xref: /linux/fs/namespace.c (revision b5a78c7127f2007cfc7ad322b6ce0aa4bf347138)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __ro_after_init;
43 static unsigned int m_hash_shift __ro_after_init;
44 static unsigned int mp_hash_mask __ro_after_init;
45 static unsigned int mp_hash_shift __ro_after_init;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __ro_after_init;
72 static struct hlist_head *mountpoint_hashtable __ro_after_init;
73 static struct kmem_cache *mnt_cache __ro_after_init;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj __ro_after_init;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
313 		return 1;
314 	/*
315 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
316 	 * making sure if we don't see s_readonly_remount set yet, we also will
317 	 * not see any superblock / mount flag changes done by remount.
318 	 * It also pairs with the barrier in sb_end_ro_state_change()
319 	 * assuring that if we see s_readonly_remount already cleared, we will
320 	 * see the values of superblock / mount flags updated by remount.
321 	 */
322 	smp_rmb();
323 	return __mnt_is_readonly(mnt);
324 }
325 
326 /*
327  * Most r/o & frozen checks on a fs are for operations that take discrete
328  * amounts of time, like a write() or unlink().  We must keep track of when
329  * those operations start (for permission checks) and when they end, so that we
330  * can determine when writes are able to occur to a filesystem.
331  */
332 /**
333  * mnt_get_write_access - get write access to a mount without freeze protection
334  * @m: the mount on which to take a write
335  *
336  * This tells the low-level filesystem that a write is about to be performed to
337  * it, and makes sure that writes are allowed (mnt it read-write) before
338  * returning success. This operation does not protect against filesystem being
339  * frozen. When the write operation is finished, mnt_put_write_access() must be
340  * called. This is effectively a refcount.
341  */
342 int mnt_get_write_access(struct vfsmount *m)
343 {
344 	struct mount *mnt = real_mount(m);
345 	int ret = 0;
346 
347 	preempt_disable();
348 	mnt_inc_writers(mnt);
349 	/*
350 	 * The store to mnt_inc_writers must be visible before we pass
351 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 	 * incremented count after it has set MNT_WRITE_HOLD.
353 	 */
354 	smp_mb();
355 	might_lock(&mount_lock.lock);
356 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
357 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
358 			cpu_relax();
359 		} else {
360 			/*
361 			 * This prevents priority inversion, if the task
362 			 * setting MNT_WRITE_HOLD got preempted on a remote
363 			 * CPU, and it prevents life lock if the task setting
364 			 * MNT_WRITE_HOLD has a lower priority and is bound to
365 			 * the same CPU as the task that is spinning here.
366 			 */
367 			preempt_enable();
368 			lock_mount_hash();
369 			unlock_mount_hash();
370 			preempt_disable();
371 		}
372 	}
373 	/*
374 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
375 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
376 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
377 	 * mnt_is_readonly() and bail in case we are racing with remount
378 	 * read-only.
379 	 */
380 	smp_rmb();
381 	if (mnt_is_readonly(m)) {
382 		mnt_dec_writers(mnt);
383 		ret = -EROFS;
384 	}
385 	preempt_enable();
386 
387 	return ret;
388 }
389 EXPORT_SYMBOL_GPL(mnt_get_write_access);
390 
391 /**
392  * mnt_want_write - get write access to a mount
393  * @m: the mount on which to take a write
394  *
395  * This tells the low-level filesystem that a write is about to be performed to
396  * it, and makes sure that writes are allowed (mount is read-write, filesystem
397  * is not frozen) before returning success.  When the write operation is
398  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
399  */
400 int mnt_want_write(struct vfsmount *m)
401 {
402 	int ret;
403 
404 	sb_start_write(m->mnt_sb);
405 	ret = mnt_get_write_access(m);
406 	if (ret)
407 		sb_end_write(m->mnt_sb);
408 	return ret;
409 }
410 EXPORT_SYMBOL_GPL(mnt_want_write);
411 
412 /**
413  * mnt_get_write_access_file - get write access to a file's mount
414  * @file: the file who's mount on which to take a write
415  *
416  * This is like mnt_get_write_access, but if @file is already open for write it
417  * skips incrementing mnt_writers (since the open file already has a reference)
418  * and instead only does the check for emergency r/o remounts.  This must be
419  * paired with mnt_put_write_access_file.
