xref: /linux/fs/namespace.c (revision cae73d3bdce5dc6cdbf454fcc37a6fb2f025151e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __ro_after_init;
43 static unsigned int m_hash_shift __ro_after_init;
44 static unsigned int mp_hash_mask __ro_after_init;
45 static unsigned int mp_hash_shift __ro_after_init;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 /* Don't allow confusion with old 32bit mount ID */
72 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
73 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
74 
75 static struct hlist_head *mount_hashtable __ro_after_init;
76 static struct hlist_head *mountpoint_hashtable __ro_after_init;
77 static struct kmem_cache *mnt_cache __ro_after_init;
78 static DECLARE_RWSEM(namespace_sem);
79 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
80 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
81 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
82 
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
84 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
85 
86 struct mount_kattr {
87 	unsigned int attr_set;
88 	unsigned int attr_clr;
89 	unsigned int propagation;
90 	unsigned int lookup_flags;
91 	bool recurse;
92 	struct user_namespace *mnt_userns;
93 	struct mnt_idmap *mnt_idmap;
94 };
95 
96 /* /sys/fs */
97 struct kobject *fs_kobj __ro_after_init;
98 EXPORT_SYMBOL_GPL(fs_kobj);
99 
100 /*
101  * vfsmount lock may be taken for read to prevent changes to the
102  * vfsmount hash, ie. during mountpoint lookups or walking back
103  * up the tree.
104  *
105  * It should be taken for write in all cases where the vfsmount
106  * tree or hash is modified or when a vfsmount structure is modified.
107  */
108 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
109 
110 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
111 {
112 	if (!node)
113 		return NULL;
114 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
115 }
116 
117 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
118 {
119 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
120 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
121 	u64 seq_a = ns_a->seq;
122 	u64 seq_b = ns_b->seq;
123 
124 	if (seq_a < seq_b)
125 		return -1;
126 	if (seq_a > seq_b)
127 		return 1;
128 	return 0;
129 }
130 
131 static inline void mnt_ns_tree_write_lock(void)
132 {
133 	write_seqlock(&mnt_ns_tree_lock);
134 }
135 
136 static inline void mnt_ns_tree_write_unlock(void)
137 {
138 	write_sequnlock(&mnt_ns_tree_lock);
139 }
140 
141 static void mnt_ns_tree_add(struct mnt_namespace *ns)
142 {
143 	struct rb_node *node, *prev;
144 
145 	mnt_ns_tree_write_lock();
146 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
147 	/*
148 	 * If there's no previous entry simply add it after the
149 	 * head and if there is add it after the previous entry.
150 	 */
151 	prev = rb_prev(&ns->mnt_ns_tree_node);
152 	if (!prev)
153 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
154 	else
155 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
156 	mnt_ns_tree_write_unlock();
157 
158 	WARN_ON_ONCE(node);
159 }
160 
161 static void mnt_ns_release(struct mnt_namespace *ns)
162 {
163 	lockdep_assert_not_held(&mnt_ns_tree_lock.lock);
164 
165 	/* keep alive for {list,stat}mount() */
166 	if (refcount_dec_and_test(&ns->passive)) {
167 		put_user_ns(ns->user_ns);
168 		kfree(ns);
169 	}
170 }
171 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
172 
173 static void mnt_ns_release_rcu(struct rcu_head *rcu)
174 {
175 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
176 }
177 
178 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
179 {
180 	/* remove from global mount namespace list */
181 	if (!is_anon_ns(ns)) {
182 		mnt_ns_tree_write_lock();
183 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
184 		list_bidir_del_rcu(&ns->mnt_ns_list);
185 		mnt_ns_tree_write_unlock();
186 	}
187 
188 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
189 }
190 
191 static int mnt_ns_find(const void *key, const struct rb_node *node)
192 {
193 	const u64 mnt_ns_id = *(u64 *)key;
194 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
195 
196 	if (mnt_ns_id < ns->seq)
197 		return -1;
198 	if (mnt_ns_id > ns->seq)
199 		return 1;
200 	return 0;
201 }
202 
203 /*
204  * Lookup a mount namespace by id and take a passive reference count. Taking a
205  * passive reference means the mount namespace can be emptied if e.g., the last
206  * task holding an active reference exits. To access the mounts of the
207  * namespace the @namespace_sem must first be acquired. If the namespace has
208  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
209  * see that the mount rbtree of the namespace is empty.
210  *
211  * Note the lookup is lockless protected by a sequence counter. We only
212  * need to guard against false negatives as false positives aren't
213  * possible. So if we didn't find a mount namespace and the sequence
214  * counter has changed we need to retry. If the sequence counter is
215  * still the same we know the search actually failed.
216  */
217 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
218 {
219 	struct mnt_namespace *ns;
220 	struct rb_node *node;
221 	unsigned int seq;
222 
223 	guard(rcu)();
224 	do {
225 		seq = read_seqbegin(&mnt_ns_tree_lock);
226 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
227 		if (node)
228 			break;
229 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
230 
231 	if (!node)
232 		return NULL;
233 
234 	/*
235 	 * The last reference count is put with RCU delay so we can
236 	 * unconditonally acquire a reference here.
237 	 */
238 	ns = node_to_mnt_ns(node);
239 	refcount_inc(&ns->passive);
240 	return ns;
241 }
242 
243 static inline void lock_mount_hash(void)
244 {
245 	write_seqlock(&mount_lock);
246 }
247 
248 static inline void unlock_mount_hash(void)
249 {
250 	write_sequnlock(&mount_lock);
251 }
252 
253 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
254 {
255 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
256 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
257 	tmp = tmp + (tmp >> m_hash_shift);
258 	return &mount_hashtable[tmp & m_hash_mask];
259 }
260 
261 static inline struct hlist_head *mp_hash(struct dentry *dentry)
262 {
263 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
264 	tmp = tmp + (tmp >> mp_hash_shift);
265 	return &mountpoint_hashtable[tmp & mp_hash_mask];
266 }
267 
268 static int mnt_alloc_id(struct mount *mnt)
269 {
270 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
271 
272 	if (res < 0)
273 		return res;
274 	mnt->mnt_id = res;
275 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
276 	return 0;
277 }
278 
279 static void mnt_free_id(struct mount *mnt)
280 {
281 	ida_free(&mnt_id_ida, mnt->mnt_id);
282 }
283 
284 /*
285  * Allocate a new peer group ID
286  */
287 static int mnt_alloc_group_id(struct mount *mnt)
288 {
289 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
290 
291 	if (res < 0)
292 		return res;
293 	mnt->mnt_group_id = res;
294 	return 0;
295 }
296 
297 /*
298  * Release a peer group ID
299  */
300 void mnt_release_group_id(struct mount *mnt)
301 {
302 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
303 	mnt->mnt_group_id = 0;
304 }
305 
306 /*
307  * vfsmount lock must be held for read
308  */
309 static inline void mnt_add_count(struct mount *mnt, int n)
310 {
311 #ifdef CONFIG_SMP
312 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
313 #else
314 	preempt_disable();
315 	mnt->mnt_count += n;
316 	preempt_enable();
317 #endif
318 }
319 
320 /*
321  * vfsmount lock must be held for write
322  */
323 int mnt_get_count(struct mount *mnt)
324 {
325 #ifdef CONFIG_SMP
326 	int count = 0;
327 	int cpu;
328 
329 	for_each_possible_cpu(cpu) {
330 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
331 	}
332 
333 	return count;
334 #else
335 	return mnt->mnt_count;
336 #endif
337 }
338 
339 static struct mount *alloc_vfsmnt(const char *name)
340 {
341 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
342 	if (mnt) {
343 		int err;
344 
345 		err = mnt_alloc_id(mnt);
346 		if (err)
347 			goto out_free_cache;
348 
349 		if (name) {
350 			mnt->mnt_devname = kstrdup_const(name,
351 							 GFP_KERNEL_ACCOUNT);
352 			if (!mnt->mnt_devname)
353 				goto out_free_id;
354 		}
355 
356 #ifdef CONFIG_SMP
357 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
358 		if (!mnt->mnt_pcp)
359 			goto out_free_devname;
360 
361 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
362 #else
363 		mnt->mnt_count = 1;
364 		mnt->mnt_writers = 0;
365 #endif
366 
367 		INIT_HLIST_NODE(&mnt->mnt_hash);
368 		INIT_LIST_HEAD(&mnt->mnt_child);
369 		INIT_LIST_HEAD(&mnt->mnt_mounts);
370 		INIT_LIST_HEAD(&mnt->mnt_list);
371 		INIT_LIST_HEAD(&mnt->mnt_expire);
372 		INIT_LIST_HEAD(&mnt->mnt_share);
373 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
374 		INIT_LIST_HEAD(&mnt->mnt_slave);
375 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
376 		INIT_LIST_HEAD(&mnt->mnt_umounting);
377 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
378 		RB_CLEAR_NODE(&mnt->mnt_node);
379 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
380 	}
381 	return mnt;
382 
383 #ifdef CONFIG_SMP
384 out_free_devname:
385 	kfree_const(mnt->mnt_devname);
386 #endif
387 out_free_id:
388 	mnt_free_id(mnt);
389 out_free_cache:
390 	kmem_cache_free(mnt_cache, mnt);
391 	return NULL;
392 }
393 
394 /*
395  * Most r/o checks on a fs are for operations that take
396  * discrete amounts of time, like a write() or unlink().
397  * We must keep track of when those operations start
398  * (for permission checks) and when they end, so that
399  * we can determine when writes are able to occur to
400  * a filesystem.
401  */
402 /*
403  * __mnt_is_readonly: check whether a mount is read-only
404  * @mnt: the mount to check for its write status
405  *
406  * This shouldn't be used directly ouside of the VFS.
407  * It does not guarantee that the filesystem will stay
408  * r/w, just that it is right *now*.  This can not and
409  * should not be used in place of IS_RDONLY(inode).
410  * mnt_want/drop_write() will _keep_ the filesystem
411  * r/w.
412  */
413 bool __mnt_is_readonly(struct vfsmount *mnt)
414 {
415 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
416 }
417 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
418 
419 static inline void mnt_inc_writers(struct mount *mnt)
420 {
421 #ifdef CONFIG_SMP
422 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
423 #else
424 	mnt->mnt_writers++;
425 #endif
426 }
427 
428 static inline void mnt_dec_writers(struct mount *mnt)
429 {
430 #ifdef CONFIG_SMP
431 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
432 #else
433 	mnt->mnt_writers--;
434 #endif
435 }
436 
437 static unsigned int mnt_get_writers(struct mount *mnt)
438 {
439 #ifdef CONFIG_SMP
440 	unsigned int count = 0;
441 	int cpu;
442 
443 	for_each_possible_cpu(cpu) {
444 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
445 	}
446 
447 	return count;
448 #else
449 	return mnt->mnt_writers;
450 #endif
451 }
452 
453 static int mnt_is_readonly(struct vfsmount *mnt)
454 {
455 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
456 		return 1;
457 	/*
458 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
459 	 * making sure if we don't see s_readonly_remount set yet, we also will
460 	 * not see any superblock / mount flag changes done by remount.
461 	 * It also pairs with the barrier in sb_end_ro_state_change()
462 	 * assuring that if we see s_readonly_remount already cleared, we will
463 	 * see the values of superblock / mount flags updated by remount.
464 	 */
465 	smp_rmb();
466 	return __mnt_is_readonly(mnt);
467 }
468 
469 /*
470  * Most r/o & frozen checks on a fs are for operations that take discrete
471  * amounts of time, like a write() or unlink().  We must keep track of when
472  * those operations start (for permission checks) and when they end, so that we
473  * can determine when writes are able to occur to a filesystem.
474  */
475 /**
476  * mnt_get_write_access - get write access to a mount without freeze protection
477  * @m: the mount on which to take a write
478  *
479  * This tells the low-level filesystem that a write is about to be performed to
480  * it, and makes sure that writes are allowed (mnt it read-write) before
481  * returning success. This operation does not protect against filesystem being
482  * frozen. When the write operation is finished, mnt_put_write_access() must be
483  * called. This is effectively a refcount.
484  */
485 int mnt_get_write_access(struct vfsmount *m)
486 {
487 	struct mount *mnt = real_mount(m);
488 	int ret = 0;
489 
490 	preempt_disable();
491 	mnt_inc_writers(mnt);
492 	/*
493 	 * The store to mnt_inc_writers must be visible before we pass
494 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
495 	 * incremented count after it has set MNT_WRITE_HOLD.
496 	 */
497 	smp_mb();
498 	might_lock(&mount_lock.lock);
499 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
500 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
501 			cpu_relax();
502 		} else {
503 			/*
504 			 * This prevents priority inversion, if the task
505 			 * setting MNT_WRITE_HOLD got preempted on a remote
506 			 * CPU, and it prevents life lock if the task setting
507 			 * MNT_WRITE_HOLD has a lower priority and is bound to
508 			 * the same CPU as the task that is spinning here.
509 			 */
510 			preempt_enable();
511 			lock_mount_hash();
512 			unlock_mount_hash();
513 			preempt_disable();
514 		}
515 	}
516 	/*
517 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
518 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
519 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
520 	 * mnt_is_readonly() and bail in case we are racing with remount
521 	 * read-only.
522 	 */
523 	smp_rmb();
524 	if (mnt_is_readonly(m)) {
525 		mnt_dec_writers(mnt);
526 		ret = -EROFS;
527 	}
528 	preempt_enable();
529 
530 	return ret;
531 }
532 EXPORT_SYMBOL_GPL(mnt_get_write_access);
533 
534 /**
535  * mnt_want_write - get write access to a mount
536  * @m: the mount on which to take a write
537  *
538  * This tells the low-level filesystem that a write is about to be performed to
539  * it, and makes sure that writes are allowed (mount is read-write, filesystem
540  * is not frozen) before returning success.  When the write operation is
541  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
542  */
543 int mnt_want_write(struct vfsmount *m)
544 {
545 	int ret;
546 
547 	sb_start_write(m->mnt_sb);
548 	ret = mnt_get_write_access(m);
549 	if (ret)
550 		sb_end_write(m->mnt_sb);
551 	return ret;
552 }
553 EXPORT_SYMBOL_GPL(mnt_want_write);
554 
555 /**
556  * mnt_get_write_access_file - get write access to a file's mount
557  * @file: the file who's mount on which to take a write
558  *
559  * This is like mnt_get_write_access, but if @file is already open for write it
560  * skips incrementing mnt_writers (since the open file already has a reference)
561  * and instead only does the check for emergency r/o remounts.  This must be
562  * paired with mnt_put_write_access_file.
563  */
564 int mnt_get_write_access_file(struct file *file)
565 {
566 	if (file->f_mode & FMODE_WRITER) {
567 		/*
568 		 * Superblock may have become readonly while there are still
569 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
570 		 */
571 		if (__mnt_is_readonly(file->f_path.mnt))
572 			return -EROFS;
573 		return 0;
574 	}
575 	return mnt_get_write_access(file->f_path.mnt);
576 }
577 
578 /**
579  * mnt_want_write_file - get write access to a file's mount
580  * @file: the file who's mount on which to take a write
581  *
582  * This is like mnt_want_write, but if the file is already open for writing it
583  * skips incrementing mnt_writers (since the open file already has a reference)
584  * and instead only does the freeze protection and the check for emergency r/o
585  * remounts.  This must be paired with mnt_drop_write_file.
586  */
587 int mnt_want_write_file(struct file *file)
588 {
589 	int ret;
590 
591 	sb_start_write(file_inode(file)->i_sb);
592 	ret = mnt_get_write_access_file(file);
593 	if (ret)
594 		sb_end_write(file_inode(file)->i_sb);
595 	return ret;
596 }
597 EXPORT_SYMBOL_GPL(mnt_want_write_file);
598 
599 /**
600  * mnt_put_write_access - give up write access to a mount
601  * @mnt: the mount on which to give up write access
602  *
603  * Tells the low-level filesystem that we are done
604  * performing writes to it.  Must be matched with
605  * mnt_get_write_access() call above.
606  */
607 void mnt_put_write_access(struct vfsmount *mnt)
608 {
609 	preempt_disable();
610 	mnt_dec_writers(real_mount(mnt));
611 	preempt_enable();
612 }
613 EXPORT_SYMBOL_GPL(mnt_put_write_access);
614 
615 /**
616  * mnt_drop_write - give up write access to a mount
617  * @mnt: the mount on which to give up write access
618  *
619  * Tells the low-level filesystem that we are done performing writes to it and
620  * also allows filesystem to be frozen again.  Must be matched with
621  * mnt_want_write() call above.
622  */
623 void mnt_drop_write(struct vfsmount *mnt)
624 {
625 	mnt_put_write_access(mnt);
626 	sb_end_write(mnt->mnt_sb);
627 }
628 EXPORT_SYMBOL_GPL(mnt_drop_write);
629 
630 void mnt_put_write_access_file(struct file *file)
631 {
632 	if (!(file->f_mode & FMODE_WRITER))
633 		mnt_put_write_access(file->f_path.mnt);
634 }
635 
636 void mnt_drop_write_file(struct file *file)
637 {
638 	mnt_put_write_access_file(file);
639 	sb_end_write(file_inode(file)->i_sb);
640 }
641 EXPORT_SYMBOL(mnt_drop_write_file);
642 
643 /**
644  * mnt_hold_writers - prevent write access to the given mount
645  * @mnt: mnt to prevent write access to
646  *
647  * Prevents write access to @mnt if there are no active writers for @mnt.
648  * This function needs to be called and return successfully before changing
649  * properties of @mnt that need to remain stable for callers with write access
650  * to @mnt.
651  *
652  * After this functions has been called successfully callers must pair it with
653  * a call to mnt_unhold_writers() in order to stop preventing write access to
654  * @mnt.
655  *
656  * Context: This function expects lock_mount_hash() to be held serializing
657  *          setting MNT_WRITE_HOLD.
658  * Return: On success 0 is returned.
659  *	   On error, -EBUSY is returned.
660  */
661 static inline int mnt_hold_writers(struct mount *mnt)
662 {
663 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
664 	/*
665 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
666 	 * should be visible before we do.
667 	 */
668 	smp_mb();
669 
670 	/*
671 	 * With writers on hold, if this value is zero, then there are
672 	 * definitely no active writers (although held writers may subsequently
673 	 * increment the count, they'll have to wait, and decrement it after
674 	 * seeing MNT_READONLY).
675 	 *
676 	 * It is OK to have counter incremented on one CPU and decremented on
677 	 * another: the sum will add up correctly. The danger would be when we
678 	 * sum up each counter, if we read a counter before it is incremented,
679 	 * but then read another CPU's count which it has been subsequently
680 	 * decremented from -- we would see more decrements than we should.
681 	 * MNT_WRITE_HOLD protects against this scenario, because
682 	 * mnt_want_write first increments count, then smp_mb, then spins on
683 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
684 	 * we're counting up here.
685 	 */
686 	if (mnt_get_writers(mnt) > 0)
687 		return -EBUSY;
688 
689 	return 0;
690 }
691 
692 /**
693  * mnt_unhold_writers - stop preventing write access to the given mount
694  * @mnt: mnt to stop preventing write access to
695  *
696  * Stop preventing write access to @mnt allowing callers to gain write access
697  * to @mnt again.
698  *
699  * This function can only be called after a successful call to
700  * mnt_hold_writers().
701  *
702  * Context: This function expects lock_mount_hash() to be held.
703  */
704 static inline void mnt_unhold_writers(struct mount *mnt)
705 {
706 	/*
707 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
708 	 * that become unheld will see MNT_READONLY.
709 	 */
710 	smp_wmb();
711 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
712 }
713 
714 static int mnt_make_readonly(struct mount *mnt)
715 {
716 	int ret;
717 
718 	ret = mnt_hold_writers(mnt);
719 	if (!ret)
720 		mnt->mnt.mnt_flags |= MNT_READONLY;
721 	mnt_unhold_writers(mnt);
722 	return ret;
723 }
724 
725 int sb_prepare_remount_readonly(struct super_block *sb)
726 {
727 	struct mount *mnt;
728 	int err = 0;
729 
730 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
731 	if (atomic_long_read(&sb->s_remove_count))
732 		return -EBUSY;
733 
734 	lock_mount_hash();
735 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
736 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
737 			err = mnt_hold_writers(mnt);
738 			if (err)
739 				break;
740 		}
741 	}
742 	if (!err && atomic_long_read(&sb->s_remove_count))
743 		err = -EBUSY;
744 
745 	if (!err)
746 		sb_start_ro_state_change(sb);
747 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
748 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
749 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
750 	}
751 	unlock_mount_hash();
752 
753 	return err;
754 }
755 
756 static void free_vfsmnt(struct mount *mnt)
757 {
758 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
759 	kfree_const(mnt->mnt_devname);
760 #ifdef CONFIG_SMP
761 	free_percpu(mnt->mnt_pcp);
762 #endif
763 	kmem_cache_free(mnt_cache, mnt);
764 }
765 
766 static void delayed_free_vfsmnt(struct rcu_head *head)
767 {
768 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
769 }
770 
771 /* call under rcu_read_lock */
772 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
773 {
774 	struct mount *mnt;
775 	if (read_seqretry(&mount_lock, seq))
776 		return 1;
777 	if (bastard == NULL)
778 		return 0;
779 	mnt = real_mount(bastard);
780 	mnt_add_count(mnt, 1);
781 	smp_mb();			// see mntput_no_expire()
782 	if (likely(!read_seqretry(&mount_lock, seq)))
783 		return 0;
784 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
785 		mnt_add_count(mnt, -1);
786 		return 1;
787 	}
788 	lock_mount_hash();
789 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
790 		mnt_add_count(mnt, -1);
791 		unlock_mount_hash();
792 		return 1;
793 	}
794 	unlock_mount_hash();
795 	/* caller will mntput() */
796 	return -1;
797 }
798 
799 /* call under rcu_read_lock */
800 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
801 {
802 	int res = __legitimize_mnt(bastard, seq);
803 	if (likely(!res))
804 		return true;
805 	if (unlikely(res < 0)) {
806 		rcu_read_unlock();
807 		mntput(bastard);
808 		rcu_read_lock();
809 	}
810 	return false;
811 }
812 
813 /**
814  * __lookup_mnt - find first child mount
815  * @mnt:	parent mount
816  * @dentry:	mountpoint
817  *
818  * If @mnt has a child mount @c mounted @dentry find and return it.
