submounts for a given mountpoint, and move any 3124 * shrinkable submounts to the 'graveyard' list. 3125 */ 3126 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3127 { 3128 struct mount *this_parent = parent; 3129 struct list_head *next; 3130 int found = 0; 3131 3132 repeat: 3133 next = this_parent->mnt_mounts.next; 3134 resume: 3135 while (next != &this_parent->mnt_mounts) { 3136 struct list_head *tmp = next; 3137 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3138 3139 next = tmp->next; 3140 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3141 continue; 3142 /* 3143 * Descend a level if the d_mounts list is non-empty. 3144 */ 3145 if (!list_empty(&mnt->mnt_mounts)) { 3146 this_parent = mnt; 3147 goto repeat; 3148 } 3149 3150 if (!propagate_mount_busy(mnt, 1)) { 3151 list_move_tail(&mnt->mnt_expire, graveyard); 3152 found++; 3153 } 3154 } 3155 /* 3156 * All done at this level ... ascend and resume the search 3157 */ 3158 if (this_parent != parent) { 3159 next = this_parent->mnt_child.next; 3160 this_parent = this_parent->mnt_parent; 3161 goto resume; 3162 } 3163 return found; 3164 } 3165 3166 /* 3167 * process a list of expirable mountpoints with the intent of discarding any 3168 * submounts of a specific parent mountpoint 3169 * 3170 * mount_lock must be held for write 3171 */ 3172 static void shrink_submounts(struct mount *mnt) 3173 { 3174 LIST_HEAD(graveyard); 3175 struct mount *m; 3176 3177 /* extract submounts of 'mountpoint' from the expiration list */ 3178 while (select_submounts(mnt, &graveyard)) { 3179 while (!list_empty(&graveyard)) { 3180 m = list_first_entry(&graveyard, struct mount, 3181 mnt_expire); 3182 touch_mnt_namespace(m->mnt_ns); 3183 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3184 } 3185 } 3186 } 3187 3188 static void *copy_mount_options(const void __user * data) 3189 { 3190 char *copy; 3191 unsigned left, offset; 3192 3193 if (!data) 3194 return NULL; 3195 3196 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3197 if (!copy) 3198 return ERR_PTR(-ENOMEM); 3199 3200 left = copy_from_user(copy, data, PAGE_SIZE); 3201 3202 /* 3203 * Not all architectures have an exact copy_from_user(). Resort to 3204 * byte at a time. 3205 */ 3206 offset = PAGE_SIZE - left; 3207 while (left) { 3208 char c; 3209 if (get_user(c, (const char __user *)data + offset)) 3210 break; 3211 copy[offset] = c; 3212 left--; 3213 offset++; 3214 } 3215 3216 if (left == PAGE_SIZE) { 3217 kfree(copy); 3218 return ERR_PTR(-EFAULT); 3219 } 3220 3221 return copy; 3222 } 3223 3224 static char *copy_mount_string(const void __user *data) 3225 { 3226 return data ? strndup_user(data, PATH_MAX) : NULL; 3227 } 3228 3229 /* 3230 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3231 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3232 * 3233 * data is a (void *) that can point to any structure up to 3234 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3235 * information (or be NULL). 3236 * 3237 * Pre-0.97 versions of mount() didn't have a flags word. 3238 * When the flags word was introduced its top half was required 3239 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3240 * Therefore, if this magic number is present, it carries no information 3241 * and must be discarded. 3242 */ 3243 int path_mount(const char *dev_name, struct path *path, 3244 const char *type_page, unsigned long flags, void *data_page) 3245 { 3246 unsigned int mnt_flags = 0, sb_flags; 3247 int ret; 3248 3249 /* Discard magic */ 3250 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3251 flags &= ~MS_MGC_MSK; 3252 3253 /* Basic sanity checks */ 3254 if (data_page) 3255 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3256 3257 if (flags & MS_NOUSER) 3258 return -EINVAL; 3259 3260 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3261 if (ret) 3262 return ret; 3263 if (!may_mount()) 3264 return -EPERM; 3265 if (flags & SB_MANDLOCK) 3266 warn_mandlock(); 3267 3268 /* Default to relatime unless overriden */ 3269 if (!(flags & MS_NOATIME)) 3270 mnt_flags |= MNT_RELATIME; 3271 3272 /* Separate the per-mountpoint flags */ 3273 if (flags & MS_NOSUID) 3274 mnt_flags |= MNT_NOSUID; 3275 if (flags & MS_NODEV) 3276 mnt_flags |= MNT_NODEV; 3277 if (flags & MS_NOEXEC) 3278 mnt_flags |= MNT_NOEXEC; 3279 if (flags & MS_NOATIME) 3280 mnt_flags |= MNT_NOATIME; 3281 if (flags & MS_NODIRATIME) 3282 mnt_flags |= MNT_NODIRATIME; 3283 if (flags & MS_STRICTATIME) 3284 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3285 if (flags & MS_RDONLY) 3286 mnt_flags |= MNT_READONLY; 3287 if (flags & MS_NOSYMFOLLOW) 3288 mnt_flags |= MNT_NOSYMFOLLOW; 3289 3290 /* The default atime for remount is preservation */ 3291 if ((flags & MS_REMOUNT) && 3292 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3293 MS_STRICTATIME)) == 0)) { 3294 mnt_flags &= ~MNT_ATIME_MASK; 3295 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3296 } 3297 3298 sb_flags = flags & (SB_RDONLY | 3299 SB_SYNCHRONOUS | 3300 SB_MANDLOCK | 3301 SB_DIRSYNC | 3302 SB_SILENT | 3303 SB_POSIXACL | 3304 SB_LAZYTIME | 3305 SB_I_VERSION); 3306 3307 