xref: /linux/fs/namespace.c (revision b9ef12eaa0039f383099c7b3a4798c5090679714)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (mnt->mnt_sb->s_readonly_remount)
313 		return 1;
314 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 	smp_rmb();
316 	return __mnt_is_readonly(mnt);
317 }
318 
319 /*
320  * Most r/o & frozen checks on a fs are for operations that take discrete
321  * amounts of time, like a write() or unlink().  We must keep track of when
322  * those operations start (for permission checks) and when they end, so that we
323  * can determine when writes are able to occur to a filesystem.
324  */
325 /**
326  * __mnt_want_write - get write access to a mount without freeze protection
327  * @m: the mount on which to take a write
328  *
329  * This tells the low-level filesystem that a write is about to be performed to
330  * it, and makes sure that writes are allowed (mnt it read-write) before
331  * returning success. This operation does not protect against filesystem being
332  * frozen. When the write operation is finished, __mnt_drop_write() must be
333  * called. This is effectively a refcount.
334  */
335 int __mnt_want_write(struct vfsmount *m)
336 {
337 	struct mount *mnt = real_mount(m);
338 	int ret = 0;
339 
340 	preempt_disable();
341 	mnt_inc_writers(mnt);
342 	/*
343 	 * The store to mnt_inc_writers must be visible before we pass
344 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 	 * incremented count after it has set MNT_WRITE_HOLD.
346 	 */
347 	smp_mb();
348 	might_lock(&mount_lock.lock);
349 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 			cpu_relax();
352 		} else {
353 			/*
354 			 * This prevents priority inversion, if the task
355 			 * setting MNT_WRITE_HOLD got preempted on a remote
356 			 * CPU, and it prevents life lock if the task setting
357 			 * MNT_WRITE_HOLD has a lower priority and is bound to
358 			 * the same CPU as the task that is spinning here.
359 			 */
360 			preempt_enable();
361 			lock_mount_hash();
362 			unlock_mount_hash();
363 			preempt_disable();
364 		}
365 	}
366 	/*
367 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 	 * be set to match its requirements. So we must not load that until
369 	 * MNT_WRITE_HOLD is cleared.
370 	 */
371 	smp_rmb();
372 	if (mnt_is_readonly(m)) {
373 		mnt_dec_writers(mnt);
374 		ret = -EROFS;
375 	}
376 	preempt_enable();
377 
378 	return ret;
379 }
380 
381 /**
382  * mnt_want_write - get write access to a mount
383  * @m: the mount on which to take a write
384  *
385  * This tells the low-level filesystem that a write is about to be performed to
386  * it, and makes sure that writes are allowed (mount is read-write, filesystem
387  * is not frozen) before returning success.  When the write operation is
388  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
389  */
390 int mnt_want_write(struct vfsmount *m)
391 {
392 	int ret;
393 
394 	sb_start_write(m->mnt_sb);
395 	ret = __mnt_want_write(m);
396 	if (ret)
397 		sb_end_write(m->mnt_sb);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write);
401 
402 /**
403  * __mnt_want_write_file - get write access to a file's mount
404  * @file: the file who's mount on which to take a write
405  *
406  * This is like __mnt_want_write, but if the file is already open for writing it
407  * skips incrementing mnt_writers (since the open file already has a reference)
408  * and instead only does the check for emergency r/o remounts.  This must be
409  * paired with __mnt_drop_write_file.
410  */
411 int __mnt_want_write_file(struct file *file)
412 {
413 	if (file->f_mode & FMODE_WRITER) {
414 		/*
415 		 * Superblock may have become readonly while there are still
416 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 		 */
418 		if (__mnt_is_readonly(file->f_path.mnt))
419 			return -EROFS;
420 		return 0;
421 	}
422 	return __mnt_want_write(file->f_path.mnt);
423 }
424 
425 /**
426  * mnt_want_write_file - get write access to a file's mount
427  * @file: the file who's mount on which to take a write
428  *
429  * This is like mnt_want_write, but if the file is already open for writing it
430  * skips incrementing mnt_writers (since the open file already has a reference)
431  * and instead only does the freeze protection and the check for emergency r/o
432  * remounts.  This must be paired with mnt_drop_write_file.
433  */
434 int mnt_want_write_file(struct file *file)
435 {
436 	int ret;
437 
438 	sb_start_write(file_inode(file)->i_sb);
439 	ret = __mnt_want_write_file(file);
440 	if (ret)
441 		sb_end_write(file_inode(file)->i_sb);
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 
446 /**
447  * __mnt_drop_write - give up write access to a mount
448  * @mnt: the mount on which to give up write access
449  *
450  * Tells the low-level filesystem that we are done
451  * performing writes to it.  Must be matched with
452  * __mnt_want_write() call above.
453  */
454 void __mnt_drop_write(struct vfsmount *mnt)
455 {
456 	preempt_disable();
457 	mnt_dec_writers(real_mount(mnt));
458 	preempt_enable();
459 }
460 
461 /**
462  * mnt_drop_write - give up write access to a mount
463  * @mnt: the mount on which to give up write access
464  *
465  * Tells the low-level filesystem that we are done performing writes to it and
466  * also allows filesystem to be frozen again.  Must be matched with
467  * mnt_want_write() call above.
468  */
469 void mnt_drop_write(struct vfsmount *mnt)
470 {
471 	__mnt_drop_write(mnt);
472 	sb_end_write(mnt->mnt_sb);
473 }
474 EXPORT_SYMBOL_GPL(mnt_drop_write);
475 
476 void __mnt_drop_write_file(struct file *file)
477 {
478 	if (!(file->f_mode & FMODE_WRITER))
479 		__mnt_drop_write(file->f_path.mnt);
480 }
481 
482 void mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write_file(file);
485 	sb_end_write(file_inode(file)->i_sb);
486 }
487 EXPORT_SYMBOL(mnt_drop_write_file);
488 
489 /**
490  * mnt_hold_writers - prevent write access to the given mount
491  * @mnt: mnt to prevent write access to
492  *
493  * Prevents write access to @mnt if there are no active writers for @mnt.
494  * This function needs to be called and return successfully before changing
495  * properties of @mnt that need to remain stable for callers with write access
496  * to @mnt.
497  *
498  * After this functions has been called successfully callers must pair it with
499  * a call to mnt_unhold_writers() in order to stop preventing write access to
500  * @mnt.
501  *
502  * Context: This function expects lock_mount_hash() to be held serializing
503  *          setting MNT_WRITE_HOLD.
504  * Return: On success 0 is returned.
505  *	   On error, -EBUSY is returned.
506  */
507 static inline int mnt_hold_writers(struct mount *mnt)
508 {
509 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 	/*
511 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 	 * should be visible before we do.
513 	 */
514 	smp_mb();
515 
516 	/*
517 	 * With writers on hold, if this value is zero, then there are
518 	 * definitely no active writers (although held writers may subsequently
519 	 * increment the count, they'll have to wait, and decrement it after
520 	 * seeing MNT_READONLY).
521 	 *
522 	 * It is OK to have counter incremented on one CPU and decremented on
523 	 * another: the sum will add up correctly. The danger would be when we
524 	 * sum up each counter, if we read a counter before it is incremented,
525 	 * but then read another CPU's count which it has been subsequently
526 	 * decremented from -- we would see more decrements than we should.
527 	 * MNT_WRITE_HOLD protects against this scenario, because
528 	 * mnt_want_write first increments count, then smp_mb, then spins on
529 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 	 * we're counting up here.
531 	 */
532 	if (mnt_get_writers(mnt) > 0)
533 		return -EBUSY;
534 
535 	return 0;
536 }
537 
538 /**
539  * mnt_unhold_writers - stop preventing write access to the given mount
540  * @mnt: mnt to stop preventing write access to
541  *
542  * Stop preventing write access to @mnt allowing callers to gain write access
543  * to @mnt again.
544  *
545  * This function can only be called after a successful call to
546  * mnt_hold_writers().
547  *
548  * Context: This function expects lock_mount_hash() to be held.
549  */
550 static inline void mnt_unhold_writers(struct mount *mnt)
551 {
552 	/*
553 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 	 * that become unheld will see MNT_READONLY.
555 	 */
556 	smp_wmb();
557 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 }
559 
560 static int mnt_make_readonly(struct mount *mnt)
561 {
562 	int ret;
563 
564 	ret = mnt_hold_writers(mnt);
565 	if (!ret)
566 		mnt->mnt.mnt_flags |= MNT_READONLY;
567 	mnt_unhold_writers(mnt);
568 	return ret;
569 }
570 
571 int sb_prepare_remount_readonly(struct super_block *sb)
572 {
573 	struct mount *mnt;
574 	int err = 0;
575 
576 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
577 	if (atomic_long_read(&sb->s_remove_count))
578 		return -EBUSY;
579 
580 	lock_mount_hash();
581 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 			err = mnt_hold_writers(mnt);
584 			if (err)
585 				break;
586 		}
587 	}
588 	if (!err && atomic_long_read(&sb->s_remove_count))
589 		err = -EBUSY;
590 
591 	if (!err) {
592 		sb->s_readonly_remount = 1;
593 		smp_wmb();
594 	}
595 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 	}
599 	unlock_mount_hash();
600 
601 	return err;
602 }
603 
604 static void free_vfsmnt(struct mount *mnt)
605 {
606 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 	kfree_const(mnt->mnt_devname);
608 #ifdef CONFIG_SMP
609 	free_percpu(mnt->mnt_pcp);
610 #endif
611 	kmem_cache_free(mnt_cache, mnt);
612 }
613 
614 static void delayed_free_vfsmnt(struct rcu_head *head)
615 {
616 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 }
618 
619 /* call under rcu_read_lock */
620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 {
622 	struct mount *mnt;
623 	if (read_seqretry(&mount_lock, seq))
624 		return 1;
625 	if (bastard == NULL)
626 		return 0;
627 	mnt = real_mount(bastard);
628 	mnt_add_count(mnt, 1);
629 	smp_mb();			// see mntput_no_expire()
630 	if (likely(!read_seqretry(&mount_lock, seq)))
631 		return 0;
632 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 		mnt_add_count(mnt, -1);
634 		return 1;
635 	}
636 	lock_mount_hash();
637 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 		mnt_add_count(mnt, -1);
639 		unlock_mount_hash();
640 		return 1;
641 	}
642 	unlock_mount_hash();
643 	/* caller will mntput() */
644 	return -1;
645 }
646 
647 /* call under rcu_read_lock */
648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 {
650 	int res = __legitimize_mnt(bastard, seq);
651 	if (likely(!res))
652 		return true;
653 	if (unlikely(res < 0)) {
654 		rcu_read_unlock();
655 		mntput(bastard);
656 		rcu_read_lock();
657 	}
658 	return false;
659 }
660 
661 /*
662  * find the first mount at @dentry on vfsmount @mnt.
663  * call under rcu_read_lock()
664  */
665 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
666 {
667 	struct hlist_head *head = m_hash(mnt, dentry);
668 	struct mount *p;
669 
670 	hlist_for_each_entry_rcu(p, head, mnt_hash)
671 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 			return p;
673 	return NULL;
674 }
675 
676 /*
677  * lookup_mnt - Return the first child mount mounted at path
678  *
679  * "First" means first mounted chronologically.  If you create the
680  * following mounts:
681  *
682  * mount /dev/sda1 /mnt
683  * mount /dev/sda2 /mnt
684  * mount /dev/sda3 /mnt
685  *
686  * Then lookup_mnt() on the base /mnt dentry in the root mount will
687  * return successively the root dentry and vfsmount of /dev/sda1, then
688  * /dev/sda2, then /dev/sda3, then NULL.
689  *
690  * lookup_mnt takes a reference to the found vfsmount.
691  */
692 struct vfsmount *lookup_mnt(const struct path *path)
693 {
694 	struct mount *child_mnt;
695 	struct vfsmount *m;
696 	unsigned seq;
697 
698 	rcu_read_lock();
699 	do {
700 		seq = read_seqbegin(&mount_lock);
701 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 		m = child_mnt ? &child_mnt->mnt : NULL;
703 	} while (!legitimize_mnt(m, seq));
704 	rcu_read_unlock();
705 	return m;
706 }
707 
708 static inline void lock_ns_list(struct mnt_namespace *ns)
709 {
710 	spin_lock(&ns->ns_lock);
711 }
712 
713 static inline void unlock_ns_list(struct mnt_namespace *ns)
714 {
715 	spin_unlock(&ns->ns_lock);
716 }
717 
718 static inline bool mnt_is_cursor(struct mount *mnt)
719 {
720 	return mnt->mnt.mnt_flags & MNT_CURSOR;
721 }
722 
723 /*
724  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725  *                         current mount namespace.
726  *
727  * The common case is dentries are not mountpoints at all and that
728  * test is handled inline.  For the slow case when we are actually
729  * dealing with a mountpoint of some kind, walk through all of the
730  * mounts in the current mount namespace and test to see if the dentry
731  * is a mountpoint.
732  *
733  * The mount_hashtable is not usable in the context because we
734  * need to identify all mounts that may be in the current mount
735  * namespace not just a mount that happens to have some specified
736  * parent mount.
737  */
738 bool __is_local_mountpoint(struct dentry *dentry)
739 {
740 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 	struct mount *mnt;
742 	bool is_covered = false;
743 
744 	down_read(&namespace_sem);
745 	lock_ns_list(ns);
746 	list_for_each_entry(mnt, &ns->list, mnt_list) {
747 		if (mnt_is_cursor(mnt))
748 			continue;
749 		is_covered = (mnt->mnt_mountpoint == dentry);
750 		if (is_covered)
751 			break;
752 	}
753 	unlock_ns_list(ns);
754 	up_read(&namespace_sem);
755 
756 	return is_covered;
757 }
758 
759 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
760 {
761 	struct hlist_head *chain = mp_hash(dentry);
762 	struct mountpoint *mp;
763 
764 	hlist_for_each_entry(mp, chain, m_hash) {
765 		if (mp->m_dentry == dentry) {
766 			mp->m_count++;
767 			return mp;
768 		}
769 	}
770 	return NULL;
771 }
772 
773 static struct mountpoint *get_mountpoint(struct dentry *dentry)
774 {
775 	struct mountpoint *mp, *new = NULL;
776 	int ret;
777 
778 	if (d_mountpoint(dentry)) {
779 		/* might be worth a WARN_ON() */
780 		if (d_unlinked(dentry))
781 			return ERR_PTR(-ENOENT);
782 mountpoint:
783 		read_seqlock_excl(&mount_lock);
784 		mp = lookup_mountpoint(dentry);
785 		read_sequnlock_excl(&mount_lock);
786 		if (mp)
787 			goto done;
788 	}
789 
790 	if (!new)
791 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 	if (!new)
793 		return ERR_PTR(-ENOMEM);
794 
795 
796 	/* Exactly one processes may set d_mounted */
797 	ret = d_set_mounted(dentry);
798 
799 	/* Someone else set d_mounted? */
800 	if (ret == -EBUSY)
801 		goto mountpoint;
802 
803 	/* The dentry is not available as a mountpoint? */
804 	mp = ERR_PTR(ret);
805 	if (ret)
806 		goto done;
807 
808 	/* Add the new mountpoint to the hash table */
809 	read_seqlock_excl(&mount_lock);
810 	new->m_dentry = dget(dentry);
811 	new->m_count = 1;
812 	hlist_add_head(&new->m_hash, mp_hash(dentry));
813 	INIT_HLIST_HEAD(&new->m_list);
814 	read_sequnlock_excl(&mount_lock);
815 
816 	mp = new;
817 	new = NULL;
818 done:
819 	kfree(new);
820 	return mp;
821 }
822 
823 /*
824  * vfsmount lock must be held.  Additionally, the caller is responsible
825  * for serializing calls for given disposal list.