819  *
820  * Note that the child mount @c need not be unique. There are cases
821  * where shadow mounts are created. For example, during mount
822  * propagation when a source mount @mnt whose root got overmounted by a
823  * mount @o after path lookup but before @namespace_sem could be
824  * acquired gets copied and propagated. So @mnt gets copied including
825  * @o. When @mnt is propagated to a destination mount @d that already
826  * has another mount @n mounted at the same mountpoint then the source
827  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
828  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
829  * on @dentry.
830  *
831  * Return: The first child of @mnt mounted @dentry or NULL.
832  */
833 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
834 {
835 	struct hlist_head *head = m_hash(mnt, dentry);
836 	struct mount *p;
837 
838 	hlist_for_each_entry_rcu(p, head, mnt_hash)
839 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
840 			return p;
841 	return NULL;
842 }
843 
844 /*
845  * lookup_mnt - Return the first child mount mounted at path
846  *
847  * "First" means first mounted chronologically.  If you create the
848  * following mounts:
849  *
850  * mount /dev/sda1 /mnt
851  * mount /dev/sda2 /mnt
852  * mount /dev/sda3 /mnt
853  *
854  * Then lookup_mnt() on the base /mnt dentry in the root mount will
855  * return successively the root dentry and vfsmount of /dev/sda1, then
856  * /dev/sda2, then /dev/sda3, then NULL.
857  *
858  * lookup_mnt takes a reference to the found vfsmount.
859  */
860 struct vfsmount *lookup_mnt(const struct path *path)
861 {
862 	struct mount *child_mnt;
863 	struct vfsmount *m;
864 	unsigned seq;
865 
866 	rcu_read_lock();
867 	do {
868 		seq = read_seqbegin(&mount_lock);
869 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
870 		m = child_mnt ? &child_mnt->mnt : NULL;
871 	} while (!legitimize_mnt(m, seq));
872 	rcu_read_unlock();
873 	return m;
874 }
875 
876 /*
877  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
878  *                         current mount namespace.
879  *
880  * The common case is dentries are not mountpoints at all and that
881  * test is handled inline.  For the slow case when we are actually
882  * dealing with a mountpoint of some kind, walk through all of the
883  * mounts in the current mount namespace and test to see if the dentry
884  * is a mountpoint.
885  *
886  * The mount_hashtable is not usable in the context because we
887  * need to identify all mounts that may be in the current mount
888  * namespace not just a mount that happens to have some specified
889  * parent mount.
890  */
891 bool __is_local_mountpoint(struct dentry *dentry)
892 {
893 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
894 	struct mount *mnt, *n;
895 	bool is_covered = false;
896 
897 	down_read(&namespace_sem);
898 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
899 		is_covered = (mnt->mnt_mountpoint == dentry);
900 		if (is_covered)
901 			break;
902 	}
903 	up_read(&namespace_sem);
904 
905 	return is_covered;
906 }
907 
908 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
909 {
910 	struct hlist_head *chain = mp_hash(dentry);
911 	struct mountpoint *mp;
912 
913 	hlist_for_each_entry(mp, chain, m_hash) {
914 		if (mp->m_dentry == dentry) {
915 			mp->m_count++;
916 			return mp;
917 		}
918 	}
919 	return NULL;
920 }
921 
922 static struct mountpoint *get_mountpoint(struct dentry *dentry)
923 {
924 	struct mountpoint *mp, *new = NULL;
925 	int ret;
926 
927 	if (d_mountpoint(dentry)) {
928 		/* might be worth a WARN_ON() */
929 		if (d_unlinked(dentry))
930 			return ERR_PTR(-ENOENT);
931 mountpoint:
932 		read_seqlock_excl(&mount_lock);
933 		mp = lookup_mountpoint(dentry);
934 		read_sequnlock_excl(&mount_lock);
935 		if (mp)
936 			goto done;
937 	}
938 
939 	if (!new)
940 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
941 	if (!new)
942 		return ERR_PTR(-ENOMEM);
943 
944 
945 	/* Exactly one processes may set d_mounted */
946 	ret = d_set_mounted(dentry);
947 
948 	/* Someone else set d_mounted? */
949 	if (ret == -EBUSY)
950 		goto mountpoint;
951 
952 	/* The dentry is not available as a mountpoint? */
953 	mp = ERR_PTR(ret);
954 	if (ret)
955 		goto done;
956 
957 	/* Add the new mountpoint to the hash table */
958 	read_seqlock_excl(&mount_lock);
959 	new->m_dentry = dget(dentry);
960 	new->m_count = 1;
961 	hlist_add_head(&new->m_hash, mp_hash(dentry));
962 	INIT_HLIST_HEAD(&new->m_list);
963 	read_sequnlock_excl(&mount_lock);
964 
965 	mp = new;
966 	new = NULL;
967 done:
968 	kfree(new);
969 	return mp;
970 }
971 
972 /*
973  * vfsmount lock must be held.  Additionally, the caller is responsible
974  * for serializing calls for given disposal list.
975  */
976 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
977 {
978 	if (!--mp->m_count) {
979 		struct dentry *dentry = mp->m_dentry;
980 		BUG_ON(!hlist_empty(&mp->m_list));
981 		spin_lock(&dentry->d_lock);
982 		dentry->d_flags &= ~DCACHE_MOUNTED;
983 		spin_unlock(&dentry->d_lock);
984 		dput_to_list(dentry, list);
985 		hlist_del(&mp->m_hash);
986 		kfree(mp);
987 	}
988 }
989 
990 /* called with namespace_lock and vfsmount lock */
991 static void put_mountpoint(struct mountpoint *mp)
992 {
993 	__put_mountpoint(mp, &ex_mountpoints);
994 }
995 
996 static inline int check_mnt(struct mount *mnt)
997 {
998 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
999 }
1000 
1001 /*
1002  * vfsmount lock must be held for write
1003  */
1004 static void touch_mnt_namespace(struct mnt_namespace *ns)
1005 {
1006 	if (ns) {
1007 		ns->event = ++event;
1008 		wake_up_interruptible(&ns->poll);
1009 	}
1010 }
1011 
1012 /*
1013  * vfsmount lock must be held for write
1014  */
1015 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1016 {
1017 	if (ns && ns->event != event) {
1018 		ns->event = event;
1019 		wake_up_interruptible(&ns->poll);
1020 	}
1021 }
1022 
1023 /*
1024  * vfsmount lock must be held for write
1025  */
1026 static struct mountpoint *unhash_mnt(struct mount *mnt)
1027 {
1028 	struct mountpoint *mp;
1029 	mnt->mnt_parent = mnt;
1030 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1031 	list_del_init(&mnt->mnt_child);
1032 	hlist_del_init_rcu(&mnt->mnt_hash);
1033 	hlist_del_init(&mnt->mnt_mp_list);
1034 	mp = mnt->mnt_mp;
1035 	mnt->mnt_mp = NULL;
1036 	return mp;
1037 }
1038 
1039 /*
1040  * vfsmount lock must be held for write
1041  */
1042 static void umount_mnt(struct mount *mnt)
1043 {
1044 	put_mountpoint(unhash_mnt(mnt));
1045 }
1046 
1047 /*
1048  * vfsmount lock must be held for write
1049  */
1050 void mnt_set_mountpoint(struct mount *mnt,
1051 			struct mountpoint *mp,
1052 			struct mount *child_mnt)
1053 {
1054 	mp->m_count++;
1055 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1056 	child_mnt->mnt_mountpoint = mp->m_dentry;
1057 	child_mnt->mnt_parent = mnt;
1058 	child_mnt->mnt_mp = mp;
1059 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1060 }
1061 
1062 /**
1063  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1064  *
1065  * @new_parent: the source mount
1066  * @top_mnt:    the mount beneath which @new_parent is mounted
1067  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1068  *
1069  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1070  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1071  * @new_mp. And mount @new_parent on the old parent and old
1072  * mountpoint of @top_mnt.
1073  *
1074  * Context: This function expects namespace_lock() and lock_mount_hash()
1075  *          to have been acquired in that order.
1076  */
1077 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1078 				       struct mount *top_mnt,
1079 				       struct mountpoint *new_mp)
1080 {
1081 	struct mount *old_top_parent = top_mnt->mnt_parent;
1082 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1083 
1084 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1085 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1086 }
1087 
1088 
1089 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1090 {
1091 	hlist_add_head_rcu(&mnt->mnt_hash,
1092 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1093 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1094 }
1095 
1096 /**
1097  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1098  *              list of child mounts
1099  * @parent:  the parent
1100  * @mnt:     the new mount
1101  * @mp:      the new mountpoint
1102  * @beneath: whether to mount @mnt beneath or on top of @parent
1103  *
1104  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1105  * to @parent's child mount list and to @mount_hashtable.
1106  *
1107  * If @beneath is true, remove @mnt from its current parent and
1108  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1109  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1110  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1111  *
1112  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1113  * to the correct parent.
1114  *
1115  * Context: This function expects namespace_lock() and lock_mount_hash()
1116  *          to have been acquired in that order.
1117  */
1118 static void attach_mnt(struct mount *mnt, struct mount *parent,
1119 		       struct mountpoint *mp, bool beneath)
1120 {
1121 	if (beneath)
1122 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1123 	else
1124 		mnt_set_mountpoint(parent, mp, mnt);
1125 	/*
1126 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1127 	 * beneath @parent then @mnt will need to be attached to
1128 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1129 	 * isn't the same mount as @parent.
1130 	 */
1131 	__attach_mnt(mnt, mnt->mnt_parent);
1132 }
1133 
1134 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1135 {
1136 	struct mountpoint *old_mp = mnt->mnt_mp;
1137 	struct mount *old_parent = mnt->mnt_parent;
1138 
1139 	list_del_init(&mnt->mnt_child);
1140 	hlist_del_init(&mnt->mnt_mp_list);
1141 	hlist_del_init_rcu(&mnt->mnt_hash);
1142 
1143 	attach_mnt(mnt, parent, mp, false);
1144 
1145 	put_mountpoint(old_mp);
1146 	mnt_add_count(old_parent, -1);
1147 }
1148 
1149 static inline struct mount *node_to_mount(struct rb_node *node)
1150 {
1151 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1152 }
1153 
1154 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1155 {
1156 	struct rb_node **link = &ns->mounts.rb_node;
1157 	struct rb_node *parent = NULL;
1158 
1159 	WARN_ON(mnt_ns_attached(mnt));
1160 	mnt->mnt_ns = ns;
1161 	while (*link) {
1162 		parent = *link;
1163 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1164 			link = &parent->rb_left;
1165 		else
1166 			link = &parent->rb_right;
1167 	}
1168 	rb_link_node(&mnt->mnt_node, parent, link);
1169 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1170 }
1171 
1172 /*
1173  * vfsmount lock must be held for write
1174  */
1175 static void commit_tree(struct mount *mnt)
1176 {
1177 	struct mount *parent = mnt->mnt_parent;
1178 	struct mount *m;
1179 	LIST_HEAD(head);
1180 	struct mnt_namespace *n = parent->mnt_ns;
1181 
1182 	BUG_ON(parent == mnt);
1183 
1184 	list_add_tail(&head, &mnt->mnt_list);
1185 	while (!list_empty(&head)) {
1186 		m = list_first_entry(&head, typeof(*m), mnt_list);
1187 		list_del(&m->mnt_list);
1188 
1189 		mnt_add_to_ns(n, m);
1190 	}
1191 	n->nr_mounts += n->pending_mounts;
1192 	n->pending_mounts = 0;
1193 
1194 	__attach_mnt(mnt, parent);
1195 	touch_mnt_namespace(n);
1196 }
1197 
1198 static struct mount *next_mnt(struct mount *p, struct mount *root)
1199 {
1200 	struct list_head *next = p->mnt_mounts.next;
1201 	if (next == &p->mnt_mounts) {
1202 		while (1) {
1203 			if (p == root)
1204 				return NULL;
1205 			next = p->mnt_child.next;
1206 			if (next != &p->mnt_parent->mnt_mounts)
1207 				break;
1208 			p = p->mnt_parent;
1209 		}
1210 	}
1211 	return list_entry(next, struct mount, mnt_child);
1212 }
1213 
1214 static struct mount *skip_mnt_tree(struct mount *p)
1215 {
1216 	struct list_head *prev = p->mnt_mounts.prev;
1217 	while (prev != &p->mnt_mounts) {
1218 		p = list_entry(prev, struct mount, mnt_child);
1219 		prev = p->mnt_mounts.prev;
1220 	}
1221 	return p;
1222 }
1223 
1224 /**
1225  * vfs_create_mount - Create a mount for a configured superblock
1226  * @fc: The configuration context with the superblock attached
1227  *
1228  * Create a mount to an already configured superblock.  If necessary, the
1229  * caller should invoke vfs_get_tree() before calling this.
1230  *
1231  * Note that this does not attach the mount to anything.
1232  */
1233 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1234 {
1235 	struct mount *mnt;
1236 
1237 	if (!fc->root)
1238 		return ERR_PTR(-EINVAL);
1239 
1240 	mnt = alloc_vfsmnt(fc->source ?: "none");
1241 	if (!mnt)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	if (fc->sb_flags & SB_KERNMOUNT)
1245 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1246 
1247 	atomic_inc(&fc->root->d_sb->s_active);
1248 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1249 	mnt->mnt.mnt_root	= dget(fc->root);
1250 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1251 	mnt->mnt_parent		= mnt;
1252 
1253 	lock_mount_hash();
1254 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1255 	unlock_mount_hash();
1256 	return &mnt->mnt;
1257 }
1258 EXPORT_SYMBOL(vfs_create_mount);
1259 
1260 struct vfsmount *fc_mount(struct fs_context *fc)
1261 {
1262 	int err = vfs_get_tree(fc);
1263 	if (!err) {
1264 		up_write(&fc->root->d_sb->s_umount);
1265 		return vfs_create_mount(fc);
1266 	}
1267 	return ERR_PTR(err);
1268 }
1269 EXPORT_SYMBOL(fc_mount);
1270 
1271 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1272 				int flags, const char *name,
1273 				void *data)
1274 {
1275 	struct fs_context *fc;
1276 	struct vfsmount *mnt;
1277 	int ret = 0;
1278 
1279 	if (!type)
1280 		return ERR_PTR(-EINVAL);
1281 
1282 	fc = fs_context_for_mount(type, flags);
1283 	if (IS_ERR(fc))
1284 		return ERR_CAST(fc);
1285 
1286 	if (name)
1287 		ret = vfs_parse_fs_string(fc, "source",
1288 					  name, strlen(name));
1289 	if (!ret)
1290 		ret = parse_monolithic_mount_data(fc, data);
1291 	if (!ret)
1292 		mnt = fc_mount(fc);
1293 	else
1294 		mnt = ERR_PTR(ret);
1295 
1296 	put_fs_context(fc);
1297 	return mnt;
1298 }
1299 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1300 
1301 struct vfsmount *
1302 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1303 	     const char *name, void *data)
1304 {
1305 	/* Until it is worked out how to pass the user namespace
1306 	 * through from the parent mount to the submount don't support
1307 	 * unprivileged mounts with submounts.
1308 	 */
1309 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1310 		return ERR_PTR(-EPERM);
1311 
1312 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1313 }
1314 EXPORT_SYMBOL_GPL(vfs_submount);
1315 
1316 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1317 					int flag)
1318 {
1319 	struct super_block *sb = old->mnt.mnt_sb;
1320 	struct mount *mnt;
1321 	int err;
1322 
1323 	mnt = alloc_vfsmnt(old->mnt_devname);
1324 	if (!mnt)
1325 		return ERR_PTR(-ENOMEM);
1326 
1327 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1328 		mnt->mnt_group_id = 0; /* not a peer of original */
1329 	else
1330 		mnt->mnt_group_id = old->mnt_group_id;
1331 
1332 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1333 		err = mnt_alloc_group_id(mnt);
1334 		if (err)
1335 			goto out_free;
1336 	}
1337 
1338 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1339 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1340 
1341 	atomic_inc(&sb->s_active);
1342 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1343 
1344 	mnt->mnt.mnt_sb = sb;
1345 	mnt->mnt.mnt_root = dget(root);
1346 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1347 	mnt->mnt_parent = mnt;
1348 	lock_mount_hash();
1349 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1350 	unlock_mount_hash();
1351 
1352 	if ((flag & CL_SLAVE) ||
1353 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1354 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1355 		mnt->mnt_master = old;
1356 		CLEAR_MNT_SHARED(mnt);
1357 	} else if (!(flag & CL_PRIVATE)) {
1358 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1359 			list_add(&mnt->mnt_share, &old->mnt_share);
1360 		if (IS_MNT_SLAVE(old))
1361 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1362 		mnt->mnt_master = old->mnt_master;
1363 	} else {
1364 		CLEAR_MNT_SHARED(mnt);
1365 	}
1366 	if (flag & CL_MAKE_SHARED)
1367 		set_mnt_shared(mnt);
1368 
1369 	/* stick the duplicate mount on the same expiry list
1370 	 * as the original if that was on one */
1371 	if (flag & CL_EXPIRE) {
1372 		if (!list_empty(&old->mnt_expire))
1373 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1374 	}
1375 
1376 	return mnt;
1377 
1378  out_free:
1379 	mnt_free_id(mnt);
1380 	free_vfsmnt(mnt);
1381 	return ERR_PTR(err);
1382 }
1383 
1384 static void cleanup_mnt(struct mount *mnt)
1385 {
1386 	struct hlist_node *p;
1387 	struct mount *m;
1388 	/*
1389 	 * The warning here probably indicates that somebody messed
1390 	 * up a mnt_want/drop_write() pair.  If this happens, the
1391 	 * filesystem was probably unable to make r/w->r/o transitions.
1392 	 * The locking used to deal with mnt_count decrement provides barriers,
1393 	 * so mnt_get_writers() below is safe.
1394 	 */
1395 	WARN_ON(mnt_get_writers(mnt));
1396 	if (unlikely(mnt->mnt_pins.first))
1397 		mnt_pin_kill(mnt);
1398 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1399 		hlist_del(&m->mnt_umount);
1400 		mntput(&m->mnt);
1401 	}
1402 	fsnotify_vfsmount_delete(&mnt->mnt);
1403 	dput(mnt->mnt.mnt_root);
1404 	deactivate_super(mnt->mnt.mnt_sb);
1405 	mnt_free_id(mnt);
1406 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1407 }
1408 
1409 static void __cleanup_mnt(struct rcu_head *head)
1410 {
1411 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1412 }
1413 
1414 static LLIST_HEAD(delayed_mntput_list);
1415 static void delayed_mntput(struct work_struct *unused)
1416 {
1417 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1418 	struct mount *m, *t;
1419 
1420 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1421 		cleanup_mnt(m);
1422 }
1423 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1424 
1425 static void mntput_no_expire(struct mount *mnt)
1426 {
1427 	LIST_HEAD(list);
1428 	int count;
1429 
1430 	rcu_read_lock();
1431 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1432 		/*
1433 		 * Since we don't do lock_mount_hash() here,
1434 		 * ->mnt_ns can change under us.  However, if it's
1435 		 * non-NULL, then there's a reference that won't
1436 		 * be dropped until after an RCU delay done after
1437 		 * turning ->mnt_ns NULL.  So if we observe it
1438 		 * non-NULL under rcu_read_lock(), the reference
1439 		 * we are dropping is not the final one.
1440 		 */
1441 		mnt_add_count(mnt, -1);
1442 		rcu_read_unlock();
1443 		return;
1444 	}
1445 	lock_mount_hash();
1446 	/*
1447 	 * make sure that if __legitimize_mnt() has not seen us grab
1448 	 * mount_lock, we'll see their refcount increment here.
1449 	 */
1450 	smp_mb();
1451 	mnt_add_count(mnt, -1);
1452 	count = mnt_get_count(mnt);
1453 	if (count != 0) {
1454 		WARN_ON(count < 0);
1455 		rcu_read_unlock();
1456 		unlock_mount_hash();
1457 		return;
1458 	}
1459 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1460 		rcu_read_unlock();
1461 		unlock_mount_hash();
1462 		return;
1463 	}
1464 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1465 	rcu_read_unlock();
1466 
1467 	list_del(&mnt->mnt_instance);
1468 
1469 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1470 		struct mount *p, *tmp;
1471 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1472 			__put_mountpoint(unhash_mnt(p), &list);
1473 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1474 		}
1475 	}
1476 	unlock_mount_hash();
1477 	shrink_dentry_list(&list);
1478 
1479 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1480 		struct task_struct *task = current;
1481 		if (likely(!(task->flags & PF_KTHREAD))) {
1482 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1483 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1484 				return;
1485 		}
1486 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1487 			schedule_delayed_work(&delayed_mntput_work, 1);
1488 		return;
1489 	}
1490 	cleanup_mnt(mnt);
1491 }
1492 
1493 void mntput(struct vfsmount *mnt)
1494 {
1495 	if (mnt) {
1496 		struct mount *m = real_mount(mnt);
1497 		/* avoid cacheline pingpong */
1498 		if (unlikely(m->mnt_expiry_mark))
1499 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1500 		mntput_no_expire(m);
1501 	}
1502 }
1503 EXPORT_SYMBOL(mntput);
1504 
1505 struct vfsmount *mntget(struct vfsmount *mnt)
1506 {
1507 	if (mnt)
1508 		mnt_add_count(real_mount(mnt), 1);
1509 	return mnt;
1510 }
1511 EXPORT_SYMBOL(mntget);
1512 
1513 /*
1514  * Make a mount point inaccessible to new lookups.
1515  * Because there may still be current users, the caller MUST WAIT
1516  * for an RCU grace period before destroying the mount point.
1517  */
1518 void mnt_make_shortterm(struct vfsmount *mnt)
1519 {
1520 	if (mnt)
1521 		real_mount(mnt)->mnt_ns = NULL;
1522 }
1523 
1524 /**
1525  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1526  * @path: path to check
1527  *
1528  *  d_mountpoint() can only be used reliably to establish if a dentry is
1529  *  not mounted in any namespace and that common case is handled inline.
1530  *  d_mountpoint() isn't aware of the possibility there may be multiple
1531  *  mounts using a given dentry in a different namespace. This function
1532  *  checks if the passed in path is a mountpoint rather than the dentry
1533  *  alone.