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3308 return do_reconfigure_mnt(path, mnt_flags); 3309 if (flags & MS_REMOUNT) 3310 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3311 if (flags & MS_BIND) 3312 return do_loopback(path, dev_name, flags & MS_REC); 3313 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3314 return do_change_type(path, flags); 3315 if (flags & MS_MOVE) 3316 return do_move_mount_old(path, dev_name); 3317 3318 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3319 data_page); 3320 } 3321 3322 long do_mount(const char *dev_name, const char __user *dir_name, 3323 const char *type_page, unsigned long flags, void *data_page) 3324 { 3325 struct path path; 3326 int ret; 3327 3328 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3329 if (ret) 3330 return ret; 3331 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3332 path_put(&path); 3333 return ret; 3334 } 3335 3336 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3337 { 3338 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3339 } 3340 3341 static void dec_mnt_namespaces(struct ucounts *ucounts) 3342 { 3343 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3344 } 3345 3346 static void free_mnt_ns(struct mnt_namespace *ns) 3347 { 3348 if (!is_anon_ns(ns)) 3349 ns_free_inum(&ns->ns); 3350 dec_mnt_namespaces(ns->ucounts); 3351 put_user_ns(ns->user_ns); 3352 kfree(ns); 3353 } 3354 3355 /* 3356 * Assign a sequence number so we can detect when we attempt to bind 3357 * mount a reference to an older mount namespace into the current 3358 * mount namespace, preventing reference counting loops. A 64bit 3359 * number incrementing at 10Ghz will take 12,427 years to wrap which 3360 * is effectively never, so we can ignore the possibility. 3361 */ 3362 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3363 3364 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3365 { 3366 struct mnt_namespace *new_ns; 3367 struct ucounts *ucounts; 3368 int ret; 3369 3370 ucounts = inc_mnt_namespaces(user_ns); 3371 if (!ucounts) 3372 return ERR_PTR(-ENOSPC); 3373 3374 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3375 if (!new_ns) { 3376 dec_mnt_namespaces(ucounts); 3377 return ERR_PTR(-ENOMEM); 3378 } 3379 if (!anon) { 3380 ret = ns_alloc_inum(&new_ns->ns); 3381 if (ret) { 3382 kfree(new_ns); 3383 dec_mnt_namespaces(ucounts); 3384 return ERR_PTR(ret); 3385 } 3386 } 3387 new_ns->ns.ops = &mntns_operations; 3388 if (!anon) 3389 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3390 refcount_set(&new_ns->ns.count, 1); 3391 INIT_LIST_HEAD(&new_ns->list); 3392 init_waitqueue_head(&new_ns->poll); 3393 spin_lock_init(&new_ns->ns_lock); 3394 new_ns->user_ns = get_user_ns(user_ns); 3395 new_ns->ucounts = ucounts; 3396 return new_ns; 3397 } 3398 3399 __latent_entropy 3400 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3401 struct user_namespace *user_ns, struct fs_struct *new_fs) 3402 { 3403 struct mnt_namespace *new_ns; 3404 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3405 struct mount *p, *q; 3406 struct mount *old; 3407 struct mount *new; 3408 int copy_flags; 3409 3410 BUG_ON(!ns); 3411 3412 if (likely(!(flags & CLONE_NEWNS))) { 3413 get_mnt_ns(ns); 3414 return ns; 3415 } 3416 3417 old = ns->root; 3418 3419 new_ns = alloc_mnt_ns(user_ns, false); 3420 if (IS_ERR(new_ns)) 3421 return new_ns; 3422 3423 namespace_lock(); 3424 /* First pass: copy the tree topology */ 3425 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3426 if (user_ns != ns->user_ns) 3427 copy_flags |= CL_SHARED_TO_SLAVE; 3428 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3429 if (IS_ERR(new)) { 3430 namespace_unlock(); 3431 free_mnt_ns(new_ns); 3432 return ERR_CAST(new); 3433 } 3434 if (user_ns != ns->user_ns) { 3435 lock_mount_hash(); 3436 lock_mnt_tree(new); 3437 unlock_mount_hash(); 3438 } 3439 new_ns->root = new; 3440 list_add_tail(&new_ns->list, &new->mnt_list); 3441 3442 /* 3443 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3444 * as belonging to new namespace. We have already acquired a private 3445 * fs_struct, so tsk->fs->lock is not needed. 3446 */ 3447 p = old; 3448 q = new; 3449 while (p) { 3450 q->mnt_ns = new_ns; 3451 new_ns->mounts++; 3452 if (new_fs) { 3453 if (&p->mnt == new_fs->root.mnt) { 3454 new_fs->root.mnt = mntget(&q->mnt); 3455 rootmnt = &p->mnt; 3456 } 3457 if (&p->mnt == new_fs->pwd.mnt) { 3458 new_fs->pwd.mnt = mntget(&q->mnt); 3459 pwdmnt = &p->mnt; 3460 } 3461 } 3462 p = next_mnt(p, old); 3463 q = next_mnt(q, new); 3464 if (!q) 3465 break; 3466 while (p->mnt.mnt_root != q->mnt.mnt_root) 3467 p = next_mnt(p, old); 3468 } 3469 namespace_unlock(); 3470 3471 if (rootmnt) 3472 mntput(rootmnt); 3473 if (pwdmnt) 3474 mntput(pwdmnt); 3475 3476 return new_ns; 3477 } 3478 3479 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3480 { 3481 struct mount *mnt = real_mount(m); 3482 struct mnt_namespace *ns; 3483 struct super_block *s; 3484 struct path path; 3485 int err; 3486 3487 ns = alloc_mnt_ns(&init_user_ns, true); 3488 if (IS_ERR(ns)) { 3489 mntput(m); 3490 return ERR_CAST(ns); 3491 } 3492 mnt->mnt_ns = ns; 3493 ns->root = mnt; 3494 