420  */
421 int mnt_get_write_access_file(struct file *file)
422 {
423 	if (file->f_mode & FMODE_WRITER) {
424 		/*
425 		 * Superblock may have become readonly while there are still
426 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
427 		 */
428 		if (__mnt_is_readonly(file->f_path.mnt))
429 			return -EROFS;
430 		return 0;
431 	}
432 	return mnt_get_write_access(file->f_path.mnt);
433 }
434 
435 /**
436  * mnt_want_write_file - get write access to a file's mount
437  * @file: the file who's mount on which to take a write
438  *
439  * This is like mnt_want_write, but if the file is already open for writing it
440  * skips incrementing mnt_writers (since the open file already has a reference)
441  * and instead only does the freeze protection and the check for emergency r/o
442  * remounts.  This must be paired with mnt_drop_write_file.
443  */
444 int mnt_want_write_file(struct file *file)
445 {
446 	int ret;
447 
448 	sb_start_write(file_inode(file)->i_sb);
449 	ret = mnt_get_write_access_file(file);
450 	if (ret)
451 		sb_end_write(file_inode(file)->i_sb);
452 	return ret;
453 }
454 EXPORT_SYMBOL_GPL(mnt_want_write_file);
455 
456 /**
457  * mnt_put_write_access - give up write access to a mount
458  * @mnt: the mount on which to give up write access
459  *
460  * Tells the low-level filesystem that we are done
461  * performing writes to it.  Must be matched with
462  * mnt_get_write_access() call above.
463  */
464 void mnt_put_write_access(struct vfsmount *mnt)
465 {
466 	preempt_disable();
467 	mnt_dec_writers(real_mount(mnt));
468 	preempt_enable();
469 }
470 EXPORT_SYMBOL_GPL(mnt_put_write_access);
471 
472 /**
473  * mnt_drop_write - give up write access to a mount
474  * @mnt: the mount on which to give up write access
475  *
476  * Tells the low-level filesystem that we are done performing writes to it and
477  * also allows filesystem to be frozen again.  Must be matched with
478  * mnt_want_write() call above.
479  */
480 void mnt_drop_write(struct vfsmount *mnt)
481 {
482 	mnt_put_write_access(mnt);
483 	sb_end_write(mnt->mnt_sb);
484 }
485 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 
487 void mnt_put_write_access_file(struct file *file)
488 {
489 	if (!(file->f_mode & FMODE_WRITER))
490 		mnt_put_write_access(file->f_path.mnt);
491 }
492 
493 void mnt_drop_write_file(struct file *file)
494 {
495 	mnt_put_write_access_file(file);
496 	sb_end_write(file_inode(file)->i_sb);
497 }
498 EXPORT_SYMBOL(mnt_drop_write_file);
499 
500 /**
501  * mnt_hold_writers - prevent write access to the given mount
502  * @mnt: mnt to prevent write access to
503  *
504  * Prevents write access to @mnt if there are no active writers for @mnt.
505  * This function needs to be called and return successfully before changing
506  * properties of @mnt that need to remain stable for callers with write access
507  * to @mnt.
508  *
509  * After this functions has been called successfully callers must pair it with
510  * a call to mnt_unhold_writers() in order to stop preventing write access to
511  * @mnt.
512  *
513  * Context: This function expects lock_mount_hash() to be held serializing
514  *          setting MNT_WRITE_HOLD.
515  * Return: On success 0 is returned.
516  *	   On error, -EBUSY is returned.
517  */
518 static inline int mnt_hold_writers(struct mount *mnt)
519 {
520 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
521 	/*
522 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
523 	 * should be visible before we do.
524 	 */
525 	smp_mb();
526 
527 	/*
528 	 * With writers on hold, if this value is zero, then there are
529 	 * definitely no active writers (although held writers may subsequently
530 	 * increment the count, they'll have to wait, and decrement it after
531 	 * seeing MNT_READONLY).