826  */
827 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
828 {
829 	if (!--mp->m_count) {
830 		struct dentry *dentry = mp->m_dentry;
831 		BUG_ON(!hlist_empty(&mp->m_list));
832 		spin_lock(&dentry->d_lock);
833 		dentry->d_flags &= ~DCACHE_MOUNTED;
834 		spin_unlock(&dentry->d_lock);
835 		dput_to_list(dentry, list);
836 		hlist_del(&mp->m_hash);
837 		kfree(mp);
838 	}
839 }
840 
841 /* called with namespace_lock and vfsmount lock */
842 static void put_mountpoint(struct mountpoint *mp)
843 {
844 	__put_mountpoint(mp, &ex_mountpoints);
845 }
846 
847 static inline int check_mnt(struct mount *mnt)
848 {
849 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
850 }
851 
852 /*
853  * vfsmount lock must be held for write
854  */
855 static void touch_mnt_namespace(struct mnt_namespace *ns)
856 {
857 	if (ns) {
858 		ns->event = ++event;
859 		wake_up_interruptible(&ns->poll);
860 	}
861 }
862 
863 /*
864  * vfsmount lock must be held for write
865  */
866 static void __touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 	if (ns && ns->event != event) {
869 		ns->event = event;
870 		wake_up_interruptible(&ns->poll);
871 	}
872 }
873 
874 /*
875  * vfsmount lock must be held for write
876  */
877 static struct mountpoint *unhash_mnt(struct mount *mnt)
878 {
879 	struct mountpoint *mp;
880 	mnt->mnt_parent = mnt;
881 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
882 	list_del_init(&mnt->mnt_child);
883 	hlist_del_init_rcu(&mnt->mnt_hash);
884 	hlist_del_init(&mnt->mnt_mp_list);
885 	mp = mnt->mnt_mp;
886 	mnt->mnt_mp = NULL;
887 	return mp;
888 }
889 
890 /*
891  * vfsmount lock must be held for write
892  */
893 static void umount_mnt(struct mount *mnt)
894 {
895 	put_mountpoint(unhash_mnt(mnt));
896 }
897 
898 /*
899  * vfsmount lock must be held for write
900  */
901 void mnt_set_mountpoint(struct mount *mnt,
902 			struct mountpoint *mp,
903 			struct mount *child_mnt)
904 {
905 	mp->m_count++;
906 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
907 	child_mnt->mnt_mountpoint = mp->m_dentry;
908 	child_mnt->mnt_parent = mnt;
909 	child_mnt->mnt_mp = mp;
910 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
911 }
912 
913 static void __attach_mnt(struct mount *mnt, struct mount *parent)
914 {
915 	hlist_add_head_rcu(&mnt->mnt_hash,
916 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918 }
919 
920 /*
921  * vfsmount lock must be held for write
922  */
923 static void attach_mnt(struct mount *mnt,
924 			struct mount *parent,
925 			struct mountpoint *mp)
926 {
927 	mnt_set_mountpoint(parent, mp, mnt);
928 	__attach_mnt(mnt, parent);
929 }
930 
931 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
932 {
933 	struct mountpoint *old_mp = mnt->mnt_mp;
934 	struct mount *old_parent = mnt->mnt_parent;
935 
936 	list_del_init(&mnt->mnt_child);
937 	hlist_del_init(&mnt->mnt_mp_list);
938 	hlist_del_init_rcu(&mnt->mnt_hash);
939 
940 	attach_mnt(mnt, parent, mp);
941 
942 	put_mountpoint(old_mp);
943 	mnt_add_count(old_parent, -1);
944 }
945 
946 /*
947  * vfsmount lock must be held for write
948  */
949 static void commit_tree(struct mount *mnt)
950 {
951 	struct mount *parent = mnt->mnt_parent;
952 	struct mount *m;
953 	LIST_HEAD(head);
954 	struct mnt_namespace *n = parent->mnt_ns;
955 
956 	BUG_ON(parent == mnt);
957 
958 	list_add_tail(&head, &mnt->mnt_list);
959 	list_for_each_entry(m, &head, mnt_list)
960 		m->mnt_ns = n;
961 
962 	list_splice(&head, n->list.prev);
963 
964 	n->mounts += n->pending_mounts;
965 	n->pending_mounts = 0;
966 
967 	__attach_mnt(mnt, parent);
968 	touch_mnt_namespace(n);
969 }
970 
971 static struct mount *next_mnt(struct mount *p, struct mount *root)
972 {
973 	struct list_head *next = p->mnt_mounts.next;
974 	if (next == &p->mnt_mounts) {
975 		while (1) {
976 			if (p == root)
977 				return NULL;
978 			next = p->mnt_child.next;
979 			if (next != &p->mnt_parent->mnt_mounts)
980 				break;
981 			p = p->mnt_parent;
982 		}
983 	}
984 	return list_entry(next, struct mount, mnt_child);
985 }
986 
987 static struct mount *skip_mnt_tree(struct mount *p)
988 {
989 	struct list_head *prev = p->mnt_mounts.prev;
990 	while (prev != &p->mnt_mounts) {
991 		p = list_entry(prev, struct mount, mnt_child);
992 		prev = p->mnt_mounts.prev;
993 	}
994 	return p;
995 }
996 
997 /**
998  * vfs_create_mount - Create a mount for a configured superblock
999  * @fc: The configuration context with the superblock attached
1000  *
1001  * Create a mount to an already configured superblock.  If necessary, the
1002  * caller should invoke vfs_get_tree() before calling this.
1003  *
1004  * Note that this does not attach the mount to anything.
1005  */
1006 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1007 {
1008 	struct mount *mnt;
1009 
1010 	if (!fc->root)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	mnt = alloc_vfsmnt(fc->source ?: "none");
1014 	if (!mnt)
1015 		return ERR_PTR(-ENOMEM);
1016 
1017 	if (fc->sb_flags & SB_KERNMOUNT)
1018 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1019 
1020 	atomic_inc(&fc->root->d_sb->s_active);
1021 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1022 	mnt->mnt.mnt_root	= dget(fc->root);
1023 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1024 	mnt->mnt_parent		= mnt;
1025 
1026 	lock_mount_hash();
1027 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1028 	unlock_mount_hash();
1029 	return &mnt->mnt;
1030 }
1031 EXPORT_SYMBOL(vfs_create_mount);
1032 
1033 struct vfsmount *fc_mount(struct fs_context *fc)
1034 {
1035 	int err = vfs_get_tree(fc);
1036 	if (!err) {
1037 		up_write(&fc->root->d_sb->s_umount);
1038 		return vfs_create_mount(fc);
1039 	}
1040 	return ERR_PTR(err);
1041 }
1042 EXPORT_SYMBOL(fc_mount);
1043 
1044 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 				int flags, const char *name,
1046 				void *data)
1047 {
1048 	struct fs_context *fc;
1049 	struct vfsmount *mnt;
1050 	int ret = 0;
1051 
1052 	if (!type)
1053 		return ERR_PTR(-EINVAL);
1054 
1055 	fc = fs_context_for_mount(type, flags);
1056 	if (IS_ERR(fc))
1057 		return ERR_CAST(fc);
1058 
1059 	if (name)
1060 		ret = vfs_parse_fs_string(fc, "source",
1061 					  name, strlen(name));
1062 	if (!ret)
1063 		ret = parse_monolithic_mount_data(fc, data);
1064 	if (!ret)
1065 		mnt = fc_mount(fc);
1066 	else
1067 		mnt = ERR_PTR(ret);
1068 
1069 	put_fs_context(fc);
1070 	return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073 
1074 struct vfsmount *
1075 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 	     const char *name, void *data)
1077 {
1078 	/* Until it is worked out how to pass the user namespace
1079 	 * through from the parent mount to the submount don't support
1080 	 * unprivileged mounts with submounts.
1081 	 */
1082 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 		return ERR_PTR(-EPERM);
1084 
1085 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 }
1087 EXPORT_SYMBOL_GPL(vfs_submount);
1088 
1089 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 					int flag)
1091 {
1092 	struct super_block *sb = old->mnt.mnt_sb;
1093 	struct mount *mnt;
1094 	int err;
1095 
1096 	mnt = alloc_vfsmnt(old->mnt_devname);
1097 	if (!mnt)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1101 		mnt->mnt_group_id = 0; /* not a peer of original */
1102 	else
1103 		mnt->mnt_group_id = old->mnt_group_id;
1104 
1105 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 		err = mnt_alloc_group_id(mnt);
1107 		if (err)
1108 			goto out_free;
1109 	}
1110 
1111 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1113 
1114 	atomic_inc(&sb->s_active);
1115 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116 
1117 	mnt->mnt.mnt_sb = sb;
1118 	mnt->mnt.mnt_root = dget(root);
1119 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 	mnt->mnt_parent = mnt;
1121 	lock_mount_hash();
1122 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 	unlock_mount_hash();
1124 
1125 	if ((flag & CL_SLAVE) ||
1126 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 		mnt->mnt_master = old;
1129 		CLEAR_MNT_SHARED(mnt);
1130 	} else if (!(flag & CL_PRIVATE)) {
1131 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 			list_add(&mnt->mnt_share, &old->mnt_share);
1133 		if (IS_MNT_SLAVE(old))
1134 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 		mnt->mnt_master = old->mnt_master;
1136 	} else {
1137 		CLEAR_MNT_SHARED(mnt);
1138 	}
1139 	if (flag & CL_MAKE_SHARED)
1140 		set_mnt_shared(mnt);
1141 
1142 	/* stick the duplicate mount on the same expiry list
1143 	 * as the original if that was on one */
1144 	if (flag & CL_EXPIRE) {
1145 		if (!list_empty(&old->mnt_expire))
1146 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 	}
1148 
1149 	return mnt;
1150 
1151  out_free:
1152 	mnt_free_id(mnt);
1153 	free_vfsmnt(mnt);
1154 	return ERR_PTR(err);
1155 }
1156 
1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 	struct hlist_node *p;
1160 	struct mount *m;
1161 	/*
1162 	 * The warning here probably indicates that somebody messed
1163 	 * up a mnt_want/drop_write() pair.  If this happens, the
1164 	 * filesystem was probably unable to make r/w->r/o transitions.
1165 	 * The locking used to deal with mnt_count decrement provides barriers,
1166 	 * so mnt_get_writers() below is safe.
1167 	 */
1168 	WARN_ON(mnt_get_writers(mnt));
1169 	if (unlikely(mnt->mnt_pins.first))
1170 		mnt_pin_kill(mnt);
1171 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 		hlist_del(&m->mnt_umount);
1173 		mntput(&m->mnt);
1174 	}
1175 	fsnotify_vfsmount_delete(&mnt->mnt);
1176 	dput(mnt->mnt.mnt_root);
1177 	deactivate_super(mnt->mnt.mnt_sb);
1178 	mnt_free_id(mnt);
1179 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180 }
1181 
1182 static void __cleanup_mnt(struct rcu_head *head)
1183 {
1184 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185 }
1186 
1187 static LLIST_HEAD(delayed_mntput_list);
1188 static void delayed_mntput(struct work_struct *unused)
1189 {
1190 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1191 	struct mount *m, *t;
1192 
1193 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 		cleanup_mnt(m);
1195 }
1196 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197 
1198 static void mntput_no_expire(struct mount *mnt)
1199 {
1200 	LIST_HEAD(list);
1201 	int count;
1202 
1203 	rcu_read_lock();
1204 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 		/*
1206 		 * Since we don't do lock_mount_hash() here,
1207 		 * ->mnt_ns can change under us.  However, if it's
1208 		 * non-NULL, then there's a reference that won't
1209 		 * be dropped until after an RCU delay done after
1210 		 * turning ->mnt_ns NULL.  So if we observe it
1211 		 * non-NULL under rcu_read_lock(), the reference
1212 		 * we are dropping is not the final one.
1213 		 */
1214 		mnt_add_count(mnt, -1);
1215 		rcu_read_unlock();
1216 		return;
1217 	}
1218 	lock_mount_hash();
1219 	/*
1220 	 * make sure that if __legitimize_mnt() has not seen us grab
1221 	 * mount_lock, we'll see their refcount increment here.
1222 	 */
1223 	smp_mb();
1224 	mnt_add_count(mnt, -1);
1225 	count = mnt_get_count(mnt);
1226 	if (count != 0) {
1227 		WARN_ON(count < 0);
1228 		rcu_read_unlock();
1229 		unlock_mount_hash();
1230 		return;
1231 	}
1232 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 		rcu_read_unlock();
1234 		unlock_mount_hash();
1235 		return;
1236 	}
1237 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 	rcu_read_unlock();
1239 
1240 	list_del(&mnt->mnt_instance);
1241 
1242 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 		struct mount *p, *tmp;
1244 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1245 			__put_mountpoint(unhash_mnt(p), &list);
1246 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1247 		}
1248 	}
1249 	unlock_mount_hash();
1250 	shrink_dentry_list(&list);
1251 
1252 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 		struct task_struct *task = current;
1254 		if (likely(!(task->flags & PF_KTHREAD))) {
1255 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1256 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1257 				return;
1258 		}
1259 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 			schedule_delayed_work(&delayed_mntput_work, 1);
1261 		return;
1262 	}
1263 	cleanup_mnt(mnt);
1264 }
1265 
1266 void mntput(struct vfsmount *mnt)
1267 {
1268 	if (mnt) {
1269 		struct mount *m = real_mount(mnt);
1270 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1271 		if (unlikely(m->mnt_expiry_mark))
1272 			m->mnt_expiry_mark = 0;
1273 		mntput_no_expire(m);
1274 	}
1275 }
1276 EXPORT_SYMBOL(mntput);
1277 
1278 struct vfsmount *mntget(struct vfsmount *mnt)
1279 {
1280 	if (mnt)
1281 		mnt_add_count(real_mount(mnt), 1);
1282 	return mnt;
1283 }
1284 EXPORT_SYMBOL(mntget);
1285 
1286 /*
1287  * Make a mount point inaccessible to new lookups.
1288  * Because there may still be current users, the caller MUST WAIT
1289  * for an RCU grace period before destroying the mount point.
1290  */
1291 void mnt_make_shortterm(struct vfsmount *mnt)
1292 {
1293 	if (mnt)
1294 		real_mount(mnt)->mnt_ns = NULL;
1295 }
1296 
1297 /**
1298  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1299  * @path: path to check
1300  *
1301  *  d_mountpoint() can only be used reliably to establish if a dentry is
1302  *  not mounted in any namespace and that common case is handled inline.
1303  *  d_mountpoint() isn't aware of the possibility there may be multiple
1304  *  mounts using a given dentry in a different namespace. This function
1305  *  checks if the passed in path is a mountpoint rather than the dentry
1306  *  alone.
1307  */
1308 bool path_is_mountpoint(const struct path *path)
1309 {
1310 	unsigned seq;
1311 	bool res;
1312 
1313 	if (!d_mountpoint(path->dentry))
1314 		return false;
1315 
1316 	rcu_read_lock();
1317 	do {
1318 		seq = read_seqbegin(&mount_lock);
1319 		res = __path_is_mountpoint(path);
1320 	} while (read_seqretry(&mount_lock, seq));
1321 	rcu_read_unlock();
1322 
1323 	return res;
1324 }
1325 EXPORT_SYMBOL(path_is_mountpoint);
1326 
1327 struct vfsmount *mnt_clone_internal(const struct path *path)
1328 {
1329 	struct mount *p;
1330 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 	if (IS_ERR(p))
1332 		return ERR_CAST(p);
1333 	p->mnt.mnt_flags |= MNT_INTERNAL;
1334 	return &p->mnt;
1335 }
1336 
1337 #ifdef CONFIG_PROC_FS
1338 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1339 				   struct list_head *p)
1340 {
1341 	struct mount *mnt, *ret = NULL;
1342 
1343 	lock_ns_list(ns);
1344 	list_for_each_continue(p, &ns->list) {
1345 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1346 		if (!mnt_is_cursor(mnt)) {
1347 			ret = mnt;
1348 			break;
1349 		}
1350 	}
1351 	unlock_ns_list(ns);
1352 
1353 	return ret;
1354 }
1355 
1356 /* iterator; we want it to have access to namespace_sem, thus here... */
1357 static void *m_start(struct seq_file *m, loff_t *pos)
1358 {
1359 	struct proc_mounts *p = m->private;
1360 	struct list_head *prev;
1361 
1362 	down_read(&namespace_sem);
1363 	if (!*pos) {
1364 		prev = &p->ns->list;
1365 	} else {
1366 		prev = &p->cursor.mnt_list;
1367 
1368 		/* Read after we'd reached the end? */
1369 		if (list_empty(prev))
1370 			return NULL;
1371 	}
1372 
1373 	return mnt_list_next(p->ns, prev);
1374 }
1375 
1376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1377 {
1378 	struct proc_mounts *p = m->private;
1379 	struct mount *mnt = v;
1380 
1381 	++*pos;
1382 	return mnt_list_next(p->ns, &mnt->mnt_list);
1383 }
1384 
1385 static void m_stop(struct seq_file *m, void *v)
1386 {
1387 	struct proc_mounts *p = m->private;
1388 	struct mount *mnt = v;
1389 
1390 	lock_ns_list(p->ns);
1391 	if (mnt)
1392 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1393 	else
1394 		list_del_init(&p->cursor.mnt_list);
1395 	unlock_ns_list(p->ns);
1396 	up_read(&namespace_sem);
1397 }
1398 
1399 static int m_show(struct seq_file *m, void *v)
1400 {
1401 	struct proc_mounts *p = m->private;
1402 	struct mount *r = v;
1403 	return p->show(m, &r->mnt);
1404 }
1405 
1406 const struct seq_operations mounts_op = {
1407 	.start	= m_start,
1408 	.next	= m_next,
1409 	.stop	= m_stop,
1410 	.show	= m_show,
1411 };
1412 
1413 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1414 {
1415 	down_read(&namespace_sem);
1416 	lock_ns_list(ns);
1417 	list_del(&cursor->mnt_list);
1418 	unlock_ns_list(ns);
1419 	up_read(&namespace_sem);
1420 }
1421 #endif  /* CONFIG_PROC_FS */
1422 
1423 /**
1424  * may_umount_tree - check if a mount tree is busy
1425  * @m: root of mount tree
1426  *
1427  * This is called to check if a tree of mounts has any
1428  * open files, pwds, chroots or sub mounts that are
1429  * busy.
