xref: /linux/fs/namespace.c (revision ccc829b15d48a450b186cab097f4f5d01df445d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
83 
84 #ifdef CONFIG_FSNOTIFY
85 LIST_HEAD(notify_list); /* protected by namespace_sem */
86 #endif
87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
89 
90 struct mount_kattr {
91 	unsigned int attr_set;
92 	unsigned int attr_clr;
93 	unsigned int propagation;
94 	unsigned int lookup_flags;
95 	bool recurse;
96 	struct user_namespace *mnt_userns;
97 	struct mnt_idmap *mnt_idmap;
98 };
99 
100 /* /sys/fs */
101 struct kobject *fs_kobj __ro_after_init;
102 EXPORT_SYMBOL_GPL(fs_kobj);
103 
104 /*
105  * vfsmount lock may be taken for read to prevent changes to the
106  * vfsmount hash, ie. during mountpoint lookups or walking back
107  * up the tree.
108  *
109  * It should be taken for write in all cases where the vfsmount
110  * tree or hash is modified or when a vfsmount structure is modified.
111  */
112 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
113 
114 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
115 {
116 	if (!node)
117 		return NULL;
118 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
119 }
120 
121 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
122 {
123 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
124 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
125 	u64 seq_a = ns_a->seq;
126 	u64 seq_b = ns_b->seq;
127 
128 	if (seq_a < seq_b)
129 		return -1;
130 	if (seq_a > seq_b)
131 		return 1;
132 	return 0;
133 }
134 
135 static inline void mnt_ns_tree_write_lock(void)
136 {
137 	write_seqlock(&mnt_ns_tree_lock);
138 }
139 
140 static inline void mnt_ns_tree_write_unlock(void)
141 {
142 	write_sequnlock(&mnt_ns_tree_lock);
143 }
144 
145 static void mnt_ns_tree_add(struct mnt_namespace *ns)
146 {
147 	struct rb_node *node, *prev;
148 
149 	mnt_ns_tree_write_lock();
150 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
151 	/*
152 	 * If there's no previous entry simply add it after the
153 	 * head and if there is add it after the previous entry.
154 	 */
155 	prev = rb_prev(&ns->mnt_ns_tree_node);
156 	if (!prev)
157 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
158 	else
159 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
160 	mnt_ns_tree_write_unlock();
161 
162 	WARN_ON_ONCE(node);
163 }
164 
165 static void mnt_ns_release(struct mnt_namespace *ns)
166 {
167 	/* keep alive for {list,stat}mount() */
168 	if (refcount_dec_and_test(&ns->passive)) {
169 		fsnotify_mntns_delete(ns);
170 		put_user_ns(ns->user_ns);
171 		kfree(ns);
172 	}
173 }
174 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
175 
176 static void mnt_ns_release_rcu(struct rcu_head *rcu)
177 {
178 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
179 }
180 
181 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
182 {
183 	/* remove from global mount namespace list */
184 	if (!is_anon_ns(ns)) {
185 		mnt_ns_tree_write_lock();
186 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
187 		list_bidir_del_rcu(&ns->mnt_ns_list);
188 		mnt_ns_tree_write_unlock();
189 	}
190 
191 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
192 }
193 
194 static int mnt_ns_find(const void *key, const struct rb_node *node)
195 {
196 	const u64 mnt_ns_id = *(u64 *)key;
197 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
198 
199 	if (mnt_ns_id < ns->seq)
200 		return -1;
201 	if (mnt_ns_id > ns->seq)
202 		return 1;
203 	return 0;
204 }
205 
206 /*
207  * Lookup a mount namespace by id and take a passive reference count. Taking a
208  * passive reference means the mount namespace can be emptied if e.g., the last
209  * task holding an active reference exits. To access the mounts of the
210  * namespace the @namespace_sem must first be acquired. If the namespace has
211  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
212  * see that the mount rbtree of the namespace is empty.
213  *
214  * Note the lookup is lockless protected by a sequence counter. We only
215  * need to guard against false negatives as false positives aren't
216  * possible. So if we didn't find a mount namespace and the sequence
217  * counter has changed we need to retry. If the sequence counter is
218  * still the same we know the search actually failed.
219  */
220 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
221 {
222 	struct mnt_namespace *ns;
223 	struct rb_node *node;
224 	unsigned int seq;
225 
226 	guard(rcu)();
227 	do {
228 		seq = read_seqbegin(&mnt_ns_tree_lock);
229 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
230 		if (node)
231 			break;
232 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
233 
234 	if (!node)
235 		return NULL;
236 
237 	/*
238 	 * The last reference count is put with RCU delay so we can
239 	 * unconditonally acquire a reference here.
240 	 */
241 	ns = node_to_mnt_ns(node);
242 	refcount_inc(&ns->passive);
243 	return ns;
244 }
245 
246 static inline void lock_mount_hash(void)
247 {
248 	write_seqlock(&mount_lock);
249 }
250 
251 static inline void unlock_mount_hash(void)
252 {
253 	write_sequnlock(&mount_lock);
254 }
255 
256 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
257 {
258 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
259 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
260 	tmp = tmp + (tmp >> m_hash_shift);
261 	return &mount_hashtable[tmp & m_hash_mask];
262 }
263 
264 static inline struct hlist_head *mp_hash(struct dentry *dentry)
265 {
266 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
267 	tmp = tmp + (tmp >> mp_hash_shift);
268 	return &mountpoint_hashtable[tmp & mp_hash_mask];
269 }
270 
271 static int mnt_alloc_id(struct mount *mnt)
272 {
273 	int res;
274 
275 	xa_lock(&mnt_id_xa);
276 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
277 	if (!res)
278 		mnt->mnt_id_unique = ++mnt_id_ctr;
279 	xa_unlock(&mnt_id_xa);
280 	return res;
281 }
282 
283 static void mnt_free_id(struct mount *mnt)
284 {
285 	xa_erase(&mnt_id_xa, mnt->mnt_id);
286 }
287 
288 /*
289  * Allocate a new peer group ID
290  */
291 static int mnt_alloc_group_id(struct mount *mnt)
292 {
293 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
294 
295 	if (res < 0)
296 		return res;
297 	mnt->mnt_group_id = res;
298 	return 0;
299 }
300 
301 /*
302  * Release a peer group ID
303  */
304 void mnt_release_group_id(struct mount *mnt)
305 {
306 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
307 	mnt->mnt_group_id = 0;
308 }
309 
310 /*
311  * vfsmount lock must be held for read
312  */
313 static inline void mnt_add_count(struct mount *mnt, int n)
314 {
315 #ifdef CONFIG_SMP
316 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
317 #else
318 	preempt_disable();
319 	mnt->mnt_count += n;
320 	preempt_enable();
321 #endif
322 }
323 
324 /*
325  * vfsmount lock must be held for write
326  */
327 int mnt_get_count(struct mount *mnt)
328 {
329 #ifdef CONFIG_SMP
330 	int count = 0;
331 	int cpu;
332 
333 	for_each_possible_cpu(cpu) {
334 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
335 	}
336 
337 	return count;
338 #else
339 	return mnt->mnt_count;
340 #endif
341 }
342 
343 static struct mount *alloc_vfsmnt(const char *name)
344 {
345 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
346 	if (mnt) {
347 		int err;
348 
349 		err = mnt_alloc_id(mnt);
350 		if (err)
351 			goto out_free_cache;
352 
353 		if (name) {
354 			mnt->mnt_devname = kstrdup_const(name,
355 							 GFP_KERNEL_ACCOUNT);
356 			if (!mnt->mnt_devname)
357 				goto out_free_id;
358 		}
359 
360 #ifdef CONFIG_SMP
361 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
362 		if (!mnt->mnt_pcp)
363 			goto out_free_devname;
364 
365 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
366 #else
367 		mnt->mnt_count = 1;
368 		mnt->mnt_writers = 0;
369 #endif
370 
371 		INIT_HLIST_NODE(&mnt->mnt_hash);
372 		INIT_LIST_HEAD(&mnt->mnt_child);
373 		INIT_LIST_HEAD(&mnt->mnt_mounts);
374 		INIT_LIST_HEAD(&mnt->mnt_list);
375 		INIT_LIST_HEAD(&mnt->mnt_expire);
376 		INIT_LIST_HEAD(&mnt->mnt_share);
377 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
378 		INIT_LIST_HEAD(&mnt->mnt_slave);
379 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
380 		INIT_LIST_HEAD(&mnt->mnt_umounting);
381 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
382 		RB_CLEAR_NODE(&mnt->mnt_node);
383 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
384 	}
385 	return mnt;
386 
387 #ifdef CONFIG_SMP
388 out_free_devname:
389 	kfree_const(mnt->mnt_devname);
390 #endif
391 out_free_id:
392 	mnt_free_id(mnt);
393 out_free_cache:
394 	kmem_cache_free(mnt_cache, mnt);
395 	return NULL;
396 }
397 
398 /*
399  * Most r/o checks on a fs are for operations that take
400  * discrete amounts of time, like a write() or unlink().
401  * We must keep track of when those operations start
402  * (for permission checks) and when they end, so that
403  * we can determine when writes are able to occur to
404  * a filesystem.
405  */
406 /*
407  * __mnt_is_readonly: check whether a mount is read-only
408  * @mnt: the mount to check for its write status
409  *
410  * This shouldn't be used directly ouside of the VFS.
411  * It does not guarantee that the filesystem will stay
412  * r/w, just that it is right *now*.  This can not and
413  * should not be used in place of IS_RDONLY(inode).
414  * mnt_want/drop_write() will _keep_ the filesystem
415  * r/w.
416  */
417 bool __mnt_is_readonly(struct vfsmount *mnt)
418 {
419 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
420 }
421 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
422 
423 static inline void mnt_inc_writers(struct mount *mnt)
424 {
425 #ifdef CONFIG_SMP
426 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
427 #else
428 	mnt->mnt_writers++;
429 #endif
430 }
431 
432 static inline void mnt_dec_writers(struct mount *mnt)
433 {
434 #ifdef CONFIG_SMP
435 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
436 #else
437 	mnt->mnt_writers--;
438 #endif
439 }
440 
441 static unsigned int mnt_get_writers(struct mount *mnt)
442 {
443 #ifdef CONFIG_SMP
444 	unsigned int count = 0;
445 	int cpu;
446 
447 	for_each_possible_cpu(cpu) {
448 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
449 	}
450 
451 	return count;
452 #else
453 	return mnt->mnt_writers;
454 #endif
455 }
456 
457 static int mnt_is_readonly(struct vfsmount *mnt)
458 {
459 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
460 		return 1;
461 	/*
462 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
463 	 * making sure if we don't see s_readonly_remount set yet, we also will
464 	 * not see any superblock / mount flag changes done by remount.
465 	 * It also pairs with the barrier in sb_end_ro_state_change()
466 	 * assuring that if we see s_readonly_remount already cleared, we will
467 	 * see the values of superblock / mount flags updated by remount.
468 	 */
469 	smp_rmb();
470 	return __mnt_is_readonly(mnt);
471 }
472 
473 /*
474  * Most r/o & frozen checks on a fs are for operations that take discrete
475  * amounts of time, like a write() or unlink().  We must keep track of when
476  * those operations start (for permission checks) and when they end, so that we
477  * can determine when writes are able to occur to a filesystem.
478  */
479 /**
480  * mnt_get_write_access - get write access to a mount without freeze protection
481  * @m: the mount on which to take a write
482  *
483  * This tells the low-level filesystem that a write is about to be performed to
484  * it, and makes sure that writes are allowed (mnt it read-write) before
485  * returning success. This operation does not protect against filesystem being
486  * frozen. When the write operation is finished, mnt_put_write_access() must be
487  * called. This is effectively a refcount.
488  */
489 int mnt_get_write_access(struct vfsmount *m)
490 {
491 	struct mount *mnt = real_mount(m);
492 	int ret = 0;
493 
494 	preempt_disable();
495 	mnt_inc_writers(mnt);
496 	/*
497 	 * The store to mnt_inc_writers must be visible before we pass
498 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
499 	 * incremented count after it has set MNT_WRITE_HOLD.
500 	 */
501 	smp_mb();
502 	might_lock(&mount_lock.lock);
503 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
504 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
505 			cpu_relax();
506 		} else {
507 			/*
508 			 * This prevents priority inversion, if the task
509 			 * setting MNT_WRITE_HOLD got preempted on a remote
510 			 * CPU, and it prevents life lock if the task setting
511 			 * MNT_WRITE_HOLD has a lower priority and is bound to
512 			 * the same CPU as the task that is spinning here.
513 			 */
514 			preempt_enable();
515 			lock_mount_hash();
516 			unlock_mount_hash();
517 			preempt_disable();
518 		}
519 	}
520 	/*
521 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
522 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
523 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
524 	 * mnt_is_readonly() and bail in case we are racing with remount
525 	 * read-only.
526 	 */
527 	smp_rmb();
528 	if (mnt_is_readonly(m)) {
529 		mnt_dec_writers(mnt);
530 		ret = -EROFS;
531 	}
532 	preempt_enable();
533 
534 	return ret;
535 }
536 EXPORT_SYMBOL_GPL(mnt_get_write_access);
537 
538 /**
539  * mnt_want_write - get write access to a mount
540  * @m: the mount on which to take a write
541  *
542  * This tells the low-level filesystem that a write is about to be performed to
543  * it, and makes sure that writes are allowed (mount is read-write, filesystem
544  * is not frozen) before returning success.  When the write operation is
545  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
546  */
547 int mnt_want_write(struct vfsmount *m)
548 {
549 	int ret;
550 
551 	sb_start_write(m->mnt_sb);
552 	ret = mnt_get_write_access(m);
553 	if (ret)
554 		sb_end_write(m->mnt_sb);
555 	return ret;
556 }
557 EXPORT_SYMBOL_GPL(mnt_want_write);
558 
559 /**
560  * mnt_get_write_access_file - get write access to a file's mount
561  * @file: the file who's mount on which to take a write
562  *
563  * This is like mnt_get_write_access, but if @file is already open for write it
564  * skips incrementing mnt_writers (since the open file already has a reference)
565  * and instead only does the check for emergency r/o remounts.  This must be
566  * paired with mnt_put_write_access_file.
567  */
568 int mnt_get_write_access_file(struct file *file)
569 {
570 	if (file->f_mode & FMODE_WRITER) {
571 		/*
572 		 * Superblock may have become readonly while there are still
573 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
574 		 */
575 		if (__mnt_is_readonly(file->f_path.mnt))
576 			return -EROFS;
577 		return 0;
578 	}
579 	return mnt_get_write_access(file->f_path.mnt);
580 }
581 
582 /**
583  * mnt_want_write_file - get write access to a file's mount
584  * @file: the file who's mount on which to take a write
585  *
586  * This is like mnt_want_write, but if the file is already open for writing it
587  * skips incrementing mnt_writers (since the open file already has a reference)
588  * and instead only does the freeze protection and the check for emergency r/o
589  * remounts.  This must be paired with mnt_drop_write_file.
590  */
591 int mnt_want_write_file(struct file *file)
592 {
593 	int ret;
594 
595 	sb_start_write(file_inode(file)->i_sb);
596 	ret = mnt_get_write_access_file(file);
597 	if (ret)
598 		sb_end_write(file_inode(file)->i_sb);
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(mnt_want_write_file);
602 
603 /**
604  * mnt_put_write_access - give up write access to a mount
605  * @mnt: the mount on which to give up write access
606  *
607  * Tells the low-level filesystem that we are done
608  * performing writes to it.  Must be matched with
609  * mnt_get_write_access() call above.
610  */
611 void mnt_put_write_access(struct vfsmount *mnt)
612 {
613 	preempt_disable();
614 	mnt_dec_writers(real_mount(mnt));
615 	preempt_enable();
616 }
617 EXPORT_SYMBOL_GPL(mnt_put_write_access);
618 
619 /**
620  * mnt_drop_write - give up write access to a mount
621  * @mnt: the mount on which to give up write access
622  *
623  * Tells the low-level filesystem that we are done performing writes to it and
624  * also allows filesystem to be frozen again.  Must be matched with
625  * mnt_want_write() call above.
626  */
627 void mnt_drop_write(struct vfsmount *mnt)
628 {
629 	mnt_put_write_access(mnt);
630 	sb_end_write(mnt->mnt_sb);
631 }
632 EXPORT_SYMBOL_GPL(mnt_drop_write);
633 
634 void mnt_put_write_access_file(struct file *file)
635 {
636 	if (!(file->f_mode & FMODE_WRITER))
637 		mnt_put_write_access(file->f_path.mnt);
638 }
639 
640 void mnt_drop_write_file(struct file *file)
641 {
642 	mnt_put_write_access_file(file);
643 	sb_end_write(file_inode(file)->i_sb);
644 }
645 EXPORT_SYMBOL(mnt_drop_write_file);
646 
647 /**
648  * mnt_hold_writers - prevent write access to the given mount
649  * @mnt: mnt to prevent write access to
650  *
651  * Prevents write access to @mnt if there are no active writers for @mnt.
652  * This function needs to be called and return successfully before changing
653  * properties of @mnt that need to remain stable for callers with write access
654  * to @mnt.
655  *
656  * After this functions has been called successfully callers must pair it with
657  * a call to mnt_unhold_writers() in order to stop preventing write access to
658  * @mnt.
659  *
660  * Context: This function expects lock_mount_hash() to be held serializing
661  *          setting MNT_WRITE_HOLD.
662  * Return: On success 0 is returned.
663  *	   On error, -EBUSY is returned.
664  */
665 static inline int mnt_hold_writers(struct mount *mnt)
666 {
667 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
668 	/*
669 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
670 	 * should be visible before we do.
671 	 */
672 	smp_mb();
673 
674 	/*
675 	 * With writers on hold, if this value is zero, then there are
676 	 * definitely no active writers (although held writers may subsequently
677 	 * increment the count, they'll have to wait, and decrement it after
678 	 * seeing MNT_READONLY).
679 	 *
680 	 * It is OK to have counter incremented on one CPU and decremented on
681 	 * another: the sum will add up correctly. The danger would be when we
682 	 * sum up each counter, if we read a counter before it is incremented,
683 	 * but then read another CPU's count which it has been subsequently
684 	 * decremented from -- we would see more decrements than we should.
685 	 * MNT_WRITE_HOLD protects against this scenario, because
686 	 * mnt_want_write first increments count, then smp_mb, then spins on
687 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
688 	 * we're counting up here.
689 	 */
690 	if (mnt_get_writers(mnt) > 0)
691 		return -EBUSY;
692 
693 	return 0;
694 }
695 
696 /**
697  * mnt_unhold_writers - stop preventing write access to the given mount
698  * @mnt: mnt to stop preventing write access to
699  *
700  * Stop preventing write access to @mnt allowing callers to gain write access
701  * to @mnt again.
702  *
703  * This function can only be called after a successful call to
704  * mnt_hold_writers().
705  *
706  * Context: This function expects lock_mount_hash() to be held.
707  */
708 static inline void mnt_unhold_writers(struct mount *mnt)
709 {
710 	/*
711 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
712 	 * that become unheld will see MNT_READONLY.
713 	 */
714 	smp_wmb();
715 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
716 }
717 
718 static int mnt_make_readonly(struct mount *mnt)
719 {
720 	int ret;
721 
722 	ret = mnt_hold_writers(mnt);
723 	if (!ret)
724 		mnt->mnt.mnt_flags |= MNT_READONLY;
725 	mnt_unhold_writers(mnt);
726 	return ret;
727 }
728 
729 int sb_prepare_remount_readonly(struct super_block *sb)
730 {
731 	struct mount *mnt;
732 	int err = 0;
733 
734 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
735 	if (atomic_long_read(&sb->s_remove_count))
736 		return -EBUSY;
737 
738 	lock_mount_hash();
739 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
740 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
741 			err = mnt_hold_writers(mnt);
742 			if (err)
743 				break;
744 		}
745 	}
746 	if (!err && atomic_long_read(&sb->s_remove_count))
747 		err = -EBUSY;
748 
749 	if (!err)
750 		sb_start_ro_state_change(sb);
751 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
752 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
753 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
754 	}
755 	unlock_mount_hash();
756 
757 	return err;
758 }
759 
760 static void free_vfsmnt(struct mount *mnt)
761 {
762 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
763 	kfree_const(mnt->mnt_devname);
764 #ifdef CONFIG_SMP
765 	free_percpu(mnt->mnt_pcp);
766 #endif
767 	kmem_cache_free(mnt_cache, mnt);
768 }
769 
770 static void delayed_free_vfsmnt(struct rcu_head *head)
771 {
772 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
773 }
774 
775 /* call under rcu_read_lock */
776 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
777 {
778 	struct mount *mnt;
779 	if (read_seqretry(&mount_lock, seq))
780 		return 1;
781 	if (bastard == NULL)
782 		return 0;
783 	mnt = real_mount(bastard);
784 	mnt_add_count(mnt, 1);
785 	smp_mb();			// see mntput_no_expire()
786 	if (likely(!read_seqretry(&mount_lock, seq)))
787 		return 0;
788 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
789 		mnt_add_count(mnt, -1);
790 		return 1;
791 	}
792 	lock_mount_hash();
793 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
794 		mnt_add_count(mnt, -1);
795 		unlock_mount_hash();
796 		return 1;
797 	}
798 	unlock_mount_hash();
799 	/* caller will mntput() */
800 	return -1;
801 }
802 
803 /* call under rcu_read_lock */
804 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
805 {
806 	int res = __legitimize_mnt(bastard, seq);
807 	if (likely(!res))
808 		return true;
809 	if (unlikely(res < 0)) {
810 		rcu_read_unlock();
811 		mntput(bastard);
812 		rcu_read_lock();
813 	}
814 	return false;
815 }
816 
817 /**
818  * __lookup_mnt - find first child mount
819  * @mnt:	parent mount
820  * @dentry:	mountpoint
821  *
822  * If @mnt has a child mount @c mounted @dentry find and return it.
823  *
824  * Note that the child mount @c need not be unique. There are cases
825  * where shadow mounts are created. For example, during mount
826  * propagation when a source mount @mnt whose root got overmounted by a
827  * mount @o after path lookup but before @namespace_sem could be
828  * acquired gets copied and propagated. So @mnt gets copied including
829  * @o. When @mnt is propagated to a destination mount @d that already
830  * has another mount @n mounted at the same mountpoint then the source
831  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
832  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
833  * on @dentry.
834  *
835  * Return: The first child of @mnt mounted @dentry or NULL.