1534  */
1535 bool path_is_mountpoint(const struct path *path)
1536 {
1537 	unsigned seq;
1538 	bool res;
1539 
1540 	if (!d_mountpoint(path->dentry))
1541 		return false;
1542 
1543 	rcu_read_lock();
1544 	do {
1545 		seq = read_seqbegin(&mount_lock);
1546 		res = __path_is_mountpoint(path);
1547 	} while (read_seqretry(&mount_lock, seq));
1548 	rcu_read_unlock();
1549 
1550 	return res;
1551 }
1552 EXPORT_SYMBOL(path_is_mountpoint);
1553 
1554 struct vfsmount *mnt_clone_internal(const struct path *path)
1555 {
1556 	struct mount *p;
1557 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1558 	if (IS_ERR(p))
1559 		return ERR_CAST(p);
1560 	p->mnt.mnt_flags |= MNT_INTERNAL;
1561 	return &p->mnt;
1562 }
1563 
1564 /*
1565  * Returns the mount which either has the specified mnt_id, or has the next
1566  * smallest id afer the specified one.
1567  */
1568 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1569 {
1570 	struct rb_node *node = ns->mounts.rb_node;
1571 	struct mount *ret = NULL;
1572 
1573 	while (node) {
1574 		struct mount *m = node_to_mount(node);
1575 
1576 		if (mnt_id <= m->mnt_id_unique) {
1577 			ret = node_to_mount(node);
1578 			if (mnt_id == m->mnt_id_unique)
1579 				break;
1580 			node = node->rb_left;
1581 		} else {
1582 			node = node->rb_right;
1583 		}
1584 	}
1585 	return ret;
1586 }
1587 
1588 /*
1589  * Returns the mount which either has the specified mnt_id, or has the next
1590  * greater id before the specified one.
1591  */
1592 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1593 {
1594 	struct rb_node *node = ns->mounts.rb_node;
1595 	struct mount *ret = NULL;
1596 
1597 	while (node) {
1598 		struct mount *m = node_to_mount(node);
1599 
1600 		if (mnt_id >= m->mnt_id_unique) {
1601 			ret = node_to_mount(node);
1602 			if (mnt_id == m->mnt_id_unique)
1603 				break;
1604 			node = node->rb_right;
1605 		} else {
1606 			node = node->rb_left;
1607 		}
1608 	}
1609 	return ret;
1610 }
1611 
1612 #ifdef CONFIG_PROC_FS
1613 
1614 /* iterator; we want it to have access to namespace_sem, thus here... */
1615 static void *m_start(struct seq_file *m, loff_t *pos)
1616 {
1617 	struct proc_mounts *p = m->private;
1618 
1619 	down_read(&namespace_sem);
1620 
1621 	return mnt_find_id_at(p->ns, *pos);
1622 }
1623 
1624 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1625 {
1626 	struct mount *next = NULL, *mnt = v;
1627 	struct rb_node *node = rb_next(&mnt->mnt_node);
1628 
1629 	++*pos;
1630 	if (node) {
1631 		next = node_to_mount(node);
1632 		*pos = next->mnt_id_unique;
1633 	}
1634 	return next;
1635 }
1636 
1637 static void m_stop(struct seq_file *m, void *v)
1638 {
1639 	up_read(&namespace_sem);
1640 }
1641 
1642 static int m_show(struct seq_file *m, void *v)
1643 {
1644 	struct proc_mounts *p = m->private;
1645 	struct mount *r = v;
1646 	return p->show(m, &r->mnt);
1647 }
1648 
1649 const struct seq_operations mounts_op = {
1650 	.start	= m_start,
1651 	.next	= m_next,
1652 	.stop	= m_stop,
1653 	.show	= m_show,
1654 };
1655 
1656 #endif  /* CONFIG_PROC_FS */
1657 
1658 /**
1659  * may_umount_tree - check if a mount tree is busy
1660  * @m: root of mount tree
1661  *
1662  * This is called to check if a tree of mounts has any
1663  * open files, pwds, chroots or sub mounts that are
1664  * busy.
1665  */
1666 int may_umount_tree(struct vfsmount *m)
1667 {
1668 	struct mount *mnt = real_mount(m);
1669 	int actual_refs = 0;
1670 	int minimum_refs = 0;
1671 	struct mount *p;
1672 	BUG_ON(!m);
1673 
1674 	/* write lock needed for mnt_get_count */
1675 	lock_mount_hash();
1676 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1677 		actual_refs += mnt_get_count(p);
1678 		minimum_refs += 2;
1679 	}
1680 	unlock_mount_hash();
1681 
1682 	if (actual_refs > minimum_refs)
1683 		return 0;
1684 
1685 	return 1;
1686 }
1687 
1688 EXPORT_SYMBOL(may_umount_tree);
1689 
1690 /**
1691  * may_umount - check if a mount point is busy
1692  * @mnt: root of mount
1693  *
1694  * This is called to check if a mount point has any
1695  * open files, pwds, chroots or sub mounts. If the
1696  * mount has sub mounts this will return busy
1697  * regardless of whether the sub mounts are busy.
1698  *
1699  * Doesn't take quota and stuff into account. IOW, in some cases it will
1700  * give false negatives. The main reason why it's here is that we need
1701  * a non-destructive way to look for easily umountable filesystems.
1702  */
1703 int may_umount(struct vfsmount *mnt)
1704 {
1705 	int ret = 1;
1706 	down_read(&namespace_sem);
1707 	lock_mount_hash();
1708 	if (propagate_mount_busy(real_mount(mnt), 2))
1709 		ret = 0;
1710 	unlock_mount_hash();
1711 	up_read(&namespace_sem);
1712 	return ret;
1713 }
1714 
1715 EXPORT_SYMBOL(may_umount);
1716 
1717 static void namespace_unlock(void)
1718 {
1719 	struct hlist_head head;
1720 	struct hlist_node *p;
1721 	struct mount *m;
1722 	LIST_HEAD(list);
1723 
1724 	hlist_move_list(&unmounted, &head);
1725 	list_splice_init(&ex_mountpoints, &list);
1726 
1727 	up_write(&namespace_sem);
1728 
1729 	shrink_dentry_list(&list);
1730 
1731 	if (likely(hlist_empty(&head)))
1732 		return;
1733 
1734 	synchronize_rcu_expedited();
1735 
1736 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1737 		hlist_del(&m->mnt_umount);
1738 		mntput(&m->mnt);
1739 	}
1740 }
1741 
1742 static inline void namespace_lock(void)
1743 {
1744 	down_write(&namespace_sem);
1745 }
1746 
1747 enum umount_tree_flags {
1748 	UMOUNT_SYNC = 1,
1749 	UMOUNT_PROPAGATE = 2,
1750 	UMOUNT_CONNECTED = 4,
1751 };
1752 
1753 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1754 {
1755 	/* Leaving mounts connected is only valid for lazy umounts */
1756 	if (how & UMOUNT_SYNC)
1757 		return true;
1758 
1759 	/* A mount without a parent has nothing to be connected to */
1760 	if (!mnt_has_parent(mnt))
1761 		return true;
1762 
1763 	/* Because the reference counting rules change when mounts are
1764 	 * unmounted and connected, umounted mounts may not be
1765 	 * connected to mounted mounts.
1766 	 */
1767 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1768 		return true;
1769 
1770 	/* Has it been requested that the mount remain connected? */
1771 	if (how & UMOUNT_CONNECTED)
1772 		return false;
1773 
1774 	/* Is the mount locked such that it needs to remain connected? */
1775 	if (IS_MNT_LOCKED(mnt))
1776 		return false;
1777 
1778 	/* By default disconnect the mount */
1779 	return true;
1780 }
1781 
1782 /*
1783  * mount_lock must be held
1784  * namespace_sem must be held for write
1785  */
1786 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1787 {
1788 	LIST_HEAD(tmp_list);
1789 	struct mount *p;
1790 
1791 	if (how & UMOUNT_PROPAGATE)
1792 		propagate_mount_unlock(mnt);
1793 
1794 	/* Gather the mounts to umount */
1795 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1796 		p->mnt.mnt_flags |= MNT_UMOUNT;
1797 		if (mnt_ns_attached(p))
1798 			move_from_ns(p, &tmp_list);
1799 		else
1800 			list_move(&p->mnt_list, &tmp_list);
1801 	}
1802 
1803 	/* Hide the mounts from mnt_mounts */
1804 	list_for_each_entry(p, &tmp_list, mnt_list) {
1805 		list_del_init(&p->mnt_child);
1806 	}
1807 
1808 	/* Add propagated mounts to the tmp_list */
1809 	if (how & UMOUNT_PROPAGATE)
1810 		propagate_umount(&tmp_list);
1811 
1812 	while (!list_empty(&tmp_list)) {
1813 		struct mnt_namespace *ns;
1814 		bool disconnect;
1815 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1816 		list_del_init(&p->mnt_expire);
1817 		list_del_init(&p->mnt_list);
1818 		ns = p->mnt_ns;
1819 		if (ns) {
1820 			ns->nr_mounts--;
1821 			__touch_mnt_namespace(ns);
1822 		}
1823 		p->mnt_ns = NULL;
1824 		if (how & UMOUNT_SYNC)
1825 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1826 
1827 		disconnect = disconnect_mount(p, how);
1828 		if (mnt_has_parent(p)) {
1829 			mnt_add_count(p->mnt_parent, -1);
1830 			if (!disconnect) {
1831 				/* Don't forget about p */
1832 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1833 			} else {
1834 				umount_mnt(p);
1835 			}
1836 		}
1837 		change_mnt_propagation(p, MS_PRIVATE);
1838 		if (disconnect)
1839 			hlist_add_head(&p->mnt_umount, &unmounted);
1840 	}
1841 }
1842 
1843 static void shrink_submounts(struct mount *mnt);
1844 
1845 static int do_umount_root(struct super_block *sb)
1846 {
1847 	int ret = 0;
1848 
1849 	down_write(&sb->s_umount);
1850 	if (!sb_rdonly(sb)) {
1851 		struct fs_context *fc;
1852 
1853 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1854 						SB_RDONLY);
1855 		if (IS_ERR(fc)) {
1856 			ret = PTR_ERR(fc);
1857 		} else {
1858 			ret = parse_monolithic_mount_data(fc, NULL);
1859 			if (!ret)
1860 				ret = reconfigure_super(fc);
1861 			put_fs_context(fc);
1862 		}
1863 	}
1864 	up_write(&sb->s_umount);
1865 	return ret;
1866 }
1867 
1868 static int do_umount(struct mount *mnt, int flags)
1869 {
1870 	struct super_block *sb = mnt->mnt.mnt_sb;
1871 	int retval;
1872 
1873 	retval = security_sb_umount(&mnt->mnt, flags);
1874 	if (retval)
1875 		return retval;
1876 
1877 	/*
1878 	 * Allow userspace to request a mountpoint be expired rather than
1879 	 * unmounting unconditionally. Unmount only happens if:
1880 	 *  (1) the mark is already set (the mark is cleared by mntput())
1881 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1882 	 */
1883 	if (flags & MNT_EXPIRE) {
1884 		if (&mnt->mnt == current->fs->root.mnt ||
1885 		    flags & (MNT_FORCE | MNT_DETACH))
1886 			return -EINVAL;
1887 
1888 		/*
1889 		 * probably don't strictly need the lock here if we examined
1890 		 * all race cases, but it's a slowpath.
1891 		 */
1892 		lock_mount_hash();
1893 		if (mnt_get_count(mnt) != 2) {
1894 			unlock_mount_hash();
1895 			return -EBUSY;
1896 		}
1897 		unlock_mount_hash();
1898 
1899 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1900 			return -EAGAIN;
1901 	}
1902 
1903 	/*
1904 	 * If we may have to abort operations to get out of this
1905 	 * mount, and they will themselves hold resources we must
1906 	 * allow the fs to do things. In the Unix tradition of
1907 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1908 	 * might fail to complete on the first run through as other tasks
1909 	 * must return, and the like. Thats for the mount program to worry
1910 	 * about for the moment.
1911 	 */
1912 
1913 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1914 		sb->s_op->umount_begin(sb);
1915 	}
1916 
1917 	/*
1918 	 * No sense to grab the lock for this test, but test itself looks
1919 	 * somewhat bogus. Suggestions for better replacement?
1920 	 * Ho-hum... In principle, we might treat that as umount + switch
1921 	 * to rootfs. GC would eventually take care of the old vfsmount.
1922 	 * Actually it makes sense, especially if rootfs would contain a
1923 	 * /reboot - static binary that would close all descriptors and
1924 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1925 	 */
1926 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1927 		/*
1928 		 * Special case for "unmounting" root ...
1929 		 * we just try to remount it readonly.
1930 		 */
1931 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1932 			return -EPERM;
1933 		return do_umount_root(sb);
1934 	}
1935 
1936 	namespace_lock();
1937 	lock_mount_hash();
1938 
1939 	/* Recheck MNT_LOCKED with the locks held */
1940 	retval = -EINVAL;
1941 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1942 		goto out;
1943 
1944 	event++;
1945 	if (flags & MNT_DETACH) {
1946 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1947 			umount_tree(mnt, UMOUNT_PROPAGATE);
1948 		retval = 0;
1949 	} else {
1950 		shrink_submounts(mnt);
1951 		retval = -EBUSY;
1952 		if (!propagate_mount_busy(mnt, 2)) {
1953 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1954 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1955 			retval = 0;
1956 		}
1957 	}
1958 out:
1959 	unlock_mount_hash();
1960 	namespace_unlock();
1961 	return retval;
1962 }
1963 
1964 /*
1965  * __detach_mounts - lazily unmount all mounts on the specified dentry
1966  *
1967  * During unlink, rmdir, and d_drop it is possible to loose the path
1968  * to an existing mountpoint, and wind up leaking the mount.
1969  * detach_mounts allows lazily unmounting those mounts instead of
1970  * leaking them.
1971  *
1972  * The caller may hold dentry->d_inode->i_mutex.
1973  */
1974 void __detach_mounts(struct dentry *dentry)
1975 {
1976 	struct mountpoint *mp;
1977 	struct mount *mnt;
1978 
1979 	namespace_lock();
1980 	lock_mount_hash();
1981 	mp = lookup_mountpoint(dentry);
1982 	if (!mp)
1983 		goto out_unlock;
1984 
1985 	event++;
1986 	while (!hlist_empty(&mp->m_list)) {
1987 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1988 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1989 			umount_mnt(mnt);
1990 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1991 		}
1992 		else umount_tree(mnt, UMOUNT_CONNECTED);
1993 	}
1994 	put_mountpoint(mp);
1995 out_unlock:
1996 	unlock_mount_hash();
1997 	namespace_unlock();
1998 }
1999 
2000 /*
2001  * Is the caller allowed to modify his namespace?
2002  */
2003 bool may_mount(void)
2004 {
2005 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2006 }
2007 
2008 static void warn_mandlock(void)
2009 {
2010 	pr_warn_once("=======================================================\n"
2011 		     "WARNING: The mand mount option has been deprecated and\n"
2012 		     "         and is ignored by this kernel. Remove the mand\n"
2013 		     "         option from the mount to silence this warning.\n"
2014 		     "=======================================================\n");
2015 }
2016 
2017 static int can_umount(const struct path *path, int flags)
2018 {
2019 	struct mount *mnt = real_mount(path->mnt);
2020 
2021 	if (!may_mount())
2022 		return -EPERM;
2023 	if (!path_mounted(path))
2024 		return -EINVAL;
2025 	if (!check_mnt(mnt))
2026 		return -EINVAL;
2027 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2028 		return -EINVAL;
2029 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2030 		return -EPERM;
2031 	return 0;
2032 }
2033 
2034 // caller is responsible for flags being sane
2035 int path_umount(struct path *path, int flags)
2036 {
2037 	struct mount *mnt = real_mount(path->mnt);
2038 	int ret;
2039 
2040 	ret = can_umount(path, flags);
2041 	if (!ret)
2042 		ret = do_umount(mnt, flags);
2043 
2044 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2045 	dput(path->dentry);
2046 	mntput_no_expire(mnt);
2047 	return ret;
2048 }
2049 
2050 static int ksys_umount(char __user *name, int flags)
2051 {
2052 	int lookup_flags = LOOKUP_MOUNTPOINT;
2053 	struct path path;
2054 	int ret;
2055 
2056 	// basic validity checks done first
2057 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2058 		return -EINVAL;
2059 
2060 	if (!(flags & UMOUNT_NOFOLLOW))
2061 		lookup_flags |= LOOKUP_FOLLOW;
2062 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2063 	if (ret)
2064 		return ret;
2065 	return path_umount(&path, flags);
2066 }
2067 
2068 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2069 {
2070 	return ksys_umount(name, flags);
2071 }
2072 
2073 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2074 
2075 /*
2076  *	The 2.0 compatible umount. No flags.
2077  */
2078 SYSCALL_DEFINE1(oldumount, char __user *, name)
2079 {
2080 	return ksys_umount(name, 0);
2081 }
2082 
2083 #endif
2084 
2085 static bool is_mnt_ns_file(struct dentry *dentry)
2086 {
2087 	/* Is this a proxy for a mount namespace? */
2088 	return dentry->d_op == &ns_dentry_operations &&
2089 	       dentry->d_fsdata == &mntns_operations;
2090 }
2091 
2092 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2093 {
2094 	return &mnt->ns;
2095 }
2096 
2097 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2098 {
2099 	guard(rcu)();
2100 
2101 	for (;;) {
2102 		struct list_head *list;
2103 
2104 		if (previous)
2105 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2106 		else
2107 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2108 		if (list_is_head(list, &mnt_ns_list))
2109 			return ERR_PTR(-ENOENT);
2110 
2111 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2112 
2113 		/*
2114 		 * The last passive reference count is put with RCU
2115 		 * delay so accessing the mount namespace is not just
2116 		 * safe but all relevant members are still valid.
2117 		 */
2118 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2119 			continue;
2120 
2121 		/*
2122 		 * We need an active reference count as we're persisting
2123 		 * the mount namespace and it might already be on its
2124 		 * deathbed.
2125 		 */
2126 		if (!refcount_inc_not_zero(&mntns->ns.count))
2127 			continue;
2128 
2129 		return mntns;
2130 	}
2131 }
2132 
2133 static bool mnt_ns_loop(struct dentry *dentry)
2134 {
2135 	/* Could bind mounting the mount namespace inode cause a
2136 	 * mount namespace loop?
2137 	 */
2138 	struct mnt_namespace *mnt_ns;
2139 	if (!is_mnt_ns_file(dentry))
2140 		return false;
2141 
2142 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2143 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2144 }
2145 
2146 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2147 					int flag)
2148 {
2149 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2150 		*dst_parent, *dst_mnt;
2151 
2152 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2153 		return ERR_PTR(-EINVAL);
2154 
2155 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2156 		return ERR_PTR(-EINVAL);
2157 
2158 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2159 	if (IS_ERR(dst_mnt))
2160 		return dst_mnt;
2161 
2162 	src_parent = src_root;
2163 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2164 
2165 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2166 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2167 			continue;
2168 
2169 		for (src_mnt = src_root_child; src_mnt;
2170 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2171 			if (!(flag & CL_COPY_UNBINDABLE) &&
2172 			    IS_MNT_UNBINDABLE(src_mnt)) {
2173 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2174 					/* Both unbindable and locked. */
2175 					dst_mnt = ERR_PTR(-EPERM);
2176 					goto out;
2177 				} else {
2178 					src_mnt = skip_mnt_tree(src_mnt);
2179 					continue;
2180 				}
2181 			}
2182 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2183 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2184 				src_mnt = skip_mnt_tree(src_mnt);
2185 				continue;
2186 			}
2187 			while (src_parent != src_mnt->mnt_parent) {
2188 				src_parent = src_parent->mnt_parent;
2189 				dst_mnt = dst_mnt->mnt_parent;
2190 			}
2191 
2192 			src_parent = src_mnt;
2193 			dst_parent = dst_mnt;
2194 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2195 			if (IS_ERR(dst_mnt))
2196 				goto out;
2197 			lock_mount_hash();
2198 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2199 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2200 			unlock_mount_hash();
2201 		}
2202 	}
2203 	return res;
2204 
2205 out:
2206 	if (res) {
2207 		lock_mount_hash();
2208 		umount_tree(res, UMOUNT_SYNC);
2209 		unlock_mount_hash();
2210 	}
2211 	return dst_mnt;
2212 }
2213 
2214 /* Caller should check returned pointer for errors */
2215 
2216 struct vfsmount *collect_mounts(const struct path *path)
2217 {
2218 	struct mount *tree;
2219 	namespace_lock();
2220 	if (!check_mnt(real_mount(path->mnt)))
2221 		tree = ERR_PTR(-EINVAL);
2222 	else
2223 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2224 				 CL_COPY_ALL | CL_PRIVATE);
2225 	namespace_unlock();
2226 	if (IS_ERR(tree))
2227 		return ERR_CAST(tree);
2228 	return &tree->mnt;
2229 }
2230 
2231 static void free_mnt_ns(struct mnt_namespace *);
2232 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2233 
2234 void dissolve_on_fput(struct vfsmount *mnt)
2235 {
2236 	struct mnt_namespace *ns;
2237 	namespace_lock();
2238 	lock_mount_hash();
2239 	ns = real_mount(mnt)->mnt_ns;
2240 	if (ns) {
2241 		if (is_anon_ns(ns))
2242 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2243 		else
2244 			ns = NULL;
2245 	}
2246 	unlock_mount_hash();
2247 	namespace_unlock();
2248 	if (ns)
2249 		free_mnt_ns(ns);
2250 }
2251 
2252 void drop_collected_mounts(struct vfsmount *mnt)
2253 {
2254 	namespace_lock();
2255 	lock_mount_hash();
2256 	umount_tree(real_mount(mnt), 0);
2257 	unlock_mount_hash();
2258 	namespace_unlock();
2259 }
2260 
2261 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2262 {
2263 	struct mount *child;
2264 
2265 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2266 		if (!is_subdir(child->mnt_mountpoint, dentry))
2267 			continue;
2268 
2269 		if (child->mnt.mnt_flags & MNT_LOCKED)
2270 			return true;
2271 	}
2272 	return false;
2273 }
2274 
2275 /**
2276  * clone_private_mount - create a private clone of a path
2277  * @path: path to clone
2278  *
2279  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2280  * will not be attached anywhere in the namespace and will be private (i.e.
