xref: /linux/fs/namespace.c (revision c7a19c795b4b0a3232c157ed29eea85077e95da6)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 	if (mnt) {
197 		int err;
198 
199 		err = mnt_alloc_id(mnt);
200 		if (err)
201 			goto out_free_cache;
202 
203 		if (name) {
204 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 			if (!mnt->mnt_devname)
206 				goto out_free_id;
207 		}
208 
209 #ifdef CONFIG_SMP
210 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 		if (!mnt->mnt_pcp)
212 			goto out_free_devname;
213 
214 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 		mnt->mnt_count = 1;
217 		mnt->mnt_writers = 0;
218 #endif
219 
220 		INIT_HLIST_NODE(&mnt->mnt_hash);
221 		INIT_LIST_HEAD(&mnt->mnt_child);
222 		INIT_LIST_HEAD(&mnt->mnt_mounts);
223 		INIT_LIST_HEAD(&mnt->mnt_list);
224 		INIT_LIST_HEAD(&mnt->mnt_expire);
225 		INIT_LIST_HEAD(&mnt->mnt_share);
226 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 		INIT_LIST_HEAD(&mnt->mnt_slave);
228 #ifdef CONFIG_FSNOTIFY
229 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230 #endif
231 	}
232 	return mnt;
233 
234 #ifdef CONFIG_SMP
235 out_free_devname:
236 	kfree(mnt->mnt_devname);
237 #endif
238 out_free_id:
239 	mnt_free_id(mnt);
240 out_free_cache:
241 	kmem_cache_free(mnt_cache, mnt);
242 	return NULL;
243 }
244 
245 /*
246  * Most r/o checks on a fs are for operations that take
247  * discrete amounts of time, like a write() or unlink().
248  * We must keep track of when those operations start
249  * (for permission checks) and when they end, so that
250  * we can determine when writes are able to occur to
251  * a filesystem.
252  */
253 /*
254  * __mnt_is_readonly: check whether a mount is read-only
255  * @mnt: the mount to check for its write status
256  *
257  * This shouldn't be used directly ouside of the VFS.
258  * It does not guarantee that the filesystem will stay
259  * r/w, just that it is right *now*.  This can not and
260  * should not be used in place of IS_RDONLY(inode).
261  * mnt_want/drop_write() will _keep_ the filesystem
262  * r/w.
263  */
264 int __mnt_is_readonly(struct vfsmount *mnt)
265 {
266 	if (mnt->mnt_flags & MNT_READONLY)
267 		return 1;
268 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 		return 1;
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273 
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 	mnt->mnt_writers++;
280 #endif
281 }
282 
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 	mnt->mnt_writers--;
289 #endif
290 }
291 
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	unsigned int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_writers;
305 #endif
306 }
307 
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 	if (mnt->mnt_sb->s_readonly_remount)
311 		return 1;
312 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 	smp_rmb();
314 	return __mnt_is_readonly(mnt);
315 }
316 
317 /*
318  * Most r/o & frozen checks on a fs are for operations that take discrete
319  * amounts of time, like a write() or unlink().  We must keep track of when
320  * those operations start (for permission checks) and when they end, so that we
321  * can determine when writes are able to occur to a filesystem.
322  */
323 /**
324  * __mnt_want_write - get write access to a mount without freeze protection
325  * @m: the mount on which to take a write
326  *
327  * This tells the low-level filesystem that a write is about to be performed to
328  * it, and makes sure that writes are allowed (mnt it read-write) before
329  * returning success. This operation does not protect against filesystem being
330  * frozen. When the write operation is finished, __mnt_drop_write() must be
331  * called. This is effectively a refcount.
332  */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 	struct mount *mnt = real_mount(m);
336 	int ret = 0;
337 
338 	preempt_disable();
339 	mnt_inc_writers(mnt);
340 	/*
341 	 * The store to mnt_inc_writers must be visible before we pass
342 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 	 * incremented count after it has set MNT_WRITE_HOLD.
344 	 */
345 	smp_mb();
346 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 		cpu_relax();
348 	/*
349 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 	 * be set to match its requirements. So we must not load that until
351 	 * MNT_WRITE_HOLD is cleared.
352 	 */
353 	smp_rmb();
354 	if (mnt_is_readonly(m)) {
355 		mnt_dec_writers(mnt);
356 		ret = -EROFS;
357 	}
358 	preempt_enable();
359 
360 	return ret;
361 }
362 
363 /**
364  * mnt_want_write - get write access to a mount
365  * @m: the mount on which to take a write
366  *
367  * This tells the low-level filesystem that a write is about to be performed to
368  * it, and makes sure that writes are allowed (mount is read-write, filesystem
369  * is not frozen) before returning success.  When the write operation is
370  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
371  */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 	int ret;
375 
376 	sb_start_write(m->mnt_sb);
377 	ret = __mnt_want_write(m);
378 	if (ret)
379 		sb_end_write(m->mnt_sb);
380 	return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383 
384 /**
385  * mnt_clone_write - get write access to a mount
386  * @mnt: the mount on which to take a write
387  *
388  * This is effectively like mnt_want_write, except
389  * it must only be used to take an extra write reference
390  * on a mountpoint that we already know has a write reference
391  * on it. This allows some optimisation.
392  *
393  * After finished, mnt_drop_write must be called as usual to
394  * drop the reference.
395  */
396 int mnt_clone_write(struct vfsmount *mnt)
397 {
398 	/* superblock may be r/o */
399 	if (__mnt_is_readonly(mnt))
400 		return -EROFS;
401 	preempt_disable();
402 	mnt_inc_writers(real_mount(mnt));
403 	preempt_enable();
404 	return 0;
405 }
406 EXPORT_SYMBOL_GPL(mnt_clone_write);
407 
408 /**
409  * __mnt_want_write_file - get write access to a file's mount
410  * @file: the file who's mount on which to take a write
411  *
412  * This is like __mnt_want_write, but it takes a file and can
413  * do some optimisations if the file is open for write already
414  */
415 int __mnt_want_write_file(struct file *file)
416 {
417 	if (!(file->f_mode & FMODE_WRITER))
418 		return __mnt_want_write(file->f_path.mnt);
419 	else
420 		return mnt_clone_write(file->f_path.mnt);
421 }
422 
423 /**
424  * mnt_want_write_file - get write access to a file's mount
425  * @file: the file who's mount on which to take a write
426  *
427  * This is like mnt_want_write, but it takes a file and can
428  * do some optimisations if the file is open for write already
429  */
430 int mnt_want_write_file(struct file *file)
431 {
432 	int ret;
433 
434 	sb_start_write(file->f_path.mnt->mnt_sb);
435 	ret = __mnt_want_write_file(file);
436 	if (ret)
437 		sb_end_write(file->f_path.mnt->mnt_sb);
438 	return ret;
439 }
440 EXPORT_SYMBOL_GPL(mnt_want_write_file);
441 
442 /**
443  * __mnt_drop_write - give up write access to a mount
444  * @mnt: the mount on which to give up write access
445  *
446  * Tells the low-level filesystem that we are done
447  * performing writes to it.  Must be matched with
448  * __mnt_want_write() call above.
449  */
450 void __mnt_drop_write(struct vfsmount *mnt)
451 {
452 	preempt_disable();
453 	mnt_dec_writers(real_mount(mnt));
454 	preempt_enable();
455 }
456 
457 /**
458  * mnt_drop_write - give up write access to a mount
459  * @mnt: the mount on which to give up write access
460  *
461  * Tells the low-level filesystem that we are done performing writes to it and
462  * also allows filesystem to be frozen again.  Must be matched with
463  * mnt_want_write() call above.
464  */
465 void mnt_drop_write(struct vfsmount *mnt)
466 {
467 	__mnt_drop_write(mnt);
468 	sb_end_write(mnt->mnt_sb);
469 }
470 EXPORT_SYMBOL_GPL(mnt_drop_write);
471 
472 void __mnt_drop_write_file(struct file *file)
473 {
474 	__mnt_drop_write(file->f_path.mnt);
475 }
476 
477 void mnt_drop_write_file(struct file *file)
478 {
479 	mnt_drop_write(file->f_path.mnt);
480 }
481 EXPORT_SYMBOL(mnt_drop_write_file);
482 
483 static int mnt_make_readonly(struct mount *mnt)
484 {
485 	int ret = 0;
486 
487 	lock_mount_hash();
488 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
489 	/*
490 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 	 * should be visible before we do.
492 	 */
493 	smp_mb();
494 
495 	/*
496 	 * With writers on hold, if this value is zero, then there are
497 	 * definitely no active writers (although held writers may subsequently
498 	 * increment the count, they'll have to wait, and decrement it after
499 	 * seeing MNT_READONLY).
500 	 *
501 	 * It is OK to have counter incremented on one CPU and decremented on
502 	 * another: the sum will add up correctly. The danger would be when we
503 	 * sum up each counter, if we read a counter before it is incremented,
504 	 * but then read another CPU's count which it has been subsequently
505 	 * decremented from -- we would see more decrements than we should.
506 	 * MNT_WRITE_HOLD protects against this scenario, because
507 	 * mnt_want_write first increments count, then smp_mb, then spins on
508 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 	 * we're counting up here.
510 	 */
511 	if (mnt_get_writers(mnt) > 0)
512 		ret = -EBUSY;
513 	else
514 		mnt->mnt.mnt_flags |= MNT_READONLY;
515 	/*
516 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 	 * that become unheld will see MNT_READONLY.
518 	 */
519 	smp_wmb();
520 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
521 	unlock_mount_hash();
522 	return ret;
523 }
524 
525 static void __mnt_unmake_readonly(struct mount *mnt)
526 {
527 	lock_mount_hash();
528 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
529 	unlock_mount_hash();
530 }
531 
532 int sb_prepare_remount_readonly(struct super_block *sb)
533 {
534 	struct mount *mnt;
535 	int err = 0;
536 
537 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
538 	if (atomic_long_read(&sb->s_remove_count))
539 		return -EBUSY;
540 
541 	lock_mount_hash();
542 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 			smp_mb();
546 			if (mnt_get_writers(mnt) > 0) {
547 				err = -EBUSY;
548 				break;
549 			}
550 		}
551 	}
552 	if (!err && atomic_long_read(&sb->s_remove_count))
553 		err = -EBUSY;
554 
555 	if (!err) {
556 		sb->s_readonly_remount = 1;
557 		smp_wmb();
558 	}
559 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 	}
563 	unlock_mount_hash();
564 
565 	return err;
566 }
567 
568 static void free_vfsmnt(struct mount *mnt)
569 {
570 	kfree(mnt->mnt_devname);
571 #ifdef CONFIG_SMP
572 	free_percpu(mnt->mnt_pcp);
573 #endif
574 	kmem_cache_free(mnt_cache, mnt);
575 }
576 
577 static void delayed_free_vfsmnt(struct rcu_head *head)
578 {
579 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
580 }
581 
582 /* call under rcu_read_lock */
583 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
584 {
585 	struct mount *mnt;
586 	if (read_seqretry(&mount_lock, seq))
587 		return false;
588 	if (bastard == NULL)
589 		return true;
590 	mnt = real_mount(bastard);
591 	mnt_add_count(mnt, 1);
592 	if (likely(!read_seqretry(&mount_lock, seq)))
593 		return true;
594 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
595 		mnt_add_count(mnt, -1);
596 		return false;
597 	}
598 	rcu_read_unlock();
599 	mntput(bastard);
600 	rcu_read_lock();
601 	return false;
602 }
603 
604 /*
605  * find the first mount at @dentry on vfsmount @mnt.
