1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 static unsigned int m_hash_mask __read_mostly; 31 static unsigned int m_hash_shift __read_mostly; 32 static unsigned int mp_hash_mask __read_mostly; 33 static unsigned int mp_hash_shift __read_mostly; 34 35 static __initdata unsigned long mhash_entries; 36 static int __init set_mhash_entries(char *str) 37 { 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42 } 43 __setup("mhash_entries=", set_mhash_entries); 44 45 static __initdata unsigned long mphash_entries; 46 static int __init set_mphash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mphash_entries=", set_mphash_entries); 54 55 static u64 event; 56 static DEFINE_IDA(mnt_id_ida); 57 static DEFINE_IDA(mnt_group_ida); 58 static DEFINE_SPINLOCK(mnt_id_lock); 59 static int mnt_id_start = 0; 60 static int mnt_group_start = 1; 61 62 static struct hlist_head *mount_hashtable __read_mostly; 63 static struct hlist_head *mountpoint_hashtable __read_mostly; 64 static struct kmem_cache *mnt_cache __read_mostly; 65 static DECLARE_RWSEM(namespace_sem); 66 67 /* /sys/fs */ 68 struct kobject *fs_kobj; 69 EXPORT_SYMBOL_GPL(fs_kobj); 70 71 /* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82 { 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87 } 88 89 static inline struct hlist_head *mp_hash(struct dentry *dentry) 90 { 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94 } 95 96 /* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static struct mount *alloc_vfsmnt(const char *name) 194 { 195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 196 if (mnt) { 197 int err; 198 199 err = mnt_alloc_id(mnt); 200 if (err) 201 goto out_free_cache; 202 203 if (name) { 204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 205 if (!mnt->mnt_devname) 206 goto out_free_id; 207 } 208 209 #ifdef CONFIG_SMP 210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 211 if (!mnt->mnt_pcp) 212 goto out_free_devname; 213 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 215 #else 216 mnt->mnt_count = 1; 217 mnt->mnt_writers = 0; 218 #endif 219 220 INIT_HLIST_NODE(&mnt->mnt_hash); 221 INIT_LIST_HEAD(&mnt->mnt_child); 222 INIT_LIST_HEAD(&mnt->mnt_mounts); 223 INIT_LIST_HEAD(&mnt->mnt_list); 224 INIT_LIST_HEAD(&mnt->mnt_expire); 225 INIT_LIST_HEAD(&mnt->mnt_share); 226 INIT_LIST_HEAD(&mnt->mnt_slave_list); 227 INIT_LIST_HEAD(&mnt->mnt_slave); 228 #ifdef CONFIG_FSNOTIFY 229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 230 #endif 231 } 232 return mnt; 233 234 #ifdef CONFIG_SMP 235 out_free_devname: 236 kfree(mnt->mnt_devname); 237 #endif 238 out_free_id: 239 mnt_free_id(mnt); 240 out_free_cache: 241 kmem_cache_free(mnt_cache, mnt); 242 return NULL; 243 } 244 245 /* 246 * Most r/o checks on a fs are for operations that take 247 * discrete amounts of time, like a write() or unlink(). 248 * We must keep track of when those operations start 249 * (for permission checks) and when they end, so that 250 * we can determine when writes are able to occur to 251 * a filesystem. 252 */ 253 /* 254 * __mnt_is_readonly: check whether a mount is read-only 255 * @mnt: the mount to check for its write status 256 * 257 * This shouldn't be used directly ouside of the VFS. 258 * It does not guarantee that the filesystem will stay 259 * r/w, just that it is right *now*. This can not and 260 * should not be used in place of IS_RDONLY(inode). 261 * mnt_want/drop_write() will _keep_ the filesystem 262 * r/w. 263 */ 264 int __mnt_is_readonly(struct vfsmount *mnt) 265 { 266 if (mnt->mnt_flags & MNT_READONLY) 267 return 1; 268 if (mnt->mnt_sb->s_flags & MS_RDONLY) 269 return 1; 270 return 0; 271 } 272 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 273 274 static inline void mnt_inc_writers(struct mount *mnt) 275 { 276 #ifdef CONFIG_SMP 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 278 #else 279 mnt->mnt_writers++; 280 #endif 281 } 282 283 static inline void mnt_dec_writers(struct mount *mnt) 284 { 285 #ifdef CONFIG_SMP 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 287 #else 288 mnt->mnt_writers--; 289 #endif 290 } 291 292 static unsigned int mnt_get_writers(struct mount *mnt) 293 { 294 #ifdef CONFIG_SMP 295 unsigned int count = 0; 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 300 } 301 302 return count; 303 #else 304 return mnt->mnt_writers; 305 #endif 306 } 307 308 static int mnt_is_readonly(struct vfsmount *mnt) 309 { 310 if (mnt->mnt_sb->s_readonly_remount) 311 return 1; 312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 313 smp_rmb(); 314 return __mnt_is_readonly(mnt); 315 } 316 317 /* 318 * Most r/o & frozen checks on a fs are for operations that take discrete 319 * amounts of time, like a write() or unlink(). We must keep track of when 320 * those operations start (for permission checks) and when they end, so that we 321 * can determine when writes are able to occur to a filesystem. 322 */ 323 /** 324 * __mnt_want_write - get write access to a mount without freeze protection 325 * @m: the mount on which to take a write 326 * 327 * This tells the low-level filesystem that a write is about to be performed to 328 * it, and makes sure that writes are allowed (mnt it read-write) before 329 * returning success. This operation does not protect against filesystem being 330 * frozen. When the write operation is finished, __mnt_drop_write() must be 331 * called. This is effectively a refcount. 332 */ 333 int __mnt_want_write(struct vfsmount *m) 334 { 335 struct mount *mnt = real_mount(m); 336 int ret = 0; 337 338 preempt_disable(); 339 mnt_inc_writers(mnt); 340 /* 341 * The store to mnt_inc_writers must be visible before we pass 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 343 * incremented count after it has set MNT_WRITE_HOLD. 344 */ 345 smp_mb(); 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 347 cpu_relax(); 348 /* 349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 350 * be set to match its requirements. So we must not load that until 351 * MNT_WRITE_HOLD is cleared. 352 */ 353 smp_rmb(); 354 if (mnt_is_readonly(m)) { 355 mnt_dec_writers(mnt); 356 ret = -EROFS; 357 } 358 preempt_enable(); 359 360 return ret; 361 } 362 363 /** 364 * mnt_want_write - get write access to a mount 365 * @m: the mount on which to take a write 366 * 367 * This tells the low-level filesystem that a write is about to be performed to 368 * it, and makes sure that writes are allowed (mount is read-write, filesystem 369 * is not frozen) before returning success. When the write operation is 370 * finished, mnt_drop_write() must be called. This is effectively a refcount. 371 */ 372 int mnt_want_write(struct vfsmount *m) 373 { 374 int ret; 375 376 sb_start_write(m->mnt_sb); 377 ret = __mnt_want_write(m); 378 if (ret) 379 sb_end_write(m->mnt_sb); 380 return ret; 381 } 382 EXPORT_SYMBOL_GPL(mnt_want_write); 383 384 /** 385 * mnt_clone_write - get write access to a mount 386 * @mnt: the mount on which to take a write 387 * 388 * This is effectively like mnt_want_write, except 389 * it must only be used to take an extra write reference 390 * on a mountpoint that we already know has a write reference 391 * on it. This allows some optimisation. 392 * 393 * After finished, mnt_drop_write must be called as usual to 394 * drop the reference. 395 */ 396 int mnt_clone_write(struct vfsmount *mnt) 397 { 398 /* superblock may be r/o */ 399 if (__mnt_is_readonly(mnt)) 400 return -EROFS; 401 preempt_disable(); 402 mnt_inc_writers(real_mount(mnt)); 403 preempt_enable(); 404 return 0; 405 } 406 EXPORT_SYMBOL_GPL(mnt_clone_write); 407 408 /** 409 * __mnt_want_write_file - get write access to a file's mount 410 * @file: the file who's mount on which to take a write 411 * 412 * This is like __mnt_want_write, but it takes a file and can 413 * do some optimisations if the file is open for write already 414 */ 415 int __mnt_want_write_file(struct file *file) 416 { 417 if (!(file->f_mode & FMODE_WRITER)) 418 return __mnt_want_write(file->f_path.mnt); 419 else 420 return mnt_clone_write(file->f_path.mnt); 421 } 422 423 /** 424 * mnt_want_write_file - get write access to a file's mount 425 * @file: the file who's mount on which to take a write 426 * 427 * This is like mnt_want_write, but it takes a file and can 428 * do some optimisations if the file is open for write already 429 */ 430 int mnt_want_write_file(struct file *file) 431 { 432 int ret; 433 434 sb_start_write(file->f_path.mnt->mnt_sb); 435 ret = __mnt_want_write_file(file); 436 if (ret) 437 sb_end_write(file->f_path.mnt->mnt_sb); 438 return ret; 439 } 440 EXPORT_SYMBOL_GPL(mnt_want_write_file); 441 442 /** 443 * __mnt_drop_write - give up write access to a mount 444 * @mnt: the mount on which to give up write access 445 * 446 * Tells the low-level filesystem that we are done 447 * performing writes to it. Must be matched with 448 * __mnt_want_write() call above. 449 */ 450 void __mnt_drop_write(struct vfsmount *mnt) 451 { 452 preempt_disable(); 453 mnt_dec_writers(real_mount(mnt)); 454 preempt_enable(); 455 } 456 457 /** 458 * mnt_drop_write - give up write access to a mount 459 * @mnt: the mount on which to give up write access 460 * 461 * Tells the low-level filesystem that we are done performing writes to it and 462 * also allows filesystem to be frozen again. Must be matched with 463 * mnt_want_write() call above. 464 */ 465 void mnt_drop_write(struct vfsmount *mnt) 466 { 467 __mnt_drop_write(mnt); 468 sb_end_write(mnt->mnt_sb); 469 } 470 EXPORT_SYMBOL_GPL(mnt_drop_write); 471 472 void __mnt_drop_write_file(struct file *file) 473 { 474 __mnt_drop_write(file->f_path.mnt); 475 } 476 477 void mnt_drop_write_file(struct file *file) 478 { 479 mnt_drop_write(file->f_path.mnt); 480 } 481 EXPORT_SYMBOL(mnt_drop_write_file); 482 483 static int mnt_make_readonly(struct mount *mnt) 484 { 485 int ret = 0; 486 487 lock_mount_hash(); 488 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 489 /* 490 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 491 * should be visible before we do. 492 */ 493 smp_mb(); 494 495 /* 496 * With writers on hold, if this value is zero, then there are 497 * definitely no active writers (although held writers may subsequently 498 * increment the count, they'll have to wait, and decrement it after 499 * seeing MNT_READONLY). 