532 	 *
533 	 * It is OK to have counter incremented on one CPU and decremented on
534 	 * another: the sum will add up correctly. The danger would be when we
535 	 * sum up each counter, if we read a counter before it is incremented,
536 	 * but then read another CPU's count which it has been subsequently
537 	 * decremented from -- we would see more decrements than we should.
538 	 * MNT_WRITE_HOLD protects against this scenario, because
539 	 * mnt_want_write first increments count, then smp_mb, then spins on
540 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
541 	 * we're counting up here.
542 	 */
543 	if (mnt_get_writers(mnt) > 0)
544 		return -EBUSY;
545 
546 	return 0;
547 }
548 
549 /**
550  * mnt_unhold_writers - stop preventing write access to the given mount
551  * @mnt: mnt to stop preventing write access to
552  *
553  * Stop preventing write access to @mnt allowing callers to gain write access
554  * to @mnt again.
555  *
556  * This function can only be called after a successful call to
557  * mnt_hold_writers().
558  *
559  * Context: This function expects lock_mount_hash() to be held.
560  */
561 static inline void mnt_unhold_writers(struct mount *mnt)
562 {
563 	/*
564 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
565 	 * that become unheld will see MNT_READONLY.
566 	 */
567 	smp_wmb();
568 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
569 }
570 
571 static int mnt_make_readonly(struct mount *mnt)
572 {
573 	int ret;
574 
575 	ret = mnt_hold_writers(mnt);
576 	if (!ret)
577 		mnt->mnt.mnt_flags |= MNT_READONLY;
578 	mnt_unhold_writers(mnt);
579 	return ret;
580 }
581 
582 int sb_prepare_remount_readonly(struct super_block *sb)
583 {
584 	struct mount *mnt;
585 	int err = 0;
586 
587 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
588 	if (atomic_long_read(&sb->s_remove_count))
589 		return -EBUSY;
590 
591 	lock_mount_hash();
592 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
593 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
594 			err = mnt_hold_writers(mnt);
595 			if (err)
596 				break;
597 		}
598 	}
599 	if (!err && atomic_long_read(&sb->s_remove_count))
600 		err = -EBUSY;
601 
602 	if (!err)
603 		sb_start_ro_state_change(sb);
604 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
605 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
606 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
607 	}
608 	unlock_mount_hash();
609 
610 	return err;
611 }
612 
613 static void free_vfsmnt(struct mount *mnt)
614 {
615 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
616 	kfree_const(mnt->mnt_devname);
617 #ifdef CONFIG_SMP
618 	free_percpu(mnt->mnt_pcp);
619 #endif
620 	kmem_cache_free(mnt_cache, mnt);
621 }
622 
623 static void delayed_free_vfsmnt(struct rcu_head *head)
624 {
625 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
626 }
627 
628 /* call under rcu_read_lock */
629 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
630 {
631 	struct mount *mnt;
632 	if (read_seqretry(&mount_lock, seq))
633 		return 1;
634 	if (bastard == NULL)
635 		return 0;
636 	mnt = real_mount(bastard);
637 	mnt_add_count(mnt, 1);
638 	smp_mb();			// see mntput_no_expire()
639 	if (likely(!read_seqretry(&mount_lock, seq)))
640 		return 0;
641 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
642 		mnt_add_count(mnt, -1);
643 		return 1;
644 	}
645 	lock_mount_hash();
646 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
647 		mnt_add_count(mnt, -1);
648 		unlock_mount_hash();
649 		return 1;
650 	}
651 	unlock_mount_hash();
652 	/* caller will mntput() */
653 	return -1;
654 }
655 
656 /* call under rcu_read_lock */
657 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
658 {
659 	int res = __legitimize_mnt(bastard, seq);
660 	if (likely(!res))
661 		return true;
662 	if (unlikely(res < 0)) {
663 		rcu_read_unlock();
664 		mntput(bastard);
665 		rcu_read_lock();
666 	}
667 	return false;
668 }
669 
670 /**
671  * __lookup_mnt - find first child mount
672  * @mnt:	parent mount
673  * @dentry:	mountpoint
674  *
675  * If @mnt has a child mount @c mounted @dentry find and return it.