1430  */
1431 int may_umount_tree(struct vfsmount *m)
1432 {
1433 	struct mount *mnt = real_mount(m);
1434 	int actual_refs = 0;
1435 	int minimum_refs = 0;
1436 	struct mount *p;
1437 	BUG_ON(!m);
1438 
1439 	/* write lock needed for mnt_get_count */
1440 	lock_mount_hash();
1441 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1442 		actual_refs += mnt_get_count(p);
1443 		minimum_refs += 2;
1444 	}
1445 	unlock_mount_hash();
1446 
1447 	if (actual_refs > minimum_refs)
1448 		return 0;
1449 
1450 	return 1;
1451 }
1452 
1453 EXPORT_SYMBOL(may_umount_tree);
1454 
1455 /**
1456  * may_umount - check if a mount point is busy
1457  * @mnt: root of mount
1458  *
1459  * This is called to check if a mount point has any
1460  * open files, pwds, chroots or sub mounts. If the
1461  * mount has sub mounts this will return busy
1462  * regardless of whether the sub mounts are busy.
1463  *
1464  * Doesn't take quota and stuff into account. IOW, in some cases it will
1465  * give false negatives. The main reason why it's here is that we need
1466  * a non-destructive way to look for easily umountable filesystems.
1467  */
1468 int may_umount(struct vfsmount *mnt)
1469 {
1470 	int ret = 1;
1471 	down_read(&namespace_sem);
1472 	lock_mount_hash();
1473 	if (propagate_mount_busy(real_mount(mnt), 2))
1474 		ret = 0;
1475 	unlock_mount_hash();
1476 	up_read(&namespace_sem);
1477 	return ret;
1478 }
1479 
1480 EXPORT_SYMBOL(may_umount);
1481 
1482 static void namespace_unlock(void)
1483 {
1484 	struct hlist_head head;
1485 	struct hlist_node *p;
1486 	struct mount *m;
1487 	LIST_HEAD(list);
1488 
1489 	hlist_move_list(&unmounted, &head);
1490 	list_splice_init(&ex_mountpoints, &list);
1491 
1492 	up_write(&namespace_sem);
1493 
1494 	shrink_dentry_list(&list);
1495 
1496 	if (likely(hlist_empty(&head)))
1497 		return;
1498 
1499 	synchronize_rcu_expedited();
1500 
1501 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1502 		hlist_del(&m->mnt_umount);
1503 		mntput(&m->mnt);
1504 	}
1505 }
1506 
1507 static inline void namespace_lock(void)
1508 {
1509 	down_write(&namespace_sem);
1510 }
1511 
1512 enum umount_tree_flags {
1513 	UMOUNT_SYNC = 1,
1514 	UMOUNT_PROPAGATE = 2,
1515 	UMOUNT_CONNECTED = 4,
1516 };
1517 
1518 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1519 {
1520 	/* Leaving mounts connected is only valid for lazy umounts */
1521 	if (how & UMOUNT_SYNC)
1522 		return true;
1523 
1524 	/* A mount without a parent has nothing to be connected to */
1525 	if (!mnt_has_parent(mnt))
1526 		return true;
1527 
1528 	/* Because the reference counting rules change when mounts are
1529 	 * unmounted and connected, umounted mounts may not be
1530 	 * connected to mounted mounts.
1531 	 */
1532 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 		return true;
1534 
1535 	/* Has it been requested that the mount remain connected? */
1536 	if (how & UMOUNT_CONNECTED)
1537 		return false;
1538 
1539 	/* Is the mount locked such that it needs to remain connected? */
1540 	if (IS_MNT_LOCKED(mnt))
1541 		return false;
1542 
1543 	/* By default disconnect the mount */
1544 	return true;
1545 }
1546 
1547 /*
1548  * mount_lock must be held
1549  * namespace_sem must be held for write
1550  */
1551 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1552 {
1553 	LIST_HEAD(tmp_list);
1554 	struct mount *p;
1555 
1556 	if (how & UMOUNT_PROPAGATE)
1557 		propagate_mount_unlock(mnt);
1558 
1559 	/* Gather the mounts to umount */
1560 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1561 		p->mnt.mnt_flags |= MNT_UMOUNT;
1562 		list_move(&p->mnt_list, &tmp_list);
1563 	}
1564 
1565 	/* Hide the mounts from mnt_mounts */
1566 	list_for_each_entry(p, &tmp_list, mnt_list) {
1567 		list_del_init(&p->mnt_child);
1568 	}
1569 
1570 	/* Add propogated mounts to the tmp_list */
1571 	if (how & UMOUNT_PROPAGATE)
1572 		propagate_umount(&tmp_list);
1573 
1574 	while (!list_empty(&tmp_list)) {
1575 		struct mnt_namespace *ns;
1576 		bool disconnect;
1577 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1578 		list_del_init(&p->mnt_expire);
1579 		list_del_init(&p->mnt_list);
1580 		ns = p->mnt_ns;
1581 		if (ns) {
1582 			ns->mounts--;
1583 			__touch_mnt_namespace(ns);
1584 		}
1585 		p->mnt_ns = NULL;
1586 		if (how & UMOUNT_SYNC)
1587 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1588 
1589 		disconnect = disconnect_mount(p, how);
1590 		if (mnt_has_parent(p)) {
1591 			mnt_add_count(p->mnt_parent, -1);
1592 			if (!disconnect) {
1593 				/* Don't forget about p */
1594 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1595 			} else {
1596 				umount_mnt(p);
1597 			}
1598 		}
1599 		change_mnt_propagation(p, MS_PRIVATE);
1600 		if (disconnect)
1601 			hlist_add_head(&p->mnt_umount, &unmounted);
1602 	}
1603 }
1604 
1605 static void shrink_submounts(struct mount *mnt);
1606 
1607 static int do_umount_root(struct super_block *sb)
1608 {
1609 	int ret = 0;
1610 
1611 	down_write(&sb->s_umount);
1612 	if (!sb_rdonly(sb)) {
1613 		struct fs_context *fc;
1614 
1615 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1616 						SB_RDONLY);
1617 		if (IS_ERR(fc)) {
1618 			ret = PTR_ERR(fc);
1619 		} else {
1620 			ret = parse_monolithic_mount_data(fc, NULL);
1621 			if (!ret)
1622 				ret = reconfigure_super(fc);
1623 			put_fs_context(fc);
1624 		}
1625 	}
1626 	up_write(&sb->s_umount);
1627 	return ret;
1628 }
1629 
1630 static int do_umount(struct mount *mnt, int flags)
1631 {
1632 	struct super_block *sb = mnt->mnt.mnt_sb;
1633 	int retval;
1634 
1635 	retval = security_sb_umount(&mnt->mnt, flags);
1636 	if (retval)
1637 		return retval;
1638 
1639 	/*
1640 	 * Allow userspace to request a mountpoint be expired rather than
1641 	 * unmounting unconditionally. Unmount only happens if:
1642 	 *  (1) the mark is already set (the mark is cleared by mntput())
1643 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1644 	 */
1645 	if (flags & MNT_EXPIRE) {
1646 		if (&mnt->mnt == current->fs->root.mnt ||
1647 		    flags & (MNT_FORCE | MNT_DETACH))
1648 			return -EINVAL;
1649 
1650 		/*
1651 		 * probably don't strictly need the lock here if we examined
1652 		 * all race cases, but it's a slowpath.
1653 		 */
1654 		lock_mount_hash();
1655 		if (mnt_get_count(mnt) != 2) {
1656 			unlock_mount_hash();
1657 			return -EBUSY;
1658 		}
1659 		unlock_mount_hash();
1660 
1661 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1662 			return -EAGAIN;
1663 	}
1664 
1665 	/*
1666 	 * If we may have to abort operations to get out of this
1667 	 * mount, and they will themselves hold resources we must
1668 	 * allow the fs to do things. In the Unix tradition of
1669 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1670 	 * might fail to complete on the first run through as other tasks
1671 	 * must return, and the like. Thats for the mount program to worry
1672 	 * about for the moment.
1673 	 */
1674 
1675 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1676 		sb->s_op->umount_begin(sb);
1677 	}
1678 
1679 	/*
1680 	 * No sense to grab the lock for this test, but test itself looks
1681 	 * somewhat bogus. Suggestions for better replacement?
1682 	 * Ho-hum... In principle, we might treat that as umount + switch
1683 	 * to rootfs. GC would eventually take care of the old vfsmount.
1684 	 * Actually it makes sense, especially if rootfs would contain a
1685 	 * /reboot - static binary that would close all descriptors and
1686 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1687 	 */
1688 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1689 		/*
1690 		 * Special case for "unmounting" root ...
1691 		 * we just try to remount it readonly.
1692 		 */
1693 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1694 			return -EPERM;
1695 		return do_umount_root(sb);
1696 	}
1697 
1698 	namespace_lock();
1699 	lock_mount_hash();
1700 
1701 	/* Recheck MNT_LOCKED with the locks held */
1702 	retval = -EINVAL;
1703 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1704 		goto out;
1705 
1706 	event++;
1707 	if (flags & MNT_DETACH) {
1708 		if (!list_empty(&mnt->mnt_list))
1709 			umount_tree(mnt, UMOUNT_PROPAGATE);
1710 		retval = 0;
1711 	} else {
1712 		shrink_submounts(mnt);
1713 		retval = -EBUSY;
1714 		if (!propagate_mount_busy(mnt, 2)) {
1715 			if (!list_empty(&mnt->mnt_list))
1716 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1717 			retval = 0;
1718 		}
1719 	}
1720 out:
1721 	unlock_mount_hash();
1722 	namespace_unlock();
1723 	return retval;
1724 }
1725 
1726 /*
1727  * __detach_mounts - lazily unmount all mounts on the specified dentry
1728  *
1729  * During unlink, rmdir, and d_drop it is possible to loose the path
1730  * to an existing mountpoint, and wind up leaking the mount.
1731  * detach_mounts allows lazily unmounting those mounts instead of
1732  * leaking them.
1733  *
1734  * The caller may hold dentry->d_inode->i_mutex.
1735  */
1736 void __detach_mounts(struct dentry *dentry)
1737 {
1738 	struct mountpoint *mp;
1739 	struct mount *mnt;
1740 
1741 	namespace_lock();
1742 	lock_mount_hash();
1743 	mp = lookup_mountpoint(dentry);
1744 	if (!mp)
1745 		goto out_unlock;
1746 
1747 	event++;
1748 	while (!hlist_empty(&mp->m_list)) {
1749 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1750 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1751 			umount_mnt(mnt);
1752 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1753 		}
1754 		else umount_tree(mnt, UMOUNT_CONNECTED);
1755 	}
1756 	put_mountpoint(mp);
1757 out_unlock:
1758 	unlock_mount_hash();
1759 	namespace_unlock();
1760 }
1761 
1762 /*
1763  * Is the caller allowed to modify his namespace?
1764  */
1765 bool may_mount(void)
1766 {
1767 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768 }
1769 
1770 static void warn_mandlock(void)
1771 {
1772 	pr_warn_once("=======================================================\n"
1773 		     "WARNING: The mand mount option has been deprecated and\n"
1774 		     "         and is ignored by this kernel. Remove the mand\n"
1775 		     "         option from the mount to silence this warning.\n"
1776 		     "=======================================================\n");
1777 }
1778 
1779 static int can_umount(const struct path *path, int flags)
1780 {
1781 	struct mount *mnt = real_mount(path->mnt);
1782 
1783 	if (!may_mount())
1784 		return -EPERM;
1785 	if (path->dentry != path->mnt->mnt_root)
1786 		return -EINVAL;
1787 	if (!check_mnt(mnt))
1788 		return -EINVAL;
1789 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1790 		return -EINVAL;
1791 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1792 		return -EPERM;
1793 	return 0;
1794 }
1795 
1796 // caller is responsible for flags being sane
1797 int path_umount(struct path *path, int flags)
1798 {
1799 	struct mount *mnt = real_mount(path->mnt);
1800 	int ret;
1801 
1802 	ret = can_umount(path, flags);
1803 	if (!ret)
1804 		ret = do_umount(mnt, flags);
1805 
1806 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1807 	dput(path->dentry);
1808 	mntput_no_expire(mnt);
1809 	return ret;
1810 }
1811 
1812 static int ksys_umount(char __user *name, int flags)
1813 {
1814 	int lookup_flags = LOOKUP_MOUNTPOINT;
1815 	struct path path;
1816 	int ret;
1817 
1818 	// basic validity checks done first
1819 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1820 		return -EINVAL;
1821 
1822 	if (!(flags & UMOUNT_NOFOLLOW))
1823 		lookup_flags |= LOOKUP_FOLLOW;
1824 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1825 	if (ret)
1826 		return ret;
1827 	return path_umount(&path, flags);
1828 }
1829 
1830 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1831 {
1832 	return ksys_umount(name, flags);
1833 }
1834 
1835 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1836 
1837 /*
1838  *	The 2.0 compatible umount. No flags.
1839  */
1840 SYSCALL_DEFINE1(oldumount, char __user *, name)
1841 {
1842 	return ksys_umount(name, 0);
1843 }
1844 
1845 #endif
1846 
1847 static bool is_mnt_ns_file(struct dentry *dentry)
1848 {
1849 	/* Is this a proxy for a mount namespace? */
1850 	return dentry->d_op == &ns_dentry_operations &&
1851 	       dentry->d_fsdata == &mntns_operations;
1852 }
1853 
1854 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1855 {
1856 	return container_of(ns, struct mnt_namespace, ns);
1857 }
1858 
1859 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1860 {
1861 	return &mnt->ns;
1862 }
1863 
1864 static bool mnt_ns_loop(struct dentry *dentry)
1865 {
1866 	/* Could bind mounting the mount namespace inode cause a
1867 	 * mount namespace loop?
1868 	 */
1869 	struct mnt_namespace *mnt_ns;
1870 	if (!is_mnt_ns_file(dentry))
1871 		return false;
1872 
1873 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1874 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1875 }
1876 
1877 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1878 					int flag)
1879 {
1880 	struct mount *res, *p, *q, *r, *parent;
1881 
1882 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1883 		return ERR_PTR(-EINVAL);
1884 
1885 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1886 		return ERR_PTR(-EINVAL);
1887 
1888 	res = q = clone_mnt(mnt, dentry, flag);
1889 	if (IS_ERR(q))
1890 		return q;
1891 
1892 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1893 
1894 	p = mnt;
1895 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1896 		struct mount *s;
1897 		if (!is_subdir(r->mnt_mountpoint, dentry))
1898 			continue;
1899 
1900 		for (s = r; s; s = next_mnt(s, r)) {
1901 			if (!(flag & CL_COPY_UNBINDABLE) &&
1902 			    IS_MNT_UNBINDABLE(s)) {
1903 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1904 					/* Both unbindable and locked. */
1905 					q = ERR_PTR(-EPERM);
1906 					goto out;
1907 				} else {
1908 					s = skip_mnt_tree(s);
1909 					continue;
1910 				}
1911 			}
1912 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1913 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1914 				s = skip_mnt_tree(s);
1915 				continue;
1916 			}
1917 			while (p != s->mnt_parent) {
1918 				p = p->mnt_parent;
1919 				q = q->mnt_parent;
1920 			}
1921 			p = s;
1922 			parent = q;
1923 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1924 			if (IS_ERR(q))
1925 				goto out;
1926 			lock_mount_hash();
1927 			list_add_tail(&q->mnt_list, &res->mnt_list);
1928 			attach_mnt(q, parent, p->mnt_mp);
1929 			unlock_mount_hash();
1930 		}
1931 	}
1932 	return res;
1933 out:
1934 	if (res) {
1935 		lock_mount_hash();
1936 		umount_tree(res, UMOUNT_SYNC);
1937 		unlock_mount_hash();
1938 	}
1939 	return q;
1940 }
1941 
1942 /* Caller should check returned pointer for errors */
1943 
1944 struct vfsmount *collect_mounts(const struct path *path)
1945 {
1946 	struct mount *tree;
1947 	namespace_lock();
1948 	if (!check_mnt(real_mount(path->mnt)))
1949 		tree = ERR_PTR(-EINVAL);
1950 	else
1951 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1952 				 CL_COPY_ALL | CL_PRIVATE);
1953 	namespace_unlock();
1954 	if (IS_ERR(tree))
1955 		return ERR_CAST(tree);
1956 	return &tree->mnt;
1957 }
1958 
1959 static void free_mnt_ns(struct mnt_namespace *);
1960 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1961 
1962 void dissolve_on_fput(struct vfsmount *mnt)
1963 {
1964 	struct mnt_namespace *ns;
1965 	namespace_lock();
1966 	lock_mount_hash();
1967 	ns = real_mount(mnt)->mnt_ns;
1968 	if (ns) {
1969 		if (is_anon_ns(ns))
1970 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1971 		else
1972 			ns = NULL;
1973 	}
1974 	unlock_mount_hash();
1975 	namespace_unlock();
1976 	if (ns)
1977 		free_mnt_ns(ns);
1978 }
1979 
1980 void drop_collected_mounts(struct vfsmount *mnt)
1981 {
1982 	namespace_lock();
1983 	lock_mount_hash();
1984 	umount_tree(real_mount(mnt), 0);
1985 	unlock_mount_hash();
1986 	namespace_unlock();
1987 }
1988 
1989 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1990 {
1991 	struct mount *child;
1992 
1993 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1994 		if (!is_subdir(child->mnt_mountpoint, dentry))
1995 			continue;
1996 
1997 		if (child->mnt.mnt_flags & MNT_LOCKED)
1998 			return true;
1999 	}
2000 	return false;
2001 }
2002 
2003 /**
2004  * clone_private_mount - create a private clone of a path
2005  * @path: path to clone
2006  *
2007  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2008  * will not be attached anywhere in the namespace and will be private (i.e.
