1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static DEFINE_SEQLOCK(mnt_ns_tree_lock); 83 84 #ifdef CONFIG_FSNOTIFY 85 LIST_HEAD(notify_list); /* protected by namespace_sem */ 86 #endif 87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */ 89 90 enum mount_kattr_flags_t { 91 MOUNT_KATTR_RECURSE = (1 << 0), 92 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 93 }; 94 95 struct mount_kattr { 96 unsigned int attr_set; 97 unsigned int attr_clr; 98 unsigned int propagation; 99 unsigned int lookup_flags; 100 enum mount_kattr_flags_t kflags; 101 struct user_namespace *mnt_userns; 102 struct mnt_idmap *mnt_idmap; 103 }; 104 105 /* /sys/fs */ 106 struct kobject *fs_kobj __ro_after_init; 107 EXPORT_SYMBOL_GPL(fs_kobj); 108 109 /* 110 * vfsmount lock may be taken for read to prevent changes to the 111 * vfsmount hash, ie. during mountpoint lookups or walking back 112 * up the tree. 113 * 114 * It should be taken for write in all cases where the vfsmount 115 * tree or hash is modified or when a vfsmount structure is modified. 116 */ 117 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 118 119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 120 { 121 if (!node) 122 return NULL; 123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 124 } 125 126 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b) 127 { 128 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 129 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 130 u64 seq_a = ns_a->seq; 131 u64 seq_b = ns_b->seq; 132 133 if (seq_a < seq_b) 134 return -1; 135 if (seq_a > seq_b) 136 return 1; 137 return 0; 138 } 139 140 static inline void mnt_ns_tree_write_lock(void) 141 { 142 write_seqlock(&mnt_ns_tree_lock); 143 } 144 145 static inline void mnt_ns_tree_write_unlock(void) 146 { 147 write_sequnlock(&mnt_ns_tree_lock); 148 } 149 150 static void mnt_ns_tree_add(struct mnt_namespace *ns) 151 { 152 struct rb_node *node, *prev; 153 154 mnt_ns_tree_write_lock(); 155 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp); 156 /* 157 * If there's no previous entry simply add it after the 158 * head and if there is add it after the previous entry. 159 */ 160 prev = rb_prev(&ns->mnt_ns_tree_node); 161 if (!prev) 162 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list); 163 else 164 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list); 165 mnt_ns_tree_write_unlock(); 166 167 WARN_ON_ONCE(node); 168 } 169 170 static void mnt_ns_release(struct mnt_namespace *ns) 171 { 172 /* keep alive for {list,stat}mount() */ 173 if (refcount_dec_and_test(&ns->passive)) { 174 fsnotify_mntns_delete(ns); 175 put_user_ns(ns->user_ns); 176 kfree(ns); 177 } 178 } 179 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 180 181 static void mnt_ns_release_rcu(struct rcu_head *rcu) 182 { 183 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu)); 184 } 185 186 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 187 { 188 /* remove from global mount namespace list */ 189 if (!is_anon_ns(ns)) { 190 mnt_ns_tree_write_lock(); 191 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 192 list_bidir_del_rcu(&ns->mnt_ns_list); 193 mnt_ns_tree_write_unlock(); 194 } 195 196 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu); 197 } 198 199 static int mnt_ns_find(const void *key, const struct rb_node *node) 200 { 201 const u64 mnt_ns_id = *(u64 *)key; 202 const struct mnt_namespace *ns = node_to_mnt_ns(node); 203 204 if (mnt_ns_id < ns->seq) 205 return -1; 206 if (mnt_ns_id > ns->seq) 207 return 1; 208 return 0; 209 } 210 211 /* 212 * Lookup a mount namespace by id and take a passive reference count. Taking a 213 * passive reference means the mount namespace can be emptied if e.g., the last 214 * task holding an active reference exits. To access the mounts of the 215 * namespace the @namespace_sem must first be acquired. If the namespace has 216 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 217 * see that the mount rbtree of the namespace is empty. 218 * 219 * Note the lookup is lockless protected by a sequence counter. We only 220 * need to guard against false negatives as false positives aren't 221 * possible. So if we didn't find a mount namespace and the sequence 222 * counter has changed we need to retry. If the sequence counter is 223 * still the same we know the search actually failed. 224 */ 225 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 226 { 227 struct mnt_namespace *ns; 228 struct rb_node *node; 229 unsigned int seq; 230 231 guard(rcu)(); 232 do { 233 seq = read_seqbegin(&mnt_ns_tree_lock); 234 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find); 235 if (node) 236 break; 237 } while (read_seqretry(&mnt_ns_tree_lock, seq)); 238 239 if (!node) 240 return NULL; 241 242 /* 243 * The last reference count is put with RCU delay so we can 244 * unconditonally acquire a reference here. 245 */ 246 ns = node_to_mnt_ns(node); 247 refcount_inc(&ns->passive); 248 return ns; 249 } 250 251 static inline void lock_mount_hash(void) 252 { 253 write_seqlock(&mount_lock); 254 } 255 256 static inline void unlock_mount_hash(void) 257 { 258 write_sequnlock(&mount_lock); 259 } 260 261 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 262 { 263 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 264 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 265 tmp = tmp + (tmp >> m_hash_shift); 266 return &mount_hashtable[tmp & m_hash_mask]; 267 } 268 269 static inline struct hlist_head *mp_hash(struct dentry *dentry) 270 { 271 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 272 tmp = tmp + (tmp >> mp_hash_shift); 273 return &mountpoint_hashtable[tmp & mp_hash_mask]; 274 } 275 276 static int mnt_alloc_id(struct mount *mnt) 277 { 278 int res; 279 280 xa_lock(&mnt_id_xa); 281 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 282 if (!res) 283 mnt->mnt_id_unique = ++mnt_id_ctr; 284 xa_unlock(&mnt_id_xa); 285 return res; 286 } 287 288 static void mnt_free_id(struct mount *mnt) 289 { 290 xa_erase(&mnt_id_xa, mnt->mnt_id); 291 } 292 293 /* 294 * Allocate a new peer group ID 295 */ 296 static int mnt_alloc_group_id(struct mount *mnt) 297 { 298 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 299 300 if (res < 0) 301 return res; 302 mnt->mnt_group_id = res; 303 return 0; 304 } 305 306 /* 307 * Release a peer group ID 308 */ 309 void mnt_release_group_id(struct mount *mnt) 310 { 311 ida_free(&mnt_group_ida, mnt->mnt_group_id); 312 mnt->mnt_group_id = 0; 313 } 314 315 /* 316 * vfsmount lock must be held for read 317 */ 318 static inline void mnt_add_count(struct mount *mnt, int n) 319 { 320 #ifdef CONFIG_SMP 321 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 322 #else 323 preempt_disable(); 324 mnt->mnt_count += n; 325 preempt_enable(); 326 #endif 327 } 328 329 /* 330 * vfsmount lock must be held for write 331 */ 332 int mnt_get_count(struct mount *mnt) 333 { 334 #ifdef CONFIG_SMP 335 int count = 0; 336 int cpu; 337 338 for_each_possible_cpu(cpu) { 339 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 340 } 341 342 return count; 343 #else 344 return mnt->mnt_count; 345 #endif 346 } 347 348 static struct mount *alloc_vfsmnt(const char *name) 349 { 350 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 351 if (mnt) { 352 int err; 353 354 err = mnt_alloc_id(mnt); 355 if (err) 356 goto out_free_cache; 357 358 if (name) 359 mnt->mnt_devname = kstrdup_const(name, 360 GFP_KERNEL_ACCOUNT); 361 else 362 mnt->mnt_devname = "none"; 363 if (!mnt->mnt_devname) 364 goto out_free_id; 365 366 #ifdef CONFIG_SMP 367 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 368 if (!mnt->mnt_pcp) 369 goto out_free_devname; 370 371 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 372 #else 373 mnt->mnt_count = 1; 374 mnt->mnt_writers = 0; 375 #endif 376 377 INIT_HLIST_NODE(&mnt->mnt_hash); 378 INIT_LIST_HEAD(&mnt->mnt_child); 379 INIT_LIST_HEAD(&mnt->mnt_mounts); 380 INIT_LIST_HEAD(&mnt->mnt_list); 381 INIT_LIST_HEAD(&mnt->mnt_expire); 382 INIT_LIST_HEAD(&mnt->mnt_share); 383 INIT_LIST_HEAD(&mnt->mnt_slave_list); 384 INIT_LIST_HEAD(&mnt->mnt_slave); 385 INIT_HLIST_NODE(&mnt->mnt_mp_list); 386 INIT_LIST_HEAD(&mnt->mnt_umounting); 387 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 388 RB_CLEAR_NODE(&mnt->mnt_node); 389 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 390 } 391 return mnt; 392 393 #ifdef CONFIG_SMP 394 out_free_devname: 395 kfree_const(mnt->mnt_devname); 396 #endif 397 out_free_id: 398 mnt_free_id(mnt); 399 out_free_cache: 400 kmem_cache_free(mnt_cache, mnt); 401 return NULL; 402 } 403 404 /* 405 * Most r/o checks on a fs are for operations that take 406 * discrete amounts of time, like a write() or unlink(). 407 * We must keep track of when those operations start 408 * (for permission checks) and when they end, so that 409 * we can determine when writes are able to occur to 410 * a filesystem. 411 */ 412 /* 413 * __mnt_is_readonly: check whether a mount is read-only 414 * @mnt: the mount to check for its write status 415 * 416 * This shouldn't be used directly ouside of the VFS. 417 * It does not guarantee that the filesystem will stay 418 * r/w, just that it is right *now*. This can not and 419 * should not be used in place of IS_RDONLY(inode). 420 * mnt_want/drop_write() will _keep_ the filesystem 421 * r/w. 422 */ 423 bool __mnt_is_readonly(struct vfsmount *mnt) 424 { 425 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 426 } 427 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 428 429 static inline void mnt_inc_writers(struct mount *mnt) 430 { 431 #ifdef CONFIG_SMP 432 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 433 #else 434 mnt->mnt_writers++; 435 #endif 436 } 437 438 static inline void mnt_dec_writers(struct mount *mnt) 439 { 440 #ifdef CONFIG_SMP 441 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 442 #else 443 mnt->mnt_writers--; 444 #endif 445 } 446 447 static unsigned int mnt_get_writers(struct mount *mnt) 448 { 449 #ifdef CONFIG_SMP 450 unsigned int count = 0; 451 int cpu; 452 453 for_each_possible_cpu(cpu) { 454 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 455 } 456 457 return count; 458 #else 459 return mnt->mnt_writers; 460 #endif 461 } 462 463 static int mnt_is_readonly(struct vfsmount *mnt) 464 { 465 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 466 return 1; 467 /* 468 * The barrier pairs with the barrier in sb_start_ro_state_change() 469 * making sure if we don't see s_readonly_remount set yet, we also will 470 * not see any superblock / mount flag changes done by remount. 471 * It also pairs with the barrier in sb_end_ro_state_change() 472 * assuring that if we see s_readonly_remount already cleared, we will 473 * see the values of superblock / mount flags updated by remount. 474 */ 475 smp_rmb(); 476 return __mnt_is_readonly(mnt); 477 } 478 479 /* 480 * Most r/o & frozen checks on a fs are for operations that take discrete 481 * amounts of time, like a write() or unlink(). We must keep track of when 482 * those operations start (for permission checks) and when they end, so that we 483 * can determine when writes are able to occur to a filesystem. 484 */ 485 /** 486 * mnt_get_write_access - get write access to a mount without freeze protection 487 * @m: the mount on which to take a write 488 * 489 * This tells the low-level filesystem that a write is about to be performed to 490 * it, and makes sure that writes are allowed (mnt it read-write) before 491 * returning success. This operation does not protect against filesystem being 492 * frozen. When the write operation is finished, mnt_put_write_access() must be 493 * called. This is effectively a refcount. 494 */ 495 int mnt_get_write_access(struct vfsmount *m) 496 { 497 struct mount *mnt = real_mount(m); 498 int ret = 0; 499 500 preempt_disable(); 501 mnt_inc_writers(mnt); 502 /* 503 * The store to mnt_inc_writers must be visible before we pass 504 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 505 * incremented count after it has set MNT_WRITE_HOLD. 506 */ 507 smp_mb(); 508 might_lock(&mount_lock.lock); 509 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 510 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 511 cpu_relax(); 512 } else { 513 /* 514 * This prevents priority inversion, if the task 515 * setting MNT_WRITE_HOLD got preempted on a remote 516 * CPU, and it prevents life lock if the task setting 517 * MNT_WRITE_HOLD has a lower priority and is bound to 518 * the same CPU as the task that is spinning here. 519 */ 520 preempt_enable(); 521 lock_mount_hash(); 522 unlock_mount_hash(); 523 preempt_disable(); 524 } 525 } 526 /* 527 * The barrier pairs with the barrier sb_start_ro_state_change() making 528 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 529 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 530 * mnt_is_readonly() and bail in case we are racing with remount 531 * read-only. 532 */ 533 smp_rmb(); 534 if (mnt_is_readonly(m)) { 535 mnt_dec_writers(mnt); 536 ret = -EROFS; 537 } 538 preempt_enable(); 539 540 return ret; 541 } 542 EXPORT_SYMBOL_GPL(mnt_get_write_access); 543 544 /** 545 * mnt_want_write - get write access to a mount 546 * @m: the mount on which to take a write 547 * 548 * This tells the low-level filesystem that a write is about to be performed to 549 * it, and makes sure that writes are allowed (mount is read-write, filesystem 550 * is not frozen) before returning success. When the write operation is 551 * finished, mnt_drop_write() must be called. This is effectively a refcount. 552 */ 553 int mnt_want_write(struct vfsmount *m) 554 { 555 int ret; 556 557 sb_start_write(m->mnt_sb); 558 ret = mnt_get_write_access(m); 559 if (ret) 560 sb_end_write(m->mnt_sb); 561 return ret; 562 } 563 EXPORT_SYMBOL_GPL(mnt_want_write); 564 565 /** 566 * mnt_get_write_access_file - get write access to a file's mount 567 * @file: the file who's mount on which to take a write 568 * 569 * This is like mnt_get_write_access, but if @file is already open for write it 570 * skips incrementing mnt_writers (since the open file already has a reference) 571 * and instead only does the check for emergency r/o remounts. This must be 572 * paired with mnt_put_write_access_file. 573 */ 574 int mnt_get_write_access_file(struct file *file) 575 { 576 if (file->f_mode & FMODE_WRITER) { 577 /* 578 * Superblock may have become readonly while there are still 579 * writable fd's, e.g. due to a fs error with errors=remount-ro 580 */ 581 if (__mnt_is_readonly(file->f_path.mnt)) 582 return -EROFS; 583 return 0; 584 } 585 return mnt_get_write_access(file->f_path.mnt); 586 } 587 588 /** 589 * mnt_want_write_file - get write access to a file's mount 590 * @file: the file who's mount on which to take a write 591 * 592 * This is like mnt_want_write, but if the file is already open for writing it 593 * skips incrementing mnt_writers (since the open file already has a reference) 594 * and instead only does the freeze protection and the check for emergency r/o 595 * remounts. This must be paired with mnt_drop_write_file. 596 */ 597 int mnt_want_write_file(struct file *file) 598 { 599 int ret; 600 601 sb_start_write(file_inode(file)->i_sb); 602 ret = mnt_get_write_access_file(file); 603 if (ret) 604 sb_end_write(file_inode(file)->i_sb); 605 return ret; 606 } 607 EXPORT_SYMBOL_GPL(mnt_want_write_file); 608 609 /** 610 * mnt_put_write_access - give up write access to a mount 611 * @mnt: the mount on which to give up write access 612 * 613 * Tells the low-level filesystem that we are done 614 * performing writes to it. Must be matched with 615 * mnt_get_write_access() call above. 616 */ 617 void mnt_put_write_access(struct vfsmount *mnt) 618 { 619 preempt_disable(); 620 mnt_dec_writers(real_mount(mnt)); 621 preempt_enable(); 622 } 623 EXPORT_SYMBOL_GPL(mnt_put_write_access); 624 625 /** 626 * mnt_drop_write - give up write access to a mount 627 * @mnt: the mount on which to give up write access 628 * 629 * Tells the low-level filesystem that we are done performing writes to it and 630 * also allows filesystem to be frozen again. Must be matched with 631 * mnt_want_write() call above. 632 */ 633 void mnt_drop_write(struct vfsmount *mnt) 634 { 635 mnt_put_write_access(mnt); 636 sb_end_write(mnt->mnt_sb); 637 } 638 EXPORT_SYMBOL_GPL(mnt_drop_write); 639 640 void mnt_put_write_access_file(struct file *file) 641 { 642 if (!(file->f_mode & FMODE_WRITER)) 643 mnt_put_write_access(file->f_path.mnt); 644 } 645 646 void mnt_drop_write_file(struct file *file) 647 { 648 mnt_put_write_access_file(file); 649 sb_end_write(file_inode(file)->i_sb); 650 } 651 EXPORT_SYMBOL(mnt_drop_write_file); 652 653 /** 654 * mnt_hold_writers - prevent write access to the given mount 655 * @mnt: mnt to prevent write access to 656 * 657 * Prevents write access to @mnt if there are no active writers for @mnt. 658 * This function needs to be called and return successfully before changing 659 * properties of @mnt that need to remain stable for callers with write access 660 * to @mnt. 661 * 662 * After this functions has been called successfully callers must pair it with 663 * a call to mnt_unhold_writers() in order to stop preventing write access to 664 * @mnt. 665 * 666 * Context: This function expects lock_mount_hash() to be held serializing 667 * setting MNT_WRITE_HOLD. 668 * Return: On success 0 is returned. 669 * On error, -EBUSY is returned. 670 */ 671 static inline int mnt_hold_writers(struct mount *mnt) 672 { 673 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 674 /* 675 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 676 * should be visible before we do. 677 */ 678 smp_mb(); 679 680 /* 681 * With writers on hold, if this value is zero, then there are 682 * definitely no active writers (although held writers may subsequently 683 * increment the count, they'll have to wait, and decrement it after 684 * seeing MNT_READONLY). 685 * 686 * It is OK to have counter incremented on one CPU and decremented on 687 * another: the sum will add up correctly. The danger would be when we 688 * sum up each counter, if we read a counter before it is incremented, 689 * but then read another CPU's count which it has been subsequently 690 * decremented from -- we would see more decrements than we should. 691 * MNT_WRITE_HOLD protects against this scenario, because 692 * mnt_want_write first increments count, then smp_mb, then spins on 693 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 694 * we're counting up here. 695 */ 696 if (mnt_get_writers(mnt) > 0) 697 return -EBUSY; 698 699 return 0; 700 } 701 702 /** 703 * mnt_unhold_writers - stop preventing write access to the given mount 704 * @mnt: mnt to stop preventing write access to 705 * 706 * Stop preventing write access to @mnt allowing callers to gain write access 707 * to @mnt again. 708 * 709 * This function can only be called after a successful call to 710 * mnt_hold_writers(). 711 * 712 * Context: This function expects lock_mount_hash() to be held. 713 */ 714 static inline void mnt_unhold_writers(struct mount *mnt) 715 { 716 /* 717 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 718 * that become unheld will see MNT_READONLY. 719 */ 720 smp_wmb(); 721 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 722 } 723 724 static int mnt_make_readonly(struct mount *mnt) 725 { 726 int ret; 727 728 ret = mnt_hold_writers(mnt); 729 if (!ret) 730 mnt->mnt.mnt_flags |= MNT_READONLY; 731 mnt_unhold_writers(mnt); 732 return ret; 733 } 734 735 int sb_prepare_remount_readonly(struct super_block *sb) 736 { 737 struct mount *mnt; 738 int err = 0; 739 740 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 741 if (atomic_long_read(&sb->s_remove_count)) 742 return -EBUSY; 743 744 lock_mount_hash(); 745 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 746 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 747 err = mnt_hold_writers(mnt); 748 if (err) 749 break; 750 } 751 } 752 if (!err && atomic_long_read(&sb->s_remove_count)) 753 err = -EBUSY; 754 755 if (!err) 756 sb_start_ro_state_change(sb); 757 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 758 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 759 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 760 } 761 unlock_mount_hash(); 762 763 return err; 764 } 765 766 static void free_vfsmnt(struct mount *mnt) 767 { 768 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 769 kfree_const(mnt->mnt_devname); 770 #ifdef CONFIG_SMP 771 free_percpu(mnt->mnt_pcp); 772 #endif 773 kmem_cache_free(mnt_cache, mnt); 774 } 775 776 static void delayed_free_vfsmnt(struct rcu_head *head) 777 { 778 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 779 } 780 781 /* call under rcu_read_lock */ 782 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 783 { 784 struct mount *mnt; 785 if (read_seqretry(&mount_lock, seq)) 786 return 1; 787 if (bastard == NULL) 788 return 0; 789 mnt = real_mount(bastard); 790 mnt_add_count(mnt, 1); 791 smp_mb(); // see mntput_no_expire() and do_umount() 792 if (likely(!read_seqretry(&mount_lock, seq))) 793 return 0; 794 lock_mount_hash(); 795 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { 796 mnt_add_count(mnt, -1); 797 unlock_mount_hash(); 798 return 1; 799 } 800 unlock_mount_hash(); 801 /* caller will mntput() */ 802 return -1; 803 } 804 805 /* call under rcu_read_lock */ 806 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 807 { 808 int res = __legitimize_mnt(bastard, seq); 809 if (likely(!res)) 810 return true; 811 if (unlikely(res < 0)) { 812 rcu_read_unlock(); 813 mntput(bastard); 814 rcu_read_lock(); 815 } 816 return false; 817 } 818 819 /** 820 * __lookup_mnt - find first child mount 821 * @mnt: parent mount 822 * @dentry: mountpoint 823 * 824 * If @mnt has a child mount @c mounted @dentry find and return it. 825 * 826 * Note that the child mount @c need not be unique. There are cases 827 * where shadow mounts are created. For example, during mount 828 * propagation when a source mount @mnt whose root got overmounted by a 829 * mount @o after path lookup but before @namespace_sem could be 830 * acquired gets copied and propagated. So @mnt gets copied including 831 * @o. When @mnt is propagated to a destination mount @d that already 832 * has another mount @n mounted at the same mountpoint then the source 833 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 834 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 835 * on @dentry. 