836  */
837 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
838 {
839 	struct hlist_head *head = m_hash(mnt, dentry);
840 	struct mount *p;
841 
842 	hlist_for_each_entry_rcu(p, head, mnt_hash)
843 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
844 			return p;
845 	return NULL;
846 }
847 
848 /*
849  * lookup_mnt - Return the first child mount mounted at path
850  *
851  * "First" means first mounted chronologically.  If you create the
852  * following mounts:
853  *
854  * mount /dev/sda1 /mnt
855  * mount /dev/sda2 /mnt
856  * mount /dev/sda3 /mnt
857  *
858  * Then lookup_mnt() on the base /mnt dentry in the root mount will
859  * return successively the root dentry and vfsmount of /dev/sda1, then
860  * /dev/sda2, then /dev/sda3, then NULL.
861  *
862  * lookup_mnt takes a reference to the found vfsmount.
863  */
864 struct vfsmount *lookup_mnt(const struct path *path)
865 {
866 	struct mount *child_mnt;
867 	struct vfsmount *m;
868 	unsigned seq;
869 
870 	rcu_read_lock();
871 	do {
872 		seq = read_seqbegin(&mount_lock);
873 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
874 		m = child_mnt ? &child_mnt->mnt : NULL;
875 	} while (!legitimize_mnt(m, seq));
876 	rcu_read_unlock();
877 	return m;
878 }
879 
880 /*
881  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
882  *                         current mount namespace.
883  *
884  * The common case is dentries are not mountpoints at all and that
885  * test is handled inline.  For the slow case when we are actually
886  * dealing with a mountpoint of some kind, walk through all of the
887  * mounts in the current mount namespace and test to see if the dentry
888  * is a mountpoint.
889  *
890  * The mount_hashtable is not usable in the context because we
891  * need to identify all mounts that may be in the current mount
892  * namespace not just a mount that happens to have some specified
893  * parent mount.
894  */
895 bool __is_local_mountpoint(struct dentry *dentry)
896 {
897 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
898 	struct mount *mnt, *n;
899 	bool is_covered = false;
900 
901 	down_read(&namespace_sem);
902 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
903 		is_covered = (mnt->mnt_mountpoint == dentry);
904 		if (is_covered)
905 			break;
906 	}
907 	up_read(&namespace_sem);
908 
909 	return is_covered;
910 }
911 
912 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
913 {
914 	struct hlist_head *chain = mp_hash(dentry);
915 	struct mountpoint *mp;
916 
917 	hlist_for_each_entry(mp, chain, m_hash) {
918 		if (mp->m_dentry == dentry) {
919 			mp->m_count++;
920 			return mp;
921 		}
922 	}
923 	return NULL;
924 }
925 
926 static struct mountpoint *get_mountpoint(struct dentry *dentry)
927 {
928 	struct mountpoint *mp, *new = NULL;
929 	int ret;
930 
931 	if (d_mountpoint(dentry)) {
932 		/* might be worth a WARN_ON() */
933 		if (d_unlinked(dentry))
934 			return ERR_PTR(-ENOENT);
935 mountpoint:
936 		read_seqlock_excl(&mount_lock);
937 		mp = lookup_mountpoint(dentry);
938 		read_sequnlock_excl(&mount_lock);
939 		if (mp)
940 			goto done;
941 	}
942 
943 	if (!new)
944 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
945 	if (!new)
946 		return ERR_PTR(-ENOMEM);
947 
948 
949 	/* Exactly one processes may set d_mounted */
950 	ret = d_set_mounted(dentry);
951 
952 	/* Someone else set d_mounted? */
953 	if (ret == -EBUSY)
954 		goto mountpoint;
955 
956 	/* The dentry is not available as a mountpoint? */
957 	mp = ERR_PTR(ret);
958 	if (ret)
959 		goto done;
960 
961 	/* Add the new mountpoint to the hash table */
962 	read_seqlock_excl(&mount_lock);
963 	new->m_dentry = dget(dentry);
964 	new->m_count = 1;
965 	hlist_add_head(&new->m_hash, mp_hash(dentry));
966 	INIT_HLIST_HEAD(&new->m_list);
967 	read_sequnlock_excl(&mount_lock);
968 
969 	mp = new;
970 	new = NULL;
971 done:
972 	kfree(new);
973 	return mp;
974 }
975 
976 /*
977  * vfsmount lock must be held.  Additionally, the caller is responsible
978  * for serializing calls for given disposal list.
979  */
980 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
981 {
982 	if (!--mp->m_count) {
983 		struct dentry *dentry = mp->m_dentry;
984 		BUG_ON(!hlist_empty(&mp->m_list));
985 		spin_lock(&dentry->d_lock);
986 		dentry->d_flags &= ~DCACHE_MOUNTED;
987 		spin_unlock(&dentry->d_lock);
988 		dput_to_list(dentry, list);
989 		hlist_del(&mp->m_hash);
990 		kfree(mp);
991 	}
992 }
993 
994 /* called with namespace_lock and vfsmount lock */
995 static void put_mountpoint(struct mountpoint *mp)
996 {
997 	__put_mountpoint(mp, &ex_mountpoints);
998 }
999 
1000 static inline int check_mnt(struct mount *mnt)
1001 {
1002 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
1003 }
1004 
1005 /*
1006  * vfsmount lock must be held for write
1007  */
1008 static void touch_mnt_namespace(struct mnt_namespace *ns)
1009 {
1010 	if (ns) {
1011 		ns->event = ++event;
1012 		wake_up_interruptible(&ns->poll);
1013 	}
1014 }
1015 
1016 /*
1017  * vfsmount lock must be held for write
1018  */
1019 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1020 {
1021 	if (ns && ns->event != event) {
1022 		ns->event = event;
1023 		wake_up_interruptible(&ns->poll);
1024 	}
1025 }
1026 
1027 /*
1028  * vfsmount lock must be held for write
1029  */
1030 static struct mountpoint *unhash_mnt(struct mount *mnt)
1031 {
1032 	struct mountpoint *mp;
1033 	mnt->mnt_parent = mnt;
1034 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1035 	list_del_init(&mnt->mnt_child);
1036 	hlist_del_init_rcu(&mnt->mnt_hash);
1037 	hlist_del_init(&mnt->mnt_mp_list);
1038 	mp = mnt->mnt_mp;
1039 	mnt->mnt_mp = NULL;
1040 	return mp;
1041 }
1042 
1043 /*
1044  * vfsmount lock must be held for write
1045  */
1046 static void umount_mnt(struct mount *mnt)
1047 {
1048 	put_mountpoint(unhash_mnt(mnt));
1049 }
1050 
1051 /*
1052  * vfsmount lock must be held for write
1053  */
1054 void mnt_set_mountpoint(struct mount *mnt,
1055 			struct mountpoint *mp,
1056 			struct mount *child_mnt)
1057 {
1058 	mp->m_count++;
1059 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1060 	child_mnt->mnt_mountpoint = mp->m_dentry;
1061 	child_mnt->mnt_parent = mnt;
1062 	child_mnt->mnt_mp = mp;
1063 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1064 }
1065 
1066 /**
1067  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1068  *
1069  * @new_parent: the source mount
1070  * @top_mnt:    the mount beneath which @new_parent is mounted
1071  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1072  *
1073  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1074  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1075  * @new_mp. And mount @new_parent on the old parent and old
1076  * mountpoint of @top_mnt.
1077  *
1078  * Context: This function expects namespace_lock() and lock_mount_hash()
1079  *          to have been acquired in that order.
1080  */
1081 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1082 				       struct mount *top_mnt,
1083 				       struct mountpoint *new_mp)
1084 {
1085 	struct mount *old_top_parent = top_mnt->mnt_parent;
1086 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1087 
1088 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1089 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1090 }
1091 
1092 
1093 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1094 {
1095 	hlist_add_head_rcu(&mnt->mnt_hash,
1096 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1097 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1098 }
1099 
1100 /**
1101  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1102  *              list of child mounts
1103  * @parent:  the parent
1104  * @mnt:     the new mount
1105  * @mp:      the new mountpoint
1106  * @beneath: whether to mount @mnt beneath or on top of @parent
1107  *
1108  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1109  * to @parent's child mount list and to @mount_hashtable.
1110  *
1111  * If @beneath is true, remove @mnt from its current parent and
1112  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1113  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1114  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1115  *
1116  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1117  * to the correct parent.
1118  *
1119  * Context: This function expects namespace_lock() and lock_mount_hash()
1120  *          to have been acquired in that order.
1121  */
1122 static void attach_mnt(struct mount *mnt, struct mount *parent,
1123 		       struct mountpoint *mp, bool beneath)
1124 {
1125 	if (beneath)
1126 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1127 	else
1128 		mnt_set_mountpoint(parent, mp, mnt);
1129 	/*
1130 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1131 	 * beneath @parent then @mnt will need to be attached to
1132 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1133 	 * isn't the same mount as @parent.
1134 	 */
1135 	__attach_mnt(mnt, mnt->mnt_parent);
1136 }
1137 
1138 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1139 {
1140 	struct mountpoint *old_mp = mnt->mnt_mp;
1141 	struct mount *old_parent = mnt->mnt_parent;
1142 
1143 	list_del_init(&mnt->mnt_child);
1144 	hlist_del_init(&mnt->mnt_mp_list);
1145 	hlist_del_init_rcu(&mnt->mnt_hash);
1146 
1147 	attach_mnt(mnt, parent, mp, false);
1148 
1149 	put_mountpoint(old_mp);
1150 	mnt_add_count(old_parent, -1);
1151 }
1152 
1153 static inline struct mount *node_to_mount(struct rb_node *node)
1154 {
1155 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1156 }
1157 
1158 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1159 {
1160 	struct rb_node **link = &ns->mounts.rb_node;
1161 	struct rb_node *parent = NULL;
1162 	bool mnt_first_node = true, mnt_last_node = true;
1163 
1164 	WARN_ON(mnt_ns_attached(mnt));
1165 	mnt->mnt_ns = ns;
1166 	while (*link) {
1167 		parent = *link;
1168 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1169 			link = &parent->rb_left;
1170 			mnt_last_node = false;
1171 		} else {
1172 			link = &parent->rb_right;
1173 			mnt_first_node = false;
1174 		}
1175 	}
1176 
1177 	if (mnt_last_node)
1178 		ns->mnt_last_node = &mnt->mnt_node;
1179 	if (mnt_first_node)
1180 		ns->mnt_first_node = &mnt->mnt_node;
1181 	rb_link_node(&mnt->mnt_node, parent, link);
1182 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1183 
1184 	mnt_notify_add(mnt);
1185 }
1186 
1187 /*
1188  * vfsmount lock must be held for write
1189  */
1190 static void commit_tree(struct mount *mnt)
1191 {
1192 	struct mount *parent = mnt->mnt_parent;
1193 	struct mount *m;
1194 	LIST_HEAD(head);
1195 	struct mnt_namespace *n = parent->mnt_ns;
1196 
1197 	BUG_ON(parent == mnt);
1198 
1199 	list_add_tail(&head, &mnt->mnt_list);
1200 	while (!list_empty(&head)) {
1201 		m = list_first_entry(&head, typeof(*m), mnt_list);
1202 		list_del(&m->mnt_list);
1203 
1204 		mnt_add_to_ns(n, m);
1205 	}
1206 	n->nr_mounts += n->pending_mounts;
1207 	n->pending_mounts = 0;
1208 
1209 	__attach_mnt(mnt, parent);
1210 	touch_mnt_namespace(n);
1211 }
1212 
1213 static struct mount *next_mnt(struct mount *p, struct mount *root)
1214 {
1215 	struct list_head *next = p->mnt_mounts.next;
1216 	if (next == &p->mnt_mounts) {
1217 		while (1) {
1218 			if (p == root)
1219 				return NULL;
1220 			next = p->mnt_child.next;
1221 			if (next != &p->mnt_parent->mnt_mounts)
1222 				break;
1223 			p = p->mnt_parent;
1224 		}
1225 	}
1226 	return list_entry(next, struct mount, mnt_child);
1227 }
1228 
1229 static struct mount *skip_mnt_tree(struct mount *p)
1230 {
1231 	struct list_head *prev = p->mnt_mounts.prev;
1232 	while (prev != &p->mnt_mounts) {
1233 		p = list_entry(prev, struct mount, mnt_child);
1234 		prev = p->mnt_mounts.prev;
1235 	}
1236 	return p;
1237 }
1238 
1239 /**
1240  * vfs_create_mount - Create a mount for a configured superblock
1241  * @fc: The configuration context with the superblock attached
1242  *
1243  * Create a mount to an already configured superblock.  If necessary, the
1244  * caller should invoke vfs_get_tree() before calling this.
1245  *
1246  * Note that this does not attach the mount to anything.
1247  */
1248 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1249 {
1250 	struct mount *mnt;
1251 
1252 	if (!fc->root)
1253 		return ERR_PTR(-EINVAL);
1254 
1255 	mnt = alloc_vfsmnt(fc->source ?: "none");
1256 	if (!mnt)
1257 		return ERR_PTR(-ENOMEM);
1258 
1259 	if (fc->sb_flags & SB_KERNMOUNT)
1260 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1261 
1262 	atomic_inc(&fc->root->d_sb->s_active);
1263 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1264 	mnt->mnt.mnt_root	= dget(fc->root);
1265 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1266 	mnt->mnt_parent		= mnt;
1267 
1268 	lock_mount_hash();
1269 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1270 	unlock_mount_hash();
1271 	return &mnt->mnt;
1272 }
1273 EXPORT_SYMBOL(vfs_create_mount);
1274 
1275 struct vfsmount *fc_mount(struct fs_context *fc)
1276 {
1277 	int err = vfs_get_tree(fc);
1278 	if (!err) {
1279 		up_write(&fc->root->d_sb->s_umount);
1280 		return vfs_create_mount(fc);
1281 	}
1282 	return ERR_PTR(err);
1283 }
1284 EXPORT_SYMBOL(fc_mount);
1285 
1286 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1287 				int flags, const char *name,
1288 				void *data)
1289 {
1290 	struct fs_context *fc;
1291 	struct vfsmount *mnt;
1292 	int ret = 0;
1293 
1294 	if (!type)
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	fc = fs_context_for_mount(type, flags);
1298 	if (IS_ERR(fc))
1299 		return ERR_CAST(fc);
1300 
1301 	if (name)
1302 		ret = vfs_parse_fs_string(fc, "source",
1303 					  name, strlen(name));
1304 	if (!ret)
1305 		ret = parse_monolithic_mount_data(fc, data);
1306 	if (!ret)
1307 		mnt = fc_mount(fc);
1308 	else
1309 		mnt = ERR_PTR(ret);
1310 
1311 	put_fs_context(fc);
1312 	return mnt;
1313 }
1314 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1315 
1316 struct vfsmount *
1317 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1318 	     const char *name, void *data)
1319 {
1320 	/* Until it is worked out how to pass the user namespace
1321 	 * through from the parent mount to the submount don't support
1322 	 * unprivileged mounts with submounts.
1323 	 */
1324 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1325 		return ERR_PTR(-EPERM);
1326 
1327 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1328 }
1329 EXPORT_SYMBOL_GPL(vfs_submount);
1330 
1331 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1332 					int flag)
1333 {
1334 	struct super_block *sb = old->mnt.mnt_sb;
1335 	struct mount *mnt;
1336 	int err;
1337 
1338 	mnt = alloc_vfsmnt(old->mnt_devname);
1339 	if (!mnt)
1340 		return ERR_PTR(-ENOMEM);
1341 
1342 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1343 		mnt->mnt_group_id = 0; /* not a peer of original */
1344 	else
1345 		mnt->mnt_group_id = old->mnt_group_id;
1346 
1347 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1348 		err = mnt_alloc_group_id(mnt);
1349 		if (err)
1350 			goto out_free;
1351 	}
1352 
1353 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1354 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1355 
1356 	atomic_inc(&sb->s_active);
1357 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1358 
1359 	mnt->mnt.mnt_sb = sb;
1360 	mnt->mnt.mnt_root = dget(root);
1361 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1362 	mnt->mnt_parent = mnt;
1363 	lock_mount_hash();
1364 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1365 	unlock_mount_hash();
1366 
1367 	if ((flag & CL_SLAVE) ||
1368 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1369 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1370 		mnt->mnt_master = old;
1371 		CLEAR_MNT_SHARED(mnt);
1372 	} else if (!(flag & CL_PRIVATE)) {
1373 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1374 			list_add(&mnt->mnt_share, &old->mnt_share);
1375 		if (IS_MNT_SLAVE(old))
1376 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1377 		mnt->mnt_master = old->mnt_master;
1378 	} else {
1379 		CLEAR_MNT_SHARED(mnt);
1380 	}
1381 	if (flag & CL_MAKE_SHARED)
1382 		set_mnt_shared(mnt);
1383 
1384 	/* stick the duplicate mount on the same expiry list
1385 	 * as the original if that was on one */
1386 	if (flag & CL_EXPIRE) {
1387 		if (!list_empty(&old->mnt_expire))
1388 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1389 	}
1390 
1391 	return mnt;
1392 
1393  out_free:
1394 	mnt_free_id(mnt);
1395 	free_vfsmnt(mnt);
1396 	return ERR_PTR(err);
1397 }
1398 
1399 static void cleanup_mnt(struct mount *mnt)
1400 {
1401 	struct hlist_node *p;
1402 	struct mount *m;
1403 	/*
1404 	 * The warning here probably indicates that somebody messed
1405 	 * up a mnt_want/drop_write() pair.  If this happens, the
1406 	 * filesystem was probably unable to make r/w->r/o transitions.
1407 	 * The locking used to deal with mnt_count decrement provides barriers,
1408 	 * so mnt_get_writers() below is safe.
1409 	 */
1410 	WARN_ON(mnt_get_writers(mnt));
1411 	if (unlikely(mnt->mnt_pins.first))
1412 		mnt_pin_kill(mnt);
1413 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1414 		hlist_del(&m->mnt_umount);
1415 		mntput(&m->mnt);
1416 	}
1417 	fsnotify_vfsmount_delete(&mnt->mnt);
1418 	dput(mnt->mnt.mnt_root);
1419 	deactivate_super(mnt->mnt.mnt_sb);
1420 	mnt_free_id(mnt);
1421 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1422 }
1423 
1424 static void __cleanup_mnt(struct rcu_head *head)
1425 {
1426 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1427 }
1428 
1429 static LLIST_HEAD(delayed_mntput_list);
1430 static void delayed_mntput(struct work_struct *unused)
1431 {
1432 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1433 	struct mount *m, *t;
1434 
1435 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1436 		cleanup_mnt(m);
1437 }
1438 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1439 
1440 static void mntput_no_expire(struct mount *mnt)
1441 {
1442 	LIST_HEAD(list);
1443 	int count;
1444 
1445 	rcu_read_lock();
1446 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1447 		/*
1448 		 * Since we don't do lock_mount_hash() here,
1449 		 * ->mnt_ns can change under us.  However, if it's
1450 		 * non-NULL, then there's a reference that won't
1451 		 * be dropped until after an RCU delay done after
1452 		 * turning ->mnt_ns NULL.  So if we observe it
1453 		 * non-NULL under rcu_read_lock(), the reference
1454 		 * we are dropping is not the final one.
1455 		 */
1456 		mnt_add_count(mnt, -1);
1457 		rcu_read_unlock();
1458 		return;
1459 	}
1460 	lock_mount_hash();
1461 	/*
1462 	 * make sure that if __legitimize_mnt() has not seen us grab
1463 	 * mount_lock, we'll see their refcount increment here.
1464 	 */
1465 	smp_mb();
1466 	mnt_add_count(mnt, -1);
1467 	count = mnt_get_count(mnt);
1468 	if (count != 0) {
1469 		WARN_ON(count < 0);
1470 		rcu_read_unlock();
1471 		unlock_mount_hash();
1472 		return;
1473 	}
1474 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1475 		rcu_read_unlock();
1476 		unlock_mount_hash();
1477 		return;
1478 	}
1479 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1480 	rcu_read_unlock();
1481 
1482 	list_del(&mnt->mnt_instance);
1483 
1484 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1485 		struct mount *p, *tmp;
1486 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1487 			__put_mountpoint(unhash_mnt(p), &list);
1488 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1489 		}
1490 	}
1491 	unlock_mount_hash();
1492 	shrink_dentry_list(&list);
1493 
1494 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1495 		struct task_struct *task = current;
1496 		if (likely(!(task->flags & PF_KTHREAD))) {
1497 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1498 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1499 				return;
1500 		}
1501 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1502 			schedule_delayed_work(&delayed_mntput_work, 1);
1503 		return;
1504 	}
1505 	cleanup_mnt(mnt);
1506 }
1507 
1508 void mntput(struct vfsmount *mnt)
1509 {
1510 	if (mnt) {
1511 		struct mount *m = real_mount(mnt);
1512 		/* avoid cacheline pingpong */
1513 		if (unlikely(m->mnt_expiry_mark))
1514 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1515 		mntput_no_expire(m);
1516 	}
1517 }
1518 EXPORT_SYMBOL(mntput);
1519 
1520 struct vfsmount *mntget(struct vfsmount *mnt)
1521 {
1522 	if (mnt)
1523 		mnt_add_count(real_mount(mnt), 1);
1524 	return mnt;
1525 }
1526 EXPORT_SYMBOL(mntget);
1527 
1528 /*
1529  * Make a mount point inaccessible to new lookups.
1530  * Because there may still be current users, the caller MUST WAIT
1531  * for an RCU grace period before destroying the mount point.
1532  */
1533 void mnt_make_shortterm(struct vfsmount *mnt)
1534 {
1535 	if (mnt)
1536 		real_mount(mnt)->mnt_ns = NULL;
1537 }
1538 
1539 /**
1540  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1541  * @path: path to check
1542  *
1543  *  d_mountpoint() can only be used reliably to establish if a dentry is
1544  *  not mounted in any namespace and that common case is handled inline.
1545  *  d_mountpoint() isn't aware of the possibility there may be multiple
1546  *  mounts using a given dentry in a different namespace. This function
1547  *  checks if the passed in path is a mountpoint rather than the dentry
1548  *  alone.
1549  */
1550 bool path_is_mountpoint(const struct path *path)
1551 {
1552 	unsigned seq;
1553 	bool res;
1554 
1555 	if (!d_mountpoint(path->dentry))
1556 		return false;
1557 
1558 	rcu_read_lock();
1559 	do {
1560 		seq = read_seqbegin(&mount_lock);
1561 		res = __path_is_mountpoint(path);
1562 	} while (read_seqretry(&mount_lock, seq));
1563 	rcu_read_unlock();
1564 
1565 	return res;
1566 }
1567 EXPORT_SYMBOL(path_is_mountpoint);
1568 
1569 struct vfsmount *mnt_clone_internal(const struct path *path)
1570 {
1571 	struct mount *p;
1572 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1573 	if (IS_ERR(p))
1574 		return ERR_CAST(p);
1575 	p->mnt.mnt_flags |= MNT_INTERNAL;
1576 	return &p->mnt;
1577 }
1578 
1579 /*
1580  * Returns the mount which either has the specified mnt_id, or has the next
1581  * smallest id afer the specified one.
