1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/acct.h> 18 #include <linux/capability.h> 19 #include <linux/cpumask.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/nsproxy.h> 26 #include <linux/security.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/log2.h> 30 #include <linux/idr.h> 31 #include <linux/fs_struct.h> 32 #include <linux/fsnotify.h> 33 #include <asm/uaccess.h> 34 #include <asm/unistd.h> 35 #include "pnode.h" 36 #include "internal.h" 37 38 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 39 #define HASH_SIZE (1UL << HASH_SHIFT) 40 41 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 43 44 static int event; 45 static DEFINE_IDA(mnt_id_ida); 46 static DEFINE_IDA(mnt_group_ida); 47 static int mnt_id_start = 0; 48 static int mnt_group_start = 1; 49 50 static struct list_head *mount_hashtable __read_mostly; 51 static struct kmem_cache *mnt_cache __read_mostly; 52 static struct rw_semaphore namespace_sem; 53 54 /* /sys/fs */ 55 struct kobject *fs_kobj; 56 EXPORT_SYMBOL_GPL(fs_kobj); 57 58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 59 { 60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 62 tmp = tmp + (tmp >> HASH_SHIFT); 63 return tmp & (HASH_SIZE - 1); 64 } 65 66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 67 68 /* allocation is serialized by namespace_sem */ 69 static int mnt_alloc_id(struct vfsmount *mnt) 70 { 71 int res; 72 73 retry: 74 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 75 spin_lock(&vfsmount_lock); 76 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 77 if (!res) 78 mnt_id_start = mnt->mnt_id + 1; 79 spin_unlock(&vfsmount_lock); 80 if (res == -EAGAIN) 81 goto retry; 82 83 return res; 84 } 85 86 static void mnt_free_id(struct vfsmount *mnt) 87 { 88 int id = mnt->mnt_id; 89 spin_lock(&vfsmount_lock); 90 ida_remove(&mnt_id_ida, id); 91 if (mnt_id_start > id) 92 mnt_id_start = id; 93 spin_unlock(&vfsmount_lock); 94 } 95 96 /* 97 * Allocate a new peer group ID 98 * 99 * mnt_group_ida is protected by namespace_sem 100 */ 101 static int mnt_alloc_group_id(struct vfsmount *mnt) 102 { 103 int res; 104 105 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 106 return -ENOMEM; 107 108 res = ida_get_new_above(&mnt_group_ida, 109 mnt_group_start, 110 &mnt->mnt_group_id); 111 if (!res) 112 mnt_group_start = mnt->mnt_group_id + 1; 113 114 return res; 115 } 116 117 /* 118 * Release a peer group ID 119 */ 120 void mnt_release_group_id(struct vfsmount *mnt) 121 { 122 int id = mnt->mnt_group_id; 123 ida_remove(&mnt_group_ida, id); 124 if (mnt_group_start > id) 125 mnt_group_start = id; 126 mnt->mnt_group_id = 0; 127 } 128 129 struct vfsmount *alloc_vfsmnt(const char *name) 130 { 131 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 132 if (mnt) { 133 int err; 134 135 err = mnt_alloc_id(mnt); 136 if (err) 137 goto out_free_cache; 138 139 if (name) { 140 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 141 if (!mnt->mnt_devname) 142 goto out_free_id; 143 } 144 145 atomic_set(&mnt->mnt_count, 1); 146 INIT_LIST_HEAD(&mnt->mnt_hash); 147 INIT_LIST_HEAD(&mnt->mnt_child); 148 INIT_LIST_HEAD(&mnt->mnt_mounts); 149 INIT_LIST_HEAD(&mnt->mnt_list); 150 INIT_LIST_HEAD(&mnt->mnt_expire); 151 INIT_LIST_HEAD(&mnt->mnt_share); 152 INIT_LIST_HEAD(&mnt->mnt_slave_list); 153 INIT_LIST_HEAD(&mnt->mnt_slave); 154 #ifdef CONFIG_FSNOTIFY 155 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 156 #endif 157 #ifdef CONFIG_SMP 158 mnt->mnt_writers = alloc_percpu(int); 159 if (!mnt->mnt_writers) 160 goto out_free_devname; 161 #else 162 mnt->mnt_writers = 0; 163 #endif 164 } 165 return mnt; 166 167 #ifdef CONFIG_SMP 168 out_free_devname: 169 kfree(mnt->mnt_devname); 170 #endif 171 out_free_id: 172 mnt_free_id(mnt); 173 out_free_cache: 174 kmem_cache_free(mnt_cache, mnt); 175 return NULL; 176 } 177 178 /* 179 * Most r/o checks on a fs are for operations that take 180 * discrete amounts of time, like a write() or unlink(). 181 * We must keep track of when those operations start 182 * (for permission checks) and when they end, so that 183 * we can determine when writes are able to occur to 184 * a filesystem. 185 */ 186 /* 187 * __mnt_is_readonly: check whether a mount is read-only 188 * @mnt: the mount to check for its write status 189 * 190 * This shouldn't be used directly ouside of the VFS. 191 * It does not guarantee that the filesystem will stay 192 * r/w, just that it is right *now*. This can not and 193 * should not be used in place of IS_RDONLY(inode). 194 * mnt_want/drop_write() will _keep_ the filesystem 195 * r/w. 196 */ 197 int __mnt_is_readonly(struct vfsmount *mnt) 198 { 199 if (mnt->mnt_flags & MNT_READONLY) 200 return 1; 201 if (mnt->mnt_sb->s_flags & MS_RDONLY) 202 return 1; 203 return 0; 204 } 205 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 206 207 static inline void inc_mnt_writers(struct vfsmount *mnt) 208 { 209 #ifdef CONFIG_SMP 210 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++; 211 #else 212 mnt->mnt_writers++; 213 #endif 214 } 215 216 static inline void dec_mnt_writers(struct vfsmount *mnt) 217 { 218 #ifdef CONFIG_SMP 219 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--; 220 #else 221 mnt->mnt_writers--; 222 #endif 223 } 224 225 static unsigned int count_mnt_writers(struct vfsmount *mnt) 226 { 227 #ifdef CONFIG_SMP 228 unsigned int count = 0; 229 int cpu; 230 231 for_each_possible_cpu(cpu) { 232 count += *per_cpu_ptr(mnt->mnt_writers, cpu); 233 } 234 235 return count; 236 #else 237 return mnt->mnt_writers; 238 #endif 239 } 240 241 /* 242 * Most r/o checks on a fs are for operations that take 243 * discrete amounts of time, like a write() or unlink(). 244 * We must keep track of when those operations start 245 * (for permission checks) and when they end, so that 246 * we can determine when writes are able to occur to 247 * a filesystem. 248 */ 249 /** 250 * mnt_want_write - get write access to a mount 251 * @mnt: the mount on which to take a write 252 * 253 * This tells the low-level filesystem that a write is 254 * about to be performed to it, and makes sure that 255 * writes are allowed before returning success. When 256 * the write operation is finished, mnt_drop_write() 257 * must be called. This is effectively a refcount. 258 */ 259 int mnt_want_write(struct vfsmount *mnt) 260 { 261 int ret = 0; 262 263 preempt_disable(); 264 inc_mnt_writers(mnt); 265 /* 266 * The store to inc_mnt_writers must be visible before we pass 267 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 268 * incremented count after it has set MNT_WRITE_HOLD. 269 */ 270 smp_mb(); 271 while (mnt->mnt_flags & MNT_WRITE_HOLD) 272 cpu_relax(); 273 /* 274 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 275 * be set to match its requirements. So we must not load that until 276 * MNT_WRITE_HOLD is cleared. 277 */ 278 smp_rmb(); 279 if (__mnt_is_readonly(mnt)) { 280 dec_mnt_writers(mnt); 281 ret = -EROFS; 282 goto out; 283 } 284 out: 285 preempt_enable(); 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(mnt_want_write); 289 290 /** 291 * mnt_clone_write - get write access to a mount 292 * @mnt: the mount on which to take a write 293 * 294 * This is effectively like mnt_want_write, except 295 * it must only be used to take an extra write reference 296 * on a mountpoint that we already know has a write reference 297 * on it. This allows some optimisation. 298 * 299 * After finished, mnt_drop_write must be called as usual to 300 * drop the reference. 301 */ 302 int mnt_clone_write(struct vfsmount *mnt) 303 { 304 /* superblock may be r/o */ 305 if (__mnt_is_readonly(mnt)) 306 return -EROFS; 307 preempt_disable(); 308 inc_mnt_writers(mnt); 309 preempt_enable(); 310 return 0; 311 } 312 EXPORT_SYMBOL_GPL(mnt_clone_write); 313 314 /** 315 * mnt_want_write_file - get write access to a file's mount 316 * @file: the file who's mount on which to take a write 317 * 318 * This is like mnt_want_write, but it takes a file and can 319 * do some optimisations if the file is open for write already 320 */ 321 int mnt_want_write_file(struct file *file) 322 { 323 struct inode *inode = file->f_dentry->d_inode; 324 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 325 return mnt_want_write(file->f_path.mnt); 326 else 327 return mnt_clone_write(file->f_path.mnt); 328 } 329 EXPORT_SYMBOL_GPL(mnt_want_write_file); 330 331 /** 332 * mnt_drop_write - give up write access to a mount 333 * @mnt: the mount on which to give up write access 334 * 335 * Tells the low-level filesystem that we are done 336 * performing writes to it. Must be matched with 337 * mnt_want_write() call above. 