2009  * changes to the originating mount won't be propagated into this).
2010  *
2011  * Release with mntput().
2012  */
2013 struct vfsmount *clone_private_mount(const struct path *path)
2014 {
2015 	struct mount *old_mnt = real_mount(path->mnt);
2016 	struct mount *new_mnt;
2017 
2018 	down_read(&namespace_sem);
2019 	if (IS_MNT_UNBINDABLE(old_mnt))
2020 		goto invalid;
2021 
2022 	if (!check_mnt(old_mnt))
2023 		goto invalid;
2024 
2025 	if (has_locked_children(old_mnt, path->dentry))
2026 		goto invalid;
2027 
2028 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2029 	up_read(&namespace_sem);
2030 
2031 	if (IS_ERR(new_mnt))
2032 		return ERR_CAST(new_mnt);
2033 
2034 	/* Longterm mount to be removed by kern_unmount*() */
2035 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2036 
2037 	return &new_mnt->mnt;
2038 
2039 invalid:
2040 	up_read(&namespace_sem);
2041 	return ERR_PTR(-EINVAL);
2042 }
2043 EXPORT_SYMBOL_GPL(clone_private_mount);
2044 
2045 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2046 		   struct vfsmount *root)
2047 {
2048 	struct mount *mnt;
2049 	int res = f(root, arg);
2050 	if (res)
2051 		return res;
2052 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2053 		res = f(&mnt->mnt, arg);
2054 		if (res)
2055 			return res;
2056 	}
2057 	return 0;
2058 }
2059 
2060 static void lock_mnt_tree(struct mount *mnt)
2061 {
2062 	struct mount *p;
2063 
2064 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2065 		int flags = p->mnt.mnt_flags;
2066 		/* Don't allow unprivileged users to change mount flags */
2067 		flags |= MNT_LOCK_ATIME;
2068 
2069 		if (flags & MNT_READONLY)
2070 			flags |= MNT_LOCK_READONLY;
2071 
2072 		if (flags & MNT_NODEV)
2073 			flags |= MNT_LOCK_NODEV;
2074 
2075 		if (flags & MNT_NOSUID)
2076 			flags |= MNT_LOCK_NOSUID;
2077 
2078 		if (flags & MNT_NOEXEC)
2079 			flags |= MNT_LOCK_NOEXEC;
2080 		/* Don't allow unprivileged users to reveal what is under a mount */
2081 		if (list_empty(&p->mnt_expire))
2082 			flags |= MNT_LOCKED;
2083 		p->mnt.mnt_flags = flags;
2084 	}
2085 }
2086 
2087 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2088 {
2089 	struct mount *p;
2090 
2091 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2092 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2093 			mnt_release_group_id(p);
2094 	}
2095 }
2096 
2097 static int invent_group_ids(struct mount *mnt, bool recurse)
2098 {
2099 	struct mount *p;
2100 
2101 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2102 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2103 			int err = mnt_alloc_group_id(p);
2104 			if (err) {
2105 				cleanup_group_ids(mnt, p);
2106 				return err;
2107 			}
2108 		}
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2115 {
2116 	unsigned int max = READ_ONCE(sysctl_mount_max);
2117 	unsigned int mounts = 0;
2118 	struct mount *p;
2119 
2120 	if (ns->mounts >= max)
2121 		return -ENOSPC;
2122 	max -= ns->mounts;
2123 	if (ns->pending_mounts >= max)
2124 		return -ENOSPC;
2125 	max -= ns->pending_mounts;
2126 
2127 	for (p = mnt; p; p = next_mnt(p, mnt))
2128 		mounts++;
2129 
2130 	if (mounts > max)
2131 		return -ENOSPC;
2132 
2133 	ns->pending_mounts += mounts;
2134 	return 0;
2135 }
2136 
2137 /*
2138  *  @source_mnt : mount tree to be attached
2139  *  @nd         : place the mount tree @source_mnt is attached
2140  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2141  *  		   store the parent mount and mountpoint dentry.
2142  *  		   (done when source_mnt is moved)
2143  *
2144  *  NOTE: in the table below explains the semantics when a source mount
2145  *  of a given type is attached to a destination mount of a given type.
2146  * ---------------------------------------------------------------------------
2147  * |         BIND MOUNT OPERATION                                            |
2148  * |**************************************************************************
2149  * | source-->| shared        |       private  |       slave    | unbindable |
2150  * | dest     |               |                |                |            |
2151  * |   |      |               |                |                |            |
2152  * |   v      |               |                |                |            |
2153  * |**************************************************************************
2154  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2155  * |          |               |                |                |            |
2156  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2157  * ***************************************************************************
2158  * A bind operation clones the source mount and mounts the clone on the
2159  * destination mount.
2160  *
2161  * (++)  the cloned mount is propagated to all the mounts in the propagation
2162  * 	 tree of the destination mount and the cloned mount is added to
2163  * 	 the peer group of the source mount.
2164  * (+)   the cloned mount is created under the destination mount and is marked
2165  *       as shared. The cloned mount is added to the peer group of the source
2166  *       mount.
2167  * (+++) the mount is propagated to all the mounts in the propagation tree
2168  *       of the destination mount and the cloned mount is made slave
2169  *       of the same master as that of the source mount. The cloned mount
2170  *       is marked as 'shared and slave'.
2171  * (*)   the cloned mount is made a slave of the same master as that of the
2172  * 	 source mount.
2173  *
2174  * ---------------------------------------------------------------------------
2175  * |         		MOVE MOUNT OPERATION                                 |
2176  * |**************************************************************************
2177  * | source-->| shared        |       private  |       slave    | unbindable |
2178  * | dest     |               |                |                |            |
2179  * |   |      |               |                |                |            |
2180  * |   v      |               |                |                |            |
2181  * |**************************************************************************
2182  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2183  * |          |               |                |                |            |
2184  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2185  * ***************************************************************************
2186  *
2187  * (+)  the mount is moved to the destination. And is then propagated to
2188  * 	all the mounts in the propagation tree of the destination mount.
2189  * (+*)  the mount is moved to the destination.
2190  * (+++)  the mount is moved to the destination and is then propagated to
2191  * 	all the mounts belonging to the destination mount's propagation tree.
2192  * 	the mount is marked as 'shared and slave'.
2193  * (*)	the mount continues to be a slave at the new location.
2194  *
2195  * if the source mount is a tree, the operations explained above is
2196  * applied to each mount in the tree.
2197  * Must be called without spinlocks held, since this function can sleep
2198  * in allocations.
2199  */
2200 static int attach_recursive_mnt(struct mount *source_mnt,
2201 			struct mount *dest_mnt,
2202 			struct mountpoint *dest_mp,
2203 			bool moving)
2204 {
2205 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2206 	HLIST_HEAD(tree_list);
2207 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2208 	struct mountpoint *smp;
2209 	struct mount *child, *p;
2210 	struct hlist_node *n;
2211 	int err;
2212 
2213 	/* Preallocate a mountpoint in case the new mounts need
2214 	 * to be tucked under other mounts.
2215 	 */
2216 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2217 	if (IS_ERR(smp))
2218 		return PTR_ERR(smp);
2219 
2220 	/* Is there space to add these mounts to the mount namespace? */
2221 	if (!moving) {
2222 		err = count_mounts(ns, source_mnt);
2223 		if (err)
2224 			goto out;
2225 	}
2226 
2227 	if (IS_MNT_SHARED(dest_mnt)) {
2228 		err = invent_group_ids(source_mnt, true);
2229 		if (err)
2230 			goto out;
2231 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2232 		lock_mount_hash();
2233 		if (err)
2234 			goto out_cleanup_ids;
2235 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2236 			set_mnt_shared(p);
2237 	} else {
2238 		lock_mount_hash();
2239 	}
2240 	if (moving) {
2241 		unhash_mnt(source_mnt);
2242 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2243 		touch_mnt_namespace(source_mnt->mnt_ns);
2244 	} else {
2245 		if (source_mnt->mnt_ns) {
2246 			/* move from anon - the caller will destroy */
2247 			list_del_init(&source_mnt->mnt_ns->list);
2248 		}
2249 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2250 		commit_tree(source_mnt);
2251 	}
2252 
2253 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2254 		struct mount *q;
2255 		hlist_del_init(&child->mnt_hash);
2256 		q = __lookup_mnt(&child->mnt_parent->mnt,
2257 				 child->mnt_mountpoint);
2258 		if (q)
2259 			mnt_change_mountpoint(child, smp, q);
2260 		/* Notice when we are propagating across user namespaces */
2261 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2262 			lock_mnt_tree(child);
2263 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2264 		commit_tree(child);
2265 	}
2266 	put_mountpoint(smp);
2267 	unlock_mount_hash();
2268 
2269 	return 0;
2270 
2271  out_cleanup_ids:
2272 	while (!hlist_empty(&tree_list)) {
2273 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2274 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2275 		umount_tree(child, UMOUNT_SYNC);
2276 	}
2277 	unlock_mount_hash();
2278 	cleanup_group_ids(source_mnt, NULL);
2279  out:
2280 	ns->pending_mounts = 0;
2281 
2282 	read_seqlock_excl(&mount_lock);
2283 	put_mountpoint(smp);
2284 	read_sequnlock_excl(&mount_lock);
2285 
2286 	return err;
2287 }
2288 
2289 static struct mountpoint *lock_mount(struct path *path)
2290 {
2291 	struct vfsmount *mnt;
2292 	struct dentry *dentry = path->dentry;
2293 retry:
2294 	inode_lock(dentry->d_inode);
2295 	if (unlikely(cant_mount(dentry))) {
2296 		inode_unlock(dentry->d_inode);
2297 		return ERR_PTR(-ENOENT);
2298 	}
2299 	namespace_lock();
2300 	mnt = lookup_mnt(path);
2301 	if (likely(!mnt)) {
2302 		struct mountpoint *mp = get_mountpoint(dentry);
2303 		if (IS_ERR(mp)) {
2304 			namespace_unlock();
2305 			inode_unlock(dentry->d_inode);
2306 			return mp;
2307 		}
2308 		return mp;
2309 	}
2310 	namespace_unlock();
2311 	inode_unlock(path->dentry->d_inode);
2312 	path_put(path);
2313 	path->mnt = mnt;
2314 	dentry = path->dentry = dget(mnt->mnt_root);
2315 	goto retry;
2316 }
2317 
2318 static void unlock_mount(struct mountpoint *where)
2319 {
2320 	struct dentry *dentry = where->m_dentry;
2321 
2322 	read_seqlock_excl(&mount_lock);
2323 	put_mountpoint(where);
2324 	read_sequnlock_excl(&mount_lock);
2325 
2326 	namespace_unlock();
2327 	inode_unlock(dentry->d_inode);
2328 }
2329 
2330 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2331 {
2332 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2333 		return -EINVAL;
2334 
2335 	if (d_is_dir(mp->m_dentry) !=
2336 	      d_is_dir(mnt->mnt.mnt_root))
2337 		return -ENOTDIR;
2338 
2339 	return attach_recursive_mnt(mnt, p, mp, false);
2340 }
2341 
2342 /*
2343  * Sanity check the flags to change_mnt_propagation.
2344  */
2345 
2346 static int flags_to_propagation_type(int ms_flags)
2347 {
2348 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2349 
2350 	/* Fail if any non-propagation flags are set */
2351 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2352 		return 0;
2353 	/* Only one propagation flag should be set */
2354 	if (!is_power_of_2(type))
2355 		return 0;
2356 	return type;
2357 }
2358 
2359 /*
2360  * recursively change the type of the mountpoint.
2361  */
2362 static int do_change_type(struct path *path, int ms_flags)
2363 {
2364 	struct mount *m;
2365 	struct mount *mnt = real_mount(path->mnt);
2366 	int recurse = ms_flags & MS_REC;
2367 	int type;
2368 	int err = 0;
2369 
2370 	if (path->dentry != path->mnt->mnt_root)
2371 		return -EINVAL;
2372 
2373 	type = flags_to_propagation_type(ms_flags);
2374 	if (!type)
2375 		return -EINVAL;
2376 
2377 	namespace_lock();
2378 	if (type == MS_SHARED) {
2379 		err = invent_group_ids(mnt, recurse);
2380 		if (err)
2381 			goto out_unlock;
2382 	}
2383 
2384 	lock_mount_hash();
2385 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2386 		change_mnt_propagation(m, type);
2387 	unlock_mount_hash();
2388 
2389  out_unlock:
2390 	namespace_unlock();
2391 	return err;
2392 }
2393 
2394 static struct mount *__do_loopback(struct path *old_path, int recurse)
2395 {
2396 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2397 
2398 	if (IS_MNT_UNBINDABLE(old))
2399 		return mnt;
2400 
2401 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2402 		return mnt;
2403 
2404 	if (!recurse && has_locked_children(old, old_path->dentry))
2405 		return mnt;
2406 
2407 	if (recurse)
2408 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2409 	else
2410 		mnt = clone_mnt(old, old_path->dentry, 0);
2411 
2412 	if (!IS_ERR(mnt))
2413 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2414 
2415 	return mnt;
2416 }
2417 
2418 /*
2419  * do loopback mount.
2420  */
2421 static int do_loopback(struct path *path, const char *old_name,
2422 				int recurse)
2423 {
2424 	struct path old_path;
2425 	struct mount *mnt = NULL, *parent;
2426 	struct mountpoint *mp;
2427 	int err;
2428 	if (!old_name || !*old_name)
2429 		return -EINVAL;
2430 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2431 	if (err)
2432 		return err;
2433 
2434 	err = -EINVAL;
2435 	if (mnt_ns_loop(old_path.dentry))
2436 		goto out;
2437 
2438 	mp = lock_mount(path);
2439 	if (IS_ERR(mp)) {
2440 		err = PTR_ERR(mp);
2441 		goto out;
2442 	}
2443 
2444 	parent = real_mount(path->mnt);
2445 	if (!check_mnt(parent))
2446 		goto out2;
2447 
2448 	mnt = __do_loopback(&old_path, recurse);
2449 	if (IS_ERR(mnt)) {
2450 		err = PTR_ERR(mnt);
2451 		goto out2;
2452 	}
2453 
2454 	err = graft_tree(mnt, parent, mp);
2455 	if (err) {
2456 		lock_mount_hash();
2457 		umount_tree(mnt, UMOUNT_SYNC);
2458 		unlock_mount_hash();
2459 	}
2460 out2:
2461 	unlock_mount(mp);
2462 out:
2463 	path_put(&old_path);
2464 	return err;
2465 }
2466 
2467 static struct file *open_detached_copy(struct path *path, bool recursive)
2468 {
2469 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2470 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2471 	struct mount *mnt, *p;
2472 	struct file *file;
2473 
2474 	if (IS_ERR(ns))
2475 		return ERR_CAST(ns);
2476 
2477 	namespace_lock();
2478 	mnt = __do_loopback(path, recursive);
2479 	if (IS_ERR(mnt)) {
2480 		namespace_unlock();
2481 		free_mnt_ns(ns);
2482 		return ERR_CAST(mnt);
2483 	}
2484 
2485 	lock_mount_hash();
2486 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2487 		p->mnt_ns = ns;
2488 		ns->mounts++;
2489 	}
2490 	ns->root = mnt;
2491 	list_add_tail(&ns->list, &mnt->mnt_list);
2492 	mntget(&mnt->mnt);
2493 	unlock_mount_hash();
2494 	namespace_unlock();
2495 
2496 	mntput(path->mnt);
2497 	path->mnt = &mnt->mnt;
2498 	file = dentry_open(path, O_PATH, current_cred());
2499 	if (IS_ERR(file))
2500 		dissolve_on_fput(path->mnt);
2501 	else
2502 		file->f_mode |= FMODE_NEED_UNMOUNT;
2503 	return file;
2504 }
2505 
2506 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2507 {
2508 	struct file *file;
2509 	struct path path;
2510 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2511 	bool detached = flags & OPEN_TREE_CLONE;
2512 	int error;
2513 	int fd;
2514 
2515 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2516 
2517 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2518 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2519 		      OPEN_TREE_CLOEXEC))
2520 		return -EINVAL;
2521 
2522 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2523 		return -EINVAL;
2524 
2525 	if (flags & AT_NO_AUTOMOUNT)
2526 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2527 	if (flags & AT_SYMLINK_NOFOLLOW)
2528 		lookup_flags &= ~LOOKUP_FOLLOW;
2529 	if (flags & AT_EMPTY_PATH)
2530 		lookup_flags |= LOOKUP_EMPTY;
2531 
2532 	if (detached && !may_mount())
2533 		return -EPERM;
2534 
2535 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2536 	if (fd < 0)
2537 		return fd;
2538 
2539 	error = user_path_at(dfd, filename, lookup_flags, &path);
2540 	if (unlikely(error)) {
2541 		file = ERR_PTR(error);
2542 	} else {
2543 		if (detached)
2544 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2545 		else
2546 			file = dentry_open(&path, O_PATH, current_cred());
2547 		path_put(&path);
2548 	}
2549 	if (IS_ERR(file)) {
2550 		put_unused_fd(fd);
2551 		return PTR_ERR(file);
2552 	}
2553 	fd_install(fd, file);
2554 	return fd;
2555 }
2556 
2557 /*
2558  * Don't allow locked mount flags to be cleared.
