xref: /linux/fs/namespace.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 };
86 
87 /* /sys/fs */
88 struct kobject *fs_kobj;
89 EXPORT_SYMBOL_GPL(fs_kobj);
90 
91 /*
92  * vfsmount lock may be taken for read to prevent changes to the
93  * vfsmount hash, ie. during mountpoint lookups or walking back
94  * up the tree.
95  *
96  * It should be taken for write in all cases where the vfsmount
97  * tree or hash is modified or when a vfsmount structure is modified.
98  */
99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
100 
101 static inline void lock_mount_hash(void)
102 {
103 	write_seqlock(&mount_lock);
104 }
105 
106 static inline void unlock_mount_hash(void)
107 {
108 	write_sequnlock(&mount_lock);
109 }
110 
111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
112 {
113 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 	tmp = tmp + (tmp >> m_hash_shift);
116 	return &mount_hashtable[tmp & m_hash_mask];
117 }
118 
119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
120 {
121 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 	tmp = tmp + (tmp >> mp_hash_shift);
123 	return &mountpoint_hashtable[tmp & mp_hash_mask];
124 }
125 
126 static int mnt_alloc_id(struct mount *mnt)
127 {
128 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129 
130 	if (res < 0)
131 		return res;
132 	mnt->mnt_id = res;
133 	return 0;
134 }
135 
136 static void mnt_free_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_id_ida, mnt->mnt_id);
139 }
140 
141 /*
142  * Allocate a new peer group ID
143  */
144 static int mnt_alloc_group_id(struct mount *mnt)
145 {
146 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
147 
148 	if (res < 0)
149 		return res;
150 	mnt->mnt_group_id = res;
151 	return 0;
152 }
153 
154 /*
155  * Release a peer group ID
156  */
157 void mnt_release_group_id(struct mount *mnt)
158 {
159 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 	mnt->mnt_group_id = 0;
161 }
162 
163 /*
164  * vfsmount lock must be held for read
165  */
166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 	preempt_disable();
172 	mnt->mnt_count += n;
173 	preempt_enable();
174 #endif
175 }
176 
177 /*
178  * vfsmount lock must be held for write
179  */
180 int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 	int count = 0;
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu) {
187 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 	}
189 
190 	return count;
191 #else
192 	return mnt->mnt_count;
193 #endif
194 }
195 
196 static struct mount *alloc_vfsmnt(const char *name)
197 {
198 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 	if (mnt) {
200 		int err;
201 
202 		err = mnt_alloc_id(mnt);
203 		if (err)
204 			goto out_free_cache;
205 
206 		if (name) {
207 			mnt->mnt_devname = kstrdup_const(name,
208 							 GFP_KERNEL_ACCOUNT);
209 			if (!mnt->mnt_devname)
210 				goto out_free_id;
211 		}
212 
213 #ifdef CONFIG_SMP
214 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 		if (!mnt->mnt_pcp)
216 			goto out_free_devname;
217 
218 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
219 #else
220 		mnt->mnt_count = 1;
221 		mnt->mnt_writers = 0;
222 #endif
223 
224 		INIT_HLIST_NODE(&mnt->mnt_hash);
225 		INIT_LIST_HEAD(&mnt->mnt_child);
226 		INIT_LIST_HEAD(&mnt->mnt_mounts);
227 		INIT_LIST_HEAD(&mnt->mnt_list);
228 		INIT_LIST_HEAD(&mnt->mnt_expire);
229 		INIT_LIST_HEAD(&mnt->mnt_share);
230 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 		INIT_LIST_HEAD(&mnt->mnt_slave);
232 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 		INIT_LIST_HEAD(&mnt->mnt_umounting);
234 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 		mnt->mnt.mnt_userns = &init_user_ns;
236 	}
237 	return mnt;
238 
239 #ifdef CONFIG_SMP
240 out_free_devname:
241 	kfree_const(mnt->mnt_devname);
242 #endif
243 out_free_id:
244 	mnt_free_id(mnt);
245 out_free_cache:
246 	kmem_cache_free(mnt_cache, mnt);
247 	return NULL;
248 }
249 
250 /*
251  * Most r/o checks on a fs are for operations that take
252  * discrete amounts of time, like a write() or unlink().
253  * We must keep track of when those operations start
254  * (for permission checks) and when they end, so that
255  * we can determine when writes are able to occur to
256  * a filesystem.
257  */
258 /*
259  * __mnt_is_readonly: check whether a mount is read-only
260  * @mnt: the mount to check for its write status
261  *
262  * This shouldn't be used directly ouside of the VFS.
263  * It does not guarantee that the filesystem will stay
264  * r/w, just that it is right *now*.  This can not and
265  * should not be used in place of IS_RDONLY(inode).
266  * mnt_want/drop_write() will _keep_ the filesystem
267  * r/w.
268  */
269 bool __mnt_is_readonly(struct vfsmount *mnt)
270 {
271 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 
275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 	mnt->mnt_writers++;
281 #endif
282 }
283 
284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers--;
290 #endif
291 }
292 
293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	unsigned int count = 0;
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 	}
302 
303 	return count;
304 #else
305 	return mnt->mnt_writers;
306 #endif
307 }
308 
309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 	if (mnt->mnt_sb->s_readonly_remount)
312 		return 1;
313 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 	smp_rmb();
315 	return __mnt_is_readonly(mnt);
316 }
317 
318 /*
319  * Most r/o & frozen checks on a fs are for operations that take discrete
320  * amounts of time, like a write() or unlink().  We must keep track of when
321  * those operations start (for permission checks) and when they end, so that we
322  * can determine when writes are able to occur to a filesystem.
323  */
324 /**
325  * __mnt_want_write - get write access to a mount without freeze protection
326  * @m: the mount on which to take a write
327  *
328  * This tells the low-level filesystem that a write is about to be performed to
329  * it, and makes sure that writes are allowed (mnt it read-write) before
330  * returning success. This operation does not protect against filesystem being
331  * frozen. When the write operation is finished, __mnt_drop_write() must be
332  * called. This is effectively a refcount.
333  */
334 int __mnt_want_write(struct vfsmount *m)
335 {
336 	struct mount *mnt = real_mount(m);
337 	int ret = 0;
338 
339 	preempt_disable();
340 	mnt_inc_writers(mnt);
341 	/*
342 	 * The store to mnt_inc_writers must be visible before we pass
343 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 	 * incremented count after it has set MNT_WRITE_HOLD.
345 	 */
346 	smp_mb();
347 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 		cpu_relax();
349 	/*
350 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 	 * be set to match its requirements. So we must not load that until
352 	 * MNT_WRITE_HOLD is cleared.
353 	 */
354 	smp_rmb();
355 	if (mnt_is_readonly(m)) {
356 		mnt_dec_writers(mnt);
357 		ret = -EROFS;
358 	}
359 	preempt_enable();
360 
361 	return ret;
362 }
363 
364 /**
365  * mnt_want_write - get write access to a mount
366  * @m: the mount on which to take a write
367  *
368  * This tells the low-level filesystem that a write is about to be performed to
369  * it, and makes sure that writes are allowed (mount is read-write, filesystem
370  * is not frozen) before returning success.  When the write operation is
371  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
372  */
373 int mnt_want_write(struct vfsmount *m)
374 {
375 	int ret;
376 
377 	sb_start_write(m->mnt_sb);
378 	ret = __mnt_want_write(m);
379 	if (ret)
380 		sb_end_write(m->mnt_sb);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384 
385 /**
386  * __mnt_want_write_file - get write access to a file's mount
387  * @file: the file who's mount on which to take a write
388  *
389  * This is like __mnt_want_write, but if the file is already open for writing it
390  * skips incrementing mnt_writers (since the open file already has a reference)
391  * and instead only does the check for emergency r/o remounts.  This must be
392  * paired with __mnt_drop_write_file.
393  */
394 int __mnt_want_write_file(struct file *file)
395 {
396 	if (file->f_mode & FMODE_WRITER) {
397 		/*
398 		 * Superblock may have become readonly while there are still
399 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
400 		 */
401 		if (__mnt_is_readonly(file->f_path.mnt))
402 			return -EROFS;
403 		return 0;
404 	}
405 	return __mnt_want_write(file->f_path.mnt);
406 }
407 
408 /**
409  * mnt_want_write_file - get write access to a file's mount
410  * @file: the file who's mount on which to take a write
411  *
412  * This is like mnt_want_write, but if the file is already open for writing it
413  * skips incrementing mnt_writers (since the open file already has a reference)
414  * and instead only does the freeze protection and the check for emergency r/o
415  * remounts.  This must be paired with mnt_drop_write_file.
416  */
417 int mnt_want_write_file(struct file *file)
418 {
419 	int ret;
420 
421 	sb_start_write(file_inode(file)->i_sb);
422 	ret = __mnt_want_write_file(file);
423 	if (ret)
424 		sb_end_write(file_inode(file)->i_sb);
425 	return ret;
426 }
427 EXPORT_SYMBOL_GPL(mnt_want_write_file);
428 
429 /**
430  * __mnt_drop_write - give up write access to a mount
431  * @mnt: the mount on which to give up write access
432  *
433  * Tells the low-level filesystem that we are done
434  * performing writes to it.  Must be matched with
435  * __mnt_want_write() call above.
436  */
437 void __mnt_drop_write(struct vfsmount *mnt)
438 {
439 	preempt_disable();
440 	mnt_dec_writers(real_mount(mnt));
441 	preempt_enable();
442 }
443 
444 /**
445  * mnt_drop_write - give up write access to a mount
446  * @mnt: the mount on which to give up write access
447  *
448  * Tells the low-level filesystem that we are done performing writes to it and
449  * also allows filesystem to be frozen again.  Must be matched with
450  * mnt_want_write() call above.
451  */
452 void mnt_drop_write(struct vfsmount *mnt)
453 {
454 	__mnt_drop_write(mnt);
455 	sb_end_write(mnt->mnt_sb);
456 }
457 EXPORT_SYMBOL_GPL(mnt_drop_write);
458 
459 void __mnt_drop_write_file(struct file *file)
460 {
461 	if (!(file->f_mode & FMODE_WRITER))
462 		__mnt_drop_write(file->f_path.mnt);
463 }
464 
465 void mnt_drop_write_file(struct file *file)
466 {
467 	__mnt_drop_write_file(file);
468 	sb_end_write(file_inode(file)->i_sb);
469 }
470 EXPORT_SYMBOL(mnt_drop_write_file);
471 
472 static inline int mnt_hold_writers(struct mount *mnt)
473 {
474 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
475 	/*
476 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
477 	 * should be visible before we do.
478 	 */
479 	smp_mb();
480 
481 	/*
482 	 * With writers on hold, if this value is zero, then there are
483 	 * definitely no active writers (although held writers may subsequently
484 	 * increment the count, they'll have to wait, and decrement it after
485 	 * seeing MNT_READONLY).
486 	 *
487 	 * It is OK to have counter incremented on one CPU and decremented on
488 	 * another: the sum will add up correctly. The danger would be when we
489 	 * sum up each counter, if we read a counter before it is incremented,
490 	 * but then read another CPU's count which it has been subsequently
491 	 * decremented from -- we would see more decrements than we should.
492 	 * MNT_WRITE_HOLD protects against this scenario, because
493 	 * mnt_want_write first increments count, then smp_mb, then spins on
494 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
495 	 * we're counting up here.
496 	 */
497 	if (mnt_get_writers(mnt) > 0)
498 		return -EBUSY;
499 
500 	return 0;
501 }
502 
503 static inline void mnt_unhold_writers(struct mount *mnt)
504 {
505 	/*
506 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
507 	 * that become unheld will see MNT_READONLY.
508 	 */
509 	smp_wmb();
510 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
511 }
512 
513 static int mnt_make_readonly(struct mount *mnt)
514 {
515 	int ret;
516 
517 	ret = mnt_hold_writers(mnt);
518 	if (!ret)
519 		mnt->mnt.mnt_flags |= MNT_READONLY;
520 	mnt_unhold_writers(mnt);
521 	return ret;
522 }
523 
524 int sb_prepare_remount_readonly(struct super_block *sb)
525 {
526 	struct mount *mnt;
527 	int err = 0;
528 
529 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
530 	if (atomic_long_read(&sb->s_remove_count))
531 		return -EBUSY;
532 
533 	lock_mount_hash();
534 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
536 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
537 			smp_mb();
538 			if (mnt_get_writers(mnt) > 0) {
539 				err = -EBUSY;
540 				break;
541 			}
542 		}
543 	}
544 	if (!err && atomic_long_read(&sb->s_remove_count))
545 		err = -EBUSY;
546 
547 	if (!err) {
548 		sb->s_readonly_remount = 1;
549 		smp_wmb();
550 	}
551 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
553 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
554 	}
555 	unlock_mount_hash();
556 
557 	return err;
558 }
559 
560 static void free_vfsmnt(struct mount *mnt)
561 {
562 	struct user_namespace *mnt_userns;
563 
564 	mnt_userns = mnt_user_ns(&mnt->mnt);
565 	if (!initial_idmapping(mnt_userns))
566 		put_user_ns(mnt_userns);
567 	kfree_const(mnt->mnt_devname);
568 #ifdef CONFIG_SMP
569 	free_percpu(mnt->mnt_pcp);
570 #endif
571 	kmem_cache_free(mnt_cache, mnt);
572 }
573 
574 static void delayed_free_vfsmnt(struct rcu_head *head)
575 {
576 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
577 }
578 
579 /* call under rcu_read_lock */
580 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
581 {
582 	struct mount *mnt;
583 	if (read_seqretry(&mount_lock, seq))
584 		return 1;
585 	if (bastard == NULL)
586 		return 0;
587 	mnt = real_mount(bastard);
588 	mnt_add_count(mnt, 1);
589 	smp_mb();			// see mntput_no_expire()
590 	if (likely(!read_seqretry(&mount_lock, seq)))
591 		return 0;
592 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 		mnt_add_count(mnt, -1);
594 		return 1;
595 	}
596 	lock_mount_hash();
597 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
598 		mnt_add_count(mnt, -1);
599 		unlock_mount_hash();
600 		return 1;
601 	}
602 	unlock_mount_hash();
603 	/* caller will mntput() */
604 	return -1;
605 }
606 
607 /* call under rcu_read_lock */
608 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
609 {
610 	int res = __legitimize_mnt(bastard, seq);
611 	if (likely(!res))
612 		return true;
613 	if (unlikely(res < 0)) {
614 		rcu_read_unlock();
615 		mntput(bastard);
616 		rcu_read_lock();
617 	}
618 	return false;
619 }
620 
621 /*
622  * find the first mount at @dentry on vfsmount @mnt.
623  * call under rcu_read_lock()
624  */
625 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
626 {
627 	struct hlist_head *head = m_hash(mnt, dentry);
628 	struct mount *p;
629 
630 	hlist_for_each_entry_rcu(p, head, mnt_hash)
631 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
632 			return p;
633 	return NULL;
634 }
635 
636 /*
637  * lookup_mnt - Return the first child mount mounted at path
638  *
639  * "First" means first mounted chronologically.  If you create the
640  * following mounts:
641  *
642  * mount /dev/sda1 /mnt
643  * mount /dev/sda2 /mnt
644  * mount /dev/sda3 /mnt
645  *
646  * Then lookup_mnt() on the base /mnt dentry in the root mount will
647  * return successively the root dentry and vfsmount of /dev/sda1, then
648  * /dev/sda2, then /dev/sda3, then NULL.
649  *
650  * lookup_mnt takes a reference to the found vfsmount.
651  */
652 struct vfsmount *lookup_mnt(const struct path *path)
653 {
654 	struct mount *child_mnt;
655 	struct vfsmount *m;
656 	unsigned seq;
657 
658 	rcu_read_lock();
659 	do {
660 		seq = read_seqbegin(&mount_lock);
661 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 		m = child_mnt ? &child_mnt->mnt : NULL;
663 	} while (!legitimize_mnt(m, seq));
664 	rcu_read_unlock();
665 	return m;
666 }
667 
668 static inline void lock_ns_list(struct mnt_namespace *ns)
669 {
670 	spin_lock(&ns->ns_lock);
671 }
672 
673 static inline void unlock_ns_list(struct mnt_namespace *ns)
674 {
675 	spin_unlock(&ns->ns_lock);
676 }
677 
678 static inline bool mnt_is_cursor(struct mount *mnt)
679 {
680 	return mnt->mnt.mnt_flags & MNT_CURSOR;
681 }
682 
683 /*
684  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685  *                         current mount namespace.
686  *
687  * The common case is dentries are not mountpoints at all and that
688  * test is handled inline.  For the slow case when we are actually
689  * dealing with a mountpoint of some kind, walk through all of the
690  * mounts in the current mount namespace and test to see if the dentry
691  * is a mountpoint.
692  *
693  * The mount_hashtable is not usable in the context because we
694  * need to identify all mounts that may be in the current mount
695  * namespace not just a mount that happens to have some specified
696  * parent mount.