338 */ 339 void mnt_drop_write(struct vfsmount *mnt) 340 { 341 preempt_disable(); 342 dec_mnt_writers(mnt); 343 preempt_enable(); 344 } 345 EXPORT_SYMBOL_GPL(mnt_drop_write); 346 347 static int mnt_make_readonly(struct vfsmount *mnt) 348 { 349 int ret = 0; 350 351 spin_lock(&vfsmount_lock); 352 mnt->mnt_flags |= MNT_WRITE_HOLD; 353 /* 354 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 355 * should be visible before we do. 356 */ 357 smp_mb(); 358 359 /* 360 * With writers on hold, if this value is zero, then there are 361 * definitely no active writers (although held writers may subsequently 362 * increment the count, they'll have to wait, and decrement it after 363 * seeing MNT_READONLY). 364 * 365 * It is OK to have counter incremented on one CPU and decremented on 366 * another: the sum will add up correctly. The danger would be when we 367 * sum up each counter, if we read a counter before it is incremented, 368 * but then read another CPU's count which it has been subsequently 369 * decremented from -- we would see more decrements than we should. 370 * MNT_WRITE_HOLD protects against this scenario, because 371 * mnt_want_write first increments count, then smp_mb, then spins on 372 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 373 * we're counting up here. 374 */ 375 if (count_mnt_writers(mnt) > 0) 376 ret = -EBUSY; 377 else 378 mnt->mnt_flags |= MNT_READONLY; 379 /* 380 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 381 * that become unheld will see MNT_READONLY. 382 */ 383 smp_wmb(); 384 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 385 spin_unlock(&vfsmount_lock); 386 return ret; 387 } 388 389 static void __mnt_unmake_readonly(struct vfsmount *mnt) 390 { 391 spin_lock(&vfsmount_lock); 392 mnt->mnt_flags &= ~MNT_READONLY; 393 spin_unlock(&vfsmount_lock); 394 } 395 396 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 397 { 398 mnt->mnt_sb = sb; 399 mnt->mnt_root = dget(sb->s_root); 400 } 401 402 EXPORT_SYMBOL(simple_set_mnt); 403 404 void free_vfsmnt(struct vfsmount *mnt) 405 { 406 kfree(mnt->mnt_devname); 407 mnt_free_id(mnt); 408 #ifdef CONFIG_SMP 409 free_percpu(mnt->mnt_writers); 410 #endif 411 kmem_cache_free(mnt_cache, mnt); 412 } 413 414 /* 415 * find the first or last mount at @dentry on vfsmount @mnt depending on 416 * @dir. If @dir is set return the first mount else return the last mount. 417 */ 418 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 419 int dir) 420 { 421 struct list_head *head = mount_hashtable + hash(mnt, dentry); 422 struct list_head *tmp = head; 423 struct vfsmount *p, *found = NULL; 424 425 for (;;) { 426 tmp = dir ? tmp->next : tmp->prev; 427 p = NULL; 428 if (tmp == head) 429 break; 430 p = list_entry(tmp, struct vfsmount, mnt_hash); 431 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 432 found = p; 433 break; 434 } 435 } 436 return found; 437 } 438 439 /* 440 * lookup_mnt increments the ref count before returning 441 * the vfsmount struct. 442 */ 443 struct vfsmount *lookup_mnt(struct path *path) 444 { 445 struct vfsmount *child_mnt; 446 spin_lock(&vfsmount_lock); 447 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 448 mntget(child_mnt); 449 spin_unlock(&vfsmount_lock); 450 return child_mnt; 451 } 452 453 static inline int check_mnt(struct vfsmount *mnt) 454 { 455 return mnt->mnt_ns == current->nsproxy->mnt_ns; 456 } 457 458 static void touch_mnt_namespace(struct mnt_namespace *ns) 459 { 460 if (ns) { 461 ns->event = ++event; 462 wake_up_interruptible(&ns->poll); 463 } 464 } 465 466 static void __touch_mnt_namespace(struct mnt_namespace *ns) 467 { 468 if (ns && ns->event != event) { 469 ns->event = event; 470 wake_up_interruptible(&ns->poll); 471 } 472 } 473 474 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 475 { 476 old_path->dentry = mnt->mnt_mountpoint; 477 old_path->mnt = mnt->mnt_parent; 478 mnt->mnt_parent = mnt; 479 mnt->mnt_mountpoint = mnt->mnt_root; 480 list_del_init(&mnt->mnt_child); 481 list_del_init(&mnt->mnt_hash); 482 old_path->dentry->d_mounted--; 483 } 484 485 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 486 struct vfsmount *child_mnt) 487 { 488 child_mnt->mnt_parent = mntget(mnt); 489 child_mnt->mnt_mountpoint = dget(dentry); 490 dentry->d_mounted++; 491 } 492 493 static void attach_mnt(struct vfsmount *mnt, struct path *path) 494 { 495 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 496 list_add_tail(&mnt->mnt_hash, mount_hashtable + 497 hash(path->mnt, path->dentry)); 498 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 499 } 500 501 /* 502 * the caller must hold vfsmount_lock 503 */ 504 static void commit_tree(struct vfsmount *mnt) 505 { 506 struct vfsmount *parent = mnt->mnt_parent; 507 struct vfsmount *m; 508 LIST_HEAD(head); 509 struct mnt_namespace *n = parent->mnt_ns; 510 511 BUG_ON(parent == mnt); 512 513 list_add_tail(&head, &mnt->mnt_list); 514 list_for_each_entry(m, &head, mnt_list) 515 m->mnt_ns = n; 516 list_splice(&head, n->list.prev); 517 518 list_add_tail(&mnt->mnt_hash, mount_hashtable + 519 hash(parent, mnt->mnt_mountpoint)); 520 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 521 touch_mnt_namespace(n); 522 } 523 524 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 525 { 526 struct list_head *next = p->mnt_mounts.next; 527 if (next == &p->mnt_mounts) { 528 while (1) { 529 if (p == root) 530 return NULL; 531 next = p->mnt_child.next; 532 if (next != &p->mnt_parent->mnt_mounts) 533 break; 534 p = p->mnt_parent; 535 } 536 } 537 return list_entry(next, struct vfsmount, mnt_child); 538 } 539 540 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 541 { 542 struct list_head *prev = p->mnt_mounts.prev; 543 while (prev != &p->mnt_mounts) { 544 p = list_entry(prev, struct vfsmount, mnt_child); 545 prev = p->mnt_mounts.prev; 546 } 547 return p; 548 } 549 550 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 551 int flag) 552 { 553 struct super_block *sb = old->mnt_sb; 554 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 555 556 if (mnt) { 557 if (flag & (CL_SLAVE | CL_PRIVATE)) 558 mnt->mnt_group_id = 0; /* not a peer of original */ 559 else 560 mnt->mnt_group_id = old->mnt_group_id; 561 562 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 563 int err = mnt_alloc_group_id(mnt); 564 if (err) 565 goto out_free; 566 } 567 568 mnt->mnt_flags = old->mnt_flags; 569 atomic_inc(&sb->s_active); 570 mnt->mnt_sb = sb; 571 mnt->mnt_root = dget(root); 572 mnt->mnt_mountpoint = mnt->mnt_root; 573 mnt->mnt_parent = mnt; 574 575 if (flag & CL_SLAVE) { 576 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 577 mnt->mnt_master = old; 578 CLEAR_MNT_SHARED(mnt); 579 } else if (!(flag & CL_PRIVATE)) { 580 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 581 list_add(&mnt->mnt_share, &old->mnt_share); 582 if (IS_MNT_SLAVE(old)) 583 list_add(&mnt->mnt_slave, &old->mnt_slave); 584 mnt->mnt_master = old->mnt_master; 585 } 586 if (flag & CL_MAKE_SHARED) 587 set_mnt_shared(mnt); 588 589 /* stick the duplicate mount on the same expiry list 590 * as the original if that was on one */ 591 if (flag & CL_EXPIRE) { 592 if (!list_empty(&old->mnt_expire)) 593 list_add(&mnt->mnt_expire, &old->mnt_expire); 594 } 595 } 596 return mnt; 597 598 out_free: 599 free_vfsmnt(mnt); 600 return NULL; 601 } 602 603 static inline void __mntput(struct vfsmount *mnt) 604 { 605 struct super_block *sb = mnt->mnt_sb; 606 /* 607 * This probably indicates that somebody messed 608 * up a mnt_want/drop_write() pair. If this 609 * happens, the filesystem was probably unable 610 * to make r/w->r/o transitions. 