836 * 837 * Return: The first child of @mnt mounted @dentry or NULL. 838 */ 839 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 840 { 841 struct hlist_head *head = m_hash(mnt, dentry); 842 struct mount *p; 843 844 hlist_for_each_entry_rcu(p, head, mnt_hash) 845 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 846 return p; 847 return NULL; 848 } 849 850 /* 851 * lookup_mnt - Return the first child mount mounted at path 852 * 853 * "First" means first mounted chronologically. If you create the 854 * following mounts: 855 * 856 * mount /dev/sda1 /mnt 857 * mount /dev/sda2 /mnt 858 * mount /dev/sda3 /mnt 859 * 860 * Then lookup_mnt() on the base /mnt dentry in the root mount will 861 * return successively the root dentry and vfsmount of /dev/sda1, then 862 * /dev/sda2, then /dev/sda3, then NULL. 863 * 864 * lookup_mnt takes a reference to the found vfsmount. 865 */ 866 struct vfsmount *lookup_mnt(const struct path *path) 867 { 868 struct mount *child_mnt; 869 struct vfsmount *m; 870 unsigned seq; 871 872 rcu_read_lock(); 873 do { 874 seq = read_seqbegin(&mount_lock); 875 child_mnt = __lookup_mnt(path->mnt, path->dentry); 876 m = child_mnt ? &child_mnt->mnt : NULL; 877 } while (!legitimize_mnt(m, seq)); 878 rcu_read_unlock(); 879 return m; 880 } 881 882 /* 883 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 884 * current mount namespace. 885 * 886 * The common case is dentries are not mountpoints at all and that 887 * test is handled inline. For the slow case when we are actually 888 * dealing with a mountpoint of some kind, walk through all of the 889 * mounts in the current mount namespace and test to see if the dentry 890 * is a mountpoint. 891 * 892 * The mount_hashtable is not usable in the context because we 893 * need to identify all mounts that may be in the current mount 894 * namespace not just a mount that happens to have some specified 895 * parent mount. 896 */ 897 bool __is_local_mountpoint(struct dentry *dentry) 898 { 899 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 900 struct mount *mnt, *n; 901 bool is_covered = false; 902 903 down_read(&namespace_sem); 904 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 905 is_covered = (mnt->mnt_mountpoint == dentry); 906 if (is_covered) 907 break; 908 } 909 up_read(&namespace_sem); 910 911 return is_covered; 912 } 913 914 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 915 { 916 struct hlist_head *chain = mp_hash(dentry); 917 struct mountpoint *mp; 918 919 hlist_for_each_entry(mp, chain, m_hash) { 920 if (mp->m_dentry == dentry) { 921 mp->m_count++; 922 return mp; 923 } 924 } 925 return NULL; 926 } 927 928 static struct mountpoint *get_mountpoint(struct dentry *dentry) 929 { 930 struct mountpoint *mp, *new = NULL; 931 int ret; 932 933 if (d_mountpoint(dentry)) { 934 /* might be worth a WARN_ON() */ 935 if (d_unlinked(dentry)) 936 return ERR_PTR(-ENOENT); 937 mountpoint: 938 read_seqlock_excl(&mount_lock); 939 mp = lookup_mountpoint(dentry); 940 read_sequnlock_excl(&mount_lock); 941 if (mp) 942 goto done; 943 } 944 945 if (!new) 946 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 947 if (!new) 948 return ERR_PTR(-ENOMEM); 949 950 951 /* Exactly one processes may set d_mounted */ 952 ret = d_set_mounted(dentry); 953 954 /* Someone else set d_mounted? */ 955 if (ret == -EBUSY) 956 goto mountpoint; 957 958 /* The dentry is not available as a mountpoint? */ 959 mp = ERR_PTR(ret); 960 if (ret) 961 goto done; 962 963 /* Add the new mountpoint to the hash table */ 964 read_seqlock_excl(&mount_lock); 965 new->m_dentry = dget(dentry); 966 new->m_count = 1; 967 hlist_add_head(&new->m_hash, mp_hash(dentry)); 968 INIT_HLIST_HEAD(&new->m_list); 969 read_sequnlock_excl(&mount_lock); 970 971 mp = new; 972 new = NULL; 973 done: 974 kfree(new); 975 return mp; 976 } 977 978 /* 979 * vfsmount lock must be held. Additionally, the caller is responsible 980 * for serializing calls for given disposal list. 981 */ 982 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 983 { 984 if (!--mp->m_count) { 985 struct dentry *dentry = mp->m_dentry; 986 BUG_ON(!hlist_empty(&mp->m_list)); 987 spin_lock(&dentry->d_lock); 988 dentry->d_flags &= ~DCACHE_MOUNTED; 989 spin_unlock(&dentry->d_lock); 990 dput_to_list(dentry, list); 991 hlist_del(&mp->m_hash); 992 kfree(mp); 993 } 994 } 995 996 /* called with namespace_lock and vfsmount lock */ 997 static void put_mountpoint(struct mountpoint *mp) 998 { 999 __put_mountpoint(mp, &ex_mountpoints); 1000 } 1001 1002 static inline int check_mnt(struct mount *mnt) 1003 { 1004 return mnt->mnt_ns == current->nsproxy->mnt_ns; 1005 } 1006 1007 static inline bool check_anonymous_mnt(struct mount *mnt) 1008 { 1009 u64 seq; 1010 1011 if (!is_anon_ns(mnt->mnt_ns)) 1012 return false; 1013 1014 seq = mnt->mnt_ns->seq_origin; 1015 return !seq || (seq == current->nsproxy->mnt_ns->seq); 1016 } 1017 1018 /* 1019 * vfsmount lock must be held for write 1020 */ 1021 static void touch_mnt_namespace(struct mnt_namespace *ns) 1022 { 1023 if (ns) { 1024 ns->event = ++event; 1025 wake_up_interruptible(&ns->poll); 1026 } 1027 } 1028 1029 /* 1030 * vfsmount lock must be held for write 1031 */ 1032 static void __touch_mnt_namespace(struct mnt_namespace *ns) 1033 { 1034 if (ns && ns->event != event) { 1035 ns->event = event; 1036 wake_up_interruptible(&ns->poll); 1037 } 1038 } 1039 1040 /* 1041 * vfsmount lock must be held for write 1042 */ 1043 static struct mountpoint *unhash_mnt(struct mount *mnt) 1044 { 1045 struct mountpoint *mp; 1046 mnt->mnt_parent = mnt; 1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1048 list_del_init(&mnt->mnt_child); 1049 hlist_del_init_rcu(&mnt->mnt_hash); 1050 hlist_del_init(&mnt->mnt_mp_list); 1051 mp = mnt->mnt_mp; 1052 mnt->mnt_mp = NULL; 1053 return mp; 1054 } 1055 1056 /* 1057 * vfsmount lock must be held for write 1058 */ 1059 static void umount_mnt(struct mount *mnt) 1060 { 1061 put_mountpoint(unhash_mnt(mnt)); 1062 } 1063 1064 /* 1065 * vfsmount lock must be held for write 1066 */ 1067 void mnt_set_mountpoint(struct mount *mnt, 1068 struct mountpoint *mp, 1069 struct mount *child_mnt) 1070 { 1071 mp->m_count++; 1072 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1073 child_mnt->mnt_mountpoint = mp->m_dentry; 1074 child_mnt->mnt_parent = mnt; 1075 child_mnt->mnt_mp = mp; 1076 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1077 } 1078 1079 /** 1080 * mnt_set_mountpoint_beneath - mount a mount beneath another one 1081 * 1082 * @new_parent: the source mount 1083 * @top_mnt: the mount beneath which @new_parent is mounted 1084 * @new_mp: the new mountpoint of @top_mnt on @new_parent 1085 * 1086 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 1087 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 1088 * @new_mp. And mount @new_parent on the old parent and old 1089 * mountpoint of @top_mnt. 1090 * 1091 * Context: This function expects namespace_lock() and lock_mount_hash() 1092 * to have been acquired in that order. 1093 */ 1094 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 1095 struct mount *top_mnt, 1096 struct mountpoint *new_mp) 1097 { 1098 struct mount *old_top_parent = top_mnt->mnt_parent; 1099 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 1100 1101 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 1102 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 1103 } 1104 1105 1106 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1107 { 1108 hlist_add_head_rcu(&mnt->mnt_hash, 1109 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1110 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1111 } 1112 1113 /** 1114 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1115 * list of child mounts 1116 * @parent: the parent 1117 * @mnt: the new mount 1118 * @mp: the new mountpoint 1119 * @beneath: whether to mount @mnt beneath or on top of @parent 1120 * 1121 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 1122 * to @parent's child mount list and to @mount_hashtable. 1123 * 1124 * If @beneath is true, remove @mnt from its current parent and 1125 * mountpoint and mount it on @mp on @parent, and mount @parent on the 1126 * old parent and old mountpoint of @mnt. Finally, attach @parent to 1127 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 1128 * 1129 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 1130 * to the correct parent. 1131 * 1132 * Context: This function expects namespace_lock() and lock_mount_hash() 1133 * to have been acquired in that order. 1134 */ 1135 static void attach_mnt(struct mount *mnt, struct mount *parent, 1136 struct mountpoint *mp, bool beneath) 1137 { 1138 if (beneath) 1139 mnt_set_mountpoint_beneath(mnt, parent, mp); 1140 else 1141 mnt_set_mountpoint(parent, mp, mnt); 1142 /* 1143 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1144 * beneath @parent then @mnt will need to be attached to 1145 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1146 * isn't the same mount as @parent. 1147 */ 1148 __attach_mnt(mnt, mnt->mnt_parent); 1149 } 1150 1151 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1152 { 1153 struct mountpoint *old_mp = mnt->mnt_mp; 1154 struct mount *old_parent = mnt->mnt_parent; 1155 1156 list_del_init(&mnt->mnt_child); 1157 hlist_del_init(&mnt->mnt_mp_list); 1158 hlist_del_init_rcu(&mnt->mnt_hash); 1159 1160 attach_mnt(mnt, parent, mp, false); 1161 1162 put_mountpoint(old_mp); 1163 mnt_add_count(old_parent, -1); 1164 } 1165 1166 static inline struct mount *node_to_mount(struct rb_node *node) 1167 { 1168 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1169 } 1170 1171 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1172 { 1173 struct rb_node **link = &ns->mounts.rb_node; 1174 struct rb_node *parent = NULL; 1175 bool mnt_first_node = true, mnt_last_node = true; 1176 1177 WARN_ON(mnt_ns_attached(mnt)); 1178 mnt->mnt_ns = ns; 1179 while (*link) { 1180 parent = *link; 1181 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1182 link = &parent->rb_left; 1183 mnt_last_node = false; 1184 } else { 1185 link = &parent->rb_right; 1186 mnt_first_node = false; 1187 } 1188 } 1189 1190 if (mnt_last_node) 1191 ns->mnt_last_node = &mnt->mnt_node; 1192 if (mnt_first_node) 1193 ns->mnt_first_node = &mnt->mnt_node; 1194 rb_link_node(&mnt->mnt_node, parent, link); 1195 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1196 1197 mnt_notify_add(mnt); 1198 } 1199 1200 /* 1201 * vfsmount lock must be held for write 1202 */ 1203 static void commit_tree(struct mount *mnt) 1204 { 1205 struct mount *parent = mnt->mnt_parent; 1206 struct mount *m; 1207 LIST_HEAD(head); 1208 struct mnt_namespace *n = parent->mnt_ns; 1209 1210 BUG_ON(parent == mnt); 1211 1212 list_add_tail(&head, &mnt->mnt_list); 1213 while (!list_empty(&head)) { 1214 m = list_first_entry(&head, typeof(*m), mnt_list); 1215 list_del(&m->mnt_list); 1216 1217 mnt_add_to_ns(n, m); 1218 } 1219 n->nr_mounts += n->pending_mounts; 1220 n->pending_mounts = 0; 1221 1222 __attach_mnt(mnt, parent); 1223 touch_mnt_namespace(n); 1224 } 1225 1226 static struct mount *next_mnt(struct mount *p, struct mount *root) 1227 { 1228 struct list_head *next = p->mnt_mounts.next; 1229 if (next == &p->mnt_mounts) { 1230 while (1) { 1231 if (p == root) 1232 return NULL; 1233 next = p->mnt_child.next; 1234 if (next != &p->mnt_parent->mnt_mounts) 1235 break; 1236 p = p->mnt_parent; 1237 } 1238 } 1239 return list_entry(next, struct mount, mnt_child); 1240 } 1241 1242 static struct mount *skip_mnt_tree(struct mount *p) 1243 { 1244 struct list_head *prev = p->mnt_mounts.prev; 1245 while (prev != &p->mnt_mounts) { 1246 p = list_entry(prev, struct mount, mnt_child); 1247 prev = p->mnt_mounts.prev; 1248 } 1249 return p; 1250 } 1251 1252 /** 1253 * vfs_create_mount - Create a mount for a configured superblock 1254 * @fc: The configuration context with the superblock attached 1255 * 1256 * Create a mount to an already configured superblock. If necessary, the 1257 * caller should invoke vfs_get_tree() before calling this. 1258 * 1259 * Note that this does not attach the mount to anything. 1260 */ 1261 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1262 { 1263 struct mount *mnt; 1264 1265 if (!fc->root) 1266 return ERR_PTR(-EINVAL); 1267 1268 mnt = alloc_vfsmnt(fc->source); 1269 if (!mnt) 1270 return ERR_PTR(-ENOMEM); 1271 1272 if (fc->sb_flags & SB_KERNMOUNT) 1273 mnt->mnt.mnt_flags = MNT_INTERNAL; 1274 1275 atomic_inc(&fc->root->d_sb->s_active); 1276 mnt->mnt.mnt_sb = fc->root->d_sb; 1277 mnt->mnt.mnt_root = dget(fc->root); 1278 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1279 mnt->mnt_parent = mnt; 1280 1281 lock_mount_hash(); 1282 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1283 unlock_mount_hash(); 1284 return &mnt->mnt; 1285 } 1286 EXPORT_SYMBOL(vfs_create_mount); 1287 1288 struct vfsmount *fc_mount(struct fs_context *fc) 1289 { 1290 int err = vfs_get_tree(fc); 1291 if (!err) { 1292 up_write(&fc->root->d_sb->s_umount); 1293 return vfs_create_mount(fc); 1294 } 1295 return ERR_PTR(err); 1296 } 1297 EXPORT_SYMBOL(fc_mount); 1298 1299 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1300 int flags, const char *name, 1301 void *data) 1302 { 1303 struct fs_context *fc; 1304 struct vfsmount *mnt; 1305 int ret = 0; 1306 1307 if (!type) 1308 return ERR_PTR(-EINVAL); 1309 1310 fc = fs_context_for_mount(type, flags); 1311 if (IS_ERR(fc)) 1312 return ERR_CAST(fc); 1313 1314 if (name) 1315 ret = vfs_parse_fs_string(fc, "source", 1316 name, strlen(name)); 1317 if (!ret) 1318 ret = parse_monolithic_mount_data(fc, data); 1319 if (!ret) 1320 mnt = fc_mount(fc); 1321 else 1322 mnt = ERR_PTR(ret); 1323 1324 put_fs_context(fc); 1325 return mnt; 1326 } 1327 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1328 1329 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1330 int flag) 1331 { 1332 struct super_block *sb = old->mnt.mnt_sb; 1333 struct mount *mnt; 1334 int err; 1335 1336 mnt = alloc_vfsmnt(old->mnt_devname); 1337 if (!mnt) 1338 return ERR_PTR(-ENOMEM); 1339 1340 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1341 mnt->mnt_group_id = 0; /* not a peer of original */ 1342 else 1343 mnt->mnt_group_id = old->mnt_group_id; 1344 1345 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1346 err = mnt_alloc_group_id(mnt); 1347 if (err) 1348 goto out_free; 1349 } 1350 1351 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1352 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1353 1354 atomic_inc(&sb->s_active); 1355 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1356 1357 mnt->mnt.mnt_sb = sb; 1358 mnt->mnt.mnt_root = dget(root); 1359 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1360 mnt->mnt_parent = mnt; 1361 lock_mount_hash(); 1362 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1363 unlock_mount_hash(); 1364 1365 if ((flag & CL_SLAVE) || 1366 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1367 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1368 mnt->mnt_master = old; 1369 CLEAR_MNT_SHARED(mnt); 1370 } else if (!(flag & CL_PRIVATE)) { 1371 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1372 list_add(&mnt->mnt_share, &old->mnt_share); 1373 if (IS_MNT_SLAVE(old)) 1374 list_add(&mnt->mnt_slave, &old->mnt_slave); 1375 mnt->mnt_master = old->mnt_master; 1376 } else { 1377 CLEAR_MNT_SHARED(mnt); 1378 } 1379 if (flag & CL_MAKE_SHARED) 1380 set_mnt_shared(mnt); 1381 1382 /* stick the duplicate mount on the same expiry list 1383 * as the original if that was on one */ 1384 if (flag & CL_EXPIRE) { 1385 if (!list_empty(&old->mnt_expire)) 1386 list_add(&mnt->mnt_expire, &old->mnt_expire); 1387 } 1388 1389 return mnt; 1390 1391 out_free: 1392 mnt_free_id(mnt); 1393 free_vfsmnt(mnt); 1394 return ERR_PTR(err); 1395 } 1396 1397 static void cleanup_mnt(struct mount *mnt) 1398 { 1399 struct hlist_node *p; 1400 struct mount *m; 1401 /* 1402 * The warning here probably indicates that somebody messed 1403 * up a mnt_want/drop_write() pair. If this happens, the 1404 * filesystem was probably unable to make r/w->r/o transitions. 1405 * The locking used to deal with mnt_count decrement provides barriers, 1406 * so mnt_get_writers() below is safe. 1407 */ 1408 WARN_ON(mnt_get_writers(mnt)); 1409 if (unlikely(mnt->mnt_pins.first)) 1410 mnt_pin_kill(mnt); 1411 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1412 hlist_del(&m->mnt_umount); 1413 mntput(&m->mnt); 1414 } 1415 fsnotify_vfsmount_delete(&mnt->mnt); 1416 dput(mnt->mnt.mnt_root); 1417 deactivate_super(mnt->mnt.mnt_sb); 1418 mnt_free_id(mnt); 1419 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1420 } 1421 1422 static void __cleanup_mnt(struct rcu_head *head) 1423 { 1424 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1425 } 1426 1427 static LLIST_HEAD(delayed_mntput_list); 1428 static void delayed_mntput(struct work_struct *unused) 1429 { 1430 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1431 struct mount *m, *t; 1432 1433 llist_for_each_entry_safe(m, t, node, mnt_llist) 1434 cleanup_mnt(m); 1435 } 1436 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1437 1438 static void mntput_no_expire(struct mount *mnt) 1439 { 1440 LIST_HEAD(list); 1441 int count; 1442 1443 rcu_read_lock(); 1444 if (likely(READ_ONCE(mnt->mnt_ns))) { 1445 /* 1446 * Since we don't do lock_mount_hash() here, 1447 * ->mnt_ns can change under us. However, if it's 1448 * non-NULL, then there's a reference that won't 1449 * be dropped until after an RCU delay done after 1450 * turning ->mnt_ns NULL. So if we observe it 1451 * non-NULL under rcu_read_lock(), the reference 1452 * we are dropping is not the final one. 1453 */ 1454 mnt_add_count(mnt, -1); 1455 rcu_read_unlock(); 1456 return; 1457 } 1458 lock_mount_hash(); 1459 /* 1460 * make sure that if __legitimize_mnt() has not seen us grab 1461 * mount_lock, we'll see their refcount increment here. 1462 */ 1463 smp_mb(); 1464 mnt_add_count(mnt, -1); 1465 count = mnt_get_count(mnt); 1466 if (count != 0) { 1467 WARN_ON(count < 0); 1468 rcu_read_unlock(); 1469 unlock_mount_hash(); 1470 return; 1471 } 1472 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1473 rcu_read_unlock(); 1474 unlock_mount_hash(); 1475 return; 1476 } 1477 mnt->mnt.mnt_flags |= MNT_DOOMED; 1478 rcu_read_unlock(); 1479 1480 list_del(&mnt->mnt_instance); 1481 1482 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1483 struct mount *p, *tmp; 1484 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1485 __put_mountpoint(unhash_mnt(p), &list); 1486 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1487 } 1488 } 1489 unlock_mount_hash(); 1490 shrink_dentry_list(&list); 1491 1492 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1493 struct task_struct *task = current; 1494 if (likely(!(task->flags & PF_KTHREAD))) { 1495 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1496 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1497 return; 1498 } 1499 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1500 schedule_delayed_work(&delayed_mntput_work, 1); 1501 return; 1502 } 1503 cleanup_mnt(mnt); 1504 } 1505 1506 void mntput(struct vfsmount *mnt) 1507 { 1508 if (mnt) { 1509 struct mount *m = real_mount(mnt); 1510 /* avoid cacheline pingpong */ 1511 if (unlikely(m->mnt_expiry_mark)) 1512 WRITE_ONCE(m->mnt_expiry_mark, 0); 1513 mntput_no_expire(m); 1514 } 1515 } 1516 EXPORT_SYMBOL(mntput); 1517 1518 struct vfsmount *mntget(struct vfsmount *mnt) 1519 { 1520 if (mnt) 1521 mnt_add_count(real_mount(mnt), 1); 1522 return mnt; 1523 } 1524 EXPORT_SYMBOL(mntget); 1525 1526 /* 1527 * Make a mount point inaccessible to new lookups. 1528 * Because there may still be current users, the caller MUST WAIT 1529 * for an RCU grace period before destroying the mount point. 1530 */ 1531 void mnt_make_shortterm(struct vfsmount *mnt) 1532 { 1533 if (mnt) 1534 real_mount(mnt)->mnt_ns = NULL; 1535 } 1536 1537 /** 1538 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1539 * @path: path to check 1540 * 1541 * d_mountpoint() can only be used reliably to establish if a dentry is 1542 * not mounted in any namespace and that common case is handled inline. 1543 * d_mountpoint() isn't aware of the possibility there may be multiple 1544 * mounts using a given dentry in a different namespace. This function 1545 * checks if the passed in path is a mountpoint rather than the dentry 1546 * alone. 1547 */ 1548 bool path_is_mountpoint(const struct path *path) 1549 { 1550 unsigned seq; 1551 bool res; 1552 1553 if (!d_mountpoint(path->dentry)) 1554 return false; 1555 1556 rcu_read_lock(); 1557 do { 1558 seq = read_seqbegin(&mount_lock); 1559 res = __path_is_mountpoint(path); 1560 } while (read_seqretry(&mount_lock, seq)); 1561 rcu_read_unlock(); 1562 1563 return res; 1564 } 1565 EXPORT_SYMBOL(path_is_mountpoint); 1566 1567 struct vfsmount *mnt_clone_internal(const struct path *path) 1568 { 1569 struct mount *p; 1570 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1571 if (IS_ERR(p)) 1572 return ERR_CAST(p); 1573 p->mnt.mnt_flags |= MNT_INTERNAL; 1574 return &p->mnt; 1575 } 1576 1577 /* 1578 * Returns the mount which either has the specified mnt_id, or has the next 1579 * smallest id afer the specified one. 1580 */ 1581 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1582 { 1583 struct rb_node *node = ns->mounts.rb_node; 1584 struct mount *ret = NULL; 1585 1586 while (node) { 1587 struct mount *m = node_to_mount(node); 1588 1589 if (mnt_id <= m->mnt_id_unique) { 1590 ret = node_to_mount(node); 1591 if (mnt_id == m->mnt_id_unique) 1592 break; 1593 node = node->rb_left; 1594 } else { 1595 node = node->rb_right; 1596 } 1597 } 1598 return ret; 1599 } 1600 1601 /* 1602 * Returns the mount which either has the specified mnt_id, or has the next 1603 * greater id before the specified one. 1604 */ 1605 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1606 { 1607 struct rb_node *node = ns->mounts.rb_node; 1608 struct mount *ret = NULL; 1609 1610 while (node) { 1611 struct mount *m = node_to_mount(node); 1612 1613 if (mnt_id >= m->mnt_id_unique) { 1614 ret = node_to_mount(node); 1615 if (mnt_id == m->mnt_id_unique) 1616 break; 1617 node = node->rb_right; 1618 } else { 1619 node = node->rb_left; 1620 } 1621 } 1622 return ret; 1623 } 1624 1625 #ifdef CONFIG_PROC_FS 1626 1627 /* iterator; we want it to have access to namespace_sem, thus here... */ 1628 static void *m_start(struct seq_file *m, loff_t *pos) 1629 { 1630 struct proc_mounts *p = m->private; 1631 1632 down_read(&namespace_sem); 1633 1634 return mnt_find_id_at(p->ns, *pos); 1635 } 1636 1637 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1638 { 1639 struct mount *next = NULL, *mnt = v; 1640 struct rb_node *node = rb_next(&mnt->mnt_node); 1641 1642 ++*pos; 1643 if (node) { 1644 next = node_to_mount(node); 1645 *pos = next->mnt_id_unique; 1646 } 1647 return next; 1648 } 1649 1650 static void m_stop(struct seq_file *m, void *v) 1651 { 1652 up_read(&namespace_sem); 1653 } 1654 1655 static int m_show(struct seq_file *m, void *v) 1656 { 1657 struct proc_mounts *p = m->private; 1658 struct mount *r = v; 1659 return p->show(m, &r->mnt); 1660 } 1661 1662 const struct seq_operations mounts_op = { 1663 .start = m_start, 1664 .next = m_next, 1665 .stop = m_stop, 1666 .show = m_show, 1667 }; 1668 1669 #endif /* CONFIG_PROC_FS */ 1670 1671 /** 1672 * may_umount_tree - check if a mount tree is busy 1673 * @m: root of mount tree 1674 * 1675 * This is called to check if a tree of mounts has any 1676 * open files, pwds, chroots or sub mounts that are 1677 * busy. 1678 */ 1679 int may_umount_tree(struct vfsmount *m) 1680 { 1681 struct mount *mnt = real_mount(m); 1682 int actual_refs = 0; 1683 int minimum_refs = 0; 1684 struct mount *p; 1685 BUG_ON(!m); 1686 1687 /* write lock needed for mnt_get_count */ 1688 lock_mount_hash(); 1689 for (p = mnt; p; p = next_mnt(p, mnt)) { 1690 actual_refs += mnt_get_count(p); 1691 minimum_refs += 2; 1692 } 1693 unlock_mount_hash(); 1694 1695 if (actual_refs > minimum_refs) 1696 return 0; 1697 1698 return 1; 1699 } 1700 1701 EXPORT_SYMBOL(may_umount_tree); 1702 1703 /** 1704 * may_umount - check if a mount point is busy 1705 * @mnt: root of mount 1706 * 1707 * This is called to check if a mount point has any 1708 * open files, pwds, chroots or sub mounts. If the 1709 * mount has sub mounts this will return busy 1710 * regardless of whether the sub mounts are busy. 1711 * 1712 * Doesn't take quota and stuff into account. IOW, in some cases it will 1713 * give false negatives. The main reason why it's here is that we need 1714 * a non-destructive way to look for easily umountable filesystems. 