1582  */
1583 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1584 {
1585 	struct rb_node *node = ns->mounts.rb_node;
1586 	struct mount *ret = NULL;
1587 
1588 	while (node) {
1589 		struct mount *m = node_to_mount(node);
1590 
1591 		if (mnt_id <= m->mnt_id_unique) {
1592 			ret = node_to_mount(node);
1593 			if (mnt_id == m->mnt_id_unique)
1594 				break;
1595 			node = node->rb_left;
1596 		} else {
1597 			node = node->rb_right;
1598 		}
1599 	}
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Returns the mount which either has the specified mnt_id, or has the next
1605  * greater id before the specified one.
1606  */
1607 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1608 {
1609 	struct rb_node *node = ns->mounts.rb_node;
1610 	struct mount *ret = NULL;
1611 
1612 	while (node) {
1613 		struct mount *m = node_to_mount(node);
1614 
1615 		if (mnt_id >= m->mnt_id_unique) {
1616 			ret = node_to_mount(node);
1617 			if (mnt_id == m->mnt_id_unique)
1618 				break;
1619 			node = node->rb_right;
1620 		} else {
1621 			node = node->rb_left;
1622 		}
1623 	}
1624 	return ret;
1625 }
1626 
1627 #ifdef CONFIG_PROC_FS
1628 
1629 /* iterator; we want it to have access to namespace_sem, thus here... */
1630 static void *m_start(struct seq_file *m, loff_t *pos)
1631 {
1632 	struct proc_mounts *p = m->private;
1633 
1634 	down_read(&namespace_sem);
1635 
1636 	return mnt_find_id_at(p->ns, *pos);
1637 }
1638 
1639 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1640 {
1641 	struct mount *next = NULL, *mnt = v;
1642 	struct rb_node *node = rb_next(&mnt->mnt_node);
1643 
1644 	++*pos;
1645 	if (node) {
1646 		next = node_to_mount(node);
1647 		*pos = next->mnt_id_unique;
1648 	}
1649 	return next;
1650 }
1651 
1652 static void m_stop(struct seq_file *m, void *v)
1653 {
1654 	up_read(&namespace_sem);
1655 }
1656 
1657 static int m_show(struct seq_file *m, void *v)
1658 {
1659 	struct proc_mounts *p = m->private;
1660 	struct mount *r = v;
1661 	return p->show(m, &r->mnt);
1662 }
1663 
1664 const struct seq_operations mounts_op = {
1665 	.start	= m_start,
1666 	.next	= m_next,
1667 	.stop	= m_stop,
1668 	.show	= m_show,
1669 };
1670 
1671 #endif  /* CONFIG_PROC_FS */
1672 
1673 /**
1674  * may_umount_tree - check if a mount tree is busy
1675  * @m: root of mount tree
1676  *
1677  * This is called to check if a tree of mounts has any
1678  * open files, pwds, chroots or sub mounts that are
1679  * busy.
1680  */
1681 int may_umount_tree(struct vfsmount *m)
1682 {
1683 	struct mount *mnt = real_mount(m);
1684 	int actual_refs = 0;
1685 	int minimum_refs = 0;
1686 	struct mount *p;
1687 	BUG_ON(!m);
1688 
1689 	/* write lock needed for mnt_get_count */
1690 	lock_mount_hash();
1691 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1692 		actual_refs += mnt_get_count(p);
1693 		minimum_refs += 2;
1694 	}
1695 	unlock_mount_hash();
1696 
1697 	if (actual_refs > minimum_refs)
1698 		return 0;
1699 
1700 	return 1;
1701 }
1702 
1703 EXPORT_SYMBOL(may_umount_tree);
1704 
1705 /**
1706  * may_umount - check if a mount point is busy
1707  * @mnt: root of mount
1708  *
1709  * This is called to check if a mount point has any
1710  * open files, pwds, chroots or sub mounts. If the
1711  * mount has sub mounts this will return busy
1712  * regardless of whether the sub mounts are busy.
1713  *
1714  * Doesn't take quota and stuff into account. IOW, in some cases it will
1715  * give false negatives. The main reason why it's here is that we need
1716  * a non-destructive way to look for easily umountable filesystems.
1717  */
1718 int may_umount(struct vfsmount *mnt)
1719 {
1720 	int ret = 1;
1721 	down_read(&namespace_sem);
1722 	lock_mount_hash();
1723 	if (propagate_mount_busy(real_mount(mnt), 2))
1724 		ret = 0;
1725 	unlock_mount_hash();
1726 	up_read(&namespace_sem);
1727 	return ret;
1728 }
1729 
1730 EXPORT_SYMBOL(may_umount);
1731 
1732 #ifdef CONFIG_FSNOTIFY
1733 static void mnt_notify(struct mount *p)
1734 {
1735 	if (!p->prev_ns && p->mnt_ns) {
1736 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1737 	} else if (p->prev_ns && !p->mnt_ns) {
1738 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1739 	} else if (p->prev_ns == p->mnt_ns) {
1740 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1741 	} else {
1742 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1743 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1744 	}
1745 	p->prev_ns = p->mnt_ns;
1746 }
1747 
1748 static void notify_mnt_list(void)
1749 {
1750 	struct mount *m, *tmp;
1751 	/*
1752 	 * Notify about mounts that were added/reparented/detached/remain
1753 	 * connected after unmount.
1754 	 */
1755 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1756 		mnt_notify(m);
1757 		list_del_init(&m->to_notify);
1758 	}
1759 }
1760 
1761 static bool need_notify_mnt_list(void)
1762 {
1763 	return !list_empty(&notify_list);
1764 }
1765 #else
1766 static void notify_mnt_list(void)
1767 {
1768 }
1769 
1770 static bool need_notify_mnt_list(void)
1771 {
1772 	return false;
1773 }
1774 #endif
1775 
1776 static void namespace_unlock(void)
1777 {
1778 	struct hlist_head head;
1779 	struct hlist_node *p;
1780 	struct mount *m;
1781 	LIST_HEAD(list);
1782 
1783 	hlist_move_list(&unmounted, &head);
1784 	list_splice_init(&ex_mountpoints, &list);
1785 
1786 	if (need_notify_mnt_list()) {
1787 		/*
1788 		 * No point blocking out concurrent readers while notifications
1789 		 * are sent. This will also allow statmount()/listmount() to run
1790 		 * concurrently.
1791 		 */
1792 		downgrade_write(&namespace_sem);
1793 		notify_mnt_list();
1794 		up_read(&namespace_sem);
1795 	} else {
1796 		up_write(&namespace_sem);
1797 	}
1798 
1799 	shrink_dentry_list(&list);
1800 
1801 	if (likely(hlist_empty(&head)))
1802 		return;
1803 
1804 	synchronize_rcu_expedited();
1805 
1806 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1807 		hlist_del(&m->mnt_umount);
1808 		mntput(&m->mnt);
1809 	}
1810 }
1811 
1812 static inline void namespace_lock(void)
1813 {
1814 	down_write(&namespace_sem);
1815 }
1816 
1817 enum umount_tree_flags {
1818 	UMOUNT_SYNC = 1,
1819 	UMOUNT_PROPAGATE = 2,
1820 	UMOUNT_CONNECTED = 4,
1821 };
1822 
1823 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1824 {
1825 	/* Leaving mounts connected is only valid for lazy umounts */
1826 	if (how & UMOUNT_SYNC)
1827 		return true;
1828 
1829 	/* A mount without a parent has nothing to be connected to */
1830 	if (!mnt_has_parent(mnt))
1831 		return true;
1832 
1833 	/* Because the reference counting rules change when mounts are
1834 	 * unmounted and connected, umounted mounts may not be
1835 	 * connected to mounted mounts.
1836 	 */
1837 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1838 		return true;
1839 
1840 	/* Has it been requested that the mount remain connected? */
1841 	if (how & UMOUNT_CONNECTED)
1842 		return false;
1843 
1844 	/* Is the mount locked such that it needs to remain connected? */
1845 	if (IS_MNT_LOCKED(mnt))
1846 		return false;
1847 
1848 	/* By default disconnect the mount */
1849 	return true;
1850 }
1851 
1852 /*
1853  * mount_lock must be held
1854  * namespace_sem must be held for write
1855  */
1856 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1857 {
1858 	LIST_HEAD(tmp_list);
1859 	struct mount *p;
1860 
1861 	if (how & UMOUNT_PROPAGATE)
1862 		propagate_mount_unlock(mnt);
1863 
1864 	/* Gather the mounts to umount */
1865 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1866 		p->mnt.mnt_flags |= MNT_UMOUNT;
1867 		if (mnt_ns_attached(p))
1868 			move_from_ns(p, &tmp_list);
1869 		else
1870 			list_move(&p->mnt_list, &tmp_list);
1871 	}
1872 
1873 	/* Hide the mounts from mnt_mounts */
1874 	list_for_each_entry(p, &tmp_list, mnt_list) {
1875 		list_del_init(&p->mnt_child);
1876 	}
1877 
1878 	/* Add propagated mounts to the tmp_list */
1879 	if (how & UMOUNT_PROPAGATE)
1880 		propagate_umount(&tmp_list);
1881 
1882 	while (!list_empty(&tmp_list)) {
1883 		struct mnt_namespace *ns;
1884 		bool disconnect;
1885 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1886 		list_del_init(&p->mnt_expire);
1887 		list_del_init(&p->mnt_list);
1888 		ns = p->mnt_ns;
1889 		if (ns) {
1890 			ns->nr_mounts--;
1891 			__touch_mnt_namespace(ns);
1892 		}
1893 		p->mnt_ns = NULL;
1894 		if (how & UMOUNT_SYNC)
1895 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1896 
1897 		disconnect = disconnect_mount(p, how);
1898 		if (mnt_has_parent(p)) {
1899 			mnt_add_count(p->mnt_parent, -1);
1900 			if (!disconnect) {
1901 				/* Don't forget about p */
1902 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1903 			} else {
1904 				umount_mnt(p);
1905 			}
1906 		}
1907 		change_mnt_propagation(p, MS_PRIVATE);
1908 		if (disconnect)
1909 			hlist_add_head(&p->mnt_umount, &unmounted);
1910 
1911 		/*
1912 		 * At this point p->mnt_ns is NULL, notification will be queued
1913 		 * only if
1914 		 *
1915 		 *  - p->prev_ns is non-NULL *and*
1916 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1917 		 *
1918 		 * This will preclude queuing the mount if this is a cleanup
1919 		 * after a failed copy_tree() or destruction of an anonymous
1920 		 * namespace, etc.
1921 		 */
1922 		mnt_notify_add(p);
1923 	}
1924 }
1925 
1926 static void shrink_submounts(struct mount *mnt);
1927 
1928 static int do_umount_root(struct super_block *sb)
1929 {
1930 	int ret = 0;
1931 
1932 	down_write(&sb->s_umount);
1933 	if (!sb_rdonly(sb)) {
1934 		struct fs_context *fc;
1935 
1936 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1937 						SB_RDONLY);
1938 		if (IS_ERR(fc)) {
1939 			ret = PTR_ERR(fc);
1940 		} else {
1941 			ret = parse_monolithic_mount_data(fc, NULL);
1942 			if (!ret)
1943 				ret = reconfigure_super(fc);
1944 			put_fs_context(fc);
1945 		}
1946 	}
1947 	up_write(&sb->s_umount);
1948 	return ret;
1949 }
1950 
1951 static int do_umount(struct mount *mnt, int flags)
1952 {
1953 	struct super_block *sb = mnt->mnt.mnt_sb;
1954 	int retval;
1955 
1956 	retval = security_sb_umount(&mnt->mnt, flags);
1957 	if (retval)
1958 		return retval;
1959 
1960 	/*
1961 	 * Allow userspace to request a mountpoint be expired rather than
1962 	 * unmounting unconditionally. Unmount only happens if:
1963 	 *  (1) the mark is already set (the mark is cleared by mntput())
1964 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1965 	 */
1966 	if (flags & MNT_EXPIRE) {
1967 		if (&mnt->mnt == current->fs->root.mnt ||
1968 		    flags & (MNT_FORCE | MNT_DETACH))
1969 			return -EINVAL;
1970 
1971 		/*
1972 		 * probably don't strictly need the lock here if we examined
1973 		 * all race cases, but it's a slowpath.
1974 		 */
1975 		lock_mount_hash();
1976 		if (mnt_get_count(mnt) != 2) {
1977 			unlock_mount_hash();
1978 			return -EBUSY;
1979 		}
1980 		unlock_mount_hash();
1981 
1982 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1983 			return -EAGAIN;
1984 	}
1985 
1986 	/*
1987 	 * If we may have to abort operations to get out of this
1988 	 * mount, and they will themselves hold resources we must
1989 	 * allow the fs to do things. In the Unix tradition of
1990 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1991 	 * might fail to complete on the first run through as other tasks
1992 	 * must return, and the like. Thats for the mount program to worry
1993 	 * about for the moment.
1994 	 */
1995 
1996 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1997 		sb->s_op->umount_begin(sb);
1998 	}
1999 
2000 	/*
2001 	 * No sense to grab the lock for this test, but test itself looks
2002 	 * somewhat bogus. Suggestions for better replacement?
2003 	 * Ho-hum... In principle, we might treat that as umount + switch
2004 	 * to rootfs. GC would eventually take care of the old vfsmount.
2005 	 * Actually it makes sense, especially if rootfs would contain a
2006 	 * /reboot - static binary that would close all descriptors and
2007 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
2008 	 */
2009 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
2010 		/*
2011 		 * Special case for "unmounting" root ...
2012 		 * we just try to remount it readonly.
2013 		 */
2014 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2015 			return -EPERM;
2016 		return do_umount_root(sb);
2017 	}
2018 
2019 	namespace_lock();
2020 	lock_mount_hash();
2021 
2022 	/* Recheck MNT_LOCKED with the locks held */
2023 	retval = -EINVAL;
2024 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
2025 		goto out;
2026 
2027 	event++;
2028 	if (flags & MNT_DETACH) {
2029 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2030 			umount_tree(mnt, UMOUNT_PROPAGATE);
2031 		retval = 0;
2032 	} else {
2033 		shrink_submounts(mnt);
2034 		retval = -EBUSY;
2035 		if (!propagate_mount_busy(mnt, 2)) {
2036 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2037 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2038 			retval = 0;
2039 		}
2040 	}
2041 out:
2042 	unlock_mount_hash();
2043 	namespace_unlock();
2044 	return retval;
2045 }
2046 
2047 /*
2048  * __detach_mounts - lazily unmount all mounts on the specified dentry
2049  *
2050  * During unlink, rmdir, and d_drop it is possible to loose the path
2051  * to an existing mountpoint, and wind up leaking the mount.
2052  * detach_mounts allows lazily unmounting those mounts instead of
2053  * leaking them.
2054  *
2055  * The caller may hold dentry->d_inode->i_mutex.
2056  */
2057 void __detach_mounts(struct dentry *dentry)
2058 {
2059 	struct mountpoint *mp;
2060 	struct mount *mnt;
2061 
2062 	namespace_lock();
2063 	lock_mount_hash();
2064 	mp = lookup_mountpoint(dentry);
2065 	if (!mp)
2066 		goto out_unlock;
2067 
2068 	event++;
2069 	while (!hlist_empty(&mp->m_list)) {
2070 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
2071 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2072 			umount_mnt(mnt);
2073 			hlist_add_head(&mnt->mnt_umount, &unmounted);
2074 		}
2075 		else umount_tree(mnt, UMOUNT_CONNECTED);
2076 	}
2077 	put_mountpoint(mp);
2078 out_unlock:
2079 	unlock_mount_hash();
2080 	namespace_unlock();
2081 }
2082 
2083 /*
2084  * Is the caller allowed to modify his namespace?
2085  */
2086 bool may_mount(void)
2087 {
2088 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2089 }
2090 
2091 static void warn_mandlock(void)
2092 {
2093 	pr_warn_once("=======================================================\n"
2094 		     "WARNING: The mand mount option has been deprecated and\n"
2095 		     "         and is ignored by this kernel. Remove the mand\n"
2096 		     "         option from the mount to silence this warning.\n"
2097 		     "=======================================================\n");
2098 }
2099 
2100 static int can_umount(const struct path *path, int flags)
2101 {
2102 	struct mount *mnt = real_mount(path->mnt);
2103 
2104 	if (!may_mount())
2105 		return -EPERM;
2106 	if (!path_mounted(path))
2107 		return -EINVAL;
2108 	if (!check_mnt(mnt))
2109 		return -EINVAL;
2110 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2111 		return -EINVAL;
2112 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2113 		return -EPERM;
2114 	return 0;
2115 }
2116 
2117 // caller is responsible for flags being sane
2118 int path_umount(struct path *path, int flags)
2119 {
2120 	struct mount *mnt = real_mount(path->mnt);
2121 	int ret;
2122 
2123 	ret = can_umount(path, flags);
2124 	if (!ret)
2125 		ret = do_umount(mnt, flags);
2126 
2127 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2128 	dput(path->dentry);
2129 	mntput_no_expire(mnt);
2130 	return ret;
2131 }
2132 
2133 static int ksys_umount(char __user *name, int flags)
2134 {
2135 	int lookup_flags = LOOKUP_MOUNTPOINT;
2136 	struct path path;
2137 	int ret;
2138 
2139 	// basic validity checks done first
2140 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2141 		return -EINVAL;
2142 
2143 	if (!(flags & UMOUNT_NOFOLLOW))
2144 		lookup_flags |= LOOKUP_FOLLOW;
2145 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2146 	if (ret)
2147 		return ret;
2148 	return path_umount(&path, flags);
2149 }
2150 
2151 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2152 {
2153 	return ksys_umount(name, flags);
2154 }
2155 
2156 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2157 
2158 /*
2159  *	The 2.0 compatible umount. No flags.
2160  */
2161 SYSCALL_DEFINE1(oldumount, char __user *, name)
2162 {
2163 	return ksys_umount(name, 0);
2164 }
2165 
2166 #endif
2167 
2168 static bool is_mnt_ns_file(struct dentry *dentry)
2169 {
2170 	struct ns_common *ns;
2171 
2172 	/* Is this a proxy for a mount namespace? */
2173 	if (dentry->d_op != &ns_dentry_operations)
2174 		return false;
2175 
2176 	ns = d_inode(dentry)->i_private;
2177 
2178 	return ns->ops == &mntns_operations;
2179 }
2180 
2181 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2182 {
2183 	return &mnt->ns;
2184 }
2185 
2186 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2187 {
2188 	guard(rcu)();
2189 
2190 	for (;;) {
2191 		struct list_head *list;
2192 
2193 		if (previous)
2194 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2195 		else
2196 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2197 		if (list_is_head(list, &mnt_ns_list))
2198 			return ERR_PTR(-ENOENT);
2199 
2200 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2201 
2202 		/*
2203 		 * The last passive reference count is put with RCU
2204 		 * delay so accessing the mount namespace is not just
2205 		 * safe but all relevant members are still valid.
2206 		 */
2207 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2208 			continue;
2209 
2210 		/*
2211 		 * We need an active reference count as we're persisting
2212 		 * the mount namespace and it might already be on its
2213 		 * deathbed.
2214 		 */
2215 		if (!refcount_inc_not_zero(&mntns->ns.count))
2216 			continue;
2217 
2218 		return mntns;
2219 	}
2220 }
2221 
2222 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2223 {
2224 	if (!is_mnt_ns_file(dentry))
2225 		return NULL;
2226 
2227 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2228 }
2229 
2230 static bool mnt_ns_loop(struct dentry *dentry)
2231 {
2232 	/* Could bind mounting the mount namespace inode cause a
2233 	 * mount namespace loop?
2234 	 */
2235 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2236 
2237 	if (!mnt_ns)
2238 		return false;
2239 
2240 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2241 }
2242 
2243 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2244 					int flag)
2245 {
2246 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2247 		*dst_parent, *dst_mnt;
2248 
2249 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2250 		return ERR_PTR(-EINVAL);
2251 
2252 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2253 		return ERR_PTR(-EINVAL);
2254 
2255 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2256 	if (IS_ERR(dst_mnt))
2257 		return dst_mnt;
2258 
2259 	src_parent = src_root;
2260 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2261 
2262 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2263 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2264 			continue;
2265 
2266 		for (src_mnt = src_root_child; src_mnt;
2267 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2268 			if (!(flag & CL_COPY_UNBINDABLE) &&
2269 			    IS_MNT_UNBINDABLE(src_mnt)) {
2270 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2271 					/* Both unbindable and locked. */
2272 					dst_mnt = ERR_PTR(-EPERM);
2273 					goto out;
2274 				} else {
2275 					src_mnt = skip_mnt_tree(src_mnt);
2276 					continue;
2277 				}
2278 			}
2279 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2280 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2281 				src_mnt = skip_mnt_tree(src_mnt);
2282 				continue;
2283 			}
2284 			while (src_parent != src_mnt->mnt_parent) {
2285 				src_parent = src_parent->mnt_parent;
2286 				dst_mnt = dst_mnt->mnt_parent;
2287 			}
2288 
2289 			src_parent = src_mnt;
2290 			dst_parent = dst_mnt;
2291 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2292 			if (IS_ERR(dst_mnt))
2293 				goto out;
2294 			lock_mount_hash();
2295 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2296 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2297 			unlock_mount_hash();
2298 		}
2299 	}
2300 	return res;
2301 
2302 out:
2303 	if (res) {
2304 		lock_mount_hash();
2305 		umount_tree(res, UMOUNT_SYNC);
2306 		unlock_mount_hash();
2307 	}
2308 	return dst_mnt;
2309 }
2310 
2311 /* Caller should check returned pointer for errors */
2312 
2313 struct vfsmount *collect_mounts(const struct path *path)
2314 {
2315 	struct mount *tree;
2316 	namespace_lock();
2317 	if (!check_mnt(real_mount(path->mnt)))
2318 		tree = ERR_PTR(-EINVAL);
2319 	else
2320 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2321 				 CL_COPY_ALL | CL_PRIVATE);
2322 	namespace_unlock();
2323 	if (IS_ERR(tree))
2324 		return ERR_CAST(tree);
2325 	return &tree->mnt;
2326 }
2327 
2328 static void free_mnt_ns(struct mnt_namespace *);
2329 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2330 
2331 void dissolve_on_fput(struct vfsmount *mnt)
2332 {
2333 	struct mnt_namespace *ns;
2334 	namespace_lock();
2335 	lock_mount_hash();
2336 	ns = real_mount(mnt)->mnt_ns;
2337 	if (ns) {
2338 		if (is_anon_ns(ns))
2339 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2340 		else
2341 			ns = NULL;
2342 	}
2343 	unlock_mount_hash();
2344 	namespace_unlock();
2345 	if (ns)
2346 		free_mnt_ns(ns);
2347 }
2348 
2349 void drop_collected_mounts(struct vfsmount *mnt)
2350 {
2351 	namespace_lock();
2352 	lock_mount_hash();
2353 	umount_tree(real_mount(mnt), 0);
2354 	unlock_mount_hash();
2355 	namespace_unlock();
2356 }
2357 
2358 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2359 {
2360 	struct mount *child;
2361 
2362 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2363 		if (!is_subdir(child->mnt_mountpoint, dentry))
2364 			continue;
2365 
2366 		if (child->mnt.mnt_flags & MNT_LOCKED)
2367 			return true;
2368 	}
2369 	return false;
2370 }
2371 
2372 /*
2373  * Check that there aren't references to earlier/same mount namespaces in the
2374  * specified subtree.  Such references can act as pins for mount namespaces
2375  * that aren't checked by the mount-cycle checking code, thereby allowing
2376  * cycles to be made.