611 */ 612 /* 613 * atomic_dec_and_lock() used to deal with ->mnt_count decrements 614 * provides barriers, so count_mnt_writers() below is safe. AV 615 */ 616 WARN_ON(count_mnt_writers(mnt)); 617 fsnotify_vfsmount_delete(mnt); 618 dput(mnt->mnt_root); 619 free_vfsmnt(mnt); 620 deactivate_super(sb); 621 } 622 623 void mntput_no_expire(struct vfsmount *mnt) 624 { 625 repeat: 626 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 627 if (likely(!mnt->mnt_pinned)) { 628 spin_unlock(&vfsmount_lock); 629 __mntput(mnt); 630 return; 631 } 632 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 633 mnt->mnt_pinned = 0; 634 spin_unlock(&vfsmount_lock); 635 acct_auto_close_mnt(mnt); 636 goto repeat; 637 } 638 } 639 640 EXPORT_SYMBOL(mntput_no_expire); 641 642 void mnt_pin(struct vfsmount *mnt) 643 { 644 spin_lock(&vfsmount_lock); 645 mnt->mnt_pinned++; 646 spin_unlock(&vfsmount_lock); 647 } 648 649 EXPORT_SYMBOL(mnt_pin); 650 651 void mnt_unpin(struct vfsmount *mnt) 652 { 653 spin_lock(&vfsmount_lock); 654 if (mnt->mnt_pinned) { 655 atomic_inc(&mnt->mnt_count); 656 mnt->mnt_pinned--; 657 } 658 spin_unlock(&vfsmount_lock); 659 } 660 661 EXPORT_SYMBOL(mnt_unpin); 662 663 static inline void mangle(struct seq_file *m, const char *s) 664 { 665 seq_escape(m, s, " \t\n\\"); 666 } 667 668 /* 669 * Simple .show_options callback for filesystems which don't want to 670 * implement more complex mount option showing. 671 * 672 * See also save_mount_options(). 673 */ 674 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 675 { 676 const char *options; 677 678 rcu_read_lock(); 679 options = rcu_dereference(mnt->mnt_sb->s_options); 680 681 if (options != NULL && options[0]) { 682 seq_putc(m, ','); 683 mangle(m, options); 684 } 685 rcu_read_unlock(); 686 687 return 0; 688 } 689 EXPORT_SYMBOL(generic_show_options); 690 691 /* 692 * If filesystem uses generic_show_options(), this function should be 693 * called from the fill_super() callback. 694 * 695 * The .remount_fs callback usually needs to be handled in a special 696 * way, to make sure, that previous options are not overwritten if the 697 * remount fails. 698 * 699 * Also note, that if the filesystem's .remount_fs function doesn't 700 * reset all options to their default value, but changes only newly 701 * given options, then the displayed options will not reflect reality 702 * any more. 703 */ 704 void save_mount_options(struct super_block *sb, char *options) 705 { 706 BUG_ON(sb->s_options); 707 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 708 } 709 EXPORT_SYMBOL(save_mount_options); 710 711 void replace_mount_options(struct super_block *sb, char *options) 712 { 713 char *old = sb->s_options; 714 rcu_assign_pointer(sb->s_options, options); 715 if (old) { 716 synchronize_rcu(); 717 kfree(old); 718 } 719 } 720 EXPORT_SYMBOL(replace_mount_options); 721 722 #ifdef CONFIG_PROC_FS 723 /* iterator */ 724 static void *m_start(struct seq_file *m, loff_t *pos) 725 { 726 struct proc_mounts *p = m->private; 727 728 down_read(&namespace_sem); 729 return seq_list_start(&p->ns->list, *pos); 730 } 731 732 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 733 { 734 struct proc_mounts *p = m->private; 735 736 return seq_list_next(v, &p->ns->list, pos); 737 } 738 739 static void m_stop(struct seq_file *m, void *v) 740 { 741 up_read(&namespace_sem); 742 } 743 744 int mnt_had_events(struct proc_mounts *p) 745 { 746 struct mnt_namespace *ns = p->ns; 747 int res = 0; 748 749 spin_lock(&vfsmount_lock); 750 if (p->event != ns->event) { 751 p->event = ns->event; 752 res = 1; 753 } 754 spin_unlock(&vfsmount_lock); 755 756 return res; 757 } 758 759 struct proc_fs_info { 760 int flag; 761 const char *str; 762 }; 763 764 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 765 { 766 static const struct proc_fs_info fs_info[] = { 767 { MS_SYNCHRONOUS, ",sync" }, 768 { MS_DIRSYNC, ",dirsync" }, 769 { MS_MANDLOCK, ",mand" }, 770 { 0, NULL } 771 }; 772 const struct proc_fs_info *fs_infop; 773 774 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 775 if (sb->s_flags & fs_infop->flag) 776 seq_puts(m, fs_infop->str); 777 } 778 779 return security_sb_show_options(m, sb); 780 } 781 782 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 783 { 784 static const struct proc_fs_info mnt_info[] = { 785 { MNT_NOSUID, ",nosuid" }, 786 { MNT_NODEV, ",nodev" }, 787 { MNT_NOEXEC, ",noexec" }, 788 { MNT_NOATIME, ",noatime" }, 789 { MNT_NODIRATIME, ",nodiratime" }, 790 { MNT_RELATIME, ",relatime" }, 791 { MNT_STRICTATIME, ",strictatime" }, 792 { 0, NULL } 793 }; 794 const struct proc_fs_info *fs_infop; 795 796 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 797 if (mnt->mnt_flags & fs_infop->flag) 798 seq_puts(m, fs_infop->str); 799 } 800 } 801 802 static void show_type(struct seq_file *m, struct super_block *sb) 803 { 804 mangle(m, sb->s_type->name); 805 if (sb->s_subtype && sb->s_subtype[0]) { 806 seq_putc(m, '.'); 807 mangle(m, sb->s_subtype); 808 } 809 } 810 811 static int show_vfsmnt(struct seq_file *m, void *v) 812 { 813 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 814 int err = 0; 815 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 816 817 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 818 seq_putc(m, ' '); 819 seq_path(m, &mnt_path, " \t\n\\"); 820 seq_putc(m, ' '); 821 show_type(m, mnt->mnt_sb); 822 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 823 err = show_sb_opts(m, mnt->mnt_sb); 824 if (err) 825 goto out; 826 show_mnt_opts(m, mnt); 827 if (mnt->mnt_sb->s_op->show_options) 828 err = mnt->mnt_sb->s_op->show_options(m, mnt); 829 seq_puts(m, " 0 0\n"); 830 out: 831 return err; 832 } 833 834 const struct seq_operations mounts_op = { 835 .start = m_start, 836 .next = m_next, 837 .stop = m_stop, 838 .show = show_vfsmnt 839 }; 840 841 static int show_mountinfo(struct seq_file *m, void *v) 842 { 843 struct proc_mounts *p = m->private; 844 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 845 struct super_block *sb = mnt->mnt_sb; 846 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 847 struct path root = p->root; 848 int err = 0; 849 850 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 851 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 852 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 853 seq_putc(m, ' '); 854 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 855 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 856 /* 857 * Mountpoint is outside root, discard that one. Ugly, 858 * but less so than trying to do that in iterator in a 859 * race-free way (due to renames). 860 */ 861 return SEQ_SKIP; 862 } 863 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 864 show_mnt_opts(m, mnt); 865 866 /* Tagged fields ("foo:X" or "bar") */ 867 if (IS_MNT_SHARED(mnt)) 868 seq_printf(m, " shared:%i", mnt->mnt_group_id); 869 if (IS_MNT_SLAVE(mnt)) { 870 int master = mnt->mnt_master->mnt_group_id; 871 int dom = get_dominating_id(mnt, &p->root); 872 seq_printf(m, " master:%i", master); 873 if (dom && dom != master) 874 seq_printf(m, " propagate_from:%i", dom); 875 } 876 if (IS_MNT_UNBINDABLE(mnt)) 877 seq_puts(m, " unbindable"); 878 879 /* Filesystem specific data */ 880 seq_puts(m, " - "); 881 show_type(m, sb); 882 seq_putc(m, ' '); 883 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 884 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 885 err = show_sb_opts(m, sb); 886 if (err) 887 goto out; 888 if (sb->s_op->show_options) 889 err = sb->s_op->show_options(m, mnt); 890 seq_putc(m, '\n'); 891 out: 892 return err; 893 } 894 895 const struct seq_operations mountinfo_op = { 896 .start = m_start, 897 .next = m_next, 898 .stop = m_stop, 899 .show = show_mountinfo, 900 }; 901 902 static int show_vfsstat(struct seq_file *m, void *v) 903 { 904 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 905 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 906 int err = 0; 907 908 /* device */ 909 if (mnt->mnt_devname) { 910 seq_puts(m, "device "); 911 mangle(m, mnt->mnt_devname); 912 } else 913 seq_puts(m, "no device"); 914 915 /* mount point */ 916 seq_puts(m, " mounted on "); 917 seq_path(m, &mnt_path, " \t\n\\"); 