2559  *
2560  * No locks need to be held here while testing the various MNT_LOCK
2561  * flags because those flags can never be cleared once they are set.
2562  */
2563 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2564 {
2565 	unsigned int fl = mnt->mnt.mnt_flags;
2566 
2567 	if ((fl & MNT_LOCK_READONLY) &&
2568 	    !(mnt_flags & MNT_READONLY))
2569 		return false;
2570 
2571 	if ((fl & MNT_LOCK_NODEV) &&
2572 	    !(mnt_flags & MNT_NODEV))
2573 		return false;
2574 
2575 	if ((fl & MNT_LOCK_NOSUID) &&
2576 	    !(mnt_flags & MNT_NOSUID))
2577 		return false;
2578 
2579 	if ((fl & MNT_LOCK_NOEXEC) &&
2580 	    !(mnt_flags & MNT_NOEXEC))
2581 		return false;
2582 
2583 	if ((fl & MNT_LOCK_ATIME) &&
2584 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2585 		return false;
2586 
2587 	return true;
2588 }
2589 
2590 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2591 {
2592 	bool readonly_request = (mnt_flags & MNT_READONLY);
2593 
2594 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2595 		return 0;
2596 
2597 	if (readonly_request)
2598 		return mnt_make_readonly(mnt);
2599 
2600 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2601 	return 0;
2602 }
2603 
2604 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2605 {
2606 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2607 	mnt->mnt.mnt_flags = mnt_flags;
2608 	touch_mnt_namespace(mnt->mnt_ns);
2609 }
2610 
2611 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2612 {
2613 	struct super_block *sb = mnt->mnt_sb;
2614 
2615 	if (!__mnt_is_readonly(mnt) &&
2616 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2617 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2618 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2619 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2620 		struct tm tm;
2621 
2622 		time64_to_tm(sb->s_time_max, 0, &tm);
2623 
2624 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2625 			sb->s_type->name,
2626 			is_mounted(mnt) ? "remounted" : "mounted",
2627 			mntpath,
2628 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2629 
2630 		free_page((unsigned long)buf);
2631 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2632 	}
2633 }
2634 
2635 /*
2636  * Handle reconfiguration of the mountpoint only without alteration of the
2637  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2638  * to mount(2).
2639  */
2640 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2641 {
2642 	struct super_block *sb = path->mnt->mnt_sb;
2643 	struct mount *mnt = real_mount(path->mnt);
2644 	int ret;
2645 
2646 	if (!check_mnt(mnt))
2647 		return -EINVAL;
2648 
2649 	if (path->dentry != mnt->mnt.mnt_root)
2650 		return -EINVAL;
2651 
2652 	if (!can_change_locked_flags(mnt, mnt_flags))
2653 		return -EPERM;
2654 
2655 	/*
2656 	 * We're only checking whether the superblock is read-only not
2657 	 * changing it, so only take down_read(&sb->s_umount).
2658 	 */
2659 	down_read(&sb->s_umount);
2660 	lock_mount_hash();
2661 	ret = change_mount_ro_state(mnt, mnt_flags);
2662 	if (ret == 0)
2663 		set_mount_attributes(mnt, mnt_flags);
2664 	unlock_mount_hash();
2665 	up_read(&sb->s_umount);
2666 
2667 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2668 
2669 	return ret;
2670 }
2671 
2672 /*
2673  * change filesystem flags. dir should be a physical root of filesystem.
2674  * If you've mounted a non-root directory somewhere and want to do remount
2675  * on it - tough luck.
2676  */
2677 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2678 		      int mnt_flags, void *data)
2679 {
2680 	int err;
2681 	struct super_block *sb = path->mnt->mnt_sb;
2682 	struct mount *mnt = real_mount(path->mnt);
2683 	struct fs_context *fc;
2684 
2685 	if (!check_mnt(mnt))
2686 		return -EINVAL;
2687 
2688 	if (path->dentry != path->mnt->mnt_root)
2689 		return -EINVAL;
2690 
2691 	if (!can_change_locked_flags(mnt, mnt_flags))
2692 		return -EPERM;
2693 
2694 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2695 	if (IS_ERR(fc))
2696 		return PTR_ERR(fc);
2697 
2698 	fc->oldapi = true;
2699 	err = parse_monolithic_mount_data(fc, data);
2700 	if (!err) {
2701 		down_write(&sb->s_umount);
2702 		err = -EPERM;
2703 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2704 			err = reconfigure_super(fc);
2705 			if (!err) {
2706 				lock_mount_hash();
2707 				set_mount_attributes(mnt, mnt_flags);
2708 				unlock_mount_hash();
2709 			}
2710 		}
2711 		up_write(&sb->s_umount);
2712 	}
2713 
2714 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2715 
2716 	put_fs_context(fc);
2717 	return err;
2718 }
2719 
2720 static inline int tree_contains_unbindable(struct mount *mnt)
2721 {
2722 	struct mount *p;
2723 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2724 		if (IS_MNT_UNBINDABLE(p))
2725 			return 1;
2726 	}
2727 	return 0;
2728 }
2729 
2730 /*
2731  * Check that there aren't references to earlier/same mount namespaces in the
2732  * specified subtree.  Such references can act as pins for mount namespaces
2733  * that aren't checked by the mount-cycle checking code, thereby allowing
2734  * cycles to be made.
2735  */
2736 static bool check_for_nsfs_mounts(struct mount *subtree)
2737 {
2738 	struct mount *p;
2739 	bool ret = false;
2740 
2741 	lock_mount_hash();
2742 	for (p = subtree; p; p = next_mnt(p, subtree))
2743 		if (mnt_ns_loop(p->mnt.mnt_root))
2744 			goto out;
2745 
2746 	ret = true;
2747 out:
2748 	unlock_mount_hash();
2749 	return ret;
2750 }
2751 
2752 static int do_set_group(struct path *from_path, struct path *to_path)
2753 {
2754 	struct mount *from, *to;
2755 	int err;
2756 
2757 	from = real_mount(from_path->mnt);
2758 	to = real_mount(to_path->mnt);
2759 
2760 	namespace_lock();
2761 
2762 	err = -EINVAL;
2763 	/* To and From must be mounted */
2764 	if (!is_mounted(&from->mnt))
2765 		goto out;
2766 	if (!is_mounted(&to->mnt))
2767 		goto out;
2768 
2769 	err = -EPERM;
2770 	/* We should be allowed to modify mount namespaces of both mounts */
2771 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772 		goto out;
2773 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2774 		goto out;
2775 
2776 	err = -EINVAL;
2777 	/* To and From paths should be mount roots */
2778 	if (from_path->dentry != from_path->mnt->mnt_root)
2779 		goto out;
2780 	if (to_path->dentry != to_path->mnt->mnt_root)
2781 		goto out;
2782 
2783 	/* Setting sharing groups is only allowed across same superblock */
2784 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2785 		goto out;
2786 
2787 	/* From mount root should be wider than To mount root */
2788 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2789 		goto out;
2790 
2791 	/* From mount should not have locked children in place of To's root */
2792 	if (has_locked_children(from, to->mnt.mnt_root))
2793 		goto out;
2794 
2795 	/* Setting sharing groups is only allowed on private mounts */
2796 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2797 		goto out;
2798 
2799 	/* From should not be private */
2800 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2801 		goto out;
2802 
2803 	if (IS_MNT_SLAVE(from)) {
2804 		struct mount *m = from->mnt_master;
2805 
2806 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2807 		to->mnt_master = m;
2808 	}
2809 
2810 	if (IS_MNT_SHARED(from)) {
2811 		to->mnt_group_id = from->mnt_group_id;
2812 		list_add(&to->mnt_share, &from->mnt_share);
2813 		lock_mount_hash();
2814 		set_mnt_shared(to);
2815 		unlock_mount_hash();
2816 	}
2817 
2818 	err = 0;
2819 out:
2820 	namespace_unlock();
2821 	return err;
2822 }
2823 
2824 static int do_move_mount(struct path *old_path, struct path *new_path)
2825 {
2826 	struct mnt_namespace *ns;
2827 	struct mount *p;
2828 	struct mount *old;
2829 	struct mount *parent;
2830 	struct mountpoint *mp, *old_mp;
2831 	int err;
2832 	bool attached;
2833 
2834 	mp = lock_mount(new_path);
2835 	if (IS_ERR(mp))
2836 		return PTR_ERR(mp);
2837 
2838 	old = real_mount(old_path->mnt);
2839 	p = real_mount(new_path->mnt);
2840 	parent = old->mnt_parent;
2841 	attached = mnt_has_parent(old);
2842 	old_mp = old->mnt_mp;
2843 	ns = old->mnt_ns;
2844 
2845 	err = -EINVAL;
2846 	/* The mountpoint must be in our namespace. */
2847 	if (!check_mnt(p))
2848 		goto out;
2849 
2850 	/* The thing moved must be mounted... */
2851 	if (!is_mounted(&old->mnt))
2852 		goto out;
2853 
2854 	/* ... and either ours or the root of anon namespace */
2855 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2856 		goto out;
2857 
2858 	if (old->mnt.mnt_flags & MNT_LOCKED)
2859 		goto out;
2860 
2861 	if (old_path->dentry != old_path->mnt->mnt_root)
2862 		goto out;
2863 
2864 	if (d_is_dir(new_path->dentry) !=
2865 	    d_is_dir(old_path->dentry))
2866 		goto out;
2867 	/*
2868 	 * Don't move a mount residing in a shared parent.
2869 	 */
2870 	if (attached && IS_MNT_SHARED(parent))
2871 		goto out;
2872 	/*
2873 	 * Don't move a mount tree containing unbindable mounts to a destination
2874 	 * mount which is shared.
2875 	 */
2876 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2877 		goto out;
2878 	err = -ELOOP;
2879 	if (!check_for_nsfs_mounts(old))
2880 		goto out;
2881 	for (; mnt_has_parent(p); p = p->mnt_parent)
2882 		if (p == old)
2883 			goto out;
2884 
2885 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2886 				   attached);
2887 	if (err)
2888 		goto out;
2889 
2890 	/* if the mount is moved, it should no longer be expire
2891 	 * automatically */
2892 	list_del_init(&old->mnt_expire);
2893 	if (attached)
2894 		put_mountpoint(old_mp);
2895 out:
2896 	unlock_mount(mp);
2897 	if (!err) {
2898 		if (attached)
2899 			mntput_no_expire(parent);
2900 		else
2901 			free_mnt_ns(ns);
2902 	}
2903 	return err;
2904 }
2905 
2906 static int do_move_mount_old(struct path *path, const char *old_name)
2907 {
2908 	struct path old_path;
2909 	int err;
2910 
2911 	if (!old_name || !*old_name)
2912 		return -EINVAL;
2913 
2914 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2915 	if (err)
2916 		return err;
2917 
2918 	err = do_move_mount(&old_path, path);
2919 	path_put(&old_path);
2920 	return err;
2921 }
2922 
2923 /*
2924  * add a mount into a namespace's mount tree
2925  */
2926 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2927 			const struct path *path, int mnt_flags)
2928 {
2929 	struct mount *parent = real_mount(path->mnt);
2930 
2931 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2932 
2933 	if (unlikely(!check_mnt(parent))) {
2934 		/* that's acceptable only for automounts done in private ns */
2935 		if (!(mnt_flags & MNT_SHRINKABLE))
2936 			return -EINVAL;
2937 		/* ... and for those we'd better have mountpoint still alive */
2938 		if (!parent->mnt_ns)
2939 			return -EINVAL;
2940 	}
2941 
2942 	/* Refuse the same filesystem on the same mount point */
2943 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2944 	    path->mnt->mnt_root == path->dentry)
2945 		return -EBUSY;
2946 
2947 	if (d_is_symlink(newmnt->mnt.mnt_root))
2948 		return -EINVAL;
2949 
2950 	newmnt->mnt.mnt_flags = mnt_flags;
2951 	return graft_tree(newmnt, parent, mp);
2952 }
2953 
2954 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2955 
2956 /*
2957  * Create a new mount using a superblock configuration and request it
2958  * be added to the namespace tree.
2959  */
2960 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2961 			   unsigned int mnt_flags)
2962 {
2963 	struct vfsmount *mnt;
2964 	struct mountpoint *mp;
2965 	struct super_block *sb = fc->root->d_sb;
2966 	int error;
2967 
2968 	error = security_sb_kern_mount(sb);
2969 	if (!error && mount_too_revealing(sb, &mnt_flags))
2970 		error = -EPERM;
2971 
2972 	if (unlikely(error)) {
2973 		fc_drop_locked(fc);
2974 		return error;
2975 	}
2976 
2977 	up_write(&sb->s_umount);
2978 
2979 	mnt = vfs_create_mount(fc);
2980 	if (IS_ERR(mnt))
2981 		return PTR_ERR(mnt);
2982 
2983 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2984 
2985 	mp = lock_mount(mountpoint);
2986 	if (IS_ERR(mp)) {
2987 		mntput(mnt);
2988 		return PTR_ERR(mp);
2989 	}
2990 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2991 	unlock_mount(mp);
2992 	if (error < 0)
2993 		mntput(mnt);
2994 	return error;
2995 }
2996 
2997 /*
2998  * create a new mount for userspace and request it to be added into the
2999  * namespace's tree
3000  */
3001 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3002 			int mnt_flags, const char *name, void *data)
3003 {
3004 	struct file_system_type *type;
3005 	struct fs_context *fc;
3006 	const char *subtype = NULL;
3007 	int err = 0;
3008 
3009 	if (!fstype)
3010 		return -EINVAL;
3011 
3012 	type = get_fs_type(fstype);
3013 	if (!type)
3014 		return -ENODEV;
3015 
3016 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3017 		subtype = strchr(fstype, '.');
3018 		if (subtype) {
3019 			subtype++;
3020 			if (!*subtype) {
3021 				put_filesystem(type);
3022 				return -EINVAL;
3023 			}
3024 		}
3025 	}
3026 
3027 	fc = fs_context_for_mount(type, sb_flags);
3028 	put_filesystem(type);
3029 	if (IS_ERR(fc))
3030 		return PTR_ERR(fc);
3031 
3032 	if (subtype)
3033 		err = vfs_parse_fs_string(fc, "subtype",
3034 					  subtype, strlen(subtype));
3035 	if (!err && name)
3036 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3037 	if (!err)
3038 		err = parse_monolithic_mount_data(fc, data);
3039 	if (!err && !mount_capable(fc))
3040 		err = -EPERM;
3041 	if (!err)
3042 		err = vfs_get_tree(fc);
3043 	if (!err)
3044 		err = do_new_mount_fc(fc, path, mnt_flags);
3045 
3046 	put_fs_context(fc);
3047 	return err;
3048 }
3049 
3050 int finish_automount(struct vfsmount *m, const struct path *path)
3051 {
3052 	struct dentry *dentry = path->dentry;
3053 	struct mountpoint *mp;
3054 	struct mount *mnt;
3055 	int err;
3056 
3057 	if (!m)
3058 		return 0;
3059 	if (IS_ERR(m))
3060 		return PTR_ERR(m);
3061 
3062 	mnt = real_mount(m);
3063 	/* The new mount record should have at least 2 refs to prevent it being
3064 	 * expired before we get a chance to add it
3065 	 */
3066 	BUG_ON(mnt_get_count(mnt) < 2);
3067 
3068 	if (m->mnt_sb == path->mnt->mnt_sb &&
3069 	    m->mnt_root == dentry) {
3070 		err = -ELOOP;
3071 		goto discard;
3072 	}
3073 
3074 	/*
3075 	 * we don't want to use lock_mount() - in this case finding something
3076 	 * that overmounts our mountpoint to be means "quitely drop what we've
3077 	 * got", not "try to mount it on top".