697  */
698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 	struct mount *mnt;
702 	bool is_covered = false;
703 
704 	down_read(&namespace_sem);
705 	lock_ns_list(ns);
706 	list_for_each_entry(mnt, &ns->list, mnt_list) {
707 		if (mnt_is_cursor(mnt))
708 			continue;
709 		is_covered = (mnt->mnt_mountpoint == dentry);
710 		if (is_covered)
711 			break;
712 	}
713 	unlock_ns_list(ns);
714 	up_read(&namespace_sem);
715 
716 	return is_covered;
717 }
718 
719 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 {
721 	struct hlist_head *chain = mp_hash(dentry);
722 	struct mountpoint *mp;
723 
724 	hlist_for_each_entry(mp, chain, m_hash) {
725 		if (mp->m_dentry == dentry) {
726 			mp->m_count++;
727 			return mp;
728 		}
729 	}
730 	return NULL;
731 }
732 
733 static struct mountpoint *get_mountpoint(struct dentry *dentry)
734 {
735 	struct mountpoint *mp, *new = NULL;
736 	int ret;
737 
738 	if (d_mountpoint(dentry)) {
739 		/* might be worth a WARN_ON() */
740 		if (d_unlinked(dentry))
741 			return ERR_PTR(-ENOENT);
742 mountpoint:
743 		read_seqlock_excl(&mount_lock);
744 		mp = lookup_mountpoint(dentry);
745 		read_sequnlock_excl(&mount_lock);
746 		if (mp)
747 			goto done;
748 	}
749 
750 	if (!new)
751 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 	if (!new)
753 		return ERR_PTR(-ENOMEM);
754 
755 
756 	/* Exactly one processes may set d_mounted */
757 	ret = d_set_mounted(dentry);
758 
759 	/* Someone else set d_mounted? */
760 	if (ret == -EBUSY)
761 		goto mountpoint;
762 
763 	/* The dentry is not available as a mountpoint? */
764 	mp = ERR_PTR(ret);
765 	if (ret)
766 		goto done;
767 
768 	/* Add the new mountpoint to the hash table */
769 	read_seqlock_excl(&mount_lock);
770 	new->m_dentry = dget(dentry);
771 	new->m_count = 1;
772 	hlist_add_head(&new->m_hash, mp_hash(dentry));
773 	INIT_HLIST_HEAD(&new->m_list);
774 	read_sequnlock_excl(&mount_lock);
775 
776 	mp = new;
777 	new = NULL;
778 done:
779 	kfree(new);
780 	return mp;
781 }
782 
783 /*
784  * vfsmount lock must be held.  Additionally, the caller is responsible
785  * for serializing calls for given disposal list.
786  */
787 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
788 {
789 	if (!--mp->m_count) {
790 		struct dentry *dentry = mp->m_dentry;
791 		BUG_ON(!hlist_empty(&mp->m_list));
792 		spin_lock(&dentry->d_lock);
793 		dentry->d_flags &= ~DCACHE_MOUNTED;
794 		spin_unlock(&dentry->d_lock);
795 		dput_to_list(dentry, list);
796 		hlist_del(&mp->m_hash);
797 		kfree(mp);
798 	}
799 }
800 
801 /* called with namespace_lock and vfsmount lock */
802 static void put_mountpoint(struct mountpoint *mp)
803 {
804 	__put_mountpoint(mp, &ex_mountpoints);
805 }
806 
807 static inline int check_mnt(struct mount *mnt)
808 {
809 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
810 }
811 
812 /*
813  * vfsmount lock must be held for write
814  */
815 static void touch_mnt_namespace(struct mnt_namespace *ns)
816 {
817 	if (ns) {
818 		ns->event = ++event;
819 		wake_up_interruptible(&ns->poll);
820 	}
821 }
822 
823 /*
824  * vfsmount lock must be held for write
825  */
826 static void __touch_mnt_namespace(struct mnt_namespace *ns)
827 {
828 	if (ns && ns->event != event) {
829 		ns->event = event;
830 		wake_up_interruptible(&ns->poll);
831 	}
832 }
833 
834 /*
835  * vfsmount lock must be held for write
836  */
837 static struct mountpoint *unhash_mnt(struct mount *mnt)
838 {
839 	struct mountpoint *mp;
840 	mnt->mnt_parent = mnt;
841 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
842 	list_del_init(&mnt->mnt_child);
843 	hlist_del_init_rcu(&mnt->mnt_hash);
844 	hlist_del_init(&mnt->mnt_mp_list);
845 	mp = mnt->mnt_mp;
846 	mnt->mnt_mp = NULL;
847 	return mp;
848 }
849 
850 /*
851  * vfsmount lock must be held for write
852  */
853 static void umount_mnt(struct mount *mnt)
854 {
855 	put_mountpoint(unhash_mnt(mnt));
856 }
857 
858 /*
859  * vfsmount lock must be held for write
860  */
861 void mnt_set_mountpoint(struct mount *mnt,
862 			struct mountpoint *mp,
863 			struct mount *child_mnt)
864 {
865 	mp->m_count++;
866 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
867 	child_mnt->mnt_mountpoint = mp->m_dentry;
868 	child_mnt->mnt_parent = mnt;
869 	child_mnt->mnt_mp = mp;
870 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
871 }
872 
873 static void __attach_mnt(struct mount *mnt, struct mount *parent)
874 {
875 	hlist_add_head_rcu(&mnt->mnt_hash,
876 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
878 }
879 
880 /*
881  * vfsmount lock must be held for write
882  */
883 static void attach_mnt(struct mount *mnt,
884 			struct mount *parent,
885 			struct mountpoint *mp)
886 {
887 	mnt_set_mountpoint(parent, mp, mnt);
888 	__attach_mnt(mnt, parent);
889 }
890 
891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
892 {
893 	struct mountpoint *old_mp = mnt->mnt_mp;
894 	struct mount *old_parent = mnt->mnt_parent;
895 
896 	list_del_init(&mnt->mnt_child);
897 	hlist_del_init(&mnt->mnt_mp_list);
898 	hlist_del_init_rcu(&mnt->mnt_hash);
899 
900 	attach_mnt(mnt, parent, mp);
901 
902 	put_mountpoint(old_mp);
903 	mnt_add_count(old_parent, -1);
904 }
905 
906 /*
907  * vfsmount lock must be held for write
908  */
909 static void commit_tree(struct mount *mnt)
910 {
911 	struct mount *parent = mnt->mnt_parent;
912 	struct mount *m;
913 	LIST_HEAD(head);
914 	struct mnt_namespace *n = parent->mnt_ns;
915 
916 	BUG_ON(parent == mnt);
917 
918 	list_add_tail(&head, &mnt->mnt_list);
919 	list_for_each_entry(m, &head, mnt_list)
920 		m->mnt_ns = n;
921 
922 	list_splice(&head, n->list.prev);
923 
924 	n->mounts += n->pending_mounts;
925 	n->pending_mounts = 0;
926 
927 	__attach_mnt(mnt, parent);
928 	touch_mnt_namespace(n);
929 }
930 
931 static struct mount *next_mnt(struct mount *p, struct mount *root)
932 {
933 	struct list_head *next = p->mnt_mounts.next;
934 	if (next == &p->mnt_mounts) {
935 		while (1) {
936 			if (p == root)
937 				return NULL;
938 			next = p->mnt_child.next;
939 			if (next != &p->mnt_parent->mnt_mounts)
940 				break;
941 			p = p->mnt_parent;
942 		}
943 	}
944 	return list_entry(next, struct mount, mnt_child);
945 }
946 
947 static struct mount *skip_mnt_tree(struct mount *p)
948 {
949 	struct list_head *prev = p->mnt_mounts.prev;
950 	while (prev != &p->mnt_mounts) {
951 		p = list_entry(prev, struct mount, mnt_child);
952 		prev = p->mnt_mounts.prev;
953 	}
954 	return p;
955 }
956 
957 /**
958  * vfs_create_mount - Create a mount for a configured superblock
959  * @fc: The configuration context with the superblock attached
960  *
961  * Create a mount to an already configured superblock.  If necessary, the
962  * caller should invoke vfs_get_tree() before calling this.
963  *
964  * Note that this does not attach the mount to anything.
965  */
966 struct vfsmount *vfs_create_mount(struct fs_context *fc)
967 {
968 	struct mount *mnt;
969 	struct user_namespace *fs_userns;
970 
971 	if (!fc->root)
972 		return ERR_PTR(-EINVAL);
973 
974 	mnt = alloc_vfsmnt(fc->source ?: "none");
975 	if (!mnt)
976 		return ERR_PTR(-ENOMEM);
977 
978 	if (fc->sb_flags & SB_KERNMOUNT)
979 		mnt->mnt.mnt_flags = MNT_INTERNAL;
980 
981 	atomic_inc(&fc->root->d_sb->s_active);
982 	mnt->mnt.mnt_sb		= fc->root->d_sb;
983 	mnt->mnt.mnt_root	= dget(fc->root);
984 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
985 	mnt->mnt_parent		= mnt;
986 
987 	fs_userns = mnt->mnt.mnt_sb->s_user_ns;
988 	if (!initial_idmapping(fs_userns))
989 		mnt->mnt.mnt_userns = get_user_ns(fs_userns);
990 
991 	lock_mount_hash();
992 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
993 	unlock_mount_hash();
994 	return &mnt->mnt;
995 }
996 EXPORT_SYMBOL(vfs_create_mount);
997 
998 struct vfsmount *fc_mount(struct fs_context *fc)
999 {
1000 	int err = vfs_get_tree(fc);
1001 	if (!err) {
1002 		up_write(&fc->root->d_sb->s_umount);
1003 		return vfs_create_mount(fc);
1004 	}
1005 	return ERR_PTR(err);
1006 }
1007 EXPORT_SYMBOL(fc_mount);
1008 
1009 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1010 				int flags, const char *name,
1011 				void *data)
1012 {
1013 	struct fs_context *fc;
1014 	struct vfsmount *mnt;
1015 	int ret = 0;
1016 
1017 	if (!type)
1018 		return ERR_PTR(-EINVAL);
1019 
1020 	fc = fs_context_for_mount(type, flags);
1021 	if (IS_ERR(fc))
1022 		return ERR_CAST(fc);
1023 
1024 	if (name)
1025 		ret = vfs_parse_fs_string(fc, "source",
1026 					  name, strlen(name));
1027 	if (!ret)
1028 		ret = parse_monolithic_mount_data(fc, data);
1029 	if (!ret)
1030 		mnt = fc_mount(fc);
1031 	else
1032 		mnt = ERR_PTR(ret);
1033 
1034 	put_fs_context(fc);
1035 	return mnt;
1036 }
1037 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1038 
1039 struct vfsmount *
1040 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1041 	     const char *name, void *data)
1042 {
1043 	/* Until it is worked out how to pass the user namespace
1044 	 * through from the parent mount to the submount don't support
1045 	 * unprivileged mounts with submounts.
1046 	 */
1047 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1048 		return ERR_PTR(-EPERM);
1049 
1050 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1051 }
1052 EXPORT_SYMBOL_GPL(vfs_submount);
1053 
1054 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1055 					int flag)
1056 {
1057 	struct super_block *sb = old->mnt.mnt_sb;
1058 	struct mount *mnt;
1059 	int err;
1060 
1061 	mnt = alloc_vfsmnt(old->mnt_devname);
1062 	if (!mnt)
1063 		return ERR_PTR(-ENOMEM);
1064 
1065 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1066 		mnt->mnt_group_id = 0; /* not a peer of original */
1067 	else
1068 		mnt->mnt_group_id = old->mnt_group_id;
1069 
1070 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1071 		err = mnt_alloc_group_id(mnt);
1072 		if (err)
1073 			goto out_free;
1074 	}
1075 
1076 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1077 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1078 
1079 	atomic_inc(&sb->s_active);
1080 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1081 	if (!initial_idmapping(mnt->mnt.mnt_userns))
1082 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1083 	mnt->mnt.mnt_sb = sb;
1084 	mnt->mnt.mnt_root = dget(root);
1085 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1086 	mnt->mnt_parent = mnt;
1087 	lock_mount_hash();
1088 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1089 	unlock_mount_hash();
1090 
1091 	if ((flag & CL_SLAVE) ||
1092 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1093 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1094 		mnt->mnt_master = old;
1095 		CLEAR_MNT_SHARED(mnt);
1096 	} else if (!(flag & CL_PRIVATE)) {
1097 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1098 			list_add(&mnt->mnt_share, &old->mnt_share);
1099 		if (IS_MNT_SLAVE(old))
1100 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1101 		mnt->mnt_master = old->mnt_master;
1102 	} else {
1103 		CLEAR_MNT_SHARED(mnt);
1104 	}
1105 	if (flag & CL_MAKE_SHARED)
1106 		set_mnt_shared(mnt);
1107 
1108 	/* stick the duplicate mount on the same expiry list
1109 	 * as the original if that was on one */
1110 	if (flag & CL_EXPIRE) {
1111 		if (!list_empty(&old->mnt_expire))
1112 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1113 	}
1114 
1115 	return mnt;
1116 
1117  out_free:
1118 	mnt_free_id(mnt);
1119 	free_vfsmnt(mnt);
1120 	return ERR_PTR(err);
1121 }
1122 
1123 static void cleanup_mnt(struct mount *mnt)
1124 {
1125 	struct hlist_node *p;
1126 	struct mount *m;
1127 	/*
1128 	 * The warning here probably indicates that somebody messed
1129 	 * up a mnt_want/drop_write() pair.  If this happens, the
1130 	 * filesystem was probably unable to make r/w->r/o transitions.
1131 	 * The locking used to deal with mnt_count decrement provides barriers,
1132 	 * so mnt_get_writers() below is safe.
1133 	 */
1134 	WARN_ON(mnt_get_writers(mnt));
1135 	if (unlikely(mnt->mnt_pins.first))
1136 		mnt_pin_kill(mnt);
1137 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1138 		hlist_del(&m->mnt_umount);
1139 		mntput(&m->mnt);
1140 	}
1141 	fsnotify_vfsmount_delete(&mnt->mnt);
1142 	dput(mnt->mnt.mnt_root);
1143 	deactivate_super(mnt->mnt.mnt_sb);
1144 	mnt_free_id(mnt);
1145 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1146 }
1147 
1148 static void __cleanup_mnt(struct rcu_head *head)
1149 {
1150 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1151 }
1152 
1153 static LLIST_HEAD(delayed_mntput_list);
1154 static void delayed_mntput(struct work_struct *unused)
1155 {
1156 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1157 	struct mount *m, *t;
1158 
1159 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1160 		cleanup_mnt(m);
1161 }
1162 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1163 
1164 static void mntput_no_expire(struct mount *mnt)
1165 {
1166 	LIST_HEAD(list);
1167 	int count;
1168 
1169 	rcu_read_lock();
1170 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1171 		/*
1172 		 * Since we don't do lock_mount_hash() here,
1173 		 * ->mnt_ns can change under us.  However, if it's
1174 		 * non-NULL, then there's a reference that won't
1175 		 * be dropped until after an RCU delay done after
1176 		 * turning ->mnt_ns NULL.  So if we observe it
1177 		 * non-NULL under rcu_read_lock(), the reference
1178 		 * we are dropping is not the final one.
1179 		 */
1180 		mnt_add_count(mnt, -1);
1181 		rcu_read_unlock();
1182 		return;
1183 	}
1184 	lock_mount_hash();
1185 	/*
1186 	 * make sure that if __legitimize_mnt() has not seen us grab
1187 	 * mount_lock, we'll see their refcount increment here.
1188 	 */
1189 	smp_mb();
1190 	mnt_add_count(mnt, -1);
1191 	count = mnt_get_count(mnt);
1192 	if (count != 0) {
1193 		WARN_ON(count < 0);
1194 		rcu_read_unlock();
1195 		unlock_mount_hash();
1196 		return;
1197 	}
1198 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1199 		rcu_read_unlock();
1200 		unlock_mount_hash();
1201 		return;
1202 	}
1203 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1204 	rcu_read_unlock();
1205 
1206 	list_del(&mnt->mnt_instance);
1207 
1208 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1209 		struct mount *p, *tmp;
1210 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1211 			__put_mountpoint(unhash_mnt(p), &list);
1212 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1213 		}
1214 	}
1215 	unlock_mount_hash();
1216 	shrink_dentry_list(&list);
1217 
1218 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1219 		struct task_struct *task = current;
1220 		if (likely(!(task->flags & PF_KTHREAD))) {
1221 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1222 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1223 				return;
1224 		}
1225 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1226 			schedule_delayed_work(&delayed_mntput_work, 1);
1227 		return;
1228 	}
1229 	cleanup_mnt(mnt);
1230 }
1231 
1232 void mntput(struct vfsmount *mnt)
1233 {
1234 	if (mnt) {
1235 		struct mount *m = real_mount(mnt);
1236 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1237 		if (unlikely(m->mnt_expiry_mark))
1238 			m->mnt_expiry_mark = 0;
1239 		mntput_no_expire(m);
1240 	}
1241 }
1242 EXPORT_SYMBOL(mntput);
1243 
1244 struct vfsmount *mntget(struct vfsmount *mnt)
1245 {
1246 	if (mnt)
1247 		mnt_add_count(real_mount(mnt), 1);
1248 	return mnt;
1249 }
1250 EXPORT_SYMBOL(mntget);
1251 
1252 /**
1253  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1254  * @path: path to check
1255  *
1256  *  d_mountpoint() can only be used reliably to establish if a dentry is
1257  *  not mounted in any namespace and that common case is handled inline.
1258  *  d_mountpoint() isn't aware of the possibility there may be multiple
1259  *  mounts using a given dentry in a different namespace. This function
1260  *  checks if the passed in path is a mountpoint rather than the dentry
1261  *  alone.