606  * call under rcu_read_lock()
607  */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 	struct hlist_head *head = m_hash(mnt, dentry);
611 	struct mount *p;
612 
613 	hlist_for_each_entry_rcu(p, head, mnt_hash)
614 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 			return p;
616 	return NULL;
617 }
618 
619 /*
620  * find the last mount at @dentry on vfsmount @mnt.
621  * mount_lock must be held.
622  */
623 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
624 {
625 	struct mount *p, *res;
626 	res = p = __lookup_mnt(mnt, dentry);
627 	if (!p)
628 		goto out;
629 	hlist_for_each_entry_continue(p, mnt_hash) {
630 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
631 			break;
632 		res = p;
633 	}
634 out:
635 	return res;
636 }
637 
638 /*
639  * lookup_mnt - Return the first child mount mounted at path
640  *
641  * "First" means first mounted chronologically.  If you create the
642  * following mounts:
643  *
644  * mount /dev/sda1 /mnt
645  * mount /dev/sda2 /mnt
646  * mount /dev/sda3 /mnt
647  *
648  * Then lookup_mnt() on the base /mnt dentry in the root mount will
649  * return successively the root dentry and vfsmount of /dev/sda1, then
650  * /dev/sda2, then /dev/sda3, then NULL.
651  *
652  * lookup_mnt takes a reference to the found vfsmount.
653  */
654 struct vfsmount *lookup_mnt(struct path *path)
655 {
656 	struct mount *child_mnt;
657 	struct vfsmount *m;
658 	unsigned seq;
659 
660 	rcu_read_lock();
661 	do {
662 		seq = read_seqbegin(&mount_lock);
663 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
664 		m = child_mnt ? &child_mnt->mnt : NULL;
665 	} while (!legitimize_mnt(m, seq));
666 	rcu_read_unlock();
667 	return m;
668 }
669 
670 static struct mountpoint *new_mountpoint(struct dentry *dentry)
671 {
672 	struct hlist_head *chain = mp_hash(dentry);
673 	struct mountpoint *mp;
674 	int ret;
675 
676 	hlist_for_each_entry(mp, chain, m_hash) {
677 		if (mp->m_dentry == dentry) {
678 			/* might be worth a WARN_ON() */
679 			if (d_unlinked(dentry))
680 				return ERR_PTR(-ENOENT);
681 			mp->m_count++;
682 			return mp;
683 		}
684 	}
685 
686 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
687 	if (!mp)
688 		return ERR_PTR(-ENOMEM);
689 
690 	ret = d_set_mounted(dentry);
691 	if (ret) {
692 		kfree(mp);
693 		return ERR_PTR(ret);
694 	}
695 
696 	mp->m_dentry = dentry;
697 	mp->m_count = 1;
698 	hlist_add_head(&mp->m_hash, chain);
699 	return mp;
700 }
701 
702 static void put_mountpoint(struct mountpoint *mp)
703 {
704 	if (!--mp->m_count) {
705 		struct dentry *dentry = mp->m_dentry;
706 		spin_lock(&dentry->d_lock);
707 		dentry->d_flags &= ~DCACHE_MOUNTED;
708 		spin_unlock(&dentry->d_lock);
709 		hlist_del(&mp->m_hash);
710 		kfree(mp);
711 	}
712 }
713 
714 static inline int check_mnt(struct mount *mnt)
715 {
716 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
717 }
718 
719 /*
720  * vfsmount lock must be held for write
721  */
722 static void touch_mnt_namespace(struct mnt_namespace *ns)
723 {
724 	if (ns) {
725 		ns->event = ++event;
726 		wake_up_interruptible(&ns->poll);
727 	}
728 }
729 
730 /*
731  * vfsmount lock must be held for write
732  */
733 static void __touch_mnt_namespace(struct mnt_namespace *ns)
734 {
735 	if (ns && ns->event != event) {
736 		ns->event = event;
737 		wake_up_interruptible(&ns->poll);
738 	}
739 }
740 
741 /*
742  * vfsmount lock must be held for write
743  */
744 static void detach_mnt(struct mount *mnt, struct path *old_path)
745 {
746 	old_path->dentry = mnt->mnt_mountpoint;
747 	old_path->mnt = &mnt->mnt_parent->mnt;
748 	mnt->mnt_parent = mnt;
749 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
750 	list_del_init(&mnt->mnt_child);
751 	hlist_del_init_rcu(&mnt->mnt_hash);
752 	put_mountpoint(mnt->mnt_mp);
753 	mnt->mnt_mp = NULL;
754 }
755 
756 /*
757  * vfsmount lock must be held for write
758  */
759 void mnt_set_mountpoint(struct mount *mnt,
760 			struct mountpoint *mp,
761 			struct mount *child_mnt)
762 {
763 	mp->m_count++;
764 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
765 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
766 	child_mnt->mnt_parent = mnt;
767 	child_mnt->mnt_mp = mp;
768 }
769 
770 /*
771  * vfsmount lock must be held for write
772  */
773 static void attach_mnt(struct mount *mnt,
774 			struct mount *parent,
775 			struct mountpoint *mp)
776 {
777 	mnt_set_mountpoint(parent, mp, mnt);
778 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
779 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
780 }
781 
782 /*
783  * vfsmount lock must be held for write
784  */
785 static void commit_tree(struct mount *mnt, struct mount *shadows)
786 {
787 	struct mount *parent = mnt->mnt_parent;
788 	struct mount *m;
789 	LIST_HEAD(head);
790 	struct mnt_namespace *n = parent->mnt_ns;
791 
792 	BUG_ON(parent == mnt);
793 
794 	list_add_tail(&head, &mnt->mnt_list);
795 	list_for_each_entry(m, &head, mnt_list)
796 		m->mnt_ns = n;
797 
798 	list_splice(&head, n->list.prev);
799 
800 	if (shadows)
801 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
802 	else
803 		hlist_add_head_rcu(&mnt->mnt_hash,
804 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
805 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
806 	touch_mnt_namespace(n);
807 }
808 
809 static struct mount *next_mnt(struct mount *p, struct mount *root)
810 {
811 	struct list_head *next = p->mnt_mounts.next;
812 	if (next == &p->mnt_mounts) {
813 		while (1) {
814 			if (p == root)
815 				return NULL;
816 			next = p->mnt_child.next;
817 			if (next != &p->mnt_parent->mnt_mounts)
818 				break;
819 			p = p->mnt_parent;
820 		}
821 	}
822 	return list_entry(next, struct mount, mnt_child);
823 }
824 
825 static struct mount *skip_mnt_tree(struct mount *p)
826 {
827 	struct list_head *prev = p->mnt_mounts.prev;
828 	while (prev != &p->mnt_mounts) {
829 		p = list_entry(prev, struct mount, mnt_child);
830 		prev = p->mnt_mounts.prev;
831 	}
832 	return p;
833 }
834 
835 struct vfsmount *
836 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
837 {
838 	struct mount *mnt;
839 	struct dentry *root;
840 
841 	if (!type)
842 		return ERR_PTR(-ENODEV);
843 
844 	mnt = alloc_vfsmnt(name);
845 	if (!mnt)
846 		return ERR_PTR(-ENOMEM);
847 
848 	if (flags & MS_KERNMOUNT)
849 		mnt->mnt.mnt_flags = MNT_INTERNAL;
850 
851 	root = mount_fs(type, flags, name, data);
852 	if (IS_ERR(root)) {
853 		mnt_free_id(mnt);
854 		free_vfsmnt(mnt);
855 		return ERR_CAST(root);
856 	}
857 
858 	mnt->mnt.mnt_root = root;
859 	mnt->mnt.mnt_sb = root->d_sb;
860 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
861 	mnt->mnt_parent = mnt;
862 	lock_mount_hash();
863 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
864 	unlock_mount_hash();
865 	return &mnt->mnt;
866 }
867 EXPORT_SYMBOL_GPL(vfs_kern_mount);
868 
869 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
870 					int flag)
871 {
872 	struct super_block *sb = old->mnt.mnt_sb;
873 	struct mount *mnt;
874 	int err;
875 
876 	mnt = alloc_vfsmnt(old->mnt_devname);
877 	if (!mnt)
878 		return ERR_PTR(-ENOMEM);
879 
880 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
881 		mnt->mnt_group_id = 0; /* not a peer of original */
882 	else
883 		mnt->mnt_group_id = old->mnt_group_id;
884 
885 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
886 		err = mnt_alloc_group_id(mnt);
887 		if (err)
888 			goto out_free;
889 	}
890 
891 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
892 	/* Don't allow unprivileged users to change mount flags */
893 	if (flag & CL_UNPRIVILEGED) {
894 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
895 
896 		if (mnt->mnt.mnt_flags & MNT_READONLY)
897 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
898 
899 		if (mnt->mnt.mnt_flags & MNT_NODEV)
900 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
901 
902 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
903 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
904 
905 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
906 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
907 	}
908 
909 	/* Don't allow unprivileged users to reveal what is under a mount */
910 	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
911 		mnt->mnt.mnt_flags |= MNT_LOCKED;
912 
913 	atomic_inc(&sb->s_active);
914 	mnt->mnt.mnt_sb = sb;
915 	mnt->mnt.mnt_root = dget(root);
916 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 	mnt->mnt_parent = mnt;
918 	lock_mount_hash();
919 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
920 	unlock_mount_hash();
921 
922 	if ((flag & CL_SLAVE) ||
923 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
924 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
925 		mnt->mnt_master = old;
926 		CLEAR_MNT_SHARED(mnt);
927 	} else if (!(flag & CL_PRIVATE)) {
928 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
929 			list_add(&mnt->mnt_share, &old->mnt_share);
930 		if (IS_MNT_SLAVE(old))
931 			list_add(&mnt->mnt_slave, &old->mnt_slave);
932 		mnt->mnt_master = old->mnt_master;
933 	}
934 	if (flag & CL_MAKE_SHARED)
935 		set_mnt_shared(mnt);
936 
937 	/* stick the duplicate mount on the same expiry list
938 	 * as the original if that was on one */
939 	if (flag & CL_EXPIRE) {
940 		if (!list_empty(&old->mnt_expire))
941 			list_add(&mnt->mnt_expire, &old->mnt_expire);
942 	}
943 
944 	return mnt;
945 
946  out_free:
947 	mnt_free_id(mnt);
948 	free_vfsmnt(mnt);
949 	return ERR_PTR(err);
950 }
951 
952 static void mntput_no_expire(struct mount *mnt)
953 {
954 put_again:
955 	rcu_read_lock();
956 	mnt_add_count(mnt, -1);
957 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
958 		rcu_read_unlock();
959 		return;
960 	}
961 	lock_mount_hash();
962 	if (mnt_get_count(mnt)) {
963 		rcu_read_unlock();
964 		unlock_mount_hash();
965 		return;
966 	}
967 	if (unlikely(mnt->mnt_pinned)) {
968 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
969 		mnt->mnt_pinned = 0;
970 		rcu_read_unlock();
971 		unlock_mount_hash();
972 		acct_auto_close_mnt(&mnt->mnt);
973 		goto put_again;
974 	}
975 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
976 		rcu_read_unlock();
977 		unlock_mount_hash();
978 		return;
979 	}
980 	mnt->mnt.mnt_flags |= MNT_DOOMED;
981 	rcu_read_unlock();
982 
983 	list_del(&mnt->mnt_instance);
984 	unlock_mount_hash();
985 
986 	/*
987 	 * This probably indicates that somebody messed
988 	 * up a mnt_want/drop_write() pair.  If this
989 	 * happens, the filesystem was probably unable
990 	 * to make r/w->r/o transitions.