1715 */ 1716 int may_umount(struct vfsmount *mnt) 1717 { 1718 int ret = 1; 1719 down_read(&namespace_sem); 1720 lock_mount_hash(); 1721 if (propagate_mount_busy(real_mount(mnt), 2)) 1722 ret = 0; 1723 unlock_mount_hash(); 1724 up_read(&namespace_sem); 1725 return ret; 1726 } 1727 1728 EXPORT_SYMBOL(may_umount); 1729 1730 #ifdef CONFIG_FSNOTIFY 1731 static void mnt_notify(struct mount *p) 1732 { 1733 if (!p->prev_ns && p->mnt_ns) { 1734 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1735 } else if (p->prev_ns && !p->mnt_ns) { 1736 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1737 } else if (p->prev_ns == p->mnt_ns) { 1738 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1739 } else { 1740 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1741 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1742 } 1743 p->prev_ns = p->mnt_ns; 1744 } 1745 1746 static void notify_mnt_list(void) 1747 { 1748 struct mount *m, *tmp; 1749 /* 1750 * Notify about mounts that were added/reparented/detached/remain 1751 * connected after unmount. 1752 */ 1753 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1754 mnt_notify(m); 1755 list_del_init(&m->to_notify); 1756 } 1757 } 1758 1759 static bool need_notify_mnt_list(void) 1760 { 1761 return !list_empty(¬ify_list); 1762 } 1763 #else 1764 static void notify_mnt_list(void) 1765 { 1766 } 1767 1768 static bool need_notify_mnt_list(void) 1769 { 1770 return false; 1771 } 1772 #endif 1773 1774 static void namespace_unlock(void) 1775 { 1776 struct hlist_head head; 1777 struct hlist_node *p; 1778 struct mount *m; 1779 LIST_HEAD(list); 1780 1781 hlist_move_list(&unmounted, &head); 1782 list_splice_init(&ex_mountpoints, &list); 1783 1784 if (need_notify_mnt_list()) { 1785 /* 1786 * No point blocking out concurrent readers while notifications 1787 * are sent. This will also allow statmount()/listmount() to run 1788 * concurrently. 1789 */ 1790 downgrade_write(&namespace_sem); 1791 notify_mnt_list(); 1792 up_read(&namespace_sem); 1793 } else { 1794 up_write(&namespace_sem); 1795 } 1796 1797 shrink_dentry_list(&list); 1798 1799 if (likely(hlist_empty(&head))) 1800 return; 1801 1802 synchronize_rcu_expedited(); 1803 1804 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1805 hlist_del(&m->mnt_umount); 1806 mntput(&m->mnt); 1807 } 1808 } 1809 1810 static inline void namespace_lock(void) 1811 { 1812 down_write(&namespace_sem); 1813 } 1814 1815 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock()) 1816 1817 enum umount_tree_flags { 1818 UMOUNT_SYNC = 1, 1819 UMOUNT_PROPAGATE = 2, 1820 UMOUNT_CONNECTED = 4, 1821 }; 1822 1823 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1824 { 1825 /* Leaving mounts connected is only valid for lazy umounts */ 1826 if (how & UMOUNT_SYNC) 1827 return true; 1828 1829 /* A mount without a parent has nothing to be connected to */ 1830 if (!mnt_has_parent(mnt)) 1831 return true; 1832 1833 /* Because the reference counting rules change when mounts are 1834 * unmounted and connected, umounted mounts may not be 1835 * connected to mounted mounts. 1836 */ 1837 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1838 return true; 1839 1840 /* Has it been requested that the mount remain connected? */ 1841 if (how & UMOUNT_CONNECTED) 1842 return false; 1843 1844 /* Is the mount locked such that it needs to remain connected? */ 1845 if (IS_MNT_LOCKED(mnt)) 1846 return false; 1847 1848 /* By default disconnect the mount */ 1849 return true; 1850 } 1851 1852 /* 1853 * mount_lock must be held 1854 * namespace_sem must be held for write 1855 */ 1856 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1857 { 1858 LIST_HEAD(tmp_list); 1859 struct mount *p; 1860 1861 if (how & UMOUNT_PROPAGATE) 1862 propagate_mount_unlock(mnt); 1863 1864 /* Gather the mounts to umount */ 1865 for (p = mnt; p; p = next_mnt(p, mnt)) { 1866 p->mnt.mnt_flags |= MNT_UMOUNT; 1867 if (mnt_ns_attached(p)) 1868 move_from_ns(p, &tmp_list); 1869 else 1870 list_move(&p->mnt_list, &tmp_list); 1871 } 1872 1873 /* Hide the mounts from mnt_mounts */ 1874 list_for_each_entry(p, &tmp_list, mnt_list) { 1875 list_del_init(&p->mnt_child); 1876 } 1877 1878 /* Add propagated mounts to the tmp_list */ 1879 if (how & UMOUNT_PROPAGATE) 1880 propagate_umount(&tmp_list); 1881 1882 while (!list_empty(&tmp_list)) { 1883 struct mnt_namespace *ns; 1884 bool disconnect; 1885 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1886 list_del_init(&p->mnt_expire); 1887 list_del_init(&p->mnt_list); 1888 ns = p->mnt_ns; 1889 if (ns) { 1890 ns->nr_mounts--; 1891 __touch_mnt_namespace(ns); 1892 } 1893 p->mnt_ns = NULL; 1894 if (how & UMOUNT_SYNC) 1895 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1896 1897 disconnect = disconnect_mount(p, how); 1898 if (mnt_has_parent(p)) { 1899 mnt_add_count(p->mnt_parent, -1); 1900 if (!disconnect) { 1901 /* Don't forget about p */ 1902 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1903 } else { 1904 umount_mnt(p); 1905 } 1906 } 1907 change_mnt_propagation(p, MS_PRIVATE); 1908 if (disconnect) 1909 hlist_add_head(&p->mnt_umount, &unmounted); 1910 1911 /* 1912 * At this point p->mnt_ns is NULL, notification will be queued 1913 * only if 1914 * 1915 * - p->prev_ns is non-NULL *and* 1916 * - p->prev_ns->n_fsnotify_marks is non-NULL 1917 * 1918 * This will preclude queuing the mount if this is a cleanup 1919 * after a failed copy_tree() or destruction of an anonymous 1920 * namespace, etc. 1921 */ 1922 mnt_notify_add(p); 1923 } 1924 } 1925 1926 static void shrink_submounts(struct mount *mnt); 1927 1928 static int do_umount_root(struct super_block *sb) 1929 { 1930 int ret = 0; 1931 1932 down_write(&sb->s_umount); 1933 if (!sb_rdonly(sb)) { 1934 struct fs_context *fc; 1935 1936 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1937 SB_RDONLY); 1938 if (IS_ERR(fc)) { 1939 ret = PTR_ERR(fc); 1940 } else { 1941 ret = parse_monolithic_mount_data(fc, NULL); 1942 if (!ret) 1943 ret = reconfigure_super(fc); 1944 put_fs_context(fc); 1945 } 1946 } 1947 up_write(&sb->s_umount); 1948 return ret; 1949 } 1950 1951 static int do_umount(struct mount *mnt, int flags) 1952 { 1953 struct super_block *sb = mnt->mnt.mnt_sb; 1954 int retval; 1955 1956 retval = security_sb_umount(&mnt->mnt, flags); 1957 if (retval) 1958 return retval; 1959 1960 /* 1961 * Allow userspace to request a mountpoint be expired rather than 1962 * unmounting unconditionally. Unmount only happens if: 1963 * (1) the mark is already set (the mark is cleared by mntput()) 1964 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1965 */ 1966 if (flags & MNT_EXPIRE) { 1967 if (&mnt->mnt == current->fs->root.mnt || 1968 flags & (MNT_FORCE | MNT_DETACH)) 1969 return -EINVAL; 1970 1971 /* 1972 * probably don't strictly need the lock here if we examined 1973 * all race cases, but it's a slowpath. 1974 */ 1975 lock_mount_hash(); 1976 if (mnt_get_count(mnt) != 2) { 1977 unlock_mount_hash(); 1978 return -EBUSY; 1979 } 1980 unlock_mount_hash(); 1981 1982 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1983 return -EAGAIN; 1984 } 1985 1986 /* 1987 * If we may have to abort operations to get out of this 1988 * mount, and they will themselves hold resources we must 1989 * allow the fs to do things. In the Unix tradition of 1990 * 'Gee thats tricky lets do it in userspace' the umount_begin 1991 * might fail to complete on the first run through as other tasks 1992 * must return, and the like. Thats for the mount program to worry 1993 * about for the moment. 1994 */ 1995 1996 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1997 sb->s_op->umount_begin(sb); 1998 } 1999 2000 /* 2001 * No sense to grab the lock for this test, but test itself looks 2002 * somewhat bogus. Suggestions for better replacement? 2003 * Ho-hum... In principle, we might treat that as umount + switch 2004 * to rootfs. GC would eventually take care of the old vfsmount. 2005 * Actually it makes sense, especially if rootfs would contain a 2006 * /reboot - static binary that would close all descriptors and 2007 * call reboot(9). Then init(8) could umount root and exec /reboot. 2008 */ 2009 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 2010 /* 2011 * Special case for "unmounting" root ... 2012 * we just try to remount it readonly. 2013 */ 2014 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2015 return -EPERM; 2016 return do_umount_root(sb); 2017 } 2018 2019 namespace_lock(); 2020 lock_mount_hash(); 2021 2022 /* Recheck MNT_LOCKED with the locks held */ 2023 retval = -EINVAL; 2024 if (mnt->mnt.mnt_flags & MNT_LOCKED) 2025 goto out; 2026 2027 event++; 2028 if (flags & MNT_DETACH) { 2029 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2030 umount_tree(mnt, UMOUNT_PROPAGATE); 2031 retval = 0; 2032 } else { 2033 smp_mb(); // paired with __legitimize_mnt() 2034 shrink_submounts(mnt); 2035 retval = -EBUSY; 2036 if (!propagate_mount_busy(mnt, 2)) { 2037 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2038 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2039 retval = 0; 2040 } 2041 } 2042 out: 2043 unlock_mount_hash(); 2044 namespace_unlock(); 2045 return retval; 2046 } 2047 2048 /* 2049 * __detach_mounts - lazily unmount all mounts on the specified dentry 2050 * 2051 * During unlink, rmdir, and d_drop it is possible to loose the path 2052 * to an existing mountpoint, and wind up leaking the mount. 2053 * detach_mounts allows lazily unmounting those mounts instead of 2054 * leaking them. 2055 * 2056 * The caller may hold dentry->d_inode->i_mutex. 2057 */ 2058 void __detach_mounts(struct dentry *dentry) 2059 { 2060 struct mountpoint *mp; 2061 struct mount *mnt; 2062 2063 namespace_lock(); 2064 lock_mount_hash(); 2065 mp = lookup_mountpoint(dentry); 2066 if (!mp) 2067 goto out_unlock; 2068 2069 event++; 2070 while (!hlist_empty(&mp->m_list)) { 2071 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 2072 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 2073 umount_mnt(mnt); 2074 hlist_add_head(&mnt->mnt_umount, &unmounted); 2075 } 2076 else umount_tree(mnt, UMOUNT_CONNECTED); 2077 } 2078 put_mountpoint(mp); 2079 out_unlock: 2080 unlock_mount_hash(); 2081 namespace_unlock(); 2082 } 2083 2084 /* 2085 * Is the caller allowed to modify his namespace? 2086 */ 2087 bool may_mount(void) 2088 { 2089 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 2090 } 2091 2092 static void warn_mandlock(void) 2093 { 2094 pr_warn_once("=======================================================\n" 2095 "WARNING: The mand mount option has been deprecated and\n" 2096 " and is ignored by this kernel. Remove the mand\n" 2097 " option from the mount to silence this warning.\n" 2098 "=======================================================\n"); 2099 } 2100 2101 static int can_umount(const struct path *path, int flags) 2102 { 2103 struct mount *mnt = real_mount(path->mnt); 2104 struct super_block *sb = path->dentry->d_sb; 2105 2106 if (!may_mount()) 2107 return -EPERM; 2108 if (!path_mounted(path)) 2109 return -EINVAL; 2110 if (!check_mnt(mnt)) 2111 return -EINVAL; 2112 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2113 return -EINVAL; 2114 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2115 return -EPERM; 2116 return 0; 2117 } 2118 2119 // caller is responsible for flags being sane 2120 int path_umount(struct path *path, int flags) 2121 { 2122 struct mount *mnt = real_mount(path->mnt); 2123 int ret; 2124 2125 ret = can_umount(path, flags); 2126 if (!ret) 2127 ret = do_umount(mnt, flags); 2128 2129 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2130 dput(path->dentry); 2131 mntput_no_expire(mnt); 2132 return ret; 2133 } 2134 2135 static int ksys_umount(char __user *name, int flags) 2136 { 2137 int lookup_flags = LOOKUP_MOUNTPOINT; 2138 struct path path; 2139 int ret; 2140 2141 // basic validity checks done first 2142 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2143 return -EINVAL; 2144 2145 if (!(flags & UMOUNT_NOFOLLOW)) 2146 lookup_flags |= LOOKUP_FOLLOW; 2147 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2148 if (ret) 2149 return ret; 2150 return path_umount(&path, flags); 2151 } 2152 2153 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2154 { 2155 return ksys_umount(name, flags); 2156 } 2157 2158 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2159 2160 /* 2161 * The 2.0 compatible umount. No flags. 2162 */ 2163 SYSCALL_DEFINE1(oldumount, char __user *, name) 2164 { 2165 return ksys_umount(name, 0); 2166 } 2167 2168 #endif 2169 2170 static bool is_mnt_ns_file(struct dentry *dentry) 2171 { 2172 struct ns_common *ns; 2173 2174 /* Is this a proxy for a mount namespace? */ 2175 if (dentry->d_op != &ns_dentry_operations) 2176 return false; 2177 2178 ns = d_inode(dentry)->i_private; 2179 2180 return ns->ops == &mntns_operations; 2181 } 2182 2183 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2184 { 2185 return &mnt->ns; 2186 } 2187 2188 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2189 { 2190 guard(rcu)(); 2191 2192 for (;;) { 2193 struct list_head *list; 2194 2195 if (previous) 2196 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list)); 2197 else 2198 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list)); 2199 if (list_is_head(list, &mnt_ns_list)) 2200 return ERR_PTR(-ENOENT); 2201 2202 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list); 2203 2204 /* 2205 * The last passive reference count is put with RCU 2206 * delay so accessing the mount namespace is not just 2207 * safe but all relevant members are still valid. 2208 */ 2209 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2210 continue; 2211 2212 /* 2213 * We need an active reference count as we're persisting 2214 * the mount namespace and it might already be on its 2215 * deathbed. 2216 */ 2217 if (!refcount_inc_not_zero(&mntns->ns.count)) 2218 continue; 2219 2220 return mntns; 2221 } 2222 } 2223 2224 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2225 { 2226 if (!is_mnt_ns_file(dentry)) 2227 return NULL; 2228 2229 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2230 } 2231 2232 static bool mnt_ns_loop(struct dentry *dentry) 2233 { 2234 /* Could bind mounting the mount namespace inode cause a 2235 * mount namespace loop? 2236 */ 2237 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2238 2239 if (!mnt_ns) 2240 return false; 2241 2242 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2243 } 2244 2245 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2246 int flag) 2247 { 2248 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2249 *dst_parent, *dst_mnt; 2250 2251 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2252 return ERR_PTR(-EINVAL); 2253 2254 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2255 return ERR_PTR(-EINVAL); 2256 2257 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2258 if (IS_ERR(dst_mnt)) 2259 return dst_mnt; 2260 2261 src_parent = src_root; 2262 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; 2263 2264 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2265 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2266 continue; 2267 2268 for (src_mnt = src_root_child; src_mnt; 2269 src_mnt = next_mnt(src_mnt, src_root_child)) { 2270 if (!(flag & CL_COPY_UNBINDABLE) && 2271 IS_MNT_UNBINDABLE(src_mnt)) { 2272 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2273 /* Both unbindable and locked. */ 2274 dst_mnt = ERR_PTR(-EPERM); 2275 goto out; 2276 } else { 2277 src_mnt = skip_mnt_tree(src_mnt); 2278 continue; 2279 } 2280 } 2281 if (!(flag & CL_COPY_MNT_NS_FILE) && 2282 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2283 src_mnt = skip_mnt_tree(src_mnt); 2284 continue; 2285 } 2286 while (src_parent != src_mnt->mnt_parent) { 2287 src_parent = src_parent->mnt_parent; 2288 dst_mnt = dst_mnt->mnt_parent; 2289 } 2290 2291 src_parent = src_mnt; 2292 dst_parent = dst_mnt; 2293 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2294 if (IS_ERR(dst_mnt)) 2295 goto out; 2296 lock_mount_hash(); 2297 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); 2298 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); 2299 unlock_mount_hash(); 2300 } 2301 } 2302 return res; 2303 2304 out: 2305 if (res) { 2306 lock_mount_hash(); 2307 umount_tree(res, UMOUNT_SYNC); 2308 unlock_mount_hash(); 2309 } 2310 return dst_mnt; 2311 } 2312 2313 /* Caller should check returned pointer for errors */ 2314 2315 struct vfsmount *collect_mounts(const struct path *path) 2316 { 2317 struct mount *tree; 2318 namespace_lock(); 2319 if (!check_mnt(real_mount(path->mnt))) 2320 tree = ERR_PTR(-EINVAL); 2321 else 2322 tree = copy_tree(real_mount(path->mnt), path->dentry, 2323 CL_COPY_ALL | CL_PRIVATE); 2324 namespace_unlock(); 2325 if (IS_ERR(tree)) 2326 return ERR_CAST(tree); 2327 return &tree->mnt; 2328 } 2329 2330 static void free_mnt_ns(struct mnt_namespace *); 2331 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2332 2333 static inline bool must_dissolve(struct mnt_namespace *mnt_ns) 2334 { 2335 /* 2336 * This mount belonged to an anonymous mount namespace 2337 * but was moved to a non-anonymous mount namespace and 2338 * then unmounted. 2339 */ 2340 if (unlikely(!mnt_ns)) 2341 return false; 2342 2343 /* 2344 * This mount belongs to a non-anonymous mount namespace 2345 * and we know that such a mount can never transition to 2346 * an anonymous mount namespace again. 2347 */ 2348 if (!is_anon_ns(mnt_ns)) { 2349 /* 2350 * A detached mount either belongs to an anonymous mount 2351 * namespace or a non-anonymous mount namespace. It 2352 * should never belong to something purely internal. 2353 */ 2354 VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL); 2355 return false; 2356 } 2357 2358 return true; 2359 } 2360 2361 void dissolve_on_fput(struct vfsmount *mnt) 2362 { 2363 struct mnt_namespace *ns; 2364 struct mount *m = real_mount(mnt); 2365 2366 scoped_guard(rcu) { 2367 if (!must_dissolve(READ_ONCE(m->mnt_ns))) 2368 return; 2369 } 2370 2371 scoped_guard(namespace_lock, &namespace_sem) { 2372 ns = m->mnt_ns; 2373 if (!must_dissolve(ns)) 2374 return; 2375 2376 /* 2377 * After must_dissolve() we know that this is a detached 2378 * mount in an anonymous mount namespace. 2379 * 2380 * Now when mnt_has_parent() reports that this mount 2381 * tree has a parent, we know that this anonymous mount 2382 * tree has been moved to another anonymous mount 2383 * namespace. 2384 * 2385 * So when closing this file we cannot unmount the mount 2386 * tree. This will be done when the file referring to 2387 * the root of the anonymous mount namespace will be 2388 * closed (It could already be closed but it would sync 2389 * on @namespace_sem and wait for us to finish.). 2390 */ 2391 if (mnt_has_parent(m)) 2392 return; 2393 2394 lock_mount_hash(); 2395 umount_tree(m, UMOUNT_CONNECTED); 2396 unlock_mount_hash(); 2397 } 2398 2399 /* Make sure we notice when we leak mounts. */ 2400 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 2401 free_mnt_ns(ns); 2402 } 2403 2404 void drop_collected_mounts(struct vfsmount *mnt) 2405 { 2406 namespace_lock(); 2407 lock_mount_hash(); 2408 umount_tree(real_mount(mnt), 0); 2409 unlock_mount_hash(); 2410 namespace_unlock(); 2411 } 2412 2413 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2414 { 2415 struct mount *child; 2416 2417 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2418 if (!is_subdir(child->mnt_mountpoint, dentry)) 2419 continue; 2420 2421 if (child->mnt.mnt_flags & MNT_LOCKED) 2422 return true; 2423 } 2424 return false; 2425 } 2426 2427 /* 2428 * Check that there aren't references to earlier/same mount namespaces in the 2429 * specified subtree. Such references can act as pins for mount namespaces 2430 * that aren't checked by the mount-cycle checking code, thereby allowing 2431 * cycles to be made. 2432 */ 2433 static bool check_for_nsfs_mounts(struct mount *subtree) 2434 { 2435 struct mount *p; 2436 bool ret = false; 2437 2438 lock_mount_hash(); 2439 for (p = subtree; p; p = next_mnt(p, subtree)) 2440 if (mnt_ns_loop(p->mnt.mnt_root)) 2441 goto out; 2442 2443 ret = true; 2444 out: 2445 unlock_mount_hash(); 2446 return ret; 2447 } 2448 2449 /** 2450 * clone_private_mount - create a private clone of a path 2451 * @path: path to clone 2452 * 2453 * This creates a new vfsmount, which will be the clone of @path. The new mount 2454 * will not be attached anywhere in the namespace and will be private (i.e. 2455 * changes to the originating mount won't be propagated into this). 2456 * 2457 * This assumes caller has called or done the equivalent of may_mount(). 2458 * 2459 * Release with mntput(). 