1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 }; 86 87 /* /sys/fs */ 88 struct kobject *fs_kobj; 89 EXPORT_SYMBOL_GPL(fs_kobj); 90 91 /* 92 * vfsmount lock may be taken for read to prevent changes to the 93 * vfsmount hash, ie. during mountpoint lookups or walking back 94 * up the tree. 95 * 96 * It should be taken for write in all cases where the vfsmount 97 * tree or hash is modified or when a vfsmount structure is modified. 98 */ 99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 100 101 static inline void lock_mount_hash(void) 102 { 103 write_seqlock(&mount_lock); 104 } 105 106 static inline void unlock_mount_hash(void) 107 { 108 write_sequnlock(&mount_lock); 109 } 110 111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 112 { 113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 115 tmp = tmp + (tmp >> m_hash_shift); 116 return &mount_hashtable[tmp & m_hash_mask]; 117 } 118 119 static inline struct hlist_head *mp_hash(struct dentry *dentry) 120 { 121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 122 tmp = tmp + (tmp >> mp_hash_shift); 123 return &mountpoint_hashtable[tmp & mp_hash_mask]; 124 } 125 126 static int mnt_alloc_id(struct mount *mnt) 127 { 128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 129 130 if (res < 0) 131 return res; 132 mnt->mnt_id = res; 133 return 0; 134 } 135 136 static void mnt_free_id(struct mount *mnt) 137 { 138 ida_free(&mnt_id_ida, mnt->mnt_id); 139 } 140 141 /* 142 * Allocate a new peer group ID 143 */ 144 static int mnt_alloc_group_id(struct mount *mnt) 145 { 146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 147 148 if (res < 0) 149 return res; 150 mnt->mnt_group_id = res; 151 return 0; 152 } 153 154 /* 155 * Release a peer group ID 156 */ 157 void mnt_release_group_id(struct mount *mnt) 158 { 159 ida_free(&mnt_group_ida, mnt->mnt_group_id); 160 mnt->mnt_group_id = 0; 161 } 162 163 /* 164 * vfsmount lock must be held for read 165 */ 166 static inline void mnt_add_count(struct mount *mnt, int n) 167 { 168 #ifdef CONFIG_SMP 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 170 #else 171 preempt_disable(); 172 mnt->mnt_count += n; 173 preempt_enable(); 174 #endif 175 } 176 177 /* 178 * vfsmount lock must be held for write 179 */ 180 int mnt_get_count(struct mount *mnt) 181 { 182 #ifdef CONFIG_SMP 183 int count = 0; 184 int cpu; 185 186 for_each_possible_cpu(cpu) { 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 188 } 189 190 return count; 191 #else 192 return mnt->mnt_count; 193 #endif 194 } 195 196 static struct mount *alloc_vfsmnt(const char *name) 197 { 198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 199 if (mnt) { 200 int err; 201 202 err = mnt_alloc_id(mnt); 203 if (err) 204 goto out_free_cache; 205 206 if (name) { 207 mnt->mnt_devname = kstrdup_const(name, 208 GFP_KERNEL_ACCOUNT); 209 if (!mnt->mnt_devname) 210 goto out_free_id; 211 } 212 213 #ifdef CONFIG_SMP 214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 215 if (!mnt->mnt_pcp) 216 goto out_free_devname; 217 218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 219 #else 220 mnt->mnt_count = 1; 221 mnt->mnt_writers = 0; 222 #endif 223 224 INIT_HLIST_NODE(&mnt->mnt_hash); 225 INIT_LIST_HEAD(&mnt->mnt_child); 226 INIT_LIST_HEAD(&mnt->mnt_mounts); 227 INIT_LIST_HEAD(&mnt->mnt_list); 228 INIT_LIST_HEAD(&mnt->mnt_expire); 229 INIT_LIST_HEAD(&mnt->mnt_share); 230 INIT_LIST_HEAD(&mnt->mnt_slave_list); 231 INIT_LIST_HEAD(&mnt->mnt_slave); 232 INIT_HLIST_NODE(&mnt->mnt_mp_list); 233 INIT_LIST_HEAD(&mnt->mnt_umounting); 234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 235 mnt->mnt.mnt_userns = &init_user_ns; 236 } 237 return mnt; 238 239 #ifdef CONFIG_SMP 240 out_free_devname: 241 kfree_const(mnt->mnt_devname); 242 #endif 243 out_free_id: 244 mnt_free_id(mnt); 245 out_free_cache: 246 kmem_cache_free(mnt_cache, mnt); 247 return NULL; 248 } 249 250 /* 251 * Most r/o checks on a fs are for operations that take 252 * discrete amounts of time, like a write() or unlink(). 253 * We must keep track of when those operations start 254 * (for permission checks) and when they end, so that 255 * we can determine when writes are able to occur to 256 * a filesystem. 257 */ 258 /* 259 * __mnt_is_readonly: check whether a mount is read-only 260 * @mnt: the mount to check for its write status 261 * 262 * This shouldn't be used directly ouside of the VFS. 263 * It does not guarantee that the filesystem will stay 264 * r/w, just that it is right *now*. This can not and 265 * should not be used in place of IS_RDONLY(inode). 266 * mnt_want/drop_write() will _keep_ the filesystem 267 * r/w. 268 */ 269 bool __mnt_is_readonly(struct vfsmount *mnt) 270 { 271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 272 } 273 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 274 275 static inline void mnt_inc_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 279 #else 280 mnt->mnt_writers++; 281 #endif 282 } 283 284 static inline void mnt_dec_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers--; 290 #endif 291 } 292 293 static unsigned int mnt_get_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 unsigned int count = 0; 297 int cpu; 298 299 for_each_possible_cpu(cpu) { 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 301 } 302 303 return count; 304 #else 305 return mnt->mnt_writers; 306 #endif 307 } 308 309 static int mnt_is_readonly(struct vfsmount *mnt) 310 { 311 if (mnt->mnt_sb->s_readonly_remount) 312 return 1; 313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 314 smp_rmb(); 315 return __mnt_is_readonly(mnt); 316 } 317 318 /* 319 * Most r/o & frozen checks on a fs are for operations that take discrete 320 * amounts of time, like a write() or unlink(). We must keep track of when 321 * those operations start (for permission checks) and when they end, so that we 322 * can determine when writes are able to occur to a filesystem. 323 */ 324 /** 325 * __mnt_want_write - get write access to a mount without freeze protection 326 * @m: the mount on which to take a write 327 * 328 * This tells the low-level filesystem that a write is about to be performed to 329 * it, and makes sure that writes are allowed (mnt it read-write) before 330 * returning success. This operation does not protect against filesystem being 331 * frozen. When the write operation is finished, __mnt_drop_write() must be 332 * called. This is effectively a refcount. 333 */ 334 int __mnt_want_write(struct vfsmount *m) 335 { 336 struct mount *mnt = real_mount(m); 337 int ret = 0; 338 339 preempt_disable(); 340 mnt_inc_writers(mnt); 341 /* 342 * The store to mnt_inc_writers must be visible before we pass 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 344 * incremented count after it has set MNT_WRITE_HOLD. 345 */ 346 smp_mb(); 347 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 348 cpu_relax(); 349 /* 350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 351 * be set to match its requirements. So we must not load that until 352 * MNT_WRITE_HOLD is cleared. 353 */ 354 smp_rmb(); 355 if (mnt_is_readonly(m)) { 356 mnt_dec_writers(mnt); 357 ret = -EROFS; 358 } 359 preempt_enable(); 360 361 return ret; 362 } 363 364 /** 365 * mnt_want_write - get write access to a mount 366 * @m: the mount on which to take a write 367 * 368 * This tells the low-level filesystem that a write is about to be performed to 369 * it, and makes sure that writes are allowed (mount is read-write, filesystem 370 * is not frozen) before returning success. When the write operation is 371 * finished, mnt_drop_write() must be called. This is effectively a refcount. 372 */ 373 int mnt_want_write(struct vfsmount *m) 374 { 375 int ret; 376 377 sb_start_write(m->mnt_sb); 378 ret = __mnt_want_write(m); 379 if (ret) 380 sb_end_write(m->mnt_sb); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(mnt_want_write); 384 385 /** 386 * __mnt_want_write_file - get write access to a file's mount 387 * @file: the file who's mount on which to take a write 388 * 389 * This is like __mnt_want_write, but if the file is already open for writing it 390 * skips incrementing mnt_writers (since the open file already has a reference) 391 * and instead only does the check for emergency r/o remounts. This must be 392 * paired with __mnt_drop_write_file. 393 */ 394 int __mnt_want_write_file(struct file *file) 395 { 396 if (file->f_mode & FMODE_WRITER) { 397 /* 398 * Superblock may have become readonly while there are still 399 * writable fd's, e.g. due to a fs error with errors=remount-ro 400 */ 401 if (__mnt_is_readonly(file->f_path.mnt)) 402 return -EROFS; 403 return 0; 404 } 405 return __mnt_want_write(file->f_path.mnt); 406 } 407 408 /** 409 * mnt_want_write_file - get write access to a file's mount 410 * @file: the file who's mount on which to take a write 411 * 412 * This is like mnt_want_write, but if the file is already open for writing it 413 * skips incrementing mnt_writers (since the open file already has a reference) 414 * and instead only does the freeze protection and the check for emergency r/o 415 * remounts. This must be paired with mnt_drop_write_file. 416 */ 417 int mnt_want_write_file(struct file *file) 418 { 419 int ret; 420 421 sb_start_write(file_inode(file)->i_sb); 422 ret = __mnt_want_write_file(file); 423 if (ret) 424 sb_end_write(file_inode(file)->i_sb); 425 return ret; 426 } 427 EXPORT_SYMBOL_GPL(mnt_want_write_file); 428 429 /** 430 * __mnt_drop_write - give up write access to a mount 431 * @mnt: the mount on which to give up write access 432 * 433 * Tells the low-level filesystem that we are done 434 * performing writes to it. Must be matched with 435 * __mnt_want_write() call above. 436 */ 437 void __mnt_drop_write(struct vfsmount *mnt) 438 { 439 preempt_disable(); 440 mnt_dec_writers(real_mount(mnt)); 441 preempt_enable(); 442 } 443 444 /** 445 * mnt_drop_write - give up write access to a mount 446 * @mnt: the mount on which to give up write access 447 * 448 * Tells the low-level filesystem that we are done performing writes to it and 449 * also allows filesystem to be frozen again. Must be matched with 450 * mnt_want_write() call above. 451 */ 452 void mnt_drop_write(struct vfsmount *mnt) 453 { 454 __mnt_drop_write(mnt); 455 sb_end_write(mnt->mnt_sb); 456 } 457 EXPORT_SYMBOL_GPL(mnt_drop_write); 458 459 void __mnt_drop_write_file(struct file *file) 460 { 461 if (!(file->f_mode & FMODE_WRITER)) 462 __mnt_drop_write(file->f_path.mnt); 463 } 464 465 void mnt_drop_write_file(struct file *file) 466 { 467 __mnt_drop_write_file(file); 468 sb_end_write(file_inode(file)->i_sb); 469 } 470 EXPORT_SYMBOL(mnt_drop_write_file); 471 472 static inline int mnt_hold_writers(struct mount *mnt) 473 { 474 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 475 /* 476 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 477 * should be visible before we do. 478 */ 479 smp_mb(); 480 481 /* 482 * With writers on hold, if this value is zero, then there are 483 * definitely no active writers (although held writers may subsequently 484 * increment the count, they'll have to wait, and decrement it after 485 * seeing MNT_READONLY). 486 * 487 * It is OK to have counter incremented on one CPU and decremented on 488 * another: the sum will add up correctly. The danger would be when we 489 * sum up each counter, if we read a counter before it is incremented, 490 * but then read another CPU's count which it has been subsequently 491 * decremented from -- we would see more decrements than we should. 492 * MNT_WRITE_HOLD protects against this scenario, because 493 * mnt_want_write first increments count, then smp_mb, then spins on 494 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 495 * we're counting up here. 496 */ 497 if (mnt_get_writers(mnt) > 0) 498 return -EBUSY; 499 500 return 0; 501 } 502 503 static inline void mnt_unhold_writers(struct mount *mnt) 504 { 505 /* 506 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 507 * that become unheld will see MNT_READONLY. 508 */ 509 smp_wmb(); 510 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 511 } 512 513 static int mnt_make_readonly(struct mount *mnt) 514 { 515 int ret; 516 517 ret = mnt_hold_writers(mnt); 518 if (!ret) 519 mnt->mnt.mnt_flags |= MNT_READONLY; 520 mnt_unhold_writers(mnt); 521 return ret; 522 } 523 524 int sb_prepare_remount_readonly(struct super_block *sb) 525 { 526 struct mount *mnt; 527 int err = 0; 528 529 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 530 if (atomic_long_read(&sb->s_remove_count)) 531 return -EBUSY; 532 533 lock_mount_hash(); 534 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 535 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 536 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 537 smp_mb(); 538 if (mnt_get_writers(mnt) > 0) { 539 err = -EBUSY; 540 break; 541 } 542 } 543 } 544 if (!err && atomic_long_read(&sb->s_remove_count)) 545 err = -EBUSY; 546 547 if (!err) { 548 sb->s_readonly_remount = 1; 549 smp_wmb(); 550 } 551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 552 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 553 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 554 } 555 unlock_mount_hash(); 556 557 return err; 558 } 559 560 static void free_vfsmnt(struct mount *mnt) 561 { 562 struct user_namespace *mnt_userns; 563 564 mnt_userns = mnt_user_ns(&mnt->mnt); 565 if (!initial_idmapping(mnt_userns)) 566 put_user_ns(mnt_userns); 567 kfree_const(mnt->mnt_devname); 568 #ifdef CONFIG_SMP 569 free_percpu(mnt->mnt_pcp); 570 #endif 571 kmem_cache_free(mnt_cache, mnt); 572 } 573 574 static void delayed_free_vfsmnt(struct rcu_head *head) 575 { 576 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 577 } 578 579 /* call under rcu_read_lock */ 580 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 581 { 582 struct mount *mnt; 583 if (read_seqretry(&mount_lock, seq)) 584 return 1; 585 if (bastard == NULL) 586 return 0; 587 mnt = real_mount(bastard); 588 mnt_add_count(mnt, 1); 589 smp_mb(); // see mntput_no_expire() 590 if (likely(!read_seqretry(&mount_lock, seq))) 591 return 0; 592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 593 mnt_add_count(mnt, -1); 594 return 1; 595 } 596 lock_mount_hash(); 597 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 598 mnt_add_count(mnt, -1); 599 unlock_mount_hash(); 600 return 1; 601 } 602 unlock_mount_hash(); 603 /* caller will mntput() */ 604 return -1; 605 } 606 607 /* call under rcu_read_lock */ 608 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 609 { 610 int res = __legitimize_mnt(bastard, seq); 611 if (likely(!res)) 612 return true; 613 if (unlikely(res < 0)) { 614 rcu_read_unlock(); 615 mntput(bastard); 616 rcu_read_lock(); 617 } 618 return false; 619 } 620 621 /* 622 * find the first mount at @dentry on vfsmount @mnt. 623 * call under rcu_read_lock() 624 */ 625 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 626 { 627 struct hlist_head *head = m_hash(mnt, dentry); 628 struct mount *p; 629 630 hlist_for_each_entry_rcu(p, head, mnt_hash) 631 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 632 return p; 633 return NULL; 634 } 635 636 /* 637 * lookup_mnt - Return the first child mount mounted at path 638 * 639 * "First" means first mounted chronologically. If you create the 640 * following mounts: 641 * 642 * mount /dev/sda1 /mnt 643 * mount /dev/sda2 /mnt 644 * mount /dev/sda3 /mnt 645 * 646 * Then lookup_mnt() on the base /mnt dentry in the root mount will 647 * return successively the root dentry and vfsmount of /dev/sda1, then 648 * /dev/sda2, then /dev/sda3, then NULL. 649 * 650 * lookup_mnt takes a reference to the found vfsmount. 