2281  * changes to the originating mount won't be propagated into this).
2282  *
2283  * Release with mntput().
2284  */
2285 struct vfsmount *clone_private_mount(const struct path *path)
2286 {
2287 	struct mount *old_mnt = real_mount(path->mnt);
2288 	struct mount *new_mnt;
2289 
2290 	down_read(&namespace_sem);
2291 	if (IS_MNT_UNBINDABLE(old_mnt))
2292 		goto invalid;
2293 
2294 	if (!check_mnt(old_mnt))
2295 		goto invalid;
2296 
2297 	if (has_locked_children(old_mnt, path->dentry))
2298 		goto invalid;
2299 
2300 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2301 	up_read(&namespace_sem);
2302 
2303 	if (IS_ERR(new_mnt))
2304 		return ERR_CAST(new_mnt);
2305 
2306 	/* Longterm mount to be removed by kern_unmount*() */
2307 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2308 
2309 	return &new_mnt->mnt;
2310 
2311 invalid:
2312 	up_read(&namespace_sem);
2313 	return ERR_PTR(-EINVAL);
2314 }
2315 EXPORT_SYMBOL_GPL(clone_private_mount);
2316 
2317 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2318 		   struct vfsmount *root)
2319 {
2320 	struct mount *mnt;
2321 	int res = f(root, arg);
2322 	if (res)
2323 		return res;
2324 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2325 		res = f(&mnt->mnt, arg);
2326 		if (res)
2327 			return res;
2328 	}
2329 	return 0;
2330 }
2331 
2332 static void lock_mnt_tree(struct mount *mnt)
2333 {
2334 	struct mount *p;
2335 
2336 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2337 		int flags = p->mnt.mnt_flags;
2338 		/* Don't allow unprivileged users to change mount flags */
2339 		flags |= MNT_LOCK_ATIME;
2340 
2341 		if (flags & MNT_READONLY)
2342 			flags |= MNT_LOCK_READONLY;
2343 
2344 		if (flags & MNT_NODEV)
2345 			flags |= MNT_LOCK_NODEV;
2346 
2347 		if (flags & MNT_NOSUID)
2348 			flags |= MNT_LOCK_NOSUID;
2349 
2350 		if (flags & MNT_NOEXEC)
2351 			flags |= MNT_LOCK_NOEXEC;
2352 		/* Don't allow unprivileged users to reveal what is under a mount */
2353 		if (list_empty(&p->mnt_expire))
2354 			flags |= MNT_LOCKED;
2355 		p->mnt.mnt_flags = flags;
2356 	}
2357 }
2358 
2359 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2360 {
2361 	struct mount *p;
2362 
2363 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2364 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2365 			mnt_release_group_id(p);
2366 	}
2367 }
2368 
2369 static int invent_group_ids(struct mount *mnt, bool recurse)
2370 {
2371 	struct mount *p;
2372 
2373 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2374 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2375 			int err = mnt_alloc_group_id(p);
2376 			if (err) {
2377 				cleanup_group_ids(mnt, p);
2378 				return err;
2379 			}
2380 		}
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2387 {
2388 	unsigned int max = READ_ONCE(sysctl_mount_max);
2389 	unsigned int mounts = 0;
2390 	struct mount *p;
2391 
2392 	if (ns->nr_mounts >= max)
2393 		return -ENOSPC;
2394 	max -= ns->nr_mounts;
2395 	if (ns->pending_mounts >= max)
2396 		return -ENOSPC;
2397 	max -= ns->pending_mounts;
2398 
2399 	for (p = mnt; p; p = next_mnt(p, mnt))
2400 		mounts++;
2401 
2402 	if (mounts > max)
2403 		return -ENOSPC;
2404 
2405 	ns->pending_mounts += mounts;
2406 	return 0;
2407 }
2408 
2409 enum mnt_tree_flags_t {
2410 	MNT_TREE_MOVE = BIT(0),
2411 	MNT_TREE_BENEATH = BIT(1),
2412 };
2413 
2414 /**
2415  * attach_recursive_mnt - attach a source mount tree
2416  * @source_mnt: mount tree to be attached
2417  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2418  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2419  * @flags:      modify how @source_mnt is supposed to be attached
2420  *
2421  *  NOTE: in the table below explains the semantics when a source mount
2422  *  of a given type is attached to a destination mount of a given type.
2423  * ---------------------------------------------------------------------------
2424  * |         BIND MOUNT OPERATION                                            |
2425  * |**************************************************************************
2426  * | source-->| shared        |       private  |       slave    | unbindable |
2427  * | dest     |               |                |                |            |
2428  * |   |      |               |                |                |            |
2429  * |   v      |               |                |                |            |
2430  * |**************************************************************************
2431  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2432  * |          |               |                |                |            |
2433  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2434  * ***************************************************************************
2435  * A bind operation clones the source mount and mounts the clone on the
2436  * destination mount.
2437  *
2438  * (++)  the cloned mount is propagated to all the mounts in the propagation
2439  * 	 tree of the destination mount and the cloned mount is added to
2440  * 	 the peer group of the source mount.
2441  * (+)   the cloned mount is created under the destination mount and is marked
2442  *       as shared. The cloned mount is added to the peer group of the source
2443  *       mount.
2444  * (+++) the mount is propagated to all the mounts in the propagation tree
2445  *       of the destination mount and the cloned mount is made slave
2446  *       of the same master as that of the source mount. The cloned mount
2447  *       is marked as 'shared and slave'.
2448  * (*)   the cloned mount is made a slave of the same master as that of the
2449  * 	 source mount.
2450  *
2451  * ---------------------------------------------------------------------------
2452  * |         		MOVE MOUNT OPERATION                                 |
2453  * |**************************************************************************
2454  * | source-->| shared        |       private  |       slave    | unbindable |
2455  * | dest     |               |                |                |            |
2456  * |   |      |               |                |                |            |
2457  * |   v      |               |                |                |            |
2458  * |**************************************************************************
2459  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2460  * |          |               |                |                |            |
2461  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2462  * ***************************************************************************
2463  *
2464  * (+)  the mount is moved to the destination. And is then propagated to
2465  * 	all the mounts in the propagation tree of the destination mount.
2466  * (+*)  the mount is moved to the destination.
2467  * (+++)  the mount is moved to the destination and is then propagated to
2468  * 	all the mounts belonging to the destination mount's propagation tree.
2469  * 	the mount is marked as 'shared and slave'.
2470  * (*)	the mount continues to be a slave at the new location.
2471  *
2472  * if the source mount is a tree, the operations explained above is
2473  * applied to each mount in the tree.
2474  * Must be called without spinlocks held, since this function can sleep
2475  * in allocations.
2476  *
2477  * Context: The function expects namespace_lock() to be held.
2478  * Return: If @source_mnt was successfully attached 0 is returned.
2479  *         Otherwise a negative error code is returned.
2480  */
2481 static int attach_recursive_mnt(struct mount *source_mnt,
2482 				struct mount *top_mnt,
2483 				struct mountpoint *dest_mp,
2484 				enum mnt_tree_flags_t flags)
2485 {
2486 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2487 	HLIST_HEAD(tree_list);
2488 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2489 	struct mountpoint *smp;
2490 	struct mount *child, *dest_mnt, *p;
2491 	struct hlist_node *n;
2492 	int err = 0;
2493 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2494 
2495 	/*
2496 	 * Preallocate a mountpoint in case the new mounts need to be
2497 	 * mounted beneath mounts on the same mountpoint.
2498 	 */
2499 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2500 	if (IS_ERR(smp))
2501 		return PTR_ERR(smp);
2502 
2503 	/* Is there space to add these mounts to the mount namespace? */
2504 	if (!moving) {
2505 		err = count_mounts(ns, source_mnt);
2506 		if (err)
2507 			goto out;
2508 	}
2509 
2510 	if (beneath)
2511 		dest_mnt = top_mnt->mnt_parent;
2512 	else
2513 		dest_mnt = top_mnt;
2514 
2515 	if (IS_MNT_SHARED(dest_mnt)) {
2516 		err = invent_group_ids(source_mnt, true);
2517 		if (err)
2518 			goto out;
2519 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2520 	}
2521 	lock_mount_hash();
2522 	if (err)
2523 		goto out_cleanup_ids;
2524 
2525 	if (IS_MNT_SHARED(dest_mnt)) {
2526 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2527 			set_mnt_shared(p);
2528 	}
2529 
2530 	if (moving) {
2531 		if (beneath)
2532 			dest_mp = smp;
2533 		unhash_mnt(source_mnt);
2534 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2535 		touch_mnt_namespace(source_mnt->mnt_ns);
2536 	} else {
2537 		if (source_mnt->mnt_ns) {
2538 			LIST_HEAD(head);
2539 
2540 			/* move from anon - the caller will destroy */
2541 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2542 				move_from_ns(p, &head);
2543 			list_del_init(&head);
2544 		}
2545 		if (beneath)
2546 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2547 		else
2548 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2549 		commit_tree(source_mnt);
2550 	}
2551 
2552 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2553 		struct mount *q;
2554 		hlist_del_init(&child->mnt_hash);
2555 		q = __lookup_mnt(&child->mnt_parent->mnt,
2556 				 child->mnt_mountpoint);
2557 		if (q)
2558 			mnt_change_mountpoint(child, smp, q);
2559 		/* Notice when we are propagating across user namespaces */
2560 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2561 			lock_mnt_tree(child);
2562 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2563 		commit_tree(child);
2564 	}
2565 	put_mountpoint(smp);
2566 	unlock_mount_hash();
2567 
2568 	return 0;
2569 
2570  out_cleanup_ids:
2571 	while (!hlist_empty(&tree_list)) {
2572 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2573 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2574 		umount_tree(child, UMOUNT_SYNC);
2575 	}
2576 	unlock_mount_hash();
2577 	cleanup_group_ids(source_mnt, NULL);
2578  out:
2579 	ns->pending_mounts = 0;
2580 
2581 	read_seqlock_excl(&mount_lock);
2582 	put_mountpoint(smp);
2583 	read_sequnlock_excl(&mount_lock);
2584 
2585 	return err;
2586 }
2587 
2588 /**
2589  * do_lock_mount - lock mount and mountpoint
2590  * @path:    target path
2591  * @beneath: whether the intention is to mount beneath @path
2592  *
2593  * Follow the mount stack on @path until the top mount @mnt is found. If
2594  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2595  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2596  * until nothing is stacked on top of it anymore.
2597  *
2598  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2599  * against concurrent removal of the new mountpoint from another mount
2600  * namespace.
2601  *
2602  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2603  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2604  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2605  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2606  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2607  * on top of it for @beneath.
2608  *
2609  * In addition, @beneath needs to make sure that @mnt hasn't been
2610  * unmounted or moved from its current mountpoint in between dropping
2611  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2612  * being unmounted would be detected later by e.g., calling
2613  * check_mnt(mnt) in the function it's called from. For the @beneath
2614  * case however, it's useful to detect it directly in do_lock_mount().
2615  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2616  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2617  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2618  *
2619  * Return: Either the target mountpoint on the top mount or the top
2620  *         mount's mountpoint.
2621  */
2622 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2623 {
2624 	struct vfsmount *mnt = path->mnt;
2625 	struct dentry *dentry;
2626 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2627 
2628 	for (;;) {
2629 		struct mount *m;
2630 
2631 		if (beneath) {
2632 			m = real_mount(mnt);
2633 			read_seqlock_excl(&mount_lock);
2634 			dentry = dget(m->mnt_mountpoint);
2635 			read_sequnlock_excl(&mount_lock);
2636 		} else {
2637 			dentry = path->dentry;
2638 		}
2639 
2640 		inode_lock(dentry->d_inode);
2641 		if (unlikely(cant_mount(dentry))) {
2642 			inode_unlock(dentry->d_inode);
2643 			goto out;
2644 		}
2645 
2646 		namespace_lock();
2647 
2648 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2649 			namespace_unlock();
2650 			inode_unlock(dentry->d_inode);
2651 			goto out;
2652 		}
2653 
2654 		mnt = lookup_mnt(path);
2655 		if (likely(!mnt))
2656 			break;
2657 
2658 		namespace_unlock();
2659 		inode_unlock(dentry->d_inode);
2660 		if (beneath)
2661 			dput(dentry);
2662 		path_put(path);
2663 		path->mnt = mnt;
2664 		path->dentry = dget(mnt->mnt_root);
2665 	}
2666 
2667 	mp = get_mountpoint(dentry);
2668 	if (IS_ERR(mp)) {
2669 		namespace_unlock();
2670 		inode_unlock(dentry->d_inode);
2671 	}
2672 
2673 out:
2674 	if (beneath)
2675 		dput(dentry);
2676 
2677 	return mp;
2678 }
2679 
2680 static inline struct mountpoint *lock_mount(struct path *path)
2681 {
2682 	return do_lock_mount(path, false);
2683 }
2684 
2685 static void unlock_mount(struct mountpoint *where)
2686 {
2687 	struct dentry *dentry = where->m_dentry;
2688 
2689 	read_seqlock_excl(&mount_lock);
2690 	put_mountpoint(where);
2691 	read_sequnlock_excl(&mount_lock);
2692 
2693 	namespace_unlock();
2694 	inode_unlock(dentry->d_inode);
2695 }
2696 
2697 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2698 {
2699 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2700 		return -EINVAL;
2701 
2702 	if (d_is_dir(mp->m_dentry) !=
2703 	      d_is_dir(mnt->mnt.mnt_root))
2704 		return -ENOTDIR;
2705 
2706 	return attach_recursive_mnt(mnt, p, mp, 0);
2707 }
2708 
2709 /*
2710  * Sanity check the flags to change_mnt_propagation.
2711  */
2712 
2713 static int flags_to_propagation_type(int ms_flags)
2714 {
2715 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2716 
2717 	/* Fail if any non-propagation flags are set */
2718 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2719 		return 0;
2720 	/* Only one propagation flag should be set */
2721 	if (!is_power_of_2(type))
2722 		return 0;
2723 	return type;
2724 }
2725 
2726 /*
2727  * recursively change the type of the mountpoint.
2728  */
2729 static int do_change_type(struct path *path, int ms_flags)
2730 {
2731 	struct mount *m;
2732 	struct mount *mnt = real_mount(path->mnt);
2733 	int recurse = ms_flags & MS_REC;
2734 	int type;
2735 	int err = 0;
2736 
2737 	if (!path_mounted(path))
2738 		return -EINVAL;
2739 
2740 	type = flags_to_propagation_type(ms_flags);
2741 	if (!type)
2742 		return -EINVAL;
2743 
2744 	namespace_lock();
2745 	if (type == MS_SHARED) {
2746 		err = invent_group_ids(mnt, recurse);
2747 		if (err)
2748 			goto out_unlock;
2749 	}
2750 
2751 	lock_mount_hash();
2752 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2753 		change_mnt_propagation(m, type);
2754 	unlock_mount_hash();
2755 
2756  out_unlock:
2757 	namespace_unlock();
2758 	return err;
2759 }
2760 
2761 static struct mount *__do_loopback(struct path *old_path, int recurse)
2762 {
2763 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2764 
2765 	if (IS_MNT_UNBINDABLE(old))
2766 		return mnt;
2767 
2768 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2769 		return mnt;
2770 
2771 	if (!recurse && has_locked_children(old, old_path->dentry))
2772 		return mnt;
2773 
2774 	if (recurse)
2775 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2776 	else
2777 		mnt = clone_mnt(old, old_path->dentry, 0);
2778 
2779 	if (!IS_ERR(mnt))
2780 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2781 
2782 	return mnt;
2783 }
2784 
2785 /*
2786  * do loopback mount.
2787  */
2788 static int do_loopback(struct path *path, const char *old_name,
2789 				int recurse)
2790 {
2791 	struct path old_path;
2792 	struct mount *mnt = NULL, *parent;
2793 	struct mountpoint *mp;
2794 	int err;
2795 	if (!old_name || !*old_name)
2796 		return -EINVAL;
2797 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2798 	if (err)
2799 		return err;
2800 
2801 	err = -EINVAL;
2802 	if (mnt_ns_loop(old_path.dentry))
2803 		goto out;
2804 
2805 	mp = lock_mount(path);
2806 	if (IS_ERR(mp)) {
2807 		err = PTR_ERR(mp);
2808 		goto out;
2809 	}
2810 
2811 	parent = real_mount(path->mnt);
2812 	if (!check_mnt(parent))
2813 		goto out2;
2814 
2815 	mnt = __do_loopback(&old_path, recurse);
2816 	if (IS_ERR(mnt)) {
2817 		err = PTR_ERR(mnt);
2818 		goto out2;
2819 	}
2820 
2821 	err = graft_tree(mnt, parent, mp);
2822 	if (err) {
2823 		lock_mount_hash();
2824 		umount_tree(mnt, UMOUNT_SYNC);
2825 		unlock_mount_hash();
2826 	}
2827 out2:
2828 	unlock_mount(mp);
2829 out:
2830 	path_put(&old_path);
2831 	return err;
2832 }
2833 
2834 static struct file *open_detached_copy(struct path *path, bool recursive)
2835 {
2836 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2837 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2838 	struct mount *mnt, *p;
2839 	struct file *file;
2840 
2841 	if (IS_ERR(ns))
2842 		return ERR_CAST(ns);
2843 
2844 	namespace_lock();
2845 	mnt = __do_loopback(path, recursive);
2846 	if (IS_ERR(mnt)) {
2847 		namespace_unlock();
2848 		free_mnt_ns(ns);
2849 		return ERR_CAST(mnt);
2850 	}
2851 
2852 	lock_mount_hash();
2853 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2854 		mnt_add_to_ns(ns, p);
2855 		ns->nr_mounts++;
2856 	}
2857 	ns->root = mnt;
2858 	mntget(&mnt->mnt);
2859 	unlock_mount_hash();
2860 	namespace_unlock();
2861 
2862 	mntput(path->mnt);
2863 	path->mnt = &mnt->mnt;
2864 	file = dentry_open(path, O_PATH, current_cred());
2865 	if (IS_ERR(file))
2866 		dissolve_on_fput(path->mnt);
2867 	else
2868 		file->f_mode |= FMODE_NEED_UNMOUNT;
2869 	return file;
2870 }
2871 
2872 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2873 {
2874 	struct file *file;
2875 	struct path path;
2876 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2877 	bool detached = flags & OPEN_TREE_CLONE;
2878 	int error;
2879 	int fd;
2880 
2881 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2882 
2883 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2884 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2885 		      OPEN_TREE_CLOEXEC))
2886 		return -EINVAL;
2887 
2888 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2889 		return -EINVAL;
2890 
2891 	if (flags & AT_NO_AUTOMOUNT)
2892 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2893 	if (flags & AT_SYMLINK_NOFOLLOW)
2894 		lookup_flags &= ~LOOKUP_FOLLOW;
2895 	if (flags & AT_EMPTY_PATH)
2896 		lookup_flags |= LOOKUP_EMPTY;
2897 
2898 	if (detached && !may_mount())
2899 		return -EPERM;
2900 
2901 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2902 	if (fd < 0)
2903 		return fd;
2904 
2905 	error = user_path_at(dfd, filename, lookup_flags, &path);
2906 	if (unlikely(error)) {
2907 		file = ERR_PTR(error);
2908 	} else {
2909 		if (detached)
2910 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2911 		else
2912 			file = dentry_open(&path, O_PATH, current_cred());
2913 		path_put(&path);
2914 	}
2915 	if (IS_ERR(file)) {
2916 		put_unused_fd(fd);
2917 		return PTR_ERR(file);
2918 	}
2919 	fd_install(fd, file);
2920 	return fd;
2921 }
2922 
2923 /*
2924  * Don't allow locked mount flags to be cleared.
2925  *
2926  * No locks need to be held here while testing the various MNT_LOCK
2927  * flags because those flags can never be cleared once they are set.
2928  */
2929 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2930 {
2931 	unsigned int fl = mnt->mnt.mnt_flags;
2932 
2933 	if ((fl & MNT_LOCK_READONLY) &&
2934 	    !(mnt_flags & MNT_READONLY))
2935 		return false;
2936 
2937 	if ((fl & MNT_LOCK_NODEV) &&
2938 	    !(mnt_flags & MNT_NODEV))
2939 		return false;
2940 
2941 	if ((fl & MNT_LOCK_NOSUID) &&
2942 	    !(mnt_flags & MNT_NOSUID))
2943 		return false;
2944 
2945 	if ((fl & MNT_LOCK_NOEXEC) &&
2946 	    !(mnt_flags & MNT_NOEXEC))
2947 		return false;
2948 
2949 	if ((fl & MNT_LOCK_ATIME) &&
2950 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2951 		return false;
2952 
2953 	return true;
2954 }
2955 
2956 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2957 {
2958 	bool readonly_request = (mnt_flags & MNT_READONLY);
2959 
2960 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2961 		return 0;
2962 
2963 	if (readonly_request)
2964 		return mnt_make_readonly(mnt);
2965 
2966 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2967 	return 0;
2968 }
2969 
2970 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2971 {
2972 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2973 	mnt->mnt.mnt_flags = mnt_flags;
2974 	touch_mnt_namespace(mnt->mnt_ns);
2975 }
2976 
2977 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2978 {
2979 	struct super_block *sb = mnt->mnt_sb;
2980 
2981 	if (!__mnt_is_readonly(mnt) &&
2982 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2983 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2984 		char *buf, *mntpath;
2985 
2986 		buf = (char *)__get_free_page(GFP_KERNEL);
2987 		if (buf)
2988 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2989 		else
2990 			mntpath = ERR_PTR(-ENOMEM);
2991 		if (IS_ERR(mntpath))
2992 			mntpath = "(unknown)";
2993 
2994 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2995 			sb->s_type->name,
2996 			is_mounted(mnt) ? "remounted" : "mounted",
2997 			mntpath, &sb->s_time_max,
2998 			(unsigned long long)sb->s_time_max);
2999 
3000 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3001 		if (buf)
3002 			free_page((unsigned long)buf);
3003 	}
3004 }
3005 
3006 /*
3007  * Handle reconfiguration of the mountpoint only without alteration of the
3008  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3009  * to mount(2).