2377  */
2378 static bool check_for_nsfs_mounts(struct mount *subtree)
2379 {
2380 	struct mount *p;
2381 	bool ret = false;
2382 
2383 	lock_mount_hash();
2384 	for (p = subtree; p; p = next_mnt(p, subtree))
2385 		if (mnt_ns_loop(p->mnt.mnt_root))
2386 			goto out;
2387 
2388 	ret = true;
2389 out:
2390 	unlock_mount_hash();
2391 	return ret;
2392 }
2393 
2394 /**
2395  * clone_private_mount - create a private clone of a path
2396  * @path: path to clone
2397  *
2398  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2399  * will not be attached anywhere in the namespace and will be private (i.e.
2400  * changes to the originating mount won't be propagated into this).
2401  *
2402  * This assumes caller has called or done the equivalent of may_mount().
2403  *
2404  * Release with mntput().
2405  */
2406 struct vfsmount *clone_private_mount(const struct path *path)
2407 {
2408 	struct mount *old_mnt = real_mount(path->mnt);
2409 	struct mount *new_mnt;
2410 
2411 	scoped_guard(rwsem_read, &namespace_sem)
2412 	if (IS_MNT_UNBINDABLE(old_mnt))
2413 		return ERR_PTR(-EINVAL);
2414 
2415 	if (mnt_has_parent(old_mnt)) {
2416 		if (!check_mnt(old_mnt))
2417 			return ERR_PTR(-EINVAL);
2418 	} else {
2419 		if (!is_mounted(&old_mnt->mnt))
2420 			return ERR_PTR(-EINVAL);
2421 
2422 		/* Make sure this isn't something purely kernel internal. */
2423 		if (!is_anon_ns(old_mnt->mnt_ns))
2424 			return ERR_PTR(-EINVAL);
2425 
2426 		/* Make sure we don't create mount namespace loops. */
2427 		if (!check_for_nsfs_mounts(old_mnt))
2428 			return ERR_PTR(-EINVAL);
2429 	}
2430 
2431 	if (has_locked_children(old_mnt, path->dentry))
2432 		return ERR_PTR(-EINVAL);
2433 
2434 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2435 	if (IS_ERR(new_mnt))
2436 		return ERR_PTR(-EINVAL);
2437 
2438 	/* Longterm mount to be removed by kern_unmount*() */
2439 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2440 	return &new_mnt->mnt;
2441 }
2442 EXPORT_SYMBOL_GPL(clone_private_mount);
2443 
2444 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2445 		   struct vfsmount *root)
2446 {
2447 	struct mount *mnt;
2448 	int res = f(root, arg);
2449 	if (res)
2450 		return res;
2451 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2452 		res = f(&mnt->mnt, arg);
2453 		if (res)
2454 			return res;
2455 	}
2456 	return 0;
2457 }
2458 
2459 static void lock_mnt_tree(struct mount *mnt)
2460 {
2461 	struct mount *p;
2462 
2463 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2464 		int flags = p->mnt.mnt_flags;
2465 		/* Don't allow unprivileged users to change mount flags */
2466 		flags |= MNT_LOCK_ATIME;
2467 
2468 		if (flags & MNT_READONLY)
2469 			flags |= MNT_LOCK_READONLY;
2470 
2471 		if (flags & MNT_NODEV)
2472 			flags |= MNT_LOCK_NODEV;
2473 
2474 		if (flags & MNT_NOSUID)
2475 			flags |= MNT_LOCK_NOSUID;
2476 
2477 		if (flags & MNT_NOEXEC)
2478 			flags |= MNT_LOCK_NOEXEC;
2479 		/* Don't allow unprivileged users to reveal what is under a mount */
2480 		if (list_empty(&p->mnt_expire))
2481 			flags |= MNT_LOCKED;
2482 		p->mnt.mnt_flags = flags;
2483 	}
2484 }
2485 
2486 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2487 {
2488 	struct mount *p;
2489 
2490 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2491 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2492 			mnt_release_group_id(p);
2493 	}
2494 }
2495 
2496 static int invent_group_ids(struct mount *mnt, bool recurse)
2497 {
2498 	struct mount *p;
2499 
2500 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2501 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2502 			int err = mnt_alloc_group_id(p);
2503 			if (err) {
2504 				cleanup_group_ids(mnt, p);
2505 				return err;
2506 			}
2507 		}
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2514 {
2515 	unsigned int max = READ_ONCE(sysctl_mount_max);
2516 	unsigned int mounts = 0;
2517 	struct mount *p;
2518 
2519 	if (ns->nr_mounts >= max)
2520 		return -ENOSPC;
2521 	max -= ns->nr_mounts;
2522 	if (ns->pending_mounts >= max)
2523 		return -ENOSPC;
2524 	max -= ns->pending_mounts;
2525 
2526 	for (p = mnt; p; p = next_mnt(p, mnt))
2527 		mounts++;
2528 
2529 	if (mounts > max)
2530 		return -ENOSPC;
2531 
2532 	ns->pending_mounts += mounts;
2533 	return 0;
2534 }
2535 
2536 enum mnt_tree_flags_t {
2537 	MNT_TREE_MOVE = BIT(0),
2538 	MNT_TREE_BENEATH = BIT(1),
2539 };
2540 
2541 /**
2542  * attach_recursive_mnt - attach a source mount tree
2543  * @source_mnt: mount tree to be attached
2544  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2545  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2546  * @flags:      modify how @source_mnt is supposed to be attached
2547  *
2548  *  NOTE: in the table below explains the semantics when a source mount
2549  *  of a given type is attached to a destination mount of a given type.
2550  * ---------------------------------------------------------------------------
2551  * |         BIND MOUNT OPERATION                                            |
2552  * |**************************************************************************
2553  * | source-->| shared        |       private  |       slave    | unbindable |
2554  * | dest     |               |                |                |            |
2555  * |   |      |               |                |                |            |
2556  * |   v      |               |                |                |            |
2557  * |**************************************************************************
2558  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2559  * |          |               |                |                |            |
2560  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2561  * ***************************************************************************
2562  * A bind operation clones the source mount and mounts the clone on the
2563  * destination mount.
2564  *
2565  * (++)  the cloned mount is propagated to all the mounts in the propagation
2566  * 	 tree of the destination mount and the cloned mount is added to
2567  * 	 the peer group of the source mount.
2568  * (+)   the cloned mount is created under the destination mount and is marked
2569  *       as shared. The cloned mount is added to the peer group of the source
2570  *       mount.
2571  * (+++) the mount is propagated to all the mounts in the propagation tree
2572  *       of the destination mount and the cloned mount is made slave
2573  *       of the same master as that of the source mount. The cloned mount
2574  *       is marked as 'shared and slave'.
2575  * (*)   the cloned mount is made a slave of the same master as that of the
2576  * 	 source mount.
2577  *
2578  * ---------------------------------------------------------------------------
2579  * |         		MOVE MOUNT OPERATION                                 |
2580  * |**************************************************************************
2581  * | source-->| shared        |       private  |       slave    | unbindable |
2582  * | dest     |               |                |                |            |
2583  * |   |      |               |                |                |            |
2584  * |   v      |               |                |                |            |
2585  * |**************************************************************************
2586  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2587  * |          |               |                |                |            |
2588  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2589  * ***************************************************************************
2590  *
2591  * (+)  the mount is moved to the destination. And is then propagated to
2592  * 	all the mounts in the propagation tree of the destination mount.
2593  * (+*)  the mount is moved to the destination.
2594  * (+++)  the mount is moved to the destination and is then propagated to
2595  * 	all the mounts belonging to the destination mount's propagation tree.
2596  * 	the mount is marked as 'shared and slave'.
2597  * (*)	the mount continues to be a slave at the new location.
2598  *
2599  * if the source mount is a tree, the operations explained above is
2600  * applied to each mount in the tree.
2601  * Must be called without spinlocks held, since this function can sleep
2602  * in allocations.
2603  *
2604  * Context: The function expects namespace_lock() to be held.
2605  * Return: If @source_mnt was successfully attached 0 is returned.
2606  *         Otherwise a negative error code is returned.
2607  */
2608 static int attach_recursive_mnt(struct mount *source_mnt,
2609 				struct mount *top_mnt,
2610 				struct mountpoint *dest_mp,
2611 				enum mnt_tree_flags_t flags)
2612 {
2613 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2614 	HLIST_HEAD(tree_list);
2615 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2616 	struct mountpoint *smp;
2617 	struct mount *child, *dest_mnt, *p;
2618 	struct hlist_node *n;
2619 	int err = 0;
2620 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2621 
2622 	/*
2623 	 * Preallocate a mountpoint in case the new mounts need to be
2624 	 * mounted beneath mounts on the same mountpoint.
2625 	 */
2626 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2627 	if (IS_ERR(smp))
2628 		return PTR_ERR(smp);
2629 
2630 	/* Is there space to add these mounts to the mount namespace? */
2631 	if (!moving) {
2632 		err = count_mounts(ns, source_mnt);
2633 		if (err)
2634 			goto out;
2635 	}
2636 
2637 	if (beneath)
2638 		dest_mnt = top_mnt->mnt_parent;
2639 	else
2640 		dest_mnt = top_mnt;
2641 
2642 	if (IS_MNT_SHARED(dest_mnt)) {
2643 		err = invent_group_ids(source_mnt, true);
2644 		if (err)
2645 			goto out;
2646 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2647 	}
2648 	lock_mount_hash();
2649 	if (err)
2650 		goto out_cleanup_ids;
2651 
2652 	if (IS_MNT_SHARED(dest_mnt)) {
2653 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2654 			set_mnt_shared(p);
2655 	}
2656 
2657 	if (moving) {
2658 		if (beneath)
2659 			dest_mp = smp;
2660 		unhash_mnt(source_mnt);
2661 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2662 		mnt_notify_add(source_mnt);
2663 		touch_mnt_namespace(source_mnt->mnt_ns);
2664 	} else {
2665 		if (source_mnt->mnt_ns) {
2666 			LIST_HEAD(head);
2667 
2668 			/* move from anon - the caller will destroy */
2669 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2670 				move_from_ns(p, &head);
2671 			list_del_init(&head);
2672 		}
2673 		if (beneath)
2674 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2675 		else
2676 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2677 		commit_tree(source_mnt);
2678 	}
2679 
2680 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2681 		struct mount *q;
2682 		hlist_del_init(&child->mnt_hash);
2683 		q = __lookup_mnt(&child->mnt_parent->mnt,
2684 				 child->mnt_mountpoint);
2685 		if (q)
2686 			mnt_change_mountpoint(child, smp, q);
2687 		/* Notice when we are propagating across user namespaces */
2688 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2689 			lock_mnt_tree(child);
2690 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2691 		commit_tree(child);
2692 	}
2693 	put_mountpoint(smp);
2694 	unlock_mount_hash();
2695 
2696 	return 0;
2697 
2698  out_cleanup_ids:
2699 	while (!hlist_empty(&tree_list)) {
2700 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2701 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2702 		umount_tree(child, UMOUNT_SYNC);
2703 	}
2704 	unlock_mount_hash();
2705 	cleanup_group_ids(source_mnt, NULL);
2706  out:
2707 	ns->pending_mounts = 0;
2708 
2709 	read_seqlock_excl(&mount_lock);
2710 	put_mountpoint(smp);
2711 	read_sequnlock_excl(&mount_lock);
2712 
2713 	return err;
2714 }
2715 
2716 /**
2717  * do_lock_mount - lock mount and mountpoint
2718  * @path:    target path
2719  * @beneath: whether the intention is to mount beneath @path
2720  *
2721  * Follow the mount stack on @path until the top mount @mnt is found. If
2722  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2723  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2724  * until nothing is stacked on top of it anymore.
2725  *
2726  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2727  * against concurrent removal of the new mountpoint from another mount
2728  * namespace.
2729  *
2730  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2731  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2732  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2733  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2734  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2735  * on top of it for @beneath.
2736  *
2737  * In addition, @beneath needs to make sure that @mnt hasn't been
2738  * unmounted or moved from its current mountpoint in between dropping
2739  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2740  * being unmounted would be detected later by e.g., calling
2741  * check_mnt(mnt) in the function it's called from. For the @beneath
2742  * case however, it's useful to detect it directly in do_lock_mount().
2743  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2744  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2745  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2746  *
2747  * Return: Either the target mountpoint on the top mount or the top
2748  *         mount's mountpoint.
2749  */
2750 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2751 {
2752 	struct vfsmount *mnt = path->mnt;
2753 	struct dentry *dentry;
2754 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2755 
2756 	for (;;) {
2757 		struct mount *m;
2758 
2759 		if (beneath) {
2760 			m = real_mount(mnt);
2761 			read_seqlock_excl(&mount_lock);
2762 			dentry = dget(m->mnt_mountpoint);
2763 			read_sequnlock_excl(&mount_lock);
2764 		} else {
2765 			dentry = path->dentry;
2766 		}
2767 
2768 		inode_lock(dentry->d_inode);
2769 		if (unlikely(cant_mount(dentry))) {
2770 			inode_unlock(dentry->d_inode);
2771 			goto out;
2772 		}
2773 
2774 		namespace_lock();
2775 
2776 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2777 			namespace_unlock();
2778 			inode_unlock(dentry->d_inode);
2779 			goto out;
2780 		}
2781 
2782 		mnt = lookup_mnt(path);
2783 		if (likely(!mnt))
2784 			break;
2785 
2786 		namespace_unlock();
2787 		inode_unlock(dentry->d_inode);
2788 		if (beneath)
2789 			dput(dentry);
2790 		path_put(path);
2791 		path->mnt = mnt;
2792 		path->dentry = dget(mnt->mnt_root);
2793 	}
2794 
2795 	mp = get_mountpoint(dentry);
2796 	if (IS_ERR(mp)) {
2797 		namespace_unlock();
2798 		inode_unlock(dentry->d_inode);
2799 	}
2800 
2801 out:
2802 	if (beneath)
2803 		dput(dentry);
2804 
2805 	return mp;
2806 }
2807 
2808 static inline struct mountpoint *lock_mount(struct path *path)
2809 {
2810 	return do_lock_mount(path, false);
2811 }
2812 
2813 static void unlock_mount(struct mountpoint *where)
2814 {
2815 	struct dentry *dentry = where->m_dentry;
2816 
2817 	read_seqlock_excl(&mount_lock);
2818 	put_mountpoint(where);
2819 	read_sequnlock_excl(&mount_lock);
2820 
2821 	namespace_unlock();
2822 	inode_unlock(dentry->d_inode);
2823 }
2824 
2825 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2826 {
2827 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2828 		return -EINVAL;
2829 
2830 	if (d_is_dir(mp->m_dentry) !=
2831 	      d_is_dir(mnt->mnt.mnt_root))
2832 		return -ENOTDIR;
2833 
2834 	return attach_recursive_mnt(mnt, p, mp, 0);
2835 }
2836 
2837 /*
2838  * Sanity check the flags to change_mnt_propagation.
2839  */
2840 
2841 static int flags_to_propagation_type(int ms_flags)
2842 {
2843 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2844 
2845 	/* Fail if any non-propagation flags are set */
2846 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2847 		return 0;
2848 	/* Only one propagation flag should be set */
2849 	if (!is_power_of_2(type))
2850 		return 0;
2851 	return type;
2852 }
2853 
2854 /*
2855  * recursively change the type of the mountpoint.
2856  */
2857 static int do_change_type(struct path *path, int ms_flags)
2858 {
2859 	struct mount *m;
2860 	struct mount *mnt = real_mount(path->mnt);
2861 	int recurse = ms_flags & MS_REC;
2862 	int type;
2863 	int err = 0;
2864 
2865 	if (!path_mounted(path))
2866 		return -EINVAL;
2867 
2868 	type = flags_to_propagation_type(ms_flags);
2869 	if (!type)
2870 		return -EINVAL;
2871 
2872 	namespace_lock();
2873 	if (type == MS_SHARED) {
2874 		err = invent_group_ids(mnt, recurse);
2875 		if (err)
2876 			goto out_unlock;
2877 	}
2878 
2879 	lock_mount_hash();
2880 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2881 		change_mnt_propagation(m, type);
2882 	unlock_mount_hash();
2883 
2884  out_unlock:
2885 	namespace_unlock();
2886 	return err;
2887 }
2888 
2889 static struct mount *__do_loopback(struct path *old_path, int recurse)
2890 {
2891 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2892 
2893 	if (IS_MNT_UNBINDABLE(old))
2894 		return mnt;
2895 
2896 	if (!check_mnt(old)) {
2897 		const struct dentry_operations *d_op = old_path->dentry->d_op;
2898 
2899 		if (d_op != &ns_dentry_operations &&
2900 		    d_op != &pidfs_dentry_operations)
2901 			return mnt;
2902 	}
2903 
2904 	if (!recurse && has_locked_children(old, old_path->dentry))
2905 		return mnt;
2906 
2907 	if (recurse)
2908 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2909 	else
2910 		mnt = clone_mnt(old, old_path->dentry, 0);
2911 
2912 	if (!IS_ERR(mnt))
2913 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2914 
2915 	return mnt;
2916 }
2917 
2918 /*
2919  * do loopback mount.
2920  */
2921 static int do_loopback(struct path *path, const char *old_name,
2922 				int recurse)
2923 {
2924 	struct path old_path;
2925 	struct mount *mnt = NULL, *parent;
2926 	struct mountpoint *mp;
2927 	int err;
2928 	if (!old_name || !*old_name)
2929 		return -EINVAL;
2930 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2931 	if (err)
2932 		return err;
2933 
2934 	err = -EINVAL;
2935 	if (mnt_ns_loop(old_path.dentry))
2936 		goto out;
2937 
2938 	mp = lock_mount(path);
2939 	if (IS_ERR(mp)) {
2940 		err = PTR_ERR(mp);
2941 		goto out;
2942 	}
2943 
2944 	parent = real_mount(path->mnt);
2945 	if (!check_mnt(parent))
2946 		goto out2;
2947 
2948 	mnt = __do_loopback(&old_path, recurse);
2949 	if (IS_ERR(mnt)) {
2950 		err = PTR_ERR(mnt);
2951 		goto out2;
2952 	}
2953 
2954 	err = graft_tree(mnt, parent, mp);
2955 	if (err) {
2956 		lock_mount_hash();
2957 		umount_tree(mnt, UMOUNT_SYNC);
2958 		unlock_mount_hash();
2959 	}
2960 out2:
2961 	unlock_mount(mp);
2962 out:
2963 	path_put(&old_path);
2964 	return err;
2965 }
2966 
2967 static struct file *open_detached_copy(struct path *path, bool recursive)
2968 {
2969 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2970 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2971 	struct mount *mnt, *p;
2972 	struct file *file;
2973 
2974 	if (IS_ERR(ns))
2975 		return ERR_CAST(ns);
2976 
2977 	namespace_lock();
2978 	mnt = __do_loopback(path, recursive);
2979 	if (IS_ERR(mnt)) {
2980 		namespace_unlock();
2981 		free_mnt_ns(ns);
2982 		return ERR_CAST(mnt);
2983 	}
2984 
2985 	lock_mount_hash();
2986 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2987 		mnt_add_to_ns(ns, p);
2988 		ns->nr_mounts++;
2989 	}
2990 	ns->root = mnt;
2991 	mntget(&mnt->mnt);
2992 	unlock_mount_hash();
2993 	namespace_unlock();
2994 
2995 	mntput(path->mnt);
2996 	path->mnt = &mnt->mnt;
2997 	file = dentry_open(path, O_PATH, current_cred());
2998 	if (IS_ERR(file))
2999 		dissolve_on_fput(path->mnt);
3000 	else
3001 		file->f_mode |= FMODE_NEED_UNMOUNT;
3002 	return file;
3003 }
3004 
3005 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3006 {
3007 	struct file *file;
3008 	struct path path;
3009 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3010 	bool detached = flags & OPEN_TREE_CLONE;
3011 	int error;
3012 	int fd;
3013 
3014 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3015 
3016 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3017 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3018 		      OPEN_TREE_CLOEXEC))
3019 		return -EINVAL;
3020 
3021 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3022 		return -EINVAL;
3023 
3024 	if (flags & AT_NO_AUTOMOUNT)
3025 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3026 	if (flags & AT_SYMLINK_NOFOLLOW)
3027 		lookup_flags &= ~LOOKUP_FOLLOW;
3028 	if (flags & AT_EMPTY_PATH)
3029 		lookup_flags |= LOOKUP_EMPTY;
3030 
3031 	if (detached && !may_mount())
3032 		return -EPERM;
3033 
3034 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3035 	if (fd < 0)
3036 		return fd;
3037 
3038 	error = user_path_at(dfd, filename, lookup_flags, &path);
3039 	if (unlikely(error)) {
3040 		file = ERR_PTR(error);
3041 	} else {
3042 		if (detached)
3043 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
3044 		else
3045 			file = dentry_open(&path, O_PATH, current_cred());
3046 		path_put(&path);
3047 	}
3048 	if (IS_ERR(file)) {
3049 		put_unused_fd(fd);
3050 		return PTR_ERR(file);
3051 	}
3052 	fd_install(fd, file);
3053 	return fd;
3054 }
3055 
3056 /*
3057  * Don't allow locked mount flags to be cleared.
3058  *
3059  * No locks need to be held here while testing the various MNT_LOCK
3060  * flags because those flags can never be cleared once they are set.