651 */ 652 struct vfsmount *lookup_mnt(const struct path *path) 653 { 654 struct mount *child_mnt; 655 struct vfsmount *m; 656 unsigned seq; 657 658 rcu_read_lock(); 659 do { 660 seq = read_seqbegin(&mount_lock); 661 child_mnt = __lookup_mnt(path->mnt, path->dentry); 662 m = child_mnt ? &child_mnt->mnt : NULL; 663 } while (!legitimize_mnt(m, seq)); 664 rcu_read_unlock(); 665 return m; 666 } 667 668 static inline void lock_ns_list(struct mnt_namespace *ns) 669 { 670 spin_lock(&ns->ns_lock); 671 } 672 673 static inline void unlock_ns_list(struct mnt_namespace *ns) 674 { 675 spin_unlock(&ns->ns_lock); 676 } 677 678 static inline bool mnt_is_cursor(struct mount *mnt) 679 { 680 return mnt->mnt.mnt_flags & MNT_CURSOR; 681 } 682 683 /* 684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 685 * current mount namespace. 686 * 687 * The common case is dentries are not mountpoints at all and that 688 * test is handled inline. For the slow case when we are actually 689 * dealing with a mountpoint of some kind, walk through all of the 690 * mounts in the current mount namespace and test to see if the dentry 691 * is a mountpoint. 692 * 693 * The mount_hashtable is not usable in the context because we 694 * need to identify all mounts that may be in the current mount 695 * namespace not just a mount that happens to have some specified 696 * parent mount. 697 */ 698 bool __is_local_mountpoint(struct dentry *dentry) 699 { 700 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 701 struct mount *mnt; 702 bool is_covered = false; 703 704 down_read(&namespace_sem); 705 lock_ns_list(ns); 706 list_for_each_entry(mnt, &ns->list, mnt_list) { 707 if (mnt_is_cursor(mnt)) 708 continue; 709 is_covered = (mnt->mnt_mountpoint == dentry); 710 if (is_covered) 711 break; 712 } 713 unlock_ns_list(ns); 714 up_read(&namespace_sem); 715 716 return is_covered; 717 } 718 719 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 720 { 721 struct hlist_head *chain = mp_hash(dentry); 722 struct mountpoint *mp; 723 724 hlist_for_each_entry(mp, chain, m_hash) { 725 if (mp->m_dentry == dentry) { 726 mp->m_count++; 727 return mp; 728 } 729 } 730 return NULL; 731 } 732 733 static struct mountpoint *get_mountpoint(struct dentry *dentry) 734 { 735 struct mountpoint *mp, *new = NULL; 736 int ret; 737 738 if (d_mountpoint(dentry)) { 739 /* might be worth a WARN_ON() */ 740 if (d_unlinked(dentry)) 741 return ERR_PTR(-ENOENT); 742 mountpoint: 743 read_seqlock_excl(&mount_lock); 744 mp = lookup_mountpoint(dentry); 745 read_sequnlock_excl(&mount_lock); 746 if (mp) 747 goto done; 748 } 749 750 if (!new) 751 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 752 if (!new) 753 return ERR_PTR(-ENOMEM); 754 755 756 /* Exactly one processes may set d_mounted */ 757 ret = d_set_mounted(dentry); 758 759 /* Someone else set d_mounted? */ 760 if (ret == -EBUSY) 761 goto mountpoint; 762 763 /* The dentry is not available as a mountpoint? */ 764 mp = ERR_PTR(ret); 765 if (ret) 766 goto done; 767 768 /* Add the new mountpoint to the hash table */ 769 read_seqlock_excl(&mount_lock); 770 new->m_dentry = dget(dentry); 771 new->m_count = 1; 772 hlist_add_head(&new->m_hash, mp_hash(dentry)); 773 INIT_HLIST_HEAD(&new->m_list); 774 read_sequnlock_excl(&mount_lock); 775 776 mp = new; 777 new = NULL; 778 done: 779 kfree(new); 780 return mp; 781 } 782 783 /* 784 * vfsmount lock must be held. Additionally, the caller is responsible 785 * for serializing calls for given disposal list. 786 */ 787 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 788 { 789 if (!--mp->m_count) { 790 struct dentry *dentry = mp->m_dentry; 791 BUG_ON(!hlist_empty(&mp->m_list)); 792 spin_lock(&dentry->d_lock); 793 dentry->d_flags &= ~DCACHE_MOUNTED; 794 spin_unlock(&dentry->d_lock); 795 dput_to_list(dentry, list); 796 hlist_del(&mp->m_hash); 797 kfree(mp); 798 } 799 } 800 801 /* called with namespace_lock and vfsmount lock */ 802 static void put_mountpoint(struct mountpoint *mp) 803 { 804 __put_mountpoint(mp, &ex_mountpoints); 805 } 806 807 static inline int check_mnt(struct mount *mnt) 808 { 809 return mnt->mnt_ns == current->nsproxy->mnt_ns; 810 } 811 812 /* 813 * vfsmount lock must be held for write 814 */ 815 static void touch_mnt_namespace(struct mnt_namespace *ns) 816 { 817 if (ns) { 818 ns->event = ++event; 819 wake_up_interruptible(&ns->poll); 820 } 821 } 822 823 /* 824 * vfsmount lock must be held for write 825 */ 826 static void __touch_mnt_namespace(struct mnt_namespace *ns) 827 { 828 if (ns && ns->event != event) { 829 ns->event = event; 830 wake_up_interruptible(&ns->poll); 831 } 832 } 833 834 /* 835 * vfsmount lock must be held for write 836 */ 837 static struct mountpoint *unhash_mnt(struct mount *mnt) 838 { 839 struct mountpoint *mp; 840 mnt->mnt_parent = mnt; 841 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 842 list_del_init(&mnt->mnt_child); 843 hlist_del_init_rcu(&mnt->mnt_hash); 844 hlist_del_init(&mnt->mnt_mp_list); 845 mp = mnt->mnt_mp; 846 mnt->mnt_mp = NULL; 847 return mp; 848 } 849 850 /* 851 * vfsmount lock must be held for write 852 */ 853 static void umount_mnt(struct mount *mnt) 854 { 855 put_mountpoint(unhash_mnt(mnt)); 856 } 857 858 /* 859 * vfsmount lock must be held for write 860 */ 861 void mnt_set_mountpoint(struct mount *mnt, 862 struct mountpoint *mp, 863 struct mount *child_mnt) 864 { 865 mp->m_count++; 866 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 867 child_mnt->mnt_mountpoint = mp->m_dentry; 868 child_mnt->mnt_parent = mnt; 869 child_mnt->mnt_mp = mp; 870 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 871 } 872 873 static void __attach_mnt(struct mount *mnt, struct mount *parent) 874 { 875 hlist_add_head_rcu(&mnt->mnt_hash, 876 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 877 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 878 } 879 880 /* 881 * vfsmount lock must be held for write 882 */ 883 static void attach_mnt(struct mount *mnt, 884 struct mount *parent, 885 struct mountpoint *mp) 886 { 887 mnt_set_mountpoint(parent, mp, mnt); 888 __attach_mnt(mnt, parent); 889 } 890 891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 892 { 893 struct mountpoint *old_mp = mnt->mnt_mp; 894 struct mount *old_parent = mnt->mnt_parent; 895 896 list_del_init(&mnt->mnt_child); 897 hlist_del_init(&mnt->mnt_mp_list); 898 hlist_del_init_rcu(&mnt->mnt_hash); 899 900 attach_mnt(mnt, parent, mp); 901 902 put_mountpoint(old_mp); 903 mnt_add_count(old_parent, -1); 904 } 905 906 /* 907 * vfsmount lock must be held for write 908 */ 909 static void commit_tree(struct mount *mnt) 910 { 911 struct mount *parent = mnt->mnt_parent; 912 struct mount *m; 913 LIST_HEAD(head); 914 struct mnt_namespace *n = parent->mnt_ns; 915 916 BUG_ON(parent == mnt); 917 918 list_add_tail(&head, &mnt->mnt_list); 919 list_for_each_entry(m, &head, mnt_list) 920 m->mnt_ns = n; 921 922 list_splice(&head, n->list.prev); 923 924 n->mounts += n->pending_mounts; 925 n->pending_mounts = 0; 926 927 __attach_mnt(mnt, parent); 928 touch_mnt_namespace(n); 929 } 930 931 static struct mount *next_mnt(struct mount *p, struct mount *root) 932 { 933 struct list_head *next = p->mnt_mounts.next; 934 if (next == &p->mnt_mounts) { 935 while (1) { 936 if (p == root) 937 return NULL; 938 next = p->mnt_child.next; 939 if (next != &p->mnt_parent->mnt_mounts) 940 break; 941 p = p->mnt_parent; 942 } 943 } 944 return list_entry(next, struct mount, mnt_child); 945 } 946 947 static struct mount *skip_mnt_tree(struct mount *p) 948 { 949 struct list_head *prev = p->mnt_mounts.prev; 950 while (prev != &p->mnt_mounts) { 951 p = list_entry(prev, struct mount, mnt_child); 952 prev = p->mnt_mounts.prev; 953 } 954 return p; 955 } 956 957 /** 958 * vfs_create_mount - Create a mount for a configured superblock 959 * @fc: The configuration context with the superblock attached 960 * 961 * Create a mount to an already configured superblock. If necessary, the 962 * caller should invoke vfs_get_tree() before calling this. 963 * 964 * Note that this does not attach the mount to anything. 965 */ 966 struct vfsmount *vfs_create_mount(struct fs_context *fc) 967 { 968 struct mount *mnt; 969 struct user_namespace *fs_userns; 970 971 if (!fc->root) 972 return ERR_PTR(-EINVAL); 973 974 mnt = alloc_vfsmnt(fc->source ?: "none"); 975 if (!mnt) 976 return ERR_PTR(-ENOMEM); 977 978 if (fc->sb_flags & SB_KERNMOUNT) 979 mnt->mnt.mnt_flags = MNT_INTERNAL; 980 981 atomic_inc(&fc->root->d_sb->s_active); 982 mnt->mnt.mnt_sb = fc->root->d_sb; 983 mnt->mnt.mnt_root = dget(fc->root); 984 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 985 mnt->mnt_parent = mnt; 986 987 fs_userns = mnt->mnt.mnt_sb->s_user_ns; 988 if (!initial_idmapping(fs_userns)) 989 mnt->mnt.mnt_userns = get_user_ns(fs_userns); 990 991 lock_mount_hash(); 992 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 993 unlock_mount_hash(); 994 return &mnt->mnt; 995 } 996 EXPORT_SYMBOL(vfs_create_mount); 997 998 struct vfsmount *fc_mount(struct fs_context *fc) 999 { 1000 int err = vfs_get_tree(fc); 1001 if (!err) { 1002 up_write(&fc->root->d_sb->s_umount); 1003 return vfs_create_mount(fc); 1004 } 1005 return ERR_PTR(err); 1006 } 1007 EXPORT_SYMBOL(fc_mount); 1008 1009 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1010 int flags, const char *name, 1011 void *data) 1012 { 1013 struct fs_context *fc; 1014 struct vfsmount *mnt; 1015 int ret = 0; 1016 1017 if (!type) 1018 return ERR_PTR(-EINVAL); 1019 1020 fc = fs_context_for_mount(type, flags); 1021 if (IS_ERR(fc)) 1022 return ERR_CAST(fc); 1023 1024 if (name) 1025 ret = vfs_parse_fs_string(fc, "source", 1026 name, strlen(name)); 1027 if (!ret) 1028 ret = parse_monolithic_mount_data(fc, data); 1029 if (!ret) 1030 mnt = fc_mount(fc); 1031 else 1032 mnt = ERR_PTR(ret); 1033 1034 put_fs_context(fc); 1035 return mnt; 1036 } 1037 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1038 1039 struct vfsmount * 1040 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1041 const char *name, void *data) 1042 { 1043 /* Until it is worked out how to pass the user namespace 1044 * through from the parent mount to the submount don't support 1045 * unprivileged mounts with submounts. 1046 */ 1047 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1048 return ERR_PTR(-EPERM); 1049 1050 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1051 } 1052 EXPORT_SYMBOL_GPL(vfs_submount); 1053 1054 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1055 int flag) 1056 { 1057 struct super_block *sb = old->mnt.mnt_sb; 1058 struct mount *mnt; 1059 int err; 1060 1061 mnt = alloc_vfsmnt(old->mnt_devname); 1062 if (!mnt) 1063 return ERR_PTR(-ENOMEM); 1064 1065 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1066 mnt->mnt_group_id = 0; /* not a peer of original */ 1067 else 1068 mnt->mnt_group_id = old->mnt_group_id; 1069 1070 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1071 err = mnt_alloc_group_id(mnt); 1072 if (err) 1073 goto out_free; 1074 } 1075 1076 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1077 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1078 1079 atomic_inc(&sb->s_active); 1080 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1081 if (!initial_idmapping(mnt->mnt.mnt_userns)) 1082 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1083 mnt->mnt.mnt_sb = sb; 1084 mnt->mnt.mnt_root = dget(root); 1085 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1086 mnt->mnt_parent = mnt; 1087 lock_mount_hash(); 1088 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1089 unlock_mount_hash(); 1090 1091 if ((flag & CL_SLAVE) || 1092 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1093 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1094 mnt->mnt_master = old; 1095 CLEAR_MNT_SHARED(mnt); 1096 } else if (!(flag & CL_PRIVATE)) { 1097 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1098 list_add(&mnt->mnt_share, &old->mnt_share); 1099 if (IS_MNT_SLAVE(old)) 1100 list_add(&mnt->mnt_slave, &old->mnt_slave); 1101 mnt->mnt_master = old->mnt_master; 1102 } else { 1103 CLEAR_MNT_SHARED(mnt); 1104 } 1105 if (flag & CL_MAKE_SHARED) 1106 set_mnt_shared(mnt); 1107 1108 /* stick the duplicate mount on the same expiry list 1109 * as the original if that was on one */ 1110 if (flag & CL_EXPIRE) { 1111 if (!list_empty(&old->mnt_expire)) 1112 list_add(&mnt->mnt_expire, &old->mnt_expire); 1113 } 1114 1115 return mnt; 1116 1117 out_free: 1118 mnt_free_id(mnt); 1119 free_vfsmnt(mnt); 1120 return ERR_PTR(err); 1121 } 1122 1123 static void cleanup_mnt(struct mount *mnt) 1124 { 1125 struct hlist_node *p; 1126 struct mount *m; 1127 /* 1128 * The warning here probably indicates that somebody messed 1129 * up a mnt_want/drop_write() pair. If this happens, the 1130 * filesystem was probably unable to make r/w->r/o transitions. 1131 * The locking used to deal with mnt_count decrement provides barriers, 1132 * so mnt_get_writers() below is safe. 1133 */ 1134 WARN_ON(mnt_get_writers(mnt)); 1135 if (unlikely(mnt->mnt_pins.first)) 1136 mnt_pin_kill(mnt); 1137 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1138 hlist_del(&m->mnt_umount); 1139 mntput(&m->mnt); 1140 } 1141 fsnotify_vfsmount_delete(&mnt->mnt); 1142 dput(mnt->mnt.mnt_root); 1143 deactivate_super(mnt->mnt.mnt_sb); 1144 mnt_free_id(mnt); 1145 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1146 } 1147 1148 static void __cleanup_mnt(struct rcu_head *head) 1149 { 1150 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1151 } 1152 1153 static LLIST_HEAD(delayed_mntput_list); 1154 static void delayed_mntput(struct work_struct *unused) 1155 { 1156 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1157 struct mount *m, *t; 1158 1159 llist_for_each_entry_safe(m, t, node, mnt_llist) 1160 cleanup_mnt(m); 1161 } 1162 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1163 1164 static void mntput_no_expire(struct mount *mnt) 1165 { 1166 LIST_HEAD(list); 1167 int count; 1168 1169 rcu_read_lock(); 1170 if (likely(READ_ONCE(mnt->mnt_ns))) { 1171 /* 1172 * Since we don't do lock_mount_hash() here, 1173 * ->mnt_ns can change under us. However, if it's 1174 * non-NULL, then there's a reference that won't 1175 * be dropped until after an RCU delay done after 1176 * turning ->mnt_ns NULL. So if we observe it 1177 * non-NULL under rcu_read_lock(), the reference 1178 * we are dropping is not the final one. 1179 */ 1180 mnt_add_count(mnt, -1); 1181 rcu_read_unlock(); 1182 return; 1183 } 1184 lock_mount_hash(); 1185 /* 1186 * make sure that if __legitimize_mnt() has not seen us grab 1187 * mount_lock, we'll see their refcount increment here. 1188 */ 1189 smp_mb(); 1190 mnt_add_count(mnt, -1); 1191 count = mnt_get_count(mnt); 1192 if (count != 0) { 1193 WARN_ON(count < 0); 1194 rcu_read_unlock(); 1195 unlock_mount_hash(); 1196 return; 1197 } 1198 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1199 rcu_read_unlock(); 1200 unlock_mount_hash(); 1201 return; 1202 } 1203 mnt->mnt.mnt_flags |= MNT_DOOMED; 1204 rcu_read_unlock(); 1205 1206 list_del(&mnt->mnt_instance); 1207 1208 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1209 struct mount *p, *tmp; 1210 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1211 __put_mountpoint(unhash_mnt(p), &list); 1212 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1213 } 1214 } 1215 unlock_mount_hash(); 1216 shrink_dentry_list(&list); 1217 1218 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1219 struct task_struct *task = current; 1220 if (likely(!