2460 */ 2461 struct vfsmount *clone_private_mount(const struct path *path) 2462 { 2463 struct mount *old_mnt = real_mount(path->mnt); 2464 struct mount *new_mnt; 2465 2466 guard(rwsem_read)(&namespace_sem); 2467 2468 if (IS_MNT_UNBINDABLE(old_mnt)) 2469 return ERR_PTR(-EINVAL); 2470 2471 if (mnt_has_parent(old_mnt)) { 2472 if (!check_mnt(old_mnt)) 2473 return ERR_PTR(-EINVAL); 2474 } else { 2475 if (!is_mounted(&old_mnt->mnt)) 2476 return ERR_PTR(-EINVAL); 2477 2478 /* Make sure this isn't something purely kernel internal. */ 2479 if (!is_anon_ns(old_mnt->mnt_ns)) 2480 return ERR_PTR(-EINVAL); 2481 2482 /* Make sure we don't create mount namespace loops. */ 2483 if (!check_for_nsfs_mounts(old_mnt)) 2484 return ERR_PTR(-EINVAL); 2485 } 2486 2487 if (has_locked_children(old_mnt, path->dentry)) 2488 return ERR_PTR(-EINVAL); 2489 2490 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2491 if (IS_ERR(new_mnt)) 2492 return ERR_PTR(-EINVAL); 2493 2494 /* Longterm mount to be removed by kern_unmount*() */ 2495 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2496 return &new_mnt->mnt; 2497 } 2498 EXPORT_SYMBOL_GPL(clone_private_mount); 2499 2500 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2501 struct vfsmount *root) 2502 { 2503 struct mount *mnt; 2504 int res = f(root, arg); 2505 if (res) 2506 return res; 2507 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2508 res = f(&mnt->mnt, arg); 2509 if (res) 2510 return res; 2511 } 2512 return 0; 2513 } 2514 2515 static void lock_mnt_tree(struct mount *mnt) 2516 { 2517 struct mount *p; 2518 2519 for (p = mnt; p; p = next_mnt(p, mnt)) { 2520 int flags = p->mnt.mnt_flags; 2521 /* Don't allow unprivileged users to change mount flags */ 2522 flags |= MNT_LOCK_ATIME; 2523 2524 if (flags & MNT_READONLY) 2525 flags |= MNT_LOCK_READONLY; 2526 2527 if (flags & MNT_NODEV) 2528 flags |= MNT_LOCK_NODEV; 2529 2530 if (flags & MNT_NOSUID) 2531 flags |= MNT_LOCK_NOSUID; 2532 2533 if (flags & MNT_NOEXEC) 2534 flags |= MNT_LOCK_NOEXEC; 2535 /* Don't allow unprivileged users to reveal what is under a mount */ 2536 if (list_empty(&p->mnt_expire)) 2537 flags |= MNT_LOCKED; 2538 p->mnt.mnt_flags = flags; 2539 } 2540 } 2541 2542 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2543 { 2544 struct mount *p; 2545 2546 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2547 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2548 mnt_release_group_id(p); 2549 } 2550 } 2551 2552 static int invent_group_ids(struct mount *mnt, bool recurse) 2553 { 2554 struct mount *p; 2555 2556 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2557 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2558 int err = mnt_alloc_group_id(p); 2559 if (err) { 2560 cleanup_group_ids(mnt, p); 2561 return err; 2562 } 2563 } 2564 } 2565 2566 return 0; 2567 } 2568 2569 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2570 { 2571 unsigned int max = READ_ONCE(sysctl_mount_max); 2572 unsigned int mounts = 0; 2573 struct mount *p; 2574 2575 if (ns->nr_mounts >= max) 2576 return -ENOSPC; 2577 max -= ns->nr_mounts; 2578 if (ns->pending_mounts >= max) 2579 return -ENOSPC; 2580 max -= ns->pending_mounts; 2581 2582 for (p = mnt; p; p = next_mnt(p, mnt)) 2583 mounts++; 2584 2585 if (mounts > max) 2586 return -ENOSPC; 2587 2588 ns->pending_mounts += mounts; 2589 return 0; 2590 } 2591 2592 enum mnt_tree_flags_t { 2593 MNT_TREE_MOVE = BIT(0), 2594 MNT_TREE_BENEATH = BIT(1), 2595 MNT_TREE_PROPAGATION = BIT(2), 2596 }; 2597 2598 /** 2599 * attach_recursive_mnt - attach a source mount tree 2600 * @source_mnt: mount tree to be attached 2601 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2602 * @dest_mp: the mountpoint @source_mnt will be mounted at 2603 * @flags: modify how @source_mnt is supposed to be attached 2604 * 2605 * NOTE: in the table below explains the semantics when a source mount 2606 * of a given type is attached to a destination mount of a given type. 2607 * --------------------------------------------------------------------------- 2608 * | BIND MOUNT OPERATION | 2609 * |************************************************************************** 2610 * | source-->| shared | private | slave | unbindable | 2611 * | dest | | | | | 2612 * | | | | | | | 2613 * | v | | | | | 2614 * |************************************************************************** 2615 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2616 * | | | | | | 2617 * |non-shared| shared (+) | private | slave (*) | invalid | 2618 * *************************************************************************** 2619 * A bind operation clones the source mount and mounts the clone on the 2620 * destination mount. 2621 * 2622 * (++) the cloned mount is propagated to all the mounts in the propagation 2623 * tree of the destination mount and the cloned mount is added to 2624 * the peer group of the source mount. 2625 * (+) the cloned mount is created under the destination mount and is marked 2626 * as shared. The cloned mount is added to the peer group of the source 2627 * mount. 2628 * (+++) the mount is propagated to all the mounts in the propagation tree 2629 * of the destination mount and the cloned mount is made slave 2630 * of the same master as that of the source mount. The cloned mount 2631 * is marked as 'shared and slave'. 2632 * (*) the cloned mount is made a slave of the same master as that of the 2633 * source mount. 2634 * 2635 * --------------------------------------------------------------------------- 2636 * | MOVE MOUNT OPERATION | 2637 * |************************************************************************** 2638 * | source-->| shared | private | slave | unbindable | 2639 * | dest | | | | | 2640 * | | | | | | | 2641 * | v | | | | | 2642 * |************************************************************************** 2643 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2644 * | | | | | | 2645 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2646 * *************************************************************************** 2647 * 2648 * (+) the mount is moved to the destination. And is then propagated to 2649 * all the mounts in the propagation tree of the destination mount. 2650 * (+*) the mount is moved to the destination. 2651 * (+++) the mount is moved to the destination and is then propagated to 2652 * all the mounts belonging to the destination mount's propagation tree. 2653 * the mount is marked as 'shared and slave'. 2654 * (*) the mount continues to be a slave at the new location. 2655 * 2656 * if the source mount is a tree, the operations explained above is 2657 * applied to each mount in the tree. 2658 * Must be called without spinlocks held, since this function can sleep 2659 * in allocations. 2660 * 2661 * Context: The function expects namespace_lock() to be held. 2662 * Return: If @source_mnt was successfully attached 0 is returned. 2663 * Otherwise a negative error code is returned. 2664 */ 2665 static int attach_recursive_mnt(struct mount *source_mnt, 2666 struct mount *top_mnt, 2667 struct mountpoint *dest_mp, 2668 enum mnt_tree_flags_t flags) 2669 { 2670 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2671 HLIST_HEAD(tree_list); 2672 struct mnt_namespace *ns = top_mnt->mnt_ns; 2673 struct mountpoint *smp; 2674 struct mount *child, *dest_mnt, *p; 2675 struct hlist_node *n; 2676 int err = 0; 2677 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2678 2679 /* 2680 * Preallocate a mountpoint in case the new mounts need to be 2681 * mounted beneath mounts on the same mountpoint. 2682 */ 2683 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2684 if (IS_ERR(smp)) 2685 return PTR_ERR(smp); 2686 2687 /* Is there space to add these mounts to the mount namespace? */ 2688 if (!moving) { 2689 err = count_mounts(ns, source_mnt); 2690 if (err) 2691 goto out; 2692 } 2693 2694 if (beneath) 2695 dest_mnt = top_mnt->mnt_parent; 2696 else 2697 dest_mnt = top_mnt; 2698 2699 if (IS_MNT_SHARED(dest_mnt)) { 2700 err = invent_group_ids(source_mnt, true); 2701 if (err) 2702 goto out; 2703 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2704 } 2705 lock_mount_hash(); 2706 if (err) 2707 goto out_cleanup_ids; 2708 2709 if (IS_MNT_SHARED(dest_mnt)) { 2710 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2711 set_mnt_shared(p); 2712 } 2713 2714 if (moving) { 2715 if (beneath) 2716 dest_mp = smp; 2717 unhash_mnt(source_mnt); 2718 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2719 mnt_notify_add(source_mnt); 2720 touch_mnt_namespace(source_mnt->mnt_ns); 2721 } else { 2722 if (source_mnt->mnt_ns) { 2723 LIST_HEAD(head); 2724 2725 /* move from anon - the caller will destroy */ 2726 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2727 move_from_ns(p, &head); 2728 list_del_init(&head); 2729 } 2730 if (beneath) 2731 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2732 else 2733 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2734 commit_tree(source_mnt); 2735 } 2736 2737 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2738 struct mount *q; 2739 hlist_del_init(&child->mnt_hash); 2740 q = __lookup_mnt(&child->mnt_parent->mnt, 2741 child->mnt_mountpoint); 2742 if (q) 2743 mnt_change_mountpoint(child, smp, q); 2744 /* Notice when we are propagating across user namespaces */ 2745 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2746 lock_mnt_tree(child); 2747 child->mnt.mnt_flags &= ~MNT_LOCKED; 2748 commit_tree(child); 2749 } 2750 put_mountpoint(smp); 2751 unlock_mount_hash(); 2752 2753 return 0; 2754 2755 out_cleanup_ids: 2756 while (!hlist_empty(&tree_list)) { 2757 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2758 child->mnt_parent->mnt_ns->pending_mounts = 0; 2759 umount_tree(child, UMOUNT_SYNC); 2760 } 2761 unlock_mount_hash(); 2762 cleanup_group_ids(source_mnt, NULL); 2763 out: 2764 ns->pending_mounts = 0; 2765 2766 read_seqlock_excl(&mount_lock); 2767 put_mountpoint(smp); 2768 read_sequnlock_excl(&mount_lock); 2769 2770 return err; 2771 } 2772 2773 /** 2774 * do_lock_mount - lock mount and mountpoint 2775 * @path: target path 2776 * @beneath: whether the intention is to mount beneath @path 2777 * 2778 * Follow the mount stack on @path until the top mount @mnt is found. If 2779 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2780 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2781 * until nothing is stacked on top of it anymore. 2782 * 2783 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2784 * against concurrent removal of the new mountpoint from another mount 2785 * namespace. 2786 * 2787 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2788 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2789 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2790 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2791 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2792 * on top of it for @beneath. 2793 * 2794 * In addition, @beneath needs to make sure that @mnt hasn't been 2795 * unmounted or moved from its current mountpoint in between dropping 2796 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2797 * being unmounted would be detected later by e.g., calling 2798 * check_mnt(mnt) in the function it's called from. For the @beneath 2799 * case however, it's useful to detect it directly in do_lock_mount(). 2800 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2801 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2802 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2803 * 2804 * Return: Either the target mountpoint on the top mount or the top 2805 * mount's mountpoint. 2806 */ 2807 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2808 { 2809 struct vfsmount *mnt = path->mnt; 2810 struct dentry *dentry; 2811 struct mountpoint *mp = ERR_PTR(-ENOENT); 2812 struct path under = {}; 2813 2814 for (;;) { 2815 struct mount *m = real_mount(mnt); 2816 2817 if (beneath) { 2818 path_put(&under); 2819 read_seqlock_excl(&mount_lock); 2820 under.mnt = mntget(&m->mnt_parent->mnt); 2821 under.dentry = dget(m->mnt_mountpoint); 2822 read_sequnlock_excl(&mount_lock); 2823 dentry = under.dentry; 2824 } else { 2825 dentry = path->dentry; 2826 } 2827 2828 inode_lock(dentry->d_inode); 2829 namespace_lock(); 2830 2831 if (unlikely(cant_mount(dentry) || !is_mounted(mnt))) 2832 break; // not to be mounted on 2833 2834 if (beneath && unlikely(m->mnt_mountpoint != dentry || 2835 &m->mnt_parent->mnt != under.mnt)) { 2836 namespace_unlock(); 2837 inode_unlock(dentry->d_inode); 2838 continue; // got moved 2839 } 2840 2841 mnt = lookup_mnt(path); 2842 if (unlikely(mnt)) { 2843 namespace_unlock(); 2844 inode_unlock(dentry->d_inode); 2845 path_put(path); 2846 path->mnt = mnt; 2847 path->dentry = dget(mnt->mnt_root); 2848 continue; // got overmounted 2849 } 2850 mp = get_mountpoint(dentry); 2851 if (IS_ERR(mp)) 2852 break; 2853 if (beneath) { 2854 /* 2855 * @under duplicates the references that will stay 2856 * at least until namespace_unlock(), so the path_put() 2857 * below is safe (and OK to do under namespace_lock - 2858 * we are not dropping the final references here). 2859 */ 2860 path_put(&under); 2861 } 2862 return mp; 2863 } 2864 namespace_unlock(); 2865 inode_unlock(dentry->d_inode); 2866 if (beneath) 2867 path_put(&under); 2868 return mp; 2869 } 2870 2871 static inline struct mountpoint *lock_mount(struct path *path) 2872 { 2873 return do_lock_mount(path, false); 2874 } 2875 2876 static void unlock_mount(struct mountpoint *where) 2877 { 2878 inode_unlock(where->m_dentry->d_inode); 2879 read_seqlock_excl(&mount_lock); 2880 put_mountpoint(where); 2881 read_sequnlock_excl(&mount_lock); 2882 namespace_unlock(); 2883 } 2884 2885 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2886 { 2887 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2888 return -EINVAL; 2889 2890 if (d_is_dir(mp->m_dentry) != 2891 d_is_dir(mnt->mnt.mnt_root)) 2892 return -ENOTDIR; 2893 2894 return attach_recursive_mnt(mnt, p, mp, 0); 2895 } 2896 2897 /* 2898 * Sanity check the flags to change_mnt_propagation. 2899 */ 2900 2901 static int flags_to_propagation_type(int ms_flags) 2902 { 2903 int type = ms_flags & ~(MS_REC | MS_SILENT); 2904 2905 /* Fail if any non-propagation flags are set */ 2906 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2907 return 0; 2908 /* Only one propagation flag should be set */ 2909 if (!is_power_of_2(type)) 2910 return 0; 2911 return type; 2912 } 2913 2914 /* 2915 * recursively change the type of the mountpoint. 2916 */ 2917 static int do_change_type(struct path *path, int ms_flags) 2918 { 2919 struct mount *m; 2920 struct mount *mnt = real_mount(path->mnt); 2921 int recurse = ms_flags & MS_REC; 2922 int type; 2923 int err = 0; 2924 2925 if (!path_mounted(path)) 2926 return -EINVAL; 2927 2928 type = flags_to_propagation_type(ms_flags); 2929 if (!type) 2930 return -EINVAL; 2931 2932 namespace_lock(); 2933 if (type == MS_SHARED) { 2934 err = invent_group_ids(mnt, recurse); 2935 if (err) 2936 goto out_unlock; 2937 } 2938 2939 lock_mount_hash(); 2940 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2941 change_mnt_propagation(m, type); 2942 unlock_mount_hash(); 2943 2944 out_unlock: 2945 namespace_unlock(); 2946 return err; 2947 } 2948 2949 /* may_copy_tree() - check if a mount tree can be copied 2950 * @path: path to the mount tree to be copied 2951 * 2952 * This helper checks if the caller may copy the mount tree starting 2953 * from @path->mnt. The caller may copy the mount tree under the 2954 * following circumstances: 2955 * 2956 * (1) The caller is located in the mount namespace of the mount tree. 2957 * This also implies that the mount does not belong to an anonymous 2958 * mount namespace. 2959 * (2) The caller tries to copy an nfs mount referring to a mount 2960 * namespace, i.e., the caller is trying to copy a mount namespace 2961 * entry from nsfs. 2962 * (3) The caller tries to copy a pidfs mount referring to a pidfd. 2963 * (4) The caller is trying to copy a mount tree that belongs to an 2964 * anonymous mount namespace. 2965 * 2966 * For that to be safe, this helper enforces that the origin mount 2967 * namespace the anonymous mount namespace was created from is the 2968 * same as the caller's mount namespace by comparing the sequence 2969 * numbers. 2970 * 2971 * This is not strictly necessary. The current semantics of the new 2972 * mount api enforce that the caller must be located in the same 2973 * mount namespace as the mount tree it interacts with. Using the 2974 * origin sequence number preserves these semantics even for 2975 * anonymous mount namespaces. However, one could envision extending 2976 * the api to directly operate across mount namespace if needed. 2977 * 2978 * The ownership of a non-anonymous mount namespace such as the 2979 * caller's cannot change. 2980 * => We know that the caller's mount namespace is stable. 2981 * 2982 * If the origin sequence number of the anonymous mount namespace is 2983 * the same as the sequence number of the caller's mount namespace. 2984 * => The owning namespaces are the same. 2985 * 2986 * ==> The earlier capability check on the owning namespace of the 2987 * caller's mount namespace ensures that the caller has the 2988 * ability to copy the mount tree. 2989 * 2990 * Returns true if the mount tree can be copied, false otherwise. 2991 */ 2992 static inline bool may_copy_tree(struct path *path) 2993 { 2994 struct mount *mnt = real_mount(path->mnt); 2995 const struct dentry_operations *d_op; 2996 2997 if (check_mnt(mnt)) 2998 return true; 2999 3000 d_op = path->dentry->d_op; 3001 if (d_op == &ns_dentry_operations) 3002 return true; 3003 3004 if (d_op == &pidfs_dentry_operations) 3005 return true; 3006 3007 if (!is_mounted(path->mnt)) 3008 return false; 3009 3010 return check_anonymous_mnt(mnt); 3011 } 3012 3013 3014 static struct mount *__do_loopback(struct path *old_path, int recurse) 3015 { 3016 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 3017 3018 if (IS_MNT_UNBINDABLE(old)) 3019 return mnt; 3020 3021 if (!may_copy_tree(old_path)) 3022 return mnt; 3023 3024 if (!recurse && has_locked_children(old, old_path->dentry)) 3025 return mnt; 3026 3027 if (recurse) 3028 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 3029 else 3030 mnt = clone_mnt(old, old_path->dentry, 0); 3031 3032 if (!IS_ERR(mnt)) 3033 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3034 3035 return mnt; 3036 } 3037 3038 /* 3039 * do loopback mount. 3040 */ 3041 static int do_loopback(struct path *path, const char *old_name, 3042 int recurse) 3043 { 3044 struct path old_path; 3045 struct mount *mnt = NULL, *parent; 3046 struct mountpoint *mp; 3047 int err; 3048 if (!old_name || !*old_name) 3049 return -EINVAL; 3050 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 3051 if (err) 3052 return err; 3053 3054 err = -EINVAL; 3055 if (mnt_ns_loop(old_path.dentry)) 3056 goto out; 3057 3058 mp = lock_mount(path); 3059 if (IS_ERR(mp)) { 3060 err = PTR_ERR(mp); 3061 goto out; 3062 } 3063 3064 parent = real_mount(path->mnt); 3065 if (!check_mnt(parent)) 3066 goto out2; 3067 3068 mnt = __do_loopback(&old_path, recurse); 3069 if (IS_ERR(mnt)) { 3070 err = PTR_ERR(mnt); 3071 goto out2; 3072 } 3073 3074 err = graft_tree(mnt, parent, mp); 3075 if (err) { 3076 lock_mount_hash(); 3077 umount_tree(mnt, UMOUNT_SYNC); 3078 unlock_mount_hash(); 3079 } 3080 out2: 3081 unlock_mount(mp); 3082 out: 3083 path_put(&old_path); 3084 return err; 3085 } 3086 3087 static struct file *open_detached_copy(struct path *path, bool recursive) 3088 { 3089 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; 3090 struct user_namespace *user_ns = mnt_ns->user_ns; 3091 struct mount *mnt, *p; 3092 struct file *file; 3093 3094 ns = alloc_mnt_ns(user_ns, true); 3095 if (IS_ERR(ns)) 3096 return ERR_CAST(ns); 3097 3098 namespace_lock(); 3099 3100 /* 3101 * Record the sequence number of the source mount namespace. 3102 * This needs to hold namespace_sem to ensure that the mount 3103 * doesn't get attached. 3104 */ 3105 if (is_mounted(path->mnt)) { 3106 src_mnt_ns = real_mount(path->mnt)->mnt_ns; 3107 if (is_anon_ns(src_mnt_ns)) 3108 ns->seq_origin = src_mnt_ns->seq_origin; 3109 else 3110 ns->seq_origin = src_mnt_ns->seq; 3111 } 3112 3113 mnt = __do_loopback(path, recursive); 3114 if (IS_ERR(mnt)) { 3115 namespace_unlock(); 3116 free_mnt_ns(ns); 3117 return ERR_CAST(mnt); 3118 } 3119 3120 lock_mount_hash(); 3121 for (p = mnt; p; p = next_mnt(p, mnt)) { 3122 mnt_add_to_ns(ns, p); 3123 ns->nr_mounts++; 3124 } 3125 ns->root = mnt; 3126 mntget(&mnt->mnt); 3127 unlock_mount_hash(); 3128 namespace_unlock(); 3129 3130 mntput(path->mnt); 3131 path->mnt = &mnt->mnt; 3132 file = dentry_open(path, O_PATH, current_cred()); 3133 if (IS_ERR(file)) 3134 dissolve_on_fput(path->mnt); 3135 else 3136 file->f_mode |= FMODE_NEED_UNMOUNT; 3137 return file; 3138 } 3139 3140 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3141 { 3142 int ret; 3143 struct path path __free(path_put) = {}; 3144 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3145 bool detached = flags & OPEN_TREE_CLONE; 3146 3147 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3148 3149 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3150 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3151 OPEN_TREE_CLOEXEC)) 3152 return ERR_PTR(-EINVAL); 3153 3154 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3155 return ERR_PTR(-EINVAL); 3156 3157 if (flags & AT_NO_AUTOMOUNT) 3158 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3159 if (flags & AT_SYMLINK_NOFOLLOW) 3160 lookup_flags &= ~LOOKUP_FOLLOW; 3161 if (flags & AT_EMPTY_PATH) 3162 lookup_flags |= LOOKUP_EMPTY; 3163 3164 if (detached && !may_mount()) 3165 return ERR_PTR(-EPERM); 3166 3167 ret = user_path_at(dfd, filename, lookup_flags, &path); 3168 if (unlikely(ret)) 3169 return ERR_PTR(ret); 3170 3171 if (detached) 3172 return open_detached_copy(&path, flags & AT_RECURSIVE); 3173 3174 return dentry_open(&path, O_PATH, current_cred()); 3175 } 3176 3177 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3178 { 3179 int fd; 3180 struct file *file __free(fput) = NULL; 3181 3182 file = vfs_open_tree(dfd, filename, flags); 3183 if (IS_ERR(file)) 3184 return PTR_ERR(file); 3185 3186 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3187 if (fd < 0) 3188 return fd; 3189 3190 fd_install(fd, no_free_ptr(file)); 3191 return fd; 3192 } 3193 3194 /* 3195 * Don't allow locked mount flags to be cleared. 3196 * 3197 * No locks need to be held here while testing the various MNT_LOCK 3198 * flags because those flags can never be cleared once they are set. 3199 */ 3200 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3201 { 3202 unsigned int fl = mnt->mnt.mnt_flags; 3203 3204 if ((fl & MNT_LOCK_READONLY) && 3205 !(mnt_flags & MNT_READONLY)) 3206 return false; 3207 3208 if ((fl & MNT_LOCK_NODEV) && 3209 !(mnt_flags & MNT_NODEV)) 3210 return false; 3211 3212 if ((fl & MNT_LOCK_NOSUID) && 3213 !(mnt_flags & MNT_NOSUID)) 3214 return false; 3215 3216 if ((fl & MNT_LOCK_NOEXEC) && 3217 !(mnt_flags & MNT_NOEXEC)) 3218 return false; 3219 3220 if ((fl & MNT_LOCK_ATIME) && 3221 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3222 return false; 3223 3224 return true; 3225 } 3226 3227 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3228 { 3229 bool readonly_request = (mnt_flags & MNT_READONLY); 3230 3231 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3232 return 0; 3233 3234 if (readonly_request) 3235 return mnt_make_readonly(mnt); 3236 3237 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3238 return 0; 3239 } 3240 3241 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3242 { 3243 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3244 mnt->mnt.mnt_flags = mnt_flags; 3245 touch_mnt_namespace(mnt->mnt_ns); 3246 } 3247 3248 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 3249 { 3250 struct super_block *sb = mnt->mnt_sb; 3251 3252 if (!