500 * 501 * It is OK to have counter incremented on one CPU and decremented on 502 * another: the sum will add up correctly. The danger would be when we 503 * sum up each counter, if we read a counter before it is incremented, 504 * but then read another CPU's count which it has been subsequently 505 * decremented from -- we would see more decrements than we should. 506 * MNT_WRITE_HOLD protects against this scenario, because 507 * mnt_want_write first increments count, then smp_mb, then spins on 508 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 509 * we're counting up here. 510 */ 511 if (mnt_get_writers(mnt) > 0) 512 ret = -EBUSY; 513 else 514 mnt->mnt.mnt_flags |= MNT_READONLY; 515 /* 516 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 517 * that become unheld will see MNT_READONLY. 518 */ 519 smp_wmb(); 520 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 521 unlock_mount_hash(); 522 return ret; 523 } 524 525 static void __mnt_unmake_readonly(struct mount *mnt) 526 { 527 lock_mount_hash(); 528 mnt->mnt.mnt_flags &= ~MNT_READONLY; 529 unlock_mount_hash(); 530 } 531 532 int sb_prepare_remount_readonly(struct super_block *sb) 533 { 534 struct mount *mnt; 535 int err = 0; 536 537 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 538 if (atomic_long_read(&sb->s_remove_count)) 539 return -EBUSY; 540 541 lock_mount_hash(); 542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 543 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 544 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 545 smp_mb(); 546 if (mnt_get_writers(mnt) > 0) { 547 err = -EBUSY; 548 break; 549 } 550 } 551 } 552 if (!err && atomic_long_read(&sb->s_remove_count)) 553 err = -EBUSY; 554 555 if (!err) { 556 sb->s_readonly_remount = 1; 557 smp_wmb(); 558 } 559 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 560 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 561 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 562 } 563 unlock_mount_hash(); 564 565 return err; 566 } 567 568 static void free_vfsmnt(struct mount *mnt) 569 { 570 kfree(mnt->mnt_devname); 571 #ifdef CONFIG_SMP 572 free_percpu(mnt->mnt_pcp); 573 #endif 574 kmem_cache_free(mnt_cache, mnt); 575 } 576 577 static void delayed_free_vfsmnt(struct rcu_head *head) 578 { 579 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 580 } 581 582 /* call under rcu_read_lock */ 583 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 584 { 585 struct mount *mnt; 586 if (read_seqretry(&mount_lock, seq)) 587 return false; 588 if (bastard == NULL) 589 return true; 590 mnt = real_mount(bastard); 591 mnt_add_count(mnt, 1); 592 if (likely(!read_seqretry(&mount_lock, seq))) 593 return true; 594 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 595 mnt_add_count(mnt, -1); 596 return false; 597 } 598 rcu_read_unlock(); 599 mntput(bastard); 600 rcu_read_lock(); 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * find the last mount at @dentry on vfsmount @mnt. 621 * mount_lock must be held. 622 */ 623 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 624 { 625 struct mount *p, *res; 626 res = p = __lookup_mnt(mnt, dentry); 627 if (!p) 628 goto out; 629 hlist_for_each_entry_continue(p, mnt_hash) { 630 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 631 break; 632 res = p; 633 } 634 out: 635 return res; 636 } 637 638 /* 639 * lookup_mnt - Return the first child mount mounted at path 640 * 641 * "First" means first mounted chronologically. If you create the 642 * following mounts: 643 * 644 * mount /dev/sda1 /mnt 645 * mount /dev/sda2 /mnt 646 * mount /dev/sda3 /mnt 647 * 648 * Then lookup_mnt() on the base /mnt dentry in the root mount will 649 * return successively the root dentry and vfsmount of /dev/sda1, then 650 * /dev/sda2, then /dev/sda3, then NULL. 651 * 652 * lookup_mnt takes a reference to the found vfsmount. 653 */ 654 struct vfsmount *lookup_mnt(struct path *path) 655 { 656 struct mount *child_mnt; 657 struct vfsmount *m; 658 unsigned seq; 659 660 rcu_read_lock(); 661 do { 662 seq = read_seqbegin(&mount_lock); 663 child_mnt = __lookup_mnt(path->mnt, path->dentry); 664 m = child_mnt ? &child_mnt->mnt : NULL; 665 } while (!legitimize_mnt(m, seq)); 666 rcu_read_unlock(); 667 return m; 668 } 669 670 static struct mountpoint *new_mountpoint(struct dentry *dentry) 671 { 672 struct hlist_head *chain = mp_hash(dentry); 673 struct mountpoint *mp; 674 int ret; 675 676 hlist_for_each_entry(mp, chain, m_hash) { 677 if (mp->m_dentry == dentry) { 678 /* might be worth a WARN_ON() */ 679 if (d_unlinked(dentry)) 680 return ERR_PTR(-ENOENT); 681 mp->m_count++; 682 return mp; 683 } 684 } 685 686 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 687 if (!mp) 688 return ERR_PTR(-ENOMEM); 689 690 ret = d_set_mounted(dentry); 691 if (ret) { 692 kfree(mp); 693 return ERR_PTR(ret); 694 } 695 696 mp->m_dentry = dentry; 697 mp->m_count = 1; 698 hlist_add_head(&mp->m_hash, chain); 699 return mp; 700 } 701 702 static void put_mountpoint(struct mountpoint *mp) 703 { 704 if (!--mp->m_count) { 705 struct dentry *dentry = mp->m_dentry; 706 spin_lock(&dentry->d_lock); 707 dentry->d_flags &= ~DCACHE_MOUNTED; 708 spin_unlock(&dentry->d_lock); 709 hlist_del(&mp->m_hash); 710 kfree(mp); 711 } 712 } 713 714 static inline int check_mnt(struct mount *mnt) 715 { 716 return mnt->mnt_ns == current->nsproxy->mnt_ns; 717 } 718 719 /* 720 * vfsmount lock must be held for write 721 */ 722 static void touch_mnt_namespace(struct mnt_namespace *ns) 723 { 724 if (ns) { 725 ns->event = ++event; 726 wake_up_interruptible(&ns->poll); 727 } 728 } 729 730 /* 731 * vfsmount lock must be held for write 732 */ 733 static void __touch_mnt_namespace(struct mnt_namespace *ns) 734 { 735 if (ns && ns->event != event) { 736 ns->event = event; 737 wake_up_interruptible(&ns->poll); 738 } 739 } 740 741 /* 742 * vfsmount lock must be held for write 743 */ 744 static void detach_mnt(struct mount *mnt, struct path *old_path) 745 { 746 old_path->dentry = mnt->mnt_mountpoint; 747 old_path->mnt = &mnt->mnt_parent->mnt; 748 mnt->mnt_parent = mnt; 749 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 750 list_del_init(&mnt->mnt_child); 751 hlist_del_init_rcu(&mnt->mnt_hash); 752 put_mountpoint(mnt->mnt_mp); 753 mnt->mnt_mp = NULL; 754 } 755 756 /* 757 * vfsmount lock must be held for write 758 */ 759 void mnt_set_mountpoint(struct mount *mnt, 760 struct mountpoint *mp, 761 struct mount *child_mnt) 762 { 763 mp->m_count++; 764 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 765 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 766 child_mnt->mnt_parent = mnt; 767 child_mnt->mnt_mp = mp; 768 } 769 770 /* 771 * vfsmount lock must be held for write 772 */ 773 static void attach_mnt(struct mount *mnt, 774 struct mount *parent, 775 struct mountpoint *mp) 776 { 777 mnt_set_mountpoint(parent, mp, mnt); 778 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 779 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 780 } 781 782 /* 783 * vfsmount lock must be held for write 784 */ 785 static void commit_tree(struct mount *mnt, struct mount *shadows) 786 { 787 struct mount *parent = mnt->mnt_parent; 788 struct mount *m; 789 LIST_HEAD(head); 790 struct mnt_namespace *n = parent->mnt_ns; 791 792 BUG_ON(parent == mnt); 793 794 list_add_tail(&head, &mnt->mnt_list); 795 list_for_each_entry(m, &head, mnt_list) 796 m->mnt_ns = n; 797 798 list_splice(&head, n->list.prev); 799 800 if (shadows) 801 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash); 802 else 803 hlist_add_head_rcu(&mnt->mnt_hash, 804 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 805 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 806 touch_mnt_namespace(n); 807 } 808 809 static struct mount *next_mnt(struct mount *p, struct mount *root) 810 { 811 struct list_head *next = p->mnt_mounts.next; 812 if (next == &p->mnt_mounts) { 813 while (1) { 814 if (p == root) 815 return NULL; 816 next = p->mnt_child.next; 817 if (next != &p->mnt_parent->mnt_mounts) 818 break; 819 p = p->mnt_parent; 820 } 821 } 822 return list_entry(next, struct mount, mnt_child); 823 } 824 825 static struct mount *skip_mnt_tree(struct mount *p) 826 { 827 struct list_head *prev = p->mnt_mounts.prev; 828 while (prev != &p->mnt_mounts) { 829 p = list_entry(prev, struct mount, mnt_child); 830 prev = p->mnt_mounts.prev; 831 } 832 return p; 833 } 834 835 struct vfsmount * 836 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 837 { 838 struct mount *mnt; 839 struct dentry *root; 840 841 if (!type) 842 return ERR_PTR(-ENODEV); 843 844 mnt = alloc_vfsmnt(name); 845 if (!mnt) 846 return ERR_PTR(-ENOMEM); 847 848 if (flags & MS_KERNMOUNT) 849 mnt->mnt.mnt_flags = MNT_INTERNAL; 850 851 root = mount_fs(type, flags, name, data); 852 if (IS_ERR(root)) { 853 mnt_free_id(mnt); 854 free_vfsmnt(mnt); 855 return ERR_CAST(root); 856 } 857 858 mnt->mnt.mnt_root = root; 859 mnt->mnt.mnt_sb = root->d_sb; 860 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 861 mnt->mnt_parent = mnt; 862 lock_mount_hash(); 863 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 864 unlock_mount_hash(); 865 return &mnt->mnt; 866 } 867 EXPORT_SYMBOL_GPL(vfs_kern_mount); 868 869 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 870 int flag) 871 { 872 struct super_block *sb = old->mnt.mnt_sb; 873 struct mount *mnt; 874 int err; 875 876 mnt = alloc_vfsmnt(old->mnt_devname); 877 if (!mnt) 878 return ERR_PTR(-ENOMEM); 879 880 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 881 mnt->mnt_group_id = 0; /* not a peer of original */ 882 else 883 mnt->mnt_group_id = old->mnt_group_id; 884 885 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 886 err = mnt_alloc_group_id(mnt); 887 if (err) 888 goto out_free; 889 } 890 891 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 892 /* Don't allow unprivileged users to change mount flags */ 893 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY)) 894 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 895 896 /* Don't allow unprivileged users to reveal what is under a mount */ 897 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire)) 898 mnt->mnt.mnt_flags |= MNT_LOCKED; 899 900 atomic_inc(&sb->s_active); 901 mnt->mnt.mnt_sb = sb; 902 mnt->mnt.mnt_root = dget(root); 903 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 904 mnt->mnt_parent = mnt; 905 lock_mount_hash(); 906 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 907 unlock_mount_hash(); 908 909 if ((flag & CL_SLAVE) || 910 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 911 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 912 mnt->mnt_master = old; 913 CLEAR_MNT_SHARED(mnt); 914 } else if (!