918 seq_putc(m, ' '); 919 920 /* file system type */ 921 seq_puts(m, "with fstype "); 922 show_type(m, mnt->mnt_sb); 923 924 /* optional statistics */ 925 if (mnt->mnt_sb->s_op->show_stats) { 926 seq_putc(m, ' '); 927 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 928 } 929 930 seq_putc(m, '\n'); 931 return err; 932 } 933 934 const struct seq_operations mountstats_op = { 935 .start = m_start, 936 .next = m_next, 937 .stop = m_stop, 938 .show = show_vfsstat, 939 }; 940 #endif /* CONFIG_PROC_FS */ 941 942 /** 943 * may_umount_tree - check if a mount tree is busy 944 * @mnt: root of mount tree 945 * 946 * This is called to check if a tree of mounts has any 947 * open files, pwds, chroots or sub mounts that are 948 * busy. 949 */ 950 int may_umount_tree(struct vfsmount *mnt) 951 { 952 int actual_refs = 0; 953 int minimum_refs = 0; 954 struct vfsmount *p; 955 956 spin_lock(&vfsmount_lock); 957 for (p = mnt; p; p = next_mnt(p, mnt)) { 958 actual_refs += atomic_read(&p->mnt_count); 959 minimum_refs += 2; 960 } 961 spin_unlock(&vfsmount_lock); 962 963 if (actual_refs > minimum_refs) 964 return 0; 965 966 return 1; 967 } 968 969 EXPORT_SYMBOL(may_umount_tree); 970 971 /** 972 * may_umount - check if a mount point is busy 973 * @mnt: root of mount 974 * 975 * This is called to check if a mount point has any 976 * open files, pwds, chroots or sub mounts. If the 977 * mount has sub mounts this will return busy 978 * regardless of whether the sub mounts are busy. 979 * 980 * Doesn't take quota and stuff into account. IOW, in some cases it will 981 * give false negatives. The main reason why it's here is that we need 982 * a non-destructive way to look for easily umountable filesystems. 983 */ 984 int may_umount(struct vfsmount *mnt) 985 { 986 int ret = 1; 987 down_read(&namespace_sem); 988 spin_lock(&vfsmount_lock); 989 if (propagate_mount_busy(mnt, 2)) 990 ret = 0; 991 spin_unlock(&vfsmount_lock); 992 up_read(&namespace_sem); 993 return ret; 994 } 995 996 EXPORT_SYMBOL(may_umount); 997 998 void release_mounts(struct list_head *head) 999 { 1000 struct vfsmount *mnt; 1001 while (!list_empty(head)) { 1002 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 1003 list_del_init(&mnt->mnt_hash); 1004 if (mnt->mnt_parent != mnt) { 1005 struct dentry *dentry; 1006 struct vfsmount *m; 1007 spin_lock(&vfsmount_lock); 1008 dentry = mnt->mnt_mountpoint; 1009 m = mnt->mnt_parent; 1010 mnt->mnt_mountpoint = mnt->mnt_root; 1011 mnt->mnt_parent = mnt; 1012 m->mnt_ghosts--; 1013 spin_unlock(&vfsmount_lock); 1014 dput(dentry); 1015 mntput(m); 1016 } 1017 mntput(mnt); 1018 } 1019 } 1020 1021 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1022 { 1023 struct vfsmount *p; 1024 1025 for (p = mnt; p; p = next_mnt(p, mnt)) 1026 list_move(&p->mnt_hash, kill); 1027 1028 if (propagate) 1029 propagate_umount(kill); 1030 1031 list_for_each_entry(p, kill, mnt_hash) { 1032 list_del_init(&p->mnt_expire); 1033 list_del_init(&p->mnt_list); 1034 __touch_mnt_namespace(p->mnt_ns); 1035 p->mnt_ns = NULL; 1036 list_del_init(&p->mnt_child); 1037 if (p->mnt_parent != p) { 1038 p->mnt_parent->mnt_ghosts++; 1039 p->mnt_mountpoint->d_mounted--; 1040 } 1041 change_mnt_propagation(p, MS_PRIVATE); 1042 } 1043 } 1044 1045 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1046 1047 static int do_umount(struct vfsmount *mnt, int flags) 1048 { 1049 struct super_block *sb = mnt->mnt_sb; 1050 int retval; 1051 LIST_HEAD(umount_list); 1052 1053 retval = security_sb_umount(mnt, flags); 1054 if (retval) 1055 return retval; 1056 1057 /* 1058 * Allow userspace to request a mountpoint be expired rather than 1059 * unmounting unconditionally. Unmount only happens if: 1060 * (1) the mark is already set (the mark is cleared by mntput()) 1061 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1062 */ 1063 if (flags & MNT_EXPIRE) { 1064 if (mnt == current->fs->root.mnt || 1065 flags & (MNT_FORCE | MNT_DETACH)) 1066 return -EINVAL; 1067 1068 if (atomic_read(&mnt->mnt_count) != 2) 1069 return -EBUSY; 1070 1071 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1072 return -EAGAIN; 1073 } 1074 1075 /* 1076 * If we may have to abort operations to get out of this 1077 * mount, and they will themselves hold resources we must 1078 * allow the fs to do things. In the Unix tradition of 1079 * 'Gee thats tricky lets do it in userspace' the umount_begin 1080 * might fail to complete on the first run through as other tasks 1081 * must return, and the like. Thats for the mount program to worry 1082 * about for the moment. 1083 */ 1084 1085 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1086 sb->s_op->umount_begin(sb); 1087 } 1088 1089 /* 1090 * No sense to grab the lock for this test, but test itself looks 1091 * somewhat bogus. Suggestions for better replacement? 1092 * Ho-hum... In principle, we might treat that as umount + switch 1093 * to rootfs. GC would eventually take care of the old vfsmount. 1094 * Actually it makes sense, especially if rootfs would contain a 1095 * /reboot - static binary that would close all descriptors and 1096 * call reboot(9). Then init(8) could umount root and exec /reboot. 1097 */ 1098 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1099 /* 1100 * Special case for "unmounting" root ... 1101 * we just try to remount it readonly. 1102 */ 1103 down_write(&sb->s_umount); 1104 if (!(sb->s_flags & MS_RDONLY)) 1105 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1106 up_write(&sb->s_umount); 1107 return retval; 1108 } 1109 1110 down_write(&namespace_sem); 1111 spin_lock(&vfsmount_lock); 1112 event++; 1113 1114 if (!(flags & MNT_DETACH)) 1115 shrink_submounts(mnt, &umount_list); 1116 1117 retval = -EBUSY; 1118 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1119 if (!list_empty(&mnt->mnt_list)) 1120 umount_tree(mnt, 1, &umount_list); 1121 retval = 0; 1122 } 1123 spin_unlock(&vfsmount_lock); 1124 up_write(&namespace_sem); 1125 release_mounts(&umount_list); 1126 return retval; 1127 } 1128 1129 /* 1130 * Now umount can handle mount points as well as block devices. 1131 * This is important for filesystems which use unnamed block devices. 1132 * 1133 * We now support a flag for forced unmount like the other 'big iron' 1134 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1135 */ 1136 1137 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1138 { 1139 struct path path; 1140 int retval; 1141 int lookup_flags = 0; 1142 1143 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1144 return -EINVAL; 1145 1146 if (!(flags & UMOUNT_NOFOLLOW)) 1147 lookup_flags |= LOOKUP_FOLLOW; 1148 1149 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1150 if (retval) 1151 goto out; 1152 retval = -EINVAL; 1153 if (path.dentry != path.mnt->mnt_root) 1154 goto dput_and_out; 1155 if (!check_mnt(path.mnt)) 1156 goto dput_and_out; 1157 1158 retval = -EPERM; 1159 if (!capable(CAP_SYS_ADMIN)) 1160 goto dput_and_out; 1161 1162 retval = do_umount(path.mnt, flags); 1163 dput_and_out: 1164 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1165 dput(path.dentry); 1166 mntput_no_expire(path.mnt); 1167 out: 1168 return retval; 1169 } 1170 1171 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1172 1173 /* 1174 * The 2.0 compatible umount. No flags. 