3061  */
3062 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3063 {
3064 	unsigned int fl = mnt->mnt.mnt_flags;
3065 
3066 	if ((fl & MNT_LOCK_READONLY) &&
3067 	    !(mnt_flags & MNT_READONLY))
3068 		return false;
3069 
3070 	if ((fl & MNT_LOCK_NODEV) &&
3071 	    !(mnt_flags & MNT_NODEV))
3072 		return false;
3073 
3074 	if ((fl & MNT_LOCK_NOSUID) &&
3075 	    !(mnt_flags & MNT_NOSUID))
3076 		return false;
3077 
3078 	if ((fl & MNT_LOCK_NOEXEC) &&
3079 	    !(mnt_flags & MNT_NOEXEC))
3080 		return false;
3081 
3082 	if ((fl & MNT_LOCK_ATIME) &&
3083 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3084 		return false;
3085 
3086 	return true;
3087 }
3088 
3089 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3090 {
3091 	bool readonly_request = (mnt_flags & MNT_READONLY);
3092 
3093 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3094 		return 0;
3095 
3096 	if (readonly_request)
3097 		return mnt_make_readonly(mnt);
3098 
3099 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3100 	return 0;
3101 }
3102 
3103 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3104 {
3105 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3106 	mnt->mnt.mnt_flags = mnt_flags;
3107 	touch_mnt_namespace(mnt->mnt_ns);
3108 }
3109 
3110 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3111 {
3112 	struct super_block *sb = mnt->mnt_sb;
3113 
3114 	if (!__mnt_is_readonly(mnt) &&
3115 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3116 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3117 		char *buf, *mntpath;
3118 
3119 		buf = (char *)__get_free_page(GFP_KERNEL);
3120 		if (buf)
3121 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3122 		else
3123 			mntpath = ERR_PTR(-ENOMEM);
3124 		if (IS_ERR(mntpath))
3125 			mntpath = "(unknown)";
3126 
3127 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3128 			sb->s_type->name,
3129 			is_mounted(mnt) ? "remounted" : "mounted",
3130 			mntpath, &sb->s_time_max,
3131 			(unsigned long long)sb->s_time_max);
3132 
3133 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3134 		if (buf)
3135 			free_page((unsigned long)buf);
3136 	}
3137 }
3138 
3139 /*
3140  * Handle reconfiguration of the mountpoint only without alteration of the
3141  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3142  * to mount(2).
3143  */
3144 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3145 {
3146 	struct super_block *sb = path->mnt->mnt_sb;
3147 	struct mount *mnt = real_mount(path->mnt);
3148 	int ret;
3149 
3150 	if (!check_mnt(mnt))
3151 		return -EINVAL;
3152 
3153 	if (!path_mounted(path))
3154 		return -EINVAL;
3155 
3156 	if (!can_change_locked_flags(mnt, mnt_flags))
3157 		return -EPERM;
3158 
3159 	/*
3160 	 * We're only checking whether the superblock is read-only not
3161 	 * changing it, so only take down_read(&sb->s_umount).
3162 	 */
3163 	down_read(&sb->s_umount);
3164 	lock_mount_hash();
3165 	ret = change_mount_ro_state(mnt, mnt_flags);
3166 	if (ret == 0)
3167 		set_mount_attributes(mnt, mnt_flags);
3168 	unlock_mount_hash();
3169 	up_read(&sb->s_umount);
3170 
3171 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3172 
3173 	return ret;
3174 }
3175 
3176 /*
3177  * change filesystem flags. dir should be a physical root of filesystem.
3178  * If you've mounted a non-root directory somewhere and want to do remount
3179  * on it - tough luck.
3180  */
3181 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3182 		      int mnt_flags, void *data)
3183 {
3184 	int err;
3185 	struct super_block *sb = path->mnt->mnt_sb;
3186 	struct mount *mnt = real_mount(path->mnt);
3187 	struct fs_context *fc;
3188 
3189 	if (!check_mnt(mnt))
3190 		return -EINVAL;
3191 
3192 	if (!path_mounted(path))
3193 		return -EINVAL;
3194 
3195 	if (!can_change_locked_flags(mnt, mnt_flags))
3196 		return -EPERM;
3197 
3198 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3199 	if (IS_ERR(fc))
3200 		return PTR_ERR(fc);
3201 
3202 	/*
3203 	 * Indicate to the filesystem that the remount request is coming
3204 	 * from the legacy mount system call.
3205 	 */
3206 	fc->oldapi = true;
3207 
3208 	err = parse_monolithic_mount_data(fc, data);
3209 	if (!err) {
3210 		down_write(&sb->s_umount);
3211 		err = -EPERM;
3212 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3213 			err = reconfigure_super(fc);
3214 			if (!err) {
3215 				lock_mount_hash();
3216 				set_mount_attributes(mnt, mnt_flags);
3217 				unlock_mount_hash();
3218 			}
3219 		}
3220 		up_write(&sb->s_umount);
3221 	}
3222 
3223 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3224 
3225 	put_fs_context(fc);
3226 	return err;
3227 }
3228 
3229 static inline int tree_contains_unbindable(struct mount *mnt)
3230 {
3231 	struct mount *p;
3232 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3233 		if (IS_MNT_UNBINDABLE(p))
3234 			return 1;
3235 	}
3236 	return 0;
3237 }
3238 
3239 static int do_set_group(struct path *from_path, struct path *to_path)
3240 {
3241 	struct mount *from, *to;
3242 	int err;
3243 
3244 	from = real_mount(from_path->mnt);
3245 	to = real_mount(to_path->mnt);
3246 
3247 	namespace_lock();
3248 
3249 	err = -EINVAL;
3250 	/* To and From must be mounted */
3251 	if (!is_mounted(&from->mnt))
3252 		goto out;
3253 	if (!is_mounted(&to->mnt))
3254 		goto out;
3255 
3256 	err = -EPERM;
3257 	/* We should be allowed to modify mount namespaces of both mounts */
3258 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3259 		goto out;
3260 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3261 		goto out;
3262 
3263 	err = -EINVAL;
3264 	/* To and From paths should be mount roots */
3265 	if (!path_mounted(from_path))
3266 		goto out;
3267 	if (!path_mounted(to_path))
3268 		goto out;
3269 
3270 	/* Setting sharing groups is only allowed across same superblock */
3271 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3272 		goto out;
3273 
3274 	/* From mount root should be wider than To mount root */
3275 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3276 		goto out;
3277 
3278 	/* From mount should not have locked children in place of To's root */
3279 	if (has_locked_children(from, to->mnt.mnt_root))
3280 		goto out;
3281 
3282 	/* Setting sharing groups is only allowed on private mounts */
3283 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3284 		goto out;
3285 
3286 	/* From should not be private */
3287 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3288 		goto out;
3289 
3290 	if (IS_MNT_SLAVE(from)) {
3291 		struct mount *m = from->mnt_master;
3292 
3293 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3294 		to->mnt_master = m;
3295 	}
3296 
3297 	if (IS_MNT_SHARED(from)) {
3298 		to->mnt_group_id = from->mnt_group_id;
3299 		list_add(&to->mnt_share, &from->mnt_share);
3300 		lock_mount_hash();
3301 		set_mnt_shared(to);
3302 		unlock_mount_hash();
3303 	}
3304 
3305 	err = 0;
3306 out:
3307 	namespace_unlock();
3308 	return err;
3309 }
3310 
3311 /**
3312  * path_overmounted - check if path is overmounted
3313  * @path: path to check
3314  *
3315  * Check if path is overmounted, i.e., if there's a mount on top of
3316  * @path->mnt with @path->dentry as mountpoint.
3317  *
3318  * Context: This function expects namespace_lock() to be held.
3319  * Return: If path is overmounted true is returned, false if not.
3320  */
3321 static inline bool path_overmounted(const struct path *path)
3322 {
3323 	rcu_read_lock();
3324 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3325 		rcu_read_unlock();
3326 		return true;
3327 	}
3328 	rcu_read_unlock();
3329 	return false;
3330 }
3331 
3332 /**
3333  * can_move_mount_beneath - check that we can mount beneath the top mount
3334  * @from: mount to mount beneath
3335  * @to:   mount under which to mount
3336  * @mp:   mountpoint of @to
3337  *
3338  * - Make sure that @to->dentry is actually the root of a mount under
3339  *   which we can mount another mount.
3340  * - Make sure that nothing can be mounted beneath the caller's current
3341  *   root or the rootfs of the namespace.
3342  * - Make sure that the caller can unmount the topmost mount ensuring
3343  *   that the caller could reveal the underlying mountpoint.
3344  * - Ensure that nothing has been mounted on top of @from before we
3345  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3346  * - Prevent mounting beneath a mount if the propagation relationship
3347  *   between the source mount, parent mount, and top mount would lead to
3348  *   nonsensical mount trees.
3349  *
3350  * Context: This function expects namespace_lock() to be held.
3351  * Return: On success 0, and on error a negative error code is returned.
3352  */
3353 static int can_move_mount_beneath(const struct path *from,
3354 				  const struct path *to,
3355 				  const struct mountpoint *mp)
3356 {
3357 	struct mount *mnt_from = real_mount(from->mnt),
3358 		     *mnt_to = real_mount(to->mnt),
3359 		     *parent_mnt_to = mnt_to->mnt_parent;
3360 
3361 	if (!mnt_has_parent(mnt_to))
3362 		return -EINVAL;
3363 
3364 	if (!path_mounted(to))
3365 		return -EINVAL;
3366 
3367 	if (IS_MNT_LOCKED(mnt_to))
3368 		return -EINVAL;
3369 
3370 	/* Avoid creating shadow mounts during mount propagation. */
3371 	if (path_overmounted(from))
3372 		return -EINVAL;
3373 
3374 	/*
3375 	 * Mounting beneath the rootfs only makes sense when the
3376 	 * semantics of pivot_root(".", ".") are used.
3377 	 */
3378 	if (&mnt_to->mnt == current->fs->root.mnt)
3379 		return -EINVAL;
3380 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3381 		return -EINVAL;
3382 
3383 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3384 		if (p == mnt_to)
3385 			return -EINVAL;
3386 
3387 	/*
3388 	 * If the parent mount propagates to the child mount this would
3389 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3390 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3391 	 * defeats the whole purpose of mounting beneath another mount.
3392 	 */
3393 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3394 		return -EINVAL;
3395 
3396 	/*
3397 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3398 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3399 	 * Afterwards @mnt_from would be mounted on top of
3400 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3401 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3402 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3403 	 * remounted on top of @c. Afterwards, @mnt_from would be
3404 	 * covered by a copy @c of @mnt_from and @c would be covered by
3405 	 * @mnt_from itself. This defeats the whole purpose of mounting
3406 	 * @mnt_from beneath @mnt_to.
3407 	 */
3408 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3409 		return -EINVAL;
3410 
3411 	return 0;
3412 }
3413 
3414 static int do_move_mount(struct path *old_path, struct path *new_path,
3415 			 bool beneath)
3416 {
3417 	struct mnt_namespace *ns;
3418 	struct mount *p;
3419 	struct mount *old;
3420 	struct mount *parent;
3421 	struct mountpoint *mp, *old_mp;
3422 	int err;
3423 	bool attached;
3424 	enum mnt_tree_flags_t flags = 0;
3425 
3426 	mp = do_lock_mount(new_path, beneath);
3427 	if (IS_ERR(mp))
3428 		return PTR_ERR(mp);
3429 
3430 	old = real_mount(old_path->mnt);
3431 	p = real_mount(new_path->mnt);
3432 	parent = old->mnt_parent;
3433 	attached = mnt_has_parent(old);
3434 	if (attached)
3435 		flags |= MNT_TREE_MOVE;
3436 	old_mp = old->mnt_mp;
3437 	ns = old->mnt_ns;
3438 
3439 	err = -EINVAL;
3440 	/* The mountpoint must be in our namespace. */
3441 	if (!check_mnt(p))
3442 		goto out;
3443 
3444 	/* The thing moved must be mounted... */
3445 	if (!is_mounted(&old->mnt))
3446 		goto out;
3447 
3448 	/* ... and either ours or the root of anon namespace */
3449 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3450 		goto out;
3451 
3452 	if (old->mnt.mnt_flags & MNT_LOCKED)
3453 		goto out;
3454 
3455 	if (!path_mounted(old_path))
3456 		goto out;
3457 
3458 	if (d_is_dir(new_path->dentry) !=
3459 	    d_is_dir(old_path->dentry))
3460 		goto out;
3461 	/*
3462 	 * Don't move a mount residing in a shared parent.
3463 	 */
3464 	if (attached && IS_MNT_SHARED(parent))
3465 		goto out;
3466 
3467 	if (beneath) {
3468 		err = can_move_mount_beneath(old_path, new_path, mp);
3469 		if (err)
3470 			goto out;
3471 
3472 		err = -EINVAL;
3473 		p = p->mnt_parent;
3474 		flags |= MNT_TREE_BENEATH;
3475 	}
3476 
3477 	/*
3478 	 * Don't move a mount tree containing unbindable mounts to a destination
3479 	 * mount which is shared.
3480 	 */
3481 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3482 		goto out;
3483 	err = -ELOOP;
3484 	if (!check_for_nsfs_mounts(old))
3485 		goto out;
3486 	for (; mnt_has_parent(p); p = p->mnt_parent)
3487 		if (p == old)
3488 			goto out;
3489 
3490 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3491 	if (err)
3492 		goto out;
3493 
3494 	/* if the mount is moved, it should no longer be expire
3495 	 * automatically */
3496 	list_del_init(&old->mnt_expire);
3497 	if (attached)
3498 		put_mountpoint(old_mp);
3499 out:
3500 	unlock_mount(mp);
3501 	if (!err) {
3502 		if (attached)
3503 			mntput_no_expire(parent);
3504 		else
3505 			free_mnt_ns(ns);
3506 	}
3507 	return err;
3508 }
3509 
3510 static int do_move_mount_old(struct path *path, const char *old_name)
3511 {
3512 	struct path old_path;
3513 	int err;
3514 
3515 	if (!old_name || !*old_name)
3516 		return -EINVAL;
3517 
3518 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3519 	if (err)
3520 		return err;
3521 
3522 	err = do_move_mount(&old_path, path, false);
3523 	path_put(&old_path);
3524 	return err;
3525 }
3526 
3527 /*
3528  * add a mount into a namespace's mount tree
3529  */
3530 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3531 			const struct path *path, int mnt_flags)
3532 {
3533 	struct mount *parent = real_mount(path->mnt);
3534 
3535 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3536 
3537 	if (unlikely(!check_mnt(parent))) {
3538 		/* that's acceptable only for automounts done in private ns */
3539 		if (!(mnt_flags & MNT_SHRINKABLE))
3540 			return -EINVAL;
3541 		/* ... and for those we'd better have mountpoint still alive */
3542 		if (!parent->mnt_ns)
3543 			return -EINVAL;
3544 	}
3545 
3546 	/* Refuse the same filesystem on the same mount point */
3547 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3548 		return -EBUSY;
3549 
3550 	if (d_is_symlink(newmnt->mnt.mnt_root))
3551 		return -EINVAL;
3552 
3553 	newmnt->mnt.mnt_flags = mnt_flags;
3554 	return graft_tree(newmnt, parent, mp);
3555 }
3556 
3557 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3558 
3559 /*
3560  * Create a new mount using a superblock configuration and request it
3561  * be added to the namespace tree.
3562  */
3563 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3564 			   unsigned int mnt_flags)
3565 {
3566 	struct vfsmount *mnt;
3567 	struct mountpoint *mp;
3568 	struct super_block *sb = fc->root->d_sb;
3569 	int error;
3570 
3571 	error = security_sb_kern_mount(sb);
3572 	if (!error && mount_too_revealing(sb, &mnt_flags))
3573 		error = -EPERM;
3574 
3575 	if (unlikely(error)) {
3576 		fc_drop_locked(fc);
3577 		return error;
3578 	}
3579 
3580 	up_write(&sb->s_umount);
3581 
3582 	mnt = vfs_create_mount(fc);
3583 	if (IS_ERR(mnt))
3584 		return PTR_ERR(mnt);
3585 
3586 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3587 
3588 	mp = lock_mount(mountpoint);
3589 	if (IS_ERR(mp)) {
3590 		mntput(mnt);
3591 		return PTR_ERR(mp);
3592 	}
3593 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3594 	unlock_mount(mp);
3595 	if (error < 0)
3596 		mntput(mnt);
3597 	return error;
3598 }
3599 
3600 /*
3601  * create a new mount for userspace and request it to be added into the
3602  * namespace's tree
3603  */
3604 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3605 			int mnt_flags, const char *name, void *data)
3606 {
3607 	struct file_system_type *type;
3608 	struct fs_context *fc;
3609 	const char *subtype = NULL;
3610 	int err = 0;
3611 
3612 	if (!fstype)
3613 		return -EINVAL;
3614 
3615 	type = get_fs_type(fstype);
3616 	if (!type)
3617 		return -ENODEV;
3618 
3619 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3620 		subtype = strchr(fstype, '.');
3621 		if (subtype) {
3622 			subtype++;
3623 			if (!*subtype) {
3624 				put_filesystem(type);
3625 				return -EINVAL;
3626 			}
3627 		}
3628 	}
3629 
3630 	fc = fs_context_for_mount(type, sb_flags);
3631 	put_filesystem(type);
3632 	if (IS_ERR(fc))
3633 		return PTR_ERR(fc);
3634 
3635 	/*
3636 	 * Indicate to the filesystem that the mount request is coming
3637 	 * from the legacy mount system call.
3638 	 */
3639 	fc->oldapi = true;
3640 
3641 	if (subtype)
3642 		err = vfs_parse_fs_string(fc, "subtype",
3643 					  subtype, strlen(subtype));
3644 	if (!err && name)
3645 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3646 	if (!err)
3647 		err = parse_monolithic_mount_data(fc, data);
3648 	if (!err && !mount_capable(fc))
3649 		err = -EPERM;
3650 	if (!err)
3651 		err = vfs_get_tree(fc);
3652 	if (!err)
3653 		err = do_new_mount_fc(fc, path, mnt_flags);
3654 
3655 	put_fs_context(fc);
3656 	return err;
3657 }
3658 
3659 int finish_automount(struct vfsmount *m, const struct path *path)
3660 {
3661 	struct dentry *dentry = path->dentry;
3662 	struct mountpoint *mp;
3663 	struct mount *mnt;
3664 	int err;
3665 
3666 	if (!m)
3667 		return 0;
3668 	if (IS_ERR(m))
3669 		return PTR_ERR(m);
3670 
3671 	mnt = real_mount(m);
3672 	/* The new mount record should have at least 2 refs to prevent it being
3673 	 * expired before we get a chance to add it
3674 	 */
3675 	BUG_ON(mnt_get_count(mnt) < 2);
3676 
3677 	if (m->mnt_sb == path->mnt->mnt_sb &&
3678 	    m->mnt_root == dentry) {
3679 		err = -ELOOP;
3680 		goto discard;
3681 	}
3682 
3683 	/*
3684 	 * we don't want to use lock_mount() - in this case finding something
3685 	 * that overmounts our mountpoint to be means "quitely drop what we've
3686 	 * got", not "try to mount it on top".
3687 	 */
3688 	inode_lock(dentry->d_inode);
3689 	namespace_lock();
3690 	if (unlikely(cant_mount(dentry))) {
3691 		err = -ENOENT;
3692 		goto discard_locked;
3693 	}
3694 	if (path_overmounted(path)) {
3695 		err = 0;
3696 		goto discard_locked;
3697 	}
3698 	mp = get_mountpoint(dentry);
3699 	if (IS_ERR(mp)) {
3700 		err = PTR_ERR(mp);
3701 		goto discard_locked;
3702 	}
3703 
3704 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3705 	unlock_mount(mp);
3706 	if (unlikely(err))
3707 		goto discard;
3708 	mntput(m);
3709 	return 0;
3710 
3711 discard_locked:
3712 	namespace_unlock();
3713 	inode_unlock(dentry->d_inode);
3714 discard:
3715 	/* remove m from any expiration list it may be on */
3716 	if (!list_empty(&mnt->mnt_expire)) {
3717 		namespace_lock();
3718 		list_del_init(&mnt->mnt_expire);
3719 		namespace_unlock();
3720 	}
3721 	mntput(m);
3722 	mntput(m);
3723 	return err;
3724 }
3725 
3726 /**
3727  * mnt_set_expiry - Put a mount on an expiration list
3728  * @mnt: The mount to list.
3729  * @expiry_list: The list to add the mount to.
3730  */
3731 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3732 {
3733 	namespace_lock();
3734 
3735 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3736 
3737 	namespace_unlock();
3738 }
3739 EXPORT_SYMBOL(mnt_set_expiry);
3740 
3741 /*
3742  * process a list of expirable mountpoints with the intent of discarding any
3743  * mountpoints that aren't in use and haven't been touched since last we came
3744  * here
3745  */
3746 void mark_mounts_for_expiry(struct list_head *mounts)
3747 {
3748 	struct mount *mnt, *next;
3749 	LIST_HEAD(graveyard);
3750 
3751 	if (list_empty(mounts))
3752 		return;
3753 
3754 	namespace_lock();
3755 	lock_mount_hash();
3756 
3757 	/* extract from the expiration list every vfsmount that matches the
3758 	 * following criteria:
3759 	 * - only referenced by its parent vfsmount
3760 	 * - still marked for expiry (marked on the last call here; marks are
3761 	 *   cleared by mntput())
3762 	 */
3763 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3764 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3765 			propagate_mount_busy(mnt, 1))
3766 			continue;
3767 		list_move(&mnt->mnt_expire, &graveyard);
3768 	}
3769 	while (!list_empty(&graveyard)) {
3770 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3771 		touch_mnt_namespace(mnt->mnt_ns);
3772 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3773 	}
3774 	unlock_mount_hash();
3775 	namespace_unlock();
3776 }
3777 
3778 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3779 
3780 /*
3781  * Ripoff of 'select_parent()'
3782  *
3783  * search the list of submounts for a given mountpoint, and move any
3784  * shrinkable submounts to the 'graveyard' list.
3785  */
3786 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3787 {
3788 	struct mount *this_parent = parent;
3789 	struct list_head *next;
3790 	int found = 0;
3791 
3792 repeat:
3793 	next = this_parent->mnt_mounts.next;
3794 resume:
3795 	while (next != &this_parent->mnt_mounts) {
3796 		struct list_head *tmp = next;
3797 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3798 
3799 		next = tmp->next;
3800 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3801 			continue;
3802 		/*
3803 		 * Descend a level if the d_mounts list is non-empty.