676  *
677  * Note that the child mount @c need not be unique. There are cases
678  * where shadow mounts are created. For example, during mount
679  * propagation when a source mount @mnt whose root got overmounted by a
680  * mount @o after path lookup but before @namespace_sem could be
681  * acquired gets copied and propagated. So @mnt gets copied including
682  * @o. When @mnt is propagated to a destination mount @d that already
683  * has another mount @n mounted at the same mountpoint then the source
684  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
685  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
686  * on @dentry.
687  *
688  * Return: The first child of @mnt mounted @dentry or NULL.
689  */
690 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
691 {
692 	struct hlist_head *head = m_hash(mnt, dentry);
693 	struct mount *p;
694 
695 	hlist_for_each_entry_rcu(p, head, mnt_hash)
696 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
697 			return p;
698 	return NULL;
699 }
700 
701 /*
702  * lookup_mnt - Return the first child mount mounted at path
703  *
704  * "First" means first mounted chronologically.  If you create the
705  * following mounts:
706  *
707  * mount /dev/sda1 /mnt
708  * mount /dev/sda2 /mnt
709  * mount /dev/sda3 /mnt
710  *
711  * Then lookup_mnt() on the base /mnt dentry in the root mount will
712  * return successively the root dentry and vfsmount of /dev/sda1, then
713  * /dev/sda2, then /dev/sda3, then NULL.
714  *
715  * lookup_mnt takes a reference to the found vfsmount.
716  */
717 struct vfsmount *lookup_mnt(const struct path *path)
718 {
719 	struct mount *child_mnt;
720 	struct vfsmount *m;
721 	unsigned seq;
722 
723 	rcu_read_lock();
724 	do {
725 		seq = read_seqbegin(&mount_lock);
726 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
727 		m = child_mnt ? &child_mnt->mnt : NULL;
728 	} while (!legitimize_mnt(m, seq));
729 	rcu_read_unlock();
730 	return m;
731 }
732 
733 static inline void lock_ns_list(struct mnt_namespace *ns)
734 {
735 	spin_lock(&ns->ns_lock);
736 }
737 
738 static inline void unlock_ns_list(struct mnt_namespace *ns)
739 {
740 	spin_unlock(&ns->ns_lock);
741 }
742 
743 static inline bool mnt_is_cursor(struct mount *mnt)
744 {
745 	return mnt->mnt.mnt_flags & MNT_CURSOR;
746 }
747 
748 /*
749  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
750  *                         current mount namespace.
751  *
752  * The common case is dentries are not mountpoints at all and that
753  * test is handled inline.  For the slow case when we are actually
754  * dealing with a mountpoint of some kind, walk through all of the
755  * mounts in the current mount namespace and test to see if the dentry
756  * is a mountpoint.
757  *
758  * The mount_hashtable is not usable in the context because we
759  * need to identify all mounts that may be in the current mount
760  * namespace not just a mount that happens to have some specified
761  * parent mount.