(flag & CL_PRIVATE)) { 915 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 916 list_add(&mnt->mnt_share, &old->mnt_share); 917 if (IS_MNT_SLAVE(old)) 918 list_add(&mnt->mnt_slave, &old->mnt_slave); 919 mnt->mnt_master = old->mnt_master; 920 } 921 if (flag & CL_MAKE_SHARED) 922 set_mnt_shared(mnt); 923 924 /* stick the duplicate mount on the same expiry list 925 * as the original if that was on one */ 926 if (flag & CL_EXPIRE) { 927 if (!list_empty(&old->mnt_expire)) 928 list_add(&mnt->mnt_expire, &old->mnt_expire); 929 } 930 931 return mnt; 932 933 out_free: 934 mnt_free_id(mnt); 935 free_vfsmnt(mnt); 936 return ERR_PTR(err); 937 } 938 939 static void mntput_no_expire(struct mount *mnt) 940 { 941 put_again: 942 rcu_read_lock(); 943 mnt_add_count(mnt, -1); 944 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 945 rcu_read_unlock(); 946 return; 947 } 948 lock_mount_hash(); 949 if (mnt_get_count(mnt)) { 950 rcu_read_unlock(); 951 unlock_mount_hash(); 952 return; 953 } 954 if (unlikely(mnt->mnt_pinned)) { 955 mnt_add_count(mnt, mnt->mnt_pinned + 1); 956 mnt->mnt_pinned = 0; 957 rcu_read_unlock(); 958 unlock_mount_hash(); 959 acct_auto_close_mnt(&mnt->mnt); 960 goto put_again; 961 } 962 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 963 rcu_read_unlock(); 964 unlock_mount_hash(); 965 return; 966 } 967 mnt->mnt.mnt_flags |= MNT_DOOMED; 968 rcu_read_unlock(); 969 970 list_del(&mnt->mnt_instance); 971 unlock_mount_hash(); 972 973 /* 974 * This probably indicates that somebody messed 975 * up a mnt_want/drop_write() pair. If this 976 * happens, the filesystem was probably unable 977 * to make r/w->r/o transitions. 978 */ 979 /* 980 * The locking used to deal with mnt_count decrement provides barriers, 981 * so mnt_get_writers() below is safe. 982 */ 983 WARN_ON(mnt_get_writers(mnt)); 984 fsnotify_vfsmount_delete(&mnt->mnt); 985 dput(mnt->mnt.mnt_root); 986 deactivate_super(mnt->mnt.mnt_sb); 987 mnt_free_id(mnt); 988 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 989 } 990 991 void mntput(struct vfsmount *mnt) 992 { 993 if (mnt) { 994 struct mount *m = real_mount(mnt); 995 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 996 if (unlikely(m->mnt_expiry_mark)) 997 m->mnt_expiry_mark = 0; 998 mntput_no_expire(m); 999 } 1000 } 1001 EXPORT_SYMBOL(mntput); 1002 1003 struct vfsmount *mntget(struct vfsmount *mnt) 1004 { 1005 if (mnt) 1006 mnt_add_count(real_mount(mnt), 1); 1007 return mnt; 1008 } 1009 EXPORT_SYMBOL(mntget); 1010 1011 void mnt_pin(struct vfsmount *mnt) 1012 { 1013 lock_mount_hash(); 1014 real_mount(mnt)->mnt_pinned++; 1015 unlock_mount_hash(); 1016 } 1017 EXPORT_SYMBOL(mnt_pin); 1018 1019 void mnt_unpin(struct vfsmount *m) 1020 { 1021 struct mount *mnt = real_mount(m); 1022 lock_mount_hash(); 1023 if (mnt->mnt_pinned) { 1024 mnt_add_count(mnt, 1); 1025 mnt->mnt_pinned--; 1026 } 1027 unlock_mount_hash(); 1028 } 1029 EXPORT_SYMBOL(mnt_unpin); 1030 1031 static inline void mangle(struct seq_file *m, const char *s) 1032 { 1033 seq_escape(m, s, " \t\n\\"); 1034 } 1035 1036 /* 1037 * Simple .show_options callback for filesystems which don't want to 1038 * implement more complex mount option showing. 1039 * 1040 * See also save_mount_options(). 1041 */ 1042 int generic_show_options(struct seq_file *m, struct dentry *root) 1043 { 1044 const char *options; 1045 1046 rcu_read_lock(); 1047 options = rcu_dereference(root->d_sb->s_options); 1048 1049 if (options != NULL && options[0]) { 1050 seq_putc(m, ','); 1051 mangle(m, options); 1052 } 1053 rcu_read_unlock(); 1054 1055 return 0; 1056 } 1057 EXPORT_SYMBOL(generic_show_options); 1058 1059 /* 1060 * If filesystem uses generic_show_options(), this function should be 1061 * called from the fill_super() callback. 1062 * 1063 * The .remount_fs callback usually needs to be handled in a special 1064 * way, to make sure, that previous options are not overwritten if the 1065 * remount fails. 1066 * 1067 * Also note, that if the filesystem's .remount_fs function doesn't 1068 * reset all options to their default value, but changes only newly 1069 * given options, then the displayed options will not reflect reality 1070 * any more. 1071 */ 1072 void save_mount_options(struct super_block *sb, char *options) 1073 { 1074 BUG_ON(sb->s_options); 1075 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1076 } 1077 EXPORT_SYMBOL(save_mount_options); 1078 1079 void replace_mount_options(struct super_block *sb, char *options) 1080 { 1081 char *old = sb->s_options; 1082 rcu_assign_pointer(sb->s_options, options); 1083 if (old) { 1084 synchronize_rcu(); 1085 kfree(old); 1086 } 1087 } 1088 EXPORT_SYMBOL(replace_mount_options); 1089 1090 #ifdef CONFIG_PROC_FS 1091 /* iterator; we want it to have access to namespace_sem, thus here... */ 1092 static void *m_start(struct seq_file *m, loff_t *pos) 1093 { 1094 struct proc_mounts *p = proc_mounts(m); 1095 1096 down_read(&namespace_sem); 1097 if (p->cached_event == p->ns->event) { 1098 void *v = p->cached_mount; 1099 if (*pos == p->cached_index) 1100 return v; 1101 if (*pos == p->cached_index + 1) { 1102 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1103 return p->cached_mount = v; 1104 } 1105 } 1106 1107 p->cached_event = p->ns->event; 1108 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1109 p->cached_index = *pos; 1110 return p->cached_mount; 1111 } 1112 1113 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1114 { 1115 struct proc_mounts *p = proc_mounts(m); 1116 1117 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1118 p->cached_index = *pos; 1119 return p->cached_mount; 1120 } 1121 1122 static void m_stop(struct seq_file *m, void *v) 1123 { 1124 up_read(&namespace_sem); 1125 } 1126 1127 static int m_show(struct seq_file *m, void *v) 1128 { 1129 struct proc_mounts *p = proc_mounts(m); 1130 struct mount *r = list_entry(v, struct mount, mnt_list); 1131 return p->show(m, &r->mnt); 1132 } 1133 1134 const struct seq_operations mounts_op = { 1135 .start = m_start, 1136 .next = m_next, 1137 .stop = m_stop, 1138 .show = m_show, 1139 }; 1140 #endif /* CONFIG_PROC_FS */ 1141 1142 /** 1143 * may_umount_tree - check if a mount tree is busy 1144 * @mnt: root of mount tree 1145 * 1146 * This is called to check if a tree of mounts has any 1147 * open files, pwds, chroots or sub mounts that are 1148 * busy. 1149 */ 1150 int may_umount_tree(struct vfsmount *m) 1151 { 1152 struct mount *mnt = real_mount(m); 1153 int actual_refs = 0; 1154 int minimum_refs = 0; 1155 struct mount *p; 1156 BUG_ON(!m); 1157 1158 /* write lock needed for mnt_get_count */ 1159 lock_mount_hash(); 1160 for (p = mnt; p; p = next_mnt(p, mnt)) { 1161 actual_refs += mnt_get_count(p); 1162 minimum_refs += 2; 1163 } 1164 unlock_mount_hash(); 1165 1166 if (actual_refs > minimum_refs) 1167 return 0; 1168 1169 return 1; 1170 } 1171 1172 EXPORT_SYMBOL(may_umount_tree); 1173 1174 /** 1175 * may_umount - check if a mount point is busy 1176 * @mnt: root of mount 1177 * 1178 * This is called to check if a mount point has any 1179 * open files, pwds, chroots or sub mounts. If the 1180 * mount has sub mounts this will return busy 1181 * regardless of whether the sub mounts are busy. 1182 * 1183 * Doesn't take quota and stuff into account. IOW, in some cases it will 1184 * give false negatives. The main reason why it's here is that we need 1185 * a non-destructive way to look for easily umountable filesystems. 