1262  */
1263 bool path_is_mountpoint(const struct path *path)
1264 {
1265 	unsigned seq;
1266 	bool res;
1267 
1268 	if (!d_mountpoint(path->dentry))
1269 		return false;
1270 
1271 	rcu_read_lock();
1272 	do {
1273 		seq = read_seqbegin(&mount_lock);
1274 		res = __path_is_mountpoint(path);
1275 	} while (read_seqretry(&mount_lock, seq));
1276 	rcu_read_unlock();
1277 
1278 	return res;
1279 }
1280 EXPORT_SYMBOL(path_is_mountpoint);
1281 
1282 struct vfsmount *mnt_clone_internal(const struct path *path)
1283 {
1284 	struct mount *p;
1285 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1286 	if (IS_ERR(p))
1287 		return ERR_CAST(p);
1288 	p->mnt.mnt_flags |= MNT_INTERNAL;
1289 	return &p->mnt;
1290 }
1291 
1292 #ifdef CONFIG_PROC_FS
1293 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1294 				   struct list_head *p)
1295 {
1296 	struct mount *mnt, *ret = NULL;
1297 
1298 	lock_ns_list(ns);
1299 	list_for_each_continue(p, &ns->list) {
1300 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1301 		if (!mnt_is_cursor(mnt)) {
1302 			ret = mnt;
1303 			break;
1304 		}
1305 	}
1306 	unlock_ns_list(ns);
1307 
1308 	return ret;
1309 }
1310 
1311 /* iterator; we want it to have access to namespace_sem, thus here... */
1312 static void *m_start(struct seq_file *m, loff_t *pos)
1313 {
1314 	struct proc_mounts *p = m->private;
1315 	struct list_head *prev;
1316 
1317 	down_read(&namespace_sem);
1318 	if (!*pos) {
1319 		prev = &p->ns->list;
1320 	} else {
1321 		prev = &p->cursor.mnt_list;
1322 
1323 		/* Read after we'd reached the end? */
1324 		if (list_empty(prev))
1325 			return NULL;
1326 	}
1327 
1328 	return mnt_list_next(p->ns, prev);
1329 }
1330 
1331 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1332 {
1333 	struct proc_mounts *p = m->private;
1334 	struct mount *mnt = v;
1335 
1336 	++*pos;
1337 	return mnt_list_next(p->ns, &mnt->mnt_list);
1338 }
1339 
1340 static void m_stop(struct seq_file *m, void *v)
1341 {
1342 	struct proc_mounts *p = m->private;
1343 	struct mount *mnt = v;
1344 
1345 	lock_ns_list(p->ns);
1346 	if (mnt)
1347 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1348 	else
1349 		list_del_init(&p->cursor.mnt_list);
1350 	unlock_ns_list(p->ns);
1351 	up_read(&namespace_sem);
1352 }
1353 
1354 static int m_show(struct seq_file *m, void *v)
1355 {
1356 	struct proc_mounts *p = m->private;
1357 	struct mount *r = v;
1358 	return p->show(m, &r->mnt);
1359 }
1360 
1361 const struct seq_operations mounts_op = {
1362 	.start	= m_start,
1363 	.next	= m_next,
1364 	.stop	= m_stop,
1365 	.show	= m_show,
1366 };
1367 
1368 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1369 {
1370 	down_read(&namespace_sem);
1371 	lock_ns_list(ns);
1372 	list_del(&cursor->mnt_list);
1373 	unlock_ns_list(ns);
1374 	up_read(&namespace_sem);
1375 }
1376 #endif  /* CONFIG_PROC_FS */
1377 
1378 /**
1379  * may_umount_tree - check if a mount tree is busy
1380  * @m: root of mount tree
1381  *
1382  * This is called to check if a tree of mounts has any
1383  * open files, pwds, chroots or sub mounts that are
1384  * busy.
1385  */
1386 int may_umount_tree(struct vfsmount *m)
1387 {
1388 	struct mount *mnt = real_mount(m);
1389 	int actual_refs = 0;
1390 	int minimum_refs = 0;
1391 	struct mount *p;
1392 	BUG_ON(!m);
1393 
1394 	/* write lock needed for mnt_get_count */
1395 	lock_mount_hash();
1396 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1397 		actual_refs += mnt_get_count(p);
1398 		minimum_refs += 2;
1399 	}
1400 	unlock_mount_hash();
1401 
1402 	if (actual_refs > minimum_refs)
1403 		return 0;
1404 
1405 	return 1;
1406 }
1407 
1408 EXPORT_SYMBOL(may_umount_tree);
1409 
1410 /**
1411  * may_umount - check if a mount point is busy
1412  * @mnt: root of mount
1413  *
1414  * This is called to check if a mount point has any
1415  * open files, pwds, chroots or sub mounts. If the
1416  * mount has sub mounts this will return busy
1417  * regardless of whether the sub mounts are busy.
1418  *
1419  * Doesn't take quota and stuff into account. IOW, in some cases it will
1420  * give false negatives. The main reason why it's here is that we need
1421  * a non-destructive way to look for easily umountable filesystems.
1422  */
1423 int may_umount(struct vfsmount *mnt)
1424 {
1425 	int ret = 1;
1426 	down_read(&namespace_sem);
1427 	lock_mount_hash();
1428 	if (propagate_mount_busy(real_mount(mnt), 2))
1429 		ret = 0;
1430 	unlock_mount_hash();
1431 	up_read(&namespace_sem);
1432 	return ret;
1433 }
1434 
1435 EXPORT_SYMBOL(may_umount);
1436 
1437 static void namespace_unlock(void)
1438 {
1439 	struct hlist_head head;
1440 	struct hlist_node *p;
1441 	struct mount *m;
1442 	LIST_HEAD(list);
1443 
1444 	hlist_move_list(&unmounted, &head);
1445 	list_splice_init(&ex_mountpoints, &list);
1446 
1447 	up_write(&namespace_sem);
1448 
1449 	shrink_dentry_list(&list);
1450 
1451 	if (likely(hlist_empty(&head)))
1452 		return;
1453 
1454 	synchronize_rcu_expedited();
1455 
1456 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1457 		hlist_del(&m->mnt_umount);
1458 		mntput(&m->mnt);
1459 	}
1460 }
1461 
1462 static inline void namespace_lock(void)
1463 {
1464 	down_write(&namespace_sem);
1465 }
1466 
1467 enum umount_tree_flags {
1468 	UMOUNT_SYNC = 1,
1469 	UMOUNT_PROPAGATE = 2,
1470 	UMOUNT_CONNECTED = 4,
1471 };
1472 
1473 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 	/* Leaving mounts connected is only valid for lazy umounts */
1476 	if (how & UMOUNT_SYNC)
1477 		return true;
1478 
1479 	/* A mount without a parent has nothing to be connected to */
1480 	if (!mnt_has_parent(mnt))
1481 		return true;
1482 
1483 	/* Because the reference counting rules change when mounts are
1484 	 * unmounted and connected, umounted mounts may not be
1485 	 * connected to mounted mounts.
1486 	 */
1487 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1488 		return true;
1489 
1490 	/* Has it been requested that the mount remain connected? */
1491 	if (how & UMOUNT_CONNECTED)
1492 		return false;
1493 
1494 	/* Is the mount locked such that it needs to remain connected? */
1495 	if (IS_MNT_LOCKED(mnt))
1496 		return false;
1497 
1498 	/* By default disconnect the mount */
1499 	return true;
1500 }
1501 
1502 /*
1503  * mount_lock must be held
1504  * namespace_sem must be held for write
1505  */
1506 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1507 {
1508 	LIST_HEAD(tmp_list);
1509 	struct mount *p;
1510 
1511 	if (how & UMOUNT_PROPAGATE)
1512 		propagate_mount_unlock(mnt);
1513 
1514 	/* Gather the mounts to umount */
1515 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1516 		p->mnt.mnt_flags |= MNT_UMOUNT;
1517 		list_move(&p->mnt_list, &tmp_list);
1518 	}
1519 
1520 	/* Hide the mounts from mnt_mounts */
1521 	list_for_each_entry(p, &tmp_list, mnt_list) {
1522 		list_del_init(&p->mnt_child);
1523 	}
1524 
1525 	/* Add propogated mounts to the tmp_list */
1526 	if (how & UMOUNT_PROPAGATE)
1527 		propagate_umount(&tmp_list);
1528 
1529 	while (!list_empty(&tmp_list)) {
1530 		struct mnt_namespace *ns;
1531 		bool disconnect;
1532 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1533 		list_del_init(&p->mnt_expire);
1534 		list_del_init(&p->mnt_list);
1535 		ns = p->mnt_ns;
1536 		if (ns) {
1537 			ns->mounts--;
1538 			__touch_mnt_namespace(ns);
1539 		}
1540 		p->mnt_ns = NULL;
1541 		if (how & UMOUNT_SYNC)
1542 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1543 
1544 		disconnect = disconnect_mount(p, how);
1545 		if (mnt_has_parent(p)) {
1546 			mnt_add_count(p->mnt_parent, -1);
1547 			if (!disconnect) {
1548 				/* Don't forget about p */
1549 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1550 			} else {
1551 				umount_mnt(p);
1552 			}
1553 		}
1554 		change_mnt_propagation(p, MS_PRIVATE);
1555 		if (disconnect)
1556 			hlist_add_head(&p->mnt_umount, &unmounted);
1557 	}
1558 }
1559 
1560 static void shrink_submounts(struct mount *mnt);
1561 
1562 static int do_umount_root(struct super_block *sb)
1563 {
1564 	int ret = 0;
1565 
1566 	down_write(&sb->s_umount);
1567 	if (!sb_rdonly(sb)) {
1568 		struct fs_context *fc;
1569 
1570 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1571 						SB_RDONLY);
1572 		if (IS_ERR(fc)) {
1573 			ret = PTR_ERR(fc);
1574 		} else {
1575 			ret = parse_monolithic_mount_data(fc, NULL);
1576 			if (!ret)
1577 				ret = reconfigure_super(fc);
1578 			put_fs_context(fc);
1579 		}
1580 	}
1581 	up_write(&sb->s_umount);
1582 	return ret;
1583 }
1584 
1585 static int do_umount(struct mount *mnt, int flags)
1586 {
1587 	struct super_block *sb = mnt->mnt.mnt_sb;
1588 	int retval;
1589 
1590 	retval = security_sb_umount(&mnt->mnt, flags);
1591 	if (retval)
1592 		return retval;
1593 
1594 	/*
1595 	 * Allow userspace to request a mountpoint be expired rather than
1596 	 * unmounting unconditionally. Unmount only happens if:
1597 	 *  (1) the mark is already set (the mark is cleared by mntput())
1598 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1599 	 */
1600 	if (flags & MNT_EXPIRE) {
1601 		if (&mnt->mnt == current->fs->root.mnt ||
1602 		    flags & (MNT_FORCE | MNT_DETACH))
1603 			return -EINVAL;
1604 
1605 		/*
1606 		 * probably don't strictly need the lock here if we examined
1607 		 * all race cases, but it's a slowpath.
1608 		 */
1609 		lock_mount_hash();
1610 		if (mnt_get_count(mnt) != 2) {
1611 			unlock_mount_hash();
1612 			return -EBUSY;
1613 		}
1614 		unlock_mount_hash();
1615 
1616 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1617 			return -EAGAIN;
1618 	}
1619 
1620 	/*
1621 	 * If we may have to abort operations to get out of this
1622 	 * mount, and they will themselves hold resources we must
1623 	 * allow the fs to do things. In the Unix tradition of
1624 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1625 	 * might fail to complete on the first run through as other tasks
1626 	 * must return, and the like. Thats for the mount program to worry
1627 	 * about for the moment.
1628 	 */
1629 
1630 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1631 		sb->s_op->umount_begin(sb);
1632 	}
1633 
1634 	/*
1635 	 * No sense to grab the lock for this test, but test itself looks
1636 	 * somewhat bogus. Suggestions for better replacement?
1637 	 * Ho-hum... In principle, we might treat that as umount + switch
1638 	 * to rootfs. GC would eventually take care of the old vfsmount.
1639 	 * Actually it makes sense, especially if rootfs would contain a
1640 	 * /reboot - static binary that would close all descriptors and
1641 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1642 	 */
1643 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1644 		/*
1645 		 * Special case for "unmounting" root ...
1646 		 * we just try to remount it readonly.
1647 		 */
1648 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1649 			return -EPERM;
1650 		return do_umount_root(sb);
1651 	}
1652 
1653 	namespace_lock();
1654 	lock_mount_hash();
1655 
1656 	/* Recheck MNT_LOCKED with the locks held */
1657 	retval = -EINVAL;
1658 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1659 		goto out;
1660 
1661 	event++;
1662 	if (flags & MNT_DETACH) {
1663 		if (!list_empty(&mnt->mnt_list))
1664 			umount_tree(mnt, UMOUNT_PROPAGATE);
1665 		retval = 0;
1666 	} else {
1667 		shrink_submounts(mnt);
1668 		retval = -EBUSY;
1669 		if (!propagate_mount_busy(mnt, 2)) {
1670 			if (!list_empty(&mnt->mnt_list))
1671 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1672 			retval = 0;
1673 		}
1674 	}
1675 out:
1676 	unlock_mount_hash();
1677 	namespace_unlock();
1678 	return retval;
1679 }
1680 
1681 /*
1682  * __detach_mounts - lazily unmount all mounts on the specified dentry
1683  *
1684  * During unlink, rmdir, and d_drop it is possible to loose the path
1685  * to an existing mountpoint, and wind up leaking the mount.
1686  * detach_mounts allows lazily unmounting those mounts instead of
1687  * leaking them.
1688  *
1689  * The caller may hold dentry->d_inode->i_mutex.
1690  */
1691 void __detach_mounts(struct dentry *dentry)
1692 {
1693 	struct mountpoint *mp;
1694 	struct mount *mnt;
1695 
1696 	namespace_lock();
1697 	lock_mount_hash();
1698 	mp = lookup_mountpoint(dentry);
1699 	if (!mp)
1700 		goto out_unlock;
1701 
1702 	event++;
1703 	while (!hlist_empty(&mp->m_list)) {
1704 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1705 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1706 			umount_mnt(mnt);
1707 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1708 		}
1709 		else umount_tree(mnt, UMOUNT_CONNECTED);
1710 	}
1711 	put_mountpoint(mp);
1712 out_unlock:
1713 	unlock_mount_hash();
1714 	namespace_unlock();
1715 }
1716 
1717 /*
1718  * Is the caller allowed to modify his namespace?
1719  */
1720 static inline bool may_mount(void)
1721 {
1722 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1723 }
1724 
1725 static void warn_mandlock(void)
1726 {
1727 	pr_warn_once("=======================================================\n"
1728 		     "WARNING: The mand mount option has been deprecated and\n"
1729 		     "         and is ignored by this kernel. Remove the mand\n"
1730 		     "         option from the mount to silence this warning.\n"
1731 		     "=======================================================\n");
1732 }
1733 
1734 static int can_umount(const struct path *path, int flags)
1735 {
1736 	struct mount *mnt = real_mount(path->mnt);
1737 
1738 	if (!may_mount())
1739 		return -EPERM;
1740 	if (path->dentry != path->mnt->mnt_root)
1741 		return -EINVAL;
1742 	if (!check_mnt(mnt))
1743 		return -EINVAL;
1744 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1745 		return -EINVAL;
1746 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1747 		return -EPERM;
1748 	return 0;
1749 }
1750 
1751 // caller is responsible for flags being sane
1752 int path_umount(struct path *path, int flags)
1753 {
1754 	struct mount *mnt = real_mount(path->mnt);
1755 	int ret;
1756 
1757 	ret = can_umount(path, flags);
1758 	if (!ret)
1759 		ret = do_umount(mnt, flags);
1760 
1761 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1762 	dput(path->dentry);
1763 	mntput_no_expire(mnt);
1764 	return ret;
1765 }
1766 
1767 static int ksys_umount(char __user *name, int flags)
1768 {
1769 	int lookup_flags = LOOKUP_MOUNTPOINT;
1770 	struct path path;
1771 	int ret;
1772 
1773 	// basic validity checks done first
1774 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1775 		return -EINVAL;
1776 
1777 	if (!(flags & UMOUNT_NOFOLLOW))
1778 		lookup_flags |= LOOKUP_FOLLOW;
1779 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1780 	if (ret)
1781 		return ret;
1782 	return path_umount(&path, flags);
1783 }
1784 
1785 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1786 {
1787 	return ksys_umount(name, flags);
1788 }
1789 
1790 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1791 
1792 /*
1793  *	The 2.0 compatible umount. No flags.
1794  */
1795 SYSCALL_DEFINE1(oldumount, char __user *, name)
1796 {
1797 	return ksys_umount(name, 0);
1798 }
1799 
1800 #endif
1801 
1802 static bool is_mnt_ns_file(struct dentry *dentry)
1803 {
1804 	/* Is this a proxy for a mount namespace? */
1805 	return dentry->d_op == &ns_dentry_operations &&
1806 	       dentry->d_fsdata == &mntns_operations;
1807 }
1808 
1809 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1810 {
1811 	return container_of(ns, struct mnt_namespace, ns);
1812 }
1813 
1814 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1815 {
1816 	return &mnt->ns;
1817 }
1818 
1819 static bool mnt_ns_loop(struct dentry *dentry)
1820 {
1821 	/* Could bind mounting the mount namespace inode cause a
1822 	 * mount namespace loop?