(task->flags & PF_KTHREAD))) { 1221 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1222 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1223 return; 1224 } 1225 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1226 schedule_delayed_work(&delayed_mntput_work, 1); 1227 return; 1228 } 1229 cleanup_mnt(mnt); 1230 } 1231 1232 void mntput(struct vfsmount *mnt) 1233 { 1234 if (mnt) { 1235 struct mount *m = real_mount(mnt); 1236 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1237 if (unlikely(m->mnt_expiry_mark)) 1238 m->mnt_expiry_mark = 0; 1239 mntput_no_expire(m); 1240 } 1241 } 1242 EXPORT_SYMBOL(mntput); 1243 1244 struct vfsmount *mntget(struct vfsmount *mnt) 1245 { 1246 if (mnt) 1247 mnt_add_count(real_mount(mnt), 1); 1248 return mnt; 1249 } 1250 EXPORT_SYMBOL(mntget); 1251 1252 /** 1253 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1254 * @path: path to check 1255 * 1256 * d_mountpoint() can only be used reliably to establish if a dentry is 1257 * not mounted in any namespace and that common case is handled inline. 1258 * d_mountpoint() isn't aware of the possibility there may be multiple 1259 * mounts using a given dentry in a different namespace. This function 1260 * checks if the passed in path is a mountpoint rather than the dentry 1261 * alone. 1262 */ 1263 bool path_is_mountpoint(const struct path *path) 1264 { 1265 unsigned seq; 1266 bool res; 1267 1268 if (!d_mountpoint(path->dentry)) 1269 return false; 1270 1271 rcu_read_lock(); 1272 do { 1273 seq = read_seqbegin(&mount_lock); 1274 res = __path_is_mountpoint(path); 1275 } while (read_seqretry(&mount_lock, seq)); 1276 rcu_read_unlock(); 1277 1278 return res; 1279 } 1280 EXPORT_SYMBOL(path_is_mountpoint); 1281 1282 struct vfsmount *mnt_clone_internal(const struct path *path) 1283 { 1284 struct mount *p; 1285 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1286 if (IS_ERR(p)) 1287 return ERR_CAST(p); 1288 p->mnt.mnt_flags |= MNT_INTERNAL; 1289 return &p->mnt; 1290 } 1291 1292 #ifdef CONFIG_PROC_FS 1293 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1294 struct list_head *p) 1295 { 1296 struct mount *mnt, *ret = NULL; 1297 1298 lock_ns_list(ns); 1299 list_for_each_continue(p, &ns->list) { 1300 mnt = list_entry(p, typeof(*mnt), mnt_list); 1301 if (!mnt_is_cursor(mnt)) { 1302 ret = mnt; 1303 break; 1304 } 1305 } 1306 unlock_ns_list(ns); 1307 1308 return ret; 1309 } 1310 1311 /* iterator; we want it to have access to namespace_sem, thus here... */ 1312 static void *m_start(struct seq_file *m, loff_t *pos) 1313 { 1314 struct proc_mounts *p = m->private; 1315 struct list_head *prev; 1316 1317 down_read(&namespace_sem); 1318 if (!*pos) { 1319 prev = &p->ns->list; 1320 } else { 1321 prev = &p->cursor.mnt_list; 1322 1323 /* Read after we'd reached the end? */ 1324 if (list_empty(prev)) 1325 return NULL; 1326 } 1327 1328 return mnt_list_next(p->ns, prev); 1329 } 1330 1331 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1332 { 1333 struct proc_mounts *p = m->private; 1334 struct mount *mnt = v; 1335 1336 ++*pos; 1337 return mnt_list_next(p->ns, &mnt->mnt_list); 1338 } 1339 1340 static void m_stop(struct seq_file *m, void *v) 1341 { 1342 struct proc_mounts *p = m->private; 1343 struct mount *mnt = v; 1344 1345 lock_ns_list(p->ns); 1346 if (mnt) 1347 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1348 else 1349 list_del_init(&p->cursor.mnt_list); 1350 unlock_ns_list(p->ns); 1351 up_read(&namespace_sem); 1352 } 1353 1354 static int m_show(struct seq_file *m, void *v) 1355 { 1356 struct proc_mounts *p = m->private; 1357 struct mount *r = v; 1358 return p->show(m, &r->mnt); 1359 } 1360 1361 const struct seq_operations mounts_op = { 1362 .start = m_start, 1363 .next = m_next, 1364 .stop = m_stop, 1365 .show = m_show, 1366 }; 1367 1368 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1369 { 1370 down_read(&namespace_sem); 1371 lock_ns_list(ns); 1372 list_del(&cursor->mnt_list); 1373 unlock_ns_list(ns); 1374 up_read(&namespace_sem); 1375 } 1376 #endif /* CONFIG_PROC_FS */ 1377 1378 /** 1379 * may_umount_tree - check if a mount tree is busy 1380 * @m: root of mount tree 1381 * 1382 * This is called to check if a tree of mounts has any 1383 * open files, pwds, chroots or sub mounts that are 1384 * busy. 1385 */ 1386 int may_umount_tree(struct vfsmount *m) 1387 { 1388 struct mount *mnt = real_mount(m); 1389 int actual_refs = 0; 1390 int minimum_refs = 0; 1391 struct mount *p; 1392 BUG_ON(!m); 1393 1394 /* write lock needed for mnt_get_count */ 1395 lock_mount_hash(); 1396 for (p = mnt; p; p = next_mnt(p, mnt)) { 1397 actual_refs += mnt_get_count(p); 1398 minimum_refs += 2; 1399 } 1400 unlock_mount_hash(); 1401 1402 if (actual_refs > minimum_refs) 1403 return 0; 1404 1405 return 1; 1406 } 1407 1408 EXPORT_SYMBOL(may_umount_tree); 1409 1410 /** 1411 * may_umount - check if a mount point is busy 1412 * @mnt: root of mount 1413 * 1414 * This is called to check if a mount point has any 1415 * open files, pwds, chroots or sub mounts. If the 1416 * mount has sub mounts this will return busy 1417 * regardless of whether the sub mounts are busy. 1418 * 1419 * Doesn't take quota and stuff into account. IOW, in some cases it will 1420 * give false negatives. The main reason why it's here is that we need 1421 * a non-destructive way to look for easily umountable filesystems. 1422 */ 1423 int may_umount(struct vfsmount *mnt) 1424 { 1425 int ret = 1; 1426 down_read(&namespace_sem); 1427 lock_mount_hash(); 1428 if (propagate_mount_busy(real_mount(mnt), 2)) 1429 ret = 0; 1430 unlock_mount_hash(); 1431 up_read(&namespace_sem); 1432 return ret; 1433 } 1434 1435 EXPORT_SYMBOL(may_umount); 1436 1437 static void namespace_unlock(void) 1438 { 1439 struct hlist_head head; 1440 struct hlist_node *p; 1441 struct mount *m; 1442 LIST_HEAD(list); 1443 1444 hlist_move_list(&unmounted, &head); 1445 list_splice_init(&ex_mountpoints, &list); 1446 1447 up_write(&namespace_sem); 1448 1449 shrink_dentry_list(&list); 1450 1451 if (likely(hlist_empty(&head))) 1452 return; 1453 1454 synchronize_rcu_expedited(); 1455 1456 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1457 hlist_del(&m->mnt_umount); 1458 mntput(&m->mnt); 1459 } 1460 } 1461 1462 static inline void namespace_lock(void) 1463 { 1464 down_write(&namespace_sem); 1465 } 1466 1467 enum umount_tree_flags { 1468 UMOUNT_SYNC = 1, 1469 UMOUNT_PROPAGATE = 2, 1470 UMOUNT_CONNECTED = 4, 1471 }; 1472 1473 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1474 { 1475 /* Leaving mounts connected is only valid for lazy umounts */ 1476 if (how & UMOUNT_SYNC) 1477 return true; 1478 1479 /* A mount without a parent has nothing to be connected to */ 1480 if (!mnt_has_parent(mnt)) 1481 return true; 1482 1483 /* Because the reference counting rules change when mounts are 1484 * unmounted and connected, umounted mounts may not be 1485 * connected to mounted mounts. 1486 */ 1487 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1488 return true; 1489 1490 /* Has it been requested that the mount remain connected? */ 1491 if (how & UMOUNT_CONNECTED) 1492 return false; 1493 1494 /* Is the mount locked such that it needs to remain connected? */ 1495 if (IS_MNT_LOCKED(mnt)) 1496 return false; 1497 1498 /* By default disconnect the mount */ 1499 return true; 1500 } 1501 1502 /* 1503 * mount_lock must be held 1504 * namespace_sem must be held for write 1505 */ 1506 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1507 { 1508 LIST_HEAD(tmp_list); 1509 struct mount *p; 1510 1511 if (how & UMOUNT_PROPAGATE) 1512 propagate_mount_unlock(mnt); 1513 1514 /* Gather the mounts to umount */ 1515 for (p = mnt; p; p = next_mnt(p, mnt)) { 1516 p->mnt.mnt_flags |= MNT_UMOUNT; 1517 list_move(&p->mnt_list, &tmp_list); 1518 } 1519 1520 /* Hide the mounts from mnt_mounts */ 1521 list_for_each_entry(p, &tmp_list, mnt_list) { 1522 list_del_init(&p->mnt_child); 1523 } 1524 1525 /* Add propogated mounts to the tmp_list */ 1526 if (how & UMOUNT_PROPAGATE) 1527 propagate_umount(&tmp_list); 1528 1529 while (!list_empty(&tmp_list)) { 1530 struct mnt_namespace *ns; 1531 bool disconnect; 1532 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1533 list_del_init(&p->mnt_expire); 1534 list_del_init(&p->mnt_list); 1535 ns = p->mnt_ns; 1536 if (ns) { 1537 ns->mounts--; 1538 __touch_mnt_namespace(ns); 1539 } 1540 p->mnt_ns = NULL; 1541 if (how & UMOUNT_SYNC) 1542 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1543 1544 disconnect = disconnect_mount(p, how); 1545 if (mnt_has_parent(p)) { 1546 mnt_add_count(p->mnt_parent, -1); 1547 if (!disconnect) { 1548 /* Don't forget about p */ 1549 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1550 } else { 1551 umount_mnt(p); 1552 } 1553 } 1554 change_mnt_propagation(p, MS_PRIVATE); 1555 if (disconnect) 1556 hlist_add_head(&p->mnt_umount, &unmounted); 1557 } 1558 } 1559 1560 static void shrink_submounts(struct mount *mnt); 1561 1562 static int do_umount_root(struct super_block *sb) 1563 { 1564 int ret = 0; 1565 1566 down_write(&sb->s_umount); 1567 if (!sb_rdonly(sb)) { 1568 struct fs_context *fc; 1569 1570 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1571 SB_RDONLY); 1572 if (IS_ERR(fc)) { 1573 ret = PTR_ERR(fc); 1574 } else { 1575 ret = parse_monolithic_mount_data(fc, NULL); 1576 if (!ret) 1577 ret = reconfigure_super(fc); 1578 put_fs_context(fc); 1579 } 1580 } 1581 up_write(&sb->s_umount); 1582 return ret; 1583 } 1584 1585 static int do_umount(struct mount *mnt, int flags) 1586 { 1587 struct super_block *sb = mnt->mnt.mnt_sb; 1588 int retval; 1589 1590 retval = security_sb_umount(&mnt->mnt, flags); 1591 if (retval) 1592 return retval; 1593 1594 /* 1595 * Allow userspace to request a mountpoint be expired rather than 1596 * unmounting unconditionally. Unmount only happens if: 1597 * (1) the mark is already set (the mark is cleared by mntput()) 1598 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1599 */ 1600 if (flags & MNT_EXPIRE) { 1601 if (&mnt->mnt == current->fs->root.mnt || 1602 flags & (MNT_FORCE | MNT_DETACH)) 1603 return -EINVAL; 1604 1605 /* 1606 * probably don't strictly need the lock here if we examined 1607 * all race cases, but it's a slowpath. 1608 */ 1609 lock_mount_hash(); 1610 if (mnt_get_count(mnt) != 2) { 1611 unlock_mount_hash(); 1612 return -EBUSY; 1613 } 1614 unlock_mount_hash(); 1615 1616 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1617 return -EAGAIN; 1618 } 1619 1620 /* 1621 * If we may have to abort operations to get out of this 1622 * mount, and they will themselves hold resources we must 1623 * allow the fs to do things. In the Unix tradition of 1624 * 'Gee thats tricky lets do it in userspace' the umount_begin 1625 * might fail to complete on the first run through as other tasks 1626 * must return, and the like. Thats for the mount program to worry 1627 * about for the moment. 1628 */ 1629 1630 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1631 sb->s_op->umount_begin(sb); 1632 } 1633 1634 /* 1635 * No sense to grab the lock for this test, but test itself looks 1636 * somewhat bogus. Suggestions for better replacement? 1637 * Ho-hum... In principle, we might treat that as umount + switch 1638 * to rootfs. GC would eventually take care of the old vfsmount. 1639 * Actually it makes sense, especially if rootfs would contain a 1640 * /reboot - static binary that would close all descriptors and 1641 * call reboot(9). Then init(8) could umount root and exec /reboot. 1642 */ 1643 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1644 /* 1645 * Special case for "unmounting" root ... 1646 * we just try to remount it readonly. 1647 */ 1648 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1649 return -EPERM; 1650 return do_umount_root(sb); 1651 } 1652 1653 namespace_lock(); 1654 lock_mount_hash(); 1655 1656 /* Recheck MNT_LOCKED with the locks held */ 1657 retval = -EINVAL; 1658 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1659 goto out; 1660 1661 event++; 1662 if (flags & MNT_DETACH) { 1663 if (!list_empty(&mnt->mnt_list)) 1664 umount_tree(mnt, UMOUNT_PROPAGATE); 1665 retval = 0; 1666 } else { 1667 shrink_submounts(mnt); 1668 retval = -EBUSY; 1669 if (!propagate_mount_busy(mnt, 2)) { 1670 if (!list_empty(&mnt->mnt_list)) 1671 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1672 retval = 0; 1673 } 1674 } 1675 out: 1676 unlock_mount_hash(); 1677 namespace_unlock(); 1678 return retval; 1679 } 1680 1681 /* 1682 * __detach_mounts - lazily unmount all mounts on the specified dentry 1683 * 1684 * During unlink, rmdir, and d_drop it is possible to loose the path 1685 * to an existing mountpoint, and wind up leaking the mount. 1686 * detach_mounts allows lazily unmounting those mounts instead of 1687 * leaking them. 1688 * 1689 * The caller may hold dentry->d_inode->i_mutex. 1690 */ 1691 void __detach_mounts(struct dentry *dentry) 1692 { 1693 struct mountpoint *mp; 1694 struct mount *mnt; 1695 1696 namespace_lock(); 1697 lock_mount_hash(); 1698 mp = lookup_mountpoint(dentry); 1699 if (!mp) 1700 goto out_unlock; 1701 1702 event++; 1703 while (!hlist_empty(&mp->m_list)) { 1704 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1705 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1706 umount_mnt(mnt); 1707 hlist_add_head(&mnt->mnt_umount, &unmounted); 1708 } 1709 else umount_tree(mnt, UMOUNT_CONNECTED); 1710 } 1711 put_mountpoint(mp); 1712 out_unlock: 1713 unlock_mount_hash(); 1714 namespace_unlock(); 1715 } 1716 1717 /* 1718 * Is the caller allowed to modify his namespace? 1719 */ 1720 static inline bool may_mount(void) 1721 { 1722 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1723 } 1724 1725 static void warn_mandlock(void) 1726 { 1727 pr_warn_once("=======================================================\n" 1728 "WARNING: The mand mount option has been deprecated and\n" 1729 " and is ignored by this kernel. Remove the mand\n" 1730 " option from the mount to silence this warning.\n" 1731 "=======================================================\n"); 1732 } 1733 1734 static int can_umount(const struct path *path, int flags) 1735 { 1736 struct mount *mnt = real_mount(path->mnt); 1737 1738 if (!may_mount()) 1739 return -EPERM; 1740 if (path->dentry != path->mnt->mnt_root) 1741 return -EINVAL; 1742 if (!check_mnt(mnt)) 1743 return -EINVAL; 1744 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1745 return -EINVAL; 1746 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1747 return -EPERM; 1748 return 0; 1749 } 1750 1751 // caller is responsible for flags being sane 1752 int path_umount(struct path *path, int flags) 1753 { 1754 struct mount *mnt = real_mount(path->mnt); 1755 int ret; 1756 1757 ret = can_umount(path, flags); 1758 if (!ret) 1759 ret = do_umount(mnt, flags); 1760 1761 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1762 dput(path->dentry); 1763 mntput_no_expire(mnt); 1764 return ret; 1765 } 1766 1767 static int ksys_umount(char __user *name, int flags) 1768 { 1769 int lookup_flags = LOOKUP_MOUNTPOINT; 1770 struct path path; 1771 int ret; 1772 1773 // basic validity checks done first 1774 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1775 return -EINVAL; 1776 1777 if (!(flags & UMOUNT_NOFOLLOW)) 1778 lookup_flags |= LOOKUP_FOLLOW; 1779 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1780 if (ret) 1781 return ret; 1782 return path_umount(&path, flags); 1783 } 1784 1785 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1786 { 1787 return ksys_umount(name, flags); 1788 } 1789 1790 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1791 1792 /* 1793 * The 2.0 compatible umount. No flags. 