1186 */ 1187 int may_umount(struct vfsmount *mnt) 1188 { 1189 int ret = 1; 1190 down_read(&namespace_sem); 1191 lock_mount_hash(); 1192 if (propagate_mount_busy(real_mount(mnt), 2)) 1193 ret = 0; 1194 unlock_mount_hash(); 1195 up_read(&namespace_sem); 1196 return ret; 1197 } 1198 1199 EXPORT_SYMBOL(may_umount); 1200 1201 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1202 1203 static void namespace_unlock(void) 1204 { 1205 struct mount *mnt; 1206 struct hlist_head head = unmounted; 1207 1208 if (likely(hlist_empty(&head))) { 1209 up_write(&namespace_sem); 1210 return; 1211 } 1212 1213 head.first->pprev = &head.first; 1214 INIT_HLIST_HEAD(&unmounted); 1215 1216 up_write(&namespace_sem); 1217 1218 synchronize_rcu(); 1219 1220 while (!hlist_empty(&head)) { 1221 mnt = hlist_entry(head.first, struct mount, mnt_hash); 1222 hlist_del_init(&mnt->mnt_hash); 1223 if (mnt->mnt_ex_mountpoint.mnt) 1224 path_put(&mnt->mnt_ex_mountpoint); 1225 mntput(&mnt->mnt); 1226 } 1227 } 1228 1229 static inline void namespace_lock(void) 1230 { 1231 down_write(&namespace_sem); 1232 } 1233 1234 /* 1235 * mount_lock must be held 1236 * namespace_sem must be held for write 1237 * how = 0 => just this tree, don't propagate 1238 * how = 1 => propagate; we know that nobody else has reference to any victims 1239 * how = 2 => lazy umount 1240 */ 1241 void umount_tree(struct mount *mnt, int how) 1242 { 1243 HLIST_HEAD(tmp_list); 1244 struct mount *p; 1245 struct mount *last = NULL; 1246 1247 for (p = mnt; p; p = next_mnt(p, mnt)) { 1248 hlist_del_init_rcu(&p->mnt_hash); 1249 hlist_add_head(&p->mnt_hash, &tmp_list); 1250 } 1251 1252 if (how) 1253 propagate_umount(&tmp_list); 1254 1255 hlist_for_each_entry(p, &tmp_list, mnt_hash) { 1256 list_del_init(&p->mnt_expire); 1257 list_del_init(&p->mnt_list); 1258 __touch_mnt_namespace(p->mnt_ns); 1259 p->mnt_ns = NULL; 1260 if (how < 2) 1261 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1262 list_del_init(&p->mnt_child); 1263 if (mnt_has_parent(p)) { 1264 put_mountpoint(p->mnt_mp); 1265 /* move the reference to mountpoint into ->mnt_ex_mountpoint */ 1266 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint; 1267 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt; 1268 p->mnt_mountpoint = p->mnt.mnt_root; 1269 p->mnt_parent = p; 1270 p->mnt_mp = NULL; 1271 } 1272 change_mnt_propagation(p, MS_PRIVATE); 1273 last = p; 1274 } 1275 if (last) { 1276 last->mnt_hash.next = unmounted.first; 1277 unmounted.first = tmp_list.first; 1278 unmounted.first->pprev = &unmounted.first; 1279 } 1280 } 1281 1282 static void shrink_submounts(struct mount *mnt); 1283 1284 static int do_umount(struct mount *mnt, int flags) 1285 { 1286 struct super_block *sb = mnt->mnt.mnt_sb; 1287 int retval; 1288 1289 retval = security_sb_umount(&mnt->mnt, flags); 1290 if (retval) 1291 return retval; 1292 1293 /* 1294 * Allow userspace to request a mountpoint be expired rather than 1295 * unmounting unconditionally. Unmount only happens if: 1296 * (1) the mark is already set (the mark is cleared by mntput()) 1297 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1298 */ 1299 if (flags & MNT_EXPIRE) { 1300 if (&mnt->mnt == current->fs->root.mnt || 1301 flags & (MNT_FORCE | MNT_DETACH)) 1302 return -EINVAL; 1303 1304 /* 1305 * probably don't strictly need the lock here if we examined 1306 * all race cases, but it's a slowpath. 1307 */ 1308 lock_mount_hash(); 1309 if (mnt_get_count(mnt) != 2) { 1310 unlock_mount_hash(); 1311 return -EBUSY; 1312 } 1313 unlock_mount_hash(); 1314 1315 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1316 return -EAGAIN; 1317 } 1318 1319 /* 1320 * If we may have to abort operations to get out of this 1321 * mount, and they will themselves hold resources we must 1322 * allow the fs to do things. In the Unix tradition of 1323 * 'Gee thats tricky lets do it in userspace' the umount_begin 1324 * might fail to complete on the first run through as other tasks 1325 * must return, and the like. Thats for the mount program to worry 1326 * about for the moment. 1327 */ 1328 1329 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1330 sb->s_op->umount_begin(sb); 1331 } 1332 1333 /* 1334 * No sense to grab the lock for this test, but test itself looks 1335 * somewhat bogus. Suggestions for better replacement? 1336 * Ho-hum... In principle, we might treat that as umount + switch 1337 * to rootfs. GC would eventually take care of the old vfsmount. 1338 * Actually it makes sense, especially if rootfs would contain a 1339 * /reboot - static binary that would close all descriptors and 1340 * call reboot(9). Then init(8) could umount root and exec /reboot. 1341 */ 1342 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1343 /* 1344 * Special case for "unmounting" root ... 1345 * we just try to remount it readonly. 1346 */ 1347 down_write(&sb->s_umount); 1348 if (!(sb->s_flags & MS_RDONLY)) 1349 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1350 up_write(&sb->s_umount); 1351 return retval; 1352 } 1353 1354 namespace_lock(); 1355 lock_mount_hash(); 1356 event++; 1357 1358 if (flags & MNT_DETACH) { 1359 if (!list_empty(&mnt->mnt_list)) 1360 umount_tree(mnt, 2); 1361 retval = 0; 1362 } else { 1363 shrink_submounts(mnt); 1364 retval = -EBUSY; 1365 if (!propagate_mount_busy(mnt, 2)) { 1366 if (!list_empty(&mnt->mnt_list)) 1367 umount_tree(mnt, 1); 1368 retval = 0; 1369 } 1370 } 1371 unlock_mount_hash(); 1372 namespace_unlock(); 1373 return retval; 1374 } 1375 1376 /* 1377 * Is the caller allowed to modify his namespace? 1378 */ 1379 static inline bool may_mount(void) 1380 { 1381 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1382 } 1383 1384 /* 1385 * Now umount can handle mount points as well as block devices. 1386 * This is important for filesystems which use unnamed block devices. 1387 * 1388 * We now support a flag for forced unmount like the other 'big iron' 1389 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1390 */ 1391 1392 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1393 { 1394 struct path path; 1395 struct mount *mnt; 1396 int retval; 1397 int lookup_flags = 0; 1398 1399 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1400 return -EINVAL; 1401 1402 if (!may_mount()) 1403 return -EPERM; 1404 1405 if (!(flags & UMOUNT_NOFOLLOW)) 1406 lookup_flags |= LOOKUP_FOLLOW; 1407 1408 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1409 if (retval) 1410 goto out; 1411 mnt = real_mount(path.mnt); 1412 retval = -EINVAL; 1413 if (path.dentry != path.mnt->mnt_root) 1414 goto dput_and_out; 1415 if (!check_mnt(mnt)) 1416 goto dput_and_out; 1417 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1418 goto dput_and_out; 1419 1420 retval = do_umount(mnt, flags); 1421 dput_and_out: 1422 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1423 dput(path.dentry); 1424 mntput_no_expire(mnt); 1425 out: 1426 return retval; 1427 } 1428 1429 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1430 1431 /* 1432 * The 2.0 compatible umount. No flags. 1433 */ 1434 SYSCALL_DEFINE1(oldumount, char __user *, name) 1435 { 1436 return sys_umount(name, 0); 1437 } 1438 1439 #endif 1440 1441 static bool is_mnt_ns_file(struct dentry *dentry) 1442 { 1443 /* Is this a proxy for a mount namespace? */ 1444 struct inode *inode = dentry->d_inode; 1445 struct proc_ns *ei; 1446 1447 if (!proc_ns_inode(inode)) 1448 return false; 1449 1450 ei = get_proc_ns(inode); 1451 if (ei->ns_ops != &mntns_operations) 1452 return false; 1453 1454 return true; 1455 } 1456 1457 static bool mnt_ns_loop(struct dentry *dentry) 1458 { 1459 /* Could bind mounting the mount namespace inode cause a 1460 * mount namespace loop? 1461 */ 1462 struct mnt_namespace *mnt_ns; 1463 if (!is_mnt_ns_file(dentry)) 1464 return false; 1465 1466 mnt_ns = get_proc_ns(dentry->d_inode)->ns; 1467 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1468 } 1469 1470 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1471 int flag) 1472 { 1473 struct mount *res, *p, *q, *r, *parent; 1474 1475 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1476 return ERR_PTR(-EINVAL); 1477 1478 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1479 return ERR_PTR(-EINVAL); 1480 1481 res = q = clone_mnt(mnt, dentry, flag); 1482 if (IS_ERR(q)) 1483 return q; 1484 1485 q->mnt.mnt_flags &= ~MNT_LOCKED; 1486 q->mnt_mountpoint = mnt->mnt_mountpoint; 1487 1488 p = mnt; 1489 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1490 struct mount *s; 1491 if (!is_subdir(r->mnt_mountpoint, dentry)) 1492 continue; 1493 1494 for (s = r; s; s = next_mnt(s, r)) { 1495 if (!(flag & CL_COPY_UNBINDABLE) && 1496 IS_MNT_UNBINDABLE(s)) { 1497 s = skip_mnt_tree(s); 1498 continue; 1499 } 1500 if (!(flag & CL_COPY_MNT_NS_FILE) && 1501 is_mnt_ns_file(s->mnt.mnt_root)) { 1502 s = skip_mnt_tree(s); 1503 continue; 1504 } 1505 while (p != s->mnt_parent) { 1506 p = p->mnt_parent; 1507 q = q->mnt_parent; 1508 } 1509 p = s; 1510 parent = q; 1511 q = clone_mnt(p, p->mnt.mnt_root, flag); 1512 if (IS_ERR(q)) 1513 goto out; 1514 lock_mount_hash(); 1515 list_add_tail(&q->mnt_list, &res->mnt_list); 1516 attach_mnt(q, parent, p->mnt_mp); 1517 unlock_mount_hash(); 1518 } 1519 } 1520 return res; 1521 out: 1522 if (res) { 1523 lock_mount_hash(); 1524 umount_tree(res, 0); 1525 unlock_mount_hash(); 1526 } 1527 return q; 1528 } 1529 1530 /* Caller should check returned pointer for errors */ 1531 1532 struct vfsmount *collect_mounts(struct path *path) 1533 { 1534 struct mount *tree; 1535 namespace_lock(); 1536 tree = copy_tree(real_mount(path->mnt), path->dentry, 1537 CL_COPY_ALL | CL_PRIVATE); 1538 namespace_unlock(); 1539 if (IS_ERR(tree)) 1540 return ERR_CAST(tree); 1541 return &tree->mnt; 1542 } 1543 1544 void drop_collected_mounts(struct vfsmount *mnt) 1545 { 1546 namespace_lock(); 1547 lock_mount_hash(); 1548 umount_tree(real_mount(mnt), 0); 1549 unlock_mount_hash(); 1550 namespace_unlock(); 1551 } 1552 1553 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1554 struct vfsmount *root) 1555 { 1556 struct mount *mnt; 1557 int res = f(root, arg); 1558 if (res) 1559 return res; 1560 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1561 res = f(&mnt->mnt, arg); 1562 if (res) 1563 return res; 1564 } 1565 return 0; 1566 } 1567 1568 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1569 { 1570 struct mount *p; 1571 1572 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1573 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1574 mnt_release_group_id(p); 1575 } 1576 } 1577 1578 static int invent_group_ids(struct mount *mnt, bool recurse) 1579 { 1580 struct mount *p; 1581 1582 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1583 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1584 int err = mnt_alloc_group_id(p); 1585 if (err) { 1586 cleanup_group_ids(mnt, p); 1587 return err; 1588 } 1589 } 1590 } 1591 1592 return 0; 1593 } 1594 1595 /* 1596 * @source_mnt : mount tree to be attached 1597 * @nd : place the mount tree @source_mnt is attached 1598 * @parent_nd : if non-null, detach the source_mnt from its parent and 1599 * store the parent mount and mountpoint dentry. 