991 	 */
992 	/*
993 	 * The locking used to deal with mnt_count decrement provides barriers,
994 	 * so mnt_get_writers() below is safe.
995 	 */
996 	WARN_ON(mnt_get_writers(mnt));
997 	fsnotify_vfsmount_delete(&mnt->mnt);
998 	dput(mnt->mnt.mnt_root);
999 	deactivate_super(mnt->mnt.mnt_sb);
1000 	mnt_free_id(mnt);
1001 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1002 }
1003 
1004 void mntput(struct vfsmount *mnt)
1005 {
1006 	if (mnt) {
1007 		struct mount *m = real_mount(mnt);
1008 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1009 		if (unlikely(m->mnt_expiry_mark))
1010 			m->mnt_expiry_mark = 0;
1011 		mntput_no_expire(m);
1012 	}
1013 }
1014 EXPORT_SYMBOL(mntput);
1015 
1016 struct vfsmount *mntget(struct vfsmount *mnt)
1017 {
1018 	if (mnt)
1019 		mnt_add_count(real_mount(mnt), 1);
1020 	return mnt;
1021 }
1022 EXPORT_SYMBOL(mntget);
1023 
1024 void mnt_pin(struct vfsmount *mnt)
1025 {
1026 	lock_mount_hash();
1027 	real_mount(mnt)->mnt_pinned++;
1028 	unlock_mount_hash();
1029 }
1030 EXPORT_SYMBOL(mnt_pin);
1031 
1032 void mnt_unpin(struct vfsmount *m)
1033 {
1034 	struct mount *mnt = real_mount(m);
1035 	lock_mount_hash();
1036 	if (mnt->mnt_pinned) {
1037 		mnt_add_count(mnt, 1);
1038 		mnt->mnt_pinned--;
1039 	}
1040 	unlock_mount_hash();
1041 }
1042 EXPORT_SYMBOL(mnt_unpin);
1043 
1044 static inline void mangle(struct seq_file *m, const char *s)
1045 {
1046 	seq_escape(m, s, " \t\n\\");
1047 }
1048 
1049 /*
1050  * Simple .show_options callback for filesystems which don't want to
1051  * implement more complex mount option showing.
1052  *
1053  * See also save_mount_options().
1054  */
1055 int generic_show_options(struct seq_file *m, struct dentry *root)
1056 {
1057 	const char *options;
1058 
1059 	rcu_read_lock();
1060 	options = rcu_dereference(root->d_sb->s_options);
1061 
1062 	if (options != NULL && options[0]) {
1063 		seq_putc(m, ',');
1064 		mangle(m, options);
1065 	}
1066 	rcu_read_unlock();
1067 
1068 	return 0;
1069 }
1070 EXPORT_SYMBOL(generic_show_options);
1071 
1072 /*
1073  * If filesystem uses generic_show_options(), this function should be
1074  * called from the fill_super() callback.
1075  *
1076  * The .remount_fs callback usually needs to be handled in a special
1077  * way, to make sure, that previous options are not overwritten if the
1078  * remount fails.
1079  *
1080  * Also note, that if the filesystem's .remount_fs function doesn't
1081  * reset all options to their default value, but changes only newly
1082  * given options, then the displayed options will not reflect reality
1083  * any more.
1084  */
1085 void save_mount_options(struct super_block *sb, char *options)
1086 {
1087 	BUG_ON(sb->s_options);
1088 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1089 }
1090 EXPORT_SYMBOL(save_mount_options);
1091 
1092 void replace_mount_options(struct super_block *sb, char *options)
1093 {
1094 	char *old = sb->s_options;
1095 	rcu_assign_pointer(sb->s_options, options);
1096 	if (old) {
1097 		synchronize_rcu();
1098 		kfree(old);
1099 	}
1100 }
1101 EXPORT_SYMBOL(replace_mount_options);
1102 
1103 #ifdef CONFIG_PROC_FS
1104 /* iterator; we want it to have access to namespace_sem, thus here... */
1105 static void *m_start(struct seq_file *m, loff_t *pos)
1106 {
1107 	struct proc_mounts *p = proc_mounts(m);
1108 
1109 	down_read(&namespace_sem);
1110 	if (p->cached_event == p->ns->event) {
1111 		void *v = p->cached_mount;
1112 		if (*pos == p->cached_index)
1113 			return v;
1114 		if (*pos == p->cached_index + 1) {
1115 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1116 			return p->cached_mount = v;
1117 		}
1118 	}
1119 
1120 	p->cached_event = p->ns->event;
1121 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1122 	p->cached_index = *pos;
1123 	return p->cached_mount;
1124 }
1125 
1126 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1127 {
1128 	struct proc_mounts *p = proc_mounts(m);
1129 
1130 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1131 	p->cached_index = *pos;
1132 	return p->cached_mount;
1133 }
1134 
1135 static void m_stop(struct seq_file *m, void *v)
1136 {
1137 	up_read(&namespace_sem);
1138 }
1139 
1140 static int m_show(struct seq_file *m, void *v)
1141 {
1142 	struct proc_mounts *p = proc_mounts(m);
1143 	struct mount *r = list_entry(v, struct mount, mnt_list);
1144 	return p->show(m, &r->mnt);
1145 }
1146 
1147 const struct seq_operations mounts_op = {
1148 	.start	= m_start,
1149 	.next	= m_next,
1150 	.stop	= m_stop,
1151 	.show	= m_show,
1152 };
1153 #endif  /* CONFIG_PROC_FS */
1154 
1155 /**
1156  * may_umount_tree - check if a mount tree is busy
1157  * @mnt: root of mount tree
1158  *
1159  * This is called to check if a tree of mounts has any
1160  * open files, pwds, chroots or sub mounts that are
1161  * busy.
1162  */
1163 int may_umount_tree(struct vfsmount *m)
1164 {
1165 	struct mount *mnt = real_mount(m);
1166 	int actual_refs = 0;
1167 	int minimum_refs = 0;
1168 	struct mount *p;
1169 	BUG_ON(!m);
1170 
1171 	/* write lock needed for mnt_get_count */
1172 	lock_mount_hash();
1173 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1174 		actual_refs += mnt_get_count(p);
1175 		minimum_refs += 2;
1176 	}
1177 	unlock_mount_hash();
1178 
1179 	if (actual_refs > minimum_refs)
1180 		return 0;
1181 
1182 	return 1;
1183 }
1184 
1185 EXPORT_SYMBOL(may_umount_tree);
1186 
1187 /**
1188  * may_umount - check if a mount point is busy
1189  * @mnt: root of mount
1190  *
1191  * This is called to check if a mount point has any
1192  * open files, pwds, chroots or sub mounts. If the
1193  * mount has sub mounts this will return busy
1194  * regardless of whether the sub mounts are busy.
1195  *
1196  * Doesn't take quota and stuff into account. IOW, in some cases it will
1197  * give false negatives. The main reason why it's here is that we need
1198  * a non-destructive way to look for easily umountable filesystems.
1199  */
1200 int may_umount(struct vfsmount *mnt)
1201 {
1202 	int ret = 1;
1203 	down_read(&namespace_sem);
1204 	lock_mount_hash();
1205 	if (propagate_mount_busy(real_mount(mnt), 2))
1206 		ret = 0;
1207 	unlock_mount_hash();
1208 	up_read(&namespace_sem);
1209 	return ret;
1210 }
1211 
1212 EXPORT_SYMBOL(may_umount);
1213 
1214 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1215 
1216 static void namespace_unlock(void)
1217 {
1218 	struct mount *mnt;
1219 	struct hlist_head head = unmounted;
1220 
1221 	if (likely(hlist_empty(&head))) {
1222 		up_write(&namespace_sem);
1223 		return;
1224 	}
1225 
1226 	head.first->pprev = &head.first;
1227 	INIT_HLIST_HEAD(&unmounted);
1228 
1229 	up_write(&namespace_sem);
1230 
1231 	synchronize_rcu();
1232 
1233 	while (!hlist_empty(&head)) {
1234 		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1235 		hlist_del_init(&mnt->mnt_hash);
1236 		if (mnt->mnt_ex_mountpoint.mnt)
1237 			path_put(&mnt->mnt_ex_mountpoint);
1238 		mntput(&mnt->mnt);
1239 	}
1240 }
1241 
1242 static inline void namespace_lock(void)
1243 {
1244 	down_write(&namespace_sem);
1245 }
1246 
1247 /*
1248  * mount_lock must be held
1249  * namespace_sem must be held for write
1250  * how = 0 => just this tree, don't propagate
1251  * how = 1 => propagate; we know that nobody else has reference to any victims
1252  * how = 2 => lazy umount
1253  */
1254 void umount_tree(struct mount *mnt, int how)
1255 {
1256 	HLIST_HEAD(tmp_list);
1257 	struct mount *p;
1258 	struct mount *last = NULL;
1259 
1260 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1261 		hlist_del_init_rcu(&p->mnt_hash);
1262 		hlist_add_head(&p->mnt_hash, &tmp_list);
1263 	}
1264 
1265 	if (how)
1266 		propagate_umount(&tmp_list);
1267 
1268 	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1269 		list_del_init(&p->mnt_expire);
1270 		list_del_init(&p->mnt_list);
1271 		__touch_mnt_namespace(p->mnt_ns);
1272 		p->mnt_ns = NULL;
1273 		if (how < 2)
1274 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1275 		list_del_init(&p->mnt_child);
1276 		if (mnt_has_parent(p)) {
1277 			put_mountpoint(p->mnt_mp);
1278 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1279 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1280 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1281 			p->mnt_mountpoint = p->mnt.mnt_root;
1282 			p->mnt_parent = p;
1283 			p->mnt_mp = NULL;
1284 		}
1285 		change_mnt_propagation(p, MS_PRIVATE);
1286 		last = p;
1287 	}
1288 	if (last) {
1289 		last->mnt_hash.next = unmounted.first;
1290 		unmounted.first = tmp_list.first;
1291 		unmounted.first->pprev = &unmounted.first;
1292 	}
1293 }
1294 
1295 static void shrink_submounts(struct mount *mnt);
1296 
1297 static int do_umount(struct mount *mnt, int flags)
1298 {
1299 	struct super_block *sb = mnt->mnt.mnt_sb;
1300 	int retval;
1301 
1302 	retval = security_sb_umount(&mnt->mnt, flags);
1303 	if (retval)
1304 		return retval;
1305 
1306 	/*
1307 	 * Allow userspace to request a mountpoint be expired rather than
1308 	 * unmounting unconditionally. Unmount only happens if:
1309 	 *  (1) the mark is already set (the mark is cleared by mntput())
1310 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1311 	 */
1312 	if (flags & MNT_EXPIRE) {
1313 		if (&mnt->mnt == current->fs->root.mnt ||
1314 		    flags & (MNT_FORCE | MNT_DETACH))
1315 			return -EINVAL;
1316 
1317 		/*
1318 		 * probably don't strictly need the lock here if we examined
1319 		 * all race cases, but it's a slowpath.