1794 */ 1795 SYSCALL_DEFINE1(oldumount, char __user *, name) 1796 { 1797 return ksys_umount(name, 0); 1798 } 1799 1800 #endif 1801 1802 static bool is_mnt_ns_file(struct dentry *dentry) 1803 { 1804 /* Is this a proxy for a mount namespace? */ 1805 return dentry->d_op == &ns_dentry_operations && 1806 dentry->d_fsdata == &mntns_operations; 1807 } 1808 1809 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1810 { 1811 return container_of(ns, struct mnt_namespace, ns); 1812 } 1813 1814 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1815 { 1816 return &mnt->ns; 1817 } 1818 1819 static bool mnt_ns_loop(struct dentry *dentry) 1820 { 1821 /* Could bind mounting the mount namespace inode cause a 1822 * mount namespace loop? 1823 */ 1824 struct mnt_namespace *mnt_ns; 1825 if (!is_mnt_ns_file(dentry)) 1826 return false; 1827 1828 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1829 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1830 } 1831 1832 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1833 int flag) 1834 { 1835 struct mount *res, *p, *q, *r, *parent; 1836 1837 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1838 return ERR_PTR(-EINVAL); 1839 1840 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1841 return ERR_PTR(-EINVAL); 1842 1843 res = q = clone_mnt(mnt, dentry, flag); 1844 if (IS_ERR(q)) 1845 return q; 1846 1847 q->mnt_mountpoint = mnt->mnt_mountpoint; 1848 1849 p = mnt; 1850 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1851 struct mount *s; 1852 if (!is_subdir(r->mnt_mountpoint, dentry)) 1853 continue; 1854 1855 for (s = r; s; s = next_mnt(s, r)) { 1856 if (!(flag & CL_COPY_UNBINDABLE) && 1857 IS_MNT_UNBINDABLE(s)) { 1858 if (s->mnt.mnt_flags & MNT_LOCKED) { 1859 /* Both unbindable and locked. */ 1860 q = ERR_PTR(-EPERM); 1861 goto out; 1862 } else { 1863 s = skip_mnt_tree(s); 1864 continue; 1865 } 1866 } 1867 if (!(flag & CL_COPY_MNT_NS_FILE) && 1868 is_mnt_ns_file(s->mnt.mnt_root)) { 1869 s = skip_mnt_tree(s); 1870 continue; 1871 } 1872 while (p != s->mnt_parent) { 1873 p = p->mnt_parent; 1874 q = q->mnt_parent; 1875 } 1876 p = s; 1877 parent = q; 1878 q = clone_mnt(p, p->mnt.mnt_root, flag); 1879 if (IS_ERR(q)) 1880 goto out; 1881 lock_mount_hash(); 1882 list_add_tail(&q->mnt_list, &res->mnt_list); 1883 attach_mnt(q, parent, p->mnt_mp); 1884 unlock_mount_hash(); 1885 } 1886 } 1887 return res; 1888 out: 1889 if (res) { 1890 lock_mount_hash(); 1891 umount_tree(res, UMOUNT_SYNC); 1892 unlock_mount_hash(); 1893 } 1894 return q; 1895 } 1896 1897 /* Caller should check returned pointer for errors */ 1898 1899 struct vfsmount *collect_mounts(const struct path *path) 1900 { 1901 struct mount *tree; 1902 namespace_lock(); 1903 if (!check_mnt(real_mount(path->mnt))) 1904 tree = ERR_PTR(-EINVAL); 1905 else 1906 tree = copy_tree(real_mount(path->mnt), path->dentry, 1907 CL_COPY_ALL | CL_PRIVATE); 1908 namespace_unlock(); 1909 if (IS_ERR(tree)) 1910 return ERR_CAST(tree); 1911 return &tree->mnt; 1912 } 1913 1914 static void free_mnt_ns(struct mnt_namespace *); 1915 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1916 1917 void dissolve_on_fput(struct vfsmount *mnt) 1918 { 1919 struct mnt_namespace *ns; 1920 namespace_lock(); 1921 lock_mount_hash(); 1922 ns = real_mount(mnt)->mnt_ns; 1923 if (ns) { 1924 if (is_anon_ns(ns)) 1925 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1926 else 1927 ns = NULL; 1928 } 1929 unlock_mount_hash(); 1930 namespace_unlock(); 1931 if (ns) 1932 free_mnt_ns(ns); 1933 } 1934 1935 void drop_collected_mounts(struct vfsmount *mnt) 1936 { 1937 namespace_lock(); 1938 lock_mount_hash(); 1939 umount_tree(real_mount(mnt), 0); 1940 unlock_mount_hash(); 1941 namespace_unlock(); 1942 } 1943 1944 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1945 { 1946 struct mount *child; 1947 1948 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1949 if (!is_subdir(child->mnt_mountpoint, dentry)) 1950 continue; 1951 1952 if (child->mnt.mnt_flags & MNT_LOCKED) 1953 return true; 1954 } 1955 return false; 1956 } 1957 1958 /** 1959 * clone_private_mount - create a private clone of a path 1960 * @path: path to clone 1961 * 1962 * This creates a new vfsmount, which will be the clone of @path. The new mount 1963 * will not be attached anywhere in the namespace and will be private (i.e. 1964 * changes to the originating mount won't be propagated into this). 1965 * 1966 * Release with mntput(). 1967 */ 1968 struct vfsmount *clone_private_mount(const struct path *path) 1969 { 1970 struct mount *old_mnt = real_mount(path->mnt); 1971 struct mount *new_mnt; 1972 1973 down_read(&namespace_sem); 1974 if (IS_MNT_UNBINDABLE(old_mnt)) 1975 goto invalid; 1976 1977 if (!check_mnt(old_mnt)) 1978 goto invalid; 1979 1980 if (has_locked_children(old_mnt, path->dentry)) 1981 goto invalid; 1982 1983 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1984 up_read(&namespace_sem); 1985 1986 if (IS_ERR(new_mnt)) 1987 return ERR_CAST(new_mnt); 1988 1989 /* Longterm mount to be removed by kern_unmount*() */ 1990 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1991 1992 return &new_mnt->mnt; 1993 1994 invalid: 1995 up_read(&namespace_sem); 1996 return ERR_PTR(-EINVAL); 1997 } 1998 EXPORT_SYMBOL_GPL(clone_private_mount); 1999 2000 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2001 struct vfsmount *root) 2002 { 2003 struct mount *mnt; 2004 int res = f(root, arg); 2005 if (res) 2006 return res; 2007 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2008 res = f(&mnt->mnt, arg); 2009 if (res) 2010 return res; 2011 } 2012 return 0; 2013 } 2014 2015 static void lock_mnt_tree(struct mount *mnt) 2016 { 2017 struct mount *p; 2018 2019 for (p = mnt; p; p = next_mnt(p, mnt)) { 2020 int flags = p->mnt.mnt_flags; 2021 /* Don't allow unprivileged users to change mount flags */ 2022 flags |= MNT_LOCK_ATIME; 2023 2024 if (flags & MNT_READONLY) 2025 flags |= MNT_LOCK_READONLY; 2026 2027 if (flags & MNT_NODEV) 2028 flags |= MNT_LOCK_NODEV; 2029 2030 if (flags & MNT_NOSUID) 2031 flags |= MNT_LOCK_NOSUID; 2032 2033 if (flags & MNT_NOEXEC) 2034 flags |= MNT_LOCK_NOEXEC; 2035 /* Don't allow unprivileged users to reveal what is under a mount */ 2036 if (list_empty(&p->mnt_expire)) 2037 flags |= MNT_LOCKED; 2038 p->mnt.mnt_flags = flags; 2039 } 2040 } 2041 2042 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2043 { 2044 struct mount *p; 2045 2046 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2047 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2048 mnt_release_group_id(p); 2049 } 2050 } 2051 2052 static int invent_group_ids(struct mount *mnt, bool recurse) 2053 { 2054 struct mount *p; 2055 2056 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2057 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2058 int err = mnt_alloc_group_id(p); 2059 if (err) { 2060 cleanup_group_ids(mnt, p); 2061 return err; 2062 } 2063 } 2064 } 2065 2066 return 0; 2067 } 2068 2069 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2070 { 2071 unsigned int max = READ_ONCE(sysctl_mount_max); 2072 unsigned int mounts = 0, old, pending, sum; 2073 struct mount *p; 2074 2075 for (p = mnt; p; p = next_mnt(p, mnt)) 2076 mounts++; 2077 2078 old = ns->mounts; 2079 pending = ns->pending_mounts; 2080 sum = old + pending; 2081 if ((old > sum) || 2082 (pending > sum) || 2083 (max < sum) || 2084 (mounts > (max - sum))) 2085 return -ENOSPC; 2086 2087 ns->pending_mounts = pending + mounts; 2088 return 0; 2089 } 2090 2091 /* 2092 * @source_mnt : mount tree to be attached 2093 * @nd : place the mount tree @source_mnt is attached 2094 * @parent_nd : if non-null, detach the source_mnt from its parent and 2095 * store the parent mount and mountpoint dentry. 2096 * (done when source_mnt is moved) 2097 * 2098 * NOTE: in the table below explains the semantics when a source mount 2099 * of a given type is attached to a destination mount of a given type. 2100 * --------------------------------------------------------------------------- 2101 * | BIND MOUNT OPERATION | 2102 * |************************************************************************** 2103 * | source-->| shared | private | slave | unbindable | 2104 * | dest | | | | | 2105 * | | | | | | | 2106 * | v | | | | | 2107 * |************************************************************************** 2108 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2109 * | | | | | | 2110 * |non-shared| shared (+) | private | slave (*) | invalid | 2111 * *************************************************************************** 2112 * A bind operation clones the source mount and mounts the clone on the 2113 * destination mount. 2114 * 2115 * (++) the cloned mount is propagated to all the mounts in the propagation 2116 * tree of the destination mount and the cloned mount is added to 2117 * the peer group of the source mount. 2118 * (+) the cloned mount is created under the destination mount and is marked 2119 * as shared. The cloned mount is added to the peer group of the source 2120 * mount. 2121 * (+++) the mount is propagated to all the mounts in the propagation tree 2122 * of the destination mount and the cloned mount is made slave 2123 * of the same master as that of the source mount. The cloned mount 2124 * is marked as 'shared and slave'. 2125 * (*) the cloned mount is made a slave of the same master as that of the 2126 * source mount. 2127 * 2128 * --------------------------------------------------------------------------- 2129 * | MOVE MOUNT OPERATION | 2130 * |************************************************************************** 2131 * | source-->| shared | private | slave | unbindable | 2132 * | dest | | | | | 2133 * | | | | | | | 2134 * | v | | | | | 2135 * |************************************************************************** 2136 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2137 * | | | | | | 2138 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2139 * *************************************************************************** 2140 * 2141 * (+) the mount is moved to the destination. And is then propagated to 2142 * all the mounts in the propagation tree of the destination mount. 2143 * (+*) the mount is moved to the destination. 2144 * (+++) the mount is moved to the destination and is then propagated to 2145 * all the mounts belonging to the destination mount's propagation tree. 2146 * the mount is marked as 'shared and slave'. 2147 * (*) the mount continues to be a slave at the new location. 2148 * 2149 * if the source mount is a tree, the operations explained above is 2150 * applied to each mount in the tree. 2151 * Must be called without spinlocks held, since this function can sleep 2152 * in allocations. 2153 */ 2154 static int attach_recursive_mnt(struct mount *source_mnt, 2155 struct mount *dest_mnt, 2156 struct mountpoint *dest_mp, 2157 bool moving) 2158 { 2159 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2160 HLIST_HEAD(tree_list); 2161 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2162 struct mountpoint *smp; 2163 struct mount *child, *p; 2164 struct hlist_node *n; 2165 int err; 2166 2167 /* Preallocate a mountpoint in case the new mounts need 2168 * to be tucked under other mounts. 2169 */ 2170 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2171 if (IS_ERR(smp)) 2172 return PTR_ERR(smp); 2173 2174 /* Is there space to add these mounts to the mount namespace? */ 2175 if (!moving) { 2176 err = count_mounts(ns, source_mnt); 2177 if (err) 2178 goto out; 2179 } 2180 2181 if (IS_MNT_SHARED(dest_mnt)) { 2182 err = invent_group_ids(source_mnt, true); 2183 if (err) 2184 goto out; 2185 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2186 lock_mount_hash(); 2187 if (err) 2188 goto out_cleanup_ids; 2189 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2190 set_mnt_shared(p); 2191 } else { 2192 lock_mount_hash(); 2193 } 2194 if (moving) { 2195 unhash_mnt(source_mnt); 2196 attach_mnt(source_mnt, dest_mnt, dest_mp); 2197 touch_mnt_namespace(source_mnt->mnt_ns); 2198 } else { 2199 if (source_mnt->mnt_ns) { 2200 /* move from anon - the caller will destroy */ 2201 list_del_init(&source_mnt->mnt_ns->list); 2202 } 2203 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2204 commit_tree(source_mnt); 2205 } 2206 2207 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2208 struct mount *q; 2209 hlist_del_init(&child->mnt_hash); 2210 q = __lookup_mnt(&child->mnt_parent->mnt, 2211 child->mnt_mountpoint); 2212 if (q) 2213 mnt_change_mountpoint(child, smp, q); 2214 /* Notice when we are propagating across user namespaces */ 2215 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2216 lock_mnt_tree(child); 2217 child->mnt.mnt_flags &= ~MNT_LOCKED; 2218 commit_tree(child); 2219 } 2220 put_mountpoint(smp); 2221 unlock_mount_hash(); 2222 2223 return 0; 2224 2225 out_cleanup_ids: 2226 while (!hlist_empty(&tree_list)) { 2227 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2228 child->mnt_parent->mnt_ns->pending_mounts = 0; 2229 umount_tree(child, UMOUNT_SYNC); 2230 } 2231 unlock_mount_hash(); 2232 cleanup_group_ids(source_mnt, NULL); 2233 out: 2234 ns->pending_mounts = 0; 2235 2236 read_seqlock_excl(&mount_lock); 2237 put_mountpoint(smp); 2238 read_sequnlock_excl(&mount_lock); 2239 2240 return err; 2241 } 2242 2243 static struct mountpoint *lock_mount(struct path *path) 2244 { 2245 struct vfsmount *mnt; 2246 struct dentry *dentry = path->dentry; 2247 retry: 2248 inode_lock(dentry->d_inode); 2249 if (unlikely(cant_mount(dentry))) { 2250 inode_unlock(dentry->d_inode); 2251 return ERR_PTR(-ENOENT); 2252 } 2253 namespace_lock(); 2254 mnt = lookup_mnt(path); 2255 if (likely(!mnt)) { 2256 struct mountpoint *mp = get_mountpoint(dentry); 2257 if (IS_ERR(mp)) { 2258 namespace_unlock(); 2259 inode_unlock(dentry->d_inode); 2260 return mp; 2261 } 2262 return mp; 2263 } 2264 namespace_unlock(); 2265 inode_unlock(path->dentry->d_inode); 2266 path_put(path); 2267 path->mnt = mnt; 2268 dentry = path->dentry = dget(mnt->mnt_root); 2269 goto retry; 2270 } 2271 2272 static void unlock_mount(struct mountpoint *where) 2273 { 2274 struct dentry *dentry = where->m_dentry; 2275 2276 read_seqlock_excl(&mount_lock); 2277 put_mountpoint(where); 2278 read_sequnlock_excl(&mount_lock); 2279 2280 namespace_unlock(); 2281 inode_unlock(dentry->d_inode); 2282 } 2283 2284 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2285 { 2286 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2287 return -EINVAL; 2288 2289 if (d_is_dir(mp->m_dentry) != 2290 d_is_dir(mnt->mnt.mnt_root)) 2291 return -ENOTDIR; 2292 2293 return attach_recursive_mnt(mnt, p, mp, false); 2294 } 2295 2296 /* 2297 * Sanity check the flags to change_mnt_propagation. 2298 */ 2299 2300 static int flags_to_propagation_type(int ms_flags) 2301 { 2302 int type = ms_flags & ~(MS_REC | MS_SILENT); 2303 2304 /* Fail if any non-propagation flags are set */ 2305 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2306 return 0; 2307 /* Only one propagation flag should be set */ 2308 if (!is_power_of_2(type)) 2309 return 0; 2310 return type; 2311 } 2312 2313 /* 2314 * recursively change the type of the mountpoint. 2315 */ 2316 static int do_change_type(struct path *path, int ms_flags) 2317 { 2318 struct mount *m; 2319 struct mount *mnt = real_mount(path->mnt); 2320 int recurse = ms_flags & MS_REC; 2321 int type; 2322 int err = 0; 2323 2324 if (path->dentry != path->mnt->mnt_root) 2325 return -EINVAL; 2326 2327 type = flags_to_propagation_type(ms_flags); 2328 if (!type) 2329 return -EINVAL; 2330 2331 namespace_lock(); 2332 if (type == MS_SHARED) { 2333 err = invent_group_ids(mnt, recurse); 2334 if (err) 2335 goto out_unlock; 2336 } 2337 2338 lock_mount_hash(); 2339 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2340 change_mnt_propagation(m, type); 2341 unlock_mount_hash(); 2342 2343 out_unlock: 2344 namespace_unlock(); 2345 return err; 2346 } 2347 2348 static struct mount *__do_loopback(struct path *old_path, int recurse) 2349 { 2350 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2351 2352 if (IS_MNT_UNBINDABLE(old)) 2353 return mnt; 2354 2355 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2356 return mnt; 2357 2358 if (!recurse && has_locked_children(old, old_path->dentry)) 2359 return mnt; 2360 2361 if (recurse) 2362 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2363 else 2364 mnt = clone_mnt(old, old_path->dentry, 0); 2365 2366 if (!IS_ERR(mnt)) 2367 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2368 2369 return mnt; 2370 } 2371 2372 /* 2373 * do loopback mount. 