ns->mounts++; 3495 list_add(&mnt->mnt_list, &ns->list); 3496 3497 err = vfs_path_lookup(m->mnt_root, m, 3498 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3499 3500 put_mnt_ns(ns); 3501 3502 if (err) 3503 return ERR_PTR(err); 3504 3505 /* trade a vfsmount reference for active sb one */ 3506 s = path.mnt->mnt_sb; 3507 atomic_inc(&s->s_active); 3508 mntput(path.mnt); 3509 /* lock the sucker */ 3510 down_write(&s->s_umount); 3511 /* ... and return the root of (sub)tree on it */ 3512 return path.dentry; 3513 } 3514 EXPORT_SYMBOL(mount_subtree); 3515 3516 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3517 char __user *, type, unsigned long, flags, void __user *, data) 3518 { 3519 int ret; 3520 char *kernel_type; 3521 char *kernel_dev; 3522 void *options; 3523 3524 kernel_type = copy_mount_string(type); 3525 ret = PTR_ERR(kernel_type); 3526 if (IS_ERR(kernel_type)) 3527 goto out_type; 3528 3529 kernel_dev = copy_mount_string(dev_name); 3530 ret = PTR_ERR(kernel_dev); 3531 if (IS_ERR(kernel_dev)) 3532 goto out_dev; 3533 3534 options = copy_mount_options(data); 3535 ret = PTR_ERR(options); 3536 if (IS_ERR(options)) 3537 goto out_data; 3538 3539 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3540 3541 kfree(options); 3542 out_data: 3543 kfree(kernel_dev); 3544 out_dev: 3545 kfree(kernel_type); 3546 out_type: 3547 return ret; 3548 } 3549 3550 #define FSMOUNT_VALID_FLAGS \ 3551 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3552 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3553 MOUNT_ATTR_NOSYMFOLLOW) 3554 3555 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3556 3557 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3558 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3559 3560 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3561 { 3562 unsigned int mnt_flags = 0; 3563 3564 if (attr_flags & MOUNT_ATTR_RDONLY) 3565 mnt_flags |= MNT_READONLY; 3566 if (attr_flags & MOUNT_ATTR_NOSUID) 3567 mnt_flags |= MNT_NOSUID; 3568 if (attr_flags & MOUNT_ATTR_NODEV) 3569 mnt_flags |= MNT_NODEV; 3570 if (attr_flags & MOUNT_ATTR_NOEXEC) 3571 mnt_flags |= MNT_NOEXEC; 3572 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3573 mnt_flags |= MNT_NODIRATIME; 3574 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3575 mnt_flags |= MNT_NOSYMFOLLOW; 3576 3577 return mnt_flags; 3578 } 3579 3580 /* 3581 * Create a kernel mount representation for a new, prepared superblock 3582 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3583 */ 3584 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3585 unsigned int, attr_flags) 3586 { 3587 struct mnt_namespace *ns; 3588 struct fs_context *fc; 3589 struct file *file; 3590 struct path newmount; 3591 struct mount *mnt; 3592 struct fd f; 3593 unsigned int mnt_flags = 0; 3594 long ret; 3595 3596 if (!may_mount()) 3597 return -EPERM; 3598 3599 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3600 return -EINVAL; 3601 3602 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3603 return -EINVAL; 3604 3605 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3606 3607 switch (attr_flags & MOUNT_ATTR__ATIME) { 3608 case MOUNT_ATTR_STRICTATIME: 3609 break; 3610 case MOUNT_ATTR_NOATIME: 3611 mnt_flags |= MNT_NOATIME; 3612 break; 3613 case MOUNT_ATTR_RELATIME: 3614 mnt_flags |= MNT_RELATIME; 3615 break; 3616 default: 3617 return -EINVAL; 3618 } 3619 3620 f = fdget(fs_fd); 3621 if (!f.file) 3622 return -EBADF; 3623 3624 ret = -EINVAL; 3625 if (f.file->f_op != &fscontext_fops) 3626 goto err_fsfd; 3627 3628 fc = f.file->private_data; 3629 3630 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3631 if (ret < 0) 3632 goto err_fsfd; 3633 3634 /* There must be a valid superblock or we can't mount it */ 3635 ret = -EINVAL; 3636 if (!fc->root) 3637 goto err_unlock; 3638 3639 ret = -EPERM; 3640 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3641 pr_warn("VFS: Mount too revealing\n"); 3642 goto err_unlock; 3643 } 3644 3645 ret = -EBUSY; 3646 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3647 goto err_unlock; 3648 3649 if (fc->sb_flags & SB_MANDLOCK) 3650 warn_mandlock(); 3651 3652 newmount.mnt = vfs_create_mount(fc); 3653 if (IS_ERR(newmount.mnt)) { 3654 ret = PTR_ERR(newmount.mnt); 3655 goto err_unlock; 3656 } 3657 newmount.dentry = dget(fc->root); 3658 newmount.mnt->mnt_flags = mnt_flags; 3659 3660 /* We've done the mount bit - now move the file context into more or 3661 * less the same state as if we'd done an fspick(). We don't want to 3662 * do any memory allocation or anything like that at this point as we 3663 * don't want to have to handle any errors incurred. 