3804 		 */
3805 		if (!list_empty(&mnt->mnt_mounts)) {
3806 			this_parent = mnt;
3807 			goto repeat;
3808 		}
3809 
3810 		if (!propagate_mount_busy(mnt, 1)) {
3811 			list_move_tail(&mnt->mnt_expire, graveyard);
3812 			found++;
3813 		}
3814 	}
3815 	/*
3816 	 * All done at this level ... ascend and resume the search
3817 	 */
3818 	if (this_parent != parent) {
3819 		next = this_parent->mnt_child.next;
3820 		this_parent = this_parent->mnt_parent;
3821 		goto resume;
3822 	}
3823 	return found;
3824 }
3825 
3826 /*
3827  * process a list of expirable mountpoints with the intent of discarding any
3828  * submounts of a specific parent mountpoint
3829  *
3830  * mount_lock must be held for write
3831  */
3832 static void shrink_submounts(struct mount *mnt)
3833 {
3834 	LIST_HEAD(graveyard);
3835 	struct mount *m;
3836 
3837 	/* extract submounts of 'mountpoint' from the expiration list */
3838 	while (select_submounts(mnt, &graveyard)) {
3839 		while (!list_empty(&graveyard)) {
3840 			m = list_first_entry(&graveyard, struct mount,
3841 						mnt_expire);
3842 			touch_mnt_namespace(m->mnt_ns);
3843 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3844 		}
3845 	}
3846 }
3847 
3848 static void *copy_mount_options(const void __user * data)
3849 {
3850 	char *copy;
3851 	unsigned left, offset;
3852 
3853 	if (!data)
3854 		return NULL;
3855 
3856 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3857 	if (!copy)
3858 		return ERR_PTR(-ENOMEM);
3859 
3860 	left = copy_from_user(copy, data, PAGE_SIZE);
3861 
3862 	/*
3863 	 * Not all architectures have an exact copy_from_user(). Resort to
3864 	 * byte at a time.
3865 	 */
3866 	offset = PAGE_SIZE - left;
3867 	while (left) {
3868 		char c;
3869 		if (get_user(c, (const char __user *)data + offset))
3870 			break;
3871 		copy[offset] = c;
3872 		left--;
3873 		offset++;
3874 	}
3875 
3876 	if (left == PAGE_SIZE) {
3877 		kfree(copy);
3878 		return ERR_PTR(-EFAULT);
3879 	}
3880 
3881 	return copy;
3882 }
3883 
3884 static char *copy_mount_string(const void __user *data)
3885 {
3886 	return data ? strndup_user(data, PATH_MAX) : NULL;
3887 }
3888 
3889 /*
3890  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3891  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3892  *
3893  * data is a (void *) that can point to any structure up to
3894  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3895  * information (or be NULL).
3896  *
3897  * Pre-0.97 versions of mount() didn't have a flags word.
3898  * When the flags word was introduced its top half was required
3899  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3900  * Therefore, if this magic number is present, it carries no information
3901  * and must be discarded.
3902  */
3903 int path_mount(const char *dev_name, struct path *path,
3904 		const char *type_page, unsigned long flags, void *data_page)
3905 {
3906 	unsigned int mnt_flags = 0, sb_flags;
3907 	int ret;
3908 
3909 	/* Discard magic */
3910 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3911 		flags &= ~MS_MGC_MSK;
3912 
3913 	/* Basic sanity checks */
3914 	if (data_page)
3915 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3916 
3917 	if (flags & MS_NOUSER)
3918 		return -EINVAL;
3919 
3920 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3921 	if (ret)
3922 		return ret;
3923 	if (!may_mount())
3924 		return -EPERM;
3925 	if (flags & SB_MANDLOCK)
3926 		warn_mandlock();
3927 
3928 	/* Default to relatime unless overriden */
3929 	if (!(flags & MS_NOATIME))
3930 		mnt_flags |= MNT_RELATIME;
3931 
3932 	/* Separate the per-mountpoint flags */
3933 	if (flags & MS_NOSUID)
3934 		mnt_flags |= MNT_NOSUID;
3935 	if (flags & MS_NODEV)
3936 		mnt_flags |= MNT_NODEV;
3937 	if (flags & MS_NOEXEC)
3938 		mnt_flags |= MNT_NOEXEC;
3939 	if (flags & MS_NOATIME)
3940 		mnt_flags |= MNT_NOATIME;
3941 	if (flags & MS_NODIRATIME)
3942 		mnt_flags |= MNT_NODIRATIME;
3943 	if (flags & MS_STRICTATIME)
3944 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3945 	if (flags & MS_RDONLY)
3946 		mnt_flags |= MNT_READONLY;
3947 	if (flags & MS_NOSYMFOLLOW)
3948 		mnt_flags |= MNT_NOSYMFOLLOW;
3949 
3950 	/* The default atime for remount is preservation */
3951 	if ((flags & MS_REMOUNT) &&
3952 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3953 		       MS_STRICTATIME)) == 0)) {
3954 		mnt_flags &= ~MNT_ATIME_MASK;
3955 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3956 	}
3957 
3958 	sb_flags = flags & (SB_RDONLY |
3959 			    SB_SYNCHRONOUS |
3960 			    SB_MANDLOCK |
3961 			    SB_DIRSYNC |
3962 			    SB_SILENT |
3963 			    SB_POSIXACL |
3964 			    SB_LAZYTIME |
3965 			    SB_I_VERSION);
3966 
3967 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3968 		return do_reconfigure_mnt(path, mnt_flags);
3969 	if (flags & MS_REMOUNT)
3970 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3971 	if (flags & MS_BIND)
3972 		return do_loopback(path, dev_name, flags & MS_REC);
3973 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3974 		return do_change_type(path, flags);
3975 	if (flags & MS_MOVE)
3976 		return do_move_mount_old(path, dev_name);
3977 
3978 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3979 			    data_page);
3980 }
3981 
3982 int do_mount(const char *dev_name, const char __user *dir_name,
3983 		const char *type_page, unsigned long flags, void *data_page)
3984 {
3985 	struct path path;
3986 	int ret;
3987 
3988 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3989 	if (ret)
3990 		return ret;
3991 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3992 	path_put(&path);
3993 	return ret;
3994 }
3995 
3996 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3997 {
3998 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3999 }
4000 
4001 static void dec_mnt_namespaces(struct ucounts *ucounts)
4002 {
4003 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4004 }
4005 
4006 static void free_mnt_ns(struct mnt_namespace *ns)
4007 {
4008 	if (!is_anon_ns(ns))
4009 		ns_free_inum(&ns->ns);
4010 	dec_mnt_namespaces(ns->ucounts);
4011 	mnt_ns_tree_remove(ns);
4012 }
4013 
4014 /*
4015  * Assign a sequence number so we can detect when we attempt to bind
4016  * mount a reference to an older mount namespace into the current
4017  * mount namespace, preventing reference counting loops.  A 64bit
4018  * number incrementing at 10Ghz will take 12,427 years to wrap which
4019  * is effectively never, so we can ignore the possibility.
4020  */
4021 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4022 
4023 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4024 {
4025 	struct mnt_namespace *new_ns;
4026 	struct ucounts *ucounts;
4027 	int ret;
4028 
4029 	ucounts = inc_mnt_namespaces(user_ns);
4030 	if (!ucounts)
4031 		return ERR_PTR(-ENOSPC);
4032 
4033 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4034 	if (!new_ns) {
4035 		dec_mnt_namespaces(ucounts);
4036 		return ERR_PTR(-ENOMEM);
4037 	}
4038 	if (!anon) {
4039 		ret = ns_alloc_inum(&new_ns->ns);
4040 		if (ret) {
4041 			kfree(new_ns);
4042 			dec_mnt_namespaces(ucounts);
4043 			return ERR_PTR(ret);
4044 		}
4045 	}
4046 	new_ns->ns.ops = &mntns_operations;
4047 	if (!anon)
4048 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4049 	refcount_set(&new_ns->ns.count, 1);
4050 	refcount_set(&new_ns->passive, 1);
4051 	new_ns->mounts = RB_ROOT;
4052 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4053 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4054 	init_waitqueue_head(&new_ns->poll);
4055 	new_ns->user_ns = get_user_ns(user_ns);
4056 	new_ns->ucounts = ucounts;
4057 	return new_ns;
4058 }
4059 
4060 __latent_entropy
4061 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4062 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4063 {
4064 	struct mnt_namespace *new_ns;
4065 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4066 	struct mount *p, *q;
4067 	struct mount *old;
4068 	struct mount *new;
4069 	int copy_flags;
4070 
4071 	BUG_ON(!ns);
4072 
4073 	if (likely(!(flags & CLONE_NEWNS))) {
4074 		get_mnt_ns(ns);
4075 		return ns;
4076 	}
4077 
4078 	old = ns->root;
4079 
4080 	new_ns = alloc_mnt_ns(user_ns, false);
4081 	if (IS_ERR(new_ns))
4082 		return new_ns;
4083 
4084 	namespace_lock();
4085 	/* First pass: copy the tree topology */
4086 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4087 	if (user_ns != ns->user_ns)
4088 		copy_flags |= CL_SHARED_TO_SLAVE;
4089 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4090 	if (IS_ERR(new)) {
4091 		namespace_unlock();
4092 		ns_free_inum(&new_ns->ns);
4093 		dec_mnt_namespaces(new_ns->ucounts);
4094 		mnt_ns_release(new_ns);
4095 		return ERR_CAST(new);
4096 	}
4097 	if (user_ns != ns->user_ns) {
4098 		lock_mount_hash();
4099 		lock_mnt_tree(new);
4100 		unlock_mount_hash();
4101 	}
4102 	new_ns->root = new;
4103 
4104 	/*
4105 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4106 	 * as belonging to new namespace.  We have already acquired a private
4107 	 * fs_struct, so tsk->fs->lock is not needed.
4108 	 */
4109 	p = old;
4110 	q = new;
4111 	while (p) {
4112 		mnt_add_to_ns(new_ns, q);
4113 		new_ns->nr_mounts++;
4114 		if (new_fs) {
4115 			if (&p->mnt == new_fs->root.mnt) {
4116 				new_fs->root.mnt = mntget(&q->mnt);
4117 				rootmnt = &p->mnt;
4118 			}
4119 			if (&p->mnt == new_fs->pwd.mnt) {
4120 				new_fs->pwd.mnt = mntget(&q->mnt);
4121 				pwdmnt = &p->mnt;
4122 			}
4123 		}
4124 		p = next_mnt(p, old);
4125 		q = next_mnt(q, new);
4126 		if (!q)
4127 			break;
4128 		// an mntns binding we'd skipped?
4129 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4130 			p = next_mnt(skip_mnt_tree(p), old);
4131 	}
4132 	namespace_unlock();
4133 
4134 	if (rootmnt)
4135 		mntput(rootmnt);
4136 	if (pwdmnt)
4137 		mntput(pwdmnt);
4138 
4139 	mnt_ns_tree_add(new_ns);
4140 	return new_ns;
4141 }
4142 
4143 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4144 {
4145 	struct mount *mnt = real_mount(m);
4146 	struct mnt_namespace *ns;
4147 	struct super_block *s;
4148 	struct path path;
4149 	int err;
4150 
4151 	ns = alloc_mnt_ns(&init_user_ns, true);
4152 	if (IS_ERR(ns)) {
4153 		mntput(m);
4154 		return ERR_CAST(ns);
4155 	}
4156 	ns->root = mnt;
4157 	ns->nr_mounts++;
4158 	mnt_add_to_ns(ns, mnt);
4159 
4160 	err = vfs_path_lookup(m->mnt_root, m,
4161 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4162 
4163 	put_mnt_ns(ns);
4164 
4165 	if (err)
4166 		return ERR_PTR(err);
4167 
4168 	/* trade a vfsmount reference for active sb one */
4169 	s = path.mnt->mnt_sb;
4170 	atomic_inc(&s->s_active);
4171 	mntput(path.mnt);
4172 	/* lock the sucker */
4173 	down_write(&s->s_umount);
4174 	/* ... and return the root of (sub)tree on it */
4175 	return path.dentry;
4176 }
4177 EXPORT_SYMBOL(mount_subtree);
4178 
4179 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4180 		char __user *, type, unsigned long, flags, void __user *, data)
4181 {
4182 	int ret;
4183 	char *kernel_type;
4184 	char *kernel_dev;
4185 	void *options;
4186 
4187 	kernel_type = copy_mount_string(type);
4188 	ret = PTR_ERR(kernel_type);
4189 	if (IS_ERR(kernel_type))
4190 		goto out_type;
4191 
4192 	kernel_dev = copy_mount_string(dev_name);
4193 	ret = PTR_ERR(kernel_dev);
4194 	if (IS_ERR(kernel_dev))
4195 		goto out_dev;
4196 
4197 	options = copy_mount_options(data);
4198 	ret = PTR_ERR(options);
4199 	if (IS_ERR(options))
4200 		goto out_data;
4201 
4202 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4203 
4204 	kfree(options);
4205 out_data:
4206 	kfree(kernel_dev);
4207 out_dev:
4208 	kfree(kernel_type);
4209 out_type:
4210 	return ret;
4211 }
4212 
4213 #define FSMOUNT_VALID_FLAGS                                                    \
4214 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4215 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4216 	 MOUNT_ATTR_NOSYMFOLLOW)
4217 
4218 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4219 
4220 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4221 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4222 
4223 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4224 {
4225 	unsigned int mnt_flags = 0;
4226 
4227 	if (attr_flags & MOUNT_ATTR_RDONLY)
4228 		mnt_flags |= MNT_READONLY;
4229 	if (attr_flags & MOUNT_ATTR_NOSUID)
4230 		mnt_flags |= MNT_NOSUID;
4231 	if (attr_flags & MOUNT_ATTR_NODEV)
4232 		mnt_flags |= MNT_NODEV;
4233 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4234 		mnt_flags |= MNT_NOEXEC;
4235 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4236 		mnt_flags |= MNT_NODIRATIME;
4237 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4238 		mnt_flags |= MNT_NOSYMFOLLOW;
4239 
4240 	return mnt_flags;
4241 }
4242 
4243 /*
4244  * Create a kernel mount representation for a new, prepared superblock
4245  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4246  */
4247 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4248 		unsigned int, attr_flags)
4249 {
4250 	struct mnt_namespace *ns;
4251 	struct fs_context *fc;
4252 	struct file *file;
4253 	struct path newmount;
4254 	struct mount *mnt;
4255 	unsigned int mnt_flags = 0;
4256 	long ret;
4257 
4258 	if (!may_mount())
4259 		return -EPERM;
4260 
4261 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4262 		return -EINVAL;
4263 
4264 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4265 		return -EINVAL;
4266 
4267 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4268 
4269 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4270 	case MOUNT_ATTR_STRICTATIME:
4271 		break;
4272 	case MOUNT_ATTR_NOATIME:
4273 		mnt_flags |= MNT_NOATIME;
4274 		break;
4275 	case MOUNT_ATTR_RELATIME:
4276 		mnt_flags |= MNT_RELATIME;
4277 		break;
4278 	default:
4279 		return -EINVAL;
4280 	}
4281 
4282 	CLASS(fd, f)(fs_fd);
4283 	if (fd_empty(f))
4284 		return -EBADF;
4285 
4286 	if (fd_file(f)->f_op != &fscontext_fops)
4287 		return -EINVAL;
4288 
4289 	fc = fd_file(f)->private_data;
4290 
4291 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4292 	if (ret < 0)
4293 		return ret;
4294 
4295 	/* There must be a valid superblock or we can't mount it */
4296 	ret = -EINVAL;
4297 	if (!fc->root)
4298 		goto err_unlock;
4299 
4300 	ret = -EPERM;
4301 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4302 		pr_warn("VFS: Mount too revealing\n");
4303 		goto err_unlock;
4304 	}
4305 
4306 	ret = -EBUSY;
4307 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4308 		goto err_unlock;
4309 
4310 	if (fc->sb_flags & SB_MANDLOCK)
4311 		warn_mandlock();
4312 
4313 	newmount.mnt = vfs_create_mount(fc);
4314 	if (IS_ERR(newmount.mnt)) {
4315 		ret = PTR_ERR(newmount.mnt);
4316 		goto err_unlock;
4317 	}
4318 	newmount.dentry = dget(fc->root);
4319 	newmount.mnt->mnt_flags = mnt_flags;
4320 
4321 	/* We've done the mount bit - now move the file context into more or
4322 	 * less the same state as if we'd done an fspick().  We don't want to
4323 	 * do any memory allocation or anything like that at this point as we
4324 	 * don't want to have to handle any errors incurred.
4325 	 */
4326 	vfs_clean_context(fc);
4327 
4328 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4329 	if (IS_ERR(ns)) {
4330 		ret = PTR_ERR(ns);
4331 		goto err_path;
4332 	}
4333 	mnt = real_mount(newmount.mnt);
4334 	ns->root = mnt;
4335 	ns->nr_mounts = 1;
4336 	mnt_add_to_ns(ns, mnt);
4337 	mntget(newmount.mnt);
4338 
4339 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4340 	 * it, not just simply put it.
4341 	 */
4342 	file = dentry_open(&newmount, O_PATH, fc->cred);
4343 	if (IS_ERR(file)) {
4344 		dissolve_on_fput(newmount.mnt);
4345 		ret = PTR_ERR(file);
4346 		goto err_path;
4347 	}
4348 	file->f_mode |= FMODE_NEED_UNMOUNT;
4349 
4350 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4351 	if (ret >= 0)
4352 		fd_install(ret, file);
4353 	else
4354 		fput(file);
4355 
4356 err_path:
4357 	path_put(&newmount);
4358 err_unlock:
4359 	mutex_unlock(&fc->uapi_mutex);
4360 	return ret;
4361 }
4362 
4363 /*
4364  * Move a mount from one place to another.  In combination with
4365  * fsopen()/fsmount() this is used to install a new mount and in combination
4366  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4367  * a mount subtree.
4368  *
4369  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4370  */
4371 SYSCALL_DEFINE5(move_mount,
4372 		int, from_dfd, const char __user *, from_pathname,
4373 		int, to_dfd, const char __user *, to_pathname,
4374 		unsigned int, flags)
4375 {
4376 	struct path from_path, to_path;
4377 	unsigned int lflags;
4378 	int ret = 0;
4379 
4380 	if (!may_mount())
4381 		return -EPERM;
4382 
4383 	if (flags & ~MOVE_MOUNT__MASK)
4384 		return -EINVAL;
4385 
4386 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4387 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4388 		return -EINVAL;
4389 
4390 	/* If someone gives a pathname, they aren't permitted to move
4391 	 * from an fd that requires unmount as we can't get at the flag
4392 	 * to clear it afterwards.
4393 	 */
4394 	lflags = 0;
4395 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4396 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4397 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4398 
4399 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4400 	if (ret < 0)
4401 		return ret;
4402 
4403 	lflags = 0;
4404 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4405 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4406 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4407 
4408 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4409 	if (ret < 0)
4410 		goto out_from;
4411 
4412 	ret = security_move_mount(&from_path, &to_path);
4413 	if (ret < 0)
4414 		goto out_to;
4415 
4416 	if (flags & MOVE_MOUNT_SET_GROUP)
4417 		ret = do_set_group(&from_path, &to_path);
4418 	else
4419 		ret = do_move_mount(&from_path, &to_path,
4420 				    (flags & MOVE_MOUNT_BENEATH));
4421 
4422 out_to:
4423 	path_put(&to_path);
4424 out_from:
4425 	path_put(&from_path);
4426 	return ret;
4427 }
4428 
4429 /*
4430  * Return true if path is reachable from root
4431  *
4432  * namespace_sem or mount_lock is held
4433  */
4434 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4435 			 const struct path *root)
4436 {
4437 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4438 		dentry = mnt->mnt_mountpoint;
4439 		mnt = mnt->mnt_parent;
4440 	}
4441 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4442 }
4443 
4444 bool path_is_under(const struct path *path1, const struct path *path2)
4445 {
4446 	bool res;
4447 	read_seqlock_excl(&mount_lock);
4448 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4449 	read_sequnlock_excl(&mount_lock);
4450 	return res;
4451 }
4452 EXPORT_SYMBOL(path_is_under);
4453 
4454 /*
4455  * pivot_root Semantics:
4456  * Moves the root file system of the current process to the directory put_old,
4457  * makes new_root as the new root file system of the current process, and sets
4458  * root/cwd of all processes which had them on the current root to new_root.
4459  *
4460  * Restrictions:
4461  * The new_root and put_old must be directories, and  must not be on the
4462  * same file  system as the current process root. The put_old  must  be
4463  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4464  * pointed to by put_old must yield the same directory as new_root. No other
4465  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4466  *
4467  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4468  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4469  * in this situation.
4470  *
4471  * Notes:
4472  *  - we don't move root/cwd if they are not at the root (reason: if something
4473  *    cared enough to change them, it's probably wrong to force them elsewhere)
4474  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4475  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4476  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4477  *    first.
4478  */
4479 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4480 		const char __user *, put_old)
4481 {
4482 	struct path new, old, root;
4483 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4484 	struct mountpoint *old_mp, *root_mp;
4485 	int error;
4486 
4487 	if (!may_mount())
4488 		return -EPERM;
4489 
4490 	error = user_path_at(AT_FDCWD, new_root,
4491 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4492 	if (error)
4493 		goto out0;
4494 
4495 	error = user_path_at(AT_FDCWD, put_old,
4496 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4497 	if (error)
4498 		goto out1;
4499 
4500 	error = security_sb_pivotroot(&old, &new);
4501 	if (error)
4502 		goto out2;
4503 
4504 	get_fs_root(current->fs, &root);
4505 	old_mp = lock_mount(&old);
4506 	error = PTR_ERR(old_mp);
4507 	if (IS_ERR(old_mp))
4508 		goto out3;
4509 
4510 	error = -EINVAL;
4511 	new_mnt = real_mount(new.mnt);
4512 	root_mnt = real_mount(root.mnt);
4513 	old_mnt = real_mount(old.mnt);
4514 	ex_parent = new_mnt->mnt_parent;
4515 	root_parent = root_mnt->mnt_parent;
4516 	if (IS_MNT_SHARED(old_mnt) ||
4517 		IS_MNT_SHARED(ex_parent) ||
4518 		IS_MNT_SHARED(root_parent))
4519 		goto out4;
4520 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4521 		goto out4;
4522 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4523 		goto out4;
4524 	error = -ENOENT;
4525 	if (d_unlinked(new.dentry))
4526 		goto out4;
4527 	error = -EBUSY;
4528 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4529 		goto out4; /* loop, on the same file system  */
4530 	error = -EINVAL;
4531 	if (!path_mounted(&root))
4532 		goto out4; /* not a mountpoint */
4533 	if (!mnt_has_parent(root_mnt))
4534 		goto out4; /* not attached */
4535 	if (!path_mounted(&new))
4536 		goto out4; /* not a mountpoint */
4537 	if (!mnt_has_parent(new_mnt))
4538 		goto out4; /* not attached */
4539 	/* make sure we can reach put_old from new_root */
4540 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4541 		goto out4;
4542 	/* make certain new is below the root */
4543 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4544 		goto out4;
4545 	lock_mount_hash();
4546 	umount_mnt(new_mnt);
4547 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4548 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4549 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4550 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4551 	}
4552 	/* mount old root on put_old */
4553 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4554 	/* mount new_root on / */
4555 	attach_mnt(new_mnt, root_parent, root_mp, false);
4556 	mnt_add_count(root_parent, -1);
4557 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4558 	/* A moved mount should not expire automatically */
4559 	list_del_init(&new_mnt->mnt_expire);
4560 	put_mountpoint(root_mp);
4561 	unlock_mount_hash();
4562 	mnt_notify_add(root_mnt);
4563 	mnt_notify_add(new_mnt);
4564 	chroot_fs_refs(&root, &new);
4565 	error = 0;
4566 out4:
4567 	unlock_mount(old_mp);
4568 	if (!error)
4569 		mntput_no_expire(ex_parent);
4570 out3:
4571 	path_put(&root);
4572 out2:
4573 	path_put(&old);
4574 out1:
4575 	path_put(&new);
4576 out0:
4577 	return error;
4578 }
4579 
4580 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4581 {
4582 	unsigned int flags = mnt->mnt.mnt_flags;
4583 
4584 	/*  flags to clear */
4585 	flags &= ~kattr->attr_clr;
4586 	/* flags to raise */
4587 	flags |= kattr->attr_set;
4588 
4589 	return flags;
4590 }
4591 
4592 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4593 {
4594 	struct vfsmount *m = &mnt->mnt;
4595 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4596 
4597 	if (!kattr->mnt_idmap)
4598 		return 0;
4599 
4600 	/*
4601 	 * Creating an idmapped mount with the filesystem wide idmapping
4602 	 * doesn't make sense so block that. We don't allow mushy semantics.