2374 */ 2375 static int do_loopback(struct path *path, const char *old_name, 2376 int recurse) 2377 { 2378 struct path old_path; 2379 struct mount *mnt = NULL, *parent; 2380 struct mountpoint *mp; 2381 int err; 2382 if (!old_name || !*old_name) 2383 return -EINVAL; 2384 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2385 if (err) 2386 return err; 2387 2388 err = -EINVAL; 2389 if (mnt_ns_loop(old_path.dentry)) 2390 goto out; 2391 2392 mp = lock_mount(path); 2393 if (IS_ERR(mp)) { 2394 err = PTR_ERR(mp); 2395 goto out; 2396 } 2397 2398 parent = real_mount(path->mnt); 2399 if (!check_mnt(parent)) 2400 goto out2; 2401 2402 mnt = __do_loopback(&old_path, recurse); 2403 if (IS_ERR(mnt)) { 2404 err = PTR_ERR(mnt); 2405 goto out2; 2406 } 2407 2408 err = graft_tree(mnt, parent, mp); 2409 if (err) { 2410 lock_mount_hash(); 2411 umount_tree(mnt, UMOUNT_SYNC); 2412 unlock_mount_hash(); 2413 } 2414 out2: 2415 unlock_mount(mp); 2416 out: 2417 path_put(&old_path); 2418 return err; 2419 } 2420 2421 static struct file *open_detached_copy(struct path *path, bool recursive) 2422 { 2423 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2424 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2425 struct mount *mnt, *p; 2426 struct file *file; 2427 2428 if (IS_ERR(ns)) 2429 return ERR_CAST(ns); 2430 2431 namespace_lock(); 2432 mnt = __do_loopback(path, recursive); 2433 if (IS_ERR(mnt)) { 2434 namespace_unlock(); 2435 free_mnt_ns(ns); 2436 return ERR_CAST(mnt); 2437 } 2438 2439 lock_mount_hash(); 2440 for (p = mnt; p; p = next_mnt(p, mnt)) { 2441 p->mnt_ns = ns; 2442 ns->mounts++; 2443 } 2444 ns->root = mnt; 2445 list_add_tail(&ns->list, &mnt->mnt_list); 2446 mntget(&mnt->mnt); 2447 unlock_mount_hash(); 2448 namespace_unlock(); 2449 2450 mntput(path->mnt); 2451 path->mnt = &mnt->mnt; 2452 file = dentry_open(path, O_PATH, current_cred()); 2453 if (IS_ERR(file)) 2454 dissolve_on_fput(path->mnt); 2455 else 2456 file->f_mode |= FMODE_NEED_UNMOUNT; 2457 return file; 2458 } 2459 2460 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2461 { 2462 struct file *file; 2463 struct path path; 2464 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2465 bool detached = flags & OPEN_TREE_CLONE; 2466 int error; 2467 int fd; 2468 2469 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2470 2471 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2472 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2473 OPEN_TREE_CLOEXEC)) 2474 return -EINVAL; 2475 2476 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2477 return -EINVAL; 2478 2479 if (flags & AT_NO_AUTOMOUNT) 2480 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2481 if (flags & AT_SYMLINK_NOFOLLOW) 2482 lookup_flags &= ~LOOKUP_FOLLOW; 2483 if (flags & AT_EMPTY_PATH) 2484 lookup_flags |= LOOKUP_EMPTY; 2485 2486 if (detached && !may_mount()) 2487 return -EPERM; 2488 2489 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2490 if (fd < 0) 2491 return fd; 2492 2493 error = user_path_at(dfd, filename, lookup_flags, &path); 2494 if (unlikely(error)) { 2495 file = ERR_PTR(error); 2496 } else { 2497 if (detached) 2498 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2499 else 2500 file = dentry_open(&path, O_PATH, current_cred()); 2501 path_put(&path); 2502 } 2503 if (IS_ERR(file)) { 2504 put_unused_fd(fd); 2505 return PTR_ERR(file); 2506 } 2507 fd_install(fd, file); 2508 return fd; 2509 } 2510 2511 /* 2512 * Don't allow locked mount flags to be cleared. 2513 * 2514 * No locks need to be held here while testing the various MNT_LOCK 2515 * flags because those flags can never be cleared once they are set. 2516 */ 2517 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2518 { 2519 unsigned int fl = mnt->mnt.mnt_flags; 2520 2521 if ((fl & MNT_LOCK_READONLY) && 2522 !(mnt_flags & MNT_READONLY)) 2523 return false; 2524 2525 if ((fl & MNT_LOCK_NODEV) && 2526 !(mnt_flags & MNT_NODEV)) 2527 return false; 2528 2529 if ((fl & MNT_LOCK_NOSUID) && 2530 !(mnt_flags & MNT_NOSUID)) 2531 return false; 2532 2533 if ((fl & MNT_LOCK_NOEXEC) && 2534 !(mnt_flags & MNT_NOEXEC)) 2535 return false; 2536 2537 if ((fl & MNT_LOCK_ATIME) && 2538 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2539 return false; 2540 2541 return true; 2542 } 2543 2544 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2545 { 2546 bool readonly_request = (mnt_flags & MNT_READONLY); 2547 2548 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2549 return 0; 2550 2551 if (readonly_request) 2552 return mnt_make_readonly(mnt); 2553 2554 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2555 return 0; 2556 } 2557 2558 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2559 { 2560 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2561 mnt->mnt.mnt_flags = mnt_flags; 2562 touch_mnt_namespace(mnt->mnt_ns); 2563 } 2564 2565 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2566 { 2567 struct super_block *sb = mnt->mnt_sb; 2568 2569 if (!__mnt_is_readonly(mnt) && 2570 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2571 char *buf = (char *)__get_free_page(GFP_KERNEL); 2572 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2573 struct tm tm; 2574 2575 time64_to_tm(sb->s_time_max, 0, &tm); 2576 2577 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2578 sb->s_type->name, 2579 is_mounted(mnt) ? "remounted" : "mounted", 2580 mntpath, 2581 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2582 2583 free_page((unsigned long)buf); 2584 } 2585 } 2586 2587 /* 2588 * Handle reconfiguration of the mountpoint only without alteration of the 2589 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2590 * to mount(2). 2591 */ 2592 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2593 { 2594 struct super_block *sb = path->mnt->mnt_sb; 2595 struct mount *mnt = real_mount(path->mnt); 2596 int ret; 2597 2598 if (!check_mnt(mnt)) 2599 return -EINVAL; 2600 2601 if (path->dentry != mnt->mnt.mnt_root) 2602 return -EINVAL; 2603 2604 if (!can_change_locked_flags(mnt, mnt_flags)) 2605 return -EPERM; 2606 2607 /* 2608 * We're only checking whether the superblock is read-only not 2609 * changing it, so only take down_read(&sb->s_umount). 2610 */ 2611 down_read(&sb->s_umount); 2612 lock_mount_hash(); 2613 ret = change_mount_ro_state(mnt, mnt_flags); 2614 if (ret == 0) 2615 set_mount_attributes(mnt, mnt_flags); 2616 unlock_mount_hash(); 2617 up_read(&sb->s_umount); 2618 2619 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2620 2621 return ret; 2622 } 2623 2624 /* 2625 * change filesystem flags. dir should be a physical root of filesystem. 2626 * If you've mounted a non-root directory somewhere and want to do remount 2627 * on it - tough luck. 2628 */ 2629 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2630 int mnt_flags, void *data) 2631 { 2632 int err; 2633 struct super_block *sb = path->mnt->mnt_sb; 2634 struct mount *mnt = real_mount(path->mnt); 2635 struct fs_context *fc; 2636 2637 if (!check_mnt(mnt)) 2638 return -EINVAL; 2639 2640 if (path->dentry != path->mnt->mnt_root) 2641 return -EINVAL; 2642 2643 if (!can_change_locked_flags(mnt, mnt_flags)) 2644 return -EPERM; 2645 2646 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2647 if (IS_ERR(fc)) 2648 return PTR_ERR(fc); 2649 2650 fc->oldapi = true; 2651 err = parse_monolithic_mount_data(fc, data); 2652 if (!err) { 2653 down_write(&sb->s_umount); 2654 err = -EPERM; 2655 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2656 err = reconfigure_super(fc); 2657 if (!err) { 2658 lock_mount_hash(); 2659 set_mount_attributes(mnt, mnt_flags); 2660 unlock_mount_hash(); 2661 } 2662 } 2663 up_write(&sb->s_umount); 2664 } 2665 2666 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2667 2668 put_fs_context(fc); 2669 return err; 2670 } 2671 2672 static inline int tree_contains_unbindable(struct mount *mnt) 2673 { 2674 struct mount *p; 2675 for (p = mnt; p; p = next_mnt(p, mnt)) { 2676 if (IS_MNT_UNBINDABLE(p)) 2677 return 1; 2678 } 2679 return 0; 2680 } 2681 2682 /* 2683 * Check that there aren't references to earlier/same mount namespaces in the 2684 * specified subtree. Such references can act as pins for mount namespaces 2685 * that aren't checked by the mount-cycle checking code, thereby allowing 2686 * cycles to be made. 2687 */ 2688 static bool check_for_nsfs_mounts(struct mount *subtree) 2689 { 2690 struct mount *p; 2691 bool ret = false; 2692 2693 lock_mount_hash(); 2694 for (p = subtree; p; p = next_mnt(p, subtree)) 2695 if (mnt_ns_loop(p->mnt.mnt_root)) 2696 goto out; 2697 2698 ret = true; 2699 out: 2700 unlock_mount_hash(); 2701 return ret; 2702 } 2703 2704 static int do_set_group(struct path *from_path, struct path *to_path) 2705 { 2706 struct mount *from, *to; 2707 int err; 2708 2709 from = real_mount(from_path->mnt); 2710 to = real_mount(to_path->mnt); 2711 2712 namespace_lock(); 2713 2714 err = -EINVAL; 2715 /* To and From must be mounted */ 2716 if (!is_mounted(&from->mnt)) 2717 goto out; 2718 if (!is_mounted(&to->mnt)) 2719 goto out; 2720 2721 err = -EPERM; 2722 /* We should be allowed to modify mount namespaces of both mounts */ 2723 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2724 goto out; 2725 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2726 goto out; 2727 2728 err = -EINVAL; 2729 /* To and From paths should be mount roots */ 2730 if (from_path->dentry != from_path->mnt->mnt_root) 2731 goto out; 2732 if (to_path->dentry != to_path->mnt->mnt_root) 2733 goto out; 2734 2735 /* Setting sharing groups is only allowed across same superblock */ 2736 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2737 goto out; 2738 2739 /* From mount root should be wider than To mount root */ 2740 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2741 goto out; 2742 2743 /* From mount should not have locked children in place of To's root */ 2744 if (has_locked_children(from, to->mnt.mnt_root)) 2745 goto out; 2746 2747 /* Setting sharing groups is only allowed on private mounts */ 2748 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2749 goto out; 2750 2751 /* From should not be private */ 2752 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2753 goto out; 2754 2755 if (IS_MNT_SLAVE(from)) { 2756 struct mount *m = from->mnt_master; 2757 2758 list_add(&to->mnt_slave, &m->mnt_slave_list); 2759 to->mnt_master = m; 2760 } 2761 2762 if (IS_MNT_SHARED(from)) { 2763 to->mnt_group_id = from->mnt_group_id; 2764 list_add(&to->mnt_share, &from->mnt_share); 2765 lock_mount_hash(); 2766 set_mnt_shared(to); 2767 unlock_mount_hash(); 2768 } 2769 2770 err = 0; 2771 out: 2772 namespace_unlock(); 2773 return err; 2774 } 2775 2776 static int do_move_mount(struct path *old_path, struct path *new_path) 2777 { 2778 struct mnt_namespace *ns; 2779 struct mount *p; 2780 struct mount *old; 2781 struct mount *parent; 2782 struct mountpoint *mp, *old_mp; 2783 int err; 2784 bool attached; 2785 2786 mp = lock_mount(new_path); 2787 if (IS_ERR(mp)) 2788 return PTR_ERR(mp); 2789 2790 old = real_mount(old_path->mnt); 2791 p = real_mount(new_path->mnt); 2792 parent = old->mnt_parent; 2793 attached = mnt_has_parent(old); 2794 old_mp = old->mnt_mp; 2795 ns = old->mnt_ns; 2796 2797 err = -EINVAL; 2798 /* The mountpoint must be in our namespace. */ 2799 if (!check_mnt(p)) 2800 goto out; 2801 2802 /* The thing moved must be mounted... */ 2803 if (!is_mounted(&old->mnt)) 2804 goto out; 2805 2806 /* ... and either ours or the root of anon namespace */ 2807 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2808 goto out; 2809 2810 if (old->mnt.mnt_flags & MNT_LOCKED) 2811 goto out; 2812 2813 if (old_path->dentry != old_path->mnt->mnt_root) 2814 goto out; 2815 2816 if (d_is_dir(new_path->dentry) != 2817 d_is_dir(old_path->dentry)) 2818 goto out; 2819 /* 2820 * Don't move a mount residing in a shared parent. 2821 */ 2822 if (attached && IS_MNT_SHARED(parent)) 2823 goto out; 2824 /* 2825 * Don't move a mount tree containing unbindable mounts to a destination 2826 * mount which is shared. 2827 */ 2828 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2829 goto out; 2830 err = -ELOOP; 2831 if (!check_for_nsfs_mounts(old)) 2832 goto out; 2833 for (; mnt_has_parent(p); p = p->mnt_parent) 2834 if (p == old) 2835 goto out; 2836 2837 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2838 attached); 2839 if (err) 2840 goto out; 2841 2842 /* if the mount is moved, it should no longer be expire 2843 * automatically */ 2844 list_del_init(&old->mnt_expire); 2845 if (attached) 2846 put_mountpoint(old_mp); 2847 out: 2848 unlock_mount(mp); 2849 if (!err) { 2850 if (attached) 2851 mntput_no_expire(parent); 2852 else 2853 free_mnt_ns(ns); 2854 } 2855 return err; 2856 } 2857 2858 static int do_move_mount_old(struct path *path, const char *old_name) 2859 { 2860 struct path old_path; 2861 int err; 2862 2863 if (!old_name || !*old_name) 2864 return -EINVAL; 2865 2866 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2867 if (err) 2868 return err; 2869 2870 err = do_move_mount(&old_path, path); 2871 path_put(&old_path); 2872 return err; 2873 } 2874 2875 /* 2876 * add a mount into a namespace's mount tree 2877 */ 2878 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2879 struct path *path, int mnt_flags) 2880 { 2881 struct mount *parent = real_mount(path->mnt); 2882 2883 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2884 2885 if (unlikely(!check_mnt(parent))) { 2886 /* that's acceptable only for automounts done in private ns */ 2887 if (!(mnt_flags & MNT_SHRINKABLE)) 2888 return -EINVAL; 2889 /* ... and for those we'd better have mountpoint still alive */ 2890 if (!parent->mnt_ns) 2891 return -EINVAL; 2892 } 2893 2894 /* Refuse the same filesystem on the same mount point */ 2895 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2896 path->mnt->mnt_root == path->dentry) 2897 return -EBUSY; 2898 2899 if (d_is_symlink(newmnt->mnt.mnt_root)) 2900 return -EINVAL; 2901 2902 newmnt->mnt.mnt_flags = mnt_flags; 2903 return graft_tree(newmnt, parent, mp); 2904 } 2905 2906 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2907 2908 /* 2909 * Create a new mount using a superblock configuration and request it 2910 * be added to the namespace tree. 2911 */ 2912 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2913 unsigned int mnt_flags) 2914 { 2915 struct vfsmount *mnt; 2916 struct mountpoint *mp; 2917 struct super_block *sb = fc->root->d_sb; 2918 int error; 2919 2920 error = security_sb_kern_mount(sb); 2921 if (!error && mount_too_revealing(sb, &mnt_flags)) 2922 error = -EPERM; 2923 2924 if (unlikely(error)) { 2925 fc_drop_locked(fc); 2926 return error; 2927 } 2928 2929 up_write(&sb->s_umount); 2930 2931 mnt = vfs_create_mount(fc); 2932 if (IS_ERR(mnt)) 2933 return PTR_ERR(mnt); 2934 2935 mnt_warn_timestamp_expiry(mountpoint, mnt); 2936 2937 mp = lock_mount(mountpoint); 2938 if (IS_ERR(mp)) { 2939 mntput(mnt); 2940 return PTR_ERR(mp); 2941 } 2942 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2943 unlock_mount(mp); 2944 if (error < 0) 2945 mntput(mnt); 2946 return error; 2947 } 2948 2949 /* 2950 * create a new mount for userspace and request it to be added into the 2951 * namespace's tree 2952 */ 2953 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2954 int mnt_flags, const char *name, void *data) 2955 { 2956 struct file_system_type *type; 2957 struct fs_context *fc; 2958 const char *subtype = NULL; 2959 int err = 0; 2960 2961 if (!fstype) 2962 return -EINVAL; 2963 2964 type = get_fs_type(fstype); 2965 if (!type) 2966 return -ENODEV; 2967 2968 if (type->fs_flags & FS_HAS_SUBTYPE) { 2969 subtype = strchr(fstype, '.'); 2970 if (subtype) { 2971 subtype++; 2972 if (!