1823 	 */
1824 	struct mnt_namespace *mnt_ns;
1825 	if (!is_mnt_ns_file(dentry))
1826 		return false;
1827 
1828 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1829 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1830 }
1831 
1832 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1833 					int flag)
1834 {
1835 	struct mount *res, *p, *q, *r, *parent;
1836 
1837 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1838 		return ERR_PTR(-EINVAL);
1839 
1840 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1841 		return ERR_PTR(-EINVAL);
1842 
1843 	res = q = clone_mnt(mnt, dentry, flag);
1844 	if (IS_ERR(q))
1845 		return q;
1846 
1847 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1848 
1849 	p = mnt;
1850 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1851 		struct mount *s;
1852 		if (!is_subdir(r->mnt_mountpoint, dentry))
1853 			continue;
1854 
1855 		for (s = r; s; s = next_mnt(s, r)) {
1856 			if (!(flag & CL_COPY_UNBINDABLE) &&
1857 			    IS_MNT_UNBINDABLE(s)) {
1858 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1859 					/* Both unbindable and locked. */
1860 					q = ERR_PTR(-EPERM);
1861 					goto out;
1862 				} else {
1863 					s = skip_mnt_tree(s);
1864 					continue;
1865 				}
1866 			}
1867 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1868 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1869 				s = skip_mnt_tree(s);
1870 				continue;
1871 			}
1872 			while (p != s->mnt_parent) {
1873 				p = p->mnt_parent;
1874 				q = q->mnt_parent;
1875 			}
1876 			p = s;
1877 			parent = q;
1878 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1879 			if (IS_ERR(q))
1880 				goto out;
1881 			lock_mount_hash();
1882 			list_add_tail(&q->mnt_list, &res->mnt_list);
1883 			attach_mnt(q, parent, p->mnt_mp);
1884 			unlock_mount_hash();
1885 		}
1886 	}
1887 	return res;
1888 out:
1889 	if (res) {
1890 		lock_mount_hash();
1891 		umount_tree(res, UMOUNT_SYNC);
1892 		unlock_mount_hash();
1893 	}
1894 	return q;
1895 }
1896 
1897 /* Caller should check returned pointer for errors */
1898 
1899 struct vfsmount *collect_mounts(const struct path *path)
1900 {
1901 	struct mount *tree;
1902 	namespace_lock();
1903 	if (!check_mnt(real_mount(path->mnt)))
1904 		tree = ERR_PTR(-EINVAL);
1905 	else
1906 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1907 				 CL_COPY_ALL | CL_PRIVATE);
1908 	namespace_unlock();
1909 	if (IS_ERR(tree))
1910 		return ERR_CAST(tree);
1911 	return &tree->mnt;
1912 }
1913 
1914 static void free_mnt_ns(struct mnt_namespace *);
1915 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1916 
1917 void dissolve_on_fput(struct vfsmount *mnt)
1918 {
1919 	struct mnt_namespace *ns;
1920 	namespace_lock();
1921 	lock_mount_hash();
1922 	ns = real_mount(mnt)->mnt_ns;
1923 	if (ns) {
1924 		if (is_anon_ns(ns))
1925 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1926 		else
1927 			ns = NULL;
1928 	}
1929 	unlock_mount_hash();
1930 	namespace_unlock();
1931 	if (ns)
1932 		free_mnt_ns(ns);
1933 }
1934 
1935 void drop_collected_mounts(struct vfsmount *mnt)
1936 {
1937 	namespace_lock();
1938 	lock_mount_hash();
1939 	umount_tree(real_mount(mnt), 0);
1940 	unlock_mount_hash();
1941 	namespace_unlock();
1942 }
1943 
1944 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1945 {
1946 	struct mount *child;
1947 
1948 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1949 		if (!is_subdir(child->mnt_mountpoint, dentry))
1950 			continue;
1951 
1952 		if (child->mnt.mnt_flags & MNT_LOCKED)
1953 			return true;
1954 	}
1955 	return false;
1956 }
1957 
1958 /**
1959  * clone_private_mount - create a private clone of a path
1960  * @path: path to clone
1961  *
1962  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1963  * will not be attached anywhere in the namespace and will be private (i.e.
1964  * changes to the originating mount won't be propagated into this).
1965  *
1966  * Release with mntput().
1967  */
1968 struct vfsmount *clone_private_mount(const struct path *path)
1969 {
1970 	struct mount *old_mnt = real_mount(path->mnt);
1971 	struct mount *new_mnt;
1972 
1973 	down_read(&namespace_sem);
1974 	if (IS_MNT_UNBINDABLE(old_mnt))
1975 		goto invalid;
1976 
1977 	if (!check_mnt(old_mnt))
1978 		goto invalid;
1979 
1980 	if (has_locked_children(old_mnt, path->dentry))
1981 		goto invalid;
1982 
1983 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1984 	up_read(&namespace_sem);
1985 
1986 	if (IS_ERR(new_mnt))
1987 		return ERR_CAST(new_mnt);
1988 
1989 	/* Longterm mount to be removed by kern_unmount*() */
1990 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1991 
1992 	return &new_mnt->mnt;
1993 
1994 invalid:
1995 	up_read(&namespace_sem);
1996 	return ERR_PTR(-EINVAL);
1997 }
1998 EXPORT_SYMBOL_GPL(clone_private_mount);
1999 
2000 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2001 		   struct vfsmount *root)
2002 {
2003 	struct mount *mnt;
2004 	int res = f(root, arg);
2005 	if (res)
2006 		return res;
2007 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2008 		res = f(&mnt->mnt, arg);
2009 		if (res)
2010 			return res;
2011 	}
2012 	return 0;
2013 }
2014 
2015 static void lock_mnt_tree(struct mount *mnt)
2016 {
2017 	struct mount *p;
2018 
2019 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2020 		int flags = p->mnt.mnt_flags;
2021 		/* Don't allow unprivileged users to change mount flags */
2022 		flags |= MNT_LOCK_ATIME;
2023 
2024 		if (flags & MNT_READONLY)
2025 			flags |= MNT_LOCK_READONLY;
2026 
2027 		if (flags & MNT_NODEV)
2028 			flags |= MNT_LOCK_NODEV;
2029 
2030 		if (flags & MNT_NOSUID)
2031 			flags |= MNT_LOCK_NOSUID;
2032 
2033 		if (flags & MNT_NOEXEC)
2034 			flags |= MNT_LOCK_NOEXEC;
2035 		/* Don't allow unprivileged users to reveal what is under a mount */
2036 		if (list_empty(&p->mnt_expire))
2037 			flags |= MNT_LOCKED;
2038 		p->mnt.mnt_flags = flags;
2039 	}
2040 }
2041 
2042 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2043 {
2044 	struct mount *p;
2045 
2046 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2047 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2048 			mnt_release_group_id(p);
2049 	}
2050 }
2051 
2052 static int invent_group_ids(struct mount *mnt, bool recurse)
2053 {
2054 	struct mount *p;
2055 
2056 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2057 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2058 			int err = mnt_alloc_group_id(p);
2059 			if (err) {
2060 				cleanup_group_ids(mnt, p);
2061 				return err;
2062 			}
2063 		}
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2070 {
2071 	unsigned int max = READ_ONCE(sysctl_mount_max);
2072 	unsigned int mounts = 0, old, pending, sum;
2073 	struct mount *p;
2074 
2075 	for (p = mnt; p; p = next_mnt(p, mnt))
2076 		mounts++;
2077 
2078 	old = ns->mounts;
2079 	pending = ns->pending_mounts;
2080 	sum = old + pending;
2081 	if ((old > sum) ||
2082 	    (pending > sum) ||
2083 	    (max < sum) ||
2084 	    (mounts > (max - sum)))
2085 		return -ENOSPC;
2086 
2087 	ns->pending_mounts = pending + mounts;
2088 	return 0;
2089 }
2090 
2091 /*
2092  *  @source_mnt : mount tree to be attached
2093  *  @nd         : place the mount tree @source_mnt is attached
2094  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2095  *  		   store the parent mount and mountpoint dentry.
2096  *  		   (done when source_mnt is moved)
2097  *
2098  *  NOTE: in the table below explains the semantics when a source mount
2099  *  of a given type is attached to a destination mount of a given type.
2100  * ---------------------------------------------------------------------------
2101  * |         BIND MOUNT OPERATION                                            |
2102  * |**************************************************************************
2103  * | source-->| shared        |       private  |       slave    | unbindable |
2104  * | dest     |               |                |                |            |
2105  * |   |      |               |                |                |            |
2106  * |   v      |               |                |                |            |
2107  * |**************************************************************************
2108  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2109  * |          |               |                |                |            |
2110  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2111  * ***************************************************************************
2112  * A bind operation clones the source mount and mounts the clone on the
2113  * destination mount.
2114  *
2115  * (++)  the cloned mount is propagated to all the mounts in the propagation
2116  * 	 tree of the destination mount and the cloned mount is added to
2117  * 	 the peer group of the source mount.
2118  * (+)   the cloned mount is created under the destination mount and is marked
2119  *       as shared. The cloned mount is added to the peer group of the source
2120  *       mount.
2121  * (+++) the mount is propagated to all the mounts in the propagation tree
2122  *       of the destination mount and the cloned mount is made slave
2123  *       of the same master as that of the source mount. The cloned mount
2124  *       is marked as 'shared and slave'.
2125  * (*)   the cloned mount is made a slave of the same master as that of the
2126  * 	 source mount.
2127  *
2128  * ---------------------------------------------------------------------------
2129  * |         		MOVE MOUNT OPERATION                                 |
2130  * |**************************************************************************
2131  * | source-->| shared        |       private  |       slave    | unbindable |
2132  * | dest     |               |                |                |            |
2133  * |   |      |               |                |                |            |
2134  * |   v      |               |                |                |            |
2135  * |**************************************************************************
2136  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2137  * |          |               |                |                |            |
2138  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2139  * ***************************************************************************
2140  *
2141  * (+)  the mount is moved to the destination. And is then propagated to
2142  * 	all the mounts in the propagation tree of the destination mount.
2143  * (+*)  the mount is moved to the destination.
2144  * (+++)  the mount is moved to the destination and is then propagated to
2145  * 	all the mounts belonging to the destination mount's propagation tree.
2146  * 	the mount is marked as 'shared and slave'.
2147  * (*)	the mount continues to be a slave at the new location.
2148  *
2149  * if the source mount is a tree, the operations explained above is
2150  * applied to each mount in the tree.
2151  * Must be called without spinlocks held, since this function can sleep
2152  * in allocations.
2153  */
2154 static int attach_recursive_mnt(struct mount *source_mnt,
2155 			struct mount *dest_mnt,
2156 			struct mountpoint *dest_mp,
2157 			bool moving)
2158 {
2159 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2160 	HLIST_HEAD(tree_list);
2161 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2162 	struct mountpoint *smp;
2163 	struct mount *child, *p;
2164 	struct hlist_node *n;
2165 	int err;
2166 
2167 	/* Preallocate a mountpoint in case the new mounts need
2168 	 * to be tucked under other mounts.
2169 	 */
2170 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2171 	if (IS_ERR(smp))
2172 		return PTR_ERR(smp);
2173 
2174 	/* Is there space to add these mounts to the mount namespace? */
2175 	if (!moving) {
2176 		err = count_mounts(ns, source_mnt);
2177 		if (err)
2178 			goto out;
2179 	}
2180 
2181 	if (IS_MNT_SHARED(dest_mnt)) {
2182 		err = invent_group_ids(source_mnt, true);
2183 		if (err)
2184 			goto out;
2185 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2186 		lock_mount_hash();
2187 		if (err)
2188 			goto out_cleanup_ids;
2189 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2190 			set_mnt_shared(p);
2191 	} else {
2192 		lock_mount_hash();
2193 	}
2194 	if (moving) {
2195 		unhash_mnt(source_mnt);
2196 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2197 		touch_mnt_namespace(source_mnt->mnt_ns);
2198 	} else {
2199 		if (source_mnt->mnt_ns) {
2200 			/* move from anon - the caller will destroy */
2201 			list_del_init(&source_mnt->mnt_ns->list);
2202 		}
2203 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2204 		commit_tree(source_mnt);
2205 	}
2206 
2207 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2208 		struct mount *q;
2209 		hlist_del_init(&child->mnt_hash);
2210 		q = __lookup_mnt(&child->mnt_parent->mnt,
2211 				 child->mnt_mountpoint);
2212 		if (q)
2213 			mnt_change_mountpoint(child, smp, q);
2214 		/* Notice when we are propagating across user namespaces */
2215 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2216 			lock_mnt_tree(child);
2217 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2218 		commit_tree(child);
2219 	}
2220 	put_mountpoint(smp);
2221 	unlock_mount_hash();
2222 
2223 	return 0;
2224 
2225  out_cleanup_ids:
2226 	while (!hlist_empty(&tree_list)) {
2227 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2228 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2229 		umount_tree(child, UMOUNT_SYNC);
2230 	}
2231 	unlock_mount_hash();
2232 	cleanup_group_ids(source_mnt, NULL);
2233  out:
2234 	ns->pending_mounts = 0;
2235 
2236 	read_seqlock_excl(&mount_lock);
2237 	put_mountpoint(smp);
2238 	read_sequnlock_excl(&mount_lock);
2239 
2240 	return err;
2241 }
2242 
2243 static struct mountpoint *lock_mount(struct path *path)
2244 {
2245 	struct vfsmount *mnt;
2246 	struct dentry *dentry = path->dentry;
2247 retry:
2248 	inode_lock(dentry->d_inode);
2249 	if (unlikely(cant_mount(dentry))) {
2250 		inode_unlock(dentry->d_inode);
2251 		return ERR_PTR(-ENOENT);
2252 	}
2253 	namespace_lock();
2254 	mnt = lookup_mnt(path);
2255 	if (likely(!mnt)) {
2256 		struct mountpoint *mp = get_mountpoint(dentry);
2257 		if (IS_ERR(mp)) {
2258 			namespace_unlock();
2259 			inode_unlock(dentry->d_inode);
2260 			return mp;
2261 		}
2262 		return mp;
2263 	}
2264 	namespace_unlock();
2265 	inode_unlock(path->dentry->d_inode);
2266 	path_put(path);
2267 	path->mnt = mnt;
2268 	dentry = path->dentry = dget(mnt->mnt_root);
2269 	goto retry;
2270 }
2271 
2272 static void unlock_mount(struct mountpoint *where)
2273 {
2274 	struct dentry *dentry = where->m_dentry;
2275 
2276 	read_seqlock_excl(&mount_lock);
2277 	put_mountpoint(where);
2278 	read_sequnlock_excl(&mount_lock);
2279 
2280 	namespace_unlock();
2281 	inode_unlock(dentry->d_inode);
2282 }
2283 
2284 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2285 {
2286 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2287 		return -EINVAL;
2288 
2289 	if (d_is_dir(mp->m_dentry) !=
2290 	      d_is_dir(mnt->mnt.mnt_root))
2291 		return -ENOTDIR;
2292 
2293 	return attach_recursive_mnt(mnt, p, mp, false);
2294 }
2295 
2296 /*
2297  * Sanity check the flags to change_mnt_propagation.
2298  */
2299 
2300 static int flags_to_propagation_type(int ms_flags)
2301 {
2302 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2303 
2304 	/* Fail if any non-propagation flags are set */
2305 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2306 		return 0;
2307 	/* Only one propagation flag should be set */
2308 	if (!is_power_of_2(type))
2309 		return 0;
2310 	return type;
2311 }
2312 
2313 /*
2314  * recursively change the type of the mountpoint.
2315  */
2316 static int do_change_type(struct path *path, int ms_flags)
2317 {
2318 	struct mount *m;
2319 	struct mount *mnt = real_mount(path->mnt);
2320 	int recurse = ms_flags & MS_REC;
2321 	int type;
2322 	int err = 0;
2323 
2324 	if (path->dentry != path->mnt->mnt_root)
2325 		return -EINVAL;
2326 
2327 	type = flags_to_propagation_type(ms_flags);
2328 	if (!type)
2329 		return -EINVAL;
2330 
2331 	namespace_lock();
2332 	if (type == MS_SHARED) {
2333 		err = invent_group_ids(mnt, recurse);
2334 		if (err)
2335 			goto out_unlock;
2336 	}
2337 
2338 	lock_mount_hash();
2339 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2340 		change_mnt_propagation(m, type);
2341 	unlock_mount_hash();
2342 
2343  out_unlock:
2344 	namespace_unlock();
2345 	return err;
2346 }
2347 
2348 static struct mount *__do_loopback(struct path *old_path, int recurse)
2349 {
2350 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2351 
2352 	if (IS_MNT_UNBINDABLE(old))
2353 		return mnt;
2354 
2355 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2356 		return mnt;
2357 
2358 	if (!recurse && has_locked_children(old, old_path->dentry))
2359 		return mnt;
2360 
2361 	if (recurse)
2362 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2363 	else
2364 		mnt = clone_mnt(old, old_path->dentry, 0);
2365 
2366 	if (!IS_ERR(mnt))
2367 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2368 
2369 	return mnt;
2370 }
2371 
2372 /*
2373  * do loopback mount.