1600 * (done when source_mnt is moved) 1601 * 1602 * NOTE: in the table below explains the semantics when a source mount 1603 * of a given type is attached to a destination mount of a given type. 1604 * --------------------------------------------------------------------------- 1605 * | BIND MOUNT OPERATION | 1606 * |************************************************************************** 1607 * | source-->| shared | private | slave | unbindable | 1608 * | dest | | | | | 1609 * | | | | | | | 1610 * | v | | | | | 1611 * |************************************************************************** 1612 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1613 * | | | | | | 1614 * |non-shared| shared (+) | private | slave (*) | invalid | 1615 * *************************************************************************** 1616 * A bind operation clones the source mount and mounts the clone on the 1617 * destination mount. 1618 * 1619 * (++) the cloned mount is propagated to all the mounts in the propagation 1620 * tree of the destination mount and the cloned mount is added to 1621 * the peer group of the source mount. 1622 * (+) the cloned mount is created under the destination mount and is marked 1623 * as shared. The cloned mount is added to the peer group of the source 1624 * mount. 1625 * (+++) the mount is propagated to all the mounts in the propagation tree 1626 * of the destination mount and the cloned mount is made slave 1627 * of the same master as that of the source mount. The cloned mount 1628 * is marked as 'shared and slave'. 1629 * (*) the cloned mount is made a slave of the same master as that of the 1630 * source mount. 1631 * 1632 * --------------------------------------------------------------------------- 1633 * | MOVE MOUNT OPERATION | 1634 * |************************************************************************** 1635 * | source-->| shared | private | slave | unbindable | 1636 * | dest | | | | | 1637 * | | | | | | | 1638 * | v | | | | | 1639 * |************************************************************************** 1640 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1641 * | | | | | | 1642 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1643 * *************************************************************************** 1644 * 1645 * (+) the mount is moved to the destination. And is then propagated to 1646 * all the mounts in the propagation tree of the destination mount. 1647 * (+*) the mount is moved to the destination. 1648 * (+++) the mount is moved to the destination and is then propagated to 1649 * all the mounts belonging to the destination mount's propagation tree. 1650 * the mount is marked as 'shared and slave'. 1651 * (*) the mount continues to be a slave at the new location. 1652 * 1653 * if the source mount is a tree, the operations explained above is 1654 * applied to each mount in the tree. 1655 * Must be called without spinlocks held, since this function can sleep 1656 * in allocations. 1657 */ 1658 static int attach_recursive_mnt(struct mount *source_mnt, 1659 struct mount *dest_mnt, 1660 struct mountpoint *dest_mp, 1661 struct path *parent_path) 1662 { 1663 HLIST_HEAD(tree_list); 1664 struct mount *child, *p; 1665 struct hlist_node *n; 1666 int err; 1667 1668 if (IS_MNT_SHARED(dest_mnt)) { 1669 err = invent_group_ids(source_mnt, true); 1670 if (err) 1671 goto out; 1672 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1673 lock_mount_hash(); 1674 if (err) 1675 goto out_cleanup_ids; 1676 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1677 set_mnt_shared(p); 1678 } else { 1679 lock_mount_hash(); 1680 } 1681 if (parent_path) { 1682 detach_mnt(source_mnt, parent_path); 1683 attach_mnt(source_mnt, dest_mnt, dest_mp); 1684 touch_mnt_namespace(source_mnt->mnt_ns); 1685 } else { 1686 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1687 commit_tree(source_mnt, NULL); 1688 } 1689 1690 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1691 struct mount *q; 1692 hlist_del_init(&child->mnt_hash); 1693 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1694 child->mnt_mountpoint); 1695 commit_tree(child, q); 1696 } 1697 unlock_mount_hash(); 1698 1699 return 0; 1700 1701 out_cleanup_ids: 1702 while (!hlist_empty(&tree_list)) { 1703 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1704 umount_tree(child, 0); 1705 } 1706 unlock_mount_hash(); 1707 cleanup_group_ids(source_mnt, NULL); 1708 out: 1709 return err; 1710 } 1711 1712 static struct mountpoint *lock_mount(struct path *path) 1713 { 1714 struct vfsmount *mnt; 1715 struct dentry *dentry = path->dentry; 1716 retry: 1717 mutex_lock(&dentry->d_inode->i_mutex); 1718 if (unlikely(cant_mount(dentry))) { 1719 mutex_unlock(&dentry->d_inode->i_mutex); 1720 return ERR_PTR(-ENOENT); 1721 } 1722 namespace_lock(); 1723 mnt = lookup_mnt(path); 1724 if (likely(!mnt)) { 1725 struct mountpoint *mp = new_mountpoint(dentry); 1726 if (IS_ERR(mp)) { 1727 namespace_unlock(); 1728 mutex_unlock(&dentry->d_inode->i_mutex); 1729 return mp; 1730 } 1731 return mp; 1732 } 1733 namespace_unlock(); 1734 mutex_unlock(&path->dentry->d_inode->i_mutex); 1735 path_put(path); 1736 path->mnt = mnt; 1737 dentry = path->dentry = dget(mnt->mnt_root); 1738 goto retry; 1739 } 1740 1741 static void unlock_mount(struct mountpoint *where) 1742 { 1743 struct dentry *dentry = where->m_dentry; 1744 put_mountpoint(where); 1745 namespace_unlock(); 1746 mutex_unlock(&dentry->d_inode->i_mutex); 1747 } 1748 1749 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1750 { 1751 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1752 return -EINVAL; 1753 1754 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1755 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1756 return -ENOTDIR; 1757 1758 return attach_recursive_mnt(mnt, p, mp, NULL); 1759 } 1760 1761 /* 1762 * Sanity check the flags to change_mnt_propagation. 1763 */ 1764 1765 static int flags_to_propagation_type(int flags) 1766 { 1767 int type = flags & ~(MS_REC | MS_SILENT); 1768 1769 /* Fail if any non-propagation flags are set */ 1770 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1771 return 0; 1772 /* Only one propagation flag should be set */ 1773 if (!is_power_of_2(type)) 1774 return 0; 1775 return type; 1776 } 1777 1778 /* 1779 * recursively change the type of the mountpoint. 1780 */ 1781 static int do_change_type(struct path *path, int flag) 1782 { 1783 struct mount *m; 1784 struct mount *mnt = real_mount(path->mnt); 1785 int recurse = flag & MS_REC; 1786 int type; 1787 int err = 0; 1788 1789 if (path->dentry != path->mnt->mnt_root) 1790 return -EINVAL; 1791 1792 type = flags_to_propagation_type(flag); 1793 if (!type) 1794 return -EINVAL; 1795 1796 namespace_lock(); 1797 if (type == MS_SHARED) { 1798 err = invent_group_ids(mnt, recurse); 1799 if (err) 1800 goto out_unlock; 1801 } 1802 1803 lock_mount_hash(); 1804 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1805 change_mnt_propagation(m, type); 1806 unlock_mount_hash(); 1807 1808 out_unlock: 1809 namespace_unlock(); 1810 return err; 1811 } 1812 1813 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1814 { 1815 struct mount *child; 1816 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1817 if (!is_subdir(child->mnt_mountpoint, dentry)) 1818 continue; 1819 1820 if (child->mnt.mnt_flags & MNT_LOCKED) 1821 return true; 1822 } 1823 return false; 1824 } 1825 1826 /* 1827 * do loopback mount. 1828 */ 1829 static int do_loopback(struct path *path, const char *old_name, 1830 int recurse) 1831 { 1832 struct path old_path; 1833 struct mount *mnt = NULL, *old, *parent; 1834 struct mountpoint *mp; 1835 int err; 1836 if (!old_name || !*old_name) 1837 return -EINVAL; 1838 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1839 if (err) 1840 return err; 1841 1842 err = -EINVAL; 1843 if (mnt_ns_loop(old_path.dentry)) 1844 goto out; 1845 1846 mp = lock_mount(path); 1847 err = PTR_ERR(mp); 1848 if (IS_ERR(mp)) 1849 goto out; 1850 1851 old = real_mount(old_path.mnt); 1852 parent = real_mount(path->mnt); 1853 1854 err = -EINVAL; 1855 if (IS_MNT_UNBINDABLE(old)) 1856 goto out2; 1857 1858 if (!check_mnt(parent) || !check_mnt(old)) 1859 goto out2; 1860 1861 if (!recurse && has_locked_children(old, old_path.dentry)) 1862 goto out2; 1863 1864 if (recurse) 1865 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 1866 else 1867 mnt = clone_mnt(old, old_path.dentry, 0); 1868 1869 if (IS_ERR(mnt)) { 1870 err = PTR_ERR(mnt); 1871 goto out2; 1872 } 1873 1874 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 1875 1876 err = graft_tree(mnt, parent, mp); 1877 if (err) { 1878 lock_mount_hash(); 1879 umount_tree(mnt, 0); 1880 unlock_mount_hash(); 1881 } 1882 out2: 1883 unlock_mount(mp); 1884 out: 1885 path_put(&old_path); 1886 return err; 1887 } 1888 1889 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1890 { 1891 int error = 0; 1892 int readonly_request = 0; 1893 1894 if (ms_flags & MS_RDONLY) 1895 readonly_request = 1; 1896 if (readonly_request == __mnt_is_readonly(mnt)) 1897 return 0; 1898 1899 if (mnt->mnt_flags & MNT_LOCK_READONLY) 1900 return -EPERM; 1901 1902 if (readonly_request) 1903 error = mnt_make_readonly(real_mount(mnt)); 1904 else 1905 __mnt_unmake_readonly(real_mount(mnt)); 1906 return error; 1907 } 1908 1909 /* 1910 * change filesystem flags. dir should be a physical root of filesystem. 1911 * If you've mounted a non-root directory somewhere and want to do remount 1912 * on it - tough luck. 1913 */ 1914 static int do_remount(struct path *path, int flags, int mnt_flags, 1915 void *data) 1916 { 1917 int err; 1918 struct super_block *sb = path->mnt->mnt_sb; 1919 struct mount *mnt = real_mount(path->mnt); 1920 1921 if (!check_mnt(mnt)) 1922 return -EINVAL; 1923 1924 if (path->dentry != path->mnt->mnt_root) 1925 return -EINVAL; 1926 1927 err = security_sb_remount(sb, data); 1928 if (err) 1929 return err; 1930 1931 down_write(&sb->s_umount); 1932 if (flags & MS_BIND) 1933 err = change_mount_flags(path->mnt, flags); 1934 else if (!capable(CAP_SYS_ADMIN)) 1935 err = -EPERM; 1936 else 1937 err = do_remount_sb(sb, flags, data, 0); 1938 if (!err) { 1939 lock_mount_hash(); 1940 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1941 mnt->mnt.mnt_flags = mnt_flags; 1942 touch_mnt_namespace(mnt->mnt_ns); 1943 unlock_mount_hash(); 1944 } 1945 up_write(&sb->s_umount); 1946 return err; 1947 } 1948 1949 static inline int tree_contains_unbindable(struct mount *mnt) 1950 { 1951 struct mount *p; 1952 for (p = mnt; p; p = next_mnt(p, mnt)) { 1953 if (IS_MNT_UNBINDABLE(p)) 1954 return 1; 1955 } 1956 return 0; 1957 } 1958 1959 static int do_move_mount(struct path *path, const char *old_name) 1960 { 1961 struct path old_path, parent_path; 1962 struct mount *p; 1963 struct mount *old; 1964 struct mountpoint *mp; 1965 int err; 1966 if (!old_name || !