1320 		 */
1321 		lock_mount_hash();
1322 		if (mnt_get_count(mnt) != 2) {
1323 			unlock_mount_hash();
1324 			return -EBUSY;
1325 		}
1326 		unlock_mount_hash();
1327 
1328 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1329 			return -EAGAIN;
1330 	}
1331 
1332 	/*
1333 	 * If we may have to abort operations to get out of this
1334 	 * mount, and they will themselves hold resources we must
1335 	 * allow the fs to do things. In the Unix tradition of
1336 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1337 	 * might fail to complete on the first run through as other tasks
1338 	 * must return, and the like. Thats for the mount program to worry
1339 	 * about for the moment.
1340 	 */
1341 
1342 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1343 		sb->s_op->umount_begin(sb);
1344 	}
1345 
1346 	/*
1347 	 * No sense to grab the lock for this test, but test itself looks
1348 	 * somewhat bogus. Suggestions for better replacement?
1349 	 * Ho-hum... In principle, we might treat that as umount + switch
1350 	 * to rootfs. GC would eventually take care of the old vfsmount.
1351 	 * Actually it makes sense, especially if rootfs would contain a
1352 	 * /reboot - static binary that would close all descriptors and
1353 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1354 	 */
1355 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1356 		/*
1357 		 * Special case for "unmounting" root ...
1358 		 * we just try to remount it readonly.
1359 		 */
1360 		down_write(&sb->s_umount);
1361 		if (!(sb->s_flags & MS_RDONLY))
1362 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1363 		up_write(&sb->s_umount);
1364 		return retval;
1365 	}
1366 
1367 	namespace_lock();
1368 	lock_mount_hash();
1369 	event++;
1370 
1371 	if (flags & MNT_DETACH) {
1372 		if (!list_empty(&mnt->mnt_list))
1373 			umount_tree(mnt, 2);
1374 		retval = 0;
1375 	} else {
1376 		shrink_submounts(mnt);
1377 		retval = -EBUSY;
1378 		if (!propagate_mount_busy(mnt, 2)) {
1379 			if (!list_empty(&mnt->mnt_list))
1380 				umount_tree(mnt, 1);
1381 			retval = 0;
1382 		}
1383 	}
1384 	unlock_mount_hash();
1385 	namespace_unlock();
1386 	return retval;
1387 }
1388 
1389 /*
1390  * Is the caller allowed to modify his namespace?
1391  */
1392 static inline bool may_mount(void)
1393 {
1394 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1395 }
1396 
1397 /*
1398  * Now umount can handle mount points as well as block devices.
1399  * This is important for filesystems which use unnamed block devices.
1400  *
1401  * We now support a flag for forced unmount like the other 'big iron'
1402  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1403  */
1404 
1405 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1406 {
1407 	struct path path;
1408 	struct mount *mnt;
1409 	int retval;
1410 	int lookup_flags = 0;
1411 
1412 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1413 		return -EINVAL;
1414 
1415 	if (!may_mount())
1416 		return -EPERM;
1417 
1418 	if (!(flags & UMOUNT_NOFOLLOW))
1419 		lookup_flags |= LOOKUP_FOLLOW;
1420 
1421 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1422 	if (retval)
1423 		goto out;
1424 	mnt = real_mount(path.mnt);
1425 	retval = -EINVAL;
1426 	if (path.dentry != path.mnt->mnt_root)
1427 		goto dput_and_out;
1428 	if (!check_mnt(mnt))
1429 		goto dput_and_out;
1430 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1431 		goto dput_and_out;
1432 
1433 	retval = do_umount(mnt, flags);
1434 dput_and_out:
1435 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1436 	dput(path.dentry);
1437 	mntput_no_expire(mnt);
1438 out:
1439 	return retval;
1440 }
1441 
1442 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1443 
1444 /*
1445  *	The 2.0 compatible umount. No flags.
1446  */
1447 SYSCALL_DEFINE1(oldumount, char __user *, name)
1448 {
1449 	return sys_umount(name, 0);
1450 }
1451 
1452 #endif
1453 
1454 static bool is_mnt_ns_file(struct dentry *dentry)
1455 {
1456 	/* Is this a proxy for a mount namespace? */
1457 	struct inode *inode = dentry->d_inode;
1458 	struct proc_ns *ei;
1459 
1460 	if (!proc_ns_inode(inode))
1461 		return false;
1462 
1463 	ei = get_proc_ns(inode);
1464 	if (ei->ns_ops != &mntns_operations)
1465 		return false;
1466 
1467 	return true;
1468 }
1469 
1470 static bool mnt_ns_loop(struct dentry *dentry)
1471 {
1472 	/* Could bind mounting the mount namespace inode cause a
1473 	 * mount namespace loop?
1474 	 */
1475 	struct mnt_namespace *mnt_ns;
1476 	if (!is_mnt_ns_file(dentry))
1477 		return false;
1478 
1479 	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1480 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1481 }
1482 
1483 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1484 					int flag)
1485 {
1486 	struct mount *res, *p, *q, *r, *parent;
1487 
1488 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1492 		return ERR_PTR(-EINVAL);
1493 
1494 	res = q = clone_mnt(mnt, dentry, flag);
1495 	if (IS_ERR(q))
1496 		return q;
1497 
1498 	q->mnt.mnt_flags &= ~MNT_LOCKED;
1499 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1500 
1501 	p = mnt;
1502 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1503 		struct mount *s;
1504 		if (!is_subdir(r->mnt_mountpoint, dentry))
1505 			continue;
1506 
1507 		for (s = r; s; s = next_mnt(s, r)) {
1508 			if (!(flag & CL_COPY_UNBINDABLE) &&
1509 			    IS_MNT_UNBINDABLE(s)) {
1510 				s = skip_mnt_tree(s);
1511 				continue;
1512 			}
1513 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1514 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1515 				s = skip_mnt_tree(s);
1516 				continue;
1517 			}
1518 			while (p != s->mnt_parent) {
1519 				p = p->mnt_parent;
1520 				q = q->mnt_parent;
1521 			}
1522 			p = s;
1523 			parent = q;
1524 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1525 			if (IS_ERR(q))
1526 				goto out;
1527 			lock_mount_hash();
1528 			list_add_tail(&q->mnt_list, &res->mnt_list);
1529 			attach_mnt(q, parent, p->mnt_mp);
1530 			unlock_mount_hash();
1531 		}
1532 	}
1533 	return res;
1534 out:
1535 	if (res) {
1536 		lock_mount_hash();
1537 		umount_tree(res, 0);
1538 		unlock_mount_hash();
1539 	}
1540 	return q;
1541 }
1542 
1543 /* Caller should check returned pointer for errors */
1544 
1545 struct vfsmount *collect_mounts(struct path *path)
1546 {
1547 	struct mount *tree;
1548 	namespace_lock();
1549 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1550 			 CL_COPY_ALL | CL_PRIVATE);
1551 	namespace_unlock();
1552 	if (IS_ERR(tree))
1553 		return ERR_CAST(tree);
1554 	return &tree->mnt;
1555 }
1556 
1557 void drop_collected_mounts(struct vfsmount *mnt)
1558 {
1559 	namespace_lock();
1560 	lock_mount_hash();
1561 	umount_tree(real_mount(mnt), 0);
1562 	unlock_mount_hash();
1563 	namespace_unlock();
1564 }
1565 
1566 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1567 		   struct vfsmount *root)
1568 {
1569 	struct mount *mnt;
1570 	int res = f(root, arg);
1571 	if (res)
1572 		return res;
1573 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1574 		res = f(&mnt->mnt, arg);
1575 		if (res)
1576 			return res;
1577 	}
1578 	return 0;
1579 }
1580 
1581 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1582 {
1583 	struct mount *p;
1584 
1585 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1586 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1587 			mnt_release_group_id(p);
1588 	}
1589 }
1590 
1591 static int invent_group_ids(struct mount *mnt, bool recurse)
1592 {
1593 	struct mount *p;
1594 
1595 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1596 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1597 			int err = mnt_alloc_group_id(p);
1598 			if (err) {
1599 				cleanup_group_ids(mnt, p);
1600 				return err;
1601 			}
1602 		}
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 /*
1609  *  @source_mnt : mount tree to be attached
1610  *  @nd         : place the mount tree @source_mnt is attached
1611  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1612  *  		   store the parent mount and mountpoint dentry.
1613  *  		   (done when source_mnt is moved)
1614  *
1615  *  NOTE: in the table below explains the semantics when a source mount
1616  *  of a given type is attached to a destination mount of a given type.
1617  * ---------------------------------------------------------------------------
1618  * |         BIND MOUNT OPERATION                                            |
1619  * |**************************************************************************
1620  * | source-->| shared        |       private  |       slave    | unbindable |
1621  * | dest     |               |                |                |            |
1622  * |   |      |               |                |                |            |
1623  * |   v      |               |                |                |            |
1624  * |**************************************************************************
1625  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1626  * |          |               |                |                |            |
1627  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1628  * ***************************************************************************
1629  * A bind operation clones the source mount and mounts the clone on the
1630  * destination mount.
1631  *
1632  * (++)  the cloned mount is propagated to all the mounts in the propagation
1633  * 	 tree of the destination mount and the cloned mount is added to
1634  * 	 the peer group of the source mount.
1635  * (+)   the cloned mount is created under the destination mount and is marked
1636  *       as shared. The cloned mount is added to the peer group of the source
1637  *       mount.
1638  * (+++) the mount is propagated to all the mounts in the propagation tree
1639  *       of the destination mount and the cloned mount is made slave
1640  *       of the same master as that of the source mount. The cloned mount
1641  *       is marked as 'shared and slave'.
1642  * (*)   the cloned mount is made a slave of the same master as that of the
1643  * 	 source mount.