3010  */
3011 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3012 {
3013 	struct super_block *sb = path->mnt->mnt_sb;
3014 	struct mount *mnt = real_mount(path->mnt);
3015 	int ret;
3016 
3017 	if (!check_mnt(mnt))
3018 		return -EINVAL;
3019 
3020 	if (!path_mounted(path))
3021 		return -EINVAL;
3022 
3023 	if (!can_change_locked_flags(mnt, mnt_flags))
3024 		return -EPERM;
3025 
3026 	/*
3027 	 * We're only checking whether the superblock is read-only not
3028 	 * changing it, so only take down_read(&sb->s_umount).
3029 	 */
3030 	down_read(&sb->s_umount);
3031 	lock_mount_hash();
3032 	ret = change_mount_ro_state(mnt, mnt_flags);
3033 	if (ret == 0)
3034 		set_mount_attributes(mnt, mnt_flags);
3035 	unlock_mount_hash();
3036 	up_read(&sb->s_umount);
3037 
3038 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3039 
3040 	return ret;
3041 }
3042 
3043 /*
3044  * change filesystem flags. dir should be a physical root of filesystem.
3045  * If you've mounted a non-root directory somewhere and want to do remount
3046  * on it - tough luck.
3047  */
3048 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3049 		      int mnt_flags, void *data)
3050 {
3051 	int err;
3052 	struct super_block *sb = path->mnt->mnt_sb;
3053 	struct mount *mnt = real_mount(path->mnt);
3054 	struct fs_context *fc;
3055 
3056 	if (!check_mnt(mnt))
3057 		return -EINVAL;
3058 
3059 	if (!path_mounted(path))
3060 		return -EINVAL;
3061 
3062 	if (!can_change_locked_flags(mnt, mnt_flags))
3063 		return -EPERM;
3064 
3065 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3066 	if (IS_ERR(fc))
3067 		return PTR_ERR(fc);
3068 
3069 	/*
3070 	 * Indicate to the filesystem that the remount request is coming
3071 	 * from the legacy mount system call.
3072 	 */
3073 	fc->oldapi = true;
3074 
3075 	err = parse_monolithic_mount_data(fc, data);
3076 	if (!err) {
3077 		down_write(&sb->s_umount);
3078 		err = -EPERM;
3079 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3080 			err = reconfigure_super(fc);
3081 			if (!err) {
3082 				lock_mount_hash();
3083 				set_mount_attributes(mnt, mnt_flags);
3084 				unlock_mount_hash();
3085 			}
3086 		}
3087 		up_write(&sb->s_umount);
3088 	}
3089 
3090 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3091 
3092 	put_fs_context(fc);
3093 	return err;
3094 }
3095 
3096 static inline int tree_contains_unbindable(struct mount *mnt)
3097 {
3098 	struct mount *p;
3099 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3100 		if (IS_MNT_UNBINDABLE(p))
3101 			return 1;
3102 	}
3103 	return 0;
3104 }
3105 
3106 /*
3107  * Check that there aren't references to earlier/same mount namespaces in the
3108  * specified subtree.  Such references can act as pins for mount namespaces
3109  * that aren't checked by the mount-cycle checking code, thereby allowing
3110  * cycles to be made.
3111  */
3112 static bool check_for_nsfs_mounts(struct mount *subtree)
3113 {
3114 	struct mount *p;
3115 	bool ret = false;
3116 
3117 	lock_mount_hash();
3118 	for (p = subtree; p; p = next_mnt(p, subtree))
3119 		if (mnt_ns_loop(p->mnt.mnt_root))
3120 			goto out;
3121 
3122 	ret = true;
3123 out:
3124 	unlock_mount_hash();
3125 	return ret;
3126 }
3127 
3128 static int do_set_group(struct path *from_path, struct path *to_path)
3129 {
3130 	struct mount *from, *to;
3131 	int err;
3132 
3133 	from = real_mount(from_path->mnt);
3134 	to = real_mount(to_path->mnt);
3135 
3136 	namespace_lock();
3137 
3138 	err = -EINVAL;
3139 	/* To and From must be mounted */
3140 	if (!is_mounted(&from->mnt))
3141 		goto out;
3142 	if (!is_mounted(&to->mnt))
3143 		goto out;
3144 
3145 	err = -EPERM;
3146 	/* We should be allowed to modify mount namespaces of both mounts */
3147 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3148 		goto out;
3149 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3150 		goto out;
3151 
3152 	err = -EINVAL;
3153 	/* To and From paths should be mount roots */
3154 	if (!path_mounted(from_path))
3155 		goto out;
3156 	if (!path_mounted(to_path))
3157 		goto out;
3158 
3159 	/* Setting sharing groups is only allowed across same superblock */
3160 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3161 		goto out;
3162 
3163 	/* From mount root should be wider than To mount root */
3164 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3165 		goto out;
3166 
3167 	/* From mount should not have locked children in place of To's root */
3168 	if (has_locked_children(from, to->mnt.mnt_root))
3169 		goto out;
3170 
3171 	/* Setting sharing groups is only allowed on private mounts */
3172 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3173 		goto out;
3174 
3175 	/* From should not be private */
3176 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3177 		goto out;
3178 
3179 	if (IS_MNT_SLAVE(from)) {
3180 		struct mount *m = from->mnt_master;
3181 
3182 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3183 		to->mnt_master = m;
3184 	}
3185 
3186 	if (IS_MNT_SHARED(from)) {
3187 		to->mnt_group_id = from->mnt_group_id;
3188 		list_add(&to->mnt_share, &from->mnt_share);
3189 		lock_mount_hash();
3190 		set_mnt_shared(to);
3191 		unlock_mount_hash();
3192 	}
3193 
3194 	err = 0;
3195 out:
3196 	namespace_unlock();
3197 	return err;
3198 }
3199 
3200 /**
3201  * path_overmounted - check if path is overmounted
3202  * @path: path to check
3203  *
3204  * Check if path is overmounted, i.e., if there's a mount on top of
3205  * @path->mnt with @path->dentry as mountpoint.
3206  *
3207  * Context: This function expects namespace_lock() to be held.
3208  * Return: If path is overmounted true is returned, false if not.
3209  */
3210 static inline bool path_overmounted(const struct path *path)
3211 {
3212 	rcu_read_lock();
3213 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3214 		rcu_read_unlock();
3215 		return true;
3216 	}
3217 	rcu_read_unlock();
3218 	return false;
3219 }
3220 
3221 /**
3222  * can_move_mount_beneath - check that we can mount beneath the top mount
3223  * @from: mount to mount beneath
3224  * @to:   mount under which to mount
3225  * @mp:   mountpoint of @to
3226  *
3227  * - Make sure that @to->dentry is actually the root of a mount under
3228  *   which we can mount another mount.
3229  * - Make sure that nothing can be mounted beneath the caller's current
3230  *   root or the rootfs of the namespace.
3231  * - Make sure that the caller can unmount the topmost mount ensuring
3232  *   that the caller could reveal the underlying mountpoint.
3233  * - Ensure that nothing has been mounted on top of @from before we
3234  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3235  * - Prevent mounting beneath a mount if the propagation relationship
3236  *   between the source mount, parent mount, and top mount would lead to
3237  *   nonsensical mount trees.
3238  *
3239  * Context: This function expects namespace_lock() to be held.
3240  * Return: On success 0, and on error a negative error code is returned.
3241  */
3242 static int can_move_mount_beneath(const struct path *from,
3243 				  const struct path *to,
3244 				  const struct mountpoint *mp)
3245 {
3246 	struct mount *mnt_from = real_mount(from->mnt),
3247 		     *mnt_to = real_mount(to->mnt),
3248 		     *parent_mnt_to = mnt_to->mnt_parent;
3249 
3250 	if (!mnt_has_parent(mnt_to))
3251 		return -EINVAL;
3252 
3253 	if (!path_mounted(to))
3254 		return -EINVAL;
3255 
3256 	if (IS_MNT_LOCKED(mnt_to))
3257 		return -EINVAL;
3258 
3259 	/* Avoid creating shadow mounts during mount propagation. */
3260 	if (path_overmounted(from))
3261 		return -EINVAL;
3262 
3263 	/*
3264 	 * Mounting beneath the rootfs only makes sense when the
3265 	 * semantics of pivot_root(".", ".") are used.
3266 	 */
3267 	if (&mnt_to->mnt == current->fs->root.mnt)
3268 		return -EINVAL;
3269 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3270 		return -EINVAL;
3271 
3272 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3273 		if (p == mnt_to)
3274 			return -EINVAL;
3275 
3276 	/*
3277 	 * If the parent mount propagates to the child mount this would
3278 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3279 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3280 	 * defeats the whole purpose of mounting beneath another mount.
3281 	 */
3282 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3283 		return -EINVAL;
3284 
3285 	/*
3286 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3287 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3288 	 * Afterwards @mnt_from would be mounted on top of
3289 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3290 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3291 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3292 	 * remounted on top of @c. Afterwards, @mnt_from would be
3293 	 * covered by a copy @c of @mnt_from and @c would be covered by
3294 	 * @mnt_from itself. This defeats the whole purpose of mounting
3295 	 * @mnt_from beneath @mnt_to.
3296 	 */
3297 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3298 		return -EINVAL;
3299 
3300 	return 0;
3301 }
3302 
3303 static int do_move_mount(struct path *old_path, struct path *new_path,
3304 			 bool beneath)
3305 {
3306 	struct mnt_namespace *ns;
3307 	struct mount *p;
3308 	struct mount *old;
3309 	struct mount *parent;
3310 	struct mountpoint *mp, *old_mp;
3311 	int err;
3312 	bool attached;
3313 	enum mnt_tree_flags_t flags = 0;
3314 
3315 	mp = do_lock_mount(new_path, beneath);
3316 	if (IS_ERR(mp))
3317 		return PTR_ERR(mp);
3318 
3319 	old = real_mount(old_path->mnt);
3320 	p = real_mount(new_path->mnt);
3321 	parent = old->mnt_parent;
3322 	attached = mnt_has_parent(old);
3323 	if (attached)
3324 		flags |= MNT_TREE_MOVE;
3325 	old_mp = old->mnt_mp;
3326 	ns = old->mnt_ns;
3327 
3328 	err = -EINVAL;
3329 	/* The mountpoint must be in our namespace. */
3330 	if (!check_mnt(p))
3331 		goto out;
3332 
3333 	/* The thing moved must be mounted... */
3334 	if (!is_mounted(&old->mnt))
3335 		goto out;
3336 
3337 	/* ... and either ours or the root of anon namespace */
3338 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3339 		goto out;
3340 
3341 	if (old->mnt.mnt_flags & MNT_LOCKED)
3342 		goto out;
3343 
3344 	if (!path_mounted(old_path))
3345 		goto out;
3346 
3347 	if (d_is_dir(new_path->dentry) !=
3348 	    d_is_dir(old_path->dentry))
3349 		goto out;
3350 	/*
3351 	 * Don't move a mount residing in a shared parent.
3352 	 */
3353 	if (attached && IS_MNT_SHARED(parent))
3354 		goto out;
3355 
3356 	if (beneath) {
3357 		err = can_move_mount_beneath(old_path, new_path, mp);
3358 		if (err)
3359 			goto out;
3360 
3361 		err = -EINVAL;
3362 		p = p->mnt_parent;
3363 		flags |= MNT_TREE_BENEATH;
3364 	}
3365 
3366 	/*
3367 	 * Don't move a mount tree containing unbindable mounts to a destination
3368 	 * mount which is shared.
3369 	 */
3370 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3371 		goto out;
3372 	err = -ELOOP;
3373 	if (!check_for_nsfs_mounts(old))
3374 		goto out;
3375 	for (; mnt_has_parent(p); p = p->mnt_parent)
3376 		if (p == old)
3377 			goto out;
3378 
3379 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3380 	if (err)
3381 		goto out;
3382 
3383 	/* if the mount is moved, it should no longer be expire
3384 	 * automatically */
3385 	list_del_init(&old->mnt_expire);
3386 	if (attached)
3387 		put_mountpoint(old_mp);
3388 out:
3389 	unlock_mount(mp);
3390 	if (!err) {
3391 		if (attached)
3392 			mntput_no_expire(parent);
3393 		else
3394 			free_mnt_ns(ns);
3395 	}
3396 	return err;
3397 }
3398 
3399 static int do_move_mount_old(struct path *path, const char *old_name)
3400 {
3401 	struct path old_path;
3402 	int err;
3403 
3404 	if (!old_name || !*old_name)
3405 		return -EINVAL;
3406 
3407 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3408 	if (err)
3409 		return err;
3410 
3411 	err = do_move_mount(&old_path, path, false);
3412 	path_put(&old_path);
3413 	return err;
3414 }
3415 
3416 /*
3417  * add a mount into a namespace's mount tree
3418  */
3419 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3420 			const struct path *path, int mnt_flags)
3421 {
3422 	struct mount *parent = real_mount(path->mnt);
3423 
3424 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3425 
3426 	if (unlikely(!check_mnt(parent))) {
3427 		/* that's acceptable only for automounts done in private ns */
3428 		if (!(mnt_flags & MNT_SHRINKABLE))
3429 			return -EINVAL;
3430 		/* ... and for those we'd better have mountpoint still alive */
3431 		if (!parent->mnt_ns)
3432 			return -EINVAL;
3433 	}
3434 
3435 	/* Refuse the same filesystem on the same mount point */
3436 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3437 		return -EBUSY;
3438 
3439 	if (d_is_symlink(newmnt->mnt.mnt_root))
3440 		return -EINVAL;
3441 
3442 	newmnt->mnt.mnt_flags = mnt_flags;
3443 	return graft_tree(newmnt, parent, mp);
3444 }
3445 
3446 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3447 
3448 /*
3449  * Create a new mount using a superblock configuration and request it
3450  * be added to the namespace tree.
3451  */
3452 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3453 			   unsigned int mnt_flags)
3454 {
3455 	struct vfsmount *mnt;
3456 	struct mountpoint *mp;
3457 	struct super_block *sb = fc->root->d_sb;
3458 	int error;
3459 
3460 	error = security_sb_kern_mount(sb);
3461 	if (!error && mount_too_revealing(sb, &mnt_flags))
3462 		error = -EPERM;
3463 
3464 	if (unlikely(error)) {
3465 		fc_drop_locked(fc);
3466 		return error;
3467 	}
3468 
3469 	up_write(&sb->s_umount);
3470 
3471 	mnt = vfs_create_mount(fc);
3472 	if (IS_ERR(mnt))
3473 		return PTR_ERR(mnt);
3474 
3475 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3476 
3477 	mp = lock_mount(mountpoint);
3478 	if (IS_ERR(mp)) {
3479 		mntput(mnt);
3480 		return PTR_ERR(mp);
3481 	}
3482 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3483 	unlock_mount(mp);
3484 	if (error < 0)
3485 		mntput(mnt);
3486 	return error;
3487 }
3488 
3489 /*
3490  * create a new mount for userspace and request it to be added into the
3491  * namespace's tree
3492  */
3493 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3494 			int mnt_flags, const char *name, void *data)
3495 {
3496 	struct file_system_type *type;
3497 	struct fs_context *fc;
3498 	const char *subtype = NULL;
3499 	int err = 0;
3500 
3501 	if (!fstype)
3502 		return -EINVAL;
3503 
3504 	type = get_fs_type(fstype);
3505 	if (!type)
3506 		return -ENODEV;
3507 
3508 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3509 		subtype = strchr(fstype, '.');
3510 		if (subtype) {
3511 			subtype++;
3512 			if (!*subtype) {
3513 				put_filesystem(type);
3514 				return -EINVAL;
3515 			}
3516 		}
3517 	}
3518 
3519 	fc = fs_context_for_mount(type, sb_flags);
3520 	put_filesystem(type);
3521 	if (IS_ERR(fc))
3522 		return PTR_ERR(fc);
3523 
3524 	/*
3525 	 * Indicate to the filesystem that the mount request is coming
3526 	 * from the legacy mount system call.
3527 	 */
3528 	fc->oldapi = true;
3529 
3530 	if (subtype)
3531 		err = vfs_parse_fs_string(fc, "subtype",
3532 					  subtype, strlen(subtype));
3533 	if (!err && name)
3534 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3535 	if (!err)
3536 		err = parse_monolithic_mount_data(fc, data);
3537 	if (!err && !mount_capable(fc))
3538 		err = -EPERM;
3539 	if (!err)
3540 		err = vfs_get_tree(fc);
3541 	if (!err)
3542 		err = do_new_mount_fc(fc, path, mnt_flags);
3543 
3544 	put_fs_context(fc);
3545 	return err;
3546 }
3547 
3548 int finish_automount(struct vfsmount *m, const struct path *path)
3549 {
3550 	struct dentry *dentry = path->dentry;
3551 	struct mountpoint *mp;
3552 	struct mount *mnt;
3553 	int err;
3554 
3555 	if (!m)
3556 		return 0;
3557 	if (IS_ERR(m))
3558 		return PTR_ERR(m);
3559 
3560 	mnt = real_mount(m);
3561 	/* The new mount record should have at least 2 refs to prevent it being
3562 	 * expired before we get a chance to add it
3563 	 */
3564 	BUG_ON(mnt_get_count(mnt) < 2);
3565 
3566 	if (m->mnt_sb == path->mnt->mnt_sb &&
3567 	    m->mnt_root == dentry) {
3568 		err = -ELOOP;
3569 		goto discard;
3570 	}
3571 
3572 	/*
3573 	 * we don't want to use lock_mount() - in this case finding something
3574 	 * that overmounts our mountpoint to be means "quitely drop what we've
3575 	 * got", not "try to mount it on top".
3576 	 */
3577 	inode_lock(dentry->d_inode);
3578 	namespace_lock();
3579 	if (unlikely(cant_mount(dentry))) {
3580 		err = -ENOENT;
3581 		goto discard_locked;
3582 	}
3583 	if (path_overmounted(path)) {
3584 		err = 0;
3585 		goto discard_locked;
3586 	}
3587 	mp = get_mountpoint(dentry);
3588 	if (IS_ERR(mp)) {
3589 		err = PTR_ERR(mp);
3590 		goto discard_locked;
3591 	}
3592 
3593 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3594 	unlock_mount(mp);
3595 	if (unlikely(err))
3596 		goto discard;
3597 	mntput(m);
3598 	return 0;
3599 
3600 discard_locked:
3601 	namespace_unlock();
3602 	inode_unlock(dentry->d_inode);
3603 discard:
3604 	/* remove m from any expiration list it may be on */
3605 	if (!list_empty(&mnt->mnt_expire)) {
3606 		namespace_lock();
3607 		list_del_init(&mnt->mnt_expire);
3608 		namespace_unlock();
3609 	}
3610 	mntput(m);
3611 	mntput(m);
3612 	return err;
3613 }
3614 
3615 /**
3616  * mnt_set_expiry - Put a mount on an expiration list
3617  * @mnt: The mount to list.
3618  * @expiry_list: The list to add the mount to.
3619  */
3620 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3621 {
3622 	namespace_lock();
3623 
3624 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3625 
3626 	namespace_unlock();
3627 }
3628 EXPORT_SYMBOL(mnt_set_expiry);
3629 
3630 /*
3631  * process a list of expirable mountpoints with the intent of discarding any
3632  * mountpoints that aren't in use and haven't been touched since last we came
3633  * here
3634  */
3635 void mark_mounts_for_expiry(struct list_head *mounts)
3636 {
3637 	struct mount *mnt, *next;
3638 	LIST_HEAD(graveyard);
3639 
3640 	if (list_empty(mounts))
3641 		return;
3642 
3643 	namespace_lock();
3644 	lock_mount_hash();
3645 
3646 	/* extract from the expiration list every vfsmount that matches the
3647 	 * following criteria:
3648 	 * - only referenced by its parent vfsmount
3649 	 * - still marked for expiry (marked on the last call here; marks are
3650 	 *   cleared by mntput())
3651 	 */
3652 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3653 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3654 			propagate_mount_busy(mnt, 1))
3655 			continue;
3656 		list_move(&mnt->mnt_expire, &graveyard);
3657 	}
3658 	while (!list_empty(&graveyard)) {
3659 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3660 		touch_mnt_namespace(mnt->mnt_ns);
3661 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3662 	}
3663 	unlock_mount_hash();
3664 	namespace_unlock();
3665 }
3666 
3667 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3668 
3669 /*
3670  * Ripoff of 'select_parent()'
3671  *
3672  * search the list of submounts for a given mountpoint, and move any
3673  * shrinkable submounts to the 'graveyard' list.
3674  */
3675 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3676 {
3677 	struct mount *this_parent = parent;
3678 	struct list_head *next;
3679 	int found = 0;
3680 
3681 repeat:
3682 	next = this_parent->mnt_mounts.next;
3683 resume:
3684 	while (next != &this_parent->mnt_mounts) {
3685 		struct list_head *tmp = next;
3686 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3687 
3688 		next = tmp->next;
3689 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3690 			continue;
3691 		/*
3692 		 * Descend a level if the d_mounts list is non-empty.
3693 		 */
3694 		if (!list_empty(&mnt->mnt_mounts)) {
3695 			this_parent = mnt;
3696 			goto repeat;
3697 		}
3698 
3699 		if (!propagate_mount_busy(mnt, 1)) {
3700 			list_move_tail(&mnt->mnt_expire, graveyard);
3701 			found++;
3702 		}
3703 	}
3704 	/*
3705 	 * All done at this level ... ascend and resume the search
3706 	 */
3707 	if (this_parent != parent) {
3708 		next = this_parent->mnt_child.next;
3709 		this_parent = this_parent->mnt_parent;
3710 		goto resume;
3711 	}
3712 	return found;
3713 }
3714 
3715 /*
3716  * process a list of expirable mountpoints with the intent of discarding any
3717  * submounts of a specific parent mountpoint
3718  *
3719  * mount_lock must be held for write
3720  */
3721 static void shrink_submounts(struct mount *mnt)
3722 {
3723 	LIST_HEAD(graveyard);
3724 	struct mount *m;
3725 
3726 	/* extract submounts of 'mountpoint' from the expiration list */
3727 	while (select_submounts(mnt, &graveyard)) {
3728 		while (!list_empty(&graveyard)) {
3729 			m = list_first_entry(&graveyard, struct mount,
3730 						mnt_expire);
3731 			touch_mnt_namespace(m->mnt_ns);
3732 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3733 		}
3734 	}
3735 }
3736 
3737 static void *copy_mount_options(const void __user * data)
3738 {
3739 	char *copy;
3740 	unsigned left, offset;
3741 
3742 	if (!data)
3743 		return NULL;
3744 
3745 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3746 	if (!copy)
3747 		return ERR_PTR(-ENOMEM);
3748 
3749 	left = copy_from_user(copy, data, PAGE_SIZE);
3750 
3751 	/*
3752 	 * Not all architectures have an exact copy_from_user(). Resort to
3753 	 * byte at a time.