3664 */ 3665 vfs_clean_context(fc); 3666 3667 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3668 if (IS_ERR(ns)) { 3669 ret = PTR_ERR(ns); 3670 goto err_path; 3671 } 3672 mnt = real_mount(newmount.mnt); 3673 mnt->mnt_ns = ns; 3674 ns->root = mnt; 3675 ns->mounts = 1; 3676 list_add(&mnt->mnt_list, &ns->list); 3677 mntget(newmount.mnt); 3678 3679 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3680 * it, not just simply put it. 3681 */ 3682 file = dentry_open(&newmount, O_PATH, fc->cred); 3683 if (IS_ERR(file)) { 3684 dissolve_on_fput(newmount.mnt); 3685 ret = PTR_ERR(file); 3686 goto err_path; 3687 } 3688 file->f_mode |= FMODE_NEED_UNMOUNT; 3689 3690 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3691 if (ret >= 0) 3692 fd_install(ret, file); 3693 else 3694 fput(file); 3695 3696 err_path: 3697 path_put(&newmount); 3698 err_unlock: 3699 mutex_unlock(&fc->uapi_mutex); 3700 err_fsfd: 3701 fdput(f); 3702 return ret; 3703 } 3704 3705 /* 3706 * Move a mount from one place to another. In combination with 3707 * fsopen()/fsmount() this is used to install a new mount and in combination 3708 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3709 * a mount subtree. 3710 * 3711 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3712 */ 3713 SYSCALL_DEFINE5(move_mount, 3714 int, from_dfd, const char __user *, from_pathname, 3715 int, to_dfd, const char __user *, to_pathname, 3716 unsigned int, flags) 3717 { 3718 struct path from_path, to_path; 3719 unsigned int lflags; 3720 int ret = 0; 3721 3722 if (!may_mount()) 3723 return -EPERM; 3724 3725 if (flags & ~MOVE_MOUNT__MASK) 3726 return -EINVAL; 3727 3728 /* If someone gives a pathname, they aren't permitted to move 3729 * from an fd that requires unmount as we can't get at the flag 3730 * to clear it afterwards. 3731 */ 3732 lflags = 0; 3733 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3734 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3735 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3736 3737 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3738 if (ret < 0) 3739 return ret; 3740 3741 lflags = 0; 3742 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3743 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3744 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3745 3746 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3747 if (ret < 0) 3748 goto out_from; 3749 3750 ret = security_move_mount(&from_path, &to_path); 3751 if (ret < 0) 3752 goto out_to; 3753 3754 if (flags & MOVE_MOUNT_SET_GROUP) 3755 ret = do_set_group(&from_path, &to_path); 3756 else 3757 ret = do_move_mount(&from_path, &to_path); 3758 3759 out_to: 3760 path_put(&to_path); 3761 out_from: 3762 path_put(&from_path); 3763 return ret; 3764 } 3765 3766 /* 3767 * Return true if path is reachable from root 3768 * 3769 * namespace_sem or mount_lock is held 3770 */ 3771 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3772 const struct path *root) 3773 { 3774 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3775 dentry = mnt->mnt_mountpoint; 3776 mnt = mnt->mnt_parent; 3777 } 3778 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3779 } 3780 3781 bool path_is_under(const struct path *path1, const struct path *path2) 3782 { 3783 bool res; 3784 read_seqlock_excl(&mount_lock); 3785 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3786 read_sequnlock_excl(&mount_lock); 3787 return res; 3788 } 3789 EXPORT_SYMBOL(path_is_under); 3790 3791 /* 3792 * pivot_root Semantics: 3793 * Moves the root file system of the current process to the directory put_old, 3794 * makes new_root as the new root file system of the current process, and sets 3795 * root/cwd of all processes which had them on the current root to new_root. 3796 * 3797 * Restrictions: 3798 * The new_root and put_old must be directories, and must not be on the 3799 * same file system as the current process root. The put_old must be 3800 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3801 * pointed to by put_old must yield the same directory as new_root. No other 3802 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3803 * 3804 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3805 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3806 * in this situation. 3807 * 3808 * Notes: 3809 * - we don't move root/cwd if they are not at the root (reason: if something 3810 * cared enough to change them, it's probably wrong to force them elsewhere) 3811 * - it's okay to pick a root that isn't the root of a file system, e.g. 3812 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3813 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3814 * first. 3815 */ 3816 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3817 const char __user *, put_old) 3818 { 3819 struct path new, old, root; 3820 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3821 struct mountpoint *old_mp, *root_mp; 3822 int error; 3823 3824 if (!may_mount()) 3825 return -EPERM; 3826 3827 error = user_path_at(AT_FDCWD, new_root, 3828 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3829 if (error) 3830 goto out0; 3831 3832 error = user_path_at(AT_FDCWD, put_old, 3833 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3834 if (error) 3835 goto out1; 3836 3837 error = security_sb_pivotroot(&old, &new); 3838 if (error) 3839 goto out2; 3840 3841 get_fs_root(current->fs, &root); 3842 old_mp = lock_mount(&old); 3843 error = PTR_ERR(old_mp); 3844 if (IS_ERR(old_mp)) 3845 goto out3; 3846 3847 error = -EINVAL; 3848 new_mnt = real_mount(new.mnt); 3849 root_mnt = real_mount(root.mnt); 3850 old_mnt = real_mount(old.mnt); 