1644  *
1645  * ---------------------------------------------------------------------------
1646  * |         		MOVE MOUNT OPERATION                                 |
1647  * |**************************************************************************
1648  * | source-->| shared        |       private  |       slave    | unbindable |
1649  * | dest     |               |                |                |            |
1650  * |   |      |               |                |                |            |
1651  * |   v      |               |                |                |            |
1652  * |**************************************************************************
1653  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1654  * |          |               |                |                |            |
1655  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1656  * ***************************************************************************
1657  *
1658  * (+)  the mount is moved to the destination. And is then propagated to
1659  * 	all the mounts in the propagation tree of the destination mount.
1660  * (+*)  the mount is moved to the destination.
1661  * (+++)  the mount is moved to the destination and is then propagated to
1662  * 	all the mounts belonging to the destination mount's propagation tree.
1663  * 	the mount is marked as 'shared and slave'.
1664  * (*)	the mount continues to be a slave at the new location.
1665  *
1666  * if the source mount is a tree, the operations explained above is
1667  * applied to each mount in the tree.
1668  * Must be called without spinlocks held, since this function can sleep
1669  * in allocations.
1670  */
1671 static int attach_recursive_mnt(struct mount *source_mnt,
1672 			struct mount *dest_mnt,
1673 			struct mountpoint *dest_mp,
1674 			struct path *parent_path)
1675 {
1676 	HLIST_HEAD(tree_list);
1677 	struct mount *child, *p;
1678 	struct hlist_node *n;
1679 	int err;
1680 
1681 	if (IS_MNT_SHARED(dest_mnt)) {
1682 		err = invent_group_ids(source_mnt, true);
1683 		if (err)
1684 			goto out;
1685 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1686 		lock_mount_hash();
1687 		if (err)
1688 			goto out_cleanup_ids;
1689 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1690 			set_mnt_shared(p);
1691 	} else {
1692 		lock_mount_hash();
1693 	}
1694 	if (parent_path) {
1695 		detach_mnt(source_mnt, parent_path);
1696 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1697 		touch_mnt_namespace(source_mnt->mnt_ns);
1698 	} else {
1699 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1700 		commit_tree(source_mnt, NULL);
1701 	}
1702 
1703 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1704 		struct mount *q;
1705 		hlist_del_init(&child->mnt_hash);
1706 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1707 				      child->mnt_mountpoint);
1708 		commit_tree(child, q);
1709 	}
1710 	unlock_mount_hash();
1711 
1712 	return 0;
1713 
1714  out_cleanup_ids:
1715 	while (!hlist_empty(&tree_list)) {
1716 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1717 		umount_tree(child, 0);
1718 	}
1719 	unlock_mount_hash();
1720 	cleanup_group_ids(source_mnt, NULL);
1721  out:
1722 	return err;
1723 }
1724 
1725 static struct mountpoint *lock_mount(struct path *path)
1726 {
1727 	struct vfsmount *mnt;
1728 	struct dentry *dentry = path->dentry;
1729 retry:
1730 	mutex_lock(&dentry->d_inode->i_mutex);
1731 	if (unlikely(cant_mount(dentry))) {
1732 		mutex_unlock(&dentry->d_inode->i_mutex);
1733 		return ERR_PTR(-ENOENT);
1734 	}
1735 	namespace_lock();
1736 	mnt = lookup_mnt(path);
1737 	if (likely(!mnt)) {
1738 		struct mountpoint *mp = new_mountpoint(dentry);
1739 		if (IS_ERR(mp)) {
1740 			namespace_unlock();
1741 			mutex_unlock(&dentry->d_inode->i_mutex);
1742 			return mp;
1743 		}
1744 		return mp;
1745 	}
1746 	namespace_unlock();
1747 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1748 	path_put(path);
1749 	path->mnt = mnt;
1750 	dentry = path->dentry = dget(mnt->mnt_root);
1751 	goto retry;
1752 }
1753 
1754 static void unlock_mount(struct mountpoint *where)
1755 {
1756 	struct dentry *dentry = where->m_dentry;
1757 	put_mountpoint(where);
1758 	namespace_unlock();
1759 	mutex_unlock(&dentry->d_inode->i_mutex);
1760 }
1761 
1762 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1763 {
1764 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1765 		return -EINVAL;
1766 
1767 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1768 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1769 		return -ENOTDIR;
1770 
1771 	return attach_recursive_mnt(mnt, p, mp, NULL);
1772 }
1773 
1774 /*
1775  * Sanity check the flags to change_mnt_propagation.
1776  */
1777 
1778 static int flags_to_propagation_type(int flags)
1779 {
1780 	int type = flags & ~(MS_REC | MS_SILENT);
1781 
1782 	/* Fail if any non-propagation flags are set */
1783 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1784 		return 0;
1785 	/* Only one propagation flag should be set */
1786 	if (!is_power_of_2(type))
1787 		return 0;
1788 	return type;
1789 }
1790 
1791 /*
1792  * recursively change the type of the mountpoint.
1793  */
1794 static int do_change_type(struct path *path, int flag)
1795 {
1796 	struct mount *m;
1797 	struct mount *mnt = real_mount(path->mnt);
1798 	int recurse = flag & MS_REC;
1799 	int type;
1800 	int err = 0;
1801 
1802 	if (path->dentry != path->mnt->mnt_root)
1803 		return -EINVAL;
1804 
1805 	type = flags_to_propagation_type(flag);
1806 	if (!type)
1807 		return -EINVAL;
1808 
1809 	namespace_lock();
1810 	if (type == MS_SHARED) {
1811 		err = invent_group_ids(mnt, recurse);
1812 		if (err)
1813 			goto out_unlock;
1814 	}
1815 
1816 	lock_mount_hash();
1817 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1818 		change_mnt_propagation(m, type);
1819 	unlock_mount_hash();
1820 
1821  out_unlock:
1822 	namespace_unlock();
1823 	return err;
1824 }
1825 
1826 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1827 {
1828 	struct mount *child;
1829 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1830 		if (!is_subdir(child->mnt_mountpoint, dentry))
1831 			continue;
1832 
1833 		if (child->mnt.mnt_flags & MNT_LOCKED)
1834 			return true;
1835 	}
1836 	return false;
1837 }
1838 
1839 /*
1840  * do loopback mount.
1841  */
1842 static int do_loopback(struct path *path, const char *old_name,
1843 				int recurse)
1844 {
1845 	struct path old_path;
1846 	struct mount *mnt = NULL, *old, *parent;
1847 	struct mountpoint *mp;
1848 	int err;
1849 	if (!old_name || !*old_name)
1850 		return -EINVAL;
1851 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1852 	if (err)
1853 		return err;
1854 
1855 	err = -EINVAL;
1856 	if (mnt_ns_loop(old_path.dentry))
1857 		goto out;
1858 
1859 	mp = lock_mount(path);
1860 	err = PTR_ERR(mp);
1861 	if (IS_ERR(mp))
1862 		goto out;
1863 
1864 	old = real_mount(old_path.mnt);
1865 	parent = real_mount(path->mnt);
1866 
1867 	err = -EINVAL;
1868 	if (IS_MNT_UNBINDABLE(old))
1869 		goto out2;
1870 
1871 	if (!check_mnt(parent) || !check_mnt(old))
1872 		goto out2;
1873 
1874 	if (!recurse && has_locked_children(old, old_path.dentry))
1875 		goto out2;
1876 
1877 	if (recurse)
1878 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1879 	else
1880 		mnt = clone_mnt(old, old_path.dentry, 0);
1881 
1882 	if (IS_ERR(mnt)) {
1883 		err = PTR_ERR(mnt);
1884 		goto out2;
1885 	}
1886 
1887 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1888 
1889 	err = graft_tree(mnt, parent, mp);
1890 	if (err) {
1891 		lock_mount_hash();
1892 		umount_tree(mnt, 0);
1893 		unlock_mount_hash();
1894 	}
1895 out2:
1896 	unlock_mount(mp);
1897 out:
1898 	path_put(&old_path);
1899 	return err;
1900 }
1901 
1902 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1903 {
1904 	int error = 0;
1905 	int readonly_request = 0;
1906 
1907 	if (ms_flags & MS_RDONLY)
1908 		readonly_request = 1;
1909 	if (readonly_request == __mnt_is_readonly(mnt))
1910 		return 0;
1911 
1912 	if (readonly_request)
1913 		error = mnt_make_readonly(real_mount(mnt));
1914 	else
1915 		__mnt_unmake_readonly(real_mount(mnt));
1916 	return error;
1917 }
1918 
1919 /*
1920  * change filesystem flags. dir should be a physical root of filesystem.
1921  * If you've mounted a non-root directory somewhere and want to do remount
1922  * on it - tough luck.
1923  */
1924 static int do_remount(struct path *path, int flags, int mnt_flags,
1925 		      void *data)
1926 {
1927 	int err;
1928 	struct super_block *sb = path->mnt->mnt_sb;
1929 	struct mount *mnt = real_mount(path->mnt);
1930 
1931 	if (!check_mnt(mnt))
1932 		return -EINVAL;
1933 
1934 	if (path->dentry != path->mnt->mnt_root)
1935 		return -EINVAL;
1936 
1937 	/* Don't allow changing of locked mnt flags.
1938 	 *
1939 	 * No locks need to be held here while testing the various
1940 	 * MNT_LOCK flags because those flags can never be cleared
1941 	 * once they are set.
1942 	 */
1943 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1944 	    !(mnt_flags & MNT_READONLY)) {
1945 		return -EPERM;
1946 	}
1947 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1948 	    !(mnt_flags & MNT_NODEV)) {
1949 		return -EPERM;
1950 	}
1951 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1952 	    !(mnt_flags & MNT_NOSUID)) {
1953 		return -EPERM;
1954 	}
1955 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1956 	    !(mnt_flags & MNT_NOEXEC)) {
1957 		return -EPERM;
1958 	}
1959 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1960 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1961 		return -EPERM;
1962 	}
1963 
1964 	err = security_sb_remount(sb, data);
1965 	if (err)
1966 		return err;
1967 
1968 	down_write(&sb->s_umount);
1969 	if (flags & MS_BIND)
1970 		err = change_mount_flags(path->mnt, flags);
1971 	else if (!capable(CAP_SYS_ADMIN))
1972 		err = -EPERM;
1973 	else
1974 		err = do_remount_sb(sb, flags, data, 0);
1975 	if (!err) {
1976 		lock_mount_hash();
1977 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1978 		mnt->mnt.mnt_flags = mnt_flags;
1979 		touch_mnt_namespace(mnt->mnt_ns);
1980 		unlock_mount_hash();
1981 	}
1982 	up_write(&sb->s_umount);
1983 	return err;
1984 }
1985 
1986 static inline int tree_contains_unbindable(struct mount *mnt)
1987 {
1988 	struct mount *p;
1989 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1990 		if (IS_MNT_UNBINDABLE(p))
1991 			return 1;
1992 	}
1993 	return 0;
1994 }
1995 
1996 static int do_move_mount(struct path *path, const char *old_name)
1997 {
1998 	struct path old_path, parent_path;
1999 	struct mount *p;
2000 	struct mount *old;
2001 	struct mountpoint *mp;
2002 	int err;
2003 	if (!old_name || !*old_name)
2004 		return -EINVAL;
2005 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2006 	if (err)
2007 		return err;
2008 
2009 	mp = lock_mount(path);
2010 	err = PTR_ERR(mp);
2011 	if (IS_ERR(mp))
2012 		goto out;
2013 
2014 	old = real_mount(old_path.mnt);
2015 	p = real_mount(path->mnt);
2016 
2017 	err = -EINVAL;
2018 	if (!check_mnt(p) || !check_mnt(old))
2019 		goto out1;
2020 
2021 	if (old->mnt.mnt_flags & MNT_LOCKED)
2022 		goto out1;
2023 
2024 	err = -EINVAL;
2025 	if (old_path.dentry != old_path.mnt->mnt_root)
2026 		goto out1;
2027 
2028 	if (!mnt_has_parent(old))
2029 		goto out1;
2030 
2031 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2032 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
2033 		goto out1;
2034 	/*
2035 	 * Don't move a mount residing in a shared parent.