__mnt_is_readonly(mnt) && 3253 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3254 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3255 char *buf, *mntpath; 3256 3257 buf = (char *)__get_free_page(GFP_KERNEL); 3258 if (buf) 3259 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3260 else 3261 mntpath = ERR_PTR(-ENOMEM); 3262 if (IS_ERR(mntpath)) 3263 mntpath = "(unknown)"; 3264 3265 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3266 sb->s_type->name, 3267 is_mounted(mnt) ? "remounted" : "mounted", 3268 mntpath, &sb->s_time_max, 3269 (unsigned long long)sb->s_time_max); 3270 3271 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3272 if (buf) 3273 free_page((unsigned long)buf); 3274 } 3275 } 3276 3277 /* 3278 * Handle reconfiguration of the mountpoint only without alteration of the 3279 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3280 * to mount(2). 3281 */ 3282 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 3283 { 3284 struct super_block *sb = path->mnt->mnt_sb; 3285 struct mount *mnt = real_mount(path->mnt); 3286 int ret; 3287 3288 if (!check_mnt(mnt)) 3289 return -EINVAL; 3290 3291 if (!path_mounted(path)) 3292 return -EINVAL; 3293 3294 if (!can_change_locked_flags(mnt, mnt_flags)) 3295 return -EPERM; 3296 3297 /* 3298 * We're only checking whether the superblock is read-only not 3299 * changing it, so only take down_read(&sb->s_umount). 3300 */ 3301 down_read(&sb->s_umount); 3302 lock_mount_hash(); 3303 ret = change_mount_ro_state(mnt, mnt_flags); 3304 if (ret == 0) 3305 set_mount_attributes(mnt, mnt_flags); 3306 unlock_mount_hash(); 3307 up_read(&sb->s_umount); 3308 3309 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3310 3311 return ret; 3312 } 3313 3314 /* 3315 * change filesystem flags. dir should be a physical root of filesystem. 3316 * If you've mounted a non-root directory somewhere and want to do remount 3317 * on it - tough luck. 3318 */ 3319 static int do_remount(struct path *path, int ms_flags, int sb_flags, 3320 int mnt_flags, void *data) 3321 { 3322 int err; 3323 struct super_block *sb = path->mnt->mnt_sb; 3324 struct mount *mnt = real_mount(path->mnt); 3325 struct fs_context *fc; 3326 3327 if (!check_mnt(mnt)) 3328 return -EINVAL; 3329 3330 if (!path_mounted(path)) 3331 return -EINVAL; 3332 3333 if (!can_change_locked_flags(mnt, mnt_flags)) 3334 return -EPERM; 3335 3336 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3337 if (IS_ERR(fc)) 3338 return PTR_ERR(fc); 3339 3340 /* 3341 * Indicate to the filesystem that the remount request is coming 3342 * from the legacy mount system call. 3343 */ 3344 fc->oldapi = true; 3345 3346 err = parse_monolithic_mount_data(fc, data); 3347 if (!err) { 3348 down_write(&sb->s_umount); 3349 err = -EPERM; 3350 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3351 err = reconfigure_super(fc); 3352 if (!err) { 3353 lock_mount_hash(); 3354 set_mount_attributes(mnt, mnt_flags); 3355 unlock_mount_hash(); 3356 } 3357 } 3358 up_write(&sb->s_umount); 3359 } 3360 3361 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3362 3363 put_fs_context(fc); 3364 return err; 3365 } 3366 3367 static inline int tree_contains_unbindable(struct mount *mnt) 3368 { 3369 struct mount *p; 3370 for (p = mnt; p; p = next_mnt(p, mnt)) { 3371 if (IS_MNT_UNBINDABLE(p)) 3372 return 1; 3373 } 3374 return 0; 3375 } 3376 3377 static int do_set_group(struct path *from_path, struct path *to_path) 3378 { 3379 struct mount *from, *to; 3380 int err; 3381 3382 from = real_mount(from_path->mnt); 3383 to = real_mount(to_path->mnt); 3384 3385 namespace_lock(); 3386 3387 err = -EINVAL; 3388 /* To and From must be mounted */ 3389 if (!is_mounted(&from->mnt)) 3390 goto out; 3391 if (!is_mounted(&to->mnt)) 3392 goto out; 3393 3394 err = -EPERM; 3395 /* We should be allowed to modify mount namespaces of both mounts */ 3396 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3397 goto out; 3398 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3399 goto out; 3400 3401 err = -EINVAL; 3402 /* To and From paths should be mount roots */ 3403 if (!path_mounted(from_path)) 3404 goto out; 3405 if (!path_mounted(to_path)) 3406 goto out; 3407 3408 /* Setting sharing groups is only allowed across same superblock */ 3409 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3410 goto out; 3411 3412 /* From mount root should be wider than To mount root */ 3413 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3414 goto out; 3415 3416 /* From mount should not have locked children in place of To's root */ 3417 if (has_locked_children(from, to->mnt.mnt_root)) 3418 goto out; 3419 3420 /* Setting sharing groups is only allowed on private mounts */ 3421 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3422 goto out; 3423 3424 /* From should not be private */ 3425 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3426 goto out; 3427 3428 if (IS_MNT_SLAVE(from)) { 3429 struct mount *m = from->mnt_master; 3430 3431 list_add(&to->mnt_slave, &m->mnt_slave_list); 3432 to->mnt_master = m; 3433 } 3434 3435 if (IS_MNT_SHARED(from)) { 3436 to->mnt_group_id = from->mnt_group_id; 3437 list_add(&to->mnt_share, &from->mnt_share); 3438 lock_mount_hash(); 3439 set_mnt_shared(to); 3440 unlock_mount_hash(); 3441 } 3442 3443 err = 0; 3444 out: 3445 namespace_unlock(); 3446 return err; 3447 } 3448 3449 /** 3450 * path_overmounted - check if path is overmounted 3451 * @path: path to check 3452 * 3453 * Check if path is overmounted, i.e., if there's a mount on top of 3454 * @path->mnt with @path->dentry as mountpoint. 3455 * 3456 * Context: This function expects namespace_lock() to be held. 3457 * Return: If path is overmounted true is returned, false if not. 3458 */ 3459 static inline bool path_overmounted(const struct path *path) 3460 { 3461 rcu_read_lock(); 3462 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3463 rcu_read_unlock(); 3464 return true; 3465 } 3466 rcu_read_unlock(); 3467 return false; 3468 } 3469 3470 /** 3471 * can_move_mount_beneath - check that we can mount beneath the top mount 3472 * @from: mount to mount beneath 3473 * @to: mount under which to mount 3474 * @mp: mountpoint of @to 3475 * 3476 * - Make sure that @to->dentry is actually the root of a mount under 3477 * which we can mount another mount. 3478 * - Make sure that nothing can be mounted beneath the caller's current 3479 * root or the rootfs of the namespace. 3480 * - Make sure that the caller can unmount the topmost mount ensuring 3481 * that the caller could reveal the underlying mountpoint. 3482 * - Ensure that nothing has been mounted on top of @from before we 3483 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3484 * - Prevent mounting beneath a mount if the propagation relationship 3485 * between the source mount, parent mount, and top mount would lead to 3486 * nonsensical mount trees. 3487 * 3488 * Context: This function expects namespace_lock() to be held. 3489 * Return: On success 0, and on error a negative error code is returned. 3490 */ 3491 static int can_move_mount_beneath(const struct path *from, 3492 const struct path *to, 3493 const struct mountpoint *mp) 3494 { 3495 struct mount *mnt_from = real_mount(from->mnt), 3496 *mnt_to = real_mount(to->mnt), 3497 *parent_mnt_to = mnt_to->mnt_parent; 3498 3499 if (!mnt_has_parent(mnt_to)) 3500 return -EINVAL; 3501 3502 if (!path_mounted(to)) 3503 return -EINVAL; 3504 3505 if (IS_MNT_LOCKED(mnt_to)) 3506 return -EINVAL; 3507 3508 /* Avoid creating shadow mounts during mount propagation. */ 3509 if (path_overmounted(from)) 3510 return -EINVAL; 3511 3512 /* 3513 * Mounting beneath the rootfs only makes sense when the 3514 * semantics of pivot_root(".", ".") are used. 3515 */ 3516 if (&mnt_to->mnt == current->fs->root.mnt) 3517 return -EINVAL; 3518 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3519 return -EINVAL; 3520 3521 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3522 if (p == mnt_to) 3523 return -EINVAL; 3524 3525 /* 3526 * If the parent mount propagates to the child mount this would 3527 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3528 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3529 * defeats the whole purpose of mounting beneath another mount. 3530 */ 3531 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3532 return -EINVAL; 3533 3534 /* 3535 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3536 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3537 * Afterwards @mnt_from would be mounted on top of 3538 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3539 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3540 * already mounted on @mnt_from, @mnt_to would ultimately be 3541 * remounted on top of @c. Afterwards, @mnt_from would be 3542 * covered by a copy @c of @mnt_from and @c would be covered by 3543 * @mnt_from itself. This defeats the whole purpose of mounting 3544 * @mnt_from beneath @mnt_to. 3545 */ 3546 if (check_mnt(mnt_from) && 3547 propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3548 return -EINVAL; 3549 3550 return 0; 3551 } 3552 3553 /* may_use_mount() - check if a mount tree can be used 3554 * @mnt: vfsmount to be used 3555 * 3556 * This helper checks if the caller may use the mount tree starting 3557 * from @path->mnt. The caller may use the mount tree under the 3558 * following circumstances: 3559 * 3560 * (1) The caller is located in the mount namespace of the mount tree. 3561 * This also implies that the mount does not belong to an anonymous 3562 * mount namespace. 3563 * (2) The caller is trying to use a mount tree that belongs to an 3564 * anonymous mount namespace. 3565 * 3566 * For that to be safe, this helper enforces that the origin mount 3567 * namespace the anonymous mount namespace was created from is the 3568 * same as the caller's mount namespace by comparing the sequence 3569 * numbers. 3570 * 3571 * The ownership of a non-anonymous mount namespace such as the 3572 * caller's cannot change. 3573 * => We know that the caller's mount namespace is stable. 3574 * 3575 * If the origin sequence number of the anonymous mount namespace is 3576 * the same as the sequence number of the caller's mount namespace. 3577 * => The owning namespaces are the same. 3578 * 3579 * ==> The earlier capability check on the owning namespace of the 3580 * caller's mount namespace ensures that the caller has the 3581 * ability to use the mount tree. 3582 * 3583 * Returns true if the mount tree can be used, false otherwise. 3584 */ 3585 static inline bool may_use_mount(struct mount *mnt) 3586 { 3587 if (check_mnt(mnt)) 3588 return true; 3589 3590 /* 3591 * Make sure that noone unmounted the target path or somehow 3592 * managed to get their hands on something purely kernel 3593 * internal. 3594 */ 3595 if (!is_mounted(&mnt->mnt)) 3596 return false; 3597 3598 return check_anonymous_mnt(mnt); 3599 } 3600 3601 static int do_move_mount(struct path *old_path, 3602 struct path *new_path, enum mnt_tree_flags_t flags) 3603 { 3604 struct mnt_namespace *ns; 3605 struct mount *p; 3606 struct mount *old; 3607 struct mount *parent; 3608 struct mountpoint *mp, *old_mp; 3609 int err; 3610 bool attached, beneath = flags & MNT_TREE_BENEATH; 3611 3612 mp = do_lock_mount(new_path, beneath); 3613 if (IS_ERR(mp)) 3614 return PTR_ERR(mp); 3615 3616 old = real_mount(old_path->mnt); 3617 p = real_mount(new_path->mnt); 3618 parent = old->mnt_parent; 3619 attached = mnt_has_parent(old); 3620 if (attached) 3621 flags |= MNT_TREE_MOVE; 3622 old_mp = old->mnt_mp; 3623 ns = old->mnt_ns; 3624 3625 err = -EINVAL; 3626 if (!may_use_mount(p)) 3627 goto out; 3628 3629 /* The thing moved must be mounted... */ 3630 if (!is_mounted(&old->mnt)) 3631 goto out; 3632 3633 /* ... and either ours or the root of anon namespace */ 3634 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3635 goto out; 3636 3637 if (is_anon_ns(ns) && ns == p->mnt_ns) { 3638 /* 3639 * Ending up with two files referring to the root of the 3640 * same anonymous mount namespace would cause an error 3641 * as this would mean trying to move the same mount 3642 * twice into the mount tree which would be rejected 3643 * later. But be explicit about it right here. 3644 */ 3645 goto out; 3646 } else if (is_anon_ns(p->mnt_ns)) { 3647 /* 3648 * Don't allow moving an attached mount tree to an 3649 * anonymous mount tree. 3650 */ 3651 goto out; 3652 } 3653 3654 if (old->mnt.mnt_flags & MNT_LOCKED) 3655 goto out; 3656 3657 if (!path_mounted(old_path)) 3658 goto out; 3659 3660 if (d_is_dir(new_path->dentry) != 3661 d_is_dir(old_path->dentry)) 3662 goto out; 3663 /* 3664 * Don't move a mount residing in a shared parent. 3665 */ 3666 if (attached && IS_MNT_SHARED(parent)) 3667 goto out; 3668 3669 if (beneath) { 3670 err = can_move_mount_beneath(old_path, new_path, mp); 3671 if (err) 3672 goto out; 3673 3674 err = -EINVAL; 3675 p = p->mnt_parent; 3676 flags |= MNT_TREE_BENEATH; 3677 } 3678 3679 /* 3680 * Don't move a mount tree containing unbindable mounts to a destination 3681 * mount which is shared. 3682 */ 3683 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3684 goto out; 3685 err = -ELOOP; 3686 if (!check_for_nsfs_mounts(old)) 3687 goto out; 3688 for (; mnt_has_parent(p); p = p->mnt_parent) 3689 if (p == old) 3690 goto out; 3691 3692 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3693 if (err) 3694 goto out; 3695 3696 /* if the mount is moved, it should no longer be expire 3697 * automatically */ 3698 list_del_init(&old->mnt_expire); 3699 if (attached) 3700 put_mountpoint(old_mp); 3701 out: 3702 unlock_mount(mp); 3703 if (!err) { 3704 if (attached) { 3705 mntput_no_expire(parent); 3706 } else { 3707 /* Make sure we notice when we leak mounts. */ 3708 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 3709 free_mnt_ns(ns); 3710 } 3711 } 3712 return err; 3713 } 3714 3715 static int do_move_mount_old(struct path *path, const char *old_name) 3716 { 3717 struct path old_path; 3718 int err; 3719 3720 if (!old_name || !*old_name) 3721 return -EINVAL; 3722 3723 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3724 if (err) 3725 return err; 3726 3727 err = do_move_mount(&old_path, path, 0); 3728 path_put(&old_path); 3729 return err; 3730 } 3731 3732 /* 3733 * add a mount into a namespace's mount tree 3734 */ 3735 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3736 const struct path *path, int mnt_flags) 3737 { 3738 struct mount *parent = real_mount(path->mnt); 3739 3740 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3741 3742 if (unlikely(!check_mnt(parent))) { 3743 /* that's acceptable only for automounts done in private ns */ 3744 if (!(mnt_flags & MNT_SHRINKABLE)) 3745 return -EINVAL; 3746 /* ... and for those we'd better have mountpoint still alive */ 3747 if (!parent->mnt_ns) 3748 return -EINVAL; 3749 } 3750 3751 /* Refuse the same filesystem on the same mount point */ 3752 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3753 return -EBUSY; 3754 3755 if (d_is_symlink(newmnt->mnt.mnt_root)) 3756 return -EINVAL; 3757 3758 newmnt->mnt.mnt_flags = mnt_flags; 3759 return graft_tree(newmnt, parent, mp); 3760 } 3761 3762 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3763 3764 /* 3765 * Create a new mount using a superblock configuration and request it 3766 * be added to the namespace tree. 3767 */ 3768 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3769 unsigned int mnt_flags) 3770 { 3771 struct vfsmount *mnt; 3772 struct mountpoint *mp; 3773 struct super_block *sb = fc->root->d_sb; 3774 int error; 3775 3776 error = security_sb_kern_mount(sb); 3777 if (!error && mount_too_revealing(sb, &mnt_flags)) 3778 error = -EPERM; 3779 3780 if (unlikely(error)) { 3781 fc_drop_locked(fc); 3782 return error; 3783 } 3784 3785 up_write(&sb->s_umount); 3786 3787 mnt = vfs_create_mount(fc); 3788 if (IS_ERR(mnt)) 3789 return PTR_ERR(mnt); 3790 3791 mnt_warn_timestamp_expiry(mountpoint, mnt); 3792 3793 mp = lock_mount(mountpoint); 3794 if (IS_ERR(mp)) { 3795 mntput(mnt); 3796 return PTR_ERR(mp); 3797 } 3798 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3799 unlock_mount(mp); 3800 if (error < 0) 3801 mntput(mnt); 3802 return error; 3803 } 3804 3805 /* 3806 * create a new mount for userspace and request it to be added into the 3807 * namespace's tree 3808 */ 3809 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3810 int mnt_flags, const char *name, void *data) 3811 { 3812 struct file_system_type *type; 3813 struct fs_context *fc; 3814 const char *subtype = NULL; 3815 int err = 0; 3816 3817 if (!fstype) 3818 return -EINVAL; 3819 3820 type = get_fs_type(fstype); 3821 if (!type) 3822 return -ENODEV; 3823 3824 if (type->fs_flags & FS_HAS_SUBTYPE) { 3825 subtype = strchr(fstype, '.'); 3826 if (subtype) { 3827 subtype++; 3828 if (!*subtype) { 3829 put_filesystem(type); 3830 return -EINVAL; 3831 } 3832 } 3833 } 3834 3835 fc = fs_context_for_mount(type, sb_flags); 3836 put_filesystem(type); 3837 if (IS_ERR(fc)) 3838 return PTR_ERR(fc); 3839 3840 /* 3841 * Indicate to the filesystem that the mount request is coming 3842 * from the legacy mount system call. 3843 */ 3844 fc->oldapi = true; 3845 3846 if (subtype) 3847 err = vfs_parse_fs_string(fc, "subtype", 3848 subtype, strlen(subtype)); 3849 if (!err && name) 3850 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3851 if (!err) 3852 err = parse_monolithic_mount_data(fc, data); 3853 if (!err && !mount_capable(fc)) 3854 err = -EPERM; 3855 if (!err) 3856 err = vfs_get_tree(fc); 3857 if (!err) 3858 err = do_new_mount_fc(fc, path, mnt_flags); 3859 3860 put_fs_context(fc); 3861 return err; 3862 } 3863 3864 int finish_automount(struct vfsmount *m, const struct path *path) 3865 { 3866 struct dentry *dentry = path->dentry; 3867 struct mountpoint *mp; 3868 struct mount *mnt; 3869 int err; 3870 3871 if (!m) 3872 return 0; 3873 if (IS_ERR(m)) 3874 return PTR_ERR(m); 3875 3876 mnt = real_mount(m); 3877 3878 if (m->mnt_sb == path->mnt->mnt_sb && 3879 m->mnt_root == dentry) { 3880 err = -ELOOP; 3881 goto discard; 3882 } 3883 3884 /* 3885 * we don't want to use lock_mount() - in this case finding something 3886 * that overmounts our mountpoint to be means "quitely drop what we've 3887 * got", not "try to mount it on top". 3888 */ 3889 inode_lock(dentry->d_inode); 3890 namespace_lock(); 3891 if (unlikely(cant_mount(dentry))) { 3892 err = -ENOENT; 3893 goto discard_locked; 3894 } 3895 if (path_overmounted(path)) { 3896 err = 0; 3897 goto discard_locked; 3898 } 3899 mp = get_mountpoint(dentry); 3900 if (IS_ERR(mp)) { 3901 err = PTR_ERR(mp); 3902 goto discard_locked; 3903 } 3904 3905 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3906 unlock_mount(mp); 3907 if (unlikely(err)) 3908 goto discard; 3909 return 0; 3910 3911 discard_locked: 3912 namespace_unlock(); 3913 inode_unlock(dentry->d_inode); 3914 discard: 3915 /* remove m from any expiration list it may be on */ 3916 if (!list_empty(&mnt->mnt_expire)) { 3917 namespace_lock(); 3918 list_del_init(&mnt->mnt_expire); 3919 namespace_unlock(); 3920 } 3921 mntput(m); 3922 return err; 3923 } 3924 3925 /** 3926 * mnt_set_expiry - Put a mount on an expiration list 3927 * @mnt: The mount to list. 3928 * @expiry_list: The list to add the mount to. 3929 */ 3930 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3931 { 3932 namespace_lock(); 3933 3934 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3935 3936 namespace_unlock(); 3937 } 3938 EXPORT_SYMBOL(mnt_set_expiry); 3939 3940 /* 3941 * process a list of expirable mountpoints with the intent of discarding any 3942 * mountpoints that aren't in use and haven't been touched since last we came 3943 * here 3944 */ 3945 void mark_mounts_for_expiry(struct list_head *mounts) 3946 { 3947 struct mount *mnt, *next; 3948 LIST_HEAD(graveyard); 3949 3950 if (list_empty(mounts)) 3951 return; 3952 3953 namespace_lock(); 3954 lock_mount_hash(); 3955 3956 /* extract from the expiration list every vfsmount that matches the 3957 * following criteria: 3958 * - already mounted 3959 * - only referenced by its parent vfsmount 3960 * - still marked for expiry (marked on the last call here; marks are 3961 * cleared by mntput()) 3962 */ 3963 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3964 if (!is_mounted(&mnt->mnt)) 3965 continue; 3966 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3967 propagate_mount_busy(mnt, 1)) 3968 continue; 3969 list_move(&mnt->mnt_expire, &graveyard); 3970 } 3971 while (!list_empty(&graveyard)) { 3972 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3973 touch_mnt_namespace(mnt->mnt_ns); 3974 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3975 } 3976 unlock_mount_hash(); 3977 namespace_unlock(); 3978 } 3979 3980 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3981 3982 /* 3983 * Ripoff of 'select_parent()' 3984 * 3985 * search the list of submounts for a given mountpoint, and move any 3986 * shrinkable submounts to the 'graveyard' list. 3987 */ 3988 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3989 { 3990 struct mount *this_parent = parent; 3991 struct list_head *next; 3992 int found = 0; 3993 3994 repeat: 3995 next = this_parent->mnt_mounts.next; 3996 resume: 3997 while (next != &this_parent->mnt_mounts) { 3998 struct list_head *tmp = next; 3999 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 4000 4001 next = tmp->next; 4002 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 4003 continue; 4004 /* 4005 * Descend a level if the d_mounts list is non-empty. 