2374  */
2375 static int do_loopback(struct path *path, const char *old_name,
2376 				int recurse)
2377 {
2378 	struct path old_path;
2379 	struct mount *mnt = NULL, *parent;
2380 	struct mountpoint *mp;
2381 	int err;
2382 	if (!old_name || !*old_name)
2383 		return -EINVAL;
2384 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2385 	if (err)
2386 		return err;
2387 
2388 	err = -EINVAL;
2389 	if (mnt_ns_loop(old_path.dentry))
2390 		goto out;
2391 
2392 	mp = lock_mount(path);
2393 	if (IS_ERR(mp)) {
2394 		err = PTR_ERR(mp);
2395 		goto out;
2396 	}
2397 
2398 	parent = real_mount(path->mnt);
2399 	if (!check_mnt(parent))
2400 		goto out2;
2401 
2402 	mnt = __do_loopback(&old_path, recurse);
2403 	if (IS_ERR(mnt)) {
2404 		err = PTR_ERR(mnt);
2405 		goto out2;
2406 	}
2407 
2408 	err = graft_tree(mnt, parent, mp);
2409 	if (err) {
2410 		lock_mount_hash();
2411 		umount_tree(mnt, UMOUNT_SYNC);
2412 		unlock_mount_hash();
2413 	}
2414 out2:
2415 	unlock_mount(mp);
2416 out:
2417 	path_put(&old_path);
2418 	return err;
2419 }
2420 
2421 static struct file *open_detached_copy(struct path *path, bool recursive)
2422 {
2423 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2424 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2425 	struct mount *mnt, *p;
2426 	struct file *file;
2427 
2428 	if (IS_ERR(ns))
2429 		return ERR_CAST(ns);
2430 
2431 	namespace_lock();
2432 	mnt = __do_loopback(path, recursive);
2433 	if (IS_ERR(mnt)) {
2434 		namespace_unlock();
2435 		free_mnt_ns(ns);
2436 		return ERR_CAST(mnt);
2437 	}
2438 
2439 	lock_mount_hash();
2440 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2441 		p->mnt_ns = ns;
2442 		ns->mounts++;
2443 	}
2444 	ns->root = mnt;
2445 	list_add_tail(&ns->list, &mnt->mnt_list);
2446 	mntget(&mnt->mnt);
2447 	unlock_mount_hash();
2448 	namespace_unlock();
2449 
2450 	mntput(path->mnt);
2451 	path->mnt = &mnt->mnt;
2452 	file = dentry_open(path, O_PATH, current_cred());
2453 	if (IS_ERR(file))
2454 		dissolve_on_fput(path->mnt);
2455 	else
2456 		file->f_mode |= FMODE_NEED_UNMOUNT;
2457 	return file;
2458 }
2459 
2460 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2461 {
2462 	struct file *file;
2463 	struct path path;
2464 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2465 	bool detached = flags & OPEN_TREE_CLONE;
2466 	int error;
2467 	int fd;
2468 
2469 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2470 
2471 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2472 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2473 		      OPEN_TREE_CLOEXEC))
2474 		return -EINVAL;
2475 
2476 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2477 		return -EINVAL;
2478 
2479 	if (flags & AT_NO_AUTOMOUNT)
2480 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2481 	if (flags & AT_SYMLINK_NOFOLLOW)
2482 		lookup_flags &= ~LOOKUP_FOLLOW;
2483 	if (flags & AT_EMPTY_PATH)
2484 		lookup_flags |= LOOKUP_EMPTY;
2485 
2486 	if (detached && !may_mount())
2487 		return -EPERM;
2488 
2489 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2490 	if (fd < 0)
2491 		return fd;
2492 
2493 	error = user_path_at(dfd, filename, lookup_flags, &path);
2494 	if (unlikely(error)) {
2495 		file = ERR_PTR(error);
2496 	} else {
2497 		if (detached)
2498 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2499 		else
2500 			file = dentry_open(&path, O_PATH, current_cred());
2501 		path_put(&path);
2502 	}
2503 	if (IS_ERR(file)) {
2504 		put_unused_fd(fd);
2505 		return PTR_ERR(file);
2506 	}
2507 	fd_install(fd, file);
2508 	return fd;
2509 }
2510 
2511 /*
2512  * Don't allow locked mount flags to be cleared.
2513  *
2514  * No locks need to be held here while testing the various MNT_LOCK
2515  * flags because those flags can never be cleared once they are set.
2516  */
2517 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2518 {
2519 	unsigned int fl = mnt->mnt.mnt_flags;
2520 
2521 	if ((fl & MNT_LOCK_READONLY) &&
2522 	    !(mnt_flags & MNT_READONLY))
2523 		return false;
2524 
2525 	if ((fl & MNT_LOCK_NODEV) &&
2526 	    !(mnt_flags & MNT_NODEV))
2527 		return false;
2528 
2529 	if ((fl & MNT_LOCK_NOSUID) &&
2530 	    !(mnt_flags & MNT_NOSUID))
2531 		return false;
2532 
2533 	if ((fl & MNT_LOCK_NOEXEC) &&
2534 	    !(mnt_flags & MNT_NOEXEC))
2535 		return false;
2536 
2537 	if ((fl & MNT_LOCK_ATIME) &&
2538 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2539 		return false;
2540 
2541 	return true;
2542 }
2543 
2544 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2545 {
2546 	bool readonly_request = (mnt_flags & MNT_READONLY);
2547 
2548 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2549 		return 0;
2550 
2551 	if (readonly_request)
2552 		return mnt_make_readonly(mnt);
2553 
2554 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2555 	return 0;
2556 }
2557 
2558 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2559 {
2560 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2561 	mnt->mnt.mnt_flags = mnt_flags;
2562 	touch_mnt_namespace(mnt->mnt_ns);
2563 }
2564 
2565 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2566 {
2567 	struct super_block *sb = mnt->mnt_sb;
2568 
2569 	if (!__mnt_is_readonly(mnt) &&
2570 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2571 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2572 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2573 		struct tm tm;
2574 
2575 		time64_to_tm(sb->s_time_max, 0, &tm);
2576 
2577 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2578 			sb->s_type->name,
2579 			is_mounted(mnt) ? "remounted" : "mounted",
2580 			mntpath,
2581 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2582 
2583 		free_page((unsigned long)buf);
2584 	}
2585 }
2586 
2587 /*
2588  * Handle reconfiguration of the mountpoint only without alteration of the
2589  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2590  * to mount(2).
2591  */
2592 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2593 {
2594 	struct super_block *sb = path->mnt->mnt_sb;
2595 	struct mount *mnt = real_mount(path->mnt);
2596 	int ret;
2597 
2598 	if (!check_mnt(mnt))
2599 		return -EINVAL;
2600 
2601 	if (path->dentry != mnt->mnt.mnt_root)
2602 		return -EINVAL;
2603 
2604 	if (!can_change_locked_flags(mnt, mnt_flags))
2605 		return -EPERM;
2606 
2607 	/*
2608 	 * We're only checking whether the superblock is read-only not
2609 	 * changing it, so only take down_read(&sb->s_umount).
2610 	 */
2611 	down_read(&sb->s_umount);
2612 	lock_mount_hash();
2613 	ret = change_mount_ro_state(mnt, mnt_flags);
2614 	if (ret == 0)
2615 		set_mount_attributes(mnt, mnt_flags);
2616 	unlock_mount_hash();
2617 	up_read(&sb->s_umount);
2618 
2619 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620 
2621 	return ret;
2622 }
2623 
2624 /*
2625  * change filesystem flags. dir should be a physical root of filesystem.
2626  * If you've mounted a non-root directory somewhere and want to do remount
2627  * on it - tough luck.
2628  */
2629 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2630 		      int mnt_flags, void *data)
2631 {
2632 	int err;
2633 	struct super_block *sb = path->mnt->mnt_sb;
2634 	struct mount *mnt = real_mount(path->mnt);
2635 	struct fs_context *fc;
2636 
2637 	if (!check_mnt(mnt))
2638 		return -EINVAL;
2639 
2640 	if (path->dentry != path->mnt->mnt_root)
2641 		return -EINVAL;
2642 
2643 	if (!can_change_locked_flags(mnt, mnt_flags))
2644 		return -EPERM;
2645 
2646 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2647 	if (IS_ERR(fc))
2648 		return PTR_ERR(fc);
2649 
2650 	fc->oldapi = true;
2651 	err = parse_monolithic_mount_data(fc, data);
2652 	if (!err) {
2653 		down_write(&sb->s_umount);
2654 		err = -EPERM;
2655 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2656 			err = reconfigure_super(fc);
2657 			if (!err) {
2658 				lock_mount_hash();
2659 				set_mount_attributes(mnt, mnt_flags);
2660 				unlock_mount_hash();
2661 			}
2662 		}
2663 		up_write(&sb->s_umount);
2664 	}
2665 
2666 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2667 
2668 	put_fs_context(fc);
2669 	return err;
2670 }
2671 
2672 static inline int tree_contains_unbindable(struct mount *mnt)
2673 {
2674 	struct mount *p;
2675 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2676 		if (IS_MNT_UNBINDABLE(p))
2677 			return 1;
2678 	}
2679 	return 0;
2680 }
2681 
2682 /*
2683  * Check that there aren't references to earlier/same mount namespaces in the
2684  * specified subtree.  Such references can act as pins for mount namespaces
2685  * that aren't checked by the mount-cycle checking code, thereby allowing
2686  * cycles to be made.
2687  */
2688 static bool check_for_nsfs_mounts(struct mount *subtree)
2689 {
2690 	struct mount *p;
2691 	bool ret = false;
2692 
2693 	lock_mount_hash();
2694 	for (p = subtree; p; p = next_mnt(p, subtree))
2695 		if (mnt_ns_loop(p->mnt.mnt_root))
2696 			goto out;
2697 
2698 	ret = true;
2699 out:
2700 	unlock_mount_hash();
2701 	return ret;
2702 }
2703 
2704 static int do_set_group(struct path *from_path, struct path *to_path)
2705 {
2706 	struct mount *from, *to;
2707 	int err;
2708 
2709 	from = real_mount(from_path->mnt);
2710 	to = real_mount(to_path->mnt);
2711 
2712 	namespace_lock();
2713 
2714 	err = -EINVAL;
2715 	/* To and From must be mounted */
2716 	if (!is_mounted(&from->mnt))
2717 		goto out;
2718 	if (!is_mounted(&to->mnt))
2719 		goto out;
2720 
2721 	err = -EPERM;
2722 	/* We should be allowed to modify mount namespaces of both mounts */
2723 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2724 		goto out;
2725 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2726 		goto out;
2727 
2728 	err = -EINVAL;
2729 	/* To and From paths should be mount roots */
2730 	if (from_path->dentry != from_path->mnt->mnt_root)
2731 		goto out;
2732 	if (to_path->dentry != to_path->mnt->mnt_root)
2733 		goto out;
2734 
2735 	/* Setting sharing groups is only allowed across same superblock */
2736 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2737 		goto out;
2738 
2739 	/* From mount root should be wider than To mount root */
2740 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2741 		goto out;
2742 
2743 	/* From mount should not have locked children in place of To's root */
2744 	if (has_locked_children(from, to->mnt.mnt_root))
2745 		goto out;
2746 
2747 	/* Setting sharing groups is only allowed on private mounts */
2748 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2749 		goto out;
2750 
2751 	/* From should not be private */
2752 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2753 		goto out;
2754 
2755 	if (IS_MNT_SLAVE(from)) {
2756 		struct mount *m = from->mnt_master;
2757 
2758 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2759 		to->mnt_master = m;
2760 	}
2761 
2762 	if (IS_MNT_SHARED(from)) {
2763 		to->mnt_group_id = from->mnt_group_id;
2764 		list_add(&to->mnt_share, &from->mnt_share);
2765 		lock_mount_hash();
2766 		set_mnt_shared(to);
2767 		unlock_mount_hash();
2768 	}
2769 
2770 	err = 0;
2771 out:
2772 	namespace_unlock();
2773 	return err;
2774 }
2775 
2776 static int do_move_mount(struct path *old_path, struct path *new_path)
2777 {
2778 	struct mnt_namespace *ns;
2779 	struct mount *p;
2780 	struct mount *old;
2781 	struct mount *parent;
2782 	struct mountpoint *mp, *old_mp;
2783 	int err;
2784 	bool attached;
2785 
2786 	mp = lock_mount(new_path);
2787 	if (IS_ERR(mp))
2788 		return PTR_ERR(mp);
2789 
2790 	old = real_mount(old_path->mnt);
2791 	p = real_mount(new_path->mnt);
2792 	parent = old->mnt_parent;
2793 	attached = mnt_has_parent(old);
2794 	old_mp = old->mnt_mp;
2795 	ns = old->mnt_ns;
2796 
2797 	err = -EINVAL;
2798 	/* The mountpoint must be in our namespace. */
2799 	if (!check_mnt(p))
2800 		goto out;
2801 
2802 	/* The thing moved must be mounted... */
2803 	if (!is_mounted(&old->mnt))
2804 		goto out;
2805 
2806 	/* ... and either ours or the root of anon namespace */
2807 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2808 		goto out;
2809 
2810 	if (old->mnt.mnt_flags & MNT_LOCKED)
2811 		goto out;
2812 
2813 	if (old_path->dentry != old_path->mnt->mnt_root)
2814 		goto out;
2815 
2816 	if (d_is_dir(new_path->dentry) !=
2817 	    d_is_dir(old_path->dentry))
2818 		goto out;
2819 	/*
2820 	 * Don't move a mount residing in a shared parent.
2821 	 */
2822 	if (attached && IS_MNT_SHARED(parent))
2823 		goto out;
2824 	/*
2825 	 * Don't move a mount tree containing unbindable mounts to a destination
2826 	 * mount which is shared.
2827 	 */
2828 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2829 		goto out;
2830 	err = -ELOOP;
2831 	if (!check_for_nsfs_mounts(old))
2832 		goto out;
2833 	for (; mnt_has_parent(p); p = p->mnt_parent)
2834 		if (p == old)
2835 			goto out;
2836 
2837 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2838 				   attached);
2839 	if (err)
2840 		goto out;
2841 
2842 	/* if the mount is moved, it should no longer be expire
2843 	 * automatically */
2844 	list_del_init(&old->mnt_expire);
2845 	if (attached)
2846 		put_mountpoint(old_mp);
2847 out:
2848 	unlock_mount(mp);
2849 	if (!err) {
2850 		if (attached)
2851 			mntput_no_expire(parent);
2852 		else
2853 			free_mnt_ns(ns);
2854 	}
2855 	return err;
2856 }
2857 
2858 static int do_move_mount_old(struct path *path, const char *old_name)
2859 {
2860 	struct path old_path;
2861 	int err;
2862 
2863 	if (!old_name || !*old_name)
2864 		return -EINVAL;
2865 
2866 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2867 	if (err)
2868 		return err;
2869 
2870 	err = do_move_mount(&old_path, path);
2871 	path_put(&old_path);
2872 	return err;
2873 }
2874 
2875 /*
2876  * add a mount into a namespace's mount tree
2877  */
2878 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2879 			struct path *path, int mnt_flags)
2880 {
2881 	struct mount *parent = real_mount(path->mnt);
2882 
2883 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2884 
2885 	if (unlikely(!check_mnt(parent))) {
2886 		/* that's acceptable only for automounts done in private ns */
2887 		if (!(mnt_flags & MNT_SHRINKABLE))
2888 			return -EINVAL;
2889 		/* ... and for those we'd better have mountpoint still alive */
2890 		if (!parent->mnt_ns)
2891 			return -EINVAL;
2892 	}
2893 
2894 	/* Refuse the same filesystem on the same mount point */
2895 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2896 	    path->mnt->mnt_root == path->dentry)
2897 		return -EBUSY;
2898 
2899 	if (d_is_symlink(newmnt->mnt.mnt_root))
2900 		return -EINVAL;
2901 
2902 	newmnt->mnt.mnt_flags = mnt_flags;
2903 	return graft_tree(newmnt, parent, mp);
2904 }
2905 
2906 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2907 
2908 /*
2909  * Create a new mount using a superblock configuration and request it
2910  * be added to the namespace tree.