2036 	 */
2037 	if (IS_MNT_SHARED(old->mnt_parent))
2038 		goto out1;
2039 	/*
2040 	 * Don't move a mount tree containing unbindable mounts to a destination
2041 	 * mount which is shared.
2042 	 */
2043 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2044 		goto out1;
2045 	err = -ELOOP;
2046 	for (; mnt_has_parent(p); p = p->mnt_parent)
2047 		if (p == old)
2048 			goto out1;
2049 
2050 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2051 	if (err)
2052 		goto out1;
2053 
2054 	/* if the mount is moved, it should no longer be expire
2055 	 * automatically */
2056 	list_del_init(&old->mnt_expire);
2057 out1:
2058 	unlock_mount(mp);
2059 out:
2060 	if (!err)
2061 		path_put(&parent_path);
2062 	path_put(&old_path);
2063 	return err;
2064 }
2065 
2066 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2067 {
2068 	int err;
2069 	const char *subtype = strchr(fstype, '.');
2070 	if (subtype) {
2071 		subtype++;
2072 		err = -EINVAL;
2073 		if (!subtype[0])
2074 			goto err;
2075 	} else
2076 		subtype = "";
2077 
2078 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2079 	err = -ENOMEM;
2080 	if (!mnt->mnt_sb->s_subtype)
2081 		goto err;
2082 	return mnt;
2083 
2084  err:
2085 	mntput(mnt);
2086 	return ERR_PTR(err);
2087 }
2088 
2089 /*
2090  * add a mount into a namespace's mount tree
2091  */
2092 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2093 {
2094 	struct mountpoint *mp;
2095 	struct mount *parent;
2096 	int err;
2097 
2098 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2099 
2100 	mp = lock_mount(path);
2101 	if (IS_ERR(mp))
2102 		return PTR_ERR(mp);
2103 
2104 	parent = real_mount(path->mnt);
2105 	err = -EINVAL;
2106 	if (unlikely(!check_mnt(parent))) {
2107 		/* that's acceptable only for automounts done in private ns */
2108 		if (!(mnt_flags & MNT_SHRINKABLE))
2109 			goto unlock;
2110 		/* ... and for those we'd better have mountpoint still alive */
2111 		if (!parent->mnt_ns)
2112 			goto unlock;
2113 	}
2114 
2115 	/* Refuse the same filesystem on the same mount point */
2116 	err = -EBUSY;
2117 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2118 	    path->mnt->mnt_root == path->dentry)
2119 		goto unlock;
2120 
2121 	err = -EINVAL;
2122 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2123 		goto unlock;
2124 
2125 	newmnt->mnt.mnt_flags = mnt_flags;
2126 	err = graft_tree(newmnt, parent, mp);
2127 
2128 unlock:
2129 	unlock_mount(mp);
2130 	return err;
2131 }
2132 
2133 /*
2134  * create a new mount for userspace and request it to be added into the
2135  * namespace's tree
2136  */
2137 static int do_new_mount(struct path *path, const char *fstype, int flags,
2138 			int mnt_flags, const char *name, void *data)
2139 {
2140 	struct file_system_type *type;
2141 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2142 	struct vfsmount *mnt;
2143 	int err;
2144 
2145 	if (!fstype)
2146 		return -EINVAL;
2147 
2148 	type = get_fs_type(fstype);
2149 	if (!type)
2150 		return -ENODEV;
2151 
2152 	if (user_ns != &init_user_ns) {
2153 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2154 			put_filesystem(type);
2155 			return -EPERM;
2156 		}
2157 		/* Only in special cases allow devices from mounts
2158 		 * created outside the initial user namespace.
2159 		 */
2160 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2161 			flags |= MS_NODEV;
2162 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2163 		}
2164 	}
2165 
2166 	mnt = vfs_kern_mount(type, flags, name, data);
2167 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2168 	    !mnt->mnt_sb->s_subtype)
2169 		mnt = fs_set_subtype(mnt, fstype);
2170 
2171 	put_filesystem(type);
2172 	if (IS_ERR(mnt))
2173 		return PTR_ERR(mnt);
2174 
2175 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2176 	if (err)
2177 		mntput(mnt);
2178 	return err;
2179 }
2180 
2181 int finish_automount(struct vfsmount *m, struct path *path)
2182 {
2183 	struct mount *mnt = real_mount(m);
2184 	int err;
2185 	/* The new mount record should have at least 2 refs to prevent it being
2186 	 * expired before we get a chance to add it
2187 	 */
2188 	BUG_ON(mnt_get_count(mnt) < 2);
2189 
2190 	if (m->mnt_sb == path->mnt->mnt_sb &&
2191 	    m->mnt_root == path->dentry) {
2192 		err = -ELOOP;
2193 		goto fail;
2194 	}
2195 
2196 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2197 	if (!err)
2198 		return 0;
2199 fail:
2200 	/* remove m from any expiration list it may be on */
2201 	if (!list_empty(&mnt->mnt_expire)) {
2202 		namespace_lock();
2203 		list_del_init(&mnt->mnt_expire);
2204 		namespace_unlock();
2205 	}
2206 	mntput(m);
2207 	mntput(m);
2208 	return err;
2209 }
2210 
2211 /**
2212  * mnt_set_expiry - Put a mount on an expiration list
2213  * @mnt: The mount to list.
2214  * @expiry_list: The list to add the mount to.
2215  */
2216 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2217 {
2218 	namespace_lock();
2219 
2220 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2221 
2222 	namespace_unlock();
2223 }
2224 EXPORT_SYMBOL(mnt_set_expiry);
2225 
2226 /*
2227  * process a list of expirable mountpoints with the intent of discarding any
2228  * mountpoints that aren't in use and haven't been touched since last we came
2229  * here
2230  */
2231 void mark_mounts_for_expiry(struct list_head *mounts)
2232 {
2233 	struct mount *mnt, *next;
2234 	LIST_HEAD(graveyard);
2235 
2236 	if (list_empty(mounts))
2237 		return;
2238 
2239 	namespace_lock();
2240 	lock_mount_hash();
2241 
2242 	/* extract from the expiration list every vfsmount that matches the
2243 	 * following criteria:
2244 	 * - only referenced by its parent vfsmount
2245 	 * - still marked for expiry (marked on the last call here; marks are
2246 	 *   cleared by mntput())
2247 	 */
2248 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2249 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2250 			propagate_mount_busy(mnt, 1))
2251 			continue;
2252 		list_move(&mnt->mnt_expire, &graveyard);
2253 	}
2254 	while (!list_empty(&graveyard)) {
2255 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2256 		touch_mnt_namespace(mnt->mnt_ns);
2257 		umount_tree(mnt, 1);
2258 	}
2259 	unlock_mount_hash();
2260 	namespace_unlock();
2261 }
2262 
2263 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2264 
2265 /*
2266  * Ripoff of 'select_parent()'
2267  *
2268  * search the list of submounts for a given mountpoint, and move any
2269  * shrinkable submounts to the 'graveyard' list.
2270  */
2271 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2272 {
2273 	struct mount *this_parent = parent;
2274 	struct list_head *next;
2275 	int found = 0;
2276 
2277 repeat:
2278 	next = this_parent->mnt_mounts.next;
2279 resume:
2280 	while (next != &this_parent->mnt_mounts) {
2281 		struct list_head *tmp = next;
2282 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2283 
2284 		next = tmp->next;
2285 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2286 			continue;
2287 		/*
2288 		 * Descend a level if the d_mounts list is non-empty.
2289 		 */
2290 		if (!list_empty(&mnt->mnt_mounts)) {
2291 			this_parent = mnt;
2292 			goto repeat;
2293 		}
2294 
2295 		if (!propagate_mount_busy(mnt, 1)) {
2296 			list_move_tail(&mnt->mnt_expire, graveyard);
2297 			found++;
2298 		}
2299 	}
2300 	/*
2301 	 * All done at this level ... ascend and resume the search
2302 	 */
2303 	if (this_parent != parent) {
2304 		next = this_parent->mnt_child.next;
2305 		this_parent = this_parent->mnt_parent;
2306 		goto resume;
2307 	}
2308 	return found;
2309 }
2310 
2311 /*
2312  * process a list of expirable mountpoints with the intent of discarding any
2313  * submounts of a specific parent mountpoint
2314  *
2315  * mount_lock must be held for write
2316  */
2317 static void shrink_submounts(struct mount *mnt)
2318 {
2319 	LIST_HEAD(graveyard);
2320 	struct mount *m;
2321 
2322 	/* extract submounts of 'mountpoint' from the expiration list */
2323 	while (select_submounts(mnt, &graveyard)) {
2324 		while (!list_empty(&graveyard)) {
2325 			m = list_first_entry(&graveyard, struct mount,
2326 						mnt_expire);
2327 			touch_mnt_namespace(m->mnt_ns);
2328 			umount_tree(m, 1);
2329 		}
2330 	}
2331 }
2332 
2333 /*
2334  * Some copy_from_user() implementations do not return the exact number of
2335  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2336  * Note that this function differs from copy_from_user() in that it will oops
2337  * on bad values of `to', rather than returning a short copy.
2338  */
2339 static long exact_copy_from_user(void *to, const void __user * from,
2340 				 unsigned long n)
2341 {
2342 	char *t = to;
2343 	const char __user *f = from;
2344 	char c;
2345 
2346 	if (!access_ok(VERIFY_READ, from, n))
2347 		return n;
2348 
2349 	while (n) {
2350 		if (__get_user(c, f)) {
2351 			memset(t, 0, n);
2352 			break;
2353 		}
2354 		*t++ = c;
2355 		f++;
2356 		n--;
2357 	}
2358 	return n;
2359 }
2360 
2361 int copy_mount_options(const void __user * data, unsigned long *where)
2362 {
2363 	int i;
2364 	unsigned long page;
2365 	unsigned long size;
2366 
2367 	*where = 0;
2368 	if (!data)
2369 		return 0;
2370 
2371 	if (!(page = __get_free_page(GFP_KERNEL)))
2372 		return -ENOMEM;
2373 
2374 	/* We only care that *some* data at the address the user
2375 	 * gave us is valid.  Just in case, we'll zero
2376 	 * the remainder of the page.