4006 */ 4007 if (!list_empty(&mnt->mnt_mounts)) { 4008 this_parent = mnt; 4009 goto repeat; 4010 } 4011 4012 if (!propagate_mount_busy(mnt, 1)) { 4013 list_move_tail(&mnt->mnt_expire, graveyard); 4014 found++; 4015 } 4016 } 4017 /* 4018 * All done at this level ... ascend and resume the search 4019 */ 4020 if (this_parent != parent) { 4021 next = this_parent->mnt_child.next; 4022 this_parent = this_parent->mnt_parent; 4023 goto resume; 4024 } 4025 return found; 4026 } 4027 4028 /* 4029 * process a list of expirable mountpoints with the intent of discarding any 4030 * submounts of a specific parent mountpoint 4031 * 4032 * mount_lock must be held for write 4033 */ 4034 static void shrink_submounts(struct mount *mnt) 4035 { 4036 LIST_HEAD(graveyard); 4037 struct mount *m; 4038 4039 /* extract submounts of 'mountpoint' from the expiration list */ 4040 while (select_submounts(mnt, &graveyard)) { 4041 while (!list_empty(&graveyard)) { 4042 m = list_first_entry(&graveyard, struct mount, 4043 mnt_expire); 4044 touch_mnt_namespace(m->mnt_ns); 4045 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 4046 } 4047 } 4048 } 4049 4050 static void *copy_mount_options(const void __user * data) 4051 { 4052 char *copy; 4053 unsigned left, offset; 4054 4055 if (!data) 4056 return NULL; 4057 4058 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 4059 if (!copy) 4060 return ERR_PTR(-ENOMEM); 4061 4062 left = copy_from_user(copy, data, PAGE_SIZE); 4063 4064 /* 4065 * Not all architectures have an exact copy_from_user(). Resort to 4066 * byte at a time. 4067 */ 4068 offset = PAGE_SIZE - left; 4069 while (left) { 4070 char c; 4071 if (get_user(c, (const char __user *)data + offset)) 4072 break; 4073 copy[offset] = c; 4074 left--; 4075 offset++; 4076 } 4077 4078 if (left == PAGE_SIZE) { 4079 kfree(copy); 4080 return ERR_PTR(-EFAULT); 4081 } 4082 4083 return copy; 4084 } 4085 4086 static char *copy_mount_string(const void __user *data) 4087 { 4088 return data ? strndup_user(data, PATH_MAX) : NULL; 4089 } 4090 4091 /* 4092 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 4093 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 4094 * 4095 * data is a (void *) that can point to any structure up to 4096 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 4097 * information (or be NULL). 4098 * 4099 * Pre-0.97 versions of mount() didn't have a flags word. 4100 * When the flags word was introduced its top half was required 4101 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 4102 * Therefore, if this magic number is present, it carries no information 4103 * and must be discarded. 4104 */ 4105 int path_mount(const char *dev_name, struct path *path, 4106 const char *type_page, unsigned long flags, void *data_page) 4107 { 4108 unsigned int mnt_flags = 0, sb_flags; 4109 int ret; 4110 4111 /* Discard magic */ 4112 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 4113 flags &= ~MS_MGC_MSK; 4114 4115 /* Basic sanity checks */ 4116 if (data_page) 4117 ((char *)data_page)[PAGE_SIZE - 1] = 0; 4118 4119 if (flags & MS_NOUSER) 4120 return -EINVAL; 4121 4122 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 4123 if (ret) 4124 return ret; 4125 if (!may_mount()) 4126 return -EPERM; 4127 if (flags & SB_MANDLOCK) 4128 warn_mandlock(); 4129 4130 /* Default to relatime unless overriden */ 4131 if (!(flags & MS_NOATIME)) 4132 mnt_flags |= MNT_RELATIME; 4133 4134 /* Separate the per-mountpoint flags */ 4135 if (flags & MS_NOSUID) 4136 mnt_flags |= MNT_NOSUID; 4137 if (flags & MS_NODEV) 4138 mnt_flags |= MNT_NODEV; 4139 if (flags & MS_NOEXEC) 4140 mnt_flags |= MNT_NOEXEC; 4141 if (flags & MS_NOATIME) 4142 mnt_flags |= MNT_NOATIME; 4143 if (flags & MS_NODIRATIME) 4144 mnt_flags |= MNT_NODIRATIME; 4145 if (flags & MS_STRICTATIME) 4146 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 4147 if (flags & MS_RDONLY) 4148 mnt_flags |= MNT_READONLY; 4149 if (flags & MS_NOSYMFOLLOW) 4150 mnt_flags |= MNT_NOSYMFOLLOW; 4151 4152 /* The default atime for remount is preservation */ 4153 if ((flags & MS_REMOUNT) && 4154 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 4155 MS_STRICTATIME)) == 0)) { 4156 mnt_flags &= ~MNT_ATIME_MASK; 4157 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 4158 } 4159 4160 sb_flags = flags & (SB_RDONLY | 4161 SB_SYNCHRONOUS | 4162 SB_MANDLOCK | 4163 SB_DIRSYNC | 4164 SB_SILENT | 4165 SB_POSIXACL | 4166 SB_LAZYTIME | 4167 SB_I_VERSION); 4168 4169 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 4170 return do_reconfigure_mnt(path, mnt_flags); 4171 if (flags & MS_REMOUNT) 4172 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 4173 if (flags & MS_BIND) 4174 return do_loopback(path, dev_name, flags & MS_REC); 4175 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 4176 return do_change_type(path, flags); 4177 if (flags & MS_MOVE) 4178 return do_move_mount_old(path, dev_name); 4179 4180 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 4181 data_page); 4182 } 4183 4184 int do_mount(const char *dev_name, const char __user *dir_name, 4185 const char *type_page, unsigned long flags, void *data_page) 4186 { 4187 struct path path; 4188 int ret; 4189 4190 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 4191 if (ret) 4192 return ret; 4193 ret = path_mount(dev_name, &path, type_page, flags, data_page); 4194 path_put(&path); 4195 return ret; 4196 } 4197 4198 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4199 { 4200 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4201 } 4202 4203 static void dec_mnt_namespaces(struct ucounts *ucounts) 4204 { 4205 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4206 } 4207 4208 static void free_mnt_ns(struct mnt_namespace *ns) 4209 { 4210 if (!is_anon_ns(ns)) 4211 ns_free_inum(&ns->ns); 4212 dec_mnt_namespaces(ns->ucounts); 4213 mnt_ns_tree_remove(ns); 4214 } 4215 4216 /* 4217 * Assign a sequence number so we can detect when we attempt to bind 4218 * mount a reference to an older mount namespace into the current 4219 * mount namespace, preventing reference counting loops. A 64bit 4220 * number incrementing at 10Ghz will take 12,427 years to wrap which 4221 * is effectively never, so we can ignore the possibility. 4222 */ 4223 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 4224 4225 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4226 { 4227 struct mnt_namespace *new_ns; 4228 struct ucounts *ucounts; 4229 int ret; 4230 4231 ucounts = inc_mnt_namespaces(user_ns); 4232 if (!ucounts) 4233 return ERR_PTR(-ENOSPC); 4234 4235 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4236 if (!new_ns) { 4237 dec_mnt_namespaces(ucounts); 4238 return ERR_PTR(-ENOMEM); 4239 } 4240 if (!anon) { 4241 ret = ns_alloc_inum(&new_ns->ns); 4242 if (ret) { 4243 kfree(new_ns); 4244 dec_mnt_namespaces(ucounts); 4245 return ERR_PTR(ret); 4246 } 4247 } 4248 new_ns->ns.ops = &mntns_operations; 4249 if (!anon) 4250 new_ns->seq = atomic64_inc_return(&mnt_ns_seq); 4251 refcount_set(&new_ns->ns.count, 1); 4252 refcount_set(&new_ns->passive, 1); 4253 new_ns->mounts = RB_ROOT; 4254 INIT_LIST_HEAD(&new_ns->mnt_ns_list); 4255 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 4256 init_waitqueue_head(&new_ns->poll); 4257 new_ns->user_ns = get_user_ns(user_ns); 4258 new_ns->ucounts = ucounts; 4259 return new_ns; 4260 } 4261 4262 __latent_entropy 4263 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 4264 struct user_namespace *user_ns, struct fs_struct *new_fs) 4265 { 4266 struct mnt_namespace *new_ns; 4267 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 4268 struct mount *p, *q; 4269 struct mount *old; 4270 struct mount *new; 4271 int copy_flags; 4272 4273 BUG_ON(!ns); 4274 4275 if (likely(!(flags & CLONE_NEWNS))) { 4276 get_mnt_ns(ns); 4277 return ns; 4278 } 4279 4280 old = ns->root; 4281 4282 new_ns = alloc_mnt_ns(user_ns, false); 4283 if (IS_ERR(new_ns)) 4284 return new_ns; 4285 4286 namespace_lock(); 4287 /* First pass: copy the tree topology */ 4288 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4289 if (user_ns != ns->user_ns) 4290 copy_flags |= CL_SHARED_TO_SLAVE; 4291 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4292 if (IS_ERR(new)) { 4293 namespace_unlock(); 4294 ns_free_inum(&new_ns->ns); 4295 dec_mnt_namespaces(new_ns->ucounts); 4296 mnt_ns_release(new_ns); 4297 return ERR_CAST(new); 4298 } 4299 if (user_ns != ns->user_ns) { 4300 lock_mount_hash(); 4301 lock_mnt_tree(new); 4302 unlock_mount_hash(); 4303 } 4304 new_ns->root = new; 4305 4306 /* 4307 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4308 * as belonging to new namespace. We have already acquired a private 4309 * fs_struct, so tsk->fs->lock is not needed. 4310 */ 4311 p = old; 4312 q = new; 4313 while (p) { 4314 mnt_add_to_ns(new_ns, q); 4315 new_ns->nr_mounts++; 4316 if (new_fs) { 4317 if (&p->mnt == new_fs->root.mnt) { 4318 new_fs->root.mnt = mntget(&q->mnt); 4319 rootmnt = &p->mnt; 4320 } 4321 if (&p->mnt == new_fs->pwd.mnt) { 4322 new_fs->pwd.mnt = mntget(&q->mnt); 4323 pwdmnt = &p->mnt; 4324 } 4325 } 4326 p = next_mnt(p, old); 4327 q = next_mnt(q, new); 4328 if (!q) 4329 break; 4330 // an mntns binding we'd skipped? 4331 while (p->mnt.mnt_root != q->mnt.mnt_root) 4332 p = next_mnt(skip_mnt_tree(p), old); 4333 } 4334 namespace_unlock(); 4335 4336 if (rootmnt) 4337 mntput(rootmnt); 4338 if (pwdmnt) 4339 mntput(pwdmnt); 4340 4341 mnt_ns_tree_add(new_ns); 4342 return new_ns; 4343 } 4344 4345 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4346 { 4347 struct mount *mnt = real_mount(m); 4348 struct mnt_namespace *ns; 4349 struct super_block *s; 4350 struct path path; 4351 int err; 4352 4353 ns = alloc_mnt_ns(&init_user_ns, true); 4354 if (IS_ERR(ns)) { 4355 mntput(m); 4356 return ERR_CAST(ns); 4357 } 4358 ns->root = mnt; 4359 ns->nr_mounts++; 4360 mnt_add_to_ns(ns, mnt); 4361 4362 err = vfs_path_lookup(m->mnt_root, m, 4363 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4364 4365 put_mnt_ns(ns); 4366 4367 if (err) 4368 return ERR_PTR(err); 4369 4370 /* trade a vfsmount reference for active sb one */ 4371 s = path.mnt->mnt_sb; 4372 atomic_inc(&s->s_active); 4373 mntput(path.mnt); 4374 /* lock the sucker */ 4375 down_write(&s->s_umount); 4376 /* ... and return the root of (sub)tree on it */ 4377 return path.dentry; 4378 } 4379 EXPORT_SYMBOL(mount_subtree); 4380 4381 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4382 char __user *, type, unsigned long, flags, void __user *, data) 4383 { 4384 int ret; 4385 char *kernel_type; 4386 char *kernel_dev; 4387 void *options; 4388 4389 kernel_type = copy_mount_string(type); 4390 ret = PTR_ERR(kernel_type); 4391 if (IS_ERR(kernel_type)) 4392 goto out_type; 4393 4394 kernel_dev = copy_mount_string(dev_name); 4395 ret = PTR_ERR(kernel_dev); 4396 if (IS_ERR(kernel_dev)) 4397 goto out_dev; 4398 4399 options = copy_mount_options(data); 4400 ret = PTR_ERR(options); 4401 if (IS_ERR(options)) 4402 goto out_data; 4403 4404 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4405 4406 kfree(options); 4407 out_data: 4408 kfree(kernel_dev); 4409 out_dev: 4410 kfree(kernel_type); 4411 out_type: 4412 return ret; 4413 } 4414 4415 #define FSMOUNT_VALID_FLAGS \ 4416 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4417 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4418 MOUNT_ATTR_NOSYMFOLLOW) 4419 4420 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4421 4422 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4423 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4424 4425 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4426 { 4427 unsigned int mnt_flags = 0; 4428 4429 if (attr_flags & MOUNT_ATTR_RDONLY) 4430 mnt_flags |= MNT_READONLY; 4431 if (attr_flags & MOUNT_ATTR_NOSUID) 4432 mnt_flags |= MNT_NOSUID; 4433 if (attr_flags & MOUNT_ATTR_NODEV) 4434 mnt_flags |= MNT_NODEV; 4435 if (attr_flags & MOUNT_ATTR_NOEXEC) 4436 mnt_flags |= MNT_NOEXEC; 4437 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4438 mnt_flags |= MNT_NODIRATIME; 4439 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4440 mnt_flags |= MNT_NOSYMFOLLOW; 4441 4442 return mnt_flags; 4443 } 4444 4445 /* 4446 * Create a kernel mount representation for a new, prepared superblock 4447 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4448 */ 4449 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4450 unsigned int, attr_flags) 4451 { 4452 struct mnt_namespace *ns; 4453 struct fs_context *fc; 4454 struct file *file; 4455 struct path newmount; 4456 struct mount *mnt; 4457 unsigned int mnt_flags = 0; 4458 long ret; 4459 4460 if (!may_mount()) 4461 return -EPERM; 4462 4463 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4464 return -EINVAL; 4465 4466 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4467 return -EINVAL; 4468 4469 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4470 4471 switch (attr_flags & MOUNT_ATTR__ATIME) { 4472 case MOUNT_ATTR_STRICTATIME: 4473 break; 4474 case MOUNT_ATTR_NOATIME: 4475 mnt_flags |= MNT_NOATIME; 4476 break; 4477 case MOUNT_ATTR_RELATIME: 4478 mnt_flags |= MNT_RELATIME; 4479 break; 4480 default: 4481 return -EINVAL; 4482 } 4483 4484 CLASS(fd, f)(fs_fd); 4485 if (fd_empty(f)) 4486 return -EBADF; 4487 4488 if (fd_file(f)->f_op != &fscontext_fops) 4489 return -EINVAL; 4490 4491 fc = fd_file(f)->private_data; 4492 4493 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4494 if (ret < 0) 4495 return ret; 4496 4497 /* There must be a valid superblock or we can't mount it */ 4498 ret = -EINVAL; 4499 if (!fc->root) 4500 goto err_unlock; 4501 4502 ret = -EPERM; 4503 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4504 pr_warn("VFS: Mount too revealing\n"); 4505 goto err_unlock; 4506 } 4507 4508 ret = -EBUSY; 4509 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4510 goto err_unlock; 4511 4512 if (fc->sb_flags & SB_MANDLOCK) 4513 warn_mandlock(); 4514 4515 newmount.mnt = vfs_create_mount(fc); 4516 if (IS_ERR(newmount.mnt)) { 4517 ret = PTR_ERR(newmount.mnt); 4518 goto err_unlock; 4519 } 4520 newmount.dentry = dget(fc->root); 4521 newmount.mnt->mnt_flags = mnt_flags; 4522 4523 /* We've done the mount bit - now move the file context into more or 4524 * less the same state as if we'd done an fspick(). We don't want to 4525 * do any memory allocation or anything like that at this point as we 4526 * don't want to have to handle any errors incurred. 4527 */ 4528 vfs_clean_context(fc); 4529 4530 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4531 if (IS_ERR(ns)) { 4532 ret = PTR_ERR(ns); 4533 goto err_path; 4534 } 4535 mnt = real_mount(newmount.mnt); 4536 ns->root = mnt; 4537 ns->nr_mounts = 1; 4538 mnt_add_to_ns(ns, mnt); 4539 mntget(newmount.mnt); 4540 4541 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4542 * it, not just simply put it. 4543 */ 4544 file = dentry_open(&newmount, O_PATH, fc->cred); 4545 if (IS_ERR(file)) { 4546 dissolve_on_fput(newmount.mnt); 4547 ret = PTR_ERR(file); 4548 goto err_path; 4549 } 4550 file->f_mode |= FMODE_NEED_UNMOUNT; 4551 4552 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4553 if (ret >= 0) 4554 fd_install(ret, file); 4555 else 4556 fput(file); 4557 4558 err_path: 4559 path_put(&newmount); 4560 err_unlock: 4561 mutex_unlock(&fc->uapi_mutex); 4562 return ret; 4563 } 4564 4565 static inline int vfs_move_mount(struct path *from_path, struct path *to_path, 4566 enum mnt_tree_flags_t mflags) 4567 { 4568 int ret; 4569 4570 ret = security_move_mount(from_path, to_path); 4571 if (ret) 4572 return ret; 4573 4574 if (mflags & MNT_TREE_PROPAGATION) 4575 return do_set_group(from_path, to_path); 4576 4577 return do_move_mount(from_path, to_path, mflags); 4578 } 4579 4580 /* 4581 * Move a mount from one place to another. In combination with 4582 * fsopen()/fsmount() this is used to install a new mount and in combination 4583 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4584 * a mount subtree. 4585 * 4586 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4587 */ 4588 SYSCALL_DEFINE5(move_mount, 4589 int, from_dfd, const char __user *, from_pathname, 4590 int, to_dfd, const char __user *, to_pathname, 4591 unsigned int, flags) 4592 { 4593 struct path to_path __free(path_put) = {}; 4594 struct path from_path __free(path_put) = {}; 4595 struct filename *to_name __free(putname) = NULL; 4596 struct filename *from_name __free(putname) = NULL; 4597 unsigned int lflags, uflags; 4598 enum mnt_tree_flags_t mflags = 0; 4599 int ret = 0; 4600 4601 if (!may_mount()) 4602 return -EPERM; 4603 4604 if (flags & ~MOVE_MOUNT__MASK) 4605 return -EINVAL; 4606 4607 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4608 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4609 return -EINVAL; 4610 4611 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; 4612 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; 4613 4614 lflags = 0; 4615 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4616 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4617 uflags = 0; 4618 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4619 from_name = getname_maybe_null(from_pathname, uflags); 4620 if (IS_ERR(from_name)) 4621 return PTR_ERR(from_name); 4622 4623 lflags = 0; 4624 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4625 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4626 uflags = 0; 4627 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4628 to_name = getname_maybe_null(to_pathname, uflags); 4629 if (IS_ERR(to_name)) 4630 return PTR_ERR(to_name); 4631 4632 if (!to_name && to_dfd >= 0) { 4633 CLASS(fd_raw, f_to)(to_dfd); 4634 if (fd_empty(f_to)) 4635 return -EBADF; 4636 4637 to_path = fd_file(f_to)->f_path; 4638 path_get(&to_path); 4639 } else { 4640 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); 4641 if (ret) 4642 return ret; 4643 } 4644 4645 if (!from_name && from_dfd >= 0) { 4646 CLASS(fd_raw, f_from)(from_dfd); 4647 if (fd_empty(f_from)) 4648 return -EBADF; 4649 4650 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); 4651 } 4652 4653 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); 4654 if (ret) 4655 return ret; 4656 4657 return vfs_move_mount(&from_path, &to_path, mflags); 4658 } 4659 4660 /* 4661 * Return true if path is reachable from root 4662 * 4663 * namespace_sem or mount_lock is held 4664 */ 4665 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4666 const struct path *root) 4667 { 4668 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4669 dentry = mnt->mnt_mountpoint; 4670 mnt = mnt->mnt_parent; 4671 } 4672 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4673 } 4674 4675 bool path_is_under(const struct path *path1, const struct path *path2) 4676 { 4677 bool res; 4678 read_seqlock_excl(&mount_lock); 4679 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4680 read_sequnlock_excl(&mount_lock); 4681 return res; 4682 } 4683 EXPORT_SYMBOL(path_is_under); 4684 4685 /* 4686 * pivot_root Semantics: 4687 * Moves the root file system of the current process to the directory put_old, 4688 * makes new_root as the new root file system of the current process, and sets 4689 * root/cwd of all processes which had them on the current root to new_root. 4690 * 4691 * Restrictions: 4692 * The new_root and put_old must be directories, and must not be on the 4693 * same file system as the current process root. The put_old must be 4694 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4695 * pointed to by put_old must yield the same directory as new_root. No other 4696 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4697 * 4698 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4699 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4700 * in this situation. 4701 * 4702 * Notes: 4703 * - we don't move root/cwd if they are not at the root (reason: if something 4704 * cared enough to change them, it's probably wrong to force them elsewhere) 4705 * - it's okay to pick a root that isn't the root of a file system, e.g. 4706 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4707 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4708 * first. 4709 */ 4710 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4711 const char __user *, put_old) 4712 { 4713 struct path new, old, root; 4714 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4715 struct mountpoint *old_mp, *root_mp; 4716 int error; 4717 4718 if (!may_mount()) 4719 return -EPERM; 4720 4721 error = user_path_at(AT_FDCWD, new_root, 4722 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4723 if (error) 4724 goto out0; 4725 4726 error = user_path_at(AT_FDCWD, put_old, 4727 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4728 if (error) 4729 goto out1; 4730 4731 error = security_sb_pivotroot(&old, &new); 4732 if (error) 4733 goto out2; 4734 4735 get_fs_root(current->fs, &root); 4736 old_mp = lock_mount(&old); 4737 error = PTR_ERR(old_mp); 4738 if (IS_ERR(old_mp)) 4739 goto out3; 4740 4741 error = -EINVAL; 4742 new_mnt = real_mount(new.mnt); 4743 root_mnt = real_mount(root.mnt); 4744 old_mnt = real_mount(old.mnt); 4745 ex_parent = new_mnt->mnt_parent; 4746 root_parent = root_mnt->mnt_parent; 4747 if (IS_MNT_SHARED(old_mnt) || 4748 IS_MNT_SHARED(ex_parent) || 4749 IS_MNT_SHARED(root_parent)) 4750 goto out4; 4751 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4752 goto out4; 4753 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4754 goto out4; 4755 error = -ENOENT; 4756 if (d_unlinked(new.dentry)) 4757 goto out4; 4758 error = -EBUSY; 4759 if (new_mnt == root_mnt || old_mnt == root_mnt) 4760 goto out4; /* loop, on the same file system */ 4761 error = -EINVAL; 4762 if (!path_mounted(&root)) 4763 goto out4; /* not a mountpoint */ 4764 if (!mnt_has_parent(root_mnt)) 4765 goto out4; /* not attached */ 4766 if (!path_mounted(&new)) 4767 goto out4; /* not a mountpoint */ 4768 if (!mnt_has_parent(new_mnt)) 4769 goto out4; /* not attached */ 4770 /* make sure we can reach put_old from new_root */ 4771 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4772 goto out4; 4773 /* make certain new is below the root */ 4774 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4775 goto out4; 4776 lock_mount_hash(); 4777 umount_mnt(new_mnt); 4778 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4779 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4780 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4781 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4782 } 4783 /* mount old root on put_old */ 4784 attach_mnt(root_mnt, old_mnt, old_mp, false); 4785 /* mount new_root on / */ 4786 attach_mnt(new_mnt, root_parent, root_mp, false); 4787 mnt_add_count(root_parent, -1); 4788 touch_mnt_namespace(current->nsproxy->mnt_ns); 4789 /* A moved mount should not expire automatically */ 4790 list_del_init(&new_mnt->mnt_expire); 4791 put_mountpoint(root_mp); 4792 unlock_mount_hash(); 4793 mnt_notify_add(root_mnt); 4794 mnt_notify_add(new_mnt); 4795 chroot_fs_refs(&root, &new); 4796 error = 0; 4797 out4: 4798 unlock_mount(old_mp); 4799 if (!error) 4800 mntput_no_expire(ex_parent); 4801 out3: 4802 path_put(&root); 4803 out2: 4804 path_put(&old); 4805 out1: 4806 path_put(&new); 4807 out0: 4808 return error; 4809 } 4810 4811 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4812 { 4813 unsigned int flags = mnt->mnt.mnt_flags; 4814 4815 /* flags to clear */ 4816 flags &= ~kattr->attr_clr; 4817 /* flags to raise */ 4818 flags |= kattr->attr_set; 4819 4820 return flags; 4821 } 4822 4823 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4824 { 4825 struct vfsmount *m = &mnt->mnt; 4826 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4827 4828 if (!kattr->mnt_idmap) 4829 return 0; 4830 4831 /* 4832 * Creating an idmapped mount with the filesystem wide idmapping 4833 * doesn't make sense so block that. We don't allow mushy semantics. 