4603 	 */
4604 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4605 		return -EINVAL;
4606 
4607 	/*
4608 	 * Once a mount has been idmapped we don't allow it to change its
4609 	 * mapping. It makes things simpler and callers can just create
4610 	 * another bind-mount they can idmap if they want to.
4611 	 */
4612 	if (is_idmapped_mnt(m))
4613 		return -EPERM;
4614 
4615 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4616 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4617 		return -EINVAL;
4618 
4619 	/* The filesystem has turned off idmapped mounts. */
4620 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4621 		return -EINVAL;
4622 
4623 	/* We're not controlling the superblock. */
4624 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4625 		return -EPERM;
4626 
4627 	/* Mount has already been visible in the filesystem hierarchy. */
4628 	if (!is_anon_ns(mnt->mnt_ns))
4629 		return -EINVAL;
4630 
4631 	return 0;
4632 }
4633 
4634 /**
4635  * mnt_allow_writers() - check whether the attribute change allows writers
4636  * @kattr: the new mount attributes
4637  * @mnt: the mount to which @kattr will be applied
4638  *
4639  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4640  *
4641  * Return: true if writers need to be held, false if not
4642  */
4643 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4644 				     const struct mount *mnt)
4645 {
4646 	return (!(kattr->attr_set & MNT_READONLY) ||
4647 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4648 	       !kattr->mnt_idmap;
4649 }
4650 
4651 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4652 {
4653 	struct mount *m;
4654 	int err;
4655 
4656 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4657 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4658 			err = -EPERM;
4659 			break;
4660 		}
4661 
4662 		err = can_idmap_mount(kattr, m);
4663 		if (err)
4664 			break;
4665 
4666 		if (!mnt_allow_writers(kattr, m)) {
4667 			err = mnt_hold_writers(m);
4668 			if (err)
4669 				break;
4670 		}
4671 
4672 		if (!kattr->recurse)
4673 			return 0;
4674 	}
4675 
4676 	if (err) {
4677 		struct mount *p;
4678 
4679 		/*
4680 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4681 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4682 		 * mounts and needs to take care to include the first mount.
4683 		 */
4684 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4685 			/* If we had to hold writers unblock them. */
4686 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4687 				mnt_unhold_writers(p);
4688 
4689 			/*
4690 			 * We're done once the first mount we changed got
4691 			 * MNT_WRITE_HOLD unset.
4692 			 */
4693 			if (p == m)
4694 				break;
4695 		}
4696 	}
4697 	return err;
4698 }
4699 
4700 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4701 {
4702 	if (!kattr->mnt_idmap)
4703 		return;
4704 
4705 	/*
4706 	 * Pairs with smp_load_acquire() in mnt_idmap().
4707 	 *
4708 	 * Since we only allow a mount to change the idmapping once and
4709 	 * verified this in can_idmap_mount() we know that the mount has
4710 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4711 	 * references.
4712 	 */
4713 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4714 }
4715 
4716 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4717 {
4718 	struct mount *m;
4719 
4720 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4721 		unsigned int flags;
4722 
4723 		do_idmap_mount(kattr, m);
4724 		flags = recalc_flags(kattr, m);
4725 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4726 
4727 		/* If we had to hold writers unblock them. */
4728 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4729 			mnt_unhold_writers(m);
4730 
4731 		if (kattr->propagation)
4732 			change_mnt_propagation(m, kattr->propagation);
4733 		if (!kattr->recurse)
4734 			break;
4735 	}
4736 	touch_mnt_namespace(mnt->mnt_ns);
4737 }
4738 
4739 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4740 {
4741 	struct mount *mnt = real_mount(path->mnt);
4742 	int err = 0;
4743 
4744 	if (!path_mounted(path))
4745 		return -EINVAL;
4746 
4747 	if (kattr->mnt_userns) {
4748 		struct mnt_idmap *mnt_idmap;
4749 
4750 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4751 		if (IS_ERR(mnt_idmap))
4752 			return PTR_ERR(mnt_idmap);
4753 		kattr->mnt_idmap = mnt_idmap;
4754 	}
4755 
4756 	if (kattr->propagation) {
4757 		/*
4758 		 * Only take namespace_lock() if we're actually changing
4759 		 * propagation.
4760 		 */
4761 		namespace_lock();
4762 		if (kattr->propagation == MS_SHARED) {
4763 			err = invent_group_ids(mnt, kattr->recurse);
4764 			if (err) {
4765 				namespace_unlock();
4766 				return err;
4767 			}
4768 		}
4769 	}
4770 
4771 	err = -EINVAL;
4772 	lock_mount_hash();
4773 
4774 	/* Ensure that this isn't anything purely vfs internal. */
4775 	if (!is_mounted(&mnt->mnt))
4776 		goto out;
4777 
4778 	/*
4779 	 * If this is an attached mount make sure it's located in the callers
4780 	 * mount namespace. If it's not don't let the caller interact with it.
4781 	 *
4782 	 * If this mount doesn't have a parent it's most often simply a
4783 	 * detached mount with an anonymous mount namespace. IOW, something
4784 	 * that's simply not attached yet. But there are apparently also users
4785 	 * that do change mount properties on the rootfs itself. That obviously
4786 	 * neither has a parent nor is it a detached mount so we cannot
4787 	 * unconditionally check for detached mounts.
4788 	 */
4789 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4790 		goto out;
4791 
4792 	/*
4793 	 * First, we get the mount tree in a shape where we can change mount
4794 	 * properties without failure. If we succeeded to do so we commit all
4795 	 * changes and if we failed we clean up.
4796 	 */
4797 	err = mount_setattr_prepare(kattr, mnt);
4798 	if (!err)
4799 		mount_setattr_commit(kattr, mnt);
4800 
4801 out:
4802 	unlock_mount_hash();
4803 
4804 	if (kattr->propagation) {
4805 		if (err)
4806 			cleanup_group_ids(mnt, NULL);
4807 		namespace_unlock();
4808 	}
4809 
4810 	return err;
4811 }
4812 
4813 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4814 				struct mount_kattr *kattr, unsigned int flags)
4815 {
4816 	struct ns_common *ns;
4817 	struct user_namespace *mnt_userns;
4818 
4819 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4820 		return 0;
4821 
4822 	/*
4823 	 * We currently do not support clearing an idmapped mount. If this ever
4824 	 * is a use-case we can revisit this but for now let's keep it simple
4825 	 * and not allow it.
4826 	 */
4827 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4828 		return -EINVAL;
4829 
4830 	if (attr->userns_fd > INT_MAX)
4831 		return -EINVAL;
4832 
4833 	CLASS(fd, f)(attr->userns_fd);
4834 	if (fd_empty(f))
4835 		return -EBADF;
4836 
4837 	if (!proc_ns_file(fd_file(f)))
4838 		return -EINVAL;
4839 
4840 	ns = get_proc_ns(file_inode(fd_file(f)));
4841 	if (ns->ops->type != CLONE_NEWUSER)
4842 		return -EINVAL;
4843 
4844 	/*
4845 	 * The initial idmapping cannot be used to create an idmapped
4846 	 * mount. We use the initial idmapping as an indicator of a mount
4847 	 * that is not idmapped. It can simply be passed into helpers that
4848 	 * are aware of idmapped mounts as a convenient shortcut. A user
4849 	 * can just create a dedicated identity mapping to achieve the same
4850 	 * result.
4851 	 */
4852 	mnt_userns = container_of(ns, struct user_namespace, ns);
4853 	if (mnt_userns == &init_user_ns)
4854 		return -EPERM;
4855 
4856 	/* We're not controlling the target namespace. */
4857 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4858 		return -EPERM;
4859 
4860 	kattr->mnt_userns = get_user_ns(mnt_userns);
4861 	return 0;
4862 }
4863 
4864 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4865 			     struct mount_kattr *kattr, unsigned int flags)
4866 {
4867 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4868 
4869 	if (flags & AT_NO_AUTOMOUNT)
4870 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4871 	if (flags & AT_SYMLINK_NOFOLLOW)
4872 		lookup_flags &= ~LOOKUP_FOLLOW;
4873 	if (flags & AT_EMPTY_PATH)
4874 		lookup_flags |= LOOKUP_EMPTY;
4875 
4876 	*kattr = (struct mount_kattr) {
4877 		.lookup_flags	= lookup_flags,
4878 		.recurse	= !!(flags & AT_RECURSIVE),
4879 	};
4880 
4881 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4882 		return -EINVAL;
4883 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4884 		return -EINVAL;
4885 	kattr->propagation = attr->propagation;
4886 
4887 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4888 		return -EINVAL;
4889 
4890 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4891 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4892 
4893 	/*
4894 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4895 	 * users wanting to transition to a different atime setting cannot
4896 	 * simply specify the atime setting in @attr_set, but must also
4897 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4898 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4899 	 * @attr_clr and that @attr_set can't have any atime bits set if
4900 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4901 	 */
4902 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4903 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4904 			return -EINVAL;
4905 
4906 		/*
4907 		 * Clear all previous time settings as they are mutually
4908 		 * exclusive.
4909 		 */
4910 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4911 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4912 		case MOUNT_ATTR_RELATIME:
4913 			kattr->attr_set |= MNT_RELATIME;
4914 			break;
4915 		case MOUNT_ATTR_NOATIME:
4916 			kattr->attr_set |= MNT_NOATIME;
4917 			break;
4918 		case MOUNT_ATTR_STRICTATIME:
4919 			break;
4920 		default:
4921 			return -EINVAL;
4922 		}
4923 	} else {
4924 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4925 			return -EINVAL;
4926 	}
4927 
4928 	return build_mount_idmapped(attr, usize, kattr, flags);
4929 }
4930 
4931 static void finish_mount_kattr(struct mount_kattr *kattr)
4932 {
4933 	put_user_ns(kattr->mnt_userns);
4934 	kattr->mnt_userns = NULL;
4935 
4936 	if (kattr->mnt_idmap)
4937 		mnt_idmap_put(kattr->mnt_idmap);
4938 }
4939 
4940 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4941 		unsigned int, flags, struct mount_attr __user *, uattr,
4942 		size_t, usize)
4943 {
4944 	int err;
4945 	struct path target;
4946 	struct mount_attr attr;
4947 	struct mount_kattr kattr;
4948 
4949 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4950 
4951 	if (flags & ~(AT_EMPTY_PATH |
4952 		      AT_RECURSIVE |
4953 		      AT_SYMLINK_NOFOLLOW |
4954 		      AT_NO_AUTOMOUNT))
4955 		return -EINVAL;
4956 
4957 	if (unlikely(usize > PAGE_SIZE))
4958 		return -E2BIG;
4959 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4960 		return -EINVAL;
4961 
4962 	if (!may_mount())
4963 		return -EPERM;
4964 
4965 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4966 	if (err)
4967 		return err;
4968 
4969 	/* Don't bother walking through the mounts if this is a nop. */
4970 	if (attr.attr_set == 0 &&
4971 	    attr.attr_clr == 0 &&
4972 	    attr.propagation == 0)
4973 		return 0;
4974 
4975 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4976 	if (err)
4977 		return err;
4978 
4979 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4980 	if (!err) {
4981 		err = do_mount_setattr(&target, &kattr);
4982 		path_put(&target);
4983 	}
4984 	finish_mount_kattr(&kattr);
4985 	return err;
4986 }
4987 
4988 int show_path(struct seq_file *m, struct dentry *root)
4989 {
4990 	if (root->d_sb->s_op->show_path)
4991 		return root->d_sb->s_op->show_path(m, root);
4992 
4993 	seq_dentry(m, root, " \t\n\\");
4994 	return 0;
4995 }
4996 
4997 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4998 {
4999 	struct mount *mnt = mnt_find_id_at(ns, id);
5000 
5001 	if (!mnt || mnt->mnt_id_unique != id)
5002 		return NULL;
5003 
5004 	return &mnt->mnt;
5005 }
5006 
5007 struct kstatmount {
5008 	struct statmount __user *buf;
5009 	size_t bufsize;
5010 	struct vfsmount *mnt;
5011 	u64 mask;
5012 	struct path root;
5013 	struct statmount sm;
5014 	struct seq_file seq;
5015 };
5016 
5017 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5018 {
5019 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5020 	u64 attr_flags = 0;
5021 
5022 	if (mnt_flags & MNT_READONLY)
5023 		attr_flags |= MOUNT_ATTR_RDONLY;
5024 	if (mnt_flags & MNT_NOSUID)
5025 		attr_flags |= MOUNT_ATTR_NOSUID;
5026 	if (mnt_flags & MNT_NODEV)
5027 		attr_flags |= MOUNT_ATTR_NODEV;
5028 	if (mnt_flags & MNT_NOEXEC)
5029 		attr_flags |= MOUNT_ATTR_NOEXEC;
5030 	if (mnt_flags & MNT_NODIRATIME)
5031 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5032 	if (mnt_flags & MNT_NOSYMFOLLOW)
5033 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5034 
5035 	if (mnt_flags & MNT_NOATIME)
5036 		attr_flags |= MOUNT_ATTR_NOATIME;
5037 	else if (mnt_flags & MNT_RELATIME)
5038 		attr_flags |= MOUNT_ATTR_RELATIME;
5039 	else
5040 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5041 
5042 	if (is_idmapped_mnt(mnt))
5043 		attr_flags |= MOUNT_ATTR_IDMAP;
5044 
5045 	return attr_flags;
5046 }
5047 
5048 static u64 mnt_to_propagation_flags(struct mount *m)
5049 {
5050 	u64 propagation = 0;
5051 
5052 	if (IS_MNT_SHARED(m))
5053 		propagation |= MS_SHARED;
5054 	if (IS_MNT_SLAVE(m))
5055 		propagation |= MS_SLAVE;
5056 	if (IS_MNT_UNBINDABLE(m))
5057 		propagation |= MS_UNBINDABLE;
5058 	if (!propagation)
5059 		propagation |= MS_PRIVATE;
5060 
5061 	return propagation;
5062 }
5063 
5064 static void statmount_sb_basic(struct kstatmount *s)
5065 {
5066 	struct super_block *sb = s->mnt->mnt_sb;
5067 
5068 	s->sm.mask |= STATMOUNT_SB_BASIC;
5069 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5070 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5071 	s->sm.sb_magic = sb->s_magic;
5072 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5073 }
5074 
5075 static void statmount_mnt_basic(struct kstatmount *s)
5076 {
5077 	struct mount *m = real_mount(s->mnt);
5078 
5079 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5080 	s->sm.mnt_id = m->mnt_id_unique;
5081 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5082 	s->sm.mnt_id_old = m->mnt_id;
5083 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5084 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5085 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5086 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
5087 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5088 }
5089 
5090 static void statmount_propagate_from(struct kstatmount *s)
5091 {
5092 	struct mount *m = real_mount(s->mnt);
5093 
5094 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5095 	if (IS_MNT_SLAVE(m))
5096 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5097 }
5098 
5099 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5100 {
5101 	int ret;
5102 	size_t start = seq->count;
5103 
5104 	ret = show_path(seq, s->mnt->mnt_root);
5105 	if (ret)
5106 		return ret;
5107 
5108 	if (unlikely(seq_has_overflowed(seq)))
5109 		return -EAGAIN;
5110 
5111 	/*
5112          * Unescape the result. It would be better if supplied string was not
5113          * escaped in the first place, but that's a pretty invasive change.
5114          */
5115 	seq->buf[seq->count] = '\0';
5116 	seq->count = start;
5117 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5118 	return 0;
5119 }
5120 
5121 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5122 {
5123 	struct vfsmount *mnt = s->mnt;
5124 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5125 	int err;
5126 
5127 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5128 	return err == SEQ_SKIP ? 0 : err;
5129 }
5130 
5131 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5132 {
5133 	struct super_block *sb = s->mnt->mnt_sb;
5134 
5135 	seq_puts(seq, sb->s_type->name);
5136 	return 0;
5137 }
5138 
5139 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5140 {
5141 	struct super_block *sb = s->mnt->mnt_sb;
5142 
5143 	if (sb->s_subtype)
5144 		seq_puts(seq, sb->s_subtype);
5145 }
5146 
5147 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5148 {
5149 	struct super_block *sb = s->mnt->mnt_sb;
5150 	struct mount *r = real_mount(s->mnt);
5151 
5152 	if (sb->s_op->show_devname) {
5153 		size_t start = seq->count;
5154 		int ret;
5155 
5156 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5157 		if (ret)
5158 			return ret;
5159 
5160 		if (unlikely(seq_has_overflowed(seq)))
5161 			return -EAGAIN;
5162 
5163 		/* Unescape the result */
5164 		seq->buf[seq->count] = '\0';
5165 		seq->count = start;
5166 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5167 	} else if (r->mnt_devname) {
5168 		seq_puts(seq, r->mnt_devname);
5169 	}
5170 	return 0;
5171 }
5172 
5173 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5174 {
5175 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5176 	s->sm.mnt_ns_id = ns->seq;
5177 }
5178 
5179 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5180 {
5181 	struct vfsmount *mnt = s->mnt;
5182 	struct super_block *sb = mnt->mnt_sb;
5183 	int err;
5184 
5185 	if (sb->s_op->show_options) {
5186 		size_t start = seq->count;
5187 
5188 		err = security_sb_show_options(seq, sb);
5189 		if (err)
5190 			return err;
5191 
5192 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5193 		if (err)
5194 			return err;
5195 
5196 		if (unlikely(seq_has_overflowed(seq)))
5197 			return -EAGAIN;
5198 
5199 		if (seq->count == start)
5200 			return 0;
5201 
5202 		/* skip leading comma */
5203 		memmove(seq->buf + start, seq->buf + start + 1,
5204 			seq->count - start - 1);
5205 		seq->count--;
5206 	}
5207 
5208 	return 0;
5209 }
5210 
5211 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5212 {
5213 	char *buf_end, *opt_end, *src, *dst;
5214 	int count = 0;
5215 
5216 	if (unlikely(seq_has_overflowed(seq)))
5217 		return -EAGAIN;
5218 
5219 	buf_end = seq->buf + seq->count;
5220 	dst = seq->buf + start;
5221 	src = dst + 1;	/* skip initial comma */
5222 
5223 	if (src >= buf_end) {
5224 		seq->count = start;
5225 		return 0;
5226 	}
5227 
5228 	*buf_end = '\0';
5229 	for (; src < buf_end; src = opt_end + 1) {
5230 		opt_end = strchrnul(src, ',');
5231 		*opt_end = '\0';
5232 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5233 		if (WARN_ON_ONCE(++count == INT_MAX))
5234 			return -EOVERFLOW;
5235 	}
5236 	seq->count = dst - 1 - seq->buf;
5237 	return count;
5238 }
5239 
5240 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5241 {
5242 	struct vfsmount *mnt = s->mnt;
5243 	struct super_block *sb = mnt->mnt_sb;
5244 	size_t start = seq->count;
5245 	int err;
5246 
5247 	if (!sb->s_op->show_options)
5248 		return 0;
5249 
5250 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5251 	if (err)
5252 		return err;
5253 
5254 	err = statmount_opt_process(seq, start);
5255 	if (err < 0)
5256 		return err;
5257 
5258 	s->sm.opt_num = err;
5259 	return 0;
5260 }
5261 
5262 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5263 {
5264 	struct vfsmount *mnt = s->mnt;
5265 	struct super_block *sb = mnt->mnt_sb;
5266 	size_t start = seq->count;
5267 	int err;
5268 
5269 	err = security_sb_show_options(seq, sb);
5270 	if (err)
5271 		return err;
5272 
5273 	err = statmount_opt_process(seq, start);
5274 	if (err < 0)
5275 		return err;
5276 
5277 	s->sm.opt_sec_num = err;
5278 	return 0;
5279 }
5280 
5281 static int statmount_string(struct kstatmount *s, u64 flag)
5282 {
5283 	int ret = 0;
5284 	size_t kbufsize;
5285 	struct seq_file *seq = &s->seq;
5286 	struct statmount *sm = &s->sm;
5287 	u32 start = seq->count;
5288 
5289 	switch (flag) {
5290 	case STATMOUNT_FS_TYPE:
5291 		sm->fs_type = start;
5292 		ret = statmount_fs_type(s, seq);
5293 		break;
5294 	case STATMOUNT_MNT_ROOT:
5295 		sm->mnt_root = start;
5296 		ret = statmount_mnt_root(s, seq);
5297 		break;
5298 	case STATMOUNT_MNT_POINT:
5299 		sm->mnt_point = start;
5300 		ret = statmount_mnt_point(s, seq);
5301 		break;
5302 	case STATMOUNT_MNT_OPTS:
5303 		sm->mnt_opts = start;
5304 		ret = statmount_mnt_opts(s, seq);
5305 		break;
5306 	case STATMOUNT_OPT_ARRAY:
5307 		sm->opt_array = start;
5308 		ret = statmount_opt_array(s, seq);
5309 		break;
5310 	case STATMOUNT_OPT_SEC_ARRAY:
5311 		sm->opt_sec_array = start;
5312 		ret = statmount_opt_sec_array(s, seq);
5313 		break;
5314 	case STATMOUNT_FS_SUBTYPE:
5315 		sm->fs_subtype = start;
5316 		statmount_fs_subtype(s, seq);
5317 		break;
5318 	case STATMOUNT_SB_SOURCE:
5319 		sm->sb_source = start;
5320 		ret = statmount_sb_source(s, seq);
5321 		break;
5322 	default:
5323 		WARN_ON_ONCE(true);
5324 		return -EINVAL;
5325 	}
5326 
5327 	/*
5328 	 * If nothing was emitted, return to avoid setting the flag
5329 	 * and terminating the buffer.