2377 	 */
2378 	/* copy_from_user cannot cross TASK_SIZE ! */
2379 	size = TASK_SIZE - (unsigned long)data;
2380 	if (size > PAGE_SIZE)
2381 		size = PAGE_SIZE;
2382 
2383 	i = size - exact_copy_from_user((void *)page, data, size);
2384 	if (!i) {
2385 		free_page(page);
2386 		return -EFAULT;
2387 	}
2388 	if (i != PAGE_SIZE)
2389 		memset((char *)page + i, 0, PAGE_SIZE - i);
2390 	*where = page;
2391 	return 0;
2392 }
2393 
2394 int copy_mount_string(const void __user *data, char **where)
2395 {
2396 	char *tmp;
2397 
2398 	if (!data) {
2399 		*where = NULL;
2400 		return 0;
2401 	}
2402 
2403 	tmp = strndup_user(data, PAGE_SIZE);
2404 	if (IS_ERR(tmp))
2405 		return PTR_ERR(tmp);
2406 
2407 	*where = tmp;
2408 	return 0;
2409 }
2410 
2411 /*
2412  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2413  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2414  *
2415  * data is a (void *) that can point to any structure up to
2416  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2417  * information (or be NULL).
2418  *
2419  * Pre-0.97 versions of mount() didn't have a flags word.
2420  * When the flags word was introduced its top half was required
2421  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2422  * Therefore, if this magic number is present, it carries no information
2423  * and must be discarded.
2424  */
2425 long do_mount(const char *dev_name, const char *dir_name,
2426 		const char *type_page, unsigned long flags, void *data_page)
2427 {
2428 	struct path path;
2429 	int retval = 0;
2430 	int mnt_flags = 0;
2431 
2432 	/* Discard magic */
2433 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2434 		flags &= ~MS_MGC_MSK;
2435 
2436 	/* Basic sanity checks */
2437 
2438 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2439 		return -EINVAL;
2440 
2441 	if (data_page)
2442 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2443 
2444 	/* ... and get the mountpoint */
2445 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2446 	if (retval)
2447 		return retval;
2448 
2449 	retval = security_sb_mount(dev_name, &path,
2450 				   type_page, flags, data_page);
2451 	if (!retval && !may_mount())
2452 		retval = -EPERM;
2453 	if (retval)
2454 		goto dput_out;
2455 
2456 	/* Default to relatime unless overriden */
2457 	if (!(flags & MS_NOATIME))
2458 		mnt_flags |= MNT_RELATIME;
2459 
2460 	/* Separate the per-mountpoint flags */
2461 	if (flags & MS_NOSUID)
2462 		mnt_flags |= MNT_NOSUID;
2463 	if (flags & MS_NODEV)
2464 		mnt_flags |= MNT_NODEV;
2465 	if (flags & MS_NOEXEC)
2466 		mnt_flags |= MNT_NOEXEC;
2467 	if (flags & MS_NOATIME)
2468 		mnt_flags |= MNT_NOATIME;
2469 	if (flags & MS_NODIRATIME)
2470 		mnt_flags |= MNT_NODIRATIME;
2471 	if (flags & MS_STRICTATIME)
2472 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2473 	if (flags & MS_RDONLY)
2474 		mnt_flags |= MNT_READONLY;
2475 
2476 	/* The default atime for remount is preservation */
2477 	if ((flags & MS_REMOUNT) &&
2478 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2479 		       MS_STRICTATIME)) == 0)) {
2480 		mnt_flags &= ~MNT_ATIME_MASK;
2481 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2482 	}
2483 
2484 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2485 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2486 		   MS_STRICTATIME);
2487 
2488 	if (flags & MS_REMOUNT)
2489 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2490 				    data_page);
2491 	else if (flags & MS_BIND)
2492 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2493 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2494 		retval = do_change_type(&path, flags);
2495 	else if (flags & MS_MOVE)
2496 		retval = do_move_mount(&path, dev_name);
2497 	else
2498 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2499 				      dev_name, data_page);
2500 dput_out:
2501 	path_put(&path);
2502 	return retval;
2503 }
2504 
2505 static void free_mnt_ns(struct mnt_namespace *ns)
2506 {
2507 	proc_free_inum(ns->proc_inum);
2508 	put_user_ns(ns->user_ns);
2509 	kfree(ns);
2510 }
2511 
2512 /*
2513  * Assign a sequence number so we can detect when we attempt to bind
2514  * mount a reference to an older mount namespace into the current
2515  * mount namespace, preventing reference counting loops.  A 64bit
2516  * number incrementing at 10Ghz will take 12,427 years to wrap which
2517  * is effectively never, so we can ignore the possibility.
2518  */
2519 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2520 
2521 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2522 {
2523 	struct mnt_namespace *new_ns;
2524 	int ret;
2525 
2526 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2527 	if (!new_ns)
2528 		return ERR_PTR(-ENOMEM);
2529 	ret = proc_alloc_inum(&new_ns->proc_inum);
2530 	if (ret) {
2531 		kfree(new_ns);
2532 		return ERR_PTR(ret);
2533 	}
2534 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2535 	atomic_set(&new_ns->count, 1);
2536 	new_ns->root = NULL;
2537 	INIT_LIST_HEAD(&new_ns->list);
2538 	init_waitqueue_head(&new_ns->poll);
2539 	new_ns->event = 0;
2540 	new_ns->user_ns = get_user_ns(user_ns);
2541 	return new_ns;
2542 }
2543 
2544 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2545 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2546 {
2547 	struct mnt_namespace *new_ns;
2548 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2549 	struct mount *p, *q;
2550 	struct mount *old;
2551 	struct mount *new;
2552 	int copy_flags;
2553 
2554 	BUG_ON(!ns);
2555 
2556 	if (likely(!(flags & CLONE_NEWNS))) {
2557 		get_mnt_ns(ns);
2558 		return ns;
2559 	}
2560 
2561 	old = ns->root;
2562 
2563 	new_ns = alloc_mnt_ns(user_ns);
2564 	if (IS_ERR(new_ns))
2565 		return new_ns;
2566 
2567 	namespace_lock();
2568 	/* First pass: copy the tree topology */
2569 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2570 	if (user_ns != ns->user_ns)
2571 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2572 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2573 	if (IS_ERR(new)) {
2574 		namespace_unlock();
2575 		free_mnt_ns(new_ns);
2576 		return ERR_CAST(new);
2577 	}
2578 	new_ns->root = new;
2579 	list_add_tail(&new_ns->list, &new->mnt_list);
2580 
2581 	/*
2582 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2583 	 * as belonging to new namespace.  We have already acquired a private
2584 	 * fs_struct, so tsk->fs->lock is not needed.
2585 	 */
2586 	p = old;
2587 	q = new;
2588 	while (p) {
2589 		q->mnt_ns = new_ns;
2590 		if (new_fs) {
2591 			if (&p->mnt == new_fs->root.mnt) {
2592 				new_fs->root.mnt = mntget(&q->mnt);
2593 				rootmnt = &p->mnt;
2594 			}
2595 			if (&p->mnt == new_fs->pwd.mnt) {
2596 				new_fs->pwd.mnt = mntget(&q->mnt);
2597 				pwdmnt = &p->mnt;
2598 			}
2599 		}
2600 		p = next_mnt(p, old);
2601 		q = next_mnt(q, new);
2602 		if (!q)
2603 			break;
2604 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2605 			p = next_mnt(p, old);
2606 	}
2607 	namespace_unlock();
2608 
2609 	if (rootmnt)
2610 		mntput(rootmnt);
2611 	if (pwdmnt)
2612 		mntput(pwdmnt);
2613 
2614 	return new_ns;
2615 }
2616 
2617 /**
2618  * create_mnt_ns - creates a private namespace and adds a root filesystem
2619  * @mnt: pointer to the new root filesystem mountpoint
2620  */
2621 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2622 {
2623 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2624 	if (!IS_ERR(new_ns)) {
2625 		struct mount *mnt = real_mount(m);
2626 		mnt->mnt_ns = new_ns;
2627 		new_ns->root = mnt;
2628 		list_add(&mnt->mnt_list, &new_ns->list);
2629 	} else {
2630 		mntput(m);
2631 	}
2632 	return new_ns;
2633 }
2634 
2635 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2636 {
2637 	struct mnt_namespace *ns;
2638 	struct super_block *s;
2639 	struct path path;
2640 	int err;
2641 
2642 	ns = create_mnt_ns(mnt);
2643 	if (IS_ERR(ns))
2644 		return ERR_CAST(ns);
2645 
2646 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2647 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2648 
2649 	put_mnt_ns(ns);
2650 
2651 	if (err)
2652 		return ERR_PTR(err);
2653 
2654 	/* trade a vfsmount reference for active sb one */
2655 	s = path.mnt->mnt_sb;
2656 	atomic_inc(&s->s_active);
2657 	mntput(path.mnt);
2658 	/* lock the sucker */
2659 	down_write(&s->s_umount);
2660 	/* ... and return the root of (sub)tree on it */
2661 	return path.dentry;
2662 }
2663 EXPORT_SYMBOL(mount_subtree);
2664 
2665 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2666 		char __user *, type, unsigned long, flags, void __user *, data)
2667 {
2668 	int ret;
2669 	char *kernel_type;
2670 	struct filename *kernel_dir;
2671 	char *kernel_dev;
2672 	unsigned long data_page;
2673 
2674 	ret = copy_mount_string(type, &kernel_type);
2675 	if (ret < 0)
2676 		goto out_type;
2677 
2678 	kernel_dir = getname(dir_name);
2679 	if (IS_ERR(kernel_dir)) {
2680 		ret = PTR_ERR(kernel_dir);
2681 		goto out_dir;
2682 	}
2683 
2684 	ret = copy_mount_string(dev_name, &kernel_dev);
2685 	if (ret < 0)
2686 		goto out_dev;
2687 
2688 	ret = copy_mount_options(data, &data_page);
2689 	if (ret < 0)
2690 		goto out_data;
2691 
2692 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2693 		(void *) data_page);
2694 
2695 	free_page(data_page);
2696 out_data:
2697 	kfree(kernel_dev);
2698 out_dev:
2699 	putname(kernel_dir);
2700 out_dir:
2701 	kfree(kernel_type);
2702 out_type:
2703 	return ret;
2704 }
2705 
2706 /*
2707  * Return true if path is reachable from root
2708  *
2709  * namespace_sem or mount_lock is held
2710  */
2711 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2712 			 const struct path *root)
2713 {
2714 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2715 		dentry = mnt->mnt_mountpoint;
2716 		mnt = mnt->mnt_parent;
2717 	}
2718 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2719 }
2720 
2721 int path_is_under(struct path *path1, struct path *path2)
2722 {
2723 	int res;
2724 	read_seqlock_excl(&mount_lock);
2725 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2726 	read_sequnlock_excl(&mount_lock);
2727 	return res;
2728 }
2729 EXPORT_SYMBOL(path_is_under);
2730 
2731 /*
2732  * pivot_root Semantics:
2733  * Moves the root file system of the current process to the directory put_old,
2734  * makes new_root as the new root file system of the current process, and sets
2735  * root/cwd of all processes which had them on the current root to new_root.