4834 */ 4835 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4836 return -EINVAL; 4837 4838 /* 4839 * We only allow an mount to change it's idmapping if it has 4840 * never been accessible to userspace. 4841 */ 4842 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4843 return -EPERM; 4844 4845 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4846 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4847 return -EINVAL; 4848 4849 /* The filesystem has turned off idmapped mounts. */ 4850 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4851 return -EINVAL; 4852 4853 /* We're not controlling the superblock. */ 4854 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4855 return -EPERM; 4856 4857 /* Mount has already been visible in the filesystem hierarchy. */ 4858 if (!is_anon_ns(mnt->mnt_ns)) 4859 return -EINVAL; 4860 4861 return 0; 4862 } 4863 4864 /** 4865 * mnt_allow_writers() - check whether the attribute change allows writers 4866 * @kattr: the new mount attributes 4867 * @mnt: the mount to which @kattr will be applied 4868 * 4869 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4870 * 4871 * Return: true if writers need to be held, false if not 4872 */ 4873 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4874 const struct mount *mnt) 4875 { 4876 return (!(kattr->attr_set & MNT_READONLY) || 4877 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4878 !kattr->mnt_idmap; 4879 } 4880 4881 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4882 { 4883 struct mount *m; 4884 int err; 4885 4886 for (m = mnt; m; m = next_mnt(m, mnt)) { 4887 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4888 err = -EPERM; 4889 break; 4890 } 4891 4892 err = can_idmap_mount(kattr, m); 4893 if (err) 4894 break; 4895 4896 if (!mnt_allow_writers(kattr, m)) { 4897 err = mnt_hold_writers(m); 4898 if (err) 4899 break; 4900 } 4901 4902 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4903 return 0; 4904 } 4905 4906 if (err) { 4907 struct mount *p; 4908 4909 /* 4910 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4911 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4912 * mounts and needs to take care to include the first mount. 4913 */ 4914 for (p = mnt; p; p = next_mnt(p, mnt)) { 4915 /* If we had to hold writers unblock them. */ 4916 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4917 mnt_unhold_writers(p); 4918 4919 /* 4920 * We're done once the first mount we changed got 4921 * MNT_WRITE_HOLD unset. 4922 */ 4923 if (p == m) 4924 break; 4925 } 4926 } 4927 return err; 4928 } 4929 4930 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4931 { 4932 struct mnt_idmap *old_idmap; 4933 4934 if (!kattr->mnt_idmap) 4935 return; 4936 4937 old_idmap = mnt_idmap(&mnt->mnt); 4938 4939 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4940 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4941 mnt_idmap_put(old_idmap); 4942 } 4943 4944 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4945 { 4946 struct mount *m; 4947 4948 for (m = mnt; m; m = next_mnt(m, mnt)) { 4949 unsigned int flags; 4950 4951 do_idmap_mount(kattr, m); 4952 flags = recalc_flags(kattr, m); 4953 WRITE_ONCE(m->mnt.mnt_flags, flags); 4954 4955 /* If we had to hold writers unblock them. */ 4956 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4957 mnt_unhold_writers(m); 4958 4959 if (kattr->propagation) 4960 change_mnt_propagation(m, kattr->propagation); 4961 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4962 break; 4963 } 4964 touch_mnt_namespace(mnt->mnt_ns); 4965 } 4966 4967 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4968 { 4969 struct mount *mnt = real_mount(path->mnt); 4970 int err = 0; 4971 4972 if (!path_mounted(path)) 4973 return -EINVAL; 4974 4975 if (kattr->mnt_userns) { 4976 struct mnt_idmap *mnt_idmap; 4977 4978 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4979 if (IS_ERR(mnt_idmap)) 4980 return PTR_ERR(mnt_idmap); 4981 kattr->mnt_idmap = mnt_idmap; 4982 } 4983 4984 if (kattr->propagation) { 4985 /* 4986 * Only take namespace_lock() if we're actually changing 4987 * propagation. 4988 */ 4989 namespace_lock(); 4990 if (kattr->propagation == MS_SHARED) { 4991 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 4992 if (err) { 4993 namespace_unlock(); 4994 return err; 4995 } 4996 } 4997 } 4998 4999 err = -EINVAL; 5000 lock_mount_hash(); 5001 5002 /* Ensure that this isn't anything purely vfs internal. */ 5003 if (!is_mounted(&mnt->mnt)) 5004 goto out; 5005 5006 /* 5007 * If this is an attached mount make sure it's located in the callers 5008 * mount namespace. If it's not don't let the caller interact with it. 5009 * 5010 * If this mount doesn't have a parent it's most often simply a 5011 * detached mount with an anonymous mount namespace. IOW, something 5012 * that's simply not attached yet. But there are apparently also users 5013 * that do change mount properties on the rootfs itself. That obviously 5014 * neither has a parent nor is it a detached mount so we cannot 5015 * unconditionally check for detached mounts. 5016 */ 5017 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 5018 goto out; 5019 5020 /* 5021 * First, we get the mount tree in a shape where we can change mount 5022 * properties without failure. If we succeeded to do so we commit all 5023 * changes and if we failed we clean up. 5024 */ 5025 err = mount_setattr_prepare(kattr, mnt); 5026 if (!err) 5027 mount_setattr_commit(kattr, mnt); 5028 5029 out: 5030 unlock_mount_hash(); 5031 5032 if (kattr->propagation) { 5033 if (err) 5034 cleanup_group_ids(mnt, NULL); 5035 namespace_unlock(); 5036 } 5037 5038 return err; 5039 } 5040 5041 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 5042 struct mount_kattr *kattr) 5043 { 5044 struct ns_common *ns; 5045 struct user_namespace *mnt_userns; 5046 5047 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 5048 return 0; 5049 5050 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 5051 /* 5052 * We can only remove an idmapping if it's never been 5053 * exposed to userspace. 5054 */ 5055 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 5056 return -EINVAL; 5057 5058 /* 5059 * Removal of idmappings is equivalent to setting 5060 * nop_mnt_idmap. 5061 */ 5062 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 5063 kattr->mnt_idmap = &nop_mnt_idmap; 5064 return 0; 5065 } 5066 } 5067 5068 if (attr->userns_fd > INT_MAX) 5069 return -EINVAL; 5070 5071 CLASS(fd, f)(attr->userns_fd); 5072 if (fd_empty(f)) 5073 return -EBADF; 5074 5075 if (!proc_ns_file(fd_file(f))) 5076 return -EINVAL; 5077 5078 ns = get_proc_ns(file_inode(fd_file(f))); 5079 if (ns->ops->type != CLONE_NEWUSER) 5080 return -EINVAL; 5081 5082 /* 5083 * The initial idmapping cannot be used to create an idmapped 5084 * mount. We use the initial idmapping as an indicator of a mount 5085 * that is not idmapped. It can simply be passed into helpers that 5086 * are aware of idmapped mounts as a convenient shortcut. A user 5087 * can just create a dedicated identity mapping to achieve the same 5088 * result. 5089 */ 5090 mnt_userns = container_of(ns, struct user_namespace, ns); 5091 if (mnt_userns == &init_user_ns) 5092 return -EPERM; 5093 5094 /* We're not controlling the target namespace. */ 5095 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 5096 return -EPERM; 5097 5098 kattr->mnt_userns = get_user_ns(mnt_userns); 5099 return 0; 5100 } 5101 5102 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 5103 struct mount_kattr *kattr) 5104 { 5105 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 5106 return -EINVAL; 5107 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 5108 return -EINVAL; 5109 kattr->propagation = attr->propagation; 5110 5111 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 5112 return -EINVAL; 5113 5114 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 5115 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 5116 5117 /* 5118 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 5119 * users wanting to transition to a different atime setting cannot 5120 * simply specify the atime setting in @attr_set, but must also 5121 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 5122 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 5123 * @attr_clr and that @attr_set can't have any atime bits set if 5124 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 5125 */ 5126 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 5127 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 5128 return -EINVAL; 5129 5130 /* 5131 * Clear all previous time settings as they are mutually 5132 * exclusive. 5133 */ 5134 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 5135 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 5136 case MOUNT_ATTR_RELATIME: 5137 kattr->attr_set |= MNT_RELATIME; 5138 break; 5139 case MOUNT_ATTR_NOATIME: 5140 kattr->attr_set |= MNT_NOATIME; 5141 break; 5142 case MOUNT_ATTR_STRICTATIME: 5143 break; 5144 default: 5145 return -EINVAL; 5146 } 5147 } else { 5148 if (attr->attr_set & MOUNT_ATTR__ATIME) 5149 return -EINVAL; 5150 } 5151 5152 return build_mount_idmapped(attr, usize, kattr); 5153 } 5154 5155 static void finish_mount_kattr(struct mount_kattr *kattr) 5156 { 5157 if (kattr->mnt_userns) { 5158 put_user_ns(kattr->mnt_userns); 5159 kattr->mnt_userns = NULL; 5160 } 5161 5162 if (kattr->mnt_idmap) 5163 mnt_idmap_put(kattr->mnt_idmap); 5164 } 5165 5166 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, 5167 struct mount_kattr *kattr) 5168 { 5169 int ret; 5170 struct mount_attr attr; 5171 5172 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 5173 5174 if (unlikely(usize > PAGE_SIZE)) 5175 return -E2BIG; 5176 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 5177 return -EINVAL; 5178 5179 if (!may_mount()) 5180 return -EPERM; 5181 5182 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 5183 if (ret) 5184 return ret; 5185 5186 /* Don't bother walking through the mounts if this is a nop. */ 5187 if (attr.attr_set == 0 && 5188 attr.attr_clr == 0 && 5189 attr.propagation == 0) 5190 return 0; /* Tell caller to not bother. */ 5191 5192 ret = build_mount_kattr(&attr, usize, kattr); 5193 if (ret < 0) 5194 return ret; 5195 5196 return 1; 5197 } 5198 5199 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 5200 unsigned int, flags, struct mount_attr __user *, uattr, 5201 size_t, usize) 5202 { 5203 int err; 5204 struct path target; 5205 struct mount_kattr kattr; 5206 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 5207 5208 if (flags & ~(AT_EMPTY_PATH | 5209 AT_RECURSIVE | 5210 AT_SYMLINK_NOFOLLOW | 5211 AT_NO_AUTOMOUNT)) 5212 return -EINVAL; 5213 5214 if (flags & AT_NO_AUTOMOUNT) 5215 lookup_flags &= ~LOOKUP_AUTOMOUNT; 5216 if (flags & AT_SYMLINK_NOFOLLOW) 5217 lookup_flags &= ~LOOKUP_FOLLOW; 5218 if (flags & AT_EMPTY_PATH) 5219 lookup_flags |= LOOKUP_EMPTY; 5220 5221 kattr = (struct mount_kattr) { 5222 .lookup_flags = lookup_flags, 5223 }; 5224 5225 if (flags & AT_RECURSIVE) 5226 kattr.kflags |= MOUNT_KATTR_RECURSE; 5227 5228 err = wants_mount_setattr(uattr, usize, &kattr); 5229 if (err <= 0) 5230 return err; 5231 5232 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5233 if (!err) { 5234 err = do_mount_setattr(&target, &kattr); 5235 path_put(&target); 5236 } 5237 finish_mount_kattr(&kattr); 5238 return err; 5239 } 5240 5241 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5242 unsigned, flags, struct mount_attr __user *, uattr, 5243 size_t, usize) 5244 { 5245 struct file __free(fput) *file = NULL; 5246 int fd; 5247 5248 if (!uattr && usize) 5249 return -EINVAL; 5250 5251 file = vfs_open_tree(dfd, filename, flags); 5252 if (IS_ERR(file)) 5253 return PTR_ERR(file); 5254 5255 if (uattr) { 5256 int ret; 5257 struct mount_kattr kattr = {}; 5258 5259 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5260 if (flags & AT_RECURSIVE) 5261 kattr.kflags |= MOUNT_KATTR_RECURSE; 5262 5263 ret = wants_mount_setattr(uattr, usize, &kattr); 5264 if (ret < 0) 5265 return ret; 5266 5267 if (ret) { 5268 ret = do_mount_setattr(&file->f_path, &kattr); 5269 if (ret) 5270 return ret; 5271 5272 finish_mount_kattr(&kattr); 5273 } 5274 } 5275 5276 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5277 if (fd < 0) 5278 return fd; 5279 5280 fd_install(fd, no_free_ptr(file)); 5281 return fd; 5282 } 5283 5284 int show_path(struct seq_file *m, struct dentry *root) 5285 { 5286 if (root->d_sb->s_op->show_path) 5287 return root->d_sb->s_op->show_path(m, root); 5288 5289 seq_dentry(m, root, " \t\n\\"); 5290 return 0; 5291 } 5292 5293 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5294 { 5295 struct mount *mnt = mnt_find_id_at(ns, id); 5296 5297 if (!mnt || mnt->mnt_id_unique != id) 5298 return NULL; 5299 5300 return &mnt->mnt; 5301 } 5302 5303 struct kstatmount { 5304 struct statmount __user *buf; 5305 size_t bufsize; 5306 struct vfsmount *mnt; 5307 struct mnt_idmap *idmap; 5308 u64 mask; 5309 struct path root; 5310 struct seq_file seq; 5311 5312 /* Must be last --ends in a flexible-array member. */ 5313 struct statmount sm; 5314 }; 5315 5316 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5317 { 5318 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5319 u64 attr_flags = 0; 5320 5321 if (mnt_flags & MNT_READONLY) 5322 attr_flags |= MOUNT_ATTR_RDONLY; 5323 if (mnt_flags & MNT_NOSUID) 5324 attr_flags |= MOUNT_ATTR_NOSUID; 5325 if (mnt_flags & MNT_NODEV) 5326 attr_flags |= MOUNT_ATTR_NODEV; 5327 if (mnt_flags & MNT_NOEXEC) 5328 attr_flags |= MOUNT_ATTR_NOEXEC; 5329 if (mnt_flags & MNT_NODIRATIME) 5330 attr_flags |= MOUNT_ATTR_NODIRATIME; 5331 if (mnt_flags & MNT_NOSYMFOLLOW) 5332 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5333 5334 if (mnt_flags & MNT_NOATIME) 5335 attr_flags |= MOUNT_ATTR_NOATIME; 5336 else if (mnt_flags & MNT_RELATIME) 5337 attr_flags |= MOUNT_ATTR_RELATIME; 5338 else 5339 attr_flags |= MOUNT_ATTR_STRICTATIME; 5340 5341 if (is_idmapped_mnt(mnt)) 5342 attr_flags |= MOUNT_ATTR_IDMAP; 5343 5344 return attr_flags; 5345 } 5346 5347 static u64 mnt_to_propagation_flags(struct mount *m) 5348 { 5349 u64 propagation = 0; 5350 5351 if (IS_MNT_SHARED(m)) 5352 propagation |= MS_SHARED; 5353 if (IS_MNT_SLAVE(m)) 5354 propagation |= MS_SLAVE; 5355 if (IS_MNT_UNBINDABLE(m)) 5356 propagation |= MS_UNBINDABLE; 5357 if (!propagation) 5358 propagation |= MS_PRIVATE; 5359 5360 return propagation; 5361 } 5362 5363 static void statmount_sb_basic(struct kstatmount *s) 5364 { 5365 struct super_block *sb = s->mnt->mnt_sb; 5366 5367 s->sm.mask |= STATMOUNT_SB_BASIC; 5368 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5369 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5370 s->sm.sb_magic = sb->s_magic; 5371 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5372 } 5373 5374 static void statmount_mnt_basic(struct kstatmount *s) 5375 { 5376 struct mount *m = real_mount(s->mnt); 5377 5378 s->sm.mask |= STATMOUNT_MNT_BASIC; 5379 s->sm.mnt_id = m->mnt_id_unique; 5380 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5381 s->sm.mnt_id_old = m->mnt_id; 5382 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5383 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5384 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5385 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 5386 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5387 } 5388 5389 static void statmount_propagate_from(struct kstatmount *s) 5390 { 5391 struct mount *m = real_mount(s->mnt); 5392 5393 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5394 if (IS_MNT_SLAVE(m)) 5395 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5396 } 5397 5398 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5399 { 5400 int ret; 5401 size_t start = seq->count; 5402 5403 ret = show_path(seq, s->mnt->mnt_root); 5404 if (ret) 5405 return ret; 5406 5407 if (unlikely(seq_has_overflowed(seq))) 5408 return -EAGAIN; 5409 5410 /* 5411 * Unescape the result. It would be better if supplied string was not 5412 * escaped in the first place, but that's a pretty invasive change. 5413 */ 5414 seq->buf[seq->count] = '\0'; 5415 seq->count = start; 5416 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5417 return 0; 5418 } 5419 5420 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5421 { 5422 struct vfsmount *mnt = s->mnt; 5423 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5424 int err; 5425 5426 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5427 return err == SEQ_SKIP ? 0 : err; 5428 } 5429 5430 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5431 { 5432 struct super_block *sb = s->mnt->mnt_sb; 5433 5434 seq_puts(seq, sb->s_type->name); 5435 return 0; 5436 } 5437 5438 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5439 { 5440 struct super_block *sb = s->mnt->mnt_sb; 5441 5442 if (sb->s_subtype) 5443 seq_puts(seq, sb->s_subtype); 5444 } 5445 5446 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5447 { 5448 struct super_block *sb = s->mnt->mnt_sb; 5449 struct mount *r = real_mount(s->mnt); 5450 5451 if (sb->s_op->show_devname) { 5452 size_t start = seq->count; 5453 int ret; 5454 5455 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5456 if (ret) 5457 return ret; 5458 5459 if (unlikely(seq_has_overflowed(seq))) 5460 return -EAGAIN; 5461 5462 /* Unescape the result */ 5463 seq->buf[seq->count] = '\0'; 5464 seq->count = start; 5465 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5466 } else { 5467 seq_puts(seq, r->mnt_devname); 5468 } 5469 return 0; 5470 } 5471 5472 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5473 { 5474 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5475 s->sm.mnt_ns_id = ns->seq; 5476 } 5477 5478 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5479 { 5480 struct vfsmount *mnt = s->mnt; 5481 struct super_block *sb = mnt->mnt_sb; 5482 size_t start = seq->count; 5483 int err; 5484 5485 err = security_sb_show_options(seq, sb); 5486 if (err) 5487 return err; 5488 5489 if (sb->s_op->show_options) { 5490 err = sb->s_op->show_options(seq, mnt->mnt_root); 5491 if (err) 5492 return err; 5493 } 5494 5495 if (unlikely(seq_has_overflowed(seq))) 5496 return -EAGAIN; 5497 5498 if (seq->count == start) 5499 return 0; 5500 5501 /* skip leading comma */ 5502 memmove(seq->buf + start, seq->buf + start + 1, 5503 seq->count - start - 1); 5504 seq->count--; 5505 5506 return 0; 5507 } 5508 5509 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5510 { 5511 char *buf_end, *opt_end, *src, *dst; 5512 int count = 0; 5513 5514 if (unlikely(seq_has_overflowed(seq))) 5515 return -EAGAIN; 5516 5517 buf_end = seq->buf + seq->count; 5518 dst = seq->buf + start; 5519 src = dst + 1; /* skip initial comma */ 5520 5521 if (src >= buf_end) { 5522 seq->count = start; 5523 return 0; 5524 } 5525 5526 *buf_end = '\0'; 5527 for (; src < buf_end; src = opt_end + 1) { 5528 opt_end = strchrnul(src, ','); 5529 *opt_end = '\0'; 5530 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5531 if (WARN_ON_ONCE(++count == INT_MAX)) 5532 return -EOVERFLOW; 5533 } 5534 seq->count = dst - 1 - seq->buf; 5535 return count; 5536 } 5537 5538 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5539 { 5540 struct vfsmount *mnt = s->mnt; 5541 struct super_block *sb = mnt->mnt_sb; 5542 size_t start = seq->count; 5543 int err; 5544 5545 if (!sb->s_op->show_options) 5546 return 0; 5547 5548 err = sb->s_op->show_options(seq, mnt->mnt_root); 5549 if (err) 5550 return err; 5551 5552 err = statmount_opt_process(seq, start); 5553 if (err < 0) 5554 return err; 5555 5556 s->sm.opt_num = err; 5557 return 0; 5558 } 5559 5560 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5561 { 5562 struct vfsmount *mnt = s->mnt; 5563 struct super_block *sb = mnt->mnt_sb; 5564 size_t start = seq->count; 5565 int err; 5566 5567 err = security_sb_show_options(seq, sb); 5568 if (err) 5569 return err; 5570 5571 err = statmount_opt_process(seq, start); 5572 if (err < 0) 5573 return err; 5574 5575 s->sm.opt_sec_num = err; 5576 return 0; 5577 } 5578 5579 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5580 { 5581 int ret; 5582 5583 ret = statmount_mnt_idmap(s->idmap, seq, true); 5584 if (ret < 0) 5585 return ret; 5586 5587 s->sm.mnt_uidmap_num = ret; 5588 /* 5589 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5590 * mappings. This allows userspace to distinguish between a 5591 * non-idmapped mount and an idmapped mount where none of the 5592 * individual mappings are valid in the caller's idmapping. 5593 */ 5594 if (is_valid_mnt_idmap(s->idmap)) 5595 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5596 return 0; 5597 } 5598 5599 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5600 { 5601 int ret; 5602 5603 ret = statmount_mnt_idmap(s->idmap, seq, false); 5604 if (ret < 0) 5605 return ret; 5606 5607 s->sm.mnt_gidmap_num = ret; 5608 /* 5609 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5610 * mappings. This allows userspace to distinguish between a 5611 * non-idmapped mount and an idmapped mount where none of the 5612 * individual mappings are valid in the caller's idmapping. 5613 */ 5614 if (is_valid_mnt_idmap(s->idmap)) 5615 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5616 return 0; 5617 } 5618 5619 static int statmount_string(struct kstatmount *s, u64 flag) 5620 { 5621 int ret = 0; 5622 size_t kbufsize; 5623 struct seq_file *seq = &s->seq; 5624 struct statmount *sm = &s->sm; 5625 u32 start, *offp; 5626 5627 /* Reserve an empty string at the beginning for any unset offsets */ 5628 if (!seq->count) 5629 seq_putc(seq, 0); 5630 5631 start = seq->count; 5632 5633 switch (flag) { 5634 case STATMOUNT_FS_TYPE: 5635 offp = &sm->fs_type; 5636 ret = statmount_fs_type(s, seq); 5637 break; 5638 case STATMOUNT_MNT_ROOT: 5639 offp = &sm->mnt_root; 5640 ret = statmount_mnt_root(s, seq); 5641 break; 5642 case STATMOUNT_MNT_POINT: 5643 offp = &sm->mnt_point; 5644 ret = statmount_mnt_point(s, seq); 5645 break; 5646 case STATMOUNT_MNT_OPTS: 5647 offp = &sm->mnt_opts; 5648 ret = statmount_mnt_opts(s, seq); 5649 break; 5650 case STATMOUNT_OPT_ARRAY: 5651 offp = &sm->opt_array; 5652 ret = statmount_opt_array(s, seq); 5653 break; 5654 case STATMOUNT_OPT_SEC_ARRAY: 5655 offp = &sm->opt_sec_array; 5656 ret = statmount_opt_sec_array(s, seq); 5657 break; 5658 case STATMOUNT_FS_SUBTYPE: 5659 offp = &sm->fs_subtype; 5660 statmount_fs_subtype(s, seq); 5661 break; 5662 case STATMOUNT_SB_SOURCE: 5663 offp = &sm->sb_source; 5664 ret = statmount_sb_source(s, seq); 5665 break; 5666 case STATMOUNT_MNT_UIDMAP: 5667 sm->mnt_uidmap = start; 5668 ret = statmount_mnt_uidmap(s, seq); 5669 break; 5670 case STATMOUNT_MNT_GIDMAP: 5671 sm->mnt_gidmap = start; 5672 ret = statmount_mnt_gidmap(s, seq); 5673 break; 5674 default: 5675 WARN_ON_ONCE(true); 5676 return -EINVAL; 5677 } 5678 5679 /* 5680 * If nothing was emitted, return to avoid setting the flag 5681 * and terminating the buffer. 