3851 ex_parent = new_mnt->mnt_parent; 3852 root_parent = root_mnt->mnt_parent; 3853 if (IS_MNT_SHARED(old_mnt) || 3854 IS_MNT_SHARED(ex_parent) || 3855 IS_MNT_SHARED(root_parent)) 3856 goto out4; 3857 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3858 goto out4; 3859 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3860 goto out4; 3861 error = -ENOENT; 3862 if (d_unlinked(new.dentry)) 3863 goto out4; 3864 error = -EBUSY; 3865 if (new_mnt == root_mnt || old_mnt == root_mnt) 3866 goto out4; /* loop, on the same file system */ 3867 error = -EINVAL; 3868 if (root.mnt->mnt_root != root.dentry) 3869 goto out4; /* not a mountpoint */ 3870 if (!mnt_has_parent(root_mnt)) 3871 goto out4; /* not attached */ 3872 if (new.mnt->mnt_root != new.dentry) 3873 goto out4; /* not a mountpoint */ 3874 if (!mnt_has_parent(new_mnt)) 3875 goto out4; /* not attached */ 3876 /* make sure we can reach put_old from new_root */ 3877 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3878 goto out4; 3879 /* make certain new is below the root */ 3880 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3881 goto out4; 3882 lock_mount_hash(); 3883 umount_mnt(new_mnt); 3884 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3885 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3886 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3887 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3888 } 3889 /* mount old root on put_old */ 3890 attach_mnt(root_mnt, old_mnt, old_mp); 3891 /* mount new_root on / */ 3892 attach_mnt(new_mnt, root_parent, root_mp); 3893 mnt_add_count(root_parent, -1); 3894 touch_mnt_namespace(current->nsproxy->mnt_ns); 3895 /* A moved mount should not expire automatically */ 3896 list_del_init(&new_mnt->mnt_expire); 3897 put_mountpoint(root_mp); 3898 unlock_mount_hash(); 3899 chroot_fs_refs(&root, &new); 3900 error = 0; 3901 out4: 3902 unlock_mount(old_mp); 3903 if (!error) 3904 mntput_no_expire(ex_parent); 3905 out3: 3906 path_put(&root); 3907 out2: 3908 path_put(&old); 3909 out1: 3910 path_put(&new); 3911 out0: 3912 return error; 3913 } 3914 3915 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3916 { 3917 unsigned int flags = mnt->mnt.mnt_flags; 3918 3919 /* flags to clear */ 3920 flags &= ~kattr->attr_clr; 3921 /* flags to raise */ 3922 flags |= kattr->attr_set; 3923 3924 return flags; 3925 } 3926 3927 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3928 { 3929 struct vfsmount *m = &mnt->mnt; 3930 3931 if (!kattr->mnt_userns) 3932 return 0; 3933 3934 /* 3935 * Once a mount has been idmapped we don't allow it to change its 3936 * mapping. It makes things simpler and callers can just create 3937 * another bind-mount they can idmap if they want to. 3938 */ 3939 if (mnt_user_ns(m) != &init_user_ns) 3940 return -EPERM; 3941 3942 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3943 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3944 return -EINVAL; 3945 3946 /* Don't yet support filesystem mountable in user namespaces. */ 3947 if (m->mnt_sb->s_user_ns != &init_user_ns) 3948 return -EINVAL; 3949 3950 /* We're not controlling the superblock. */ 3951 if (!capable(CAP_SYS_ADMIN)) 3952 return -EPERM; 3953 3954 /* Mount has already been visible in the filesystem hierarchy. */ 3955 if (!is_anon_ns(mnt->mnt_ns)) 3956 return -EINVAL; 3957 3958 return 0; 3959 } 3960 3961 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3962 struct mount *mnt, int *err) 3963 { 3964 struct mount *m = mnt, *last = NULL; 3965 3966 if (!is_mounted(&m->mnt)) { 3967 *err = -EINVAL; 3968 goto out; 3969 } 3970 3971 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3972 *err = -EINVAL; 3973 goto out; 3974 } 3975 3976 do { 3977 unsigned int flags; 3978 3979 flags = recalc_flags(kattr, m); 3980 if (!can_change_locked_flags(m, flags)) { 3981 *err = -EPERM; 3982 goto out; 3983 } 3984 3985 *err = can_idmap_mount(kattr, m); 3986 if (*err) 3987 goto out; 3988 3989 last = m; 3990 3991 if ((kattr->attr_set & MNT_READONLY) && 3992 !(m->mnt.mnt_flags & MNT_READONLY)) { 3993 *err = mnt_hold_writers(m); 3994 if (*err) 3995 goto out; 3996 } 3997 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3998 3999 out: 4000 return last; 4001 } 4002 4003 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4004 { 4005 struct user_namespace *mnt_userns; 4006 4007 if (!kattr->mnt_userns) 4008 return; 4009 4010 mnt_userns = get_user_ns(kattr->mnt_userns); 4011 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 4012 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 4013 } 4014 4015 static void mount_setattr_commit(struct mount_kattr *kattr, 4016 struct mount *mnt, struct mount *last, 4017 int err) 4018 { 4019 struct mount *m = mnt; 4020 4021 do { 4022 if (!err) { 4023 unsigned int flags; 4024 4025 do_idmap_mount(kattr, m); 4026 flags = recalc_flags(kattr, m); 4027 WRITE_ONCE(m->mnt.mnt_flags, flags); 4028 } 4029 4030 /* 4031 * We either set MNT_READONLY above so make it visible 4032 * before ~MNT_WRITE_HOLD or we failed to recursively 4033 * apply mount options. 