*old_name) 1967 return -EINVAL; 1968 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1969 if (err) 1970 return err; 1971 1972 mp = lock_mount(path); 1973 err = PTR_ERR(mp); 1974 if (IS_ERR(mp)) 1975 goto out; 1976 1977 old = real_mount(old_path.mnt); 1978 p = real_mount(path->mnt); 1979 1980 err = -EINVAL; 1981 if (!check_mnt(p) || !check_mnt(old)) 1982 goto out1; 1983 1984 if (old->mnt.mnt_flags & MNT_LOCKED) 1985 goto out1; 1986 1987 err = -EINVAL; 1988 if (old_path.dentry != old_path.mnt->mnt_root) 1989 goto out1; 1990 1991 if (!mnt_has_parent(old)) 1992 goto out1; 1993 1994 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1995 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1996 goto out1; 1997 /* 1998 * Don't move a mount residing in a shared parent. 1999 */ 2000 if (IS_MNT_SHARED(old->mnt_parent)) 2001 goto out1; 2002 /* 2003 * Don't move a mount tree containing unbindable mounts to a destination 2004 * mount which is shared. 2005 */ 2006 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2007 goto out1; 2008 err = -ELOOP; 2009 for (; mnt_has_parent(p); p = p->mnt_parent) 2010 if (p == old) 2011 goto out1; 2012 2013 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2014 if (err) 2015 goto out1; 2016 2017 /* if the mount is moved, it should no longer be expire 2018 * automatically */ 2019 list_del_init(&old->mnt_expire); 2020 out1: 2021 unlock_mount(mp); 2022 out: 2023 if (!err) 2024 path_put(&parent_path); 2025 path_put(&old_path); 2026 return err; 2027 } 2028 2029 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2030 { 2031 int err; 2032 const char *subtype = strchr(fstype, '.'); 2033 if (subtype) { 2034 subtype++; 2035 err = -EINVAL; 2036 if (!subtype[0]) 2037 goto err; 2038 } else 2039 subtype = ""; 2040 2041 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2042 err = -ENOMEM; 2043 if (!mnt->mnt_sb->s_subtype) 2044 goto err; 2045 return mnt; 2046 2047 err: 2048 mntput(mnt); 2049 return ERR_PTR(err); 2050 } 2051 2052 /* 2053 * add a mount into a namespace's mount tree 2054 */ 2055 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2056 { 2057 struct mountpoint *mp; 2058 struct mount *parent; 2059 int err; 2060 2061 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2062 2063 mp = lock_mount(path); 2064 if (IS_ERR(mp)) 2065 return PTR_ERR(mp); 2066 2067 parent = real_mount(path->mnt); 2068 err = -EINVAL; 2069 if (unlikely(!check_mnt(parent))) { 2070 /* that's acceptable only for automounts done in private ns */ 2071 if (!(mnt_flags & MNT_SHRINKABLE)) 2072 goto unlock; 2073 /* ... and for those we'd better have mountpoint still alive */ 2074 if (!parent->mnt_ns) 2075 goto unlock; 2076 } 2077 2078 /* Refuse the same filesystem on the same mount point */ 2079 err = -EBUSY; 2080 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2081 path->mnt->mnt_root == path->dentry) 2082 goto unlock; 2083 2084 err = -EINVAL; 2085 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2086 goto unlock; 2087 2088 newmnt->mnt.mnt_flags = mnt_flags; 2089 err = graft_tree(newmnt, parent, mp); 2090 2091 unlock: 2092 unlock_mount(mp); 2093 return err; 2094 } 2095 2096 /* 2097 * create a new mount for userspace and request it to be added into the 2098 * namespace's tree 2099 */ 2100 static int do_new_mount(struct path *path, const char *fstype, int flags, 2101 int mnt_flags, const char *name, void *data) 2102 { 2103 struct file_system_type *type; 2104 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2105 struct vfsmount *mnt; 2106 int err; 2107 2108 if (!fstype) 2109 return -EINVAL; 2110 2111 type = get_fs_type(fstype); 2112 if (!type) 2113 return -ENODEV; 2114 2115 if (user_ns != &init_user_ns) { 2116 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2117 put_filesystem(type); 2118 return -EPERM; 2119 } 2120 /* Only in special cases allow devices from mounts 2121 * created outside the initial user namespace. 2122 */ 2123 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2124 flags |= MS_NODEV; 2125 mnt_flags |= MNT_NODEV; 2126 } 2127 } 2128 2129 mnt = vfs_kern_mount(type, flags, name, data); 2130 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2131 !mnt->mnt_sb->s_subtype) 2132 mnt = fs_set_subtype(mnt, fstype); 2133 2134 put_filesystem(type); 2135 if (IS_ERR(mnt)) 2136 return PTR_ERR(mnt); 2137 2138 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2139 if (err) 2140 mntput(mnt); 2141 return err; 2142 } 2143 2144 int finish_automount(struct vfsmount *m, struct path *path) 2145 { 2146 struct mount *mnt = real_mount(m); 2147 int err; 2148 /* The new mount record should have at least 2 refs to prevent it being 2149 * expired before we get a chance to add it 2150 */ 2151 BUG_ON(mnt_get_count(mnt) < 2); 2152 2153 if (m->mnt_sb == path->mnt->mnt_sb && 2154 m->mnt_root == path->dentry) { 2155 err = -ELOOP; 2156 goto fail; 2157 } 2158 2159 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2160 if (!err) 2161 return 0; 2162 fail: 2163 /* remove m from any expiration list it may be on */ 2164 if (!list_empty(&mnt->mnt_expire)) { 2165 namespace_lock(); 2166 list_del_init(&mnt->mnt_expire); 2167 namespace_unlock(); 2168 } 2169 mntput(m); 2170 mntput(m); 2171 return err; 2172 } 2173 2174 /** 2175 * mnt_set_expiry - Put a mount on an expiration list 2176 * @mnt: The mount to list. 2177 * @expiry_list: The list to add the mount to. 2178 */ 2179 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2180 { 2181 namespace_lock(); 2182 2183 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2184 2185 namespace_unlock(); 2186 } 2187 EXPORT_SYMBOL(mnt_set_expiry); 2188 2189 /* 2190 * process a list of expirable mountpoints with the intent of discarding any 2191 * mountpoints that aren't in use and haven't been touched since last we came 2192 * here 2193 */ 2194 void mark_mounts_for_expiry(struct list_head *mounts) 2195 { 2196 struct mount *mnt, *next; 2197 LIST_HEAD(graveyard); 2198 2199 if (list_empty(mounts)) 2200 return; 2201 2202 namespace_lock(); 2203 lock_mount_hash(); 2204 2205 /* extract from the expiration list every vfsmount that matches the 2206 * following criteria: 2207 * - only referenced by its parent vfsmount 2208 * - still marked for expiry (marked on the last call here; marks are 2209 * cleared by mntput()) 2210 */ 2211 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2212 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2213 propagate_mount_busy(mnt, 1)) 2214 continue; 2215 list_move(&mnt->mnt_expire, &graveyard); 2216 } 2217 while (!list_empty(&graveyard)) { 2218 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2219 touch_mnt_namespace(mnt->mnt_ns); 2220 umount_tree(mnt, 1); 2221 } 2222 unlock_mount_hash(); 2223 namespace_unlock(); 2224 } 2225 2226 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2227 2228 /* 2229 * Ripoff of 'select_parent()' 2230 * 2231 * search the list of submounts for a given mountpoint, and move any 2232 * shrinkable submounts to the 'graveyard' list. 2233 */ 2234 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2235 { 2236 struct mount *this_parent = parent; 2237 struct list_head *next; 2238 int found = 0; 2239 2240 repeat: 2241 next = this_parent->mnt_mounts.next; 2242 resume: 2243 while (next != &this_parent->mnt_mounts) { 2244 struct list_head *tmp = next; 2245 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2246 2247 next = tmp->next; 2248 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2249 continue; 2250 /* 2251 * Descend a level if the d_mounts list is non-empty. 2252 */ 2253 if (!list_empty(&mnt->mnt_mounts)) { 2254 this_parent = mnt; 2255 goto repeat; 2256 } 2257 2258 if (!propagate_mount_busy(mnt, 1)) { 2259 list_move_tail(&mnt->mnt_expire, graveyard); 2260 found++; 2261 } 2262 } 2263 /* 2264 * All done at this level ... ascend and resume the search 2265 */ 2266 if (this_parent != parent) { 2267 next = this_parent->mnt_child.next; 2268 this_parent = this_parent->mnt_parent; 2269 goto resume; 2270 } 2271 return found; 2272 } 2273 2274 /* 2275 * process a list of expirable mountpoints with the intent of discarding any 2276 * submounts of a specific parent mountpoint 2277 * 2278 * mount_lock must be held for write 2279 */ 2280 static void shrink_submounts(struct mount *mnt) 2281 { 2282 LIST_HEAD(graveyard); 2283 struct mount *m; 2284 2285 /* extract submounts of 'mountpoint' from the expiration list */ 2286 while (select_submounts(mnt, &graveyard)) { 2287 while (!list_empty(&graveyard)) { 2288 m = list_first_entry(&graveyard, struct mount, 2289 mnt_expire); 2290 touch_mnt_namespace(m->mnt_ns); 2291 umount_tree(m, 1); 2292 } 2293 } 2294 } 2295 2296 /* 2297 * Some copy_from_user() implementations do not return the exact number of 2298 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2299 * Note that this function differs from copy_from_user() in that it will oops 2300 * on bad values of `to', rather than returning a short copy. 2301 */ 2302 static long exact_copy_from_user(void *to, const void __user * from, 2303 unsigned long n) 2304 { 2305 char *t = to; 2306 const char __user *f = from; 2307 char c; 2308 2309 if (!access_ok(VERIFY_READ, from, n)) 2310 return n; 2311 2312 while (n) { 2313 if (__get_user(c, f)) { 2314 memset(t, 0, n); 2315 break; 2316 } 2317 *t++ = c; 2318 f++; 2319 n--; 2320 } 2321 return n; 2322 } 2323 2324 int copy_mount_options(const void __user * data, unsigned long *where) 2325 { 2326 int i; 2327 unsigned long page; 2328 unsigned long size; 2329 2330 *where = 0; 2331 if (!data) 2332 return 0; 2333 2334 if (!