3078 	 */
3079 	inode_lock(dentry->d_inode);
3080 	namespace_lock();
3081 	if (unlikely(cant_mount(dentry))) {
3082 		err = -ENOENT;
3083 		goto discard_locked;
3084 	}
3085 	rcu_read_lock();
3086 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3087 		rcu_read_unlock();
3088 		err = 0;
3089 		goto discard_locked;
3090 	}
3091 	rcu_read_unlock();
3092 	mp = get_mountpoint(dentry);
3093 	if (IS_ERR(mp)) {
3094 		err = PTR_ERR(mp);
3095 		goto discard_locked;
3096 	}
3097 
3098 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3099 	unlock_mount(mp);
3100 	if (unlikely(err))
3101 		goto discard;
3102 	mntput(m);
3103 	return 0;
3104 
3105 discard_locked:
3106 	namespace_unlock();
3107 	inode_unlock(dentry->d_inode);
3108 discard:
3109 	/* remove m from any expiration list it may be on */
3110 	if (!list_empty(&mnt->mnt_expire)) {
3111 		namespace_lock();
3112 		list_del_init(&mnt->mnt_expire);
3113 		namespace_unlock();
3114 	}
3115 	mntput(m);
3116 	mntput(m);
3117 	return err;
3118 }
3119 
3120 /**
3121  * mnt_set_expiry - Put a mount on an expiration list
3122  * @mnt: The mount to list.
3123  * @expiry_list: The list to add the mount to.
3124  */
3125 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3126 {
3127 	namespace_lock();
3128 
3129 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3130 
3131 	namespace_unlock();
3132 }
3133 EXPORT_SYMBOL(mnt_set_expiry);
3134 
3135 /*
3136  * process a list of expirable mountpoints with the intent of discarding any
3137  * mountpoints that aren't in use and haven't been touched since last we came
3138  * here
3139  */
3140 void mark_mounts_for_expiry(struct list_head *mounts)
3141 {
3142 	struct mount *mnt, *next;
3143 	LIST_HEAD(graveyard);
3144 
3145 	if (list_empty(mounts))
3146 		return;
3147 
3148 	namespace_lock();
3149 	lock_mount_hash();
3150 
3151 	/* extract from the expiration list every vfsmount that matches the
3152 	 * following criteria:
3153 	 * - only referenced by its parent vfsmount
3154 	 * - still marked for expiry (marked on the last call here; marks are
3155 	 *   cleared by mntput())
3156 	 */
3157 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3158 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3159 			propagate_mount_busy(mnt, 1))
3160 			continue;
3161 		list_move(&mnt->mnt_expire, &graveyard);
3162 	}
3163 	while (!list_empty(&graveyard)) {
3164 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3165 		touch_mnt_namespace(mnt->mnt_ns);
3166 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3167 	}
3168 	unlock_mount_hash();
3169 	namespace_unlock();
3170 }
3171 
3172 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3173 
3174 /*
3175  * Ripoff of 'select_parent()'
3176  *
3177  * search the list of submounts for a given mountpoint, and move any
3178  * shrinkable submounts to the 'graveyard' list.
3179  */
3180 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3181 {
3182 	struct mount *this_parent = parent;
3183 	struct list_head *next;
3184 	int found = 0;
3185 
3186 repeat:
3187 	next = this_parent->mnt_mounts.next;
3188 resume:
3189 	while (next != &this_parent->mnt_mounts) {
3190 		struct list_head *tmp = next;
3191 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3192 
3193 		next = tmp->next;
3194 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3195 			continue;
3196 		/*
3197 		 * Descend a level if the d_mounts list is non-empty.
3198 		 */
3199 		if (!list_empty(&mnt->mnt_mounts)) {
3200 			this_parent = mnt;
3201 			goto repeat;
3202 		}
3203 
3204 		if (!propagate_mount_busy(mnt, 1)) {
3205 			list_move_tail(&mnt->mnt_expire, graveyard);
3206 			found++;
3207 		}
3208 	}
3209 	/*
3210 	 * All done at this level ... ascend and resume the search
3211 	 */
3212 	if (this_parent != parent) {
3213 		next = this_parent->mnt_child.next;
3214 		this_parent = this_parent->mnt_parent;
3215 		goto resume;
3216 	}
3217 	return found;
3218 }
3219 
3220 /*
3221  * process a list of expirable mountpoints with the intent of discarding any
3222  * submounts of a specific parent mountpoint
3223  *
3224  * mount_lock must be held for write
3225  */
3226 static void shrink_submounts(struct mount *mnt)
3227 {
3228 	LIST_HEAD(graveyard);
3229 	struct mount *m;
3230 
3231 	/* extract submounts of 'mountpoint' from the expiration list */
3232 	while (select_submounts(mnt, &graveyard)) {
3233 		while (!list_empty(&graveyard)) {
3234 			m = list_first_entry(&graveyard, struct mount,
3235 						mnt_expire);
3236 			touch_mnt_namespace(m->mnt_ns);
3237 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3238 		}
3239 	}
3240 }
3241 
3242 static void *copy_mount_options(const void __user * data)
3243 {
3244 	char *copy;
3245 	unsigned left, offset;
3246 
3247 	if (!data)
3248 		return NULL;
3249 
3250 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3251 	if (!copy)
3252 		return ERR_PTR(-ENOMEM);
3253 
3254 	left = copy_from_user(copy, data, PAGE_SIZE);
3255 
3256 	/*
3257 	 * Not all architectures have an exact copy_from_user(). Resort to
3258 	 * byte at a time.
3259 	 */
3260 	offset = PAGE_SIZE - left;
3261 	while (left) {
3262 		char c;
3263 		if (get_user(c, (const char __user *)data + offset))
3264 			break;
3265 		copy[offset] = c;
3266 		left--;
3267 		offset++;
3268 	}
3269 
3270 	if (left == PAGE_SIZE) {
3271 		kfree(copy);
3272 		return ERR_PTR(-EFAULT);
3273 	}
3274 
3275 	return copy;
3276 }
3277 
3278 static char *copy_mount_string(const void __user *data)
3279 {
3280 	return data ? strndup_user(data, PATH_MAX) : NULL;
3281 }
3282 
3283 /*
3284  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3285  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3286  *
3287  * data is a (void *) that can point to any structure up to
3288  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3289  * information (or be NULL).
3290  *
3291  * Pre-0.97 versions of mount() didn't have a flags word.
3292  * When the flags word was introduced its top half was required
3293  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3294  * Therefore, if this magic number is present, it carries no information
3295  * and must be discarded.
3296  */
3297 int path_mount(const char *dev_name, struct path *path,
3298 		const char *type_page, unsigned long flags, void *data_page)
3299 {
3300 	unsigned int mnt_flags = 0, sb_flags;
3301 	int ret;
3302 
3303 	/* Discard magic */
3304 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3305 		flags &= ~MS_MGC_MSK;
3306 
3307 	/* Basic sanity checks */
3308 	if (data_page)
3309 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3310 
3311 	if (flags & MS_NOUSER)
3312 		return -EINVAL;
3313 
3314 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3315 	if (ret)
3316 		return ret;
3317 	if (!may_mount())
3318 		return -EPERM;
3319 	if (flags & SB_MANDLOCK)
3320 		warn_mandlock();
3321 
3322 	/* Default to relatime unless overriden */
3323 	if (!(flags & MS_NOATIME))
3324 		mnt_flags |= MNT_RELATIME;
3325 
3326 	/* Separate the per-mountpoint flags */
3327 	if (flags & MS_NOSUID)
3328 		mnt_flags |= MNT_NOSUID;
3329 	if (flags & MS_NODEV)
3330 		mnt_flags |= MNT_NODEV;
3331 	if (flags & MS_NOEXEC)
3332 		mnt_flags |= MNT_NOEXEC;
3333 	if (flags & MS_NOATIME)
3334 		mnt_flags |= MNT_NOATIME;
3335 	if (flags & MS_NODIRATIME)
3336 		mnt_flags |= MNT_NODIRATIME;
3337 	if (flags & MS_STRICTATIME)
3338 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3339 	if (flags & MS_RDONLY)
3340 		mnt_flags |= MNT_READONLY;
3341 	if (flags & MS_NOSYMFOLLOW)
3342 		mnt_flags |= MNT_NOSYMFOLLOW;
3343 
3344 	/* The default atime for remount is preservation */
3345 	if ((flags & MS_REMOUNT) &&
3346 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3347 		       MS_STRICTATIME)) == 0)) {
3348 		mnt_flags &= ~MNT_ATIME_MASK;
3349 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3350 	}
3351 
3352 	sb_flags = flags & (SB_RDONLY |
3353 			    SB_SYNCHRONOUS |
3354 			    SB_MANDLOCK |
3355 			    SB_DIRSYNC |
3356 			    SB_SILENT |
3357 			    SB_POSIXACL |
3358 			    SB_LAZYTIME |
3359 			    SB_I_VERSION);
3360 
3361 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3362 		return do_reconfigure_mnt(path, mnt_flags);
3363 	if (flags & MS_REMOUNT)
3364 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3365 	if (flags & MS_BIND)
3366 		return do_loopback(path, dev_name, flags & MS_REC);
3367 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3368 		return do_change_type(path, flags);
3369 	if (flags & MS_MOVE)
3370 		return do_move_mount_old(path, dev_name);
3371 
3372 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3373 			    data_page);
3374 }
3375 
3376 long do_mount(const char *dev_name, const char __user *dir_name,
3377 		const char *type_page, unsigned long flags, void *data_page)
3378 {
3379 	struct path path;
3380 	int ret;
3381 
3382 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3383 	if (ret)
3384 		return ret;
3385 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3386 	path_put(&path);
3387 	return ret;
3388 }
3389 
3390 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3391 {
3392 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3393 }
3394 
3395 static void dec_mnt_namespaces(struct ucounts *ucounts)
3396 {
3397 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3398 }
3399 
3400 static void free_mnt_ns(struct mnt_namespace *ns)
3401 {
3402 	if (!is_anon_ns(ns))
3403 		ns_free_inum(&ns->ns);
3404 	dec_mnt_namespaces(ns->ucounts);
3405 	put_user_ns(ns->user_ns);
3406 	kfree(ns);
3407 }
3408 
3409 /*
3410  * Assign a sequence number so we can detect when we attempt to bind
3411  * mount a reference to an older mount namespace into the current
3412  * mount namespace, preventing reference counting loops.  A 64bit
3413  * number incrementing at 10Ghz will take 12,427 years to wrap which
3414  * is effectively never, so we can ignore the possibility.
3415  */
3416 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3417 
3418 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3419 {
3420 	struct mnt_namespace *new_ns;
3421 	struct ucounts *ucounts;
3422 	int ret;
3423 
3424 	ucounts = inc_mnt_namespaces(user_ns);
3425 	if (!ucounts)
3426 		return ERR_PTR(-ENOSPC);
3427 
3428 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3429 	if (!new_ns) {
3430 		dec_mnt_namespaces(ucounts);
3431 		return ERR_PTR(-ENOMEM);
3432 	}
3433 	if (!anon) {
3434 		ret = ns_alloc_inum(&new_ns->ns);
3435 		if (ret) {
3436 			kfree(new_ns);
3437 			dec_mnt_namespaces(ucounts);
3438 			return ERR_PTR(ret);
3439 		}
3440 	}
3441 	new_ns->ns.ops = &mntns_operations;
3442 	if (!anon)
3443 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3444 	refcount_set(&new_ns->ns.count, 1);
3445 	INIT_LIST_HEAD(&new_ns->list);
3446 	init_waitqueue_head(&new_ns->poll);
3447 	spin_lock_init(&new_ns->ns_lock);
3448 	new_ns->user_ns = get_user_ns(user_ns);
3449 	new_ns->ucounts = ucounts;
3450 	return new_ns;
3451 }
3452 
3453 __latent_entropy
3454 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3455 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3456 {
3457 	struct mnt_namespace *new_ns;
3458 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3459 	struct mount *p, *q;
3460 	struct mount *old;
3461 	struct mount *new;
3462 	int copy_flags;
3463 
3464 	BUG_ON(!ns);
3465 
3466 	if (likely(!(flags & CLONE_NEWNS))) {
3467 		get_mnt_ns(ns);
3468 		return ns;
3469 	}
3470 
3471 	old = ns->root;
3472 
3473 	new_ns = alloc_mnt_ns(user_ns, false);
3474 	if (IS_ERR(new_ns))
3475 		return new_ns;
3476 
3477 	namespace_lock();
3478 	/* First pass: copy the tree topology */
3479 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3480 	if (user_ns != ns->user_ns)
3481 		copy_flags |= CL_SHARED_TO_SLAVE;
3482 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3483 	if (IS_ERR(new)) {
3484 		namespace_unlock();
3485 		free_mnt_ns(new_ns);
3486 		return ERR_CAST(new);
3487 	}
3488 	if (user_ns != ns->user_ns) {
3489 		lock_mount_hash();
3490 		lock_mnt_tree(new);
3491 		unlock_mount_hash();
3492 	}
3493 	new_ns->root = new;
3494 	list_add_tail(&new_ns->list, &new->mnt_list);
3495 
3496 	/*
3497 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3498 	 * as belonging to new namespace.  We have already acquired a private
3499 	 * fs_struct, so tsk->fs->lock is not needed.
3500 	 */
3501 	p = old;
3502 	q = new;
3503 	while (p) {
3504 		q->mnt_ns = new_ns;
3505 		new_ns->mounts++;
3506 		if (new_fs) {
3507 			if (&p->mnt == new_fs->root.mnt) {
3508 				new_fs->root.mnt = mntget(&q->mnt);
3509 				rootmnt = &p->mnt;
3510 			}
3511 			if (&p->mnt == new_fs->pwd.mnt) {
3512 				new_fs->pwd.mnt = mntget(&q->mnt);
3513 				pwdmnt = &p->mnt;
3514 			}
3515 		}
3516 		p = next_mnt(p, old);
3517 		q = next_mnt(q, new);
3518 		if (!q)
3519 			break;
3520 		// an mntns binding we'd skipped?