4034 */ 4035 if ((kattr->attr_set & MNT_READONLY) && 4036 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 4037 mnt_unhold_writers(m); 4038 4039 if (!err && kattr->propagation) 4040 change_mnt_propagation(m, kattr->propagation); 4041 4042 /* 4043 * On failure, only cleanup until we found the first mount 4044 * we failed to handle. 4045 */ 4046 if (err && m == last) 4047 break; 4048 } while (kattr->recurse && (m = next_mnt(m, mnt))); 4049 4050 if (!err) 4051 touch_mnt_namespace(mnt->mnt_ns); 4052 } 4053 4054 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4055 { 4056 struct mount *mnt = real_mount(path->mnt), *last = NULL; 4057 int err = 0; 4058 4059 if (path->dentry != mnt->mnt.mnt_root) 4060 return -EINVAL; 4061 4062 if (kattr->propagation) { 4063 /* 4064 * Only take namespace_lock() if we're actually changing 4065 * propagation. 4066 */ 4067 namespace_lock(); 4068 if (kattr->propagation == MS_SHARED) { 4069 err = invent_group_ids(mnt, kattr->recurse); 4070 if (err) { 4071 namespace_unlock(); 4072 return err; 4073 } 4074 } 4075 } 4076 4077 lock_mount_hash(); 4078 4079 /* 4080 * Get the mount tree in a shape where we can change mount 4081 * properties without failure. 4082 */ 4083 last = mount_setattr_prepare(kattr, mnt, &err); 4084 if (last) /* Commit all changes or revert to the old state. */ 4085 mount_setattr_commit(kattr, mnt, last, err); 4086 4087 unlock_mount_hash(); 4088 4089 if (kattr->propagation) { 4090 namespace_unlock(); 4091 if (err) 4092 cleanup_group_ids(mnt, NULL); 4093 } 4094 4095 return err; 4096 } 4097 4098 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4099 struct mount_kattr *kattr, unsigned int flags) 4100 { 4101 int err = 0; 4102 struct ns_common *ns; 4103 struct user_namespace *mnt_userns; 4104 struct file *file; 4105 4106 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4107 return 0; 4108 4109 /* 4110 * We currently do not support clearing an idmapped mount. If this ever 4111 * is a use-case we can revisit this but for now let's keep it simple 4112 * and not allow it. 4113 */ 4114 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4115 return -EINVAL; 4116 4117 if (attr->userns_fd > INT_MAX) 4118 return -EINVAL; 4119 4120 file = fget(attr->userns_fd); 4121 if (!file) 4122 return -EBADF; 4123 4124 if (!proc_ns_file(file)) { 4125 err = -EINVAL; 4126 goto out_fput; 4127 } 4128 4129 ns = get_proc_ns(file_inode(file)); 4130 if (ns->ops->type != CLONE_NEWUSER) { 4131 err = -EINVAL; 4132 goto out_fput; 4133 } 4134 4135 /* 4136 * The init_user_ns is used to indicate that a vfsmount is not idmapped. 4137 * This is simpler than just having to treat NULL as unmapped. Users 4138 * wanting to idmap a mount to init_user_ns can just use a namespace 4139 * with an identity mapping. 4140 */ 4141 mnt_userns = container_of(ns, struct user_namespace, ns); 4142 if (mnt_userns == &init_user_ns) { 4143 err = -EPERM; 4144 goto out_fput; 4145 } 4146 kattr->mnt_userns = get_user_ns(mnt_userns); 4147 4148 out_fput: 4149 fput(file); 4150 return err; 4151 } 4152 4153 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4154 struct mount_kattr *kattr, unsigned int flags) 4155 { 4156 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4157 4158 if (flags & AT_NO_AUTOMOUNT) 4159 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4160 if (flags & AT_SYMLINK_NOFOLLOW) 4161 lookup_flags &= ~LOOKUP_FOLLOW; 4162 if (flags & AT_EMPTY_PATH) 4163 lookup_flags |= LOOKUP_EMPTY; 4164 4165 *kattr = (struct mount_kattr) { 4166 .lookup_flags = lookup_flags, 4167 .recurse = !!(flags & AT_RECURSIVE), 4168 }; 4169 4170 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4171 return -EINVAL; 4172 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4173 return -EINVAL; 4174 kattr->propagation = attr->propagation; 4175 4176 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4177 return -EINVAL; 4178 4179 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4180 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4181 4182 /* 4183 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4184 * users wanting to transition to a different atime setting cannot 4185 * simply specify the atime setting in @attr_set, but must also 4186 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4187 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4188 * @attr_clr and that @attr_set can't have any atime bits set if 4189 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4190 */ 4191 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4192 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4193 return -EINVAL; 4194 4195 /* 4196 * Clear all previous time settings as they are mutually 4197 * exclusive. 