762  */
763 bool __is_local_mountpoint(struct dentry *dentry)
764 {
765 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
766 	struct mount *mnt;
767 	bool is_covered = false;
768 
769 	down_read(&namespace_sem);
770 	lock_ns_list(ns);
771 	list_for_each_entry(mnt, &ns->list, mnt_list) {
772 		if (mnt_is_cursor(mnt))
773 			continue;
774 		is_covered = (mnt->mnt_mountpoint == dentry);
775 		if (is_covered)
776 			break;
777 	}
778 	unlock_ns_list(ns);
779 	up_read(&namespace_sem);
780 
781 	return is_covered;
782 }
783 
784 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
785 {
786 	struct hlist_head *chain = mp_hash(dentry);
787 	struct mountpoint *mp;
788 
789 	hlist_for_each_entry(mp, chain, m_hash) {
790 		if (mp->m_dentry == dentry) {
791 			mp->m_count++;
792 			return mp;
793 		}
794 	}
795 	return NULL;
796 }
797 
798 static struct mountpoint *get_mountpoint(struct dentry *dentry)
799 {
800 	struct mountpoint *mp, *new = NULL;
801 	int ret;
802 
803 	if (d_mountpoint(dentry)) {
804 		/* might be worth a WARN_ON() */
805 		if (d_unlinked(dentry))
806 			return ERR_PTR(-ENOENT);
807 mountpoint:
808 		read_seqlock_excl(&mount_lock);
809 		mp = lookup_mountpoint(dentry);
810 		read_sequnlock_excl(&mount_lock);
811 		if (mp)
812 			goto done;
813 	}
814 
815 	if (!new)
816 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
817 	if (!new)
818 		return ERR_PTR(-ENOMEM);
819 
820 
821 	/* Exactly one processes may set d_mounted */
822 	ret = d_set_mounted(dentry);
823 
824 	/* Someone else set d_mounted? */
825 	if (ret == -EBUSY)
826 		goto mountpoint;
827 
828 	/* The dentry is not available as a mountpoint? */
829 	mp = ERR_PTR(ret);
830 	if (ret)
831 		goto done;
832 
833 	/* Add the new mountpoint to the hash table */
834 	read_seqlock_excl(&mount_lock);
835 	new->m_dentry = dget(dentry);
836 	new->m_count = 1;
837 	hlist_add_head(&new->m_hash, mp_hash(dentry));
838 	INIT_HLIST_HEAD(&new->m_list);
839 	read_sequnlock_excl(&mount_lock);
840 
841 	mp = new;
842 	new = NULL;
843 done:
844 	kfree(new);
845 	return mp;
846 }
847 
848 /*
849  * vfsmount lock must be held.  Additionally, the caller is responsible
850  * for serializing calls for given disposal list.
851  */
852 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
853 {
854 	if (!--mp->m_count) {
855 		struct dentry *dentry = mp->m_dentry;
856 		BUG_ON(!hlist_empty(&mp->m_list));
857 		spin_lock(&dentry->d_lock);
858 		dentry->d_flags &= ~DCACHE_MOUNTED;
859 		spin_unlock(&dentry->d_lock);
860 		dput_to_list(dentry, list);
861 		hlist_del(&mp->m_hash);
862 		kfree(mp);
863 	}
864 }
865 
866 /* called with namespace_lock and vfsmount lock */
867 static void put_mountpoint(struct mountpoint *mp)
868 {
869 	__put_mountpoint(mp, &ex_mountpoints);
870 }
871 
872 static inline int check_mnt(struct mount *mnt)
873 {
874 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
875 }
876 
877 /*
878  * vfsmount lock must be held for write
879  */
880 static void touch_mnt_namespace(struct mnt_namespace *ns)
881 {
882 	if (ns) {
883 		ns->event = ++event;
884 		wake_up_interruptible(&ns->poll);
885 	}
886 }
887 
888 /*
889  * vfsmount lock must be held for write
890  */
891 static void __touch_mnt_namespace(struct mnt_namespace *ns)
892 {
893 	if (ns && ns->event != event) {
894 		ns->event = event;
895 		wake_up_interruptible(&ns->poll);
896 	}
897 }
898 
899 /*
900  * vfsmount lock must be held for write
901  */
902 static struct mountpoint *unhash_mnt(struct mount *mnt)
903 {
904 	struct mountpoint *mp;
905 	mnt->mnt_parent = mnt;
906 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
907 	list_del_init(&mnt->mnt_child);
908 	hlist_del_init_rcu(&mnt->mnt_hash);
909 	hlist_del_init(&mnt->mnt_mp_list);
910 	mp = mnt->mnt_mp;
911 	mnt->mnt_mp = NULL;
912 	return mp;
913 }
914 
915 /*
916  * vfsmount lock must be held for write
917  */
918 static void umount_mnt(struct mount *mnt)
919 {
920 	put_mountpoint(unhash_mnt(mnt));
921 }
922 
923 /*
924  * vfsmount lock must be held for write
925  */
926 void mnt_set_mountpoint(struct mount *mnt,
927 			struct mountpoint *mp,
928 			struct mount *child_mnt)
929 {
930 	mp->m_count++;
931 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
932 	child_mnt->mnt_mountpoint = mp->m_dentry;
933 	child_mnt->mnt_parent = mnt;
934 	child_mnt->mnt_mp = mp;
935 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
936 }
937 
938 /**
939  * mnt_set_mountpoint_beneath - mount a mount beneath another one
940  *
941  * @new_parent: the source mount
942  * @top_mnt:    the mount beneath which @new_parent is mounted
943  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
944  *
945  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
946  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
947  * @new_mp. And mount @new_parent on the old parent and old
948  * mountpoint of @top_mnt.