2911  */
2912 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2913 			   unsigned int mnt_flags)
2914 {
2915 	struct vfsmount *mnt;
2916 	struct mountpoint *mp;
2917 	struct super_block *sb = fc->root->d_sb;
2918 	int error;
2919 
2920 	error = security_sb_kern_mount(sb);
2921 	if (!error && mount_too_revealing(sb, &mnt_flags))
2922 		error = -EPERM;
2923 
2924 	if (unlikely(error)) {
2925 		fc_drop_locked(fc);
2926 		return error;
2927 	}
2928 
2929 	up_write(&sb->s_umount);
2930 
2931 	mnt = vfs_create_mount(fc);
2932 	if (IS_ERR(mnt))
2933 		return PTR_ERR(mnt);
2934 
2935 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2936 
2937 	mp = lock_mount(mountpoint);
2938 	if (IS_ERR(mp)) {
2939 		mntput(mnt);
2940 		return PTR_ERR(mp);
2941 	}
2942 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2943 	unlock_mount(mp);
2944 	if (error < 0)
2945 		mntput(mnt);
2946 	return error;
2947 }
2948 
2949 /*
2950  * create a new mount for userspace and request it to be added into the
2951  * namespace's tree
2952  */
2953 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2954 			int mnt_flags, const char *name, void *data)
2955 {
2956 	struct file_system_type *type;
2957 	struct fs_context *fc;
2958 	const char *subtype = NULL;
2959 	int err = 0;
2960 
2961 	if (!fstype)
2962 		return -EINVAL;
2963 
2964 	type = get_fs_type(fstype);
2965 	if (!type)
2966 		return -ENODEV;
2967 
2968 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2969 		subtype = strchr(fstype, '.');
2970 		if (subtype) {
2971 			subtype++;
2972 			if (!*subtype) {
2973 				put_filesystem(type);
2974 				return -EINVAL;
2975 			}
2976 		}
2977 	}
2978 
2979 	fc = fs_context_for_mount(type, sb_flags);
2980 	put_filesystem(type);
2981 	if (IS_ERR(fc))
2982 		return PTR_ERR(fc);
2983 
2984 	if (subtype)
2985 		err = vfs_parse_fs_string(fc, "subtype",
2986 					  subtype, strlen(subtype));
2987 	if (!err && name)
2988 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2989 	if (!err)
2990 		err = parse_monolithic_mount_data(fc, data);
2991 	if (!err && !mount_capable(fc))
2992 		err = -EPERM;
2993 	if (!err)
2994 		err = vfs_get_tree(fc);
2995 	if (!err)
2996 		err = do_new_mount_fc(fc, path, mnt_flags);
2997 
2998 	put_fs_context(fc);
2999 	return err;
3000 }
3001 
3002 int finish_automount(struct vfsmount *m, struct path *path)
3003 {
3004 	struct dentry *dentry = path->dentry;
3005 	struct mountpoint *mp;
3006 	struct mount *mnt;
3007 	int err;
3008 
3009 	if (!m)
3010 		return 0;
3011 	if (IS_ERR(m))
3012 		return PTR_ERR(m);
3013 
3014 	mnt = real_mount(m);
3015 	/* The new mount record should have at least 2 refs to prevent it being
3016 	 * expired before we get a chance to add it
3017 	 */
3018 	BUG_ON(mnt_get_count(mnt) < 2);
3019 
3020 	if (m->mnt_sb == path->mnt->mnt_sb &&
3021 	    m->mnt_root == dentry) {
3022 		err = -ELOOP;
3023 		goto discard;
3024 	}
3025 
3026 	/*
3027 	 * we don't want to use lock_mount() - in this case finding something
3028 	 * that overmounts our mountpoint to be means "quitely drop what we've
3029 	 * got", not "try to mount it on top".
3030 	 */
3031 	inode_lock(dentry->d_inode);
3032 	namespace_lock();
3033 	if (unlikely(cant_mount(dentry))) {
3034 		err = -ENOENT;
3035 		goto discard_locked;
3036 	}
3037 	rcu_read_lock();
3038 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3039 		rcu_read_unlock();
3040 		err = 0;
3041 		goto discard_locked;
3042 	}
3043 	rcu_read_unlock();
3044 	mp = get_mountpoint(dentry);
3045 	if (IS_ERR(mp)) {
3046 		err = PTR_ERR(mp);
3047 		goto discard_locked;
3048 	}
3049 
3050 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3051 	unlock_mount(mp);
3052 	if (unlikely(err))
3053 		goto discard;
3054 	mntput(m);
3055 	return 0;
3056 
3057 discard_locked:
3058 	namespace_unlock();
3059 	inode_unlock(dentry->d_inode);
3060 discard:
3061 	/* remove m from any expiration list it may be on */
3062 	if (!list_empty(&mnt->mnt_expire)) {
3063 		namespace_lock();
3064 		list_del_init(&mnt->mnt_expire);
3065 		namespace_unlock();
3066 	}
3067 	mntput(m);
3068 	mntput(m);
3069 	return err;
3070 }
3071 
3072 /**
3073  * mnt_set_expiry - Put a mount on an expiration list
3074  * @mnt: The mount to list.
3075  * @expiry_list: The list to add the mount to.
3076  */
3077 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3078 {
3079 	namespace_lock();
3080 
3081 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3082 
3083 	namespace_unlock();
3084 }
3085 EXPORT_SYMBOL(mnt_set_expiry);
3086 
3087 /*
3088  * process a list of expirable mountpoints with the intent of discarding any
3089  * mountpoints that aren't in use and haven't been touched since last we came
3090  * here
3091  */
3092 void mark_mounts_for_expiry(struct list_head *mounts)
3093 {
3094 	struct mount *mnt, *next;
3095 	LIST_HEAD(graveyard);
3096 
3097 	if (list_empty(mounts))
3098 		return;
3099 
3100 	namespace_lock();
3101 	lock_mount_hash();
3102 
3103 	/* extract from the expiration list every vfsmount that matches the
3104 	 * following criteria:
3105 	 * - only referenced by its parent vfsmount
3106 	 * - still marked for expiry (marked on the last call here; marks are
3107 	 *   cleared by mntput())
3108 	 */
3109 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3110 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3111 			propagate_mount_busy(mnt, 1))
3112 			continue;
3113 		list_move(&mnt->mnt_expire, &graveyard);
3114 	}
3115 	while (!list_empty(&graveyard)) {
3116 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3117 		touch_mnt_namespace(mnt->mnt_ns);
3118 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3119 	}
3120 	unlock_mount_hash();
3121 	namespace_unlock();
3122 }
3123 
3124 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3125 
3126 /*
3127  * Ripoff of 'select_parent()'
3128  *
3129  * search the list of submounts for a given mountpoint, and move any
3130  * shrinkable submounts to the 'graveyard' list.
3131  */
3132 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3133 {
3134 	struct mount *this_parent = parent;
3135 	struct list_head *next;
3136 	int found = 0;
3137 
3138 repeat:
3139 	next = this_parent->mnt_mounts.next;
3140 resume:
3141 	while (next != &this_parent->mnt_mounts) {
3142 		struct list_head *tmp = next;
3143 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3144 
3145 		next = tmp->next;
3146 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3147 			continue;
3148 		/*
3149 		 * Descend a level if the d_mounts list is non-empty.
3150 		 */
3151 		if (!list_empty(&mnt->mnt_mounts)) {
3152 			this_parent = mnt;
3153 			goto repeat;
3154 		}
3155 
3156 		if (!propagate_mount_busy(mnt, 1)) {
3157 			list_move_tail(&mnt->mnt_expire, graveyard);
3158 			found++;
3159 		}
3160 	}
3161 	/*
3162 	 * All done at this level ... ascend and resume the search
3163 	 */
3164 	if (this_parent != parent) {
3165 		next = this_parent->mnt_child.next;
3166 		this_parent = this_parent->mnt_parent;
3167 		goto resume;
3168 	}
3169 	return found;
3170 }
3171 
3172 /*
3173  * process a list of expirable mountpoints with the intent of discarding any
3174  * submounts of a specific parent mountpoint
3175  *
3176  * mount_lock must be held for write
3177  */
3178 static void shrink_submounts(struct mount *mnt)
3179 {
3180 	LIST_HEAD(graveyard);
3181 	struct mount *m;
3182 
3183 	/* extract submounts of 'mountpoint' from the expiration list */
3184 	while (select_submounts(mnt, &graveyard)) {
3185 		while (!list_empty(&graveyard)) {
3186 			m = list_first_entry(&graveyard, struct mount,
3187 						mnt_expire);
3188 			touch_mnt_namespace(m->mnt_ns);
3189 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3190 		}
3191 	}
3192 }
3193 
3194 static void *copy_mount_options(const void __user * data)
3195 {
3196 	char *copy;
3197 	unsigned left, offset;
3198 
3199 	if (!data)
3200 		return NULL;
3201 
3202 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3203 	if (!copy)
3204 		return ERR_PTR(-ENOMEM);
3205 
3206 	left = copy_from_user(copy, data, PAGE_SIZE);
3207 
3208 	/*
3209 	 * Not all architectures have an exact copy_from_user(). Resort to
3210 	 * byte at a time.
3211 	 */
3212 	offset = PAGE_SIZE - left;
3213 	while (left) {
3214 		char c;
3215 		if (get_user(c, (const char __user *)data + offset))
3216 			break;
3217 		copy[offset] = c;
3218 		left--;
3219 		offset++;
3220 	}
3221 
3222 	if (left == PAGE_SIZE) {
3223 		kfree(copy);
3224 		return ERR_PTR(-EFAULT);
3225 	}
3226 
3227 	return copy;
3228 }
3229 
3230 static char *copy_mount_string(const void __user *data)
3231 {
3232 	return data ? strndup_user(data, PATH_MAX) : NULL;
3233 }
3234 
3235 /*
3236  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3237  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3238  *
3239  * data is a (void *) that can point to any structure up to
3240  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3241  * information (or be NULL).
3242  *
3243  * Pre-0.97 versions of mount() didn't have a flags word.
3244  * When the flags word was introduced its top half was required
3245  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3246  * Therefore, if this magic number is present, it carries no information
3247  * and must be discarded.
3248  */
3249 int path_mount(const char *dev_name, struct path *path,
3250 		const char *type_page, unsigned long flags, void *data_page)
3251 {
3252 	unsigned int mnt_flags = 0, sb_flags;
3253 	int ret;
3254 
3255 	/* Discard magic */
3256 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3257 		flags &= ~MS_MGC_MSK;
3258 
3259 	/* Basic sanity checks */
3260 	if (data_page)
3261 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3262 
3263 	if (flags & MS_NOUSER)
3264 		return -EINVAL;
3265 
3266 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3267 	if (ret)
3268 		return ret;
3269 	if (!may_mount())
3270 		return -EPERM;
3271 	if (flags & SB_MANDLOCK)
3272 		warn_mandlock();
3273 
3274 	/* Default to relatime unless overriden */
3275 	if (!(flags & MS_NOATIME))
3276 		mnt_flags |= MNT_RELATIME;
3277 
3278 	/* Separate the per-mountpoint flags */
3279 	if (flags & MS_NOSUID)
3280 		mnt_flags |= MNT_NOSUID;
3281 	if (flags & MS_NODEV)
3282 		mnt_flags |= MNT_NODEV;
3283 	if (flags & MS_NOEXEC)
3284 		mnt_flags |= MNT_NOEXEC;
3285 	if (flags & MS_NOATIME)
3286 		mnt_flags |= MNT_NOATIME;
3287 	if (flags & MS_NODIRATIME)
3288 		mnt_flags |= MNT_NODIRATIME;
3289 	if (flags & MS_STRICTATIME)
3290 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3291 	if (flags & MS_RDONLY)
3292 		mnt_flags |= MNT_READONLY;
3293 	if (flags & MS_NOSYMFOLLOW)
3294 		mnt_flags |= MNT_NOSYMFOLLOW;
3295 
3296 	/* The default atime for remount is preservation */
3297 	if ((flags & MS_REMOUNT) &&
3298 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3299 		       MS_STRICTATIME)) == 0)) {
3300 		mnt_flags &= ~MNT_ATIME_MASK;
3301 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3302 	}
3303 
3304 	sb_flags = flags & (SB_RDONLY |
3305 			    SB_SYNCHRONOUS |
3306 			    SB_MANDLOCK |
3307 			    SB_DIRSYNC |
3308 			    SB_SILENT |
3309 			    SB_POSIXACL |
3310 			    SB_LAZYTIME |
3311 			    SB_I_VERSION);
3312 
3313 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3314 		return do_reconfigure_mnt(path, mnt_flags);
3315 	if (flags & MS_REMOUNT)
3316 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3317 	if (flags & MS_BIND)
3318 		return do_loopback(path, dev_name, flags & MS_REC);
3319 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3320 		return do_change_type(path, flags);
3321 	if (flags & MS_MOVE)
3322 		return do_move_mount_old(path, dev_name);
3323 
3324 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3325 			    data_page);
3326 }
3327 
3328 long do_mount(const char *dev_name, const char __user *dir_name,
3329 		const char *type_page, unsigned long flags, void *data_page)
3330 {
3331 	struct path path;
3332 	int ret;
3333 
3334 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3335 	if (ret)
3336 		return ret;
3337 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3338 	path_put(&path);
3339 	return ret;
3340 }
3341 
3342 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3343 {
3344 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3345 }
3346 
3347 static void dec_mnt_namespaces(struct ucounts *ucounts)
3348 {
3349 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3350 }
3351 
3352 static void free_mnt_ns(struct mnt_namespace *ns)
3353 {
3354 	if (!is_anon_ns(ns))
3355 		ns_free_inum(&ns->ns);
3356 	dec_mnt_namespaces(ns->ucounts);
3357 	put_user_ns(ns->user_ns);
3358 	kfree(ns);
3359 }
3360 
3361 /*
3362  * Assign a sequence number so we can detect when we attempt to bind
3363  * mount a reference to an older mount namespace into the current
3364  * mount namespace, preventing reference counting loops.  A 64bit
3365  * number incrementing at 10Ghz will take 12,427 years to wrap which
3366  * is effectively never, so we can ignore the possibility.
3367  */
3368 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3369 
3370 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3371 {
3372 	struct mnt_namespace *new_ns;
3373 	struct ucounts *ucounts;
3374 	int ret;
3375 
3376 	ucounts = inc_mnt_namespaces(user_ns);
3377 	if (!ucounts)
3378 		return ERR_PTR(-ENOSPC);
3379 
3380 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3381 	if (!new_ns) {
3382 		dec_mnt_namespaces(ucounts);
3383 		return ERR_PTR(-ENOMEM);
3384 	}
3385 	if (!anon) {
3386 		ret = ns_alloc_inum(&new_ns->ns);
3387 		if (ret) {
3388 			kfree(new_ns);
3389 			dec_mnt_namespaces(ucounts);
3390 			return ERR_PTR(ret);
3391 		}
3392 	}
3393 	new_ns->ns.ops = &mntns_operations;
3394 	if (!anon)
3395 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3396 	refcount_set(&new_ns->ns.count, 1);
3397 	INIT_LIST_HEAD(&new_ns->list);
3398 	init_waitqueue_head(&new_ns->poll);
3399 	spin_lock_init(&new_ns->ns_lock);
3400 	new_ns->user_ns = get_user_ns(user_ns);
3401 	new_ns->ucounts = ucounts;
3402 	return new_ns;
3403 }
3404 
3405 __latent_entropy
3406 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3407 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3408 {
3409 	struct mnt_namespace *new_ns;
3410 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3411 	struct mount *p, *q;
3412 	struct mount *old;
3413 	struct mount *new;
3414 	int copy_flags;
3415 
3416 	BUG_ON(!ns);
3417 
3418 	if (likely(!(flags & CLONE_NEWNS))) {
3419 		get_mnt_ns(ns);
3420 		return ns;
3421 	}
3422 
3423 	old = ns->root;
3424 
3425 	new_ns = alloc_mnt_ns(user_ns, false);
3426 	if (IS_ERR(new_ns))
3427 		return new_ns;
3428 
3429 	namespace_lock();
3430 	/* First pass: copy the tree topology */
3431 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3432 	if (user_ns != ns->user_ns)
3433 		copy_flags |= CL_SHARED_TO_SLAVE;
3434 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3435 	if (IS_ERR(new)) {
3436 		namespace_unlock();
3437 		free_mnt_ns(new_ns);
3438 		return ERR_CAST(new);
3439 	}
3440 	if (user_ns != ns->user_ns) {
3441 		lock_mount_hash();
3442 		lock_mnt_tree(new);
3443 		unlock_mount_hash();
3444 	}
3445 	new_ns->root = new;
3446 	list_add_tail(&new_ns->list, &new->mnt_list);
3447 
3448 	/*
3449 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3450 	 * as belonging to new namespace.  We have already acquired a private
3451 	 * fs_struct, so tsk->fs->lock is not needed.