4198 */ 4199 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4200 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4201 case MOUNT_ATTR_RELATIME: 4202 kattr->attr_set |= MNT_RELATIME; 4203 break; 4204 case MOUNT_ATTR_NOATIME: 4205 kattr->attr_set |= MNT_NOATIME; 4206 break; 4207 case MOUNT_ATTR_STRICTATIME: 4208 break; 4209 default: 4210 return -EINVAL; 4211 } 4212 } else { 4213 if (attr->attr_set & MOUNT_ATTR__ATIME) 4214 return -EINVAL; 4215 } 4216 4217 return build_mount_idmapped(attr, usize, kattr, flags); 4218 } 4219 4220 static void finish_mount_kattr(struct mount_kattr *kattr) 4221 { 4222 put_user_ns(kattr->mnt_userns); 4223 kattr->mnt_userns = NULL; 4224 } 4225 4226 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4227 unsigned int, flags, struct mount_attr __user *, uattr, 4228 size_t, usize) 4229 { 4230 int err; 4231 struct path target; 4232 struct mount_attr attr; 4233 struct mount_kattr kattr; 4234 4235 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4236 4237 if (flags & ~(AT_EMPTY_PATH | 4238 AT_RECURSIVE | 4239 AT_SYMLINK_NOFOLLOW | 4240 AT_NO_AUTOMOUNT)) 4241 return -EINVAL; 4242 4243 if (unlikely(usize > PAGE_SIZE)) 4244 return -E2BIG; 4245 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4246 return -EINVAL; 4247 4248 if (!may_mount()) 4249 return -EPERM; 4250 4251 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4252 if (err) 4253 return err; 4254 4255 /* Don't bother walking through the mounts if this is a nop. */ 4256 if (attr.attr_set == 0 && 4257 attr.attr_clr == 0 && 4258 attr.propagation == 0) 4259 return 0; 4260 4261 err = build_mount_kattr(&attr, usize, &kattr, flags); 4262 if (err) 4263 return err; 4264 4265 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4266 if (err) 4267 return err; 4268 4269 err = do_mount_setattr(&target, &kattr); 4270 finish_mount_kattr(&kattr); 4271 path_put(&target); 4272 return err; 4273 } 4274 4275 static void __init init_mount_tree(void) 4276 { 4277 struct vfsmount *mnt; 4278 struct mount *m; 4279 struct mnt_namespace *ns; 4280 struct path root; 4281 4282 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4283 if (IS_ERR(mnt)) 4284 panic("Can't create rootfs"); 4285 4286 ns = alloc_mnt_ns(&init_user_ns, false); 4287 if (IS_ERR(ns)) 4288 panic("Can't allocate initial namespace"); 4289 m = real_mount(mnt); 4290 m->mnt_ns = ns; 4291 ns->root = m; 4292 ns->mounts = 1; 4293 list_add(&m->mnt_list, &ns->list); 4294 init_task.nsproxy->mnt_ns = ns; 4295 get_mnt_ns(ns); 4296 4297 root.mnt = mnt; 4298 root.dentry = mnt->mnt_root; 4299 mnt->mnt_flags |= MNT_LOCKED; 4300 4301 set_fs_pwd(current->fs, &root); 4302 set_fs_root(current->fs, &root); 4303 } 4304 4305 void __init mnt_init(void) 4306 { 4307 int err; 4308 4309 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4310 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4311 4312 mount_hashtable = alloc_large_system_hash("Mount-cache", 4313 sizeof(struct hlist_head), 4314 mhash_entries, 19, 4315 HASH_ZERO, 4316 &m_hash_shift, &m_hash_mask, 0, 0); 4317 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4318 sizeof(struct hlist_head), 4319 mphash_entries, 19, 4320 HASH_ZERO, 4321 &mp_hash_shift, &mp_hash_mask, 0, 0); 4322 4323 if (!mount_hashtable || !mountpoint_hashtable) 4324 panic("Failed to allocate mount hash table\n"); 4325 4326 kernfs_init(); 4327 4328 err = sysfs_init(); 4329 if (err) 4330 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4331 __func__, err); 4332 fs_kobj = kobject_create_and_add("fs", NULL); 4333 if (!fs_kobj) 4334 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4335 shmem_init(); 4336 init_rootfs(); 4337 init_mount_tree(); 4338 } 4339 4340 void put_mnt_ns(struct mnt_namespace *ns) 4341 { 4342 if (!refcount_dec_and_test(&ns->ns.count)) 4343 return; 4344 drop_collected_mounts(&ns->root->mnt); 4345 free_mnt_ns(ns); 4346 } 4347 4348 struct vfsmount *kern_mount(struct file_system_type *type) 4349 { 4350 struct vfsmount *mnt; 4351 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4352 if (!IS_ERR(mnt)) { 4353 /* 4354 * it is a longterm mount, don't release mnt until 4355 * we unmount before file sys is unregistered 4356 */ 4357 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4358 } 4359 return mnt; 4360 } 4361 EXPORT_SYMBOL_GPL(kern_mount); 4362 4363 void kern_unmount(struct vfsmount *mnt) 4364 { 4365 /* release long term mount so mount point can be released */ 4366 if (!IS_ERR_OR_NULL(mnt)) { 4367 real_mount(mnt)->mnt_ns = NULL; 4368 synchronize_rcu(); /* yecchhh... */ 4369 mntput(mnt); 4370 } 4371 } 4372 EXPORT_SYMBOL(kern_unmount); 4373 4374 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4375 { 4376 unsigned int i; 4377 4378 for (i = 0; i < num; i++) 4379 if (mnt[i]) 4380 real_mount(mnt[i])->mnt_ns = NULL; 4381 synchronize_rcu_expedited(); 4382 for (i = 0; i < num; i++) 4383 mntput(mnt[i]); 4384 } 4385 EXPORT_SYMBOL(kern_unmount_array); 4386 4387 bool our_mnt(struct vfsmount *mnt) 4388 { 4389 return check_mnt(real_mount(mnt)); 4390 } 4391 4392 bool current_chrooted(void) 4393 { 4394 /* Does the current process have a non-standard root */ 4395 struct path ns_root; 4396 struct path fs_root; 4397 bool chrooted; 4398 4399 /* Find the namespace root */ 4400 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4401 ns_root.dentry = ns_root.mnt->mnt_root; 4402 path_get(&ns_root); 4403 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4404 ; 4405 4406 get_fs_root(current->fs, &fs_root); 4407 4408 chrooted = !path_equal(&fs_root, &ns_root); 4409 4410 path_put(&fs_root); 4411 path_put(&ns_root); 4412 4413 return chrooted; 4414 } 4415 4416 static bool mnt_already_visible(struct mnt_namespace *ns, 4417 const struct super_block *sb, 4418 int *new_mnt_flags) 4419 { 4420 int new_flags = *new_mnt_flags; 4421 struct mount *mnt; 4422 bool visible = false; 4423 4424 down_read(&namespace_sem); 4425 lock_ns_list(ns); 4426 list_for_each_entry(mnt, &ns->list, mnt_list) { 4427 struct mount *child; 4428 int mnt_flags; 4429 4430 if (mnt_is_cursor(mnt)) 4431 continue; 4432 4433 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4434 continue; 4435 4436 /* This mount is not fully visible if it's root directory 4437 * is not the root directory of the filesystem. 