*subtype) { 2973 put_filesystem(type); 2974 return -EINVAL; 2975 } 2976 } 2977 } 2978 2979 fc = fs_context_for_mount(type, sb_flags); 2980 put_filesystem(type); 2981 if (IS_ERR(fc)) 2982 return PTR_ERR(fc); 2983 2984 if (subtype) 2985 err = vfs_parse_fs_string(fc, "subtype", 2986 subtype, strlen(subtype)); 2987 if (!err && name) 2988 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2989 if (!err) 2990 err = parse_monolithic_mount_data(fc, data); 2991 if (!err && !mount_capable(fc)) 2992 err = -EPERM; 2993 if (!err) 2994 err = vfs_get_tree(fc); 2995 if (!err) 2996 err = do_new_mount_fc(fc, path, mnt_flags); 2997 2998 put_fs_context(fc); 2999 return err; 3000 } 3001 3002 int finish_automount(struct vfsmount *m, struct path *path) 3003 { 3004 struct dentry *dentry = path->dentry; 3005 struct mountpoint *mp; 3006 struct mount *mnt; 3007 int err; 3008 3009 if (!m) 3010 return 0; 3011 if (IS_ERR(m)) 3012 return PTR_ERR(m); 3013 3014 mnt = real_mount(m); 3015 /* The new mount record should have at least 2 refs to prevent it being 3016 * expired before we get a chance to add it 3017 */ 3018 BUG_ON(mnt_get_count(mnt) < 2); 3019 3020 if (m->mnt_sb == path->mnt->mnt_sb && 3021 m->mnt_root == dentry) { 3022 err = -ELOOP; 3023 goto discard; 3024 } 3025 3026 /* 3027 * we don't want to use lock_mount() - in this case finding something 3028 * that overmounts our mountpoint to be means "quitely drop what we've 3029 * got", not "try to mount it on top". 3030 */ 3031 inode_lock(dentry->d_inode); 3032 namespace_lock(); 3033 if (unlikely(cant_mount(dentry))) { 3034 err = -ENOENT; 3035 goto discard_locked; 3036 } 3037 rcu_read_lock(); 3038 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3039 rcu_read_unlock(); 3040 err = 0; 3041 goto discard_locked; 3042 } 3043 rcu_read_unlock(); 3044 mp = get_mountpoint(dentry); 3045 if (IS_ERR(mp)) { 3046 err = PTR_ERR(mp); 3047 goto discard_locked; 3048 } 3049 3050 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3051 unlock_mount(mp); 3052 if (unlikely(err)) 3053 goto discard; 3054 mntput(m); 3055 return 0; 3056 3057 discard_locked: 3058 namespace_unlock(); 3059 inode_unlock(dentry->d_inode); 3060 discard: 3061 /* remove m from any expiration list it may be on */ 3062 if (!list_empty(&mnt->mnt_expire)) { 3063 namespace_lock(); 3064 list_del_init(&mnt->mnt_expire); 3065 namespace_unlock(); 3066 } 3067 mntput(m); 3068 mntput(m); 3069 return err; 3070 } 3071 3072 /** 3073 * mnt_set_expiry - Put a mount on an expiration list 3074 * @mnt: The mount to list. 3075 * @expiry_list: The list to add the mount to. 3076 */ 3077 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3078 { 3079 namespace_lock(); 3080 3081 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3082 3083 namespace_unlock(); 3084 } 3085 EXPORT_SYMBOL(mnt_set_expiry); 3086 3087 /* 3088 * process a list of expirable mountpoints with the intent of discarding any 3089 * mountpoints that aren't in use and haven't been touched since last we came 3090 * here 3091 */ 3092 void mark_mounts_for_expiry(struct list_head *mounts) 3093 { 3094 struct mount *mnt, *next; 3095 LIST_HEAD(graveyard); 3096 3097 if (list_empty(mounts)) 3098 return; 3099 3100 namespace_lock(); 3101 lock_mount_hash(); 3102 3103 /* extract from the expiration list every vfsmount that matches the 3104 * following criteria: 3105 * - only referenced by its parent vfsmount 3106 * - still marked for expiry (marked on the last call here; marks are 3107 * cleared by mntput()) 3108 */ 3109 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3110 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3111 propagate_mount_busy(mnt, 1)) 3112 continue; 3113 list_move(&mnt->mnt_expire, &graveyard); 3114 } 3115 while (!list_empty(&graveyard)) { 3116 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3117 touch_mnt_namespace(mnt->mnt_ns); 3118 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3119 } 3120 unlock_mount_hash(); 3121 namespace_unlock(); 3122 } 3123 3124 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3125 3126 /* 3127 * Ripoff of 'select_parent()' 3128 * 3129 * search the list of submounts for a given mountpoint, and move any 3130 * shrinkable submounts to the 'graveyard' list. 3131 */ 3132 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3133 { 3134 struct mount *this_parent = parent; 3135 struct list_head *next; 3136 int found = 0; 3137 3138 repeat: 3139 next = this_parent->mnt_mounts.next; 3140 resume: 3141 while (next != &this_parent->mnt_mounts) { 3142 struct list_head *tmp = next; 3143 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3144 3145 next = tmp->next; 3146 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3147 continue; 3148 /* 3149 * Descend a level if the d_mounts list is non-empty. 3150 */ 3151 if (!list_empty(&mnt->mnt_mounts)) { 3152 this_parent = mnt; 3153 goto repeat; 3154 } 3155 3156 if (!propagate_mount_busy(mnt, 1)) { 3157 list_move_tail(&mnt->mnt_expire, graveyard); 3158 found++; 3159 } 3160 } 3161 /* 3162 * All done at this level ... ascend and resume the search 3163 */ 3164 if (this_parent != parent) { 3165 next = this_parent->mnt_child.next; 3166 this_parent = this_parent->mnt_parent; 3167 goto resume; 3168 } 3169 return found; 3170 } 3171 3172 /* 3173 * process a list of expirable mountpoints with the intent of discarding any 3174 * submounts of a specific parent mountpoint 3175 * 3176 * mount_lock must be held for write 3177 */ 3178 static void shrink_submounts(struct mount *mnt) 3179 { 3180 LIST_HEAD(graveyard); 3181 struct mount *m; 3182 3183 /* extract submounts of 'mountpoint' from the expiration list */ 3184 while (select_submounts(mnt, &graveyard)) { 3185 while (!list_empty(&graveyard)) { 3186 m = list_first_entry(&graveyard, struct mount, 3187 mnt_expire); 3188 touch_mnt_namespace(m->mnt_ns); 3189 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3190 } 3191 } 3192 } 3193 3194 static void *copy_mount_options(const void __user * data) 3195 { 3196 char *copy; 3197 unsigned left, offset; 3198 3199 if (!data) 3200 return NULL; 3201 3202 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3203 if (!copy) 3204 return ERR_PTR(-ENOMEM); 3205 3206 left = copy_from_user(copy, data, PAGE_SIZE); 3207 3208 /* 3209 * Not all architectures have an exact copy_from_user(). Resort to 3210 * byte at a time. 3211 */ 3212 offset = PAGE_SIZE - left; 3213 while (left) { 3214 char c; 3215 if (get_user(c, (const char __user *)data + offset)) 3216 break; 3217 copy[offset] = c; 3218 left--; 3219 offset++; 3220 } 3221 3222 if (left == PAGE_SIZE) { 3223 kfree(copy); 3224 return ERR_PTR(-EFAULT); 3225 } 3226 3227 return copy; 3228 } 3229 3230 static char *copy_mount_string(const void __user *data) 3231 { 3232 return data ? strndup_user(data, PATH_MAX) : NULL; 3233 } 3234 3235 /* 3236 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3237 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3238 * 3239 * data is a (void *) that can point to any structure up to 3240 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3241 * information (or be NULL). 3242 * 3243 * Pre-0.97 versions of mount() didn't have a flags word. 3244 * When the flags word was introduced its top half was required 3245 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3246 * Therefore, if this magic number is present, it carries no information 3247 * and must be discarded. 3248 */ 3249 int path_mount(const char *dev_name, struct path *path, 3250 const char *type_page, unsigned long flags, void *data_page) 3251 { 3252 unsigned int mnt_flags = 0, sb_flags; 3253 int ret; 3254 3255 /* Discard magic */ 3256 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3257 flags &= ~MS_MGC_MSK; 3258 3259 /* Basic sanity checks */ 3260 if (data_page) 3261 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3262 3263 if (flags & MS_NOUSER) 3264 return -EINVAL; 3265 3266 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3267 if (ret) 3268 return ret; 3269 if (!may_mount()) 3270 return -EPERM; 3271 if (flags & SB_MANDLOCK) 3272 warn_mandlock(); 3273 3274 /* Default to relatime unless overriden */ 3275 if (!(flags & MS_NOATIME)) 3276 mnt_flags |= MNT_RELATIME; 3277 3278 /* Separate the per-mountpoint flags */ 3279 if (flags & MS_NOSUID) 3280 mnt_flags |= MNT_NOSUID; 3281 if (flags & MS_NODEV) 3282 mnt_flags |= MNT_NODEV; 3283 if (flags & MS_NOEXEC) 3284 mnt_flags |= MNT_NOEXEC; 3285 if (flags & MS_NOATIME) 3286 mnt_flags |= MNT_NOATIME; 3287 if (flags & MS_NODIRATIME) 3288 mnt_flags |= MNT_NODIRATIME; 3289 if (flags & MS_STRICTATIME) 3290 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3291 if (flags & MS_RDONLY) 3292 mnt_flags |= MNT_READONLY; 3293 if (flags & MS_NOSYMFOLLOW) 3294 mnt_flags |= MNT_NOSYMFOLLOW; 3295 3296 /* The default atime for remount is preservation */ 3297 if ((flags & MS_REMOUNT) && 3298 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3299 MS_STRICTATIME)) == 0)) { 3300 mnt_flags &= ~MNT_ATIME_MASK; 3301 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3302 } 3303 3304 sb_flags = flags & (SB_RDONLY | 3305 SB_SYNCHRONOUS | 3306 SB_MANDLOCK | 3307 SB_DIRSYNC | 3308 SB_SILENT | 3309 SB_POSIXACL | 3310 SB_LAZYTIME | 3311 SB_I_VERSION); 3312 3313 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3314 return do_reconfigure_mnt(path, mnt_flags); 3315 if (flags & MS_REMOUNT) 3316 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3317 if (flags & MS_BIND) 3318 return do_loopback(path, dev_name, flags & MS_REC); 3319 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3320 return do_change_type(path, flags); 3321 if (flags & MS_MOVE) 3322 return do_move_mount_old(path, dev_name); 3323 3324 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3325 data_page); 3326 } 3327 3328 long do_mount(const char *dev_name, const char __user *dir_name, 3329 const char *type_page, unsigned long flags, void *data_page) 3330 { 3331 struct path path; 3332 int ret; 3333 3334 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3335 if (ret) 3336 return ret; 3337 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3338 path_put(&path); 3339 return ret; 3340 } 3341 3342 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3343 { 3344 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3345 } 3346 3347 static void dec_mnt_namespaces(struct ucounts *ucounts) 3348 { 3349 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3350 } 3351 3352 static void free_mnt_ns(struct mnt_namespace *ns) 3353 { 3354 if (!is_anon_ns(ns)) 3355 ns_free_inum(&ns->ns); 3356 dec_mnt_namespaces(ns->ucounts); 3357 put_user_ns(ns->user_ns); 3358 kfree(ns); 3359 } 3360 3361 /* 3362 * Assign a sequence number so we can detect when we attempt to bind 3363 * mount a reference to an older mount namespace into the current 3364 * mount namespace, preventing reference counting loops. A 64bit 3365 * number incrementing at 10Ghz will take 12,427 years to wrap which 3366 * is effectively never, so we can ignore the possibility. 3367 */ 3368 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3369 3370 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3371 { 3372 struct mnt_namespace *new_ns; 3373 struct ucounts *ucounts; 3374 int ret; 3375 3376 ucounts = inc_mnt_namespaces(user_ns); 3377 if (!ucounts) 3378 return ERR_PTR(-ENOSPC); 3379 3380 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3381 if (!new_ns) { 3382 dec_mnt_namespaces(ucounts); 3383 return ERR_PTR(-ENOMEM); 3384 } 3385 if (!anon) { 3386 ret = ns_alloc_inum(&new_ns->ns); 3387 if (ret) { 3388 kfree(new_ns); 3389 dec_mnt_namespaces(ucounts); 3390 return ERR_PTR(ret); 3391 } 3392 } 3393 new_ns->ns.ops = &mntns_operations; 3394 if (!anon) 3395 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3396 refcount_set(&new_ns->ns.count, 1); 3397 INIT_LIST_HEAD(&new_ns->list); 3398 init_waitqueue_head(&new_ns->poll); 3399 spin_lock_init(&new_ns->ns_lock); 3400 new_ns->user_ns = get_user_ns(user_ns); 3401 new_ns->ucounts = ucounts; 3402 return new_ns; 3403 } 3404 3405 __latent_entropy 3406 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3407 struct user_namespace *user_ns, struct fs_struct *new_fs) 3408 { 3409 struct mnt_namespace *new_ns; 3410 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3411 struct mount *p, *q; 3412 struct mount *old; 3413 struct mount *new; 3414 int copy_flags; 3415 3416 BUG_ON(!ns); 3417 3418 if (likely(!(flags & CLONE_NEWNS))) { 3419 get_mnt_ns(ns); 3420 return ns; 3421 } 3422 3423 old = ns->root; 3424 3425 new_ns = alloc_mnt_ns(user_ns, false); 3426 if (IS_ERR(new_ns)) 3427 return new_ns; 3428 3429 namespace_lock(); 3430 /* First pass: copy the tree topology */ 3431 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3432 if (user_ns != ns->user_ns) 3433 copy_flags |= CL_SHARED_TO_SLAVE; 3434 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3435 if (IS_ERR(new)) { 3436 namespace_unlock(); 3437 free_mnt_ns(new_ns); 3438 return ERR_CAST(new); 3439 } 3440 if (user_ns != ns->user_ns) { 3441 lock_mount_hash(); 3442 lock_mnt_tree(new); 3443 unlock_mount_hash(); 3444 } 3445 new_ns->root = new; 3446 list_add_tail(&new_ns->list, &new->mnt_list); 3447 3448 /* 3449 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3450 * as belonging to new namespace. We have already acquired a private 3451 * fs_struct, so tsk->fs->lock is not needed. 