5682 */ 5683 if (seq->count == start) 5684 return ret; 5685 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5686 return -EOVERFLOW; 5687 if (kbufsize >= s->bufsize) 5688 return -EOVERFLOW; 5689 5690 /* signal a retry */ 5691 if (unlikely(seq_has_overflowed(seq))) 5692 return -EAGAIN; 5693 5694 if (ret) 5695 return ret; 5696 5697 seq->buf[seq->count++] = '\0'; 5698 sm->mask |= flag; 5699 *offp = start; 5700 return 0; 5701 } 5702 5703 static int copy_statmount_to_user(struct kstatmount *s) 5704 { 5705 struct statmount *sm = &s->sm; 5706 struct seq_file *seq = &s->seq; 5707 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5708 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5709 5710 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5711 return -EFAULT; 5712 5713 /* Return the number of bytes copied to the buffer */ 5714 sm->size = copysize + seq->count; 5715 if (copy_to_user(s->buf, sm, copysize)) 5716 return -EFAULT; 5717 5718 return 0; 5719 } 5720 5721 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5722 { 5723 struct rb_node *node; 5724 5725 if (reverse) 5726 node = rb_prev(&curr->mnt_node); 5727 else 5728 node = rb_next(&curr->mnt_node); 5729 5730 return node_to_mount(node); 5731 } 5732 5733 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5734 { 5735 struct mount *first, *child; 5736 5737 rwsem_assert_held(&namespace_sem); 5738 5739 /* We're looking at our own ns, just use get_fs_root. */ 5740 if (ns == current->nsproxy->mnt_ns) { 5741 get_fs_root(current->fs, root); 5742 return 0; 5743 } 5744 5745 /* 5746 * We have to find the first mount in our ns and use that, however it 5747 * may not exist, so handle that properly. 5748 */ 5749 if (mnt_ns_empty(ns)) 5750 return -ENOENT; 5751 5752 first = child = ns->root; 5753 for (;;) { 5754 child = listmnt_next(child, false); 5755 if (!child) 5756 return -ENOENT; 5757 if (child->mnt_parent == first) 5758 break; 5759 } 5760 5761 root->mnt = mntget(&child->mnt); 5762 root->dentry = dget(root->mnt->mnt_root); 5763 return 0; 5764 } 5765 5766 /* This must be updated whenever a new flag is added */ 5767 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5768 STATMOUNT_MNT_BASIC | \ 5769 STATMOUNT_PROPAGATE_FROM | \ 5770 STATMOUNT_MNT_ROOT | \ 5771 STATMOUNT_MNT_POINT | \ 5772 STATMOUNT_FS_TYPE | \ 5773 STATMOUNT_MNT_NS_ID | \ 5774 STATMOUNT_MNT_OPTS | \ 5775 STATMOUNT_FS_SUBTYPE | \ 5776 STATMOUNT_SB_SOURCE | \ 5777 STATMOUNT_OPT_ARRAY | \ 5778 STATMOUNT_OPT_SEC_ARRAY | \ 5779 STATMOUNT_SUPPORTED_MASK | \ 5780 STATMOUNT_MNT_UIDMAP | \ 5781 STATMOUNT_MNT_GIDMAP) 5782 5783 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5784 struct mnt_namespace *ns) 5785 { 5786 struct path root __free(path_put) = {}; 5787 struct mount *m; 5788 int err; 5789 5790 /* Has the namespace already been emptied? */ 5791 if (mnt_ns_id && mnt_ns_empty(ns)) 5792 return -ENOENT; 5793 5794 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5795 if (!s->mnt) 5796 return -ENOENT; 5797 5798 err = grab_requested_root(ns, &root); 5799 if (err) 5800 return err; 5801 5802 /* 5803 * Don't trigger audit denials. We just want to determine what 5804 * mounts to show users. 5805 */ 5806 m = real_mount(s->mnt); 5807 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5808 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5809 return -EPERM; 5810 5811 err = security_sb_statfs(s->mnt->mnt_root); 5812 if (err) 5813 return err; 5814 5815 s->root = root; 5816 5817 /* 5818 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap 5819 * can change concurrently as we only hold the read-side of the 5820 * namespace semaphore and mount properties may change with only 5821 * the mount lock held. 5822 * 5823 * We could sample the mount lock sequence counter to detect 5824 * those changes and retry. But it's not worth it. Worst that 5825 * happens is that the mnt->mnt_idmap pointer is already changed 5826 * while mnt->mnt_flags isn't or vica versa. So what. 5827 * 5828 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved 5829 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical 5830 * torn read/write. That's all we care about right now. 5831 */ 5832 s->idmap = mnt_idmap(s->mnt); 5833 if (s->mask & STATMOUNT_MNT_BASIC) 5834 statmount_mnt_basic(s); 5835 5836 if (s->mask & STATMOUNT_SB_BASIC) 5837 statmount_sb_basic(s); 5838 5839 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5840 statmount_propagate_from(s); 5841 5842 if (s->mask & STATMOUNT_FS_TYPE) 5843 err = statmount_string(s, STATMOUNT_FS_TYPE); 5844 5845 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5846 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5847 5848 if (!err && s->mask & STATMOUNT_MNT_POINT) 5849 err = statmount_string(s, STATMOUNT_MNT_POINT); 5850 5851 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5852 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5853 5854 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5855 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5856 5857 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5858 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5859 5860 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5861 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5862 5863 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5864 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5865 5866 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5867 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5868 5869 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5870 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5871 5872 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5873 statmount_mnt_ns_id(s, ns); 5874 5875 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5876 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5877 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5878 } 5879 5880 if (err) 5881 return err; 5882 5883 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5884 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5885 5886 return 0; 5887 } 5888 5889 static inline bool retry_statmount(const long ret, size_t *seq_size) 5890 { 5891 if (likely(ret != -EAGAIN)) 5892 return false; 5893 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5894 return false; 5895 if (unlikely(*seq_size > MAX_RW_COUNT)) 5896 return false; 5897 return true; 5898 } 5899 5900 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5901 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5902 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5903 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5904 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5905 5906 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5907 struct statmount __user *buf, size_t bufsize, 5908 size_t seq_size) 5909 { 5910 if (!access_ok(buf, bufsize)) 5911 return -EFAULT; 5912 5913 memset(ks, 0, sizeof(*ks)); 5914 ks->mask = kreq->param; 5915 ks->buf = buf; 5916 ks->bufsize = bufsize; 5917 5918 if (ks->mask & STATMOUNT_STRING_REQ) { 5919 if (bufsize == sizeof(ks->sm)) 5920 return -EOVERFLOW; 5921 5922 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5923 if (!ks->seq.buf) 5924 return -ENOMEM; 5925 5926 ks->seq.size = seq_size; 5927 } 5928 5929 return 0; 5930 } 5931 5932 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5933 struct mnt_id_req *kreq) 5934 { 5935 int ret; 5936 size_t usize; 5937 5938 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5939 5940 ret = get_user(usize, &req->size); 5941 if (ret) 5942 return -EFAULT; 5943 if (unlikely(usize > PAGE_SIZE)) 5944 return -E2BIG; 5945 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5946 return -EINVAL; 5947 memset(kreq, 0, sizeof(*kreq)); 5948 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5949 if (ret) 5950 return ret; 5951 if (kreq->spare != 0) 5952 return -EINVAL; 5953 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5954 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5955 return -EINVAL; 5956 return 0; 5957 } 5958 5959 /* 5960 * If the user requested a specific mount namespace id, look that up and return 5961 * that, or if not simply grab a passive reference on our mount namespace and 5962 * return that. 5963 */ 5964 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5965 { 5966 struct mnt_namespace *mnt_ns; 5967 5968 if (kreq->mnt_ns_id && kreq->spare) 5969 return ERR_PTR(-EINVAL); 5970 5971 if (kreq->mnt_ns_id) 5972 return lookup_mnt_ns(kreq->mnt_ns_id); 5973 5974 if (kreq->spare) { 5975 struct ns_common *ns; 5976 5977 CLASS(fd, f)(kreq->spare); 5978 if (fd_empty(f)) 5979 return ERR_PTR(-EBADF); 5980 5981 if (!proc_ns_file(fd_file(f))) 5982 return ERR_PTR(-EINVAL); 5983 5984 ns = get_proc_ns(file_inode(fd_file(f))); 5985 if (ns->ops->type != CLONE_NEWNS) 5986 return ERR_PTR(-EINVAL); 5987 5988 mnt_ns = to_mnt_ns(ns); 5989 } else { 5990 mnt_ns = current->nsproxy->mnt_ns; 5991 } 5992 5993 refcount_inc(&mnt_ns->passive); 5994 return mnt_ns; 5995 } 5996 5997 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5998 struct statmount __user *, buf, size_t, bufsize, 5999 unsigned int, flags) 6000 { 6001 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6002 struct kstatmount *ks __free(kfree) = NULL; 6003 struct mnt_id_req kreq; 6004 /* We currently support retrieval of 3 strings. */ 6005 size_t seq_size = 3 * PATH_MAX; 6006 int ret; 6007 6008 if (flags) 6009 return -EINVAL; 6010 6011 ret = copy_mnt_id_req(req, &kreq); 6012 if (ret) 6013 return ret; 6014 6015 ns = grab_requested_mnt_ns(&kreq); 6016 if (!ns) 6017 return -ENOENT; 6018 6019 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6020 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6021 return -ENOENT; 6022 6023 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 6024 if (!ks) 6025 return -ENOMEM; 6026 6027 retry: 6028 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 6029 if (ret) 6030 return ret; 6031 6032 scoped_guard(rwsem_read, &namespace_sem) 6033 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 6034 6035 if (!ret) 6036 ret = copy_statmount_to_user(ks); 6037 kvfree(ks->seq.buf); 6038 if (retry_statmount(ret, &seq_size)) 6039 goto retry; 6040 return ret; 6041 } 6042 6043 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 6044 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 6045 bool reverse) 6046 { 6047 struct path root __free(path_put) = {}; 6048 struct path orig; 6049 struct mount *r, *first; 6050 ssize_t ret; 6051 6052 rwsem_assert_held(&namespace_sem); 6053 6054 ret = grab_requested_root(ns, &root); 6055 if (ret) 6056 return ret; 6057 6058 if (mnt_parent_id == LSMT_ROOT) { 6059 orig = root; 6060 } else { 6061 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 6062 if (!orig.mnt) 6063 return -ENOENT; 6064 orig.dentry = orig.mnt->mnt_root; 6065 } 6066 6067 /* 6068 * Don't trigger audit denials. We just want to determine what 6069 * mounts to show users. 6070 */ 6071 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 6072 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6073 return -EPERM; 6074 6075 ret = security_sb_statfs(orig.dentry); 6076 if (ret) 6077 return ret; 6078 6079 if (!last_mnt_id) { 6080 if (reverse) 6081 first = node_to_mount(ns->mnt_last_node); 6082 else 6083 first = node_to_mount(ns->mnt_first_node); 6084 } else { 6085 if (reverse) 6086 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 6087 else 6088 first = mnt_find_id_at(ns, last_mnt_id + 1); 6089 } 6090 6091 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 6092 if (r->mnt_id_unique == mnt_parent_id) 6093 continue; 6094 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 6095 continue; 6096 *mnt_ids = r->mnt_id_unique; 6097 mnt_ids++; 6098 nr_mnt_ids--; 6099 ret++; 6100 } 6101 return ret; 6102 } 6103 6104 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 6105 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 6106 { 6107 u64 *kmnt_ids __free(kvfree) = NULL; 6108 const size_t maxcount = 1000000; 6109 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6110 struct mnt_id_req kreq; 6111 u64 last_mnt_id; 6112 ssize_t ret; 6113 6114 if (flags & ~LISTMOUNT_REVERSE) 6115 return -EINVAL; 6116 6117 /* 6118 * If the mount namespace really has more than 1 million mounts the 6119 * caller must iterate over the mount namespace (and reconsider their 6120 * system design...). 6121 */ 6122 if (unlikely(nr_mnt_ids > maxcount)) 6123 return -EOVERFLOW; 6124 6125 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 6126 return -EFAULT; 6127 6128 ret = copy_mnt_id_req(req, &kreq); 6129 if (ret) 6130 return ret; 6131 6132 last_mnt_id = kreq.param; 6133 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 6134 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 6135 return -EINVAL; 6136 6137 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 6138 GFP_KERNEL_ACCOUNT); 6139 if (!kmnt_ids) 6140 return -ENOMEM; 6141 6142 ns = grab_requested_mnt_ns(&kreq); 6143 if (!ns) 6144 return -ENOENT; 6145 6146 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6147 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6148 return -ENOENT; 6149 6150 /* 6151 * We only need to guard against mount topology changes as 6152 * listmount() doesn't care about any mount properties. 6153 */ 6154 scoped_guard(rwsem_read, &namespace_sem) 6155 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 6156 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 6157 if (ret <= 0) 6158 return ret; 6159 6160 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 6161 return -EFAULT; 6162 6163 return ret; 6164 } 6165 6166 static void __init init_mount_tree(void) 6167 { 6168 struct vfsmount *mnt; 6169 struct mount *m; 6170 struct mnt_namespace *ns; 6171 struct path root; 6172 6173 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 6174 if (IS_ERR(mnt)) 6175 panic("Can't create rootfs"); 6176 6177 ns = alloc_mnt_ns(&init_user_ns, false); 6178 if (IS_ERR(ns)) 6179 panic("Can't allocate initial namespace"); 6180 m = real_mount(mnt); 6181 ns->root = m; 6182 ns->nr_mounts = 1; 6183 mnt_add_to_ns(ns, m); 6184 init_task.nsproxy->mnt_ns = ns; 6185 get_mnt_ns(ns); 6186 6187 root.mnt = mnt; 6188 root.dentry = mnt->mnt_root; 6189 mnt->mnt_flags |= MNT_LOCKED; 6190 6191 set_fs_pwd(current->fs, &root); 6192 set_fs_root(current->fs, &root); 6193 6194 mnt_ns_tree_add(ns); 6195 } 6196 6197 void __init mnt_init(void) 6198 { 6199 int err; 6200 6201 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 6202 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 6203 6204 mount_hashtable = alloc_large_system_hash("Mount-cache", 6205 sizeof(struct hlist_head), 6206 mhash_entries, 19, 6207 HASH_ZERO, 6208 &m_hash_shift, &m_hash_mask, 0, 0); 6209 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 6210 sizeof(struct hlist_head), 6211 mphash_entries, 19, 6212 HASH_ZERO, 6213 &mp_hash_shift, &mp_hash_mask, 0, 0); 6214 6215 if (!mount_hashtable || !mountpoint_hashtable) 6216 panic("Failed to allocate mount hash table\n"); 6217 6218 kernfs_init(); 6219 6220 err = sysfs_init(); 6221 if (err) 6222 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 6223 __func__, err); 6224 fs_kobj = kobject_create_and_add("fs", NULL); 6225 if (!fs_kobj) 6226 printk(KERN_WARNING "%s: kobj create error\n", __func__); 6227 shmem_init(); 6228 init_rootfs(); 6229 init_mount_tree(); 6230 } 6231 6232 void put_mnt_ns(struct mnt_namespace *ns) 6233 { 6234 if (!refcount_dec_and_test(&ns->ns.count)) 6235 return; 6236 drop_collected_mounts(&ns->root->mnt); 6237 free_mnt_ns(ns); 6238 } 6239 6240 struct vfsmount *kern_mount(struct file_system_type *type) 6241 { 6242 struct vfsmount *mnt; 6243 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 6244 if (!IS_ERR(mnt)) { 6245 /* 6246 * it is a longterm mount, don't release mnt until 6247 * we unmount before file sys is unregistered 6248 */ 6249 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 6250 } 6251 return mnt; 6252 } 6253 EXPORT_SYMBOL_GPL(kern_mount); 6254 6255 void kern_unmount(struct vfsmount *mnt) 6256 { 6257 /* release long term mount so mount point can be released */ 6258 if (!IS_ERR(mnt)) { 6259 mnt_make_shortterm(mnt); 6260 synchronize_rcu(); /* yecchhh... */ 6261 mntput(mnt); 6262 } 6263 } 6264 EXPORT_SYMBOL(kern_unmount); 6265 6266 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6267 { 6268 unsigned int i; 6269 6270 for (i = 0; i < num; i++) 6271 mnt_make_shortterm(mnt[i]); 6272 synchronize_rcu_expedited(); 6273 for (i = 0; i < num; i++) 6274 mntput(mnt[i]); 6275 } 6276 EXPORT_SYMBOL(kern_unmount_array); 6277 6278 bool our_mnt(struct vfsmount *mnt) 6279 { 6280 return check_mnt(real_mount(mnt)); 6281 } 6282 6283 bool current_chrooted(void) 6284 { 6285 /* Does the current process have a non-standard root */ 6286 struct path ns_root; 6287 struct path fs_root; 6288 bool chrooted; 6289 6290 /* Find the namespace root */ 6291 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 6292 ns_root.dentry = ns_root.mnt->mnt_root; 6293 path_get(&ns_root); 6294 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 6295 ; 6296 6297 get_fs_root(current->fs, &fs_root); 6298 6299 chrooted = !path_equal(&fs_root, &ns_root); 6300 6301 path_put(&fs_root); 6302 path_put(&ns_root); 6303 6304 return chrooted; 6305 } 6306 6307 static bool mnt_already_visible(struct mnt_namespace *ns, 6308 const struct super_block *sb, 6309 int *new_mnt_flags) 6310 { 6311 int new_flags = *new_mnt_flags; 6312 struct mount *mnt, *n; 6313 bool visible = false; 6314 6315 down_read(&namespace_sem); 6316 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6317 struct mount *child; 6318 int mnt_flags; 6319 6320 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6321 continue; 6322 6323 /* This mount is not fully visible if it's root directory 6324 * is not the root directory of the filesystem. 6325 */ 6326 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6327 continue; 6328 6329 /* A local view of the mount flags */ 6330 mnt_flags = mnt->mnt.mnt_flags; 6331 6332 /* Don't miss readonly hidden in the superblock flags */ 6333 if (sb_rdonly(mnt->mnt.mnt_sb)) 6334 mnt_flags |= MNT_LOCK_READONLY; 6335 6336 /* Verify the mount flags are equal to or more permissive 6337 * than the proposed new mount. 6338 */ 6339 if ((mnt_flags & MNT_LOCK_READONLY) && 6340 !(new_flags & MNT_READONLY)) 6341 continue; 6342 if ((mnt_flags & MNT_LOCK_ATIME) && 6343 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6344 continue; 6345 6346 /* This mount is not fully visible if there are any 6347 * locked child mounts that cover anything except for 6348 * empty directories. 6349 */ 6350 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6351 struct inode *inode = child->mnt_mountpoint->d_inode; 6352 /* Only worry about locked mounts */ 6353 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6354 continue; 6355 /* Is the directory permanently empty? */ 6356 if (!is_empty_dir_inode(inode)) 6357 goto next; 6358 } 6359 /* Preserve the locked attributes */ 6360 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6361 MNT_LOCK_ATIME); 6362 visible = true; 6363 goto found; 6364 next: ; 6365 } 6366 found: 6367 up_read(&namespace_sem); 6368 return visible; 6369 } 6370 6371 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6372 { 6373 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6374 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6375 unsigned long s_iflags; 6376 6377 if (ns->user_ns == &init_user_ns) 6378 return false; 6379 6380 /* Can this filesystem be too revealing? */ 6381 s_iflags = sb->s_iflags; 6382 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6383 return false; 6384 6385 if ((s_iflags & required_iflags) != required_iflags) { 6386 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6387 required_iflags); 6388 return true; 6389 } 6390 6391 return !mnt_already_visible(ns, sb, new_mnt_flags); 6392 } 6393 6394 bool mnt_may_suid(struct vfsmount *mnt) 6395 { 6396 /* 6397 * Foreign mounts (accessed via fchdir or through /proc 6398 * symlinks) are always treated as if they are nosuid. This 6399 * prevents namespaces from trusting potentially unsafe 6400 * suid/sgid bits, file caps, or security labels that originate 6401 * in other namespaces. 6402 */ 6403 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6404 current_in_userns(mnt->mnt_sb->s_user_ns); 6405 } 6406 6407 static struct ns_common *mntns_get(struct task_struct *task) 6408 { 6409 struct ns_common *ns = NULL; 6410 struct nsproxy *nsproxy; 6411 6412 task_lock(task); 6413 nsproxy = task->nsproxy; 6414 if (nsproxy) { 6415 ns = &nsproxy->mnt_ns->ns; 6416 get_mnt_ns(to_mnt_ns(ns)); 6417 } 6418 task_unlock(task); 6419 6420 return ns; 6421 } 6422 6423 static void mntns_put(struct ns_common *ns) 6424 { 6425 put_mnt_ns(to_mnt_ns(ns)); 6426 } 6427 6428 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6429 { 6430 struct nsproxy *nsproxy = nsset->nsproxy; 6431 struct fs_struct *fs = nsset->fs; 6432 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6433 struct user_namespace *user_ns = nsset->cred->user_ns; 6434 struct path root; 6435 int err; 6436 6437 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6438 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6439 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6440 return -EPERM; 6441 6442 if (is_anon_ns(mnt_ns)) 6443 return -EINVAL; 6444 6445 if (fs->users != 1) 6446 return -EINVAL; 6447 6448 get_mnt_ns(mnt_ns); 6449 old_mnt_ns = nsproxy->mnt_ns; 6450 nsproxy->mnt_ns = mnt_ns; 6451 6452 /* Find the root */ 6453 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6454 "/", LOOKUP_DOWN, &root); 6455 if (err) { 6456 /* revert to old namespace */ 6457 nsproxy->mnt_ns = old_mnt_ns; 6458 put_mnt_ns(mnt_ns); 6459 return err; 6460 } 6461 6462 put_mnt_ns(old_mnt_ns); 6463 6464 /* Update the pwd and root */ 6465 set_fs_pwd(fs, &root); 6466 set_fs_root(fs, &root); 6467 6468 path_put(&root); 6469 return 0; 6470 } 6471 6472 static struct user_namespace *mntns_owner(struct ns_common *ns) 6473 { 6474 return to_mnt_ns(ns)->user_ns; 6475 } 6476 6477 const struct proc_ns_operations mntns_operations = { 6478 .name = "mnt", 6479 .type = CLONE_NEWNS, 6480 .get = mntns_get, 6481 .put = mntns_put, 6482 .install = mntns_install, 6483 .owner = mntns_owner, 6484 }; 6485 6486 #ifdef CONFIG_SYSCTL 6487 static const struct ctl_table fs_namespace_sysctls[] = { 6488 { 6489 .procname = "mount-max", 6490 .data = &sysctl_mount_max, 6491 .maxlen = sizeof(unsigned int), 6492 .mode = 0644, 6493 .proc_handler = proc_dointvec_minmax, 6494 .extra1 = SYSCTL_ONE, 6495 }, 6496 }; 6497 6498 static int __init init_fs_namespace_sysctls(void) 6499 { 6500 register_sysctl_init("fs", fs_namespace_sysctls); 6501 return 0; 6502 } 6503 fs_initcall(init_fs_namespace_sysctls); 6504 6505 #endif /* CONFIG_SYSCTL */ 6506