3754 	 */
3755 	offset = PAGE_SIZE - left;
3756 	while (left) {
3757 		char c;
3758 		if (get_user(c, (const char __user *)data + offset))
3759 			break;
3760 		copy[offset] = c;
3761 		left--;
3762 		offset++;
3763 	}
3764 
3765 	if (left == PAGE_SIZE) {
3766 		kfree(copy);
3767 		return ERR_PTR(-EFAULT);
3768 	}
3769 
3770 	return copy;
3771 }
3772 
3773 static char *copy_mount_string(const void __user *data)
3774 {
3775 	return data ? strndup_user(data, PATH_MAX) : NULL;
3776 }
3777 
3778 /*
3779  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3780  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3781  *
3782  * data is a (void *) that can point to any structure up to
3783  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3784  * information (or be NULL).
3785  *
3786  * Pre-0.97 versions of mount() didn't have a flags word.
3787  * When the flags word was introduced its top half was required
3788  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3789  * Therefore, if this magic number is present, it carries no information
3790  * and must be discarded.
3791  */
3792 int path_mount(const char *dev_name, struct path *path,
3793 		const char *type_page, unsigned long flags, void *data_page)
3794 {
3795 	unsigned int mnt_flags = 0, sb_flags;
3796 	int ret;
3797 
3798 	/* Discard magic */
3799 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3800 		flags &= ~MS_MGC_MSK;
3801 
3802 	/* Basic sanity checks */
3803 	if (data_page)
3804 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3805 
3806 	if (flags & MS_NOUSER)
3807 		return -EINVAL;
3808 
3809 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3810 	if (ret)
3811 		return ret;
3812 	if (!may_mount())
3813 		return -EPERM;
3814 	if (flags & SB_MANDLOCK)
3815 		warn_mandlock();
3816 
3817 	/* Default to relatime unless overriden */
3818 	if (!(flags & MS_NOATIME))
3819 		mnt_flags |= MNT_RELATIME;
3820 
3821 	/* Separate the per-mountpoint flags */
3822 	if (flags & MS_NOSUID)
3823 		mnt_flags |= MNT_NOSUID;
3824 	if (flags & MS_NODEV)
3825 		mnt_flags |= MNT_NODEV;
3826 	if (flags & MS_NOEXEC)
3827 		mnt_flags |= MNT_NOEXEC;
3828 	if (flags & MS_NOATIME)
3829 		mnt_flags |= MNT_NOATIME;
3830 	if (flags & MS_NODIRATIME)
3831 		mnt_flags |= MNT_NODIRATIME;
3832 	if (flags & MS_STRICTATIME)
3833 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3834 	if (flags & MS_RDONLY)
3835 		mnt_flags |= MNT_READONLY;
3836 	if (flags & MS_NOSYMFOLLOW)
3837 		mnt_flags |= MNT_NOSYMFOLLOW;
3838 
3839 	/* The default atime for remount is preservation */
3840 	if ((flags & MS_REMOUNT) &&
3841 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3842 		       MS_STRICTATIME)) == 0)) {
3843 		mnt_flags &= ~MNT_ATIME_MASK;
3844 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3845 	}
3846 
3847 	sb_flags = flags & (SB_RDONLY |
3848 			    SB_SYNCHRONOUS |
3849 			    SB_MANDLOCK |
3850 			    SB_DIRSYNC |
3851 			    SB_SILENT |
3852 			    SB_POSIXACL |
3853 			    SB_LAZYTIME |
3854 			    SB_I_VERSION);
3855 
3856 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3857 		return do_reconfigure_mnt(path, mnt_flags);
3858 	if (flags & MS_REMOUNT)
3859 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3860 	if (flags & MS_BIND)
3861 		return do_loopback(path, dev_name, flags & MS_REC);
3862 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3863 		return do_change_type(path, flags);
3864 	if (flags & MS_MOVE)
3865 		return do_move_mount_old(path, dev_name);
3866 
3867 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3868 			    data_page);
3869 }
3870 
3871 long do_mount(const char *dev_name, const char __user *dir_name,
3872 		const char *type_page, unsigned long flags, void *data_page)
3873 {
3874 	struct path path;
3875 	int ret;
3876 
3877 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3878 	if (ret)
3879 		return ret;
3880 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3881 	path_put(&path);
3882 	return ret;
3883 }
3884 
3885 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3886 {
3887 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3888 }
3889 
3890 static void dec_mnt_namespaces(struct ucounts *ucounts)
3891 {
3892 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3893 }
3894 
3895 static void free_mnt_ns(struct mnt_namespace *ns)
3896 {
3897 	if (!is_anon_ns(ns))
3898 		ns_free_inum(&ns->ns);
3899 	dec_mnt_namespaces(ns->ucounts);
3900 	mnt_ns_tree_remove(ns);
3901 }
3902 
3903 /*
3904  * Assign a sequence number so we can detect when we attempt to bind
3905  * mount a reference to an older mount namespace into the current
3906  * mount namespace, preventing reference counting loops.  A 64bit
3907  * number incrementing at 10Ghz will take 12,427 years to wrap which
3908  * is effectively never, so we can ignore the possibility.
3909  */
3910 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3911 
3912 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3913 {
3914 	struct mnt_namespace *new_ns;
3915 	struct ucounts *ucounts;
3916 	int ret;
3917 
3918 	ucounts = inc_mnt_namespaces(user_ns);
3919 	if (!ucounts)
3920 		return ERR_PTR(-ENOSPC);
3921 
3922 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3923 	if (!new_ns) {
3924 		dec_mnt_namespaces(ucounts);
3925 		return ERR_PTR(-ENOMEM);
3926 	}
3927 	if (!anon) {
3928 		ret = ns_alloc_inum(&new_ns->ns);
3929 		if (ret) {
3930 			kfree(new_ns);
3931 			dec_mnt_namespaces(ucounts);
3932 			return ERR_PTR(ret);
3933 		}
3934 	}
3935 	new_ns->ns.ops = &mntns_operations;
3936 	if (!anon)
3937 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
3938 	refcount_set(&new_ns->ns.count, 1);
3939 	refcount_set(&new_ns->passive, 1);
3940 	new_ns->mounts = RB_ROOT;
3941 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
3942 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3943 	init_waitqueue_head(&new_ns->poll);
3944 	new_ns->user_ns = get_user_ns(user_ns);
3945 	new_ns->ucounts = ucounts;
3946 	return new_ns;
3947 }
3948 
3949 __latent_entropy
3950 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3951 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3952 {
3953 	struct mnt_namespace *new_ns;
3954 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3955 	struct mount *p, *q;
3956 	struct mount *old;
3957 	struct mount *new;
3958 	int copy_flags;
3959 
3960 	BUG_ON(!ns);
3961 
3962 	if (likely(!(flags & CLONE_NEWNS))) {
3963 		get_mnt_ns(ns);
3964 		return ns;
3965 	}
3966 
3967 	old = ns->root;
3968 
3969 	new_ns = alloc_mnt_ns(user_ns, false);
3970 	if (IS_ERR(new_ns))
3971 		return new_ns;
3972 
3973 	namespace_lock();
3974 	/* First pass: copy the tree topology */
3975 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3976 	if (user_ns != ns->user_ns)
3977 		copy_flags |= CL_SHARED_TO_SLAVE;
3978 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3979 	if (IS_ERR(new)) {
3980 		namespace_unlock();
3981 		ns_free_inum(&new_ns->ns);
3982 		dec_mnt_namespaces(new_ns->ucounts);
3983 		mnt_ns_release(new_ns);
3984 		return ERR_CAST(new);
3985 	}
3986 	if (user_ns != ns->user_ns) {
3987 		lock_mount_hash();
3988 		lock_mnt_tree(new);
3989 		unlock_mount_hash();
3990 	}
3991 	new_ns->root = new;
3992 
3993 	/*
3994 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3995 	 * as belonging to new namespace.  We have already acquired a private
3996 	 * fs_struct, so tsk->fs->lock is not needed.
3997 	 */
3998 	p = old;
3999 	q = new;
4000 	while (p) {
4001 		mnt_add_to_ns(new_ns, q);
4002 		new_ns->nr_mounts++;
4003 		if (new_fs) {
4004 			if (&p->mnt == new_fs->root.mnt) {
4005 				new_fs->root.mnt = mntget(&q->mnt);
4006 				rootmnt = &p->mnt;
4007 			}
4008 			if (&p->mnt == new_fs->pwd.mnt) {
4009 				new_fs->pwd.mnt = mntget(&q->mnt);
4010 				pwdmnt = &p->mnt;
4011 			}
4012 		}
4013 		p = next_mnt(p, old);
4014 		q = next_mnt(q, new);
4015 		if (!q)
4016 			break;
4017 		// an mntns binding we'd skipped?
4018 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4019 			p = next_mnt(skip_mnt_tree(p), old);
4020 	}
4021 	namespace_unlock();
4022 
4023 	if (rootmnt)
4024 		mntput(rootmnt);
4025 	if (pwdmnt)
4026 		mntput(pwdmnt);
4027 
4028 	mnt_ns_tree_add(new_ns);
4029 	return new_ns;
4030 }
4031 
4032 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4033 {
4034 	struct mount *mnt = real_mount(m);
4035 	struct mnt_namespace *ns;
4036 	struct super_block *s;
4037 	struct path path;
4038 	int err;
4039 
4040 	ns = alloc_mnt_ns(&init_user_ns, true);
4041 	if (IS_ERR(ns)) {
4042 		mntput(m);
4043 		return ERR_CAST(ns);
4044 	}
4045 	ns->root = mnt;
4046 	ns->nr_mounts++;
4047 	mnt_add_to_ns(ns, mnt);
4048 
4049 	err = vfs_path_lookup(m->mnt_root, m,
4050 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4051 
4052 	put_mnt_ns(ns);
4053 
4054 	if (err)
4055 		return ERR_PTR(err);
4056 
4057 	/* trade a vfsmount reference for active sb one */
4058 	s = path.mnt->mnt_sb;
4059 	atomic_inc(&s->s_active);
4060 	mntput(path.mnt);
4061 	/* lock the sucker */
4062 	down_write(&s->s_umount);
4063 	/* ... and return the root of (sub)tree on it */
4064 	return path.dentry;
4065 }
4066 EXPORT_SYMBOL(mount_subtree);
4067 
4068 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4069 		char __user *, type, unsigned long, flags, void __user *, data)
4070 {
4071 	int ret;
4072 	char *kernel_type;
4073 	char *kernel_dev;
4074 	void *options;
4075 
4076 	kernel_type = copy_mount_string(type);
4077 	ret = PTR_ERR(kernel_type);
4078 	if (IS_ERR(kernel_type))
4079 		goto out_type;
4080 
4081 	kernel_dev = copy_mount_string(dev_name);
4082 	ret = PTR_ERR(kernel_dev);
4083 	if (IS_ERR(kernel_dev))
4084 		goto out_dev;
4085 
4086 	options = copy_mount_options(data);
4087 	ret = PTR_ERR(options);
4088 	if (IS_ERR(options))
4089 		goto out_data;
4090 
4091 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4092 
4093 	kfree(options);
4094 out_data:
4095 	kfree(kernel_dev);
4096 out_dev:
4097 	kfree(kernel_type);
4098 out_type:
4099 	return ret;
4100 }
4101 
4102 #define FSMOUNT_VALID_FLAGS                                                    \
4103 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4104 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4105 	 MOUNT_ATTR_NOSYMFOLLOW)
4106 
4107 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4108 
4109 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4110 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4111 
4112 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4113 {
4114 	unsigned int mnt_flags = 0;
4115 
4116 	if (attr_flags & MOUNT_ATTR_RDONLY)
4117 		mnt_flags |= MNT_READONLY;
4118 	if (attr_flags & MOUNT_ATTR_NOSUID)
4119 		mnt_flags |= MNT_NOSUID;
4120 	if (attr_flags & MOUNT_ATTR_NODEV)
4121 		mnt_flags |= MNT_NODEV;
4122 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4123 		mnt_flags |= MNT_NOEXEC;
4124 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4125 		mnt_flags |= MNT_NODIRATIME;
4126 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4127 		mnt_flags |= MNT_NOSYMFOLLOW;
4128 
4129 	return mnt_flags;
4130 }
4131 
4132 /*
4133  * Create a kernel mount representation for a new, prepared superblock
4134  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4135  */
4136 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4137 		unsigned int, attr_flags)
4138 {
4139 	struct mnt_namespace *ns;
4140 	struct fs_context *fc;
4141 	struct file *file;
4142 	struct path newmount;
4143 	struct mount *mnt;
4144 	unsigned int mnt_flags = 0;
4145 	long ret;
4146 
4147 	if (!may_mount())
4148 		return -EPERM;
4149 
4150 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4151 		return -EINVAL;
4152 
4153 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4154 		return -EINVAL;
4155 
4156 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4157 
4158 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4159 	case MOUNT_ATTR_STRICTATIME:
4160 		break;
4161 	case MOUNT_ATTR_NOATIME:
4162 		mnt_flags |= MNT_NOATIME;
4163 		break;
4164 	case MOUNT_ATTR_RELATIME:
4165 		mnt_flags |= MNT_RELATIME;
4166 		break;
4167 	default:
4168 		return -EINVAL;
4169 	}
4170 
4171 	CLASS(fd, f)(fs_fd);
4172 	if (fd_empty(f))
4173 		return -EBADF;
4174 
4175 	if (fd_file(f)->f_op != &fscontext_fops)
4176 		return -EINVAL;
4177 
4178 	fc = fd_file(f)->private_data;
4179 
4180 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4181 	if (ret < 0)
4182 		return ret;
4183 
4184 	/* There must be a valid superblock or we can't mount it */
4185 	ret = -EINVAL;
4186 	if (!fc->root)
4187 		goto err_unlock;
4188 
4189 	ret = -EPERM;
4190 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4191 		pr_warn("VFS: Mount too revealing\n");
4192 		goto err_unlock;
4193 	}
4194 
4195 	ret = -EBUSY;
4196 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4197 		goto err_unlock;
4198 
4199 	if (fc->sb_flags & SB_MANDLOCK)
4200 		warn_mandlock();
4201 
4202 	newmount.mnt = vfs_create_mount(fc);
4203 	if (IS_ERR(newmount.mnt)) {
4204 		ret = PTR_ERR(newmount.mnt);
4205 		goto err_unlock;
4206 	}
4207 	newmount.dentry = dget(fc->root);
4208 	newmount.mnt->mnt_flags = mnt_flags;
4209 
4210 	/* We've done the mount bit - now move the file context into more or
4211 	 * less the same state as if we'd done an fspick().  We don't want to
4212 	 * do any memory allocation or anything like that at this point as we
4213 	 * don't want to have to handle any errors incurred.
4214 	 */
4215 	vfs_clean_context(fc);
4216 
4217 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4218 	if (IS_ERR(ns)) {
4219 		ret = PTR_ERR(ns);
4220 		goto err_path;
4221 	}
4222 	mnt = real_mount(newmount.mnt);
4223 	ns->root = mnt;
4224 	ns->nr_mounts = 1;
4225 	mnt_add_to_ns(ns, mnt);
4226 	mntget(newmount.mnt);
4227 
4228 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4229 	 * it, not just simply put it.
4230 	 */
4231 	file = dentry_open(&newmount, O_PATH, fc->cred);
4232 	if (IS_ERR(file)) {
4233 		dissolve_on_fput(newmount.mnt);
4234 		ret = PTR_ERR(file);
4235 		goto err_path;
4236 	}
4237 	file->f_mode |= FMODE_NEED_UNMOUNT;
4238 
4239 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4240 	if (ret >= 0)
4241 		fd_install(ret, file);
4242 	else
4243 		fput(file);
4244 
4245 err_path:
4246 	path_put(&newmount);
4247 err_unlock:
4248 	mutex_unlock(&fc->uapi_mutex);
4249 	return ret;
4250 }
4251 
4252 /*
4253  * Move a mount from one place to another.  In combination with
4254  * fsopen()/fsmount() this is used to install a new mount and in combination
4255  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4256  * a mount subtree.
4257  *
4258  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4259  */
4260 SYSCALL_DEFINE5(move_mount,
4261 		int, from_dfd, const char __user *, from_pathname,
4262 		int, to_dfd, const char __user *, to_pathname,
4263 		unsigned int, flags)
4264 {
4265 	struct path from_path, to_path;
4266 	unsigned int lflags;
4267 	int ret = 0;
4268 
4269 	if (!may_mount())
4270 		return -EPERM;
4271 
4272 	if (flags & ~MOVE_MOUNT__MASK)
4273 		return -EINVAL;
4274 
4275 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4276 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4277 		return -EINVAL;
4278 
4279 	/* If someone gives a pathname, they aren't permitted to move
4280 	 * from an fd that requires unmount as we can't get at the flag
4281 	 * to clear it afterwards.
4282 	 */
4283 	lflags = 0;
4284 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4285 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4286 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4287 
4288 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4289 	if (ret < 0)
4290 		return ret;
4291 
4292 	lflags = 0;
4293 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4294 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4295 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4296 
4297 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4298 	if (ret < 0)
4299 		goto out_from;
4300 
4301 	ret = security_move_mount(&from_path, &to_path);
4302 	if (ret < 0)
4303 		goto out_to;
4304 
4305 	if (flags & MOVE_MOUNT_SET_GROUP)
4306 		ret = do_set_group(&from_path, &to_path);
4307 	else
4308 		ret = do_move_mount(&from_path, &to_path,
4309 				    (flags & MOVE_MOUNT_BENEATH));
4310 
4311 out_to:
4312 	path_put(&to_path);
4313 out_from:
4314 	path_put(&from_path);
4315 	return ret;
4316 }
4317 
4318 /*
4319  * Return true if path is reachable from root
4320  *
4321  * namespace_sem or mount_lock is held
4322  */
4323 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4324 			 const struct path *root)
4325 {
4326 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4327 		dentry = mnt->mnt_mountpoint;
4328 		mnt = mnt->mnt_parent;
4329 	}
4330 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4331 }
4332 
4333 bool path_is_under(const struct path *path1, const struct path *path2)
4334 {
4335 	bool res;
4336 	read_seqlock_excl(&mount_lock);
4337 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4338 	read_sequnlock_excl(&mount_lock);
4339 	return res;
4340 }
4341 EXPORT_SYMBOL(path_is_under);
4342 
4343 /*
4344  * pivot_root Semantics:
4345  * Moves the root file system of the current process to the directory put_old,
4346  * makes new_root as the new root file system of the current process, and sets
4347  * root/cwd of all processes which had them on the current root to new_root.
4348  *
4349  * Restrictions:
4350  * The new_root and put_old must be directories, and  must not be on the
4351  * same file  system as the current process root. The put_old  must  be
4352  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4353  * pointed to by put_old must yield the same directory as new_root. No other
4354  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4355  *
4356  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4357  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4358  * in this situation.
4359  *
4360  * Notes:
4361  *  - we don't move root/cwd if they are not at the root (reason: if something
4362  *    cared enough to change them, it's probably wrong to force them elsewhere)
4363  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4364  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4365  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4366  *    first.
4367  */
4368 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4369 		const char __user *, put_old)
4370 {
4371 	struct path new, old, root;
4372 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4373 	struct mountpoint *old_mp, *root_mp;
4374 	int error;
4375 
4376 	if (!may_mount())
4377 		return -EPERM;
4378 
4379 	error = user_path_at(AT_FDCWD, new_root,
4380 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4381 	if (error)
4382 		goto out0;
4383 
4384 	error = user_path_at(AT_FDCWD, put_old,
4385 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4386 	if (error)
4387 		goto out1;
4388 
4389 	error = security_sb_pivotroot(&old, &new);
4390 	if (error)
4391 		goto out2;
4392 
4393 	get_fs_root(current->fs, &root);
4394 	old_mp = lock_mount(&old);
4395 	error = PTR_ERR(old_mp);
4396 	if (IS_ERR(old_mp))
4397 		goto out3;
4398 
4399 	error = -EINVAL;
4400 	new_mnt = real_mount(new.mnt);
4401 	root_mnt = real_mount(root.mnt);
4402 	old_mnt = real_mount(old.mnt);
4403 	ex_parent = new_mnt->mnt_parent;
4404 	root_parent = root_mnt->mnt_parent;
4405 	if (IS_MNT_SHARED(old_mnt) ||
4406 		IS_MNT_SHARED(ex_parent) ||
4407 		IS_MNT_SHARED(root_parent))
4408 		goto out4;
4409 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4410 		goto out4;
4411 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4412 		goto out4;
4413 	error = -ENOENT;
4414 	if (d_unlinked(new.dentry))
4415 		goto out4;
4416 	error = -EBUSY;
4417 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4418 		goto out4; /* loop, on the same file system  */
4419 	error = -EINVAL;
4420 	if (!path_mounted(&root))
4421 		goto out4; /* not a mountpoint */
4422 	if (!mnt_has_parent(root_mnt))
4423 		goto out4; /* not attached */
4424 	if (!path_mounted(&new))
4425 		goto out4; /* not a mountpoint */
4426 	if (!mnt_has_parent(new_mnt))
4427 		goto out4; /* not attached */
4428 	/* make sure we can reach put_old from new_root */
4429 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4430 		goto out4;
4431 	/* make certain new is below the root */
4432 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4433 		goto out4;
4434 	lock_mount_hash();
4435 	umount_mnt(new_mnt);
4436 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4437 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4438 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4439 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4440 	}
4441 	/* mount old root on put_old */
4442 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4443 	/* mount new_root on / */
4444 	attach_mnt(new_mnt, root_parent, root_mp, false);
4445 	mnt_add_count(root_parent, -1);
4446 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4447 	/* A moved mount should not expire automatically */
4448 	list_del_init(&new_mnt->mnt_expire);
4449 	put_mountpoint(root_mp);
4450 	unlock_mount_hash();
4451 	chroot_fs_refs(&root, &new);
4452 	error = 0;
4453 out4:
4454 	unlock_mount(old_mp);
4455 	if (!error)
4456 		mntput_no_expire(ex_parent);
4457 out3:
4458 	path_put(&root);
4459 out2:
4460 	path_put(&old);
4461 out1:
4462 	path_put(&new);
4463 out0:
4464 	return error;
4465 }
4466 
4467 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4468 {
4469 	unsigned int flags = mnt->mnt.mnt_flags;
4470 
4471 	/*  flags to clear */
4472 	flags &= ~kattr->attr_clr;
4473 	/* flags to raise */
4474 	flags |= kattr->attr_set;
4475 
4476 	return flags;
4477 }
4478 
4479 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4480 {
4481 	struct vfsmount *m = &mnt->mnt;
4482 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4483 
4484 	if (!kattr->mnt_idmap)
4485 		return 0;
4486 
4487 	/*
4488 	 * Creating an idmapped mount with the filesystem wide idmapping
4489 	 * doesn't make sense so block that. We don't allow mushy semantics.