3521 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3522 			p = next_mnt(skip_mnt_tree(p), old);
3523 	}
3524 	namespace_unlock();
3525 
3526 	if (rootmnt)
3527 		mntput(rootmnt);
3528 	if (pwdmnt)
3529 		mntput(pwdmnt);
3530 
3531 	return new_ns;
3532 }
3533 
3534 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3535 {
3536 	struct mount *mnt = real_mount(m);
3537 	struct mnt_namespace *ns;
3538 	struct super_block *s;
3539 	struct path path;
3540 	int err;
3541 
3542 	ns = alloc_mnt_ns(&init_user_ns, true);
3543 	if (IS_ERR(ns)) {
3544 		mntput(m);
3545 		return ERR_CAST(ns);
3546 	}
3547 	mnt->mnt_ns = ns;
3548 	ns->root = mnt;
3549 	ns->mounts++;
3550 	list_add(&mnt->mnt_list, &ns->list);
3551 
3552 	err = vfs_path_lookup(m->mnt_root, m,
3553 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3554 
3555 	put_mnt_ns(ns);
3556 
3557 	if (err)
3558 		return ERR_PTR(err);
3559 
3560 	/* trade a vfsmount reference for active sb one */
3561 	s = path.mnt->mnt_sb;
3562 	atomic_inc(&s->s_active);
3563 	mntput(path.mnt);
3564 	/* lock the sucker */
3565 	down_write(&s->s_umount);
3566 	/* ... and return the root of (sub)tree on it */
3567 	return path.dentry;
3568 }
3569 EXPORT_SYMBOL(mount_subtree);
3570 
3571 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3572 		char __user *, type, unsigned long, flags, void __user *, data)
3573 {
3574 	int ret;
3575 	char *kernel_type;
3576 	char *kernel_dev;
3577 	void *options;
3578 
3579 	kernel_type = copy_mount_string(type);
3580 	ret = PTR_ERR(kernel_type);
3581 	if (IS_ERR(kernel_type))
3582 		goto out_type;
3583 
3584 	kernel_dev = copy_mount_string(dev_name);
3585 	ret = PTR_ERR(kernel_dev);
3586 	if (IS_ERR(kernel_dev))
3587 		goto out_dev;
3588 
3589 	options = copy_mount_options(data);
3590 	ret = PTR_ERR(options);
3591 	if (IS_ERR(options))
3592 		goto out_data;
3593 
3594 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3595 
3596 	kfree(options);
3597 out_data:
3598 	kfree(kernel_dev);
3599 out_dev:
3600 	kfree(kernel_type);
3601 out_type:
3602 	return ret;
3603 }
3604 
3605 #define FSMOUNT_VALID_FLAGS                                                    \
3606 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3607 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3608 	 MOUNT_ATTR_NOSYMFOLLOW)
3609 
3610 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3611 
3612 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3613 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3614 
3615 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3616 {
3617 	unsigned int mnt_flags = 0;
3618 
3619 	if (attr_flags & MOUNT_ATTR_RDONLY)
3620 		mnt_flags |= MNT_READONLY;
3621 	if (attr_flags & MOUNT_ATTR_NOSUID)
3622 		mnt_flags |= MNT_NOSUID;
3623 	if (attr_flags & MOUNT_ATTR_NODEV)
3624 		mnt_flags |= MNT_NODEV;
3625 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3626 		mnt_flags |= MNT_NOEXEC;
3627 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3628 		mnt_flags |= MNT_NODIRATIME;
3629 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3630 		mnt_flags |= MNT_NOSYMFOLLOW;
3631 
3632 	return mnt_flags;
3633 }
3634 
3635 /*
3636  * Create a kernel mount representation for a new, prepared superblock
3637  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3638  */
3639 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3640 		unsigned int, attr_flags)
3641 {
3642 	struct mnt_namespace *ns;
3643 	struct fs_context *fc;
3644 	struct file *file;
3645 	struct path newmount;
3646 	struct mount *mnt;
3647 	struct fd f;
3648 	unsigned int mnt_flags = 0;
3649 	long ret;
3650 
3651 	if (!may_mount())
3652 		return -EPERM;
3653 
3654 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3655 		return -EINVAL;
3656 
3657 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3658 		return -EINVAL;
3659 
3660 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3661 
3662 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3663 	case MOUNT_ATTR_STRICTATIME:
3664 		break;
3665 	case MOUNT_ATTR_NOATIME:
3666 		mnt_flags |= MNT_NOATIME;
3667 		break;
3668 	case MOUNT_ATTR_RELATIME:
3669 		mnt_flags |= MNT_RELATIME;
3670 		break;
3671 	default:
3672 		return -EINVAL;
3673 	}
3674 
3675 	f = fdget(fs_fd);
3676 	if (!f.file)
3677 		return -EBADF;
3678 
3679 	ret = -EINVAL;
3680 	if (f.file->f_op != &fscontext_fops)
3681 		goto err_fsfd;
3682 
3683 	fc = f.file->private_data;
3684 
3685 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3686 	if (ret < 0)
3687 		goto err_fsfd;
3688 
3689 	/* There must be a valid superblock or we can't mount it */
3690 	ret = -EINVAL;
3691 	if (!fc->root)
3692 		goto err_unlock;
3693 
3694 	ret = -EPERM;
3695 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3696 		pr_warn("VFS: Mount too revealing\n");
3697 		goto err_unlock;
3698 	}
3699 
3700 	ret = -EBUSY;
3701 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3702 		goto err_unlock;
3703 
3704 	if (fc->sb_flags & SB_MANDLOCK)
3705 		warn_mandlock();
3706 
3707 	newmount.mnt = vfs_create_mount(fc);
3708 	if (IS_ERR(newmount.mnt)) {
3709 		ret = PTR_ERR(newmount.mnt);
3710 		goto err_unlock;
3711 	}
3712 	newmount.dentry = dget(fc->root);
3713 	newmount.mnt->mnt_flags = mnt_flags;
3714 
3715 	/* We've done the mount bit - now move the file context into more or
3716 	 * less the same state as if we'd done an fspick().  We don't want to
3717 	 * do any memory allocation or anything like that at this point as we
3718 	 * don't want to have to handle any errors incurred.
3719 	 */
3720 	vfs_clean_context(fc);
3721 
3722 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3723 	if (IS_ERR(ns)) {
3724 		ret = PTR_ERR(ns);
3725 		goto err_path;
3726 	}
3727 	mnt = real_mount(newmount.mnt);
3728 	mnt->mnt_ns = ns;
3729 	ns->root = mnt;
3730 	ns->mounts = 1;
3731 	list_add(&mnt->mnt_list, &ns->list);
3732 	mntget(newmount.mnt);
3733 
3734 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3735 	 * it, not just simply put it.
3736 	 */
3737 	file = dentry_open(&newmount, O_PATH, fc->cred);
3738 	if (IS_ERR(file)) {
3739 		dissolve_on_fput(newmount.mnt);
3740 		ret = PTR_ERR(file);
3741 		goto err_path;
3742 	}
3743 	file->f_mode |= FMODE_NEED_UNMOUNT;
3744 
3745 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3746 	if (ret >= 0)
3747 		fd_install(ret, file);
3748 	else
3749 		fput(file);
3750 
3751 err_path:
3752 	path_put(&newmount);
3753 err_unlock:
3754 	mutex_unlock(&fc->uapi_mutex);
3755 err_fsfd:
3756 	fdput(f);
3757 	return ret;
3758 }
3759 
3760 /*
3761  * Move a mount from one place to another.  In combination with
3762  * fsopen()/fsmount() this is used to install a new mount and in combination
3763  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3764  * a mount subtree.
3765  *
3766  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3767  */
3768 SYSCALL_DEFINE5(move_mount,
3769 		int, from_dfd, const char __user *, from_pathname,
3770 		int, to_dfd, const char __user *, to_pathname,
3771 		unsigned int, flags)
3772 {
3773 	struct path from_path, to_path;
3774 	unsigned int lflags;
3775 	int ret = 0;
3776 
3777 	if (!may_mount())
3778 		return -EPERM;
3779 
3780 	if (flags & ~MOVE_MOUNT__MASK)
3781 		return -EINVAL;
3782 
3783 	/* If someone gives a pathname, they aren't permitted to move
3784 	 * from an fd that requires unmount as we can't get at the flag
3785 	 * to clear it afterwards.
3786 	 */
3787 	lflags = 0;
3788 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3789 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3790 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3791 
3792 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3793 	if (ret < 0)
3794 		return ret;
3795 
3796 	lflags = 0;
3797 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3798 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3799 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3800 
3801 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3802 	if (ret < 0)
3803 		goto out_from;
3804 
3805 	ret = security_move_mount(&from_path, &to_path);
3806 	if (ret < 0)
3807 		goto out_to;
3808 
3809 	if (flags & MOVE_MOUNT_SET_GROUP)
3810 		ret = do_set_group(&from_path, &to_path);
3811 	else
3812 		ret = do_move_mount(&from_path, &to_path);
3813 
3814 out_to:
3815 	path_put(&to_path);
3816 out_from:
3817 	path_put(&from_path);
3818 	return ret;
3819 }
3820 
3821 /*
3822  * Return true if path is reachable from root
3823  *
3824  * namespace_sem or mount_lock is held
3825  */
3826 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3827 			 const struct path *root)
3828 {
3829 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3830 		dentry = mnt->mnt_mountpoint;
3831 		mnt = mnt->mnt_parent;
3832 	}
3833 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3834 }
3835 
3836 bool path_is_under(const struct path *path1, const struct path *path2)
3837 {
3838 	bool res;
3839 	read_seqlock_excl(&mount_lock);
3840 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3841 	read_sequnlock_excl(&mount_lock);
3842 	return res;
3843 }
3844 EXPORT_SYMBOL(path_is_under);
3845 
3846 /*
3847  * pivot_root Semantics:
3848  * Moves the root file system of the current process to the directory put_old,
3849  * makes new_root as the new root file system of the current process, and sets
3850  * root/cwd of all processes which had them on the current root to new_root.
3851  *
3852  * Restrictions:
3853  * The new_root and put_old must be directories, and  must not be on the
3854  * same file  system as the current process root. The put_old  must  be
3855  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3856  * pointed to by put_old must yield the same directory as new_root. No other
3857  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3858  *
3859  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3860  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3861  * in this situation.
3862  *
3863  * Notes:
3864  *  - we don't move root/cwd if they are not at the root (reason: if something
3865  *    cared enough to change them, it's probably wrong to force them elsewhere)
3866  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3867  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3868  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3869  *    first.
3870  */
3871 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3872 		const char __user *, put_old)
3873 {
3874 	struct path new, old, root;
3875 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3876 	struct mountpoint *old_mp, *root_mp;
3877 	int error;
3878 
3879 	if (!may_mount())
3880 		return -EPERM;
3881 
3882 	error = user_path_at(AT_FDCWD, new_root,
3883 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3884 	if (error)
3885 		goto out0;
3886 
3887 	error = user_path_at(AT_FDCWD, put_old,
3888 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3889 	if (error)
3890 		goto out1;
3891 
3892 	error = security_sb_pivotroot(&old, &new);
3893 	if (error)
3894 		goto out2;
3895 
3896 	get_fs_root(current->fs, &root);
3897 	old_mp = lock_mount(&old);
3898 	error = PTR_ERR(old_mp);
3899 	if (IS_ERR(old_mp))
3900 		goto out3;
3901 
3902 	error = -EINVAL;
3903 	new_mnt = real_mount(new.mnt);
3904 	root_mnt = real_mount(root.mnt);
3905 	old_mnt = real_mount(old.mnt);
3906 	ex_parent = new_mnt->mnt_parent;
3907 	root_parent = root_mnt->mnt_parent;
3908 	if (IS_MNT_SHARED(old_mnt) ||
3909 		IS_MNT_SHARED(ex_parent) ||
3910 		IS_MNT_SHARED(root_parent))
3911 		goto out4;
3912 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3913 		goto out4;
3914 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3915 		goto out4;
3916 	error = -ENOENT;
3917 	if (d_unlinked(new.dentry))
3918 		goto out4;
3919 	error = -EBUSY;
3920 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3921 		goto out4; /* loop, on the same file system  */
3922 	error = -EINVAL;
3923 	if (root.mnt->mnt_root != root.dentry)
3924 		goto out4; /* not a mountpoint */
3925 	if (!mnt_has_parent(root_mnt))
3926 		goto out4; /* not attached */
3927 	if (new.mnt->mnt_root != new.dentry)
3928 		goto out4; /* not a mountpoint */
3929 	if (!mnt_has_parent(new_mnt))
3930 		goto out4; /* not attached */
3931 	/* make sure we can reach put_old from new_root */
3932 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3933 		goto out4;
3934 	/* make certain new is below the root */
3935 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3936 		goto out4;
3937 	lock_mount_hash();
3938 	umount_mnt(new_mnt);
3939 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3940 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3941 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3942 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3943 	}
3944 	/* mount old root on put_old */
3945 	attach_mnt(root_mnt, old_mnt, old_mp);
3946 	/* mount new_root on / */
3947 	attach_mnt(new_mnt, root_parent, root_mp);
3948 	mnt_add_count(root_parent, -1);
3949 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3950 	/* A moved mount should not expire automatically */
3951 	list_del_init(&new_mnt->mnt_expire);
3952 	put_mountpoint(root_mp);
3953 	unlock_mount_hash();
3954 	chroot_fs_refs(&root, &new);
3955 	error = 0;
3956 out4:
3957 	unlock_mount(old_mp);
3958 	if (!error)
3959 		mntput_no_expire(ex_parent);
3960 out3:
3961 	path_put(&root);
3962 out2:
3963 	path_put(&old);
3964 out1:
3965 	path_put(&new);
3966 out0:
3967 	return error;
3968 }
3969 
3970 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3971 {
3972 	unsigned int flags = mnt->mnt.mnt_flags;
3973 
3974 	/*  flags to clear */
3975 	flags &= ~kattr->attr_clr;
3976 	/* flags to raise */
3977 	flags |= kattr->attr_set;
3978 
3979 	return flags;
3980 }
3981 
3982 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3983 {
3984 	struct vfsmount *m = &mnt->mnt;
3985 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3986 
3987 	if (!kattr->mnt_idmap)
3988 		return 0;
3989 
3990 	/*
3991 	 * Creating an idmapped mount with the filesystem wide idmapping
3992 	 * doesn't make sense so block that. We don't allow mushy semantics.
3993 	 */
3994 	if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
3995 		return -EINVAL;
3996 
3997 	/*
3998 	 * Once a mount has been idmapped we don't allow it to change its
3999 	 * mapping. It makes things simpler and callers can just create
4000 	 * another bind-mount they can idmap if they want to.
4001 	 */
4002 	if (is_idmapped_mnt(m))
4003 		return -EPERM;
4004 
4005 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4006 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4007 		return -EINVAL;
4008 
4009 	/* We're not controlling the superblock. */
4010 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4011 		return -EPERM;
4012 
4013 	/* Mount has already been visible in the filesystem hierarchy. */
4014 	if (!is_anon_ns(mnt->mnt_ns))
4015 		return -EINVAL;
4016 
4017 	return 0;
4018 }
4019 
4020 /**
4021  * mnt_allow_writers() - check whether the attribute change allows writers
4022  * @kattr: the new mount attributes
4023  * @mnt: the mount to which @kattr will be applied
4024  *
4025  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4026  *
4027  * Return: true if writers need to be held, false if not
4028  */
4029 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4030 				     const struct mount *mnt)
4031 {
4032 	return (!(kattr->attr_set & MNT_READONLY) ||
4033 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4034 	       !kattr->mnt_idmap;
4035 }
4036 
4037 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4038 {
4039 	struct mount *m;
4040 	int err;
4041 
4042 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4043 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4044 			err = -EPERM;
4045 			break;
4046 		}
4047 
4048 		err = can_idmap_mount(kattr, m);
4049 		if (err)
4050 			break;
4051 
4052 		if (!mnt_allow_writers(kattr, m)) {
4053 			err = mnt_hold_writers(m);
4054 			if (err)
4055 				break;
4056 		}
4057 
4058 		if (!kattr->recurse)
4059 			return 0;
4060 	}
4061 
4062 	if (err) {
4063 		struct mount *p;
4064 
4065 		/*
4066 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4067 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4068 		 * mounts and needs to take care to include the first mount.
4069 		 */
4070 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4071 			/* If we had to hold writers unblock them. */
4072 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4073 				mnt_unhold_writers(p);
4074 
4075 			/*
4076 			 * We're done once the first mount we changed got
4077 			 * MNT_WRITE_HOLD unset.
4078 			 */
4079 			if (p == m)
4080 				break;
4081 		}
4082 	}
4083 	return err;
4084 }
4085 
4086 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4087 {
4088 	if (!kattr->mnt_idmap)
4089 		return;
4090 
4091 	/*
4092 	 * Pairs with smp_load_acquire() in mnt_idmap().
4093 	 *
4094 	 * Since we only allow a mount to change the idmapping once and
4095 	 * verified this in can_idmap_mount() we know that the mount has
4096 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4097 	 * references.
4098 	 */
4099 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4100 }
4101 
4102 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4103 {
4104 	struct mount *m;
4105 
4106 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4107 		unsigned int flags;
4108 
4109 		do_idmap_mount(kattr, m);
4110 		flags = recalc_flags(kattr, m);
4111 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4112 
4113 		/* If we had to hold writers unblock them. */
4114 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4115 			mnt_unhold_writers(m);
4116 
4117 		if (kattr->propagation)
4118 			change_mnt_propagation(m, kattr->propagation);
4119 		if (!kattr->recurse)
4120 			break;
4121 	}
4122 	touch_mnt_namespace(mnt->mnt_ns);
4123 }
4124 
4125 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4126 {
4127 	struct mount *mnt = real_mount(path->mnt);
4128 	int err = 0;
4129 
4130 	if (path->dentry != mnt->mnt.mnt_root)
4131 		return -EINVAL;
4132 
4133 	if (kattr->mnt_userns) {
4134 		struct mnt_idmap *mnt_idmap;
4135 
4136 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4137 		if (IS_ERR(mnt_idmap))
4138 			return PTR_ERR(mnt_idmap);
4139 		kattr->mnt_idmap = mnt_idmap;
4140 	}
4141 
4142 	if (kattr->propagation) {
4143 		/*
4144 		 * Only take namespace_lock() if we're actually changing
4145 		 * propagation.
4146 		 */
4147 		namespace_lock();
4148 		if (kattr->propagation == MS_SHARED) {
4149 			err = invent_group_ids(mnt, kattr->recurse);
4150 			if (err) {
4151 				namespace_unlock();
4152 				return err;
4153 			}
4154 		}
4155 	}
4156 
4157 	err = -EINVAL;
4158 	lock_mount_hash();
4159 
4160 	/* Ensure that this isn't anything purely vfs internal. */
4161 	if (!is_mounted(&mnt->mnt))
4162 		goto out;
4163 
4164 	/*
4165 	 * If this is an attached mount make sure it's located in the callers
4166 	 * mount namespace. If it's not don't let the caller interact with it.