3452 	 */
3453 	p = old;
3454 	q = new;
3455 	while (p) {
3456 		q->mnt_ns = new_ns;
3457 		new_ns->mounts++;
3458 		if (new_fs) {
3459 			if (&p->mnt == new_fs->root.mnt) {
3460 				new_fs->root.mnt = mntget(&q->mnt);
3461 				rootmnt = &p->mnt;
3462 			}
3463 			if (&p->mnt == new_fs->pwd.mnt) {
3464 				new_fs->pwd.mnt = mntget(&q->mnt);
3465 				pwdmnt = &p->mnt;
3466 			}
3467 		}
3468 		p = next_mnt(p, old);
3469 		q = next_mnt(q, new);
3470 		if (!q)
3471 			break;
3472 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3473 			p = next_mnt(p, old);
3474 	}
3475 	namespace_unlock();
3476 
3477 	if (rootmnt)
3478 		mntput(rootmnt);
3479 	if (pwdmnt)
3480 		mntput(pwdmnt);
3481 
3482 	return new_ns;
3483 }
3484 
3485 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3486 {
3487 	struct mount *mnt = real_mount(m);
3488 	struct mnt_namespace *ns;
3489 	struct super_block *s;
3490 	struct path path;
3491 	int err;
3492 
3493 	ns = alloc_mnt_ns(&init_user_ns, true);
3494 	if (IS_ERR(ns)) {
3495 		mntput(m);
3496 		return ERR_CAST(ns);
3497 	}
3498 	mnt->mnt_ns = ns;
3499 	ns->root = mnt;
3500 	ns->mounts++;
3501 	list_add(&mnt->mnt_list, &ns->list);
3502 
3503 	err = vfs_path_lookup(m->mnt_root, m,
3504 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3505 
3506 	put_mnt_ns(ns);
3507 
3508 	if (err)
3509 		return ERR_PTR(err);
3510 
3511 	/* trade a vfsmount reference for active sb one */
3512 	s = path.mnt->mnt_sb;
3513 	atomic_inc(&s->s_active);
3514 	mntput(path.mnt);
3515 	/* lock the sucker */
3516 	down_write(&s->s_umount);
3517 	/* ... and return the root of (sub)tree on it */
3518 	return path.dentry;
3519 }
3520 EXPORT_SYMBOL(mount_subtree);
3521 
3522 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3523 		char __user *, type, unsigned long, flags, void __user *, data)
3524 {
3525 	int ret;
3526 	char *kernel_type;
3527 	char *kernel_dev;
3528 	void *options;
3529 
3530 	kernel_type = copy_mount_string(type);
3531 	ret = PTR_ERR(kernel_type);
3532 	if (IS_ERR(kernel_type))
3533 		goto out_type;
3534 
3535 	kernel_dev = copy_mount_string(dev_name);
3536 	ret = PTR_ERR(kernel_dev);
3537 	if (IS_ERR(kernel_dev))
3538 		goto out_dev;
3539 
3540 	options = copy_mount_options(data);
3541 	ret = PTR_ERR(options);
3542 	if (IS_ERR(options))
3543 		goto out_data;
3544 
3545 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3546 
3547 	kfree(options);
3548 out_data:
3549 	kfree(kernel_dev);
3550 out_dev:
3551 	kfree(kernel_type);
3552 out_type:
3553 	return ret;
3554 }
3555 
3556 #define FSMOUNT_VALID_FLAGS                                                    \
3557 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3558 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3559 	 MOUNT_ATTR_NOSYMFOLLOW)
3560 
3561 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3562 
3563 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3564 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3565 
3566 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3567 {
3568 	unsigned int mnt_flags = 0;
3569 
3570 	if (attr_flags & MOUNT_ATTR_RDONLY)
3571 		mnt_flags |= MNT_READONLY;
3572 	if (attr_flags & MOUNT_ATTR_NOSUID)
3573 		mnt_flags |= MNT_NOSUID;
3574 	if (attr_flags & MOUNT_ATTR_NODEV)
3575 		mnt_flags |= MNT_NODEV;
3576 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3577 		mnt_flags |= MNT_NOEXEC;
3578 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3579 		mnt_flags |= MNT_NODIRATIME;
3580 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3581 		mnt_flags |= MNT_NOSYMFOLLOW;
3582 
3583 	return mnt_flags;
3584 }
3585 
3586 /*
3587  * Create a kernel mount representation for a new, prepared superblock
3588  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3589  */
3590 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3591 		unsigned int, attr_flags)
3592 {
3593 	struct mnt_namespace *ns;
3594 	struct fs_context *fc;
3595 	struct file *file;
3596 	struct path newmount;
3597 	struct mount *mnt;
3598 	struct fd f;
3599 	unsigned int mnt_flags = 0;
3600 	long ret;
3601 
3602 	if (!may_mount())
3603 		return -EPERM;
3604 
3605 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3606 		return -EINVAL;
3607 
3608 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3609 		return -EINVAL;
3610 
3611 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3612 
3613 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3614 	case MOUNT_ATTR_STRICTATIME:
3615 		break;
3616 	case MOUNT_ATTR_NOATIME:
3617 		mnt_flags |= MNT_NOATIME;
3618 		break;
3619 	case MOUNT_ATTR_RELATIME:
3620 		mnt_flags |= MNT_RELATIME;
3621 		break;
3622 	default:
3623 		return -EINVAL;
3624 	}
3625 
3626 	f = fdget(fs_fd);
3627 	if (!f.file)
3628 		return -EBADF;
3629 
3630 	ret = -EINVAL;
3631 	if (f.file->f_op != &fscontext_fops)
3632 		goto err_fsfd;
3633 
3634 	fc = f.file->private_data;
3635 
3636 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3637 	if (ret < 0)
3638 		goto err_fsfd;
3639 
3640 	/* There must be a valid superblock or we can't mount it */
3641 	ret = -EINVAL;
3642 	if (!fc->root)
3643 		goto err_unlock;
3644 
3645 	ret = -EPERM;
3646 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3647 		pr_warn("VFS: Mount too revealing\n");
3648 		goto err_unlock;
3649 	}
3650 
3651 	ret = -EBUSY;
3652 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3653 		goto err_unlock;
3654 
3655 	if (fc->sb_flags & SB_MANDLOCK)
3656 		warn_mandlock();
3657 
3658 	newmount.mnt = vfs_create_mount(fc);
3659 	if (IS_ERR(newmount.mnt)) {
3660 		ret = PTR_ERR(newmount.mnt);
3661 		goto err_unlock;
3662 	}
3663 	newmount.dentry = dget(fc->root);
3664 	newmount.mnt->mnt_flags = mnt_flags;
3665 
3666 	/* We've done the mount bit - now move the file context into more or
3667 	 * less the same state as if we'd done an fspick().  We don't want to
3668 	 * do any memory allocation or anything like that at this point as we
3669 	 * don't want to have to handle any errors incurred.
3670 	 */
3671 	vfs_clean_context(fc);
3672 
3673 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3674 	if (IS_ERR(ns)) {
3675 		ret = PTR_ERR(ns);
3676 		goto err_path;
3677 	}
3678 	mnt = real_mount(newmount.mnt);
3679 	mnt->mnt_ns = ns;
3680 	ns->root = mnt;
3681 	ns->mounts = 1;
3682 	list_add(&mnt->mnt_list, &ns->list);
3683 	mntget(newmount.mnt);
3684 
3685 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3686 	 * it, not just simply put it.
3687 	 */
3688 	file = dentry_open(&newmount, O_PATH, fc->cred);
3689 	if (IS_ERR(file)) {
3690 		dissolve_on_fput(newmount.mnt);
3691 		ret = PTR_ERR(file);
3692 		goto err_path;
3693 	}
3694 	file->f_mode |= FMODE_NEED_UNMOUNT;
3695 
3696 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3697 	if (ret >= 0)
3698 		fd_install(ret, file);
3699 	else
3700 		fput(file);
3701 
3702 err_path:
3703 	path_put(&newmount);
3704 err_unlock:
3705 	mutex_unlock(&fc->uapi_mutex);
3706 err_fsfd:
3707 	fdput(f);
3708 	return ret;
3709 }
3710 
3711 /*
3712  * Move a mount from one place to another.  In combination with
3713  * fsopen()/fsmount() this is used to install a new mount and in combination
3714  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3715  * a mount subtree.
3716  *
3717  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3718  */
3719 SYSCALL_DEFINE5(move_mount,
3720 		int, from_dfd, const char __user *, from_pathname,
3721 		int, to_dfd, const char __user *, to_pathname,
3722 		unsigned int, flags)
3723 {
3724 	struct path from_path, to_path;
3725 	unsigned int lflags;
3726 	int ret = 0;
3727 
3728 	if (!may_mount())
3729 		return -EPERM;
3730 
3731 	if (flags & ~MOVE_MOUNT__MASK)
3732 		return -EINVAL;
3733 
3734 	/* If someone gives a pathname, they aren't permitted to move
3735 	 * from an fd that requires unmount as we can't get at the flag
3736 	 * to clear it afterwards.
3737 	 */
3738 	lflags = 0;
3739 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3740 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3741 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3742 
3743 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3744 	if (ret < 0)
3745 		return ret;
3746 
3747 	lflags = 0;
3748 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3749 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3750 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3751 
3752 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3753 	if (ret < 0)
3754 		goto out_from;
3755 
3756 	ret = security_move_mount(&from_path, &to_path);
3757 	if (ret < 0)
3758 		goto out_to;
3759 
3760 	if (flags & MOVE_MOUNT_SET_GROUP)
3761 		ret = do_set_group(&from_path, &to_path);
3762 	else
3763 		ret = do_move_mount(&from_path, &to_path);
3764 
3765 out_to:
3766 	path_put(&to_path);
3767 out_from:
3768 	path_put(&from_path);
3769 	return ret;
3770 }
3771 
3772 /*
3773  * Return true if path is reachable from root
3774  *
3775  * namespace_sem or mount_lock is held
3776  */
3777 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3778 			 const struct path *root)
3779 {
3780 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3781 		dentry = mnt->mnt_mountpoint;
3782 		mnt = mnt->mnt_parent;
3783 	}
3784 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3785 }
3786 
3787 bool path_is_under(const struct path *path1, const struct path *path2)
3788 {
3789 	bool res;
3790 	read_seqlock_excl(&mount_lock);
3791 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3792 	read_sequnlock_excl(&mount_lock);
3793 	return res;
3794 }
3795 EXPORT_SYMBOL(path_is_under);
3796 
3797 /*
3798  * pivot_root Semantics:
3799  * Moves the root file system of the current process to the directory put_old,
3800  * makes new_root as the new root file system of the current process, and sets
3801  * root/cwd of all processes which had them on the current root to new_root.
3802  *
3803  * Restrictions:
3804  * The new_root and put_old must be directories, and  must not be on the
3805  * same file  system as the current process root. The put_old  must  be
3806  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3807  * pointed to by put_old must yield the same directory as new_root. No other
3808  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3809  *
3810  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3811  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3812  * in this situation.
3813  *
3814  * Notes:
3815  *  - we don't move root/cwd if they are not at the root (reason: if something
3816  *    cared enough to change them, it's probably wrong to force them elsewhere)
3817  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3818  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3819  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3820  *    first.
3821  */
3822 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3823 		const char __user *, put_old)
3824 {
3825 	struct path new, old, root;
3826 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3827 	struct mountpoint *old_mp, *root_mp;
3828 	int error;
3829 
3830 	if (!may_mount())
3831 		return -EPERM;
3832 
3833 	error = user_path_at(AT_FDCWD, new_root,
3834 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3835 	if (error)
3836 		goto out0;
3837 
3838 	error = user_path_at(AT_FDCWD, put_old,
3839 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3840 	if (error)
3841 		goto out1;
3842 
3843 	error = security_sb_pivotroot(&old, &new);
3844 	if (error)
3845 		goto out2;
3846 
3847 	get_fs_root(current->fs, &root);
3848 	old_mp = lock_mount(&old);
3849 	error = PTR_ERR(old_mp);
3850 	if (IS_ERR(old_mp))
3851 		goto out3;
3852 
3853 	error = -EINVAL;
3854 	new_mnt = real_mount(new.mnt);
3855 	root_mnt = real_mount(root.mnt);
3856 	old_mnt = real_mount(old.mnt);
3857 	ex_parent = new_mnt->mnt_parent;
3858 	root_parent = root_mnt->mnt_parent;
3859 	if (IS_MNT_SHARED(old_mnt) ||
3860 		IS_MNT_SHARED(ex_parent) ||
3861 		IS_MNT_SHARED(root_parent))
3862 		goto out4;
3863 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3864 		goto out4;
3865 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3866 		goto out4;
3867 	error = -ENOENT;
3868 	if (d_unlinked(new.dentry))
3869 		goto out4;
3870 	error = -EBUSY;
3871 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3872 		goto out4; /* loop, on the same file system  */
3873 	error = -EINVAL;
3874 	if (root.mnt->mnt_root != root.dentry)
3875 		goto out4; /* not a mountpoint */
3876 	if (!mnt_has_parent(root_mnt))
3877 		goto out4; /* not attached */
3878 	if (new.mnt->mnt_root != new.dentry)
3879 		goto out4; /* not a mountpoint */
3880 	if (!mnt_has_parent(new_mnt))
3881 		goto out4; /* not attached */
3882 	/* make sure we can reach put_old from new_root */
3883 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3884 		goto out4;
3885 	/* make certain new is below the root */
3886 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3887 		goto out4;
3888 	lock_mount_hash();
3889 	umount_mnt(new_mnt);
3890 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3891 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3892 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3893 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3894 	}
3895 	/* mount old root on put_old */
3896 	attach_mnt(root_mnt, old_mnt, old_mp);
3897 	/* mount new_root on / */
3898 	attach_mnt(new_mnt, root_parent, root_mp);
3899 	mnt_add_count(root_parent, -1);
3900 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3901 	/* A moved mount should not expire automatically */
3902 	list_del_init(&new_mnt->mnt_expire);
3903 	put_mountpoint(root_mp);
3904 	unlock_mount_hash();
3905 	chroot_fs_refs(&root, &new);
3906 	error = 0;
3907 out4:
3908 	unlock_mount(old_mp);
3909 	if (!error)
3910 		mntput_no_expire(ex_parent);
3911 out3:
3912 	path_put(&root);
3913 out2:
3914 	path_put(&old);
3915 out1:
3916 	path_put(&new);
3917 out0:
3918 	return error;
3919 }
3920 
3921 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3922 {
3923 	unsigned int flags = mnt->mnt.mnt_flags;
3924 
3925 	/*  flags to clear */
3926 	flags &= ~kattr->attr_clr;
3927 	/* flags to raise */
3928 	flags |= kattr->attr_set;
3929 
3930 	return flags;
3931 }
3932 
3933 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3934 {
3935 	struct vfsmount *m = &mnt->mnt;
3936 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3937 
3938 	if (!kattr->mnt_userns)
3939 		return 0;
3940 
3941 	/*
3942 	 * Creating an idmapped mount with the filesystem wide idmapping
3943 	 * doesn't make sense so block that. We don't allow mushy semantics.
3944 	 */
3945 	if (kattr->mnt_userns == fs_userns)
3946 		return -EINVAL;
3947 
3948 	/*
3949 	 * Once a mount has been idmapped we don't allow it to change its
3950 	 * mapping. It makes things simpler and callers can just create
3951 	 * another bind-mount they can idmap if they want to.
3952 	 */
3953 	if (is_idmapped_mnt(m))
3954 		return -EPERM;
3955 
3956 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3957 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3958 		return -EINVAL;
3959 
3960 	/* We're not controlling the superblock. */
3961 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
3962 		return -EPERM;
3963 
3964 	/* Mount has already been visible in the filesystem hierarchy. */
3965 	if (!is_anon_ns(mnt->mnt_ns))
3966 		return -EINVAL;
3967 
3968 	return 0;
3969 }
3970 
3971 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3972 					   struct mount *mnt, int *err)
3973 {
3974 	struct mount *m = mnt, *last = NULL;
3975 
3976 	if (!is_mounted(&m->mnt)) {
3977 		*err = -EINVAL;
3978 		goto out;
3979 	}
3980 
3981 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3982 		*err = -EINVAL;
3983 		goto out;
3984 	}
3985 
3986 	do {
3987 		unsigned int flags;
3988 
3989 		flags = recalc_flags(kattr, m);
3990 		if (!can_change_locked_flags(m, flags)) {
3991 			*err = -EPERM;
3992 			goto out;
3993 		}
3994 
3995 		*err = can_idmap_mount(kattr, m);
3996 		if (*err)
3997 			goto out;
3998 
3999 		last = m;
4000 
4001 		if ((kattr->attr_set & MNT_READONLY) &&
4002 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
4003 			*err = mnt_hold_writers(m);
4004 			if (*err)
4005 				goto out;
4006 		}
4007 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
4008 
4009 out:
4010 	return last;
4011 }
4012 
4013 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4014 {
4015 	struct user_namespace *mnt_userns, *old_mnt_userns;
4016 
4017 	if (!kattr->mnt_userns)
4018 		return;
4019 
4020 	/*
4021 	 * We're the only ones able to change the mount's idmapping. So
4022 	 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4023 	 */
4024 	old_mnt_userns = mnt->mnt.mnt_userns;
4025 
4026 	mnt_userns = get_user_ns(kattr->mnt_userns);
4027 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
4028 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4029 
4030 	/*
4031 	 * If this is an idmapped filesystem drop the reference we've taken
4032 	 * in vfs_create_mount() before.
4033 	 */
4034 	if (!initial_idmapping(old_mnt_userns))
4035 		put_user_ns(old_mnt_userns);
4036 }
4037 
4038 static void mount_setattr_commit(struct mount_kattr *kattr,
4039 				 struct mount *mnt, struct mount *last,
4040 				 int err)
4041 {
4042 	struct mount *m = mnt;
4043 
4044 	do {
4045 		if (!err) {
4046 			unsigned int flags;
4047 
4048 			do_idmap_mount(kattr, m);
4049 			flags = recalc_flags(kattr, m);
4050 			WRITE_ONCE(m->mnt.mnt_flags, flags);
4051 		}
4052 
4053 		/*
4054 		 * We either set MNT_READONLY above so make it visible
4055 		 * before ~MNT_WRITE_HOLD or we failed to recursively
4056 		 * apply mount options.
4057 		 */
4058 		if ((kattr->attr_set & MNT_READONLY) &&
4059 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4060 			mnt_unhold_writers(m);
4061 
4062 		if (!err && kattr->propagation)
4063 			change_mnt_propagation(m, kattr->propagation);
4064 
4065 		/*
4066 		 * On failure, only cleanup until we found the first mount
4067 		 * we failed to handle.