949  *
950  * Context: This function expects namespace_lock() and lock_mount_hash()
951  *          to have been acquired in that order.
952  */
953 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
954 				       struct mount *top_mnt,
955 				       struct mountpoint *new_mp)
956 {
957 	struct mount *old_top_parent = top_mnt->mnt_parent;
958 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
959 
960 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
961 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
962 }
963 
964 
965 static void __attach_mnt(struct mount *mnt, struct mount *parent)
966 {
967 	hlist_add_head_rcu(&mnt->mnt_hash,
968 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
969 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
970 }
971 
972 /**
973  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
974  *              list of child mounts
975  * @parent:  the parent
976  * @mnt:     the new mount
977  * @mp:      the new mountpoint
978  * @beneath: whether to mount @mnt beneath or on top of @parent
979  *
980  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
981  * to @parent's child mount list and to @mount_hashtable.
982  *
983  * If @beneath is true, remove @mnt from its current parent and
984  * mountpoint and mount it on @mp on @parent, and mount @parent on the
985  * old parent and old mountpoint of @mnt. Finally, attach @parent to
986  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
987  *
988  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
989  * to the correct parent.
990  *
991  * Context: This function expects namespace_lock() and lock_mount_hash()
992  *          to have been acquired in that order.
993  */
994 static void attach_mnt(struct mount *mnt, struct mount *parent,
995 		       struct mountpoint *mp, bool beneath)
996 {
997 	if (beneath)
998 		mnt_set_mountpoint_beneath(mnt, parent, mp);
999 	else
1000 		mnt_set_mountpoint(parent, mp, mnt);
1001 	/*
1002 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1003 	 * beneath @parent then @mnt will need to be attached to
1004 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1005 	 * isn't the same mount as @parent.
1006 	 */
1007 	__attach_mnt(mnt, mnt->mnt_parent);
1008 }
1009 
1010 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1011 {
1012 	struct mountpoint *old_mp = mnt->mnt_mp;
1013 	struct mount *old_parent = mnt->mnt_parent;
1014 
1015 	list_del_init(&mnt->mnt_child);
1016 	hlist_del_init(&mnt->mnt_mp_list);
1017 	hlist_del_init_rcu(&mnt->mnt_hash);
1018 
1019 	attach_mnt(mnt, parent, mp, false);
1020 
1021 	put_mountpoint(old_mp);
1022 	mnt_add_count(old_parent, -1);
1023 }
1024 
1025 /*
1026  * vfsmount lock must be held for write
1027  */
1028 static void commit_tree(struct mount *mnt)
1029 {
1030 	struct mount *parent = mnt->mnt_parent;
1031 	struct mount *m;
1032 	LIST_HEAD(head);
1033 	struct mnt_namespace *n = parent->mnt_ns;
1034 
1035 	BUG_ON(parent == mnt);
1036 
1037 	list_add_tail(&head, &mnt->mnt_list);
1038 	list_for_each_entry(m, &head, mnt_list)
1039 		m->mnt_ns = n;
1040 
1041 	list_splice(&head, n->list.prev);
1042 
1043 	n->mounts += n->pending_mounts;
1044 	n->pending_mounts = 0;
1045 
1046 	__attach_mnt(mnt, parent);