3452 */ 3453 p = old; 3454 q = new; 3455 while (p) { 3456 q->mnt_ns = new_ns; 3457 new_ns->mounts++; 3458 if (new_fs) { 3459 if (&p->mnt == new_fs->root.mnt) { 3460 new_fs->root.mnt = mntget(&q->mnt); 3461 rootmnt = &p->mnt; 3462 } 3463 if (&p->mnt == new_fs->pwd.mnt) { 3464 new_fs->pwd.mnt = mntget(&q->mnt); 3465 pwdmnt = &p->mnt; 3466 } 3467 } 3468 p = next_mnt(p, old); 3469 q = next_mnt(q, new); 3470 if (!q) 3471 break; 3472 while (p->mnt.mnt_root != q->mnt.mnt_root) 3473 p = next_mnt(p, old); 3474 } 3475 namespace_unlock(); 3476 3477 if (rootmnt) 3478 mntput(rootmnt); 3479 if (pwdmnt) 3480 mntput(pwdmnt); 3481 3482 return new_ns; 3483 } 3484 3485 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3486 { 3487 struct mount *mnt = real_mount(m); 3488 struct mnt_namespace *ns; 3489 struct super_block *s; 3490 struct path path; 3491 int err; 3492 3493 ns = alloc_mnt_ns(&init_user_ns, true); 3494 if (IS_ERR(ns)) { 3495 mntput(m); 3496 return ERR_CAST(ns); 3497 } 3498 mnt->mnt_ns = ns; 3499 ns->root = mnt; 3500 ns->mounts++; 3501 list_add(&mnt->mnt_list, &ns->list); 3502 3503 err = vfs_path_lookup(m->mnt_root, m, 3504 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3505 3506 put_mnt_ns(ns); 3507 3508 if (err) 3509 return ERR_PTR(err); 3510 3511 /* trade a vfsmount reference for active sb one */ 3512 s = path.mnt->mnt_sb; 3513 atomic_inc(&s->s_active); 3514 mntput(path.mnt); 3515 /* lock the sucker */ 3516 down_write(&s->s_umount); 3517 /* ... and return the root of (sub)tree on it */ 3518 return path.dentry; 3519 } 3520 EXPORT_SYMBOL(mount_subtree); 3521 3522 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3523 char __user *, type, unsigned long, flags, void __user *, data) 3524 { 3525 int ret; 3526 char *kernel_type; 3527 char *kernel_dev; 3528 void *options; 3529 3530 kernel_type = copy_mount_string(type); 3531 ret = PTR_ERR(kernel_type); 3532 if (IS_ERR(kernel_type)) 3533 goto out_type; 3534 3535 kernel_dev = copy_mount_string(dev_name); 3536 ret = PTR_ERR(kernel_dev); 3537 if (IS_ERR(kernel_dev)) 3538 goto out_dev; 3539 3540 options = copy_mount_options(data); 3541 ret = PTR_ERR(options); 3542 if (IS_ERR(options)) 3543 goto out_data; 3544 3545 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3546 3547 kfree(options); 3548 out_data: 3549 kfree(kernel_dev); 3550 out_dev: 3551 kfree(kernel_type); 3552 out_type: 3553 return ret; 3554 } 3555 3556 #define FSMOUNT_VALID_FLAGS \ 3557 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3558 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3559 MOUNT_ATTR_NOSYMFOLLOW) 3560 3561 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3562 3563 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3564 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3565 3566 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3567 { 3568 unsigned int mnt_flags = 0; 3569 3570 if (attr_flags & MOUNT_ATTR_RDONLY) 3571 mnt_flags |= MNT_READONLY; 3572 if (attr_flags & MOUNT_ATTR_NOSUID) 3573 mnt_flags |= MNT_NOSUID; 3574 if (attr_flags & MOUNT_ATTR_NODEV) 3575 mnt_flags |= MNT_NODEV; 3576 if (attr_flags & MOUNT_ATTR_NOEXEC) 3577 mnt_flags |= MNT_NOEXEC; 3578 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3579 mnt_flags |= MNT_NODIRATIME; 3580 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3581 mnt_flags |= MNT_NOSYMFOLLOW; 3582 3583 return mnt_flags; 3584 } 3585 3586 /* 3587 * Create a kernel mount representation for a new, prepared superblock 3588 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3589 */ 3590 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3591 unsigned int, attr_flags) 3592 { 3593 struct mnt_namespace *ns; 3594 struct fs_context *fc; 3595 struct file *file; 3596 struct path newmount; 3597 struct mount *mnt; 3598 struct fd f; 3599 unsigned int mnt_flags = 0; 3600 long ret; 3601 3602 if (!may_mount()) 3603 return -EPERM; 3604 3605 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3606 return -EINVAL; 3607 3608 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3609 return -EINVAL; 3610 3611 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3612 3613 switch (attr_flags & MOUNT_ATTR__ATIME) { 3614 case MOUNT_ATTR_STRICTATIME: 3615 break; 3616 case MOUNT_ATTR_NOATIME: 3617 mnt_flags |= MNT_NOATIME; 3618 break; 3619 case MOUNT_ATTR_RELATIME: 3620 mnt_flags |= MNT_RELATIME; 3621 break; 3622 default: 3623 return -EINVAL; 3624 } 3625 3626 f = fdget(fs_fd); 3627 if (!f.file) 3628 return -EBADF; 3629 3630 ret = -EINVAL; 3631 if (f.file->f_op != &fscontext_fops) 3632 goto err_fsfd; 3633 3634 fc = f.file->private_data; 3635 3636 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3637 if (ret < 0) 3638 goto err_fsfd; 3639 3640 /* There must be a valid superblock or we can't mount it */ 3641 ret = -EINVAL; 3642 if (!fc->root) 3643 goto err_unlock; 3644 3645 ret = -EPERM; 3646 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3647 pr_warn("VFS: Mount too revealing\n"); 3648 goto err_unlock; 3649 } 3650 3651 ret = -EBUSY; 3652 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3653 goto err_unlock; 3654 3655 if (fc->sb_flags & SB_MANDLOCK) 3656 warn_mandlock(); 3657 3658 newmount.mnt = vfs_create_mount(fc); 3659 if (IS_ERR(newmount.mnt)) { 3660 ret = PTR_ERR(newmount.mnt); 3661 goto err_unlock; 3662 } 3663 newmount.dentry = dget(fc->root); 3664 newmount.mnt->mnt_flags = mnt_flags; 3665 3666 /* We've done the mount bit - now move the file context into more or 3667 * less the same state as if we'd done an fspick(). We don't want to 3668 * do any memory allocation or anything like that at this point as we 3669 * don't want to have to handle any errors incurred. 3670 */ 3671 vfs_clean_context(fc); 3672 3673 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3674 if (IS_ERR(ns)) { 3675 ret = PTR_ERR(ns); 3676 goto err_path; 3677 } 3678 mnt = real_mount(newmount.mnt); 3679 mnt->mnt_ns = ns; 3680 ns->root = mnt; 3681 ns->mounts = 1; 3682 list_add(&mnt->mnt_list, &ns->list); 3683 mntget(newmount.mnt); 3684 3685 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3686 * it, not just simply put it. 3687 */ 3688 file = dentry_open(&newmount, O_PATH, fc->cred); 3689 if (IS_ERR(file)) { 3690 dissolve_on_fput(newmount.mnt); 3691 ret = PTR_ERR(file); 3692 goto err_path; 3693 } 3694 file->f_mode |= FMODE_NEED_UNMOUNT; 3695 3696 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3697 if (ret >= 0) 3698 fd_install(ret, file); 3699 else 3700 fput(file); 3701 3702 err_path: 3703 path_put(&newmount); 3704 err_unlock: 3705 mutex_unlock(&fc->uapi_mutex); 3706 err_fsfd: 3707 fdput(f); 3708 return ret; 3709 } 3710 3711 /* 3712 * Move a mount from one place to another. In combination with 3713 * fsopen()/fsmount() this is used to install a new mount and in combination 3714 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3715 * a mount subtree. 3716 * 3717 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3718 */ 3719 SYSCALL_DEFINE5(move_mount, 3720 int, from_dfd, const char __user *, from_pathname, 3721 int, to_dfd, const char __user *, to_pathname, 3722 unsigned int, flags) 3723 { 3724 struct path from_path, to_path; 3725 unsigned int lflags; 3726 int ret = 0; 3727 3728 if (!may_mount()) 3729 return -EPERM; 3730 3731 if (flags & ~MOVE_MOUNT__MASK) 3732 return -EINVAL; 3733 3734 /* If someone gives a pathname, they aren't permitted to move 3735 * from an fd that requires unmount as we can't get at the flag 3736 * to clear it afterwards. 3737 */ 3738 lflags = 0; 3739 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3740 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3741 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3742 3743 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3744 if (ret < 0) 3745 return ret; 3746 3747 lflags = 0; 3748 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3749 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3750 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3751 3752 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3753 if (ret < 0) 3754 goto out_from; 3755 3756 ret = security_move_mount(&from_path, &to_path); 3757 if (ret < 0) 3758 goto out_to; 3759 3760 if (flags & MOVE_MOUNT_SET_GROUP) 3761 ret = do_set_group(&from_path, &to_path); 3762 else 3763 ret = do_move_mount(&from_path, &to_path); 3764 3765 out_to: 3766 path_put(&to_path); 3767 out_from: 3768 path_put(&from_path); 3769 return ret; 3770 } 3771 3772 /* 3773 * Return true if path is reachable from root 3774 * 3775 * namespace_sem or mount_lock is held 3776 */ 3777 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3778 const struct path *root) 3779 { 3780 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3781 dentry = mnt->mnt_mountpoint; 3782 mnt = mnt->mnt_parent; 3783 } 3784 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3785 } 3786 3787 bool path_is_under(const struct path *path1, const struct path *path2) 3788 { 3789 bool res; 3790 read_seqlock_excl(&mount_lock); 3791 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3792 read_sequnlock_excl(&mount_lock); 3793 return res; 3794 } 3795 EXPORT_SYMBOL(path_is_under); 3796 3797 /* 3798 * pivot_root Semantics: 3799 * Moves the root file system of the current process to the directory put_old, 3800 * makes new_root as the new root file system of the current process, and sets 3801 * root/cwd of all processes which had them on the current root to new_root. 3802 * 3803 * Restrictions: 3804 * The new_root and put_old must be directories, and must not be on the 3805 * same file system as the current process root. The put_old must be 3806 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3807 * pointed to by put_old must yield the same directory as new_root. No other 3808 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3809 * 3810 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3811 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3812 * in this situation. 3813 * 3814 * Notes: 3815 * - we don't move root/cwd if they are not at the root (reason: if something 3816 * cared enough to change them, it's probably wrong to force them elsewhere) 3817 * - it's okay to pick a root that isn't the root of a file system, e.g. 3818 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3819 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3820 * first. 3821 */ 3822 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3823 const char __user *, put_old) 3824 { 3825 struct path new, old, root; 3826 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3827 struct mountpoint *old_mp, *root_mp; 3828 int error; 3829 3830 if (!may_mount()) 3831 return -EPERM; 3832 3833 error = user_path_at(AT_FDCWD, new_root, 3834 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3835 if (error) 3836 goto out0; 3837 3838 error = user_path_at(AT_FDCWD, put_old, 3839 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3840 if (error) 3841 goto out1; 3842 3843 error = security_sb_pivotroot(&old, &new); 3844 if (error) 3845 goto out2; 3846 3847 get_fs_root(current->fs, &root); 3848 old_mp = lock_mount(&old); 3849 error = PTR_ERR(old_mp); 3850 if (IS_ERR(old_mp)) 3851 goto out3; 3852 3853 error = -EINVAL; 3854 new_mnt = real_mount(new.mnt); 3855 root_mnt = real_mount(root.mnt); 3856 old_mnt = real_mount(old.mnt); 3857 ex_parent = new_mnt->mnt_parent; 3858 root_parent = root_mnt->mnt_parent; 3859 if (IS_MNT_SHARED(old_mnt) || 3860 IS_MNT_SHARED(ex_parent) || 3861 IS_MNT_SHARED(root_parent)) 3862 goto out4; 3863 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3864 goto out4; 3865 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3866 goto out4; 3867 error = -ENOENT; 3868 if (d_unlinked(new.dentry)) 3869 goto out4; 3870 error = -EBUSY; 3871 if (new_mnt == root_mnt || old_mnt == root_mnt) 3872 goto out4; /* loop, on the same file system */ 3873 error = -EINVAL; 3874 if (root.mnt->mnt_root != root.dentry) 3875 goto out4; /* not a mountpoint */ 3876 if (!mnt_has_parent(root_mnt)) 3877 goto out4; /* not attached */ 3878 if (new.mnt->mnt_root != new.dentry) 3879 goto out4; /* not a mountpoint */ 3880 if (!mnt_has_parent(new_mnt)) 3881 goto out4; /* not attached */ 3882 /* make sure we can reach put_old from new_root */ 3883 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3884 goto out4; 3885 /* make certain new is below the root */ 3886 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3887 goto out4; 3888 lock_mount_hash(); 3889 umount_mnt(new_mnt); 3890 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3891 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3892 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3893 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3894 } 3895 /* mount old root on put_old */ 3896 attach_mnt(root_mnt, old_mnt, old_mp); 3897 /* mount new_root on / */ 3898 attach_mnt(new_mnt, root_parent, root_mp); 3899 mnt_add_count(root_parent, -1); 3900 touch_mnt_namespace(current->nsproxy->mnt_ns); 3901 /* A moved mount should not expire automatically */ 3902 list_del_init(&new_mnt->mnt_expire); 3903 put_mountpoint(root_mp); 3904 unlock_mount_hash(); 3905 chroot_fs_refs(&root, &new); 3906 error = 0; 3907 out4: 3908 unlock_mount(old_mp); 3909 if (!error) 3910 mntput_no_expire(ex_parent); 3911 out3: 3912 path_put(&root); 3913 out2: 3914 path_put(&old); 3915 out1: 3916 path_put(&new); 3917 out0: 3918 return error; 3919 } 3920 3921 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3922 { 3923 unsigned int flags = mnt->mnt.mnt_flags; 3924 3925 /* flags to clear */ 3926 flags &= ~kattr->attr_clr; 3927 /* flags to raise */ 3928 flags |= kattr->attr_set; 3929 3930 return flags; 3931 } 3932 3933 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3934 { 3935 struct vfsmount *m = &mnt->mnt; 3936 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 3937 3938 if (!kattr->mnt_userns) 3939 return 0; 3940 3941 /* 3942 * Creating an idmapped mount with the filesystem wide idmapping 3943 * doesn't make sense so block that. We don't allow mushy semantics. 3944 */ 3945 if (kattr->mnt_userns == fs_userns) 3946 return -EINVAL; 3947 3948 /* 3949 * Once a mount has been idmapped we don't allow it to change its 3950 * mapping. It makes things simpler and callers can just create 3951 * another bind-mount they can idmap if they want to. 3952 */ 3953 if (is_idmapped_mnt(m)) 3954 return -EPERM; 3955 3956 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3957 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3958 return -EINVAL; 3959 3960 /* We're not controlling the superblock. */ 3961 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 3962 return -EPERM; 3963 3964 /* Mount has already been visible in the filesystem hierarchy. */ 3965 if (!is_anon_ns(mnt->mnt_ns)) 3966 return -EINVAL; 3967 3968 return 0; 3969 } 3970 3971 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3972 struct mount *mnt, int *err) 3973 { 3974 struct mount *m = mnt, *last = NULL; 3975 3976 if (!is_mounted(&m->mnt)) { 3977 *err = -EINVAL; 3978 goto out; 3979 } 3980 3981 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3982 *err = -EINVAL; 3983 goto out; 3984 } 3985 3986 do { 3987 unsigned int flags; 3988 3989 flags = recalc_flags(kattr, m); 3990 if (!can_change_locked_flags(m, flags)) { 3991 *err = -EPERM; 3992 goto out; 3993 } 3994 3995 *err = can_idmap_mount(kattr, m); 3996 if (*err) 3997 goto out; 3998 3999 last = m; 4000 4001 if ((kattr->attr_set & MNT_READONLY) && 4002 !(m->mnt.mnt_flags & MNT_READONLY)) { 4003 *err = mnt_hold_writers(m); 4004 if (*err) 4005 goto out; 4006 } 4007 } while (kattr->recurse && (m = next_mnt(m, mnt))); 4008 4009 out: 4010 return last; 4011 } 4012 4013 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4014 { 4015 struct user_namespace *mnt_userns, *old_mnt_userns; 4016 4017 if (!kattr->mnt_userns) 4018 return; 4019 4020 /* 4021 * We're the only ones able to change the mount's idmapping. So 4022 * mnt->mnt.mnt_userns is stable and we can retrieve it directly. 4023 */ 4024 old_mnt_userns = mnt->mnt.mnt_userns; 4025 4026 mnt_userns = get_user_ns(kattr->mnt_userns); 4027 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 4028 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 4029 4030 /* 4031 * If this is an idmapped filesystem drop the reference we've taken 4032 * in vfs_create_mount() before. 4033 */ 4034 if (!initial_idmapping(old_mnt_userns)) 4035 put_user_ns(old_mnt_userns); 4036 } 4037 4038 static void mount_setattr_commit(struct mount_kattr *kattr, 4039 struct mount *mnt, struct mount *last, 4040 int err) 4041 { 4042 struct mount *m = mnt; 4043 4044 do { 4045 if (!err) { 4046 unsigned int flags; 4047 4048 do_idmap_mount(kattr, m); 4049 flags = recalc_flags(kattr, m); 4050 WRITE_ONCE(m->mnt.mnt_flags, flags); 4051 } 4052 4053 /* 4054 * We either set MNT_READONLY above so make it visible 4055 * before ~MNT_WRITE_HOLD or we failed to recursively 4056 * apply mount options. 4057 */ 4058 if ((kattr->attr_set & MNT_READONLY) && 4059 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 4060 mnt_unhold_writers(m); 4061 4062 if (!err && kattr->propagation) 4063 change_mnt_propagation(m, kattr->propagation); 4064 4065 /* 4066 * On failure, only cleanup until we found the first mount 4067 * we failed to handle. 