5330 	 */
5331 	if (seq->count == start)
5332 		return ret;
5333 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5334 		return -EOVERFLOW;
5335 	if (kbufsize >= s->bufsize)
5336 		return -EOVERFLOW;
5337 
5338 	/* signal a retry */
5339 	if (unlikely(seq_has_overflowed(seq)))
5340 		return -EAGAIN;
5341 
5342 	if (ret)
5343 		return ret;
5344 
5345 	seq->buf[seq->count++] = '\0';
5346 	sm->mask |= flag;
5347 	return 0;
5348 }
5349 
5350 static int copy_statmount_to_user(struct kstatmount *s)
5351 {
5352 	struct statmount *sm = &s->sm;
5353 	struct seq_file *seq = &s->seq;
5354 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5355 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5356 
5357 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5358 		return -EFAULT;
5359 
5360 	/* Return the number of bytes copied to the buffer */
5361 	sm->size = copysize + seq->count;
5362 	if (copy_to_user(s->buf, sm, copysize))
5363 		return -EFAULT;
5364 
5365 	return 0;
5366 }
5367 
5368 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5369 {
5370 	struct rb_node *node;
5371 
5372 	if (reverse)
5373 		node = rb_prev(&curr->mnt_node);
5374 	else
5375 		node = rb_next(&curr->mnt_node);
5376 
5377 	return node_to_mount(node);
5378 }
5379 
5380 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5381 {
5382 	struct mount *first, *child;
5383 
5384 	rwsem_assert_held(&namespace_sem);
5385 
5386 	/* We're looking at our own ns, just use get_fs_root. */
5387 	if (ns == current->nsproxy->mnt_ns) {
5388 		get_fs_root(current->fs, root);
5389 		return 0;
5390 	}
5391 
5392 	/*
5393 	 * We have to find the first mount in our ns and use that, however it
5394 	 * may not exist, so handle that properly.
5395 	 */
5396 	if (RB_EMPTY_ROOT(&ns->mounts))
5397 		return -ENOENT;
5398 
5399 	first = child = ns->root;
5400 	for (;;) {
5401 		child = listmnt_next(child, false);
5402 		if (!child)
5403 			return -ENOENT;
5404 		if (child->mnt_parent == first)
5405 			break;
5406 	}
5407 
5408 	root->mnt = mntget(&child->mnt);
5409 	root->dentry = dget(root->mnt->mnt_root);
5410 	return 0;
5411 }
5412 
5413 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5414 			struct mnt_namespace *ns)
5415 {
5416 	struct path root __free(path_put) = {};
5417 	struct mount *m;
5418 	int err;
5419 
5420 	/* Has the namespace already been emptied? */
5421 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5422 		return -ENOENT;
5423 
5424 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5425 	if (!s->mnt)
5426 		return -ENOENT;
5427 
5428 	err = grab_requested_root(ns, &root);
5429 	if (err)
5430 		return err;
5431 
5432 	/*
5433 	 * Don't trigger audit denials. We just want to determine what
5434 	 * mounts to show users.
5435 	 */
5436 	m = real_mount(s->mnt);
5437 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5438 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5439 		return -EPERM;
5440 
5441 	err = security_sb_statfs(s->mnt->mnt_root);
5442 	if (err)
5443 		return err;
5444 
5445 	s->root = root;
5446 	if (s->mask & STATMOUNT_SB_BASIC)
5447 		statmount_sb_basic(s);
5448 
5449 	if (s->mask & STATMOUNT_MNT_BASIC)
5450 		statmount_mnt_basic(s);
5451 
5452 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5453 		statmount_propagate_from(s);
5454 
5455 	if (s->mask & STATMOUNT_FS_TYPE)
5456 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5457 
5458 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5459 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5460 
5461 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5462 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5463 
5464 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5465 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5466 
5467 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5468 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5469 
5470 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5471 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5472 
5473 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5474 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5475 
5476 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5477 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5478 
5479 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5480 		statmount_mnt_ns_id(s, ns);
5481 
5482 	if (err)
5483 		return err;
5484 
5485 	return 0;
5486 }
5487 
5488 static inline bool retry_statmount(const long ret, size_t *seq_size)
5489 {
5490 	if (likely(ret != -EAGAIN))
5491 		return false;
5492 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5493 		return false;
5494 	if (unlikely(*seq_size > MAX_RW_COUNT))
5495 		return false;
5496 	return true;
5497 }
5498 
5499 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5500 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5501 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5502 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5503 
5504 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5505 			      struct statmount __user *buf, size_t bufsize,
5506 			      size_t seq_size)
5507 {
5508 	if (!access_ok(buf, bufsize))
5509 		return -EFAULT;
5510 
5511 	memset(ks, 0, sizeof(*ks));
5512 	ks->mask = kreq->param;
5513 	ks->buf = buf;
5514 	ks->bufsize = bufsize;
5515 
5516 	if (ks->mask & STATMOUNT_STRING_REQ) {
5517 		if (bufsize == sizeof(ks->sm))
5518 			return -EOVERFLOW;
5519 
5520 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5521 		if (!ks->seq.buf)
5522 			return -ENOMEM;
5523 
5524 		ks->seq.size = seq_size;
5525 	}
5526 
5527 	return 0;
5528 }
5529 
5530 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5531 			   struct mnt_id_req *kreq)
5532 {
5533 	int ret;
5534 	size_t usize;
5535 
5536 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5537 
5538 	ret = get_user(usize, &req->size);
5539 	if (ret)
5540 		return -EFAULT;
5541 	if (unlikely(usize > PAGE_SIZE))
5542 		return -E2BIG;
5543 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5544 		return -EINVAL;
5545 	memset(kreq, 0, sizeof(*kreq));
5546 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5547 	if (ret)
5548 		return ret;
5549 	if (kreq->spare != 0)
5550 		return -EINVAL;
5551 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5552 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5553 		return -EINVAL;
5554 	return 0;
5555 }
5556 
5557 /*
5558  * If the user requested a specific mount namespace id, look that up and return
5559  * that, or if not simply grab a passive reference on our mount namespace and
5560  * return that.
5561  */
5562 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5563 {
5564 	struct mnt_namespace *mnt_ns;
5565 
5566 	if (kreq->mnt_ns_id && kreq->spare)
5567 		return ERR_PTR(-EINVAL);
5568 
5569 	if (kreq->mnt_ns_id)
5570 		return lookup_mnt_ns(kreq->mnt_ns_id);
5571 
5572 	if (kreq->spare) {
5573 		struct ns_common *ns;
5574 
5575 		CLASS(fd, f)(kreq->spare);
5576 		if (fd_empty(f))
5577 			return ERR_PTR(-EBADF);
5578 
5579 		if (!proc_ns_file(fd_file(f)))
5580 			return ERR_PTR(-EINVAL);
5581 
5582 		ns = get_proc_ns(file_inode(fd_file(f)));
5583 		if (ns->ops->type != CLONE_NEWNS)
5584 			return ERR_PTR(-EINVAL);
5585 
5586 		mnt_ns = to_mnt_ns(ns);
5587 	} else {
5588 		mnt_ns = current->nsproxy->mnt_ns;
5589 	}
5590 
5591 	refcount_inc(&mnt_ns->passive);
5592 	return mnt_ns;
5593 }
5594 
5595 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5596 		struct statmount __user *, buf, size_t, bufsize,
5597 		unsigned int, flags)
5598 {
5599 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5600 	struct kstatmount *ks __free(kfree) = NULL;
5601 	struct mnt_id_req kreq;
5602 	/* We currently support retrieval of 3 strings. */
5603 	size_t seq_size = 3 * PATH_MAX;
5604 	int ret;
5605 
5606 	if (flags)
5607 		return -EINVAL;
5608 
5609 	ret = copy_mnt_id_req(req, &kreq);
5610 	if (ret)
5611 		return ret;
5612 
5613 	ns = grab_requested_mnt_ns(&kreq);
5614 	if (!ns)
5615 		return -ENOENT;
5616 
5617 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5618 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5619 		return -ENOENT;
5620 
5621 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5622 	if (!ks)
5623 		return -ENOMEM;
5624 
5625 retry:
5626 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5627 	if (ret)
5628 		return ret;
5629 
5630 	scoped_guard(rwsem_read, &namespace_sem)
5631 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5632 
5633 	if (!ret)
5634 		ret = copy_statmount_to_user(ks);
5635 	kvfree(ks->seq.buf);
5636 	if (retry_statmount(ret, &seq_size))
5637 		goto retry;
5638 	return ret;
5639 }
5640 
5641 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5642 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5643 			    bool reverse)
5644 {
5645 	struct path root __free(path_put) = {};
5646 	struct path orig;
5647 	struct mount *r, *first;
5648 	ssize_t ret;
5649 
5650 	rwsem_assert_held(&namespace_sem);
5651 
5652 	ret = grab_requested_root(ns, &root);
5653 	if (ret)
5654 		return ret;
5655 
5656 	if (mnt_parent_id == LSMT_ROOT) {
5657 		orig = root;
5658 	} else {
5659 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5660 		if (!orig.mnt)
5661 			return -ENOENT;
5662 		orig.dentry = orig.mnt->mnt_root;
5663 	}
5664 
5665 	/*
5666 	 * Don't trigger audit denials. We just want to determine what
5667 	 * mounts to show users.
5668 	 */
5669 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5670 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5671 		return -EPERM;
5672 
5673 	ret = security_sb_statfs(orig.dentry);
5674 	if (ret)
5675 		return ret;
5676 
5677 	if (!last_mnt_id) {
5678 		if (reverse)
5679 			first = node_to_mount(ns->mnt_last_node);
5680 		else
5681 			first = node_to_mount(ns->mnt_first_node);
5682 	} else {
5683 		if (reverse)
5684 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5685 		else
5686 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5687 	}
5688 
5689 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5690 		if (r->mnt_id_unique == mnt_parent_id)
5691 			continue;
5692 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5693 			continue;
5694 		*mnt_ids = r->mnt_id_unique;
5695 		mnt_ids++;
5696 		nr_mnt_ids--;
5697 		ret++;
5698 	}
5699 	return ret;
5700 }
5701 
5702 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5703 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5704 {
5705 	u64 *kmnt_ids __free(kvfree) = NULL;
5706 	const size_t maxcount = 1000000;
5707 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5708 	struct mnt_id_req kreq;
5709 	u64 last_mnt_id;
5710 	ssize_t ret;
5711 
5712 	if (flags & ~LISTMOUNT_REVERSE)
5713 		return -EINVAL;
5714 
5715 	/*
5716 	 * If the mount namespace really has more than 1 million mounts the
5717 	 * caller must iterate over the mount namespace (and reconsider their
5718 	 * system design...).
5719 	 */
5720 	if (unlikely(nr_mnt_ids > maxcount))
5721 		return -EOVERFLOW;
5722 
5723 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5724 		return -EFAULT;
5725 
5726 	ret = copy_mnt_id_req(req, &kreq);
5727 	if (ret)
5728 		return ret;
5729 
5730 	last_mnt_id = kreq.param;
5731 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5732 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5733 		return -EINVAL;
5734 
5735 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5736 				  GFP_KERNEL_ACCOUNT);
5737 	if (!kmnt_ids)
5738 		return -ENOMEM;
5739 
5740 	ns = grab_requested_mnt_ns(&kreq);
5741 	if (!ns)
5742 		return -ENOENT;
5743 
5744 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5745 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5746 		return -ENOENT;
5747 
5748 	scoped_guard(rwsem_read, &namespace_sem)
5749 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5750 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5751 	if (ret <= 0)
5752 		return ret;
5753 
5754 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5755 		return -EFAULT;
5756 
5757 	return ret;
5758 }
5759 
5760 static void __init init_mount_tree(void)
5761 {
5762 	struct vfsmount *mnt;
5763 	struct mount *m;
5764 	struct mnt_namespace *ns;
5765 	struct path root;
5766 
5767 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5768 	if (IS_ERR(mnt))
5769 		panic("Can't create rootfs");
5770 
5771 	ns = alloc_mnt_ns(&init_user_ns, false);
5772 	if (IS_ERR(ns))
5773 		panic("Can't allocate initial namespace");
5774 	m = real_mount(mnt);
5775 	ns->root = m;
5776 	ns->nr_mounts = 1;
5777 	mnt_add_to_ns(ns, m);
5778 	init_task.nsproxy->mnt_ns = ns;
5779 	get_mnt_ns(ns);
5780 
5781 	root.mnt = mnt;
5782 	root.dentry = mnt->mnt_root;
5783 	mnt->mnt_flags |= MNT_LOCKED;
5784 
5785 	set_fs_pwd(current->fs, &root);
5786 	set_fs_root(current->fs, &root);
5787 
5788 	mnt_ns_tree_add(ns);
5789 }
5790 
5791 void __init mnt_init(void)
5792 {
5793 	int err;
5794 
5795 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5796 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5797 
5798 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5799 				sizeof(struct hlist_head),
5800 				mhash_entries, 19,
5801 				HASH_ZERO,
5802 				&m_hash_shift, &m_hash_mask, 0, 0);
5803 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5804 				sizeof(struct hlist_head),
5805 				mphash_entries, 19,
5806 				HASH_ZERO,
5807 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5808 
5809 	if (!mount_hashtable || !mountpoint_hashtable)
5810 		panic("Failed to allocate mount hash table\n");
5811 
5812 	kernfs_init();
5813 
5814 	err = sysfs_init();
5815 	if (err)
5816 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5817 			__func__, err);
5818 	fs_kobj = kobject_create_and_add("fs", NULL);
5819 	if (!fs_kobj)
5820 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5821 	shmem_init();
5822 	init_rootfs();
5823 	init_mount_tree();
5824 }
5825 
5826 void put_mnt_ns(struct mnt_namespace *ns)
5827 {
5828 	if (!refcount_dec_and_test(&ns->ns.count))
5829 		return;
5830 	drop_collected_mounts(&ns->root->mnt);
5831 	free_mnt_ns(ns);
5832 }
5833 
5834 struct vfsmount *kern_mount(struct file_system_type *type)
5835 {
5836 	struct vfsmount *mnt;
5837 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5838 	if (!IS_ERR(mnt)) {
5839 		/*
5840 		 * it is a longterm mount, don't release mnt until
5841 		 * we unmount before file sys is unregistered
5842 		*/
5843 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5844 	}
5845 	return mnt;
5846 }
5847 EXPORT_SYMBOL_GPL(kern_mount);
5848 
5849 void kern_unmount(struct vfsmount *mnt)
5850 {
5851 	/* release long term mount so mount point can be released */
5852 	if (!IS_ERR(mnt)) {
5853 		mnt_make_shortterm(mnt);
5854 		synchronize_rcu();	/* yecchhh... */
5855 		mntput(mnt);
5856 	}
5857 }
5858 EXPORT_SYMBOL(kern_unmount);
5859 
5860 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5861 {
5862 	unsigned int i;
5863 
5864 	for (i = 0; i < num; i++)
5865 		mnt_make_shortterm(mnt[i]);
5866 	synchronize_rcu_expedited();
5867 	for (i = 0; i < num; i++)
5868 		mntput(mnt[i]);
5869 }
5870 EXPORT_SYMBOL(kern_unmount_array);
5871 
5872 bool our_mnt(struct vfsmount *mnt)
5873 {
5874 	return check_mnt(real_mount(mnt));
5875 }
5876 
5877 bool current_chrooted(void)
5878 {
5879 	/* Does the current process have a non-standard root */
5880 	struct path ns_root;
5881 	struct path fs_root;
5882 	bool chrooted;
5883 
5884 	/* Find the namespace root */
5885 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5886 	ns_root.dentry = ns_root.mnt->mnt_root;
5887 	path_get(&ns_root);
5888 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5889 		;
5890 
5891 	get_fs_root(current->fs, &fs_root);
5892 
5893 	chrooted = !path_equal(&fs_root, &ns_root);
5894 
5895 	path_put(&fs_root);
5896 	path_put(&ns_root);
5897 
5898 	return chrooted;
5899 }
5900 
5901 static bool mnt_already_visible(struct mnt_namespace *ns,
5902 				const struct super_block *sb,
5903 				int *new_mnt_flags)
5904 {
5905 	int new_flags = *new_mnt_flags;
5906 	struct mount *mnt, *n;
5907 	bool visible = false;
5908 
5909 	down_read(&namespace_sem);
5910 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5911 		struct mount *child;
5912 		int mnt_flags;
5913 
5914 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5915 			continue;
5916 
5917 		/* This mount is not fully visible if it's root directory
5918 		 * is not the root directory of the filesystem.
5919 		 */
5920 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5921 			continue;
5922 
5923 		/* A local view of the mount flags */
5924 		mnt_flags = mnt->mnt.mnt_flags;
5925 
5926 		/* Don't miss readonly hidden in the superblock flags */
5927 		if (sb_rdonly(mnt->mnt.mnt_sb))
5928 			mnt_flags |= MNT_LOCK_READONLY;
5929 
5930 		/* Verify the mount flags are equal to or more permissive
5931 		 * than the proposed new mount.
5932 		 */
5933 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5934 		    !(new_flags & MNT_READONLY))
5935 			continue;
5936 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5937 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5938 			continue;
5939 
5940 		/* This mount is not fully visible if there are any
5941 		 * locked child mounts that cover anything except for
5942 		 * empty directories.
5943 		 */
5944 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5945 			struct inode *inode = child->mnt_mountpoint->d_inode;
5946 			/* Only worry about locked mounts */
5947 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5948 				continue;
5949 			/* Is the directory permanently empty? */
5950 			if (!is_empty_dir_inode(inode))
5951 				goto next;
5952 		}
5953 		/* Preserve the locked attributes */
5954 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5955 					       MNT_LOCK_ATIME);
5956 		visible = true;
5957 		goto found;
5958 	next:	;
5959 	}
5960 found:
5961 	up_read(&namespace_sem);
5962 	return visible;
5963 }
5964 
5965 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5966 {
5967 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5968 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5969 	unsigned long s_iflags;
5970 
5971 	if (ns->user_ns == &init_user_ns)
5972 		return false;
5973 
5974 	/* Can this filesystem be too revealing? */
5975 	s_iflags = sb->s_iflags;
5976 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5977 		return false;
5978 
5979 	if ((s_iflags & required_iflags) != required_iflags) {
5980 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5981 			  required_iflags);
5982 		return true;
5983 	}
5984 
5985 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5986 }
5987 
5988 bool mnt_may_suid(struct vfsmount *mnt)
5989 {
5990 	/*
5991 	 * Foreign mounts (accessed via fchdir or through /proc
5992 	 * symlinks) are always treated as if they are nosuid.  This
5993 	 * prevents namespaces from trusting potentially unsafe
5994 	 * suid/sgid bits, file caps, or security labels that originate
5995 	 * in other namespaces.
5996 	 */
5997 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5998 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5999 }
6000 
6001 static struct ns_common *mntns_get(struct task_struct *task)
6002 {
6003 	struct ns_common *ns = NULL;
6004 	struct nsproxy *nsproxy;
6005 
6006 	task_lock(task);
6007 	nsproxy = task->nsproxy;
6008 	if (nsproxy) {
6009 		ns = &nsproxy->mnt_ns->ns;
6010 		get_mnt_ns(to_mnt_ns(ns));
6011 	}
6012 	task_unlock(task);
6013 
6014 	return ns;
6015 }
6016 
6017 static void mntns_put(struct ns_common *ns)
6018 {
6019 	put_mnt_ns(to_mnt_ns(ns));
6020 }
6021 
6022 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6023 {
6024 	struct nsproxy *nsproxy = nsset->nsproxy;
6025 	struct fs_struct *fs = nsset->fs;
6026 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6027 	struct user_namespace *user_ns = nsset->cred->user_ns;
6028 	struct path root;
6029 	int err;
6030 
6031 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6032 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6033 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6034 		return -EPERM;
6035 
6036 	if (is_anon_ns(mnt_ns))
6037 		return -EINVAL;
6038 
6039 	if (fs->users != 1)
6040 		return -EINVAL;
6041 
6042 	get_mnt_ns(mnt_ns);
6043 	old_mnt_ns = nsproxy->mnt_ns;
6044 	nsproxy->mnt_ns = mnt_ns;
6045 
6046 	/* Find the root */
6047 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6048 				"/", LOOKUP_DOWN, &root);
6049 	if (err) {
6050 		/* revert to old namespace */
6051 		nsproxy->mnt_ns = old_mnt_ns;
6052 		put_mnt_ns(mnt_ns);
6053 		return err;
6054 	}
6055 
6056 	put_mnt_ns(old_mnt_ns);
6057 
6058 	/* Update the pwd and root */
6059 	set_fs_pwd(fs, &root);
6060 	set_fs_root(fs, &root);
6061 
6062 	path_put(&root);
6063 	return 0;
6064 }
6065 
6066 static struct user_namespace *mntns_owner(struct ns_common *ns)
6067 {
6068 	return to_mnt_ns(ns)->user_ns;
6069 }
6070 
6071 const struct proc_ns_operations mntns_operations = {
6072 	.name		= "mnt",
6073 	.type		= CLONE_NEWNS,
6074 	.get		= mntns_get,
6075 	.put		= mntns_put,
6076 	.install	= mntns_install,
6077 	.owner		= mntns_owner,
6078 };
6079 
6080 #ifdef CONFIG_SYSCTL
6081 static const struct ctl_table fs_namespace_sysctls[] = {
6082 	{
6083 		.procname	= "mount-max",
6084 		.data		= &sysctl_mount_max,
6085 		.maxlen		= sizeof(unsigned int),
6086 		.mode		= 0644,
6087 		.proc_handler	= proc_dointvec_minmax,
6088 		.extra1		= SYSCTL_ONE,
6089 	},
6090 };
6091 
6092 static int __init init_fs_namespace_sysctls(void)
6093 {
6094 	register_sysctl_init("fs", fs_namespace_sysctls);
6095 	return 0;
6096 }
6097 fs_initcall(init_fs_namespace_sysctls);
6098 
6099 #endif /* CONFIG_SYSCTL */
6100