4068 		 */
4069 		if (err && m == last)
4070 			break;
4071 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
4072 
4073 	if (!err)
4074 		touch_mnt_namespace(mnt->mnt_ns);
4075 }
4076 
4077 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4078 {
4079 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
4080 	int err = 0;
4081 
4082 	if (path->dentry != mnt->mnt.mnt_root)
4083 		return -EINVAL;
4084 
4085 	if (kattr->propagation) {
4086 		/*
4087 		 * Only take namespace_lock() if we're actually changing
4088 		 * propagation.
4089 		 */
4090 		namespace_lock();
4091 		if (kattr->propagation == MS_SHARED) {
4092 			err = invent_group_ids(mnt, kattr->recurse);
4093 			if (err) {
4094 				namespace_unlock();
4095 				return err;
4096 			}
4097 		}
4098 	}
4099 
4100 	lock_mount_hash();
4101 
4102 	/*
4103 	 * Get the mount tree in a shape where we can change mount
4104 	 * properties without failure.
4105 	 */
4106 	last = mount_setattr_prepare(kattr, mnt, &err);
4107 	if (last) /* Commit all changes or revert to the old state. */
4108 		mount_setattr_commit(kattr, mnt, last, err);
4109 
4110 	unlock_mount_hash();
4111 
4112 	if (kattr->propagation) {
4113 		namespace_unlock();
4114 		if (err)
4115 			cleanup_group_ids(mnt, NULL);
4116 	}
4117 
4118 	return err;
4119 }
4120 
4121 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4122 				struct mount_kattr *kattr, unsigned int flags)
4123 {
4124 	int err = 0;
4125 	struct ns_common *ns;
4126 	struct user_namespace *mnt_userns;
4127 	struct file *file;
4128 
4129 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4130 		return 0;
4131 
4132 	/*
4133 	 * We currently do not support clearing an idmapped mount. If this ever
4134 	 * is a use-case we can revisit this but for now let's keep it simple
4135 	 * and not allow it.
4136 	 */
4137 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4138 		return -EINVAL;
4139 
4140 	if (attr->userns_fd > INT_MAX)
4141 		return -EINVAL;
4142 
4143 	file = fget(attr->userns_fd);
4144 	if (!file)
4145 		return -EBADF;
4146 
4147 	if (!proc_ns_file(file)) {
4148 		err = -EINVAL;
4149 		goto out_fput;
4150 	}
4151 
4152 	ns = get_proc_ns(file_inode(file));
4153 	if (ns->ops->type != CLONE_NEWUSER) {
4154 		err = -EINVAL;
4155 		goto out_fput;
4156 	}
4157 
4158 	/*
4159 	 * The initial idmapping cannot be used to create an idmapped
4160 	 * mount. We use the initial idmapping as an indicator of a mount
4161 	 * that is not idmapped. It can simply be passed into helpers that
4162 	 * are aware of idmapped mounts as a convenient shortcut. A user
4163 	 * can just create a dedicated identity mapping to achieve the same
4164 	 * result.
4165 	 */
4166 	mnt_userns = container_of(ns, struct user_namespace, ns);
4167 	if (initial_idmapping(mnt_userns)) {
4168 		err = -EPERM;
4169 		goto out_fput;
4170 	}
4171 	kattr->mnt_userns = get_user_ns(mnt_userns);
4172 
4173 out_fput:
4174 	fput(file);
4175 	return err;
4176 }
4177 
4178 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4179 			     struct mount_kattr *kattr, unsigned int flags)
4180 {
4181 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4182 
4183 	if (flags & AT_NO_AUTOMOUNT)
4184 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4185 	if (flags & AT_SYMLINK_NOFOLLOW)
4186 		lookup_flags &= ~LOOKUP_FOLLOW;
4187 	if (flags & AT_EMPTY_PATH)
4188 		lookup_flags |= LOOKUP_EMPTY;
4189 
4190 	*kattr = (struct mount_kattr) {
4191 		.lookup_flags	= lookup_flags,
4192 		.recurse	= !!(flags & AT_RECURSIVE),
4193 	};
4194 
4195 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4196 		return -EINVAL;
4197 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4198 		return -EINVAL;
4199 	kattr->propagation = attr->propagation;
4200 
4201 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4202 		return -EINVAL;
4203 
4204 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4205 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4206 
4207 	/*
4208 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4209 	 * users wanting to transition to a different atime setting cannot
4210 	 * simply specify the atime setting in @attr_set, but must also
4211 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4212 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4213 	 * @attr_clr and that @attr_set can't have any atime bits set if
4214 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4215 	 */
4216 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4217 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4218 			return -EINVAL;
4219 
4220 		/*
4221 		 * Clear all previous time settings as they are mutually
4222 		 * exclusive.
4223 		 */
4224 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4225 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4226 		case MOUNT_ATTR_RELATIME:
4227 			kattr->attr_set |= MNT_RELATIME;
4228 			break;
4229 		case MOUNT_ATTR_NOATIME:
4230 			kattr->attr_set |= MNT_NOATIME;
4231 			break;
4232 		case MOUNT_ATTR_STRICTATIME:
4233 			break;
4234 		default:
4235 			return -EINVAL;
4236 		}
4237 	} else {
4238 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4239 			return -EINVAL;
4240 	}
4241 
4242 	return build_mount_idmapped(attr, usize, kattr, flags);
4243 }
4244 
4245 static void finish_mount_kattr(struct mount_kattr *kattr)
4246 {
4247 	put_user_ns(kattr->mnt_userns);
4248 	kattr->mnt_userns = NULL;
4249 }
4250 
4251 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4252 		unsigned int, flags, struct mount_attr __user *, uattr,
4253 		size_t, usize)
4254 {
4255 	int err;
4256 	struct path target;
4257 	struct mount_attr attr;
4258 	struct mount_kattr kattr;
4259 
4260 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4261 
4262 	if (flags & ~(AT_EMPTY_PATH |
4263 		      AT_RECURSIVE |
4264 		      AT_SYMLINK_NOFOLLOW |
4265 		      AT_NO_AUTOMOUNT))
4266 		return -EINVAL;
4267 
4268 	if (unlikely(usize > PAGE_SIZE))
4269 		return -E2BIG;
4270 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4271 		return -EINVAL;
4272 
4273 	if (!may_mount())
4274 		return -EPERM;
4275 
4276 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4277 	if (err)
4278 		return err;
4279 
4280 	/* Don't bother walking through the mounts if this is a nop. */
4281 	if (attr.attr_set == 0 &&
4282 	    attr.attr_clr == 0 &&
4283 	    attr.propagation == 0)
4284 		return 0;
4285 
4286 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4287 	if (err)
4288 		return err;
4289 
4290 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4291 	if (!err) {
4292 		err = do_mount_setattr(&target, &kattr);
4293 		path_put(&target);
4294 	}
4295 	finish_mount_kattr(&kattr);
4296 	return err;
4297 }
4298 
4299 static void __init init_mount_tree(void)
4300 {
4301 	struct vfsmount *mnt;
4302 	struct mount *m;
4303 	struct mnt_namespace *ns;
4304 	struct path root;
4305 
4306 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4307 	if (IS_ERR(mnt))
4308 		panic("Can't create rootfs");
4309 
4310 	ns = alloc_mnt_ns(&init_user_ns, false);
4311 	if (IS_ERR(ns))
4312 		panic("Can't allocate initial namespace");
4313 	m = real_mount(mnt);
4314 	m->mnt_ns = ns;
4315 	ns->root = m;
4316 	ns->mounts = 1;
4317 	list_add(&m->mnt_list, &ns->list);
4318 	init_task.nsproxy->mnt_ns = ns;
4319 	get_mnt_ns(ns);
4320 
4321 	root.mnt = mnt;
4322 	root.dentry = mnt->mnt_root;
4323 	mnt->mnt_flags |= MNT_LOCKED;
4324 
4325 	set_fs_pwd(current->fs, &root);
4326 	set_fs_root(current->fs, &root);
4327 }
4328 
4329 void __init mnt_init(void)
4330 {
4331 	int err;
4332 
4333 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4334 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4335 
4336 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4337 				sizeof(struct hlist_head),
4338 				mhash_entries, 19,
4339 				HASH_ZERO,
4340 				&m_hash_shift, &m_hash_mask, 0, 0);
4341 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4342 				sizeof(struct hlist_head),
4343 				mphash_entries, 19,
4344 				HASH_ZERO,
4345 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4346 
4347 	if (!mount_hashtable || !mountpoint_hashtable)
4348 		panic("Failed to allocate mount hash table\n");
4349 
4350 	kernfs_init();
4351 
4352 	err = sysfs_init();
4353 	if (err)
4354 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4355 			__func__, err);
4356 	fs_kobj = kobject_create_and_add("fs", NULL);
4357 	if (!fs_kobj)
4358 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4359 	shmem_init();
4360 	init_rootfs();
4361 	init_mount_tree();
4362 }
4363 
4364 void put_mnt_ns(struct mnt_namespace *ns)
4365 {
4366 	if (!refcount_dec_and_test(&ns->ns.count))
4367 		return;
4368 	drop_collected_mounts(&ns->root->mnt);
4369 	free_mnt_ns(ns);
4370 }
4371 
4372 struct vfsmount *kern_mount(struct file_system_type *type)
4373 {
4374 	struct vfsmount *mnt;
4375 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4376 	if (!IS_ERR(mnt)) {
4377 		/*
4378 		 * it is a longterm mount, don't release mnt until
4379 		 * we unmount before file sys is unregistered
4380 		*/
4381 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4382 	}
4383 	return mnt;
4384 }
4385 EXPORT_SYMBOL_GPL(kern_mount);
4386 
4387 void kern_unmount(struct vfsmount *mnt)
4388 {
4389 	/* release long term mount so mount point can be released */
4390 	if (!IS_ERR_OR_NULL(mnt)) {
4391 		real_mount(mnt)->mnt_ns = NULL;
4392 		synchronize_rcu();	/* yecchhh... */
4393 		mntput(mnt);
4394 	}
4395 }
4396 EXPORT_SYMBOL(kern_unmount);
4397 
4398 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4399 {
4400 	unsigned int i;
4401 
4402 	for (i = 0; i < num; i++)
4403 		if (mnt[i])
4404 			real_mount(mnt[i])->mnt_ns = NULL;
4405 	synchronize_rcu_expedited();
4406 	for (i = 0; i < num; i++)
4407 		mntput(mnt[i]);
4408 }
4409 EXPORT_SYMBOL(kern_unmount_array);
4410 
4411 bool our_mnt(struct vfsmount *mnt)
4412 {
4413 	return check_mnt(real_mount(mnt));
4414 }
4415 
4416 bool current_chrooted(void)
4417 {
4418 	/* Does the current process have a non-standard root */
4419 	struct path ns_root;
4420 	struct path fs_root;
4421 	bool chrooted;
4422 
4423 	/* Find the namespace root */
4424 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4425 	ns_root.dentry = ns_root.mnt->mnt_root;
4426 	path_get(&ns_root);
4427 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4428 		;
4429 
4430 	get_fs_root(current->fs, &fs_root);
4431 
4432 	chrooted = !path_equal(&fs_root, &ns_root);
4433 
4434 	path_put(&fs_root);
4435 	path_put(&ns_root);
4436 
4437 	return chrooted;
4438 }
4439 
4440 static bool mnt_already_visible(struct mnt_namespace *ns,
4441 				const struct super_block *sb,
4442 				int *new_mnt_flags)
4443 {
4444 	int new_flags = *new_mnt_flags;
4445 	struct mount *mnt;
4446 	bool visible = false;
4447 
4448 	down_read(&namespace_sem);
4449 	lock_ns_list(ns);
4450 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4451 		struct mount *child;
4452 		int mnt_flags;
4453 
4454 		if (mnt_is_cursor(mnt))
4455 			continue;
4456 
4457 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4458 			continue;
4459 
4460 		/* This mount is not fully visible if it's root directory
4461 		 * is not the root directory of the filesystem.
4462 		 */
4463 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4464 			continue;
4465 
4466 		/* A local view of the mount flags */
4467 		mnt_flags = mnt->mnt.mnt_flags;
4468 
4469 		/* Don't miss readonly hidden in the superblock flags */
4470 		if (sb_rdonly(mnt->mnt.mnt_sb))
4471 			mnt_flags |= MNT_LOCK_READONLY;
4472 
4473 		/* Verify the mount flags are equal to or more permissive
4474 		 * than the proposed new mount.
4475 		 */
4476 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4477 		    !(new_flags & MNT_READONLY))
4478 			continue;
4479 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4480 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4481 			continue;
4482 
4483 		/* This mount is not fully visible if there are any
4484 		 * locked child mounts that cover anything except for
4485 		 * empty directories.
4486 		 */
4487 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4488 			struct inode *inode = child->mnt_mountpoint->d_inode;
4489 			/* Only worry about locked mounts */
4490 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4491 				continue;
4492 			/* Is the directory permanetly empty? */
4493 			if (!is_empty_dir_inode(inode))
4494 				goto next;
4495 		}
4496 		/* Preserve the locked attributes */
4497 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4498 					       MNT_LOCK_ATIME);
4499 		visible = true;
4500 		goto found;
4501 	next:	;
4502 	}
4503 found:
4504 	unlock_ns_list(ns);
4505 	up_read(&namespace_sem);
4506 	return visible;
4507 }
4508 
4509 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4510 {
4511 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4512 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4513 	unsigned long s_iflags;
4514 
4515 	if (ns->user_ns == &init_user_ns)
4516 		return false;
4517 
4518 	/* Can this filesystem be too revealing? */
4519 	s_iflags = sb->s_iflags;
4520 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4521 		return false;
4522 
4523 	if ((s_iflags & required_iflags) != required_iflags) {
4524 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4525 			  required_iflags);
4526 		return true;
4527 	}
4528 
4529 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4530 }
4531 
4532 bool mnt_may_suid(struct vfsmount *mnt)
4533 {
4534 	/*
4535 	 * Foreign mounts (accessed via fchdir or through /proc
4536 	 * symlinks) are always treated as if they are nosuid.  This
4537 	 * prevents namespaces from trusting potentially unsafe
4538 	 * suid/sgid bits, file caps, or security labels that originate
4539 	 * in other namespaces.
4540 	 */
4541 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4542 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4543 }
4544 
4545 static struct ns_common *mntns_get(struct task_struct *task)
4546 {
4547 	struct ns_common *ns = NULL;
4548 	struct nsproxy *nsproxy;
4549 
4550 	task_lock(task);
4551 	nsproxy = task->nsproxy;
4552 	if (nsproxy) {
4553 		ns = &nsproxy->mnt_ns->ns;
4554 		get_mnt_ns(to_mnt_ns(ns));
4555 	}
4556 	task_unlock(task);
4557 
4558 	return ns;
4559 }
4560 
4561 static void mntns_put(struct ns_common *ns)
4562 {
4563 	put_mnt_ns(to_mnt_ns(ns));
4564 }
4565 
4566 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4567 {
4568 	struct nsproxy *nsproxy = nsset->nsproxy;
4569 	struct fs_struct *fs = nsset->fs;
4570 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4571 	struct user_namespace *user_ns = nsset->cred->user_ns;
4572 	struct path root;
4573 	int err;
4574 
4575 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4576 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4577 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4578 		return -EPERM;
4579 
4580 	if (is_anon_ns(mnt_ns))
4581 		return -EINVAL;
4582 
4583 	if (fs->users != 1)
4584 		return -EINVAL;
4585 
4586 	get_mnt_ns(mnt_ns);
4587 	old_mnt_ns = nsproxy->mnt_ns;
4588 	nsproxy->mnt_ns = mnt_ns;
4589 
4590 	/* Find the root */
4591 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4592 				"/", LOOKUP_DOWN, &root);
4593 	if (err) {
4594 		/* revert to old namespace */
4595 		nsproxy->mnt_ns = old_mnt_ns;
4596 		put_mnt_ns(mnt_ns);
4597 		return err;
4598 	}
4599 
4600 	put_mnt_ns(old_mnt_ns);
4601 
4602 	/* Update the pwd and root */
4603 	set_fs_pwd(fs, &root);
4604 	set_fs_root(fs, &root);
4605 
4606 	path_put(&root);
4607 	return 0;
4608 }
4609 
4610 static struct user_namespace *mntns_owner(struct ns_common *ns)
4611 {
4612 	return to_mnt_ns(ns)->user_ns;
4613 }
4614 
4615 const struct proc_ns_operations mntns_operations = {
4616 	.name		= "mnt",
4617 	.type		= CLONE_NEWNS,
4618 	.get		= mntns_get,
4619 	.put		= mntns_put,
4620 	.install	= mntns_install,
4621 	.owner		= mntns_owner,
4622 };
4623 
4624 #ifdef CONFIG_SYSCTL
4625 static struct ctl_table fs_namespace_sysctls[] = {
4626 	{
4627 		.procname	= "mount-max",
4628 		.data		= &sysctl_mount_max,
4629 		.maxlen		= sizeof(unsigned int),
4630 		.mode		= 0644,
4631 		.proc_handler	= proc_dointvec_minmax,
4632 		.extra1		= SYSCTL_ONE,
4633 	},
4634 	{ }
4635 };
4636 
4637 static int __init init_fs_namespace_sysctls(void)
4638 {
4639 	register_sysctl_init("fs", fs_namespace_sysctls);
4640 	return 0;
4641 }
4642 fs_initcall(init_fs_namespace_sysctls);
4643 
4644 #endif /* CONFIG_SYSCTL */
4645