4068 */ 4069 if (err && m == last) 4070 break; 4071 } while (kattr->recurse && (m = next_mnt(m, mnt))); 4072 4073 if (!err) 4074 touch_mnt_namespace(mnt->mnt_ns); 4075 } 4076 4077 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4078 { 4079 struct mount *mnt = real_mount(path->mnt), *last = NULL; 4080 int err = 0; 4081 4082 if (path->dentry != mnt->mnt.mnt_root) 4083 return -EINVAL; 4084 4085 if (kattr->propagation) { 4086 /* 4087 * Only take namespace_lock() if we're actually changing 4088 * propagation. 4089 */ 4090 namespace_lock(); 4091 if (kattr->propagation == MS_SHARED) { 4092 err = invent_group_ids(mnt, kattr->recurse); 4093 if (err) { 4094 namespace_unlock(); 4095 return err; 4096 } 4097 } 4098 } 4099 4100 lock_mount_hash(); 4101 4102 /* 4103 * Get the mount tree in a shape where we can change mount 4104 * properties without failure. 4105 */ 4106 last = mount_setattr_prepare(kattr, mnt, &err); 4107 if (last) /* Commit all changes or revert to the old state. */ 4108 mount_setattr_commit(kattr, mnt, last, err); 4109 4110 unlock_mount_hash(); 4111 4112 if (kattr->propagation) { 4113 namespace_unlock(); 4114 if (err) 4115 cleanup_group_ids(mnt, NULL); 4116 } 4117 4118 return err; 4119 } 4120 4121 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4122 struct mount_kattr *kattr, unsigned int flags) 4123 { 4124 int err = 0; 4125 struct ns_common *ns; 4126 struct user_namespace *mnt_userns; 4127 struct file *file; 4128 4129 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4130 return 0; 4131 4132 /* 4133 * We currently do not support clearing an idmapped mount. If this ever 4134 * is a use-case we can revisit this but for now let's keep it simple 4135 * and not allow it. 4136 */ 4137 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4138 return -EINVAL; 4139 4140 if (attr->userns_fd > INT_MAX) 4141 return -EINVAL; 4142 4143 file = fget(attr->userns_fd); 4144 if (!file) 4145 return -EBADF; 4146 4147 if (!proc_ns_file(file)) { 4148 err = -EINVAL; 4149 goto out_fput; 4150 } 4151 4152 ns = get_proc_ns(file_inode(file)); 4153 if (ns->ops->type != CLONE_NEWUSER) { 4154 err = -EINVAL; 4155 goto out_fput; 4156 } 4157 4158 /* 4159 * The initial idmapping cannot be used to create an idmapped 4160 * mount. We use the initial idmapping as an indicator of a mount 4161 * that is not idmapped. It can simply be passed into helpers that 4162 * are aware of idmapped mounts as a convenient shortcut. A user 4163 * can just create a dedicated identity mapping to achieve the same 4164 * result. 4165 */ 4166 mnt_userns = container_of(ns, struct user_namespace, ns); 4167 if (initial_idmapping(mnt_userns)) { 4168 err = -EPERM; 4169 goto out_fput; 4170 } 4171 kattr->mnt_userns = get_user_ns(mnt_userns); 4172 4173 out_fput: 4174 fput(file); 4175 return err; 4176 } 4177 4178 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4179 struct mount_kattr *kattr, unsigned int flags) 4180 { 4181 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4182 4183 if (flags & AT_NO_AUTOMOUNT) 4184 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4185 if (flags & AT_SYMLINK_NOFOLLOW) 4186 lookup_flags &= ~LOOKUP_FOLLOW; 4187 if (flags & AT_EMPTY_PATH) 4188 lookup_flags |= LOOKUP_EMPTY; 4189 4190 *kattr = (struct mount_kattr) { 4191 .lookup_flags = lookup_flags, 4192 .recurse = !!(flags & AT_RECURSIVE), 4193 }; 4194 4195 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4196 return -EINVAL; 4197 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4198 return -EINVAL; 4199 kattr->propagation = attr->propagation; 4200 4201 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4202 return -EINVAL; 4203 4204 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4205 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4206 4207 /* 4208 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4209 * users wanting to transition to a different atime setting cannot 4210 * simply specify the atime setting in @attr_set, but must also 4211 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4212 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4213 * @attr_clr and that @attr_set can't have any atime bits set if 4214 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4215 */ 4216 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4217 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4218 return -EINVAL; 4219 4220 /* 4221 * Clear all previous time settings as they are mutually 4222 * exclusive. 4223 */ 4224 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4225 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4226 case MOUNT_ATTR_RELATIME: 4227 kattr->attr_set |= MNT_RELATIME; 4228 break; 4229 case MOUNT_ATTR_NOATIME: 4230 kattr->attr_set |= MNT_NOATIME; 4231 break; 4232 case MOUNT_ATTR_STRICTATIME: 4233 break; 4234 default: 4235 return -EINVAL; 4236 } 4237 } else { 4238 if (attr->attr_set & MOUNT_ATTR__ATIME) 4239 return -EINVAL; 4240 } 4241 4242 return build_mount_idmapped(attr, usize, kattr, flags); 4243 } 4244 4245 static void finish_mount_kattr(struct mount_kattr *kattr) 4246 { 4247 put_user_ns(kattr->mnt_userns); 4248 kattr->mnt_userns = NULL; 4249 } 4250 4251 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4252 unsigned int, flags, struct mount_attr __user *, uattr, 4253 size_t, usize) 4254 { 4255 int err; 4256 struct path target; 4257 struct mount_attr attr; 4258 struct mount_kattr kattr; 4259 4260 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4261 4262 if (flags & ~(AT_EMPTY_PATH | 4263 AT_RECURSIVE | 4264 AT_SYMLINK_NOFOLLOW | 4265 AT_NO_AUTOMOUNT)) 4266 return -EINVAL; 4267 4268 if (unlikely(usize > PAGE_SIZE)) 4269 return -E2BIG; 4270 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4271 return -EINVAL; 4272 4273 if (!may_mount()) 4274 return -EPERM; 4275 4276 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4277 if (err) 4278 return err; 4279 4280 /* Don't bother walking through the mounts if this is a nop. */ 4281 if (attr.attr_set == 0 && 4282 attr.attr_clr == 0 && 4283 attr.propagation == 0) 4284 return 0; 4285 4286 err = build_mount_kattr(&attr, usize, &kattr, flags); 4287 if (err) 4288 return err; 4289 4290 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4291 if (!err) { 4292 err = do_mount_setattr(&target, &kattr); 4293 path_put(&target); 4294 } 4295 finish_mount_kattr(&kattr); 4296 return err; 4297 } 4298 4299 static void __init init_mount_tree(void) 4300 { 4301 struct vfsmount *mnt; 4302 struct mount *m; 4303 struct mnt_namespace *ns; 4304 struct path root; 4305 4306 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4307 if (IS_ERR(mnt)) 4308 panic("Can't create rootfs"); 4309 4310 ns = alloc_mnt_ns(&init_user_ns, false); 4311 if (IS_ERR(ns)) 4312 panic("Can't allocate initial namespace"); 4313 m = real_mount(mnt); 4314 m->mnt_ns = ns; 4315 ns->root = m; 4316 ns->mounts = 1; 4317 list_add(&m->mnt_list, &ns->list); 4318 init_task.nsproxy->mnt_ns = ns; 4319 get_mnt_ns(ns); 4320 4321 root.mnt = mnt; 4322 root.dentry = mnt->mnt_root; 4323 mnt->mnt_flags |= MNT_LOCKED; 4324 4325 set_fs_pwd(current->fs, &root); 4326 set_fs_root(current->fs, &root); 4327 } 4328 4329 void __init mnt_init(void) 4330 { 4331 int err; 4332 4333 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4334 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4335 4336 mount_hashtable = alloc_large_system_hash("Mount-cache", 4337 sizeof(struct hlist_head), 4338 mhash_entries, 19, 4339 HASH_ZERO, 4340 &m_hash_shift, &m_hash_mask, 0, 0); 4341 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4342 sizeof(struct hlist_head), 4343 mphash_entries, 19, 4344 HASH_ZERO, 4345 &mp_hash_shift, &mp_hash_mask, 0, 0); 4346 4347 if (!mount_hashtable || !mountpoint_hashtable) 4348 panic("Failed to allocate mount hash table\n"); 4349 4350 kernfs_init(); 4351 4352 err = sysfs_init(); 4353 if (err) 4354 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4355 __func__, err); 4356 fs_kobj = kobject_create_and_add("fs", NULL); 4357 if (!fs_kobj) 4358 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4359 shmem_init(); 4360 init_rootfs(); 4361 init_mount_tree(); 4362 } 4363 4364 void put_mnt_ns(struct mnt_namespace *ns) 4365 { 4366 if (!refcount_dec_and_test(&ns->ns.count)) 4367 return; 4368 drop_collected_mounts(&ns->root->mnt); 4369 free_mnt_ns(ns); 4370 } 4371 4372 struct vfsmount *kern_mount(struct file_system_type *type) 4373 { 4374 struct vfsmount *mnt; 4375 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4376 if (!IS_ERR(mnt)) { 4377 /* 4378 * it is a longterm mount, don't release mnt until 4379 * we unmount before file sys is unregistered 4380 */ 4381 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4382 } 4383 return mnt; 4384 } 4385 EXPORT_SYMBOL_GPL(kern_mount); 4386 4387 void kern_unmount(struct vfsmount *mnt) 4388 { 4389 /* release long term mount so mount point can be released */ 4390 if (!IS_ERR_OR_NULL(mnt)) { 4391 real_mount(mnt)->mnt_ns = NULL; 4392 synchronize_rcu(); /* yecchhh... */ 4393 mntput(mnt); 4394 } 4395 } 4396 EXPORT_SYMBOL(kern_unmount); 4397 4398 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4399 { 4400 unsigned int i; 4401 4402 for (i = 0; i < num; i++) 4403 if (mnt[i]) 4404 real_mount(mnt[i])->mnt_ns = NULL; 4405 synchronize_rcu_expedited(); 4406 for (i = 0; i < num; i++) 4407 mntput(mnt[i]); 4408 } 4409 EXPORT_SYMBOL(kern_unmount_array); 4410 4411 bool our_mnt(struct vfsmount *mnt) 4412 { 4413 return check_mnt(real_mount(mnt)); 4414 } 4415 4416 bool current_chrooted(void) 4417 { 4418 /* Does the current process have a non-standard root */ 4419 struct path ns_root; 4420 struct path fs_root; 4421 bool chrooted; 4422 4423 /* Find the namespace root */ 4424 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4425 ns_root.dentry = ns_root.mnt->mnt_root; 4426 path_get(&ns_root); 4427 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4428 ; 4429 4430 get_fs_root(current->fs, &fs_root); 4431 4432 chrooted = !path_equal(&fs_root, &ns_root); 4433 4434 path_put(&fs_root); 4435 path_put(&ns_root); 4436 4437 return chrooted; 4438 } 4439 4440 static bool mnt_already_visible(struct mnt_namespace *ns, 4441 const struct super_block *sb, 4442 int *new_mnt_flags) 4443 { 4444 int new_flags = *new_mnt_flags; 4445 struct mount *mnt; 4446 bool visible = false; 4447 4448 down_read(&namespace_sem); 4449 lock_ns_list(ns); 4450 list_for_each_entry(mnt, &ns->list, mnt_list) { 4451 struct mount *child; 4452 int mnt_flags; 4453 4454 if (mnt_is_cursor(mnt)) 4455 continue; 4456 4457 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4458 continue; 4459 4460 /* This mount is not fully visible if it's root directory 4461 * is not the root directory of the filesystem. 4462 */ 4463 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4464 continue; 4465 4466 /* A local view of the mount flags */ 4467 mnt_flags = mnt->mnt.mnt_flags; 4468 4469 /* Don't miss readonly hidden in the superblock flags */ 4470 if (sb_rdonly(mnt->mnt.mnt_sb)) 4471 mnt_flags |= MNT_LOCK_READONLY; 4472 4473 /* Verify the mount flags are equal to or more permissive 4474 * than the proposed new mount. 4475 */ 4476 if ((mnt_flags & MNT_LOCK_READONLY) && 4477 !(new_flags & MNT_READONLY)) 4478 continue; 4479 if ((mnt_flags & MNT_LOCK_ATIME) && 4480 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4481 continue; 4482 4483 /* This mount is not fully visible if there are any 4484 * locked child mounts that cover anything except for 4485 * empty directories. 4486 */ 4487 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4488 struct inode *inode = child->mnt_mountpoint->d_inode; 4489 /* Only worry about locked mounts */ 4490 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4491 continue; 4492 /* Is the directory permanetly empty? */ 4493 if (!is_empty_dir_inode(inode)) 4494 goto next; 4495 } 4496 /* Preserve the locked attributes */ 4497 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4498 MNT_LOCK_ATIME); 4499 visible = true; 4500 goto found; 4501 next: ; 4502 } 4503 found: 4504 unlock_ns_list(ns); 4505 up_read(&namespace_sem); 4506 return visible; 4507 } 4508 4509 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4510 { 4511 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4512 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4513 unsigned long s_iflags; 4514 4515 if (ns->user_ns == &init_user_ns) 4516 return false; 4517 4518 /* Can this filesystem be too revealing? */ 4519 s_iflags = sb->s_iflags; 4520 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4521 return false; 4522 4523 if ((s_iflags & required_iflags) != required_iflags) { 4524 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4525 required_iflags); 4526 return true; 4527 } 4528 4529 return !mnt_already_visible(ns, sb, new_mnt_flags); 4530 } 4531 4532 bool mnt_may_suid(struct vfsmount *mnt) 4533 { 4534 /* 4535 * Foreign mounts (accessed via fchdir or through /proc 4536 * symlinks) are always treated as if they are nosuid. This 4537 * prevents namespaces from trusting potentially unsafe 4538 * suid/sgid bits, file caps, or security labels that originate 4539 * in other namespaces. 4540 */ 4541 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4542 current_in_userns(mnt->mnt_sb->s_user_ns); 4543 } 4544 4545 static struct ns_common *mntns_get(struct task_struct *task) 4546 { 4547 struct ns_common *ns = NULL; 4548 struct nsproxy *nsproxy; 4549 4550 task_lock(task); 4551 nsproxy = task->nsproxy; 4552 if (nsproxy) { 4553 ns = &nsproxy->mnt_ns->ns; 4554 get_mnt_ns(to_mnt_ns(ns)); 4555 } 4556 task_unlock(task); 4557 4558 return ns; 4559 } 4560 4561 static void mntns_put(struct ns_common *ns) 4562 { 4563 put_mnt_ns(to_mnt_ns(ns)); 4564 } 4565 4566 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4567 { 4568 struct nsproxy *nsproxy = nsset->nsproxy; 4569 struct fs_struct *fs = nsset->fs; 4570 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4571 struct user_namespace *user_ns = nsset->cred->user_ns; 4572 struct path root; 4573 int err; 4574 4575 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4576 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4577 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4578 return -EPERM; 4579 4580 if (is_anon_ns(mnt_ns)) 4581 return -EINVAL; 4582 4583 if (fs->users != 1) 4584 return -EINVAL; 4585 4586 get_mnt_ns(mnt_ns); 4587 old_mnt_ns = nsproxy->mnt_ns; 4588 nsproxy->mnt_ns = mnt_ns; 4589 4590 /* Find the root */ 4591 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4592 "/", LOOKUP_DOWN, &root); 4593 if (err) { 4594 /* revert to old namespace */ 4595 nsproxy->mnt_ns = old_mnt_ns; 4596 put_mnt_ns(mnt_ns); 4597 return err; 4598 } 4599 4600 put_mnt_ns(old_mnt_ns); 4601 4602 /* Update the pwd and root */ 4603 set_fs_pwd(fs, &root); 4604 set_fs_root(fs, &root); 4605 4606 path_put(&root); 4607 return 0; 4608 } 4609 4610 static struct user_namespace *mntns_owner(struct ns_common *ns) 4611 { 4612 return to_mnt_ns(ns)->user_ns; 4613 } 4614 4615 const struct proc_ns_operations mntns_operations = { 4616 .name = "mnt", 4617 .type = CLONE_NEWNS, 4618 .get = mntns_get, 4619 .put = mntns_put, 4620 .install = mntns_install, 4621 .owner = mntns_owner, 4622 }; 4623 4624 #ifdef CONFIG_SYSCTL 4625 static struct ctl_table fs_namespace_sysctls[] = { 4626 { 4627 .procname = "mount-max", 4628 .data = &sysctl_mount_max, 4629 .maxlen = sizeof(unsigned int), 4630 .mode = 0644, 4631 .proc_handler = proc_dointvec_minmax, 4632 .extra1 = SYSCTL_ONE, 4633 }, 4634 { } 4635 }; 4636 4637 static int __init init_fs_namespace_sysctls(void) 4638 { 4639 register_sysctl_init("fs", fs_namespace_sysctls); 4640 return 0; 4641 } 4642 fs_initcall(init_fs_namespace_sysctls); 4643 4644 #endif /* CONFIG_SYSCTL */ 4645