1047 	touch_mnt_namespace(n);
1048 }
1049 
1050 static struct mount *next_mnt(struct mount *p, struct mount *root)
1051 {
1052 	struct list_head *next = p->mnt_mounts.next;
1053 	if (next == &p->mnt_mounts) {
1054 		while (1) {
1055 			if (p == root)
1056 				return NULL;
1057 			next = p->mnt_child.next;
1058 			if (next != &p->mnt_parent->mnt_mounts)
1059 				break;
1060 			p = p->mnt_parent;
1061 		}
1062 	}
1063 	return list_entry(next, struct mount, mnt_child);
1064 }
1065 
1066 static struct mount *skip_mnt_tree(struct mount *p)
1067 {
1068 	struct list_head *prev = p->mnt_mounts.prev;
1069 	while (prev != &p->mnt_mounts) {
1070 		p = list_entry(prev, struct mount, mnt_child);
1071 		prev = p->mnt_mounts.prev;
1072 	}
1073 	return p;
1074 }
1075 
1076 /**
1077  * vfs_create_mount - Create a mount for a configured superblock
1078  * @fc: The configuration context with the superblock attached
1079  *
1080  * Create a mount to an already configured superblock.  If necessary, the
1081  * caller should invoke vfs_get_tree() before calling this.
1082  *
1083  * Note that this does not attach the mount to anything.
1084  */
1085 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1086 {
1087 	struct mount *mnt;
1088 
1089 	if (!fc->root)
1090 		return ERR_PTR(-EINVAL);
1091 
1092 	mnt = alloc_vfsmnt(fc->source ?: "none");
1093 	if (!mnt)
1094 		return ERR_PTR(-ENOMEM);
1095 
1096 	if (fc->sb_flags & SB_KERNMOUNT)
1097 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1098 
1099 	atomic_inc(&fc->root->d_sb->s_active);
1100 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1101 	mnt->mnt.mnt_root	= dget(fc->root);
1102 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1103 	mnt->mnt_parent		= mnt;
1104 
1105 	lock_mount_hash();
1106 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1107 	unlock_mount_hash();
1108 	return &mnt->mnt;
1109 }
1110 EXPORT_SYMBOL(vfs_create_mount);
1111 
1112 struct vfsmount *fc_mount(struct fs_context *fc)
1113 {
1114 	int err = vfs_get_tree(fc);
1115 	if (!err) {
1116 		up_write(&fc->root->d_sb->s_umount);
1117 		return vfs_create_mount(fc);
1118 	}
1119 	return ERR_PTR(err);
1120 }
1121 EXPORT_SYMBOL(fc_mount);
1122 
1123 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1124 				int flags, const char *name,
1125 				void *data)
1126 {
1127 	struct fs_context *fc;
1128 	struct vfsmount *mnt;
1129 	int ret = 0;
1130 
1131 	if (!type)
1132 		return ERR_PTR(-EINVAL);
1133 
1134 	fc = fs_context_for_mount(type, flags);
1135 	if (IS_ERR(fc))
1136 		return ERR_CAST(fc);
1137 
1138 	if (name)
1139 		ret = vfs_parse_fs_string(fc, "source",
1140 					  name, strlen(name));
1141 	if (!ret)
1142 		ret = parse_monolithic_mount_data(fc, data);
1143 	if (!ret)
1144 		mnt = fc_mount(fc);
1145 	else
1146 		mnt = ERR_PTR(ret);
1147 
1148 	put_fs_context(fc);
1149 	return mnt;
1150 }
1151 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1152 
1153 struct vfsmount *
1154 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1155 	     const char *name, void *data)
1156 {
1157 	/* Until it is worked out how to pass the user namespace
1158 	 * through from the parent mount to the submount don't support
1159 	 * unprivileged mounts with submounts.