1175 */ 1176 SYSCALL_DEFINE1(oldumount, char __user *, name) 1177 { 1178 return sys_umount(name, 0); 1179 } 1180 1181 #endif 1182 1183 static int mount_is_safe(struct path *path) 1184 { 1185 if (capable(CAP_SYS_ADMIN)) 1186 return 0; 1187 return -EPERM; 1188 #ifdef notyet 1189 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1190 return -EPERM; 1191 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1192 if (current_uid() != path->dentry->d_inode->i_uid) 1193 return -EPERM; 1194 } 1195 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1196 return -EPERM; 1197 return 0; 1198 #endif 1199 } 1200 1201 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1202 int flag) 1203 { 1204 struct vfsmount *res, *p, *q, *r, *s; 1205 struct path path; 1206 1207 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1208 return NULL; 1209 1210 res = q = clone_mnt(mnt, dentry, flag); 1211 if (!q) 1212 goto Enomem; 1213 q->mnt_mountpoint = mnt->mnt_mountpoint; 1214 1215 p = mnt; 1216 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1217 if (!is_subdir(r->mnt_mountpoint, dentry)) 1218 continue; 1219 1220 for (s = r; s; s = next_mnt(s, r)) { 1221 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1222 s = skip_mnt_tree(s); 1223 continue; 1224 } 1225 while (p != s->mnt_parent) { 1226 p = p->mnt_parent; 1227 q = q->mnt_parent; 1228 } 1229 p = s; 1230 path.mnt = q; 1231 path.dentry = p->mnt_mountpoint; 1232 q = clone_mnt(p, p->mnt_root, flag); 1233 if (!q) 1234 goto Enomem; 1235 spin_lock(&vfsmount_lock); 1236 list_add_tail(&q->mnt_list, &res->mnt_list); 1237 attach_mnt(q, &path); 1238 spin_unlock(&vfsmount_lock); 1239 } 1240 } 1241 return res; 1242 Enomem: 1243 if (res) { 1244 LIST_HEAD(umount_list); 1245 spin_lock(&vfsmount_lock); 1246 umount_tree(res, 0, &umount_list); 1247 spin_unlock(&vfsmount_lock); 1248 release_mounts(&umount_list); 1249 } 1250 return NULL; 1251 } 1252 1253 struct vfsmount *collect_mounts(struct path *path) 1254 { 1255 struct vfsmount *tree; 1256 down_write(&namespace_sem); 1257 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1258 up_write(&namespace_sem); 1259 return tree; 1260 } 1261 1262 void drop_collected_mounts(struct vfsmount *mnt) 1263 { 1264 LIST_HEAD(umount_list); 1265 down_write(&namespace_sem); 1266 spin_lock(&vfsmount_lock); 1267 umount_tree(mnt, 0, &umount_list); 1268 spin_unlock(&vfsmount_lock); 1269 up_write(&namespace_sem); 1270 release_mounts(&umount_list); 1271 } 1272 1273 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1274 struct vfsmount *root) 1275 { 1276 struct vfsmount *mnt; 1277 int res = f(root, arg); 1278 if (res) 1279 return res; 1280 list_for_each_entry(mnt, &root->mnt_list, mnt_list) { 1281 res = f(mnt, arg); 1282 if (res) 1283 return res; 1284 } 1285 return 0; 1286 } 1287 1288 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1289 { 1290 struct vfsmount *p; 1291 1292 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1293 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1294 mnt_release_group_id(p); 1295 } 1296 } 1297 1298 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1299 { 1300 struct vfsmount *p; 1301 1302 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1303 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1304 int err = mnt_alloc_group_id(p); 1305 if (err) { 1306 cleanup_group_ids(mnt, p); 1307 return err; 1308 } 1309 } 1310 } 1311 1312 return 0; 1313 } 1314 1315 /* 1316 * @source_mnt : mount tree to be attached 1317 * @nd : place the mount tree @source_mnt is attached 1318 * @parent_nd : if non-null, detach the source_mnt from its parent and 1319 * store the parent mount and mountpoint dentry. 1320 * (done when source_mnt is moved) 1321 * 1322 * NOTE: in the table below explains the semantics when a source mount 1323 * of a given type is attached to a destination mount of a given type. 1324 * --------------------------------------------------------------------------- 1325 * | BIND MOUNT OPERATION | 1326 * |************************************************************************** 1327 * | source-->| shared | private | slave | unbindable | 1328 * | dest | | | | | 1329 * | | | | | | | 1330 * | v | | | | | 1331 * |************************************************************************** 1332 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1333 * | | | | | | 1334 * |non-shared| shared (+) | private | slave (*) | invalid | 1335 * *************************************************************************** 1336 * A bind operation clones the source mount and mounts the clone on the 1337 * destination mount. 1338 * 1339 * (++) the cloned mount is propagated to all the mounts in the propagation 1340 * tree of the destination mount and the cloned mount is added to 1341 * the peer group of the source mount. 1342 * (+) the cloned mount is created under the destination mount and is marked 1343 * as shared. The cloned mount is added to the peer group of the source 1344 * mount. 1345 * (+++) the mount is propagated to all the mounts in the propagation tree 1346 * of the destination mount and the cloned mount is made slave 1347 * of the same master as that of the source mount. The cloned mount 1348 * is marked as 'shared and slave'. 1349 * (*) the cloned mount is made a slave of the same master as that of the 1350 * source mount. 1351 * 1352 * --------------------------------------------------------------------------- 1353 * | MOVE MOUNT OPERATION | 1354 * |************************************************************************** 1355 * | source-->| shared | private | slave | unbindable | 1356 * | dest | | | | | 1357 * | | | | | | | 1358 * | v | | | | | 1359 * |************************************************************************** 1360 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1361 * | | | | | | 1362 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1363 * *************************************************************************** 1364 * 1365 * (+) the mount is moved to the destination. And is then propagated to 1366 * all the mounts in the propagation tree of the destination mount. 1367 * (+*) the mount is moved to the destination. 1368 * (+++) the mount is moved to the destination and is then propagated to 1369 * all the mounts belonging to the destination mount's propagation tree. 1370 * the mount is marked as 'shared and slave'. 1371 * (*) the mount continues to be a slave at the new location. 1372 * 1373 * if the source mount is a tree, the operations explained above is 1374 * applied to each mount in the tree. 1375 * Must be called without spinlocks held, since this function can sleep 1376 * in allocations. 1377 */ 1378 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1379 struct path *path, struct path *parent_path) 1380 { 1381 LIST_HEAD(tree_list); 1382 struct vfsmount *dest_mnt = path->mnt; 1383 struct dentry *dest_dentry = path->dentry; 1384 struct vfsmount *child, *p; 1385 int err; 1386 1387 if (IS_MNT_SHARED(dest_mnt)) { 1388 err = invent_group_ids(source_mnt, true); 1389 if (err) 1390 goto out; 1391 } 1392 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1393 if (err) 1394 goto out_cleanup_ids; 1395 1396 spin_lock(&vfsmount_lock); 1397 1398 if (IS_MNT_SHARED(dest_mnt)) { 1399 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1400 set_mnt_shared(p); 1401 } 1402 if (parent_path) { 1403 detach_mnt(source_mnt, parent_path); 1404 attach_mnt(source_mnt, path); 1405 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1406 } else { 1407 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1408 commit_tree(source_mnt); 1409 } 1410 1411 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1412 list_del_init(&child->mnt_hash); 1413 commit_tree(child); 1414 } 1415 spin_unlock(&vfsmount_lock); 1416 return 0; 1417 1418 out_cleanup_ids: 1419 if (IS_MNT_SHARED(dest_mnt)) 1420 cleanup_group_ids(source_mnt, NULL); 1421 out: 1422 return err; 1423 } 1424 1425 static int graft_tree(struct vfsmount *mnt, struct path *path) 1426 { 1427 int err; 1428 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1429 return -EINVAL; 1430 1431 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1432 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1433 return -ENOTDIR; 1434 1435 err = -ENOENT; 1436 mutex_lock(&path->dentry->d_inode->i_mutex); 1437 if (cant_mount(path->dentry)) 1438 goto out_unlock; 1439 1440 if (!d_unlinked(path->dentry)) 1441 err = attach_recursive_mnt(mnt, path, NULL); 1442 out_unlock: 1443 mutex_unlock(&path->dentry->d_inode->i_mutex); 1444 return err; 1445 } 1446 1447 /* 1448 * recursively change the type of the mountpoint. 