(page = __get_free_page(GFP_KERNEL))) 2335 return -ENOMEM; 2336 2337 /* We only care that *some* data at the address the user 2338 * gave us is valid. Just in case, we'll zero 2339 * the remainder of the page. 2340 */ 2341 /* copy_from_user cannot cross TASK_SIZE ! */ 2342 size = TASK_SIZE - (unsigned long)data; 2343 if (size > PAGE_SIZE) 2344 size = PAGE_SIZE; 2345 2346 i = size - exact_copy_from_user((void *)page, data, size); 2347 if (!i) { 2348 free_page(page); 2349 return -EFAULT; 2350 } 2351 if (i != PAGE_SIZE) 2352 memset((char *)page + i, 0, PAGE_SIZE - i); 2353 *where = page; 2354 return 0; 2355 } 2356 2357 int copy_mount_string(const void __user *data, char **where) 2358 { 2359 char *tmp; 2360 2361 if (!data) { 2362 *where = NULL; 2363 return 0; 2364 } 2365 2366 tmp = strndup_user(data, PAGE_SIZE); 2367 if (IS_ERR(tmp)) 2368 return PTR_ERR(tmp); 2369 2370 *where = tmp; 2371 return 0; 2372 } 2373 2374 /* 2375 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2376 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2377 * 2378 * data is a (void *) that can point to any structure up to 2379 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2380 * information (or be NULL). 2381 * 2382 * Pre-0.97 versions of mount() didn't have a flags word. 2383 * When the flags word was introduced its top half was required 2384 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2385 * Therefore, if this magic number is present, it carries no information 2386 * and must be discarded. 2387 */ 2388 long do_mount(const char *dev_name, const char *dir_name, 2389 const char *type_page, unsigned long flags, void *data_page) 2390 { 2391 struct path path; 2392 int retval = 0; 2393 int mnt_flags = 0; 2394 2395 /* Discard magic */ 2396 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2397 flags &= ~MS_MGC_MSK; 2398 2399 /* Basic sanity checks */ 2400 2401 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2402 return -EINVAL; 2403 2404 if (data_page) 2405 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2406 2407 /* ... and get the mountpoint */ 2408 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2409 if (retval) 2410 return retval; 2411 2412 retval = security_sb_mount(dev_name, &path, 2413 type_page, flags, data_page); 2414 if (!retval && !may_mount()) 2415 retval = -EPERM; 2416 if (retval) 2417 goto dput_out; 2418 2419 /* Default to relatime unless overriden */ 2420 if (!(flags & MS_NOATIME)) 2421 mnt_flags |= MNT_RELATIME; 2422 2423 /* Separate the per-mountpoint flags */ 2424 if (flags & MS_NOSUID) 2425 mnt_flags |= MNT_NOSUID; 2426 if (flags & MS_NODEV) 2427 mnt_flags |= MNT_NODEV; 2428 if (flags & MS_NOEXEC) 2429 mnt_flags |= MNT_NOEXEC; 2430 if (flags & MS_NOATIME) 2431 mnt_flags |= MNT_NOATIME; 2432 if (flags & MS_NODIRATIME) 2433 mnt_flags |= MNT_NODIRATIME; 2434 if (flags & MS_STRICTATIME) 2435 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2436 if (flags & MS_RDONLY) 2437 mnt_flags |= MNT_READONLY; 2438 2439 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2440 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2441 MS_STRICTATIME); 2442 2443 if (flags & MS_REMOUNT) 2444 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2445 data_page); 2446 else if (flags & MS_BIND) 2447 retval = do_loopback(&path, dev_name, flags & MS_REC); 2448 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2449 retval = do_change_type(&path, flags); 2450 else if (flags & MS_MOVE) 2451 retval = do_move_mount(&path, dev_name); 2452 else 2453 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2454 dev_name, data_page); 2455 dput_out: 2456 path_put(&path); 2457 return retval; 2458 } 2459 2460 static void free_mnt_ns(struct mnt_namespace *ns) 2461 { 2462 proc_free_inum(ns->proc_inum); 2463 put_user_ns(ns->user_ns); 2464 kfree(ns); 2465 } 2466 2467 /* 2468 * Assign a sequence number so we can detect when we attempt to bind 2469 * mount a reference to an older mount namespace into the current 2470 * mount namespace, preventing reference counting loops. A 64bit 2471 * number incrementing at 10Ghz will take 12,427 years to wrap which 2472 * is effectively never, so we can ignore the possibility. 2473 */ 2474 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2475 2476 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2477 { 2478 struct mnt_namespace *new_ns; 2479 int ret; 2480 2481 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2482 if (!new_ns) 2483 return ERR_PTR(-ENOMEM); 2484 ret = proc_alloc_inum(&new_ns->proc_inum); 2485 if (ret) { 2486 kfree(new_ns); 2487 return ERR_PTR(ret); 2488 } 2489 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2490 atomic_set(&new_ns->count, 1); 2491 new_ns->root = NULL; 2492 INIT_LIST_HEAD(&new_ns->list); 2493 init_waitqueue_head(&new_ns->poll); 2494 new_ns->event = 0; 2495 new_ns->user_ns = get_user_ns(user_ns); 2496 return new_ns; 2497 } 2498 2499 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2500 struct user_namespace *user_ns, struct fs_struct *new_fs) 2501 { 2502 struct mnt_namespace *new_ns; 2503 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2504 struct mount *p, *q; 2505 struct mount *old; 2506 struct mount *new; 2507 int copy_flags; 2508 2509 BUG_ON(!ns); 2510 2511 if (likely(!(flags & CLONE_NEWNS))) { 2512 get_mnt_ns(ns); 2513 return ns; 2514 } 2515 2516 old = ns->root; 2517 2518 new_ns = alloc_mnt_ns(user_ns); 2519 if (IS_ERR(new_ns)) 2520 return new_ns; 2521 2522 namespace_lock(); 2523 /* First pass: copy the tree topology */ 2524 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2525 if (user_ns != ns->user_ns) 2526 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2527 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2528 if (IS_ERR(new)) { 2529 namespace_unlock(); 2530 free_mnt_ns(new_ns); 2531 return ERR_CAST(new); 2532 } 2533 new_ns->root = new; 2534 list_add_tail(&new_ns->list, &new->mnt_list); 2535 2536 /* 2537 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2538 * as belonging to new namespace. We have already acquired a private 2539 * fs_struct, so tsk->fs->lock is not needed. 2540 */ 2541 p = old; 2542 q = new; 2543 while (p) { 2544 q->mnt_ns = new_ns; 2545 if (new_fs) { 2546 if (&p->mnt == new_fs->root.mnt) { 2547 new_fs->root.mnt = mntget(&q->mnt); 2548 rootmnt = &p->mnt; 2549 } 2550 if (&p->mnt == new_fs->pwd.mnt) { 2551 new_fs->pwd.mnt = mntget(&q->mnt); 2552 pwdmnt = &p->mnt; 2553 } 2554 } 2555 p = next_mnt(p, old); 2556 q = next_mnt(q, new); 2557 if (!q) 2558 break; 2559 while (p->mnt.mnt_root != q->mnt.mnt_root) 2560 p = next_mnt(p, old); 2561 } 2562 namespace_unlock(); 2563 2564 if (rootmnt) 2565 mntput(rootmnt); 2566 if (pwdmnt) 2567 mntput(pwdmnt); 2568 2569 return new_ns; 2570 } 2571 2572 /** 2573 * create_mnt_ns - creates a private namespace and adds a root filesystem 2574 * @mnt: pointer to the new root filesystem mountpoint 2575 */ 2576 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2577 { 2578 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2579 if (!IS_ERR(new_ns)) { 2580 struct mount *mnt = real_mount(m); 2581 mnt->mnt_ns = new_ns; 2582 new_ns->root = mnt; 2583 list_add(&mnt->mnt_list, &new_ns->list); 2584 } else { 2585 mntput(m); 2586 } 2587 return new_ns; 2588 } 2589 2590 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2591 { 2592 struct mnt_namespace *ns; 2593 struct super_block *s; 2594 struct path path; 2595 int err; 2596 2597 ns = create_mnt_ns(mnt); 2598 if (IS_ERR(ns)) 2599 return ERR_CAST(ns); 2600 2601 err = vfs_path_lookup(mnt->mnt_root, mnt, 2602 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2603 2604 put_mnt_ns(ns); 2605 2606 if (err) 2607 return ERR_PTR(err); 2608 2609 /* trade a vfsmount reference for active sb one */ 2610 s = path.mnt->mnt_sb; 2611 atomic_inc(&s->s_active); 2612 mntput(path.mnt); 2613 /* lock the sucker */ 2614 down_write(&s->s_umount); 2615 /* ... and return the root of (sub)tree on it */ 2616 return path.dentry; 2617 } 2618 EXPORT_SYMBOL(mount_subtree); 2619 2620 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2621 char __user *, type, unsigned long, flags, void __user *, data) 2622 { 2623 int ret; 2624 char *kernel_type; 2625 struct filename *kernel_dir; 2626 char *kernel_dev; 2627 unsigned long data_page; 2628 2629 ret = copy_mount_string(type, &kernel_type); 2630 if (ret < 0) 2631 goto out_type; 2632 2633 kernel_dir = getname(dir_name); 2634 if (IS_ERR(kernel_dir)) { 2635 ret = PTR_ERR(kernel_dir); 2636 goto out_dir; 2637 } 2638 2639 ret = copy_mount_string(dev_name, &kernel_dev); 2640 if (ret < 0) 2641 goto out_dev; 2642 2643 ret = copy_mount_options(data, &data_page); 2644 if (ret < 0) 2645 goto out_data; 2646 2647 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2648 (void *) data_page); 2649 2650 free_page(data_page); 2651 out_data: 2652 kfree(kernel_dev); 2653 out_dev: 2654 putname(kernel_dir); 2655 out_dir: 2656 kfree(kernel_type); 2657 out_type: 2658 return ret; 2659 } 2660 2661 /* 2662 * Return true if path is reachable from root 2663 * 2664 * namespace_sem or mount_lock is held 2665 */ 2666 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2667 const struct path *root) 2668 { 2669 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2670 dentry = mnt->mnt_mountpoint; 2671 mnt = mnt->mnt_parent; 2672 } 2673 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2674 } 2675 2676 int path_is_under(struct path *path1, struct path *path2) 2677 { 2678 int res; 2679 read_seqlock_excl(&mount_lock); 2680 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2681 read_sequnlock_excl(&mount_lock); 2682 return res; 2683 } 2684 EXPORT_SYMBOL(path_is_under); 2685 2686 /* 2687 * pivot_root Semantics: 2688 * Moves the root file system of the current process to the directory put_old, 2689 * makes new_root as the new root file system of the current process, and sets 2690 * root/cwd of all processes which had them on the current root to new_root. 2691 * 2692 * Restrictions: 2693 * The new_root and put_old must be directories, and must not be on the 2694 * same file system as the current process root. The put_old must be 2695 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2696 * pointed to by put_old must yield the same directory as new_root. No other 2697 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2698 * 2699 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2700 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2701 * in this situation. 