4490 	 */
4491 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4492 		return -EINVAL;
4493 
4494 	/*
4495 	 * Once a mount has been idmapped we don't allow it to change its
4496 	 * mapping. It makes things simpler and callers can just create
4497 	 * another bind-mount they can idmap if they want to.
4498 	 */
4499 	if (is_idmapped_mnt(m))
4500 		return -EPERM;
4501 
4502 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4503 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4504 		return -EINVAL;
4505 
4506 	/* The filesystem has turned off idmapped mounts. */
4507 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4508 		return -EINVAL;
4509 
4510 	/* We're not controlling the superblock. */
4511 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4512 		return -EPERM;
4513 
4514 	/* Mount has already been visible in the filesystem hierarchy. */
4515 	if (!is_anon_ns(mnt->mnt_ns))
4516 		return -EINVAL;
4517 
4518 	return 0;
4519 }
4520 
4521 /**
4522  * mnt_allow_writers() - check whether the attribute change allows writers
4523  * @kattr: the new mount attributes
4524  * @mnt: the mount to which @kattr will be applied
4525  *
4526  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4527  *
4528  * Return: true if writers need to be held, false if not
4529  */
4530 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4531 				     const struct mount *mnt)
4532 {
4533 	return (!(kattr->attr_set & MNT_READONLY) ||
4534 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4535 	       !kattr->mnt_idmap;
4536 }
4537 
4538 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4539 {
4540 	struct mount *m;
4541 	int err;
4542 
4543 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4544 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4545 			err = -EPERM;
4546 			break;
4547 		}
4548 
4549 		err = can_idmap_mount(kattr, m);
4550 		if (err)
4551 			break;
4552 
4553 		if (!mnt_allow_writers(kattr, m)) {
4554 			err = mnt_hold_writers(m);
4555 			if (err)
4556 				break;
4557 		}
4558 
4559 		if (!kattr->recurse)
4560 			return 0;
4561 	}
4562 
4563 	if (err) {
4564 		struct mount *p;
4565 
4566 		/*
4567 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4568 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4569 		 * mounts and needs to take care to include the first mount.
4570 		 */
4571 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4572 			/* If we had to hold writers unblock them. */
4573 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4574 				mnt_unhold_writers(p);
4575 
4576 			/*
4577 			 * We're done once the first mount we changed got
4578 			 * MNT_WRITE_HOLD unset.
4579 			 */
4580 			if (p == m)
4581 				break;
4582 		}
4583 	}
4584 	return err;
4585 }
4586 
4587 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4588 {
4589 	if (!kattr->mnt_idmap)
4590 		return;
4591 
4592 	/*
4593 	 * Pairs with smp_load_acquire() in mnt_idmap().
4594 	 *
4595 	 * Since we only allow a mount to change the idmapping once and
4596 	 * verified this in can_idmap_mount() we know that the mount has
4597 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4598 	 * references.
4599 	 */
4600 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4601 }
4602 
4603 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4604 {
4605 	struct mount *m;
4606 
4607 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4608 		unsigned int flags;
4609 
4610 		do_idmap_mount(kattr, m);
4611 		flags = recalc_flags(kattr, m);
4612 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4613 
4614 		/* If we had to hold writers unblock them. */
4615 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4616 			mnt_unhold_writers(m);
4617 
4618 		if (kattr->propagation)
4619 			change_mnt_propagation(m, kattr->propagation);
4620 		if (!kattr->recurse)
4621 			break;
4622 	}
4623 	touch_mnt_namespace(mnt->mnt_ns);
4624 }
4625 
4626 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4627 {
4628 	struct mount *mnt = real_mount(path->mnt);
4629 	int err = 0;
4630 
4631 	if (!path_mounted(path))
4632 		return -EINVAL;
4633 
4634 	if (kattr->mnt_userns) {
4635 		struct mnt_idmap *mnt_idmap;
4636 
4637 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4638 		if (IS_ERR(mnt_idmap))
4639 			return PTR_ERR(mnt_idmap);
4640 		kattr->mnt_idmap = mnt_idmap;
4641 	}
4642 
4643 	if (kattr->propagation) {
4644 		/*
4645 		 * Only take namespace_lock() if we're actually changing
4646 		 * propagation.
4647 		 */
4648 		namespace_lock();
4649 		if (kattr->propagation == MS_SHARED) {
4650 			err = invent_group_ids(mnt, kattr->recurse);
4651 			if (err) {
4652 				namespace_unlock();
4653 				return err;
4654 			}
4655 		}
4656 	}
4657 
4658 	err = -EINVAL;
4659 	lock_mount_hash();
4660 
4661 	/* Ensure that this isn't anything purely vfs internal. */
4662 	if (!is_mounted(&mnt->mnt))
4663 		goto out;
4664 
4665 	/*
4666 	 * If this is an attached mount make sure it's located in the callers
4667 	 * mount namespace. If it's not don't let the caller interact with it.
4668 	 *
4669 	 * If this mount doesn't have a parent it's most often simply a
4670 	 * detached mount with an anonymous mount namespace. IOW, something
4671 	 * that's simply not attached yet. But there are apparently also users
4672 	 * that do change mount properties on the rootfs itself. That obviously
4673 	 * neither has a parent nor is it a detached mount so we cannot
4674 	 * unconditionally check for detached mounts.
4675 	 */
4676 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4677 		goto out;
4678 
4679 	/*
4680 	 * First, we get the mount tree in a shape where we can change mount
4681 	 * properties without failure. If we succeeded to do so we commit all
4682 	 * changes and if we failed we clean up.
4683 	 */
4684 	err = mount_setattr_prepare(kattr, mnt);
4685 	if (!err)
4686 		mount_setattr_commit(kattr, mnt);
4687 
4688 out:
4689 	unlock_mount_hash();
4690 
4691 	if (kattr->propagation) {
4692 		if (err)
4693 			cleanup_group_ids(mnt, NULL);
4694 		namespace_unlock();
4695 	}
4696 
4697 	return err;
4698 }
4699 
4700 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4701 				struct mount_kattr *kattr, unsigned int flags)
4702 {
4703 	struct ns_common *ns;
4704 	struct user_namespace *mnt_userns;
4705 
4706 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4707 		return 0;
4708 
4709 	/*
4710 	 * We currently do not support clearing an idmapped mount. If this ever
4711 	 * is a use-case we can revisit this but for now let's keep it simple
4712 	 * and not allow it.
4713 	 */
4714 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4715 		return -EINVAL;
4716 
4717 	if (attr->userns_fd > INT_MAX)
4718 		return -EINVAL;
4719 
4720 	CLASS(fd, f)(attr->userns_fd);
4721 	if (fd_empty(f))
4722 		return -EBADF;
4723 
4724 	if (!proc_ns_file(fd_file(f)))
4725 		return -EINVAL;
4726 
4727 	ns = get_proc_ns(file_inode(fd_file(f)));
4728 	if (ns->ops->type != CLONE_NEWUSER)
4729 		return -EINVAL;
4730 
4731 	/*
4732 	 * The initial idmapping cannot be used to create an idmapped
4733 	 * mount. We use the initial idmapping as an indicator of a mount
4734 	 * that is not idmapped. It can simply be passed into helpers that
4735 	 * are aware of idmapped mounts as a convenient shortcut. A user
4736 	 * can just create a dedicated identity mapping to achieve the same
4737 	 * result.
4738 	 */
4739 	mnt_userns = container_of(ns, struct user_namespace, ns);
4740 	if (mnt_userns == &init_user_ns)
4741 		return -EPERM;
4742 
4743 	/* We're not controlling the target namespace. */
4744 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4745 		return -EPERM;
4746 
4747 	kattr->mnt_userns = get_user_ns(mnt_userns);
4748 	return 0;
4749 }
4750 
4751 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4752 			     struct mount_kattr *kattr, unsigned int flags)
4753 {
4754 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4755 
4756 	if (flags & AT_NO_AUTOMOUNT)
4757 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4758 	if (flags & AT_SYMLINK_NOFOLLOW)
4759 		lookup_flags &= ~LOOKUP_FOLLOW;
4760 	if (flags & AT_EMPTY_PATH)
4761 		lookup_flags |= LOOKUP_EMPTY;
4762 
4763 	*kattr = (struct mount_kattr) {
4764 		.lookup_flags	= lookup_flags,
4765 		.recurse	= !!(flags & AT_RECURSIVE),
4766 	};
4767 
4768 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4769 		return -EINVAL;
4770 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4771 		return -EINVAL;
4772 	kattr->propagation = attr->propagation;
4773 
4774 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4775 		return -EINVAL;
4776 
4777 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4778 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4779 
4780 	/*
4781 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4782 	 * users wanting to transition to a different atime setting cannot
4783 	 * simply specify the atime setting in @attr_set, but must also
4784 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4785 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4786 	 * @attr_clr and that @attr_set can't have any atime bits set if
4787 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4788 	 */
4789 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4790 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4791 			return -EINVAL;
4792 
4793 		/*
4794 		 * Clear all previous time settings as they are mutually
4795 		 * exclusive.
4796 		 */
4797 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4798 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4799 		case MOUNT_ATTR_RELATIME:
4800 			kattr->attr_set |= MNT_RELATIME;
4801 			break;
4802 		case MOUNT_ATTR_NOATIME:
4803 			kattr->attr_set |= MNT_NOATIME;
4804 			break;
4805 		case MOUNT_ATTR_STRICTATIME:
4806 			break;
4807 		default:
4808 			return -EINVAL;
4809 		}
4810 	} else {
4811 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4812 			return -EINVAL;
4813 	}
4814 
4815 	return build_mount_idmapped(attr, usize, kattr, flags);
4816 }
4817 
4818 static void finish_mount_kattr(struct mount_kattr *kattr)
4819 {
4820 	put_user_ns(kattr->mnt_userns);
4821 	kattr->mnt_userns = NULL;
4822 
4823 	if (kattr->mnt_idmap)
4824 		mnt_idmap_put(kattr->mnt_idmap);
4825 }
4826 
4827 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4828 		unsigned int, flags, struct mount_attr __user *, uattr,
4829 		size_t, usize)
4830 {
4831 	int err;
4832 	struct path target;
4833 	struct mount_attr attr;
4834 	struct mount_kattr kattr;
4835 
4836 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4837 
4838 	if (flags & ~(AT_EMPTY_PATH |
4839 		      AT_RECURSIVE |
4840 		      AT_SYMLINK_NOFOLLOW |
4841 		      AT_NO_AUTOMOUNT))
4842 		return -EINVAL;
4843 
4844 	if (unlikely(usize > PAGE_SIZE))
4845 		return -E2BIG;
4846 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4847 		return -EINVAL;
4848 
4849 	if (!may_mount())
4850 		return -EPERM;
4851 
4852 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4853 	if (err)
4854 		return err;
4855 
4856 	/* Don't bother walking through the mounts if this is a nop. */
4857 	if (attr.attr_set == 0 &&
4858 	    attr.attr_clr == 0 &&
4859 	    attr.propagation == 0)
4860 		return 0;
4861 
4862 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4863 	if (err)
4864 		return err;
4865 
4866 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4867 	if (!err) {
4868 		err = do_mount_setattr(&target, &kattr);
4869 		path_put(&target);
4870 	}
4871 	finish_mount_kattr(&kattr);
4872 	return err;
4873 }
4874 
4875 int show_path(struct seq_file *m, struct dentry *root)
4876 {
4877 	if (root->d_sb->s_op->show_path)
4878 		return root->d_sb->s_op->show_path(m, root);
4879 
4880 	seq_dentry(m, root, " \t\n\\");
4881 	return 0;
4882 }
4883 
4884 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4885 {
4886 	struct mount *mnt = mnt_find_id_at(ns, id);
4887 
4888 	if (!mnt || mnt->mnt_id_unique != id)
4889 		return NULL;
4890 
4891 	return &mnt->mnt;
4892 }
4893 
4894 struct kstatmount {
4895 	struct statmount __user *buf;
4896 	size_t bufsize;
4897 	struct vfsmount *mnt;
4898 	u64 mask;
4899 	struct path root;
4900 	struct statmount sm;
4901 	struct seq_file seq;
4902 };
4903 
4904 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4905 {
4906 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4907 	u64 attr_flags = 0;
4908 
4909 	if (mnt_flags & MNT_READONLY)
4910 		attr_flags |= MOUNT_ATTR_RDONLY;
4911 	if (mnt_flags & MNT_NOSUID)
4912 		attr_flags |= MOUNT_ATTR_NOSUID;
4913 	if (mnt_flags & MNT_NODEV)
4914 		attr_flags |= MOUNT_ATTR_NODEV;
4915 	if (mnt_flags & MNT_NOEXEC)
4916 		attr_flags |= MOUNT_ATTR_NOEXEC;
4917 	if (mnt_flags & MNT_NODIRATIME)
4918 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4919 	if (mnt_flags & MNT_NOSYMFOLLOW)
4920 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4921 
4922 	if (mnt_flags & MNT_NOATIME)
4923 		attr_flags |= MOUNT_ATTR_NOATIME;
4924 	else if (mnt_flags & MNT_RELATIME)
4925 		attr_flags |= MOUNT_ATTR_RELATIME;
4926 	else
4927 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4928 
4929 	if (is_idmapped_mnt(mnt))
4930 		attr_flags |= MOUNT_ATTR_IDMAP;
4931 
4932 	return attr_flags;
4933 }
4934 
4935 static u64 mnt_to_propagation_flags(struct mount *m)
4936 {
4937 	u64 propagation = 0;
4938 
4939 	if (IS_MNT_SHARED(m))
4940 		propagation |= MS_SHARED;
4941 	if (IS_MNT_SLAVE(m))
4942 		propagation |= MS_SLAVE;
4943 	if (IS_MNT_UNBINDABLE(m))
4944 		propagation |= MS_UNBINDABLE;
4945 	if (!propagation)
4946 		propagation |= MS_PRIVATE;
4947 
4948 	return propagation;
4949 }
4950 
4951 static void statmount_sb_basic(struct kstatmount *s)
4952 {
4953 	struct super_block *sb = s->mnt->mnt_sb;
4954 
4955 	s->sm.mask |= STATMOUNT_SB_BASIC;
4956 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4957 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4958 	s->sm.sb_magic = sb->s_magic;
4959 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4960 }
4961 
4962 static void statmount_mnt_basic(struct kstatmount *s)
4963 {
4964 	struct mount *m = real_mount(s->mnt);
4965 
4966 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4967 	s->sm.mnt_id = m->mnt_id_unique;
4968 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4969 	s->sm.mnt_id_old = m->mnt_id;
4970 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4971 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4972 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4973 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4974 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4975 }
4976 
4977 static void statmount_propagate_from(struct kstatmount *s)
4978 {
4979 	struct mount *m = real_mount(s->mnt);
4980 
4981 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4982 	if (IS_MNT_SLAVE(m))
4983 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4984 }
4985 
4986 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4987 {
4988 	int ret;
4989 	size_t start = seq->count;
4990 
4991 	ret = show_path(seq, s->mnt->mnt_root);
4992 	if (ret)
4993 		return ret;
4994 
4995 	if (unlikely(seq_has_overflowed(seq)))
4996 		return -EAGAIN;
4997 
4998 	/*
4999          * Unescape the result. It would be better if supplied string was not
5000          * escaped in the first place, but that's a pretty invasive change.
5001          */
5002 	seq->buf[seq->count] = '\0';
5003 	seq->count = start;
5004 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5005 	return 0;
5006 }
5007 
5008 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5009 {
5010 	struct vfsmount *mnt = s->mnt;
5011 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5012 	int err;
5013 
5014 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5015 	return err == SEQ_SKIP ? 0 : err;
5016 }
5017 
5018 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5019 {
5020 	struct super_block *sb = s->mnt->mnt_sb;
5021 
5022 	seq_puts(seq, sb->s_type->name);
5023 	return 0;
5024 }
5025 
5026 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5027 {
5028 	struct super_block *sb = s->mnt->mnt_sb;
5029 
5030 	if (sb->s_subtype)
5031 		seq_puts(seq, sb->s_subtype);
5032 }
5033 
5034 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5035 {
5036 	struct super_block *sb = s->mnt->mnt_sb;
5037 	struct mount *r = real_mount(s->mnt);
5038 
5039 	if (sb->s_op->show_devname) {
5040 		size_t start = seq->count;
5041 		int ret;
5042 
5043 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5044 		if (ret)
5045 			return ret;
5046 
5047 		if (unlikely(seq_has_overflowed(seq)))
5048 			return -EAGAIN;
5049 
5050 		/* Unescape the result */
5051 		seq->buf[seq->count] = '\0';
5052 		seq->count = start;
5053 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5054 	} else if (r->mnt_devname) {
5055 		seq_puts(seq, r->mnt_devname);
5056 	}
5057 	return 0;
5058 }
5059 
5060 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5061 {
5062 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5063 	s->sm.mnt_ns_id = ns->seq;
5064 }
5065 
5066 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5067 {
5068 	struct vfsmount *mnt = s->mnt;
5069 	struct super_block *sb = mnt->mnt_sb;
5070 	int err;
5071 
5072 	if (sb->s_op->show_options) {
5073 		size_t start = seq->count;
5074 
5075 		err = security_sb_show_options(seq, sb);
5076 		if (err)
5077 			return err;
5078 
5079 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5080 		if (err)
5081 			return err;
5082 
5083 		if (unlikely(seq_has_overflowed(seq)))
5084 			return -EAGAIN;
5085 
5086 		if (seq->count == start)
5087 			return 0;
5088 
5089 		/* skip leading comma */
5090 		memmove(seq->buf + start, seq->buf + start + 1,
5091 			seq->count - start - 1);
5092 		seq->count--;
5093 	}
5094 
5095 	return 0;
5096 }
5097 
5098 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5099 {
5100 	char *buf_end, *opt_end, *src, *dst;
5101 	int count = 0;
5102 
5103 	if (unlikely(seq_has_overflowed(seq)))
5104 		return -EAGAIN;
5105 
5106 	buf_end = seq->buf + seq->count;
5107 	dst = seq->buf + start;
5108 	src = dst + 1;	/* skip initial comma */
5109 
5110 	if (src >= buf_end) {
5111 		seq->count = start;
5112 		return 0;
5113 	}
5114 
5115 	*buf_end = '\0';
5116 	for (; src < buf_end; src = opt_end + 1) {
5117 		opt_end = strchrnul(src, ',');
5118 		*opt_end = '\0';
5119 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5120 		if (WARN_ON_ONCE(++count == INT_MAX))
5121 			return -EOVERFLOW;
5122 	}
5123 	seq->count = dst - 1 - seq->buf;
5124 	return count;
5125 }
5126 
5127 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5128 {
5129 	struct vfsmount *mnt = s->mnt;
5130 	struct super_block *sb = mnt->mnt_sb;
5131 	size_t start = seq->count;
5132 	int err;
5133 
5134 	if (!sb->s_op->show_options)
5135 		return 0;
5136 
5137 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5138 	if (err)
5139 		return err;
5140 
5141 	err = statmount_opt_process(seq, start);
5142 	if (err < 0)
5143 		return err;
5144 
5145 	s->sm.opt_num = err;
5146 	return 0;
5147 }
5148 
5149 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5150 {
5151 	struct vfsmount *mnt = s->mnt;
5152 	struct super_block *sb = mnt->mnt_sb;
5153 	size_t start = seq->count;
5154 	int err;
5155 
5156 	err = security_sb_show_options(seq, sb);
5157 	if (err)
5158 		return err;
5159 
5160 	err = statmount_opt_process(seq, start);
5161 	if (err < 0)
5162 		return err;
5163 
5164 	s->sm.opt_sec_num = err;
5165 	return 0;
5166 }
5167 
5168 static int statmount_string(struct kstatmount *s, u64 flag)
5169 {
5170 	int ret = 0;
5171 	size_t kbufsize;
5172 	struct seq_file *seq = &s->seq;
5173 	struct statmount *sm = &s->sm;
5174 	u32 start = seq->count;
5175 
5176 	switch (flag) {
5177 	case STATMOUNT_FS_TYPE:
5178 		sm->fs_type = start;
5179 		ret = statmount_fs_type(s, seq);
5180 		break;
5181 	case STATMOUNT_MNT_ROOT:
5182 		sm->mnt_root = start;
5183 		ret = statmount_mnt_root(s, seq);
5184 		break;
5185 	case STATMOUNT_MNT_POINT:
5186 		sm->mnt_point = start;
5187 		ret = statmount_mnt_point(s, seq);
5188 		break;
5189 	case STATMOUNT_MNT_OPTS:
5190 		sm->mnt_opts = start;
5191 		ret = statmount_mnt_opts(s, seq);
5192 		break;
5193 	case STATMOUNT_OPT_ARRAY:
5194 		sm->opt_array = start;
5195 		ret = statmount_opt_array(s, seq);
5196 		break;
5197 	case STATMOUNT_OPT_SEC_ARRAY:
5198 		sm->opt_sec_array = start;
5199 		ret = statmount_opt_sec_array(s, seq);
5200 		break;
5201 	case STATMOUNT_FS_SUBTYPE:
5202 		sm->fs_subtype = start;
5203 		statmount_fs_subtype(s, seq);
5204 		break;
5205 	case STATMOUNT_SB_SOURCE:
5206 		sm->sb_source = start;
5207 		ret = statmount_sb_source(s, seq);
5208 		break;
5209 	default:
5210 		WARN_ON_ONCE(true);
5211 		return -EINVAL;
5212 	}
5213 
5214 	/*
5215 	 * If nothing was emitted, return to avoid setting the flag
5216 	 * and terminating the buffer.