1449 */ 1450 static int do_change_type(struct path *path, int flag) 1451 { 1452 struct vfsmount *m, *mnt = path->mnt; 1453 int recurse = flag & MS_REC; 1454 int type = flag & ~MS_REC; 1455 int err = 0; 1456 1457 if (!capable(CAP_SYS_ADMIN)) 1458 return -EPERM; 1459 1460 if (path->dentry != path->mnt->mnt_root) 1461 return -EINVAL; 1462 1463 down_write(&namespace_sem); 1464 if (type == MS_SHARED) { 1465 err = invent_group_ids(mnt, recurse); 1466 if (err) 1467 goto out_unlock; 1468 } 1469 1470 spin_lock(&vfsmount_lock); 1471 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1472 change_mnt_propagation(m, type); 1473 spin_unlock(&vfsmount_lock); 1474 1475 out_unlock: 1476 up_write(&namespace_sem); 1477 return err; 1478 } 1479 1480 /* 1481 * do loopback mount. 1482 */ 1483 static int do_loopback(struct path *path, char *old_name, 1484 int recurse) 1485 { 1486 struct path old_path; 1487 struct vfsmount *mnt = NULL; 1488 int err = mount_is_safe(path); 1489 if (err) 1490 return err; 1491 if (!old_name || !*old_name) 1492 return -EINVAL; 1493 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1494 if (err) 1495 return err; 1496 1497 down_write(&namespace_sem); 1498 err = -EINVAL; 1499 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1500 goto out; 1501 1502 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1503 goto out; 1504 1505 err = -ENOMEM; 1506 if (recurse) 1507 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1508 else 1509 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1510 1511 if (!mnt) 1512 goto out; 1513 1514 err = graft_tree(mnt, path); 1515 if (err) { 1516 LIST_HEAD(umount_list); 1517 spin_lock(&vfsmount_lock); 1518 umount_tree(mnt, 0, &umount_list); 1519 spin_unlock(&vfsmount_lock); 1520 release_mounts(&umount_list); 1521 } 1522 1523 out: 1524 up_write(&namespace_sem); 1525 path_put(&old_path); 1526 return err; 1527 } 1528 1529 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1530 { 1531 int error = 0; 1532 int readonly_request = 0; 1533 1534 if (ms_flags & MS_RDONLY) 1535 readonly_request = 1; 1536 if (readonly_request == __mnt_is_readonly(mnt)) 1537 return 0; 1538 1539 if (readonly_request) 1540 error = mnt_make_readonly(mnt); 1541 else 1542 __mnt_unmake_readonly(mnt); 1543 return error; 1544 } 1545 1546 /* 1547 * change filesystem flags. dir should be a physical root of filesystem. 1548 * If you've mounted a non-root directory somewhere and want to do remount 1549 * on it - tough luck. 1550 */ 1551 static int do_remount(struct path *path, int flags, int mnt_flags, 1552 void *data) 1553 { 1554 int err; 1555 struct super_block *sb = path->mnt->mnt_sb; 1556 1557 if (!capable(CAP_SYS_ADMIN)) 1558 return -EPERM; 1559 1560 if (!check_mnt(path->mnt)) 1561 return -EINVAL; 1562 1563 if (path->dentry != path->mnt->mnt_root) 1564 return -EINVAL; 1565 1566 down_write(&sb->s_umount); 1567 if (flags & MS_BIND) 1568 err = change_mount_flags(path->mnt, flags); 1569 else 1570 err = do_remount_sb(sb, flags, data, 0); 1571 if (!err) { 1572 spin_lock(&vfsmount_lock); 1573 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK; 1574 path->mnt->mnt_flags = mnt_flags; 1575 spin_unlock(&vfsmount_lock); 1576 } 1577 up_write(&sb->s_umount); 1578 if (!err) { 1579 spin_lock(&vfsmount_lock); 1580 touch_mnt_namespace(path->mnt->mnt_ns); 1581 spin_unlock(&vfsmount_lock); 1582 } 1583 return err; 1584 } 1585 1586 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1587 { 1588 struct vfsmount *p; 1589 for (p = mnt; p; p = next_mnt(p, mnt)) { 1590 if (IS_MNT_UNBINDABLE(p)) 1591 return 1; 1592 } 1593 return 0; 1594 } 1595 1596 static int do_move_mount(struct path *path, char *old_name) 1597 { 1598 struct path old_path, parent_path; 1599 struct vfsmount *p; 1600 int err = 0; 1601 if (!capable(CAP_SYS_ADMIN)) 1602 return -EPERM; 1603 if (!old_name || !*old_name) 1604 return -EINVAL; 1605 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1606 if (err) 1607 return err; 1608 1609 down_write(&namespace_sem); 1610 while (d_mountpoint(path->dentry) && 1611 follow_down(path)) 1612 ; 1613 err = -EINVAL; 1614 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1615 goto out; 1616 1617 err = -ENOENT; 1618 mutex_lock(&path->dentry->d_inode->i_mutex); 1619 if (cant_mount(path->dentry)) 1620 goto out1; 1621 1622 if (d_unlinked(path->dentry)) 1623 goto out1; 1624 1625 err = -EINVAL; 1626 if (old_path.dentry != old_path.mnt->mnt_root) 1627 goto out1; 1628 1629 if (old_path.mnt == old_path.mnt->mnt_parent) 1630 goto out1; 1631 1632 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1633 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1634 goto out1; 1635 /* 1636 * Don't move a mount residing in a shared parent. 1637 */ 1638 if (old_path.mnt->mnt_parent && 1639 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1640 goto out1; 1641 /* 1642 * Don't move a mount tree containing unbindable mounts to a destination 1643 * mount which is shared. 1644 */ 1645 if (IS_MNT_SHARED(path->mnt) && 1646 tree_contains_unbindable(old_path.mnt)) 1647 goto out1; 1648 err = -ELOOP; 1649 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1650 if (p == old_path.mnt) 1651 goto out1; 1652 1653 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1654 if (err) 1655 goto out1; 1656 1657 /* if the mount is moved, it should no longer be expire 1658 * automatically */ 1659 list_del_init(&old_path.mnt->mnt_expire); 1660 out1: 1661 mutex_unlock(&path->dentry->d_inode->i_mutex); 1662 out: 1663 up_write(&namespace_sem); 1664 if (!err) 1665 path_put(&parent_path); 1666 path_put(&old_path); 1667 return err; 1668 } 1669 1670 /* 1671 * create a new mount for userspace and request it to be added into the 1672 * namespace's tree 1673 */ 1674 static int do_new_mount(struct path *path, char *type, int flags, 1675 int mnt_flags, char *name, void *data) 1676 { 1677 struct vfsmount *mnt; 1678 1679 if (!type) 1680 return -EINVAL; 1681 1682 /* we need capabilities... */ 1683 if (!capable(CAP_SYS_ADMIN)) 1684 return -EPERM; 1685 1686 lock_kernel(); 1687 mnt = do_kern_mount(type, flags, name, data); 1688 unlock_kernel(); 1689 if (IS_ERR(mnt)) 1690 return PTR_ERR(mnt); 1691 1692 return do_add_mount(mnt, path, mnt_flags, NULL); 1693 } 1694 1695 /* 1696 * add a mount into a namespace's mount tree 1697 * - provide the option of adding the new mount to an expiration list 1698 */ 1699 int do_add_mount(struct vfsmount *newmnt, struct path *path, 1700 int mnt_flags, struct list_head *fslist) 1701 { 1702 int err; 1703 1704 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1705 1706 down_write(&namespace_sem); 1707 /* Something was mounted here while we slept */ 1708 while (d_mountpoint(path->dentry) && 1709 follow_down(path)) 1710 ; 1711 err = -EINVAL; 1712 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1713 goto unlock; 1714 1715 /* Refuse the same filesystem on the same mount point */ 1716 err = -EBUSY; 1717 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1718 path->mnt->mnt_root == path->dentry) 1719 goto unlock; 1720 1721 err = -EINVAL; 1722 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1723 goto unlock; 1724 1725 newmnt->mnt_flags = mnt_flags; 1726 if ((err = graft_tree(newmnt, path))) 1727 goto unlock; 1728 1729 if (fslist) /* add to the specified expiration list */ 1730 list_add_tail(&newmnt->mnt_expire, fslist); 1731 1732 up_write(&namespace_sem); 1733 return 0; 1734 1735 unlock: 1736 up_write(&namespace_sem); 1737 mntput(newmnt); 1738 return err; 1739 } 1740 1741 EXPORT_SYMBOL_GPL(do_add_mount); 1742 1743 /* 1744 * process a list of expirable mountpoints with the intent of discarding any 1745 * mountpoints that aren't in use and haven't been touched since last we came 1746 * here 1747 */ 1748 void mark_mounts_for_expiry(struct list_head *mounts) 1749 { 1750 struct vfsmount *mnt, *next; 1751 LIST_HEAD(graveyard); 1752 LIST_HEAD(umounts); 1753 1754 if (list_empty(mounts)) 1755 return; 1756 1757 down_write(&namespace_sem); 1758 spin_lock(&vfsmount_lock); 1759 1760 /* extract from the expiration list every vfsmount that matches the 1761 * following criteria: 1762 * - only referenced by its parent vfsmount 1763 * - still marked for expiry (marked on the last call here; marks are 1764 * cleared by mntput()) 1765 */ 1766 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1767 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1768 propagate_mount_busy(mnt, 1)) 1769 continue; 1770 list_move(&mnt->mnt_expire, &graveyard); 1771 } 1772 while (!list_empty(&graveyard)) { 1773 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 1774 touch_mnt_namespace(mnt->mnt_ns); 1775 umount_tree(mnt, 1, &umounts); 1776 } 1777 spin_unlock(&vfsmount_lock); 1778 up_write(&namespace_sem); 1779 1780 release_mounts(&umounts); 1781 } 1782 1783 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1784 1785 /* 1786 * Ripoff of 'select_parent()' 1787 * 1788 * search the list of submounts for a given mountpoint, and move any 1789 * shrinkable submounts to the 'graveyard' list. 1790 */ 1791 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1792 { 1793 struct vfsmount *this_parent = parent; 1794 struct list_head *next; 1795 int found = 0; 1796 1797 repeat: 1798 next = this_parent->mnt_mounts.next; 1799 resume: 1800 while (next != &this_parent->mnt_mounts) { 1801 struct list_head *tmp = next; 1802 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1803 1804 next = tmp->next; 1805 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1806 continue; 1807 /* 1808 * Descend a level if the d_mounts list is non-empty. 