2702 * 2703 * Notes: 2704 * - we don't move root/cwd if they are not at the root (reason: if something 2705 * cared enough to change them, it's probably wrong to force them elsewhere) 2706 * - it's okay to pick a root that isn't the root of a file system, e.g. 2707 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2708 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2709 * first. 2710 */ 2711 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2712 const char __user *, put_old) 2713 { 2714 struct path new, old, parent_path, root_parent, root; 2715 struct mount *new_mnt, *root_mnt, *old_mnt; 2716 struct mountpoint *old_mp, *root_mp; 2717 int error; 2718 2719 if (!may_mount()) 2720 return -EPERM; 2721 2722 error = user_path_dir(new_root, &new); 2723 if (error) 2724 goto out0; 2725 2726 error = user_path_dir(put_old, &old); 2727 if (error) 2728 goto out1; 2729 2730 error = security_sb_pivotroot(&old, &new); 2731 if (error) 2732 goto out2; 2733 2734 get_fs_root(current->fs, &root); 2735 old_mp = lock_mount(&old); 2736 error = PTR_ERR(old_mp); 2737 if (IS_ERR(old_mp)) 2738 goto out3; 2739 2740 error = -EINVAL; 2741 new_mnt = real_mount(new.mnt); 2742 root_mnt = real_mount(root.mnt); 2743 old_mnt = real_mount(old.mnt); 2744 if (IS_MNT_SHARED(old_mnt) || 2745 IS_MNT_SHARED(new_mnt->mnt_parent) || 2746 IS_MNT_SHARED(root_mnt->mnt_parent)) 2747 goto out4; 2748 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2749 goto out4; 2750 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2751 goto out4; 2752 error = -ENOENT; 2753 if (d_unlinked(new.dentry)) 2754 goto out4; 2755 error = -EBUSY; 2756 if (new_mnt == root_mnt || old_mnt == root_mnt) 2757 goto out4; /* loop, on the same file system */ 2758 error = -EINVAL; 2759 if (root.mnt->mnt_root != root.dentry) 2760 goto out4; /* not a mountpoint */ 2761 if (!mnt_has_parent(root_mnt)) 2762 goto out4; /* not attached */ 2763 root_mp = root_mnt->mnt_mp; 2764 if (new.mnt->mnt_root != new.dentry) 2765 goto out4; /* not a mountpoint */ 2766 if (!mnt_has_parent(new_mnt)) 2767 goto out4; /* not attached */ 2768 /* make sure we can reach put_old from new_root */ 2769 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2770 goto out4; 2771 root_mp->m_count++; /* pin it so it won't go away */ 2772 lock_mount_hash(); 2773 detach_mnt(new_mnt, &parent_path); 2774 detach_mnt(root_mnt, &root_parent); 2775 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2776 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2777 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2778 } 2779 /* mount old root on put_old */ 2780 attach_mnt(root_mnt, old_mnt, old_mp); 2781 /* mount new_root on / */ 2782 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2783 touch_mnt_namespace(current->nsproxy->mnt_ns); 2784 unlock_mount_hash(); 2785 chroot_fs_refs(&root, &new); 2786 put_mountpoint(root_mp); 2787 error = 0; 2788 out4: 2789 unlock_mount(old_mp); 2790 if (!error) { 2791 path_put(&root_parent); 2792 path_put(&parent_path); 2793 } 2794 out3: 2795 path_put(&root); 2796 out2: 2797 path_put(&old); 2798 out1: 2799 path_put(&new); 2800 out0: 2801 return error; 2802 } 2803 2804 static void __init init_mount_tree(void) 2805 { 2806 struct vfsmount *mnt; 2807 struct mnt_namespace *ns; 2808 struct path root; 2809 struct file_system_type *type; 2810 2811 type = get_fs_type("rootfs"); 2812 if (!type) 2813 panic("Can't find rootfs type"); 2814 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2815 put_filesystem(type); 2816 if (IS_ERR(mnt)) 2817 panic("Can't create rootfs"); 2818 2819 ns = create_mnt_ns(mnt); 2820 if (IS_ERR(ns)) 2821 panic("Can't allocate initial namespace"); 2822 2823 init_task.nsproxy->mnt_ns = ns; 2824 get_mnt_ns(ns); 2825 2826 root.mnt = mnt; 2827 root.dentry = mnt->mnt_root; 2828 2829 set_fs_pwd(current->fs, &root); 2830 set_fs_root(current->fs, &root); 2831 } 2832 2833 void __init mnt_init(void) 2834 { 2835 unsigned u; 2836 int err; 2837 2838 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2839 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2840 2841 mount_hashtable = alloc_large_system_hash("Mount-cache", 2842 sizeof(struct hlist_head), 2843 mhash_entries, 19, 2844 0, 2845 &m_hash_shift, &m_hash_mask, 0, 0); 2846 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 2847 sizeof(struct hlist_head), 2848 mphash_entries, 19, 2849 0, 2850 &mp_hash_shift, &mp_hash_mask, 0, 0); 2851 2852 if (!mount_hashtable || !mountpoint_hashtable) 2853 panic("Failed to allocate mount hash table\n"); 2854 2855 for (u = 0; u <= m_hash_mask; u++) 2856 INIT_HLIST_HEAD(&mount_hashtable[u]); 2857 for (u = 0; u <= mp_hash_mask; u++) 2858 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 2859 2860 kernfs_init(); 2861 2862 err = sysfs_init(); 2863 if (err) 2864 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2865 __func__, err); 2866 fs_kobj = kobject_create_and_add("fs", NULL); 2867 if (!fs_kobj) 2868 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2869 init_rootfs(); 2870 init_mount_tree(); 2871 } 2872 2873 void put_mnt_ns(struct mnt_namespace *ns) 2874 { 2875 if (!atomic_dec_and_test(&ns->count)) 2876 return; 2877 drop_collected_mounts(&ns->root->mnt); 2878 free_mnt_ns(ns); 2879 } 2880 2881 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2882 { 2883 struct vfsmount *mnt; 2884 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2885 if (!IS_ERR(mnt)) { 2886 /* 2887 * it is a longterm mount, don't release mnt until 2888 * we unmount before file sys is unregistered 2889 */ 2890 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2891 } 2892 return mnt; 2893 } 2894 EXPORT_SYMBOL_GPL(kern_mount_data); 2895 2896 void kern_unmount(struct vfsmount *mnt) 2897 { 2898 /* release long term mount so mount point can be released */ 2899 if (!IS_ERR_OR_NULL(mnt)) { 2900 real_mount(mnt)->mnt_ns = NULL; 2901 synchronize_rcu(); /* yecchhh... */ 2902 mntput(mnt); 2903 } 2904 } 2905 EXPORT_SYMBOL(kern_unmount); 2906 2907 bool our_mnt(struct vfsmount *mnt) 2908 { 2909 return check_mnt(real_mount(mnt)); 2910 } 2911 2912 bool current_chrooted(void) 2913 { 2914 /* Does the current process have a non-standard root */ 2915 struct path ns_root; 2916 struct path fs_root; 2917 bool chrooted; 2918 2919 /* Find the namespace root */ 2920 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 2921 ns_root.dentry = ns_root.mnt->mnt_root; 2922 path_get(&ns_root); 2923 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 2924 ; 2925 2926 get_fs_root(current->fs, &fs_root); 2927 2928 chrooted = !path_equal(&fs_root, &ns_root); 2929 2930 path_put(&fs_root); 2931 path_put(&ns_root); 2932 2933 return chrooted; 2934 } 2935 2936 bool fs_fully_visible(struct file_system_type *type) 2937 { 2938 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 2939 struct mount *mnt; 2940 bool visible = false; 2941 2942 if (unlikely(!ns)) 2943 return false; 2944 2945 down_read(&namespace_sem); 2946 list_for_each_entry(mnt, &ns->list, mnt_list) { 2947 struct mount *child; 2948 if (mnt->mnt.mnt_sb->s_type != type) 2949 continue; 2950 2951 /* This mount is not fully visible if there are any child mounts 2952 * that cover anything except for empty directories. 2953 */ 2954 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2955 struct inode *inode = child->mnt_mountpoint->d_inode; 2956 if (!S_ISDIR(inode->i_mode)) 2957 goto next; 2958 if (inode->i_nlink > 2) 2959 goto next; 2960 } 2961 visible = true; 2962 goto found; 2963 next: ; 2964 } 2965 found: 2966 up_read(&namespace_sem); 2967 return visible; 2968 } 2969 2970 static void *mntns_get(struct task_struct *task) 2971 { 2972 struct mnt_namespace *ns = NULL; 2973 struct nsproxy *nsproxy; 2974 2975 rcu_read_lock(); 2976 nsproxy = task_nsproxy(task); 2977 if (nsproxy) { 2978 ns = nsproxy->mnt_ns; 2979 get_mnt_ns(ns); 2980 } 2981 rcu_read_unlock(); 2982 2983 return ns; 2984 } 2985 2986 static void mntns_put(void *ns) 2987 { 2988 put_mnt_ns(ns); 2989 } 2990 2991 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2992 { 2993 struct fs_struct *fs = current->fs; 2994 struct mnt_namespace *mnt_ns = ns; 2995 struct path root; 2996 2997 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2998 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 2999 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3000 return -EPERM; 3001 3002 if (fs->users != 1) 3003 return -EINVAL; 3004 3005 get_mnt_ns(mnt_ns); 3006 put_mnt_ns(nsproxy->mnt_ns); 3007 nsproxy->mnt_ns = mnt_ns; 3008 3009 /* Find the root */ 3010 root.mnt = &mnt_ns->root->mnt; 3011 root.dentry = mnt_ns->root->mnt.mnt_root; 3012 path_get(&root); 3013 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3014 ; 3015 3016 /* Update the pwd and root */ 3017 set_fs_pwd(fs, &root); 3018 set_fs_root(fs, &root); 3019 3020 path_put(&root); 3021 return 0; 3022 } 3023 3024 static unsigned int mntns_inum(void *ns) 3025 { 3026 struct mnt_namespace *mnt_ns = ns; 3027 return mnt_ns->proc_inum; 3028 } 3029 3030 const struct proc_ns_operations mntns_operations = { 3031 .name = "mnt", 3032 .type = CLONE_NEWNS, 3033 .get = mntns_get, 3034 .put = mntns_put, 3035 .install = mntns_install, 3036 .inum = mntns_inum, 3037 }; 3038