4438 */ 4439 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4440 continue; 4441 4442 /* A local view of the mount flags */ 4443 mnt_flags = mnt->mnt.mnt_flags; 4444 4445 /* Don't miss readonly hidden in the superblock flags */ 4446 if (sb_rdonly(mnt->mnt.mnt_sb)) 4447 mnt_flags |= MNT_LOCK_READONLY; 4448 4449 /* Verify the mount flags are equal to or more permissive 4450 * than the proposed new mount. 4451 */ 4452 if ((mnt_flags & MNT_LOCK_READONLY) && 4453 !(new_flags & MNT_READONLY)) 4454 continue; 4455 if ((mnt_flags & MNT_LOCK_ATIME) && 4456 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4457 continue; 4458 4459 /* This mount is not fully visible if there are any 4460 * locked child mounts that cover anything except for 4461 * empty directories. 4462 */ 4463 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4464 struct inode *inode = child->mnt_mountpoint->d_inode; 4465 /* Only worry about locked mounts */ 4466 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4467 continue; 4468 /* Is the directory permanetly empty? */ 4469 if (!is_empty_dir_inode(inode)) 4470 goto next; 4471 } 4472 /* Preserve the locked attributes */ 4473 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4474 MNT_LOCK_ATIME); 4475 visible = true; 4476 goto found; 4477 next: ; 4478 } 4479 found: 4480 unlock_ns_list(ns); 4481 up_read(&namespace_sem); 4482 return visible; 4483 } 4484 4485 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4486 { 4487 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4488 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4489 unsigned long s_iflags; 4490 4491 if (ns->user_ns == &init_user_ns) 4492 return false; 4493 4494 /* Can this filesystem be too revealing? */ 4495 s_iflags = sb->s_iflags; 4496 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4497 return false; 4498 4499 if ((s_iflags & required_iflags) != required_iflags) { 4500 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4501 required_iflags); 4502 return true; 4503 } 4504 4505 return !mnt_already_visible(ns, sb, new_mnt_flags); 4506 } 4507 4508 bool mnt_may_suid(struct vfsmount *mnt) 4509 { 4510 /* 4511 * Foreign mounts (accessed via fchdir or through /proc 4512 * symlinks) are always treated as if they are nosuid. This 4513 * prevents namespaces from trusting potentially unsafe 4514 * suid/sgid bits, file caps, or security labels that originate 4515 * in other namespaces. 4516 */ 4517 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4518 current_in_userns(mnt->mnt_sb->s_user_ns); 4519 } 4520 4521 static struct ns_common *mntns_get(struct task_struct *task) 4522 { 4523 struct ns_common *ns = NULL; 4524 struct nsproxy *nsproxy; 4525 4526 task_lock(task); 4527 nsproxy = task->nsproxy; 4528 if (nsproxy) { 4529 ns = &nsproxy->mnt_ns->ns; 4530 get_mnt_ns(to_mnt_ns(ns)); 4531 } 4532 task_unlock(task); 4533 4534 return ns; 4535 } 4536 4537 static void mntns_put(struct ns_common *ns) 4538 { 4539 put_mnt_ns(to_mnt_ns(ns)); 4540 } 4541 4542 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4543 { 4544 struct nsproxy *nsproxy = nsset->nsproxy; 4545 struct fs_struct *fs = nsset->fs; 4546 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4547 struct user_namespace *user_ns = nsset->cred->user_ns; 4548 struct path root; 4549 int err; 4550 4551 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4552 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4553 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4554 return -EPERM; 4555 4556 if (is_anon_ns(mnt_ns)) 4557 return -EINVAL; 4558 4559 if (fs->users != 1) 4560 return -EINVAL; 4561 4562 get_mnt_ns(mnt_ns); 4563 old_mnt_ns = nsproxy->mnt_ns; 4564 nsproxy->mnt_ns = mnt_ns; 4565 4566 /* Find the root */ 4567 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4568 "/", LOOKUP_DOWN, &root); 4569 if (err) { 4570 /* revert to old namespace */ 4571 nsproxy->mnt_ns = old_mnt_ns; 4572 put_mnt_ns(mnt_ns); 4573 return err; 4574 } 4575 4576 put_mnt_ns(old_mnt_ns); 4577 4578 /* Update the pwd and root */ 4579 set_fs_pwd(fs, &root); 4580 set_fs_root(fs, &root); 4581 4582 path_put(&root); 4583 return 0; 4584 } 4585 4586 static struct user_namespace *mntns_owner(struct ns_common *ns) 4587 { 4588 return to_mnt_ns(ns)->user_ns; 4589 } 4590 4591 const struct proc_ns_operations mntns_operations = { 4592 .name = "mnt", 4593 .type = CLONE_NEWNS, 4594 .get = mntns_get, 4595 .put = mntns_put, 4596 .install = mntns_install, 4597 .owner = mntns_owner, 4598 }; 4599