1809 */ 1810 if (!list_empty(&mnt->mnt_mounts)) { 1811 this_parent = mnt; 1812 goto repeat; 1813 } 1814 1815 if (!propagate_mount_busy(mnt, 1)) { 1816 list_move_tail(&mnt->mnt_expire, graveyard); 1817 found++; 1818 } 1819 } 1820 /* 1821 * All done at this level ... ascend and resume the search 1822 */ 1823 if (this_parent != parent) { 1824 next = this_parent->mnt_child.next; 1825 this_parent = this_parent->mnt_parent; 1826 goto resume; 1827 } 1828 return found; 1829 } 1830 1831 /* 1832 * process a list of expirable mountpoints with the intent of discarding any 1833 * submounts of a specific parent mountpoint 1834 */ 1835 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 1836 { 1837 LIST_HEAD(graveyard); 1838 struct vfsmount *m; 1839 1840 /* extract submounts of 'mountpoint' from the expiration list */ 1841 while (select_submounts(mnt, &graveyard)) { 1842 while (!list_empty(&graveyard)) { 1843 m = list_first_entry(&graveyard, struct vfsmount, 1844 mnt_expire); 1845 touch_mnt_namespace(m->mnt_ns); 1846 umount_tree(m, 1, umounts); 1847 } 1848 } 1849 } 1850 1851 /* 1852 * Some copy_from_user() implementations do not return the exact number of 1853 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1854 * Note that this function differs from copy_from_user() in that it will oops 1855 * on bad values of `to', rather than returning a short copy. 1856 */ 1857 static long exact_copy_from_user(void *to, const void __user * from, 1858 unsigned long n) 1859 { 1860 char *t = to; 1861 const char __user *f = from; 1862 char c; 1863 1864 if (!access_ok(VERIFY_READ, from, n)) 1865 return n; 1866 1867 while (n) { 1868 if (__get_user(c, f)) { 1869 memset(t, 0, n); 1870 break; 1871 } 1872 *t++ = c; 1873 f++; 1874 n--; 1875 } 1876 return n; 1877 } 1878 1879 int copy_mount_options(const void __user * data, unsigned long *where) 1880 { 1881 int i; 1882 unsigned long page; 1883 unsigned long size; 1884 1885 *where = 0; 1886 if (!data) 1887 return 0; 1888 1889 if (!(page = __get_free_page(GFP_KERNEL))) 1890 return -ENOMEM; 1891 1892 /* We only care that *some* data at the address the user 1893 * gave us is valid. Just in case, we'll zero 1894 * the remainder of the page. 1895 */ 1896 /* copy_from_user cannot cross TASK_SIZE ! */ 1897 size = TASK_SIZE - (unsigned long)data; 1898 if (size > PAGE_SIZE) 1899 size = PAGE_SIZE; 1900 1901 i = size - exact_copy_from_user((void *)page, data, size); 1902 if (!i) { 1903 free_page(page); 1904 return -EFAULT; 1905 } 1906 if (i != PAGE_SIZE) 1907 memset((char *)page + i, 0, PAGE_SIZE - i); 1908 *where = page; 1909 return 0; 1910 } 1911 1912 int copy_mount_string(const void __user *data, char **where) 1913 { 1914 char *tmp; 1915 1916 if (!data) { 1917 *where = NULL; 1918 return 0; 1919 } 1920 1921 tmp = strndup_user(data, PAGE_SIZE); 1922 if (IS_ERR(tmp)) 1923 return PTR_ERR(tmp); 1924 1925 *where = tmp; 1926 return 0; 1927 } 1928 1929 /* 1930 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1931 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1932 * 1933 * data is a (void *) that can point to any structure up to 1934 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1935 * information (or be NULL). 1936 * 1937 * Pre-0.97 versions of mount() didn't have a flags word. 1938 * When the flags word was introduced its top half was required 1939 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1940 * Therefore, if this magic number is present, it carries no information 1941 * and must be discarded. 1942 */ 1943 long do_mount(char *dev_name, char *dir_name, char *type_page, 1944 unsigned long flags, void *data_page) 1945 { 1946 struct path path; 1947 int retval = 0; 1948 int mnt_flags = 0; 1949 1950 /* Discard magic */ 1951 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1952 flags &= ~MS_MGC_MSK; 1953 1954 /* Basic sanity checks */ 1955 1956 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1957 return -EINVAL; 1958 1959 if (data_page) 1960 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1961 1962 /* ... and get the mountpoint */ 1963 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 1964 if (retval) 1965 return retval; 1966 1967 retval = security_sb_mount(dev_name, &path, 1968 type_page, flags, data_page); 1969 if (retval) 1970 goto dput_out; 1971 1972 /* Default to relatime unless overriden */ 1973 if (!(flags & MS_NOATIME)) 1974 mnt_flags |= MNT_RELATIME; 1975 1976 /* Separate the per-mountpoint flags */ 1977 if (flags & MS_NOSUID) 1978 mnt_flags |= MNT_NOSUID; 1979 if (flags & MS_NODEV) 1980 mnt_flags |= MNT_NODEV; 1981 if (flags & MS_NOEXEC) 1982 mnt_flags |= MNT_NOEXEC; 1983 if (flags & MS_NOATIME) 1984 mnt_flags |= MNT_NOATIME; 1985 if (flags & MS_NODIRATIME) 1986 mnt_flags |= MNT_NODIRATIME; 1987 if (flags & MS_STRICTATIME) 1988 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 1989 if (flags & MS_RDONLY) 1990 mnt_flags |= MNT_READONLY; 1991 1992 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 1993 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 1994 MS_STRICTATIME); 1995 1996 if (flags & MS_REMOUNT) 1997 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 1998 data_page); 1999 else if (flags & MS_BIND) 2000 retval = do_loopback(&path, dev_name, flags & MS_REC); 2001 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2002 retval = do_change_type(&path, flags); 2003 else if (flags & MS_MOVE) 2004 retval = do_move_mount(&path, dev_name); 2005 else 2006 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2007 dev_name, data_page); 2008 dput_out: 2009 path_put(&path); 2010 return retval; 2011 } 2012 2013 static struct mnt_namespace *alloc_mnt_ns(void) 2014 { 2015 struct mnt_namespace *new_ns; 2016 2017 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2018 if (!new_ns) 2019 return ERR_PTR(-ENOMEM); 2020 atomic_set(&new_ns->count, 1); 2021 new_ns->root = NULL; 2022 INIT_LIST_HEAD(&new_ns->list); 2023 init_waitqueue_head(&new_ns->poll); 2024 new_ns->event = 0; 2025 return new_ns; 2026 } 2027 2028 /* 2029 * Allocate a new namespace structure and populate it with contents 2030 * copied from the namespace of the passed in task structure. 2031 */ 2032 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2033 struct fs_struct *fs) 2034 { 2035 struct mnt_namespace *new_ns; 2036 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2037 struct vfsmount *p, *q; 2038 2039 new_ns = alloc_mnt_ns(); 2040 if (IS_ERR(new_ns)) 2041 return new_ns; 2042 2043 down_write(&namespace_sem); 2044 /* First pass: copy the tree topology */ 2045 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 2046 CL_COPY_ALL | CL_EXPIRE); 2047 if (!new_ns->root) { 2048 up_write(&namespace_sem); 2049 kfree(new_ns); 2050 return ERR_PTR(-ENOMEM); 2051 } 2052 spin_lock(&vfsmount_lock); 2053 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2054 spin_unlock(&vfsmount_lock); 2055 2056 /* 2057 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2058 * as belonging to new namespace. We have already acquired a private 2059 * fs_struct, so tsk->fs->lock is not needed. 