1160 	 */
1161 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1162 		return ERR_PTR(-EPERM);
1163 
1164 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1165 }
1166 EXPORT_SYMBOL_GPL(vfs_submount);
1167 
1168 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1169 					int flag)
1170 {
1171 	struct super_block *sb = old->mnt.mnt_sb;
1172 	struct mount *mnt;
1173 	int err;
1174 
1175 	mnt = alloc_vfsmnt(old->mnt_devname);
1176 	if (!mnt)
1177 		return ERR_PTR(-ENOMEM);
1178 
1179 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1180 		mnt->mnt_group_id = 0; /* not a peer of original */
1181 	else
1182 		mnt->mnt_group_id = old->mnt_group_id;
1183 
1184 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1185 		err = mnt_alloc_group_id(mnt);
1186 		if (err)
1187 			goto out_free;
1188 	}
1189 
1190 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1191 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1192 
1193 	atomic_inc(&sb->s_active);
1194 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1195 
1196 	mnt->mnt.mnt_sb = sb;
1197 	mnt->mnt.mnt_root = dget(root);
1198 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1199 	mnt->mnt_parent = mnt;
1200 	lock_mount_hash();
1201 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1202 	unlock_mount_hash();
1203 
1204 	if ((flag & CL_SLAVE) ||
1205 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1206 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1207 		mnt->mnt_master = old;
1208 		CLEAR_MNT_SHARED(mnt);
1209 	} else if (!(flag & CL_PRIVATE)) {
1210 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1211 			list_add(&mnt->mnt_share, &old->mnt_share);
1212 		if (IS_MNT_SLAVE(old))
1213 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1214 		mnt->mnt_master = old->mnt_master;
1215 	} else {
1216 		CLEAR_MNT_SHARED(mnt);
1217 	}
1218 	if (flag & CL_MAKE_SHARED)
1219 		set_mnt_shared(mnt);
1220 
1221 	/* stick the duplicate mount on the same expiry list
1222 	 * as the original if that was on one */
1223 	if (flag & CL_EXPIRE) {
1224 		if (!list_empty(&old->mnt_expire))
1225 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1226 	}
1227 
1228 	return mnt;
1229 
1230  out_free:
1231 	mnt_free_id(mnt);
1232 	free_vfsmnt(mnt);
1233 	return ERR_PTR(err);
1234 }
1235 
1236 static void cleanup_mnt(struct mount *mnt)
1237 {
1238 	struct hlist_node *p;
1239 	struct mount *m;
1240 	/*
1241 	 * The warning here probably indicates that somebody messed
1242 	 * up a mnt_want/drop_write() pair.  If this happens, the
1243 	 * filesystem was probably unable to make r/w->r/o transitions.
1244 	 * The locking used to deal with mnt_count decrement provides barriers,
1245 	 * so mnt_get_writers() below is safe.
1246 	 */
1247 	WARN_ON(mnt_get_writers(mnt));
1248 	if (unlikely(mnt->mnt_pins.first))
1249 		mnt_pin_kill(mnt);
1250 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1251 		hlist_del(&m->mnt_umount);
1252 		mntput(&m->mnt);
1253 	}
1254 	fsnotify_vfsmount_delete(&mnt->mnt);
1255 	dput(mnt->mnt.mnt_root);
1256 	deactivate_super(mnt->mnt.mnt_sb);
1257 	mnt_free_id(mnt);
1258 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1259 }
1260 
1261 static void __cleanup_mnt(struct rcu_head *head)
1262 {
1263 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1264 }
1265 
1266 static LLIST_HEAD(delayed_mntput_list);
1267 static void delayed_mntput(struct work_struct *unused)
1268 {
1269 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1270 	struct mount *m, *t;
1271 
1272 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1273 		cleanup_mnt(m);
1274 }
1275 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1276 
1277 static void mntput_no_expire(struct mount *mnt)
1278 {
1279 	LIST_HEAD(list);
1280 	int count;
1281 
1282 	rcu_read_lock();
1283 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1284 		/*
1285 		 * Since we don't do lock_mount_hash() here,
1286 		 * ->mnt_ns can change under us.  However, if it's
1287 		 * non-NULL, then there's a reference that won't
1288 		 * be dropped until after an RCU delay done after
1289 		 * turning ->mnt_ns NULL.  So if we observe it
1290 		 * non-NULL