4167 	 * If this is a detached mount make sure it has an anonymous mount
4168 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4169 	 */
4170 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4171 		goto out;
4172 
4173 	/*
4174 	 * First, we get the mount tree in a shape where we can change mount
4175 	 * properties without failure. If we succeeded to do so we commit all
4176 	 * changes and if we failed we clean up.
4177 	 */
4178 	err = mount_setattr_prepare(kattr, mnt);
4179 	if (!err)
4180 		mount_setattr_commit(kattr, mnt);
4181 
4182 out:
4183 	unlock_mount_hash();
4184 
4185 	if (kattr->propagation) {
4186 		namespace_unlock();
4187 		if (err)
4188 			cleanup_group_ids(mnt, NULL);
4189 	}
4190 
4191 	return err;
4192 }
4193 
4194 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4195 				struct mount_kattr *kattr, unsigned int flags)
4196 {
4197 	int err = 0;
4198 	struct ns_common *ns;
4199 	struct user_namespace *mnt_userns;
4200 	struct file *file;
4201 
4202 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4203 		return 0;
4204 
4205 	/*
4206 	 * We currently do not support clearing an idmapped mount. If this ever
4207 	 * is a use-case we can revisit this but for now let's keep it simple
4208 	 * and not allow it.
4209 	 */
4210 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4211 		return -EINVAL;
4212 
4213 	if (attr->userns_fd > INT_MAX)
4214 		return -EINVAL;
4215 
4216 	file = fget(attr->userns_fd);
4217 	if (!file)
4218 		return -EBADF;
4219 
4220 	if (!proc_ns_file(file)) {
4221 		err = -EINVAL;
4222 		goto out_fput;
4223 	}
4224 
4225 	ns = get_proc_ns(file_inode(file));
4226 	if (ns->ops->type != CLONE_NEWUSER) {
4227 		err = -EINVAL;
4228 		goto out_fput;
4229 	}
4230 
4231 	/*
4232 	 * The initial idmapping cannot be used to create an idmapped
4233 	 * mount. We use the initial idmapping as an indicator of a mount
4234 	 * that is not idmapped. It can simply be passed into helpers that
4235 	 * are aware of idmapped mounts as a convenient shortcut. A user
4236 	 * can just create a dedicated identity mapping to achieve the same
4237 	 * result.
4238 	 */
4239 	mnt_userns = container_of(ns, struct user_namespace, ns);
4240 	if (mnt_userns == &init_user_ns) {
4241 		err = -EPERM;
4242 		goto out_fput;
4243 	}
4244 
4245 	/* We're not controlling the target namespace. */
4246 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4247 		err = -EPERM;
4248 		goto out_fput;
4249 	}
4250 
4251 	kattr->mnt_userns = get_user_ns(mnt_userns);
4252 
4253 out_fput:
4254 	fput(file);
4255 	return err;
4256 }
4257 
4258 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4259 			     struct mount_kattr *kattr, unsigned int flags)
4260 {
4261 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4262 
4263 	if (flags & AT_NO_AUTOMOUNT)
4264 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4265 	if (flags & AT_SYMLINK_NOFOLLOW)
4266 		lookup_flags &= ~LOOKUP_FOLLOW;
4267 	if (flags & AT_EMPTY_PATH)
4268 		lookup_flags |= LOOKUP_EMPTY;
4269 
4270 	*kattr = (struct mount_kattr) {
4271 		.lookup_flags	= lookup_flags,
4272 		.recurse	= !!(flags & AT_RECURSIVE),
4273 	};
4274 
4275 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4276 		return -EINVAL;
4277 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4278 		return -EINVAL;
4279 	kattr->propagation = attr->propagation;
4280 
4281 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4282 		return -EINVAL;
4283 
4284 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4285 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4286 
4287 	/*
4288 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4289 	 * users wanting to transition to a different atime setting cannot
4290 	 * simply specify the atime setting in @attr_set, but must also
4291 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4292 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4293 	 * @attr_clr and that @attr_set can't have any atime bits set if
4294 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4295 	 */
4296 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4297 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4298 			return -EINVAL;
4299 
4300 		/*
4301 		 * Clear all previous time settings as they are mutually
4302 		 * exclusive.
4303 		 */
4304 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4305 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4306 		case MOUNT_ATTR_RELATIME:
4307 			kattr->attr_set |= MNT_RELATIME;
4308 			break;
4309 		case MOUNT_ATTR_NOATIME:
4310 			kattr->attr_set |= MNT_NOATIME;
4311 			break;
4312 		case MOUNT_ATTR_STRICTATIME:
4313 			break;
4314 		default:
4315 			return -EINVAL;
4316 		}
4317 	} else {
4318 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4319 			return -EINVAL;
4320 	}
4321 
4322 	return build_mount_idmapped(attr, usize, kattr, flags);
4323 }
4324 
4325 static void finish_mount_kattr(struct mount_kattr *kattr)
4326 {
4327 	put_user_ns(kattr->mnt_userns);
4328 	kattr->mnt_userns = NULL;
4329 
4330 	if (kattr->mnt_idmap)
4331 		mnt_idmap_put(kattr->mnt_idmap);
4332 }
4333 
4334 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4335 		unsigned int, flags, struct mount_attr __user *, uattr,
4336 		size_t, usize)
4337 {
4338 	int err;
4339 	struct path target;
4340 	struct mount_attr attr;
4341 	struct mount_kattr kattr;
4342 
4343 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4344 
4345 	if (flags & ~(AT_EMPTY_PATH |
4346 		      AT_RECURSIVE |
4347 		      AT_SYMLINK_NOFOLLOW |
4348 		      AT_NO_AUTOMOUNT))
4349 		return -EINVAL;
4350 
4351 	if (unlikely(usize > PAGE_SIZE))
4352 		return -E2BIG;
4353 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4354 		return -EINVAL;
4355 
4356 	if (!may_mount())
4357 		return -EPERM;
4358 
4359 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4360 	if (err)
4361 		return err;
4362 
4363 	/* Don't bother walking through the mounts if this is a nop. */
4364 	if (attr.attr_set == 0 &&
4365 	    attr.attr_clr == 0 &&
4366 	    attr.propagation == 0)
4367 		return 0;
4368 
4369 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4370 	if (err)
4371 		return err;
4372 
4373 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4374 	if (!err) {
4375 		err = do_mount_setattr(&target, &kattr);
4376 		path_put(&target);
4377 	}
4378 	finish_mount_kattr(&kattr);
4379 	return err;
4380 }
4381 
4382 static void __init init_mount_tree(void)
4383 {
4384 	struct vfsmount *mnt;
4385 	struct mount *m;
4386 	struct mnt_namespace *ns;
4387 	struct path root;
4388 
4389 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4390 	if (IS_ERR(mnt))
4391 		panic("Can't create rootfs");
4392 
4393 	ns = alloc_mnt_ns(&init_user_ns, false);
4394 	if (IS_ERR(ns))
4395 		panic("Can't allocate initial namespace");
4396 	m = real_mount(mnt);
4397 	m->mnt_ns = ns;
4398 	ns->root = m;
4399 	ns->mounts = 1;
4400 	list_add(&m->mnt_list, &ns->list);
4401 	init_task.nsproxy->mnt_ns = ns;
4402 	get_mnt_ns(ns);
4403 
4404 	root.mnt = mnt;
4405 	root.dentry = mnt->mnt_root;
4406 	mnt->mnt_flags |= MNT_LOCKED;
4407 
4408 	set_fs_pwd(current->fs, &root);
4409 	set_fs_root(current->fs, &root);
4410 }
4411 
4412 void __init mnt_init(void)
4413 {
4414 	int err;
4415 
4416 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4417 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4418 
4419 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4420 				sizeof(struct hlist_head),
4421 				mhash_entries, 19,
4422 				HASH_ZERO,
4423 				&m_hash_shift, &m_hash_mask, 0, 0);
4424 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4425 				sizeof(struct hlist_head),
4426 				mphash_entries, 19,
4427 				HASH_ZERO,
4428 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4429 
4430 	if (!mount_hashtable || !mountpoint_hashtable)
4431 		panic("Failed to allocate mount hash table\n");
4432 
4433 	kernfs_init();
4434 
4435 	err = sysfs_init();
4436 	if (err)
4437 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4438 			__func__, err);
4439 	fs_kobj = kobject_create_and_add("fs", NULL);
4440 	if (!fs_kobj)
4441 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4442 	shmem_init();
4443 	init_rootfs();
4444 	init_mount_tree();
4445 }
4446 
4447 void put_mnt_ns(struct mnt_namespace *ns)
4448 {
4449 	if (!refcount_dec_and_test(&ns->ns.count))
4450 		return;
4451 	drop_collected_mounts(&ns->root->mnt);
4452 	free_mnt_ns(ns);
4453 }
4454 
4455 struct vfsmount *kern_mount(struct file_system_type *type)
4456 {
4457 	struct vfsmount *mnt;
4458 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4459 	if (!IS_ERR(mnt)) {
4460 		/*
4461 		 * it is a longterm mount, don't release mnt until
4462 		 * we unmount before file sys is unregistered
4463 		*/
4464 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4465 	}
4466 	return mnt;
4467 }
4468 EXPORT_SYMBOL_GPL(kern_mount);
4469 
4470 void kern_unmount(struct vfsmount *mnt)
4471 {
4472 	/* release long term mount so mount point can be released */
4473 	if (!IS_ERR(mnt)) {
4474 		mnt_make_shortterm(mnt);
4475 		synchronize_rcu();	/* yecchhh... */
4476 		mntput(mnt);
4477 	}
4478 }
4479 EXPORT_SYMBOL(kern_unmount);
4480 
4481 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4482 {
4483 	unsigned int i;
4484 
4485 	for (i = 0; i < num; i++)
4486 		mnt_make_shortterm(mnt[i]);
4487 	synchronize_rcu_expedited();
4488 	for (i = 0; i < num; i++)
4489 		mntput(mnt[i]);
4490 }
4491 EXPORT_SYMBOL(kern_unmount_array);
4492 
4493 bool our_mnt(struct vfsmount *mnt)
4494 {
4495 	return check_mnt(real_mount(mnt));
4496 }
4497 
4498 bool current_chrooted(void)
4499 {
4500 	/* Does the current process have a non-standard root */
4501 	struct path ns_root;
4502 	struct path fs_root;
4503 	bool chrooted;
4504 
4505 	/* Find the namespace root */
4506 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4507 	ns_root.dentry = ns_root.mnt->mnt_root;
4508 	path_get(&ns_root);
4509 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4510 		;
4511 
4512 	get_fs_root(current->fs, &fs_root);
4513 
4514 	chrooted = !path_equal(&fs_root, &ns_root);
4515 
4516 	path_put(&fs_root);
4517 	path_put(&ns_root);
4518 
4519 	return chrooted;
4520 }
4521 
4522 static bool mnt_already_visible(struct mnt_namespace *ns,
4523 				const struct super_block *sb,
4524 				int *new_mnt_flags)
4525 {
4526 	int new_flags = *new_mnt_flags;
4527 	struct mount *mnt;
4528 	bool visible = false;
4529 
4530 	down_read(&namespace_sem);
4531 	lock_ns_list(ns);
4532 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4533 		struct mount *child;
4534 		int mnt_flags;
4535 
4536 		if (mnt_is_cursor(mnt))
4537 			continue;
4538 
4539 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4540 			continue;
4541 
4542 		/* This mount is not fully visible if it's root directory
4543 		 * is not the root directory of the filesystem.
4544 		 */
4545 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4546 			continue;
4547 
4548 		/* A local view of the mount flags */
4549 		mnt_flags = mnt->mnt.mnt_flags;
4550 
4551 		/* Don't miss readonly hidden in the superblock flags */
4552 		if (sb_rdonly(mnt->mnt.mnt_sb))
4553 			mnt_flags |= MNT_LOCK_READONLY;
4554 
4555 		/* Verify the mount flags are equal to or more permissive
4556 		 * than the proposed new mount.
4557 		 */
4558 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4559 		    !(new_flags & MNT_READONLY))
4560 			continue;
4561 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4562 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4563 			continue;
4564 
4565 		/* This mount is not fully visible if there are any
4566 		 * locked child mounts that cover anything except for
4567 		 * empty directories.
4568 		 */
4569 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4570 			struct inode *inode = child->mnt_mountpoint->d_inode;
4571 			/* Only worry about locked mounts */
4572 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4573 				continue;
4574 			/* Is the directory permanetly empty? */
4575 			if (!is_empty_dir_inode(inode))
4576 				goto next;
4577 		}
4578 		/* Preserve the locked attributes */
4579 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4580 					       MNT_LOCK_ATIME);
4581 		visible = true;
4582 		goto found;
4583 	next:	;
4584 	}
4585 found:
4586 	unlock_ns_list(ns);
4587 	up_read(&namespace_sem);
4588 	return visible;
4589 }
4590 
4591 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4592 {
4593 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4594 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4595 	unsigned long s_iflags;
4596 
4597 	if (ns->user_ns == &init_user_ns)
4598 		return false;
4599 
4600 	/* Can this filesystem be too revealing? */
4601 	s_iflags = sb->s_iflags;
4602 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4603 		return false;
4604 
4605 	if ((s_iflags & required_iflags) != required_iflags) {
4606 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4607 			  required_iflags);
4608 		return true;
4609 	}
4610 
4611 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4612 }
4613 
4614 bool mnt_may_suid(struct vfsmount *mnt)
4615 {
4616 	/*
4617 	 * Foreign mounts (accessed via fchdir or through /proc
4618 	 * symlinks) are always treated as if they are nosuid.  This
4619 	 * prevents namespaces from trusting potentially unsafe
4620 	 * suid/sgid bits, file caps, or security labels that originate
4621 	 * in other namespaces.
4622 	 */
4623 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4624 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4625 }
4626 
4627 static struct ns_common *mntns_get(struct task_struct *task)
4628 {
4629 	struct ns_common *ns = NULL;
4630 	struct nsproxy *nsproxy;
4631 
4632 	task_lock(task);
4633 	nsproxy = task->nsproxy;
4634 	if (nsproxy) {
4635 		ns = &nsproxy->mnt_ns->ns;
4636 		get_mnt_ns(to_mnt_ns(ns));
4637 	}
4638 	task_unlock(task);
4639 
4640 	return ns;
4641 }
4642 
4643 static void mntns_put(struct ns_common *ns)
4644 {
4645 	put_mnt_ns(to_mnt_ns(ns));
4646 }
4647 
4648 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4649 {
4650 	struct nsproxy *nsproxy = nsset->nsproxy;
4651 	struct fs_struct *fs = nsset->fs;
4652 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4653 	struct user_namespace *user_ns = nsset->cred->user_ns;
4654 	struct path root;
4655 	int err;
4656 
4657 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4658 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4659 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4660 		return -EPERM;
4661 
4662 	if (is_anon_ns(mnt_ns))
4663 		return -EINVAL;
4664 
4665 	if (fs->users != 1)
4666 		return -EINVAL;
4667 
4668 	get_mnt_ns(mnt_ns);
4669 	old_mnt_ns = nsproxy->mnt_ns;
4670 	nsproxy->mnt_ns = mnt_ns;
4671 
4672 	/* Find the root */
4673 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4674 				"/", LOOKUP_DOWN, &root);
4675 	if (err) {
4676 		/* revert to old namespace */
4677 		nsproxy->mnt_ns = old_mnt_ns;
4678 		put_mnt_ns(mnt_ns);
4679 		return err;
4680 	}
4681 
4682 	put_mnt_ns(old_mnt_ns);
4683 
4684 	/* Update the pwd and root */
4685 	set_fs_pwd(fs, &root);
4686 	set_fs_root(fs, &root);
4687 
4688 	path_put(&root);
4689 	return 0;
4690 }
4691 
4692 static struct user_namespace *mntns_owner(struct ns_common *ns)
4693 {
4694 	return to_mnt_ns(ns)->user_ns;
4695 }
4696 
4697 const struct proc_ns_operations mntns_operations = {
4698 	.name		= "mnt",
4699 	.type		= CLONE_NEWNS,
4700 	.get		= mntns_get,
4701 	.put		= mntns_put,
4702 	.install	= mntns_install,
4703 	.owner		= mntns_owner,
4704 };
4705 
4706 #ifdef CONFIG_SYSCTL
4707 static struct ctl_table fs_namespace_sysctls[] = {
4708 	{
4709 		.procname	= "mount-max",
4710 		.data		= &sysctl_mount_max,
4711 		.maxlen		= sizeof(unsigned int),
4712 		.mode		= 0644,
4713 		.proc_handler	= proc_dointvec_minmax,
4714 		.extra1		= SYSCTL_ONE,
4715 	},
4716 	{ }
4717 };
4718 
4719 static int __init init_fs_namespace_sysctls(void)
4720 {
4721 	register_sysctl_init("fs", fs_namespace_sysctls);
4722 	return 0;
4723 }
4724 fs_initcall(init_fs_namespace_sysctls);
4725 
4726 #endif /* CONFIG_SYSCTL */
4727