2060 */ 2061 p = mnt_ns->root; 2062 q = new_ns->root; 2063 while (p) { 2064 q->mnt_ns = new_ns; 2065 if (fs) { 2066 if (p == fs->root.mnt) { 2067 rootmnt = p; 2068 fs->root.mnt = mntget(q); 2069 } 2070 if (p == fs->pwd.mnt) { 2071 pwdmnt = p; 2072 fs->pwd.mnt = mntget(q); 2073 } 2074 } 2075 p = next_mnt(p, mnt_ns->root); 2076 q = next_mnt(q, new_ns->root); 2077 } 2078 up_write(&namespace_sem); 2079 2080 if (rootmnt) 2081 mntput(rootmnt); 2082 if (pwdmnt) 2083 mntput(pwdmnt); 2084 2085 return new_ns; 2086 } 2087 2088 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2089 struct fs_struct *new_fs) 2090 { 2091 struct mnt_namespace *new_ns; 2092 2093 BUG_ON(!ns); 2094 get_mnt_ns(ns); 2095 2096 if (!(flags & CLONE_NEWNS)) 2097 return ns; 2098 2099 new_ns = dup_mnt_ns(ns, new_fs); 2100 2101 put_mnt_ns(ns); 2102 return new_ns; 2103 } 2104 2105 /** 2106 * create_mnt_ns - creates a private namespace and adds a root filesystem 2107 * @mnt: pointer to the new root filesystem mountpoint 2108 */ 2109 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2110 { 2111 struct mnt_namespace *new_ns; 2112 2113 new_ns = alloc_mnt_ns(); 2114 if (!IS_ERR(new_ns)) { 2115 mnt->mnt_ns = new_ns; 2116 new_ns->root = mnt; 2117 list_add(&new_ns->list, &new_ns->root->mnt_list); 2118 } 2119 return new_ns; 2120 } 2121 EXPORT_SYMBOL(create_mnt_ns); 2122 2123 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2124 char __user *, type, unsigned long, flags, void __user *, data) 2125 { 2126 int ret; 2127 char *kernel_type; 2128 char *kernel_dir; 2129 char *kernel_dev; 2130 unsigned long data_page; 2131 2132 ret = copy_mount_string(type, &kernel_type); 2133 if (ret < 0) 2134 goto out_type; 2135 2136 kernel_dir = getname(dir_name); 2137 if (IS_ERR(kernel_dir)) { 2138 ret = PTR_ERR(kernel_dir); 2139 goto out_dir; 2140 } 2141 2142 ret = copy_mount_string(dev_name, &kernel_dev); 2143 if (ret < 0) 2144 goto out_dev; 2145 2146 ret = copy_mount_options(data, &data_page); 2147 if (ret < 0) 2148 goto out_data; 2149 2150 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2151 (void *) data_page); 2152 2153 free_page(data_page); 2154 out_data: 2155 kfree(kernel_dev); 2156 out_dev: 2157 putname(kernel_dir); 2158 out_dir: 2159 kfree(kernel_type); 2160 out_type: 2161 return ret; 2162 } 2163 2164 /* 2165 * pivot_root Semantics: 2166 * Moves the root file system of the current process to the directory put_old, 2167 * makes new_root as the new root file system of the current process, and sets 2168 * root/cwd of all processes which had them on the current root to new_root. 2169 * 2170 * Restrictions: 2171 * The new_root and put_old must be directories, and must not be on the 2172 * same file system as the current process root. The put_old must be 2173 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2174 * pointed to by put_old must yield the same directory as new_root. No other 2175 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2176 * 2177 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2178 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2179 * in this situation. 2180 * 2181 * Notes: 2182 * - we don't move root/cwd if they are not at the root (reason: if something 2183 * cared enough to change them, it's probably wrong to force them elsewhere) 2184 * - it's okay to pick a root that isn't the root of a file system, e.g. 2185 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2186 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2187 * first. 2188 */ 2189 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2190 const char __user *, put_old) 2191 { 2192 struct vfsmount *tmp; 2193 struct path new, old, parent_path, root_parent, root; 2194 int error; 2195 2196 if (!capable(CAP_SYS_ADMIN)) 2197 return -EPERM; 2198 2199 error = user_path_dir(new_root, &new); 2200 if (error) 2201 goto out0; 2202 error = -EINVAL; 2203 if (!check_mnt(new.mnt)) 2204 goto out1; 2205 2206 error = user_path_dir(put_old, &old); 2207 if (error) 2208 goto out1; 2209 2210 error = security_sb_pivotroot(&old, &new); 2211 if (error) { 2212 path_put(&old); 2213 goto out1; 2214 } 2215 2216 read_lock(¤t->fs->lock); 2217 root = current->fs->root; 2218 path_get(¤t->fs->root); 2219 read_unlock(¤t->fs->lock); 2220 down_write(&namespace_sem); 2221 mutex_lock(&old.dentry->d_inode->i_mutex); 2222 error = -EINVAL; 2223 if (IS_MNT_SHARED(old.mnt) || 2224 IS_MNT_SHARED(new.mnt->mnt_parent) || 2225 IS_MNT_SHARED(root.mnt->mnt_parent)) 2226 goto out2; 2227 if (!check_mnt(root.mnt)) 2228 goto out2; 2229 error = -ENOENT; 2230 if (cant_mount(old.dentry)) 2231 goto out2; 2232 if (d_unlinked(new.dentry)) 2233 goto out2; 2234 if (d_unlinked(old.dentry)) 2235 goto out2; 2236 error = -EBUSY; 2237 if (new.mnt == root.mnt || 2238 old.mnt == root.mnt) 2239 goto out2; /* loop, on the same file system */ 2240 error = -EINVAL; 2241 if (root.mnt->mnt_root != root.dentry) 2242 goto out2; /* not a mountpoint */ 2243 if (root.mnt->mnt_parent == root.mnt) 2244 goto out2; /* not attached */ 2245 if (new.mnt->mnt_root != new.dentry) 2246 goto out2; /* not a mountpoint */ 2247 if (new.mnt->mnt_parent == new.mnt) 2248 goto out2; /* not attached */ 2249 /* make sure we can reach put_old from new_root */ 2250 tmp = old.mnt; 2251 spin_lock(&vfsmount_lock); 2252 if (tmp != new.mnt) { 2253 for (;;) { 2254 if (tmp->mnt_parent == tmp) 2255 goto out3; /* already mounted on put_old */ 2256 if (tmp->mnt_parent == new.mnt) 2257 break; 2258 tmp = tmp->mnt_parent; 2259 } 2260 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2261 goto out3; 2262 } else if (!is_subdir(old.dentry, new.dentry)) 2263 goto out3; 2264 detach_mnt(new.mnt, &parent_path); 2265 detach_mnt(root.mnt, &root_parent); 2266 /* mount old root on put_old */ 2267 attach_mnt(root.mnt, &old); 2268 /* mount new_root on / */ 2269 attach_mnt(new.mnt, &root_parent); 2270 touch_mnt_namespace(current->nsproxy->mnt_ns); 2271 spin_unlock(&vfsmount_lock); 2272 chroot_fs_refs(&root, &new); 2273 error = 0; 2274 path_put(&root_parent); 2275 path_put(&parent_path); 2276 out2: 2277 mutex_unlock(&old.dentry->d_inode->i_mutex); 2278 up_write(&namespace_sem); 2279 path_put(&root); 2280 path_put(&old); 2281 out1: 2282 path_put(&new); 2283 out0: 2284 return error; 2285 out3: 2286 spin_unlock(&vfsmount_lock); 2287 goto out2; 2288 } 2289 2290 static void __init init_mount_tree(void) 2291 { 2292 struct vfsmount *mnt; 2293 struct mnt_namespace *ns; 2294 struct path root; 2295 2296 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2297 if (IS_ERR(mnt)) 2298 panic("Can't create rootfs"); 2299 ns = create_mnt_ns(mnt); 2300 if (IS_ERR(ns)) 2301 panic("Can't allocate initial namespace"); 2302 2303 init_task.nsproxy->mnt_ns = ns; 2304 get_mnt_ns(ns); 2305 2306 root.mnt = ns->root; 2307 root.dentry = ns->root->mnt_root; 2308 2309 set_fs_pwd(current->fs, &root); 2310 set_fs_root(current->fs, &root); 2311 } 2312 2313 void __init mnt_init(void) 2314 { 2315 unsigned u; 2316 int err; 2317 2318 init_rwsem(&namespace_sem); 2319 2320 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2321 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2322 2323 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2324 2325 if (!mount_hashtable) 2326 panic("Failed to allocate mount hash table\n"); 2327 2328 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); 2329 2330 for (u = 0; u < HASH_SIZE; u++) 2331 INIT_LIST_HEAD(&mount_hashtable[u]); 2332 2333 err = sysfs_init(); 2334 if (err) 2335 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2336 __func__, err); 2337 fs_kobj = kobject_create_and_add("fs", NULL); 2338 if (!fs_kobj) 2339 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2340 init_rootfs(); 2341 init_mount_tree(); 2342 } 2343 2344 void put_mnt_ns(struct mnt_namespace *ns) 2345 { 2346 LIST_HEAD(umount_list); 2347 2348 if (!atomic_dec_and_test(&ns->count)) 2349 return; 2350 down_write(&namespace_sem); 2351 spin_lock(&vfsmount_lock); 2352 umount_tree(ns->root, 0, &umount_list); 2353 spin_unlock(&vfsmount_lock); 2354 up_write(&namespace_sem); 2355 release_mounts(&umount_list); 2356 kfree(ns); 2357 } 2358 EXPORT_SYMBOL(put_mnt_ns); 2359