2736  *
2737  * Restrictions:
2738  * The new_root and put_old must be directories, and  must not be on the
2739  * same file  system as the current process root. The put_old  must  be
2740  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2741  * pointed to by put_old must yield the same directory as new_root. No other
2742  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2743  *
2744  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2745  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2746  * in this situation.
2747  *
2748  * Notes:
2749  *  - we don't move root/cwd if they are not at the root (reason: if something
2750  *    cared enough to change them, it's probably wrong to force them elsewhere)
2751  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2752  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2753  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2754  *    first.
2755  */
2756 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2757 		const char __user *, put_old)
2758 {
2759 	struct path new, old, parent_path, root_parent, root;
2760 	struct mount *new_mnt, *root_mnt, *old_mnt;
2761 	struct mountpoint *old_mp, *root_mp;
2762 	int error;
2763 
2764 	if (!may_mount())
2765 		return -EPERM;
2766 
2767 	error = user_path_dir(new_root, &new);
2768 	if (error)
2769 		goto out0;
2770 
2771 	error = user_path_dir(put_old, &old);
2772 	if (error)
2773 		goto out1;
2774 
2775 	error = security_sb_pivotroot(&old, &new);
2776 	if (error)
2777 		goto out2;
2778 
2779 	get_fs_root(current->fs, &root);
2780 	old_mp = lock_mount(&old);
2781 	error = PTR_ERR(old_mp);
2782 	if (IS_ERR(old_mp))
2783 		goto out3;
2784 
2785 	error = -EINVAL;
2786 	new_mnt = real_mount(new.mnt);
2787 	root_mnt = real_mount(root.mnt);
2788 	old_mnt = real_mount(old.mnt);
2789 	if (IS_MNT_SHARED(old_mnt) ||
2790 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2791 		IS_MNT_SHARED(root_mnt->mnt_parent))
2792 		goto out4;
2793 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2794 		goto out4;
2795 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2796 		goto out4;
2797 	error = -ENOENT;
2798 	if (d_unlinked(new.dentry))
2799 		goto out4;
2800 	error = -EBUSY;
2801 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2802 		goto out4; /* loop, on the same file system  */
2803 	error = -EINVAL;
2804 	if (root.mnt->mnt_root != root.dentry)
2805 		goto out4; /* not a mountpoint */
2806 	if (!mnt_has_parent(root_mnt))
2807 		goto out4; /* not attached */
2808 	root_mp = root_mnt->mnt_mp;
2809 	if (new.mnt->mnt_root != new.dentry)
2810 		goto out4; /* not a mountpoint */
2811 	if (!mnt_has_parent(new_mnt))
2812 		goto out4; /* not attached */
2813 	/* make sure we can reach put_old from new_root */
2814 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2815 		goto out4;
2816 	root_mp->m_count++; /* pin it so it won't go away */
2817 	lock_mount_hash();
2818 	detach_mnt(new_mnt, &parent_path);
2819 	detach_mnt(root_mnt, &root_parent);
2820 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2821 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2822 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2823 	}
2824 	/* mount old root on put_old */
2825 	attach_mnt(root_mnt, old_mnt, old_mp);
2826 	/* mount new_root on / */
2827 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2828 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2829 	unlock_mount_hash();
2830 	chroot_fs_refs(&root, &new);
2831 	put_mountpoint(root_mp);
2832 	error = 0;
2833 out4:
2834 	unlock_mount(old_mp);
2835 	if (!error) {
2836 		path_put(&root_parent);
2837 		path_put(&parent_path);
2838 	}
2839 out3:
2840 	path_put(&root);
2841 out2:
2842 	path_put(&old);
2843 out1:
2844 	path_put(&new);
2845 out0:
2846 	return error;
2847 }
2848 
2849 static void __init init_mount_tree(void)
2850 {
2851 	struct vfsmount *mnt;
2852 	struct mnt_namespace *ns;
2853 	struct path root;
2854 	struct file_system_type *type;
2855 
2856 	type = get_fs_type("rootfs");
2857 	if (!type)
2858 		panic("Can't find rootfs type");
2859 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2860 	put_filesystem(type);
2861 	if (IS_ERR(mnt))
2862 		panic("Can't create rootfs");
2863 
2864 	ns = create_mnt_ns(mnt);
2865 	if (IS_ERR(ns))
2866 		panic("Can't allocate initial namespace");
2867 
2868 	init_task.nsproxy->mnt_ns = ns;
2869 	get_mnt_ns(ns);
2870 
2871 	root.mnt = mnt;
2872 	root.dentry = mnt->mnt_root;
2873 
2874 	set_fs_pwd(current->fs, &root);
2875 	set_fs_root(current->fs, &root);
2876 }
2877 
2878 void __init mnt_init(void)
2879 {
2880 	unsigned u;
2881 	int err;
2882 
2883 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2884 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2885 
2886 	mount_hashtable = alloc_large_system_hash("Mount-cache",
2887 				sizeof(struct hlist_head),
2888 				mhash_entries, 19,
2889 				0,
2890 				&m_hash_shift, &m_hash_mask, 0, 0);
2891 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2892 				sizeof(struct hlist_head),
2893 				mphash_entries, 19,
2894 				0,
2895 				&mp_hash_shift, &mp_hash_mask, 0, 0);
2896 
2897 	if (!mount_hashtable || !mountpoint_hashtable)
2898 		panic("Failed to allocate mount hash table\n");
2899 
2900 	for (u = 0; u <= m_hash_mask; u++)
2901 		INIT_HLIST_HEAD(&mount_hashtable[u]);
2902 	for (u = 0; u <= mp_hash_mask; u++)
2903 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2904 
2905 	kernfs_init();
2906 
2907 	err = sysfs_init();
2908 	if (err)
2909 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2910 			__func__, err);
2911 	fs_kobj = kobject_create_and_add("fs", NULL);
2912 	if (!fs_kobj)
2913 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2914 	init_rootfs();
2915 	init_mount_tree();
2916 }
2917 
2918 void put_mnt_ns(struct mnt_namespace *ns)
2919 {
2920 	if (!atomic_dec_and_test(&ns->count))
2921 		return;
2922 	drop_collected_mounts(&ns->root->mnt);
2923 	free_mnt_ns(ns);
2924 }
2925 
2926 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2927 {
2928 	struct vfsmount *mnt;
2929 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2930 	if (!IS_ERR(mnt)) {
2931 		/*
2932 		 * it is a longterm mount, don't release mnt until
2933 		 * we unmount before file sys is unregistered
2934 		*/
2935 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2936 	}
2937 	return mnt;
2938 }
2939 EXPORT_SYMBOL_GPL(kern_mount_data);
2940 
2941 void kern_unmount(struct vfsmount *mnt)
2942 {
2943 	/* release long term mount so mount point can be released */
2944 	if (!IS_ERR_OR_NULL(mnt)) {
2945 		real_mount(mnt)->mnt_ns = NULL;
2946 		synchronize_rcu();	/* yecchhh... */
2947 		mntput(mnt);
2948 	}
2949 }
2950 EXPORT_SYMBOL(kern_unmount);
2951 
2952 bool our_mnt(struct vfsmount *mnt)
2953 {
2954 	return check_mnt(real_mount(mnt));
2955 }
2956 
2957 bool current_chrooted(void)
2958 {
2959 	/* Does the current process have a non-standard root */
2960 	struct path ns_root;
2961 	struct path fs_root;
2962 	bool chrooted;
2963 
2964 	/* Find the namespace root */
2965 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2966 	ns_root.dentry = ns_root.mnt->mnt_root;
2967 	path_get(&ns_root);
2968 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2969 		;
2970 
2971 	get_fs_root(current->fs, &fs_root);
2972 
2973 	chrooted = !path_equal(&fs_root, &ns_root);
2974 
2975 	path_put(&fs_root);
2976 	path_put(&ns_root);
2977 
2978 	return chrooted;
2979 }
2980 
2981 bool fs_fully_visible(struct file_system_type *type)
2982 {
2983 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2984 	struct mount *mnt;
2985 	bool visible = false;
2986 
2987 	if (unlikely(!ns))
2988 		return false;
2989 
2990 	down_read(&namespace_sem);
2991 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2992 		struct mount *child;
2993 		if (mnt->mnt.mnt_sb->s_type != type)
2994 			continue;
2995 
2996 		/* This mount is not fully visible if there are any child mounts
2997 		 * that cover anything except for empty directories.
2998 		 */
2999 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3000 			struct inode *inode = child->mnt_mountpoint->d_inode;
3001 			if (!S_ISDIR(inode->i_mode))
3002 				goto next;
3003 			if (inode->i_nlink > 2)
3004 				goto next;
3005 		}
3006 		visible = true;
3007 		goto found;
3008 	next:	;
3009 	}
3010 found:
3011 	up_read(&namespace_sem);
3012 	return visible;
3013 }
3014 
3015 static void *mntns_get(struct task_struct *task)
3016 {
3017 	struct mnt_namespace *ns = NULL;
3018 	struct nsproxy *nsproxy;
3019 
3020 	task_lock(task);
3021 	nsproxy = task->nsproxy;
3022 	if (nsproxy) {
3023 		ns = nsproxy->mnt_ns;
3024 		get_mnt_ns(ns);
3025 	}
3026 	task_unlock(task);
3027 
3028 	return ns;
3029 }
3030 
3031 static void mntns_put(void *ns)
3032 {
3033 	put_mnt_ns(ns);
3034 }
3035 
3036 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3037 {
3038 	struct fs_struct *fs = current->fs;
3039 	struct mnt_namespace *mnt_ns = ns;
3040 	struct path root;
3041 
3042 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3043 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3044 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3045 		return -EPERM;
3046 
3047 	if (fs->users != 1)
3048 		return -EINVAL;
3049 
3050 	get_mnt_ns(mnt_ns);
3051 	put_mnt_ns(nsproxy->mnt_ns);
3052 	nsproxy->mnt_ns = mnt_ns;
3053 
3054 	/* Find the root */
3055 	root.mnt    = &mnt_ns->root->mnt;
3056 	root.dentry = mnt_ns->root->mnt.mnt_root;
3057 	path_get(&root);
3058 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3059 		;
3060 
3061 	/* Update the pwd and root */
3062 	set_fs_pwd(fs, &root);
3063 	set_fs_root(fs, &root);
3064 
3065 	path_put(&root);
3066 	return 0;
3067 }
3068 
3069 static unsigned int mntns_inum(void *ns)
3070 {
3071 	struct mnt_namespace *mnt_ns = ns;
3072 	return mnt_ns->proc_inum;
3073 }
3074 
3075 const struct proc_ns_operations mntns_operations = {
3076 	.name		= "mnt",
3077 	.type		= CLONE_NEWNS,
3078 	.get		= mntns_get,
3079 	.put		= mntns_put,
3080 	.install	= mntns_install,
3081 	.inum		= mntns_inum,
3082 };
3083