5217 	 */
5218 	if (seq->count == start)
5219 		return ret;
5220 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5221 		return -EOVERFLOW;
5222 	if (kbufsize >= s->bufsize)
5223 		return -EOVERFLOW;
5224 
5225 	/* signal a retry */
5226 	if (unlikely(seq_has_overflowed(seq)))
5227 		return -EAGAIN;
5228 
5229 	if (ret)
5230 		return ret;
5231 
5232 	seq->buf[seq->count++] = '\0';
5233 	sm->mask |= flag;
5234 	return 0;
5235 }
5236 
5237 static int copy_statmount_to_user(struct kstatmount *s)
5238 {
5239 	struct statmount *sm = &s->sm;
5240 	struct seq_file *seq = &s->seq;
5241 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5242 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5243 
5244 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5245 		return -EFAULT;
5246 
5247 	/* Return the number of bytes copied to the buffer */
5248 	sm->size = copysize + seq->count;
5249 	if (copy_to_user(s->buf, sm, copysize))
5250 		return -EFAULT;
5251 
5252 	return 0;
5253 }
5254 
5255 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5256 {
5257 	struct rb_node *node;
5258 
5259 	if (reverse)
5260 		node = rb_prev(&curr->mnt_node);
5261 	else
5262 		node = rb_next(&curr->mnt_node);
5263 
5264 	return node_to_mount(node);
5265 }
5266 
5267 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5268 {
5269 	struct mount *first, *child;
5270 
5271 	rwsem_assert_held(&namespace_sem);
5272 
5273 	/* We're looking at our own ns, just use get_fs_root. */
5274 	if (ns == current->nsproxy->mnt_ns) {
5275 		get_fs_root(current->fs, root);
5276 		return 0;
5277 	}
5278 
5279 	/*
5280 	 * We have to find the first mount in our ns and use that, however it
5281 	 * may not exist, so handle that properly.
5282 	 */
5283 	if (RB_EMPTY_ROOT(&ns->mounts))
5284 		return -ENOENT;
5285 
5286 	first = child = ns->root;
5287 	for (;;) {
5288 		child = listmnt_next(child, false);
5289 		if (!child)
5290 			return -ENOENT;
5291 		if (child->mnt_parent == first)
5292 			break;
5293 	}
5294 
5295 	root->mnt = mntget(&child->mnt);
5296 	root->dentry = dget(root->mnt->mnt_root);
5297 	return 0;
5298 }
5299 
5300 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5301 			struct mnt_namespace *ns)
5302 {
5303 	struct path root __free(path_put) = {};
5304 	struct mount *m;
5305 	int err;
5306 
5307 	/* Has the namespace already been emptied? */
5308 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5309 		return -ENOENT;
5310 
5311 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5312 	if (!s->mnt)
5313 		return -ENOENT;
5314 
5315 	err = grab_requested_root(ns, &root);
5316 	if (err)
5317 		return err;
5318 
5319 	/*
5320 	 * Don't trigger audit denials. We just want to determine what
5321 	 * mounts to show users.
5322 	 */
5323 	m = real_mount(s->mnt);
5324 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5325 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5326 		return -EPERM;
5327 
5328 	err = security_sb_statfs(s->mnt->mnt_root);
5329 	if (err)
5330 		return err;
5331 
5332 	s->root = root;
5333 	if (s->mask & STATMOUNT_SB_BASIC)
5334 		statmount_sb_basic(s);
5335 
5336 	if (s->mask & STATMOUNT_MNT_BASIC)
5337 		statmount_mnt_basic(s);
5338 
5339 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5340 		statmount_propagate_from(s);
5341 
5342 	if (s->mask & STATMOUNT_FS_TYPE)
5343 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5344 
5345 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5346 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5347 
5348 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5349 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5350 
5351 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5352 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5353 
5354 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5355 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5356 
5357 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5358 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5359 
5360 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5361 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5362 
5363 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5364 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5365 
5366 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5367 		statmount_mnt_ns_id(s, ns);
5368 
5369 	if (err)
5370 		return err;
5371 
5372 	return 0;
5373 }
5374 
5375 static inline bool retry_statmount(const long ret, size_t *seq_size)
5376 {
5377 	if (likely(ret != -EAGAIN))
5378 		return false;
5379 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5380 		return false;
5381 	if (unlikely(*seq_size > MAX_RW_COUNT))
5382 		return false;
5383 	return true;
5384 }
5385 
5386 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5387 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5388 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5389 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5390 
5391 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5392 			      struct statmount __user *buf, size_t bufsize,
5393 			      size_t seq_size)
5394 {
5395 	if (!access_ok(buf, bufsize))
5396 		return -EFAULT;
5397 
5398 	memset(ks, 0, sizeof(*ks));
5399 	ks->mask = kreq->param;
5400 	ks->buf = buf;
5401 	ks->bufsize = bufsize;
5402 
5403 	if (ks->mask & STATMOUNT_STRING_REQ) {
5404 		if (bufsize == sizeof(ks->sm))
5405 			return -EOVERFLOW;
5406 
5407 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5408 		if (!ks->seq.buf)
5409 			return -ENOMEM;
5410 
5411 		ks->seq.size = seq_size;
5412 	}
5413 
5414 	return 0;
5415 }
5416 
5417 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5418 			   struct mnt_id_req *kreq)
5419 {
5420 	int ret;
5421 	size_t usize;
5422 
5423 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5424 
5425 	ret = get_user(usize, &req->size);
5426 	if (ret)
5427 		return -EFAULT;
5428 	if (unlikely(usize > PAGE_SIZE))
5429 		return -E2BIG;
5430 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5431 		return -EINVAL;
5432 	memset(kreq, 0, sizeof(*kreq));
5433 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5434 	if (ret)
5435 		return ret;
5436 	if (kreq->spare != 0)
5437 		return -EINVAL;
5438 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5439 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5440 		return -EINVAL;
5441 	return 0;
5442 }
5443 
5444 /*
5445  * If the user requested a specific mount namespace id, look that up and return
5446  * that, or if not simply grab a passive reference on our mount namespace and
5447  * return that.
5448  */
5449 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5450 {
5451 	struct mnt_namespace *mnt_ns;
5452 
5453 	if (kreq->mnt_ns_id && kreq->spare)
5454 		return ERR_PTR(-EINVAL);
5455 
5456 	if (kreq->mnt_ns_id)
5457 		return lookup_mnt_ns(kreq->mnt_ns_id);
5458 
5459 	if (kreq->spare) {
5460 		struct ns_common *ns;
5461 
5462 		CLASS(fd, f)(kreq->spare);
5463 		if (fd_empty(f))
5464 			return ERR_PTR(-EBADF);
5465 
5466 		if (!proc_ns_file(fd_file(f)))
5467 			return ERR_PTR(-EINVAL);
5468 
5469 		ns = get_proc_ns(file_inode(fd_file(f)));
5470 		if (ns->ops->type != CLONE_NEWNS)
5471 			return ERR_PTR(-EINVAL);
5472 
5473 		mnt_ns = to_mnt_ns(ns);
5474 	} else {
5475 		mnt_ns = current->nsproxy->mnt_ns;
5476 	}
5477 
5478 	refcount_inc(&mnt_ns->passive);
5479 	return mnt_ns;
5480 }
5481 
5482 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5483 		struct statmount __user *, buf, size_t, bufsize,
5484 		unsigned int, flags)
5485 {
5486 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5487 	struct kstatmount *ks __free(kfree) = NULL;
5488 	struct mnt_id_req kreq;
5489 	/* We currently support retrieval of 3 strings. */
5490 	size_t seq_size = 3 * PATH_MAX;
5491 	int ret;
5492 
5493 	if (flags)
5494 		return -EINVAL;
5495 
5496 	ret = copy_mnt_id_req(req, &kreq);
5497 	if (ret)
5498 		return ret;
5499 
5500 	ns = grab_requested_mnt_ns(&kreq);
5501 	if (!ns)
5502 		return -ENOENT;
5503 
5504 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5505 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5506 		return -ENOENT;
5507 
5508 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5509 	if (!ks)
5510 		return -ENOMEM;
5511 
5512 retry:
5513 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5514 	if (ret)
5515 		return ret;
5516 
5517 	scoped_guard(rwsem_read, &namespace_sem)
5518 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5519 
5520 	if (!ret)
5521 		ret = copy_statmount_to_user(ks);
5522 	kvfree(ks->seq.buf);
5523 	if (retry_statmount(ret, &seq_size))
5524 		goto retry;
5525 	return ret;
5526 }
5527 
5528 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5529 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5530 			    bool reverse)
5531 {
5532 	struct path root __free(path_put) = {};
5533 	struct path orig;
5534 	struct mount *r, *first;
5535 	ssize_t ret;
5536 
5537 	rwsem_assert_held(&namespace_sem);
5538 
5539 	ret = grab_requested_root(ns, &root);
5540 	if (ret)
5541 		return ret;
5542 
5543 	if (mnt_parent_id == LSMT_ROOT) {
5544 		orig = root;
5545 	} else {
5546 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5547 		if (!orig.mnt)
5548 			return -ENOENT;
5549 		orig.dentry = orig.mnt->mnt_root;
5550 	}
5551 
5552 	/*
5553 	 * Don't trigger audit denials. We just want to determine what
5554 	 * mounts to show users.
5555 	 */
5556 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5557 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5558 		return -EPERM;
5559 
5560 	ret = security_sb_statfs(orig.dentry);
5561 	if (ret)
5562 		return ret;
5563 
5564 	if (!last_mnt_id) {
5565 		if (reverse)
5566 			first = node_to_mount(rb_last(&ns->mounts));
5567 		else
5568 			first = node_to_mount(rb_first(&ns->mounts));
5569 	} else {
5570 		if (reverse)
5571 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5572 		else
5573 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5574 	}
5575 
5576 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5577 		if (r->mnt_id_unique == mnt_parent_id)
5578 			continue;
5579 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5580 			continue;
5581 		*mnt_ids = r->mnt_id_unique;
5582 		mnt_ids++;
5583 		nr_mnt_ids--;
5584 		ret++;
5585 	}
5586 	return ret;
5587 }
5588 
5589 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5590 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5591 {
5592 	u64 *kmnt_ids __free(kvfree) = NULL;
5593 	const size_t maxcount = 1000000;
5594 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5595 	struct mnt_id_req kreq;
5596 	u64 last_mnt_id;
5597 	ssize_t ret;
5598 
5599 	if (flags & ~LISTMOUNT_REVERSE)
5600 		return -EINVAL;
5601 
5602 	/*
5603 	 * If the mount namespace really has more than 1 million mounts the
5604 	 * caller must iterate over the mount namespace (and reconsider their
5605 	 * system design...).
5606 	 */
5607 	if (unlikely(nr_mnt_ids > maxcount))
5608 		return -EOVERFLOW;
5609 
5610 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5611 		return -EFAULT;
5612 
5613 	ret = copy_mnt_id_req(req, &kreq);
5614 	if (ret)
5615 		return ret;
5616 
5617 	last_mnt_id = kreq.param;
5618 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5619 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5620 		return -EINVAL;
5621 
5622 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5623 				  GFP_KERNEL_ACCOUNT);
5624 	if (!kmnt_ids)
5625 		return -ENOMEM;
5626 
5627 	ns = grab_requested_mnt_ns(&kreq);
5628 	if (!ns)
5629 		return -ENOENT;
5630 
5631 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5632 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5633 		return -ENOENT;
5634 
5635 	scoped_guard(rwsem_read, &namespace_sem)
5636 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5637 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5638 	if (ret <= 0)
5639 		return ret;
5640 
5641 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5642 		return -EFAULT;
5643 
5644 	return ret;
5645 }
5646 
5647 static void __init init_mount_tree(void)
5648 {
5649 	struct vfsmount *mnt;
5650 	struct mount *m;
5651 	struct mnt_namespace *ns;
5652 	struct path root;
5653 
5654 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5655 	if (IS_ERR(mnt))
5656 		panic("Can't create rootfs");
5657 
5658 	ns = alloc_mnt_ns(&init_user_ns, false);
5659 	if (IS_ERR(ns))
5660 		panic("Can't allocate initial namespace");
5661 	m = real_mount(mnt);
5662 	ns->root = m;
5663 	ns->nr_mounts = 1;
5664 	mnt_add_to_ns(ns, m);
5665 	init_task.nsproxy->mnt_ns = ns;
5666 	get_mnt_ns(ns);
5667 
5668 	root.mnt = mnt;
5669 	root.dentry = mnt->mnt_root;
5670 	mnt->mnt_flags |= MNT_LOCKED;
5671 
5672 	set_fs_pwd(current->fs, &root);
5673 	set_fs_root(current->fs, &root);
5674 
5675 	mnt_ns_tree_add(ns);
5676 }
5677 
5678 void __init mnt_init(void)
5679 {
5680 	int err;
5681 
5682 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5683 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5684 
5685 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5686 				sizeof(struct hlist_head),
5687 				mhash_entries, 19,
5688 				HASH_ZERO,
5689 				&m_hash_shift, &m_hash_mask, 0, 0);
5690 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5691 				sizeof(struct hlist_head),
5692 				mphash_entries, 19,
5693 				HASH_ZERO,
5694 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5695 
5696 	if (!mount_hashtable || !mountpoint_hashtable)
5697 		panic("Failed to allocate mount hash table\n");
5698 
5699 	kernfs_init();
5700 
5701 	err = sysfs_init();
5702 	if (err)
5703 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5704 			__func__, err);
5705 	fs_kobj = kobject_create_and_add("fs", NULL);
5706 	if (!fs_kobj)
5707 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5708 	shmem_init();
5709 	init_rootfs();
5710 	init_mount_tree();
5711 }
5712 
5713 void put_mnt_ns(struct mnt_namespace *ns)
5714 {
5715 	if (!refcount_dec_and_test(&ns->ns.count))
5716 		return;
5717 	drop_collected_mounts(&ns->root->mnt);
5718 	free_mnt_ns(ns);
5719 }
5720 
5721 struct vfsmount *kern_mount(struct file_system_type *type)
5722 {
5723 	struct vfsmount *mnt;
5724 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5725 	if (!IS_ERR(mnt)) {
5726 		/*
5727 		 * it is a longterm mount, don't release mnt until
5728 		 * we unmount before file sys is unregistered
5729 		*/
5730 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5731 	}
5732 	return mnt;
5733 }
5734 EXPORT_SYMBOL_GPL(kern_mount);
5735 
5736 void kern_unmount(struct vfsmount *mnt)
5737 {
5738 	/* release long term mount so mount point can be released */
5739 	if (!IS_ERR(mnt)) {
5740 		mnt_make_shortterm(mnt);
5741 		synchronize_rcu();	/* yecchhh... */
5742 		mntput(mnt);
5743 	}
5744 }
5745 EXPORT_SYMBOL(kern_unmount);
5746 
5747 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5748 {
5749 	unsigned int i;
5750 
5751 	for (i = 0; i < num; i++)
5752 		mnt_make_shortterm(mnt[i]);
5753 	synchronize_rcu_expedited();
5754 	for (i = 0; i < num; i++)
5755 		mntput(mnt[i]);
5756 }
5757 EXPORT_SYMBOL(kern_unmount_array);
5758 
5759 bool our_mnt(struct vfsmount *mnt)
5760 {
5761 	return check_mnt(real_mount(mnt));
5762 }
5763 
5764 bool current_chrooted(void)
5765 {
5766 	/* Does the current process have a non-standard root */
5767 	struct path ns_root;
5768 	struct path fs_root;
5769 	bool chrooted;
5770 
5771 	/* Find the namespace root */
5772 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5773 	ns_root.dentry = ns_root.mnt->mnt_root;
5774 	path_get(&ns_root);
5775 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5776 		;
5777 
5778 	get_fs_root(current->fs, &fs_root);
5779 
5780 	chrooted = !path_equal(&fs_root, &ns_root);
5781 
5782 	path_put(&fs_root);
5783 	path_put(&ns_root);
5784 
5785 	return chrooted;
5786 }
5787 
5788 static bool mnt_already_visible(struct mnt_namespace *ns,
5789 				const struct super_block *sb,
5790 				int *new_mnt_flags)
5791 {
5792 	int new_flags = *new_mnt_flags;
5793 	struct mount *mnt, *n;
5794 	bool visible = false;
5795 
5796 	down_read(&namespace_sem);
5797 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5798 		struct mount *child;
5799 		int mnt_flags;
5800 
5801 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5802 			continue;
5803 
5804 		/* This mount is not fully visible if it's root directory
5805 		 * is not the root directory of the filesystem.
5806 		 */
5807 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5808 			continue;
5809 
5810 		/* A local view of the mount flags */
5811 		mnt_flags = mnt->mnt.mnt_flags;
5812 
5813 		/* Don't miss readonly hidden in the superblock flags */
5814 		if (sb_rdonly(mnt->mnt.mnt_sb))
5815 			mnt_flags |= MNT_LOCK_READONLY;
5816 
5817 		/* Verify the mount flags are equal to or more permissive
5818 		 * than the proposed new mount.
5819 		 */
5820 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5821 		    !(new_flags & MNT_READONLY))
5822 			continue;
5823 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5824 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5825 			continue;
5826 
5827 		/* This mount is not fully visible if there are any
5828 		 * locked child mounts that cover anything except for
5829 		 * empty directories.
5830 		 */
5831 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5832 			struct inode *inode = child->mnt_mountpoint->d_inode;
5833 			/* Only worry about locked mounts */
5834 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5835 				continue;
5836 			/* Is the directory permanently empty? */
5837 			if (!is_empty_dir_inode(inode))
5838 				goto next;
5839 		}
5840 		/* Preserve the locked attributes */
5841 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5842 					       MNT_LOCK_ATIME);
5843 		visible = true;
5844 		goto found;
5845 	next:	;
5846 	}
5847 found:
5848 	up_read(&namespace_sem);
5849 	return visible;
5850 }
5851 
5852 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5853 {
5854 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5855 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5856 	unsigned long s_iflags;
5857 
5858 	if (ns->user_ns == &init_user_ns)
5859 		return false;
5860 
5861 	/* Can this filesystem be too revealing? */
5862 	s_iflags = sb->s_iflags;
5863 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5864 		return false;
5865 
5866 	if ((s_iflags & required_iflags) != required_iflags) {
5867 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5868 			  required_iflags);
5869 		return true;
5870 	}
5871 
5872 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5873 }
5874 
5875 bool mnt_may_suid(struct vfsmount *mnt)
5876 {
5877 	/*
5878 	 * Foreign mounts (accessed via fchdir or through /proc
5879 	 * symlinks) are always treated as if they are nosuid.  This
5880 	 * prevents namespaces from trusting potentially unsafe
5881 	 * suid/sgid bits, file caps, or security labels that originate
5882 	 * in other namespaces.
5883 	 */
5884 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5885 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5886 }
5887 
5888 static struct ns_common *mntns_get(struct task_struct *task)
5889 {
5890 	struct ns_common *ns = NULL;
5891 	struct nsproxy *nsproxy;
5892 
5893 	task_lock(task);
5894 	nsproxy = task->nsproxy;
5895 	if (nsproxy) {
5896 		ns = &nsproxy->mnt_ns->ns;
5897 		get_mnt_ns(to_mnt_ns(ns));
5898 	}
5899 	task_unlock(task);
5900 
5901 	return ns;
5902 }
5903 
5904 static void mntns_put(struct ns_common *ns)
5905 {
5906 	put_mnt_ns(to_mnt_ns(ns));
5907 }
5908 
5909 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5910 {
5911 	struct nsproxy *nsproxy = nsset->nsproxy;
5912 	struct fs_struct *fs = nsset->fs;
5913 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5914 	struct user_namespace *user_ns = nsset->cred->user_ns;
5915 	struct path root;
5916 	int err;
5917 
5918 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5919 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5920 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5921 		return -EPERM;
5922 
5923 	if (is_anon_ns(mnt_ns))
5924 		return -EINVAL;
5925 
5926 	if (fs->users != 1)
5927 		return -EINVAL;
5928 
5929 	get_mnt_ns(mnt_ns);
5930 	old_mnt_ns = nsproxy->mnt_ns;
5931 	nsproxy->mnt_ns = mnt_ns;
5932 
5933 	/* Find the root */
5934 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5935 				"/", LOOKUP_DOWN, &root);
5936 	if (err) {
5937 		/* revert to old namespace */
5938 		nsproxy->mnt_ns = old_mnt_ns;
5939 		put_mnt_ns(mnt_ns);
5940 		return err;
5941 	}
5942 
5943 	put_mnt_ns(old_mnt_ns);
5944 
5945 	/* Update the pwd and root */
5946 	set_fs_pwd(fs, &root);
5947 	set_fs_root(fs, &root);
5948 
5949 	path_put(&root);
5950 	return 0;
5951 }
5952 
5953 static struct user_namespace *mntns_owner(struct ns_common *ns)
5954 {
5955 	return to_mnt_ns(ns)->user_ns;
5956 }
5957 
5958 const struct proc_ns_operations mntns_operations = {
5959 	.name		= "mnt",
5960 	.type		= CLONE_NEWNS,
5961 	.get		= mntns_get,
5962 	.put		= mntns_put,
5963 	.install	= mntns_install,
5964 	.owner		= mntns_owner,
5965 };
5966 
5967 #ifdef CONFIG_SYSCTL
5968 static struct ctl_table fs_namespace_sysctls[] = {
5969 	{
5970 		.procname	= "mount-max",
5971 		.data		= &sysctl_mount_max,
5972 		.maxlen		= sizeof(unsigned int),
5973 		.mode		= 0644,
5974 		.proc_handler	= proc_dointvec_minmax,
5975 		.extra1		= SYSCTL_ONE,
5976 	},
5977 };
5978 
5979 static int __init init_fs_namespace_sysctls(void)
5980 {
5981 	register_sysctl_init("fs", fs_namespace_sysctls);
5982 	return 0;
5983 }
5984 fs_initcall(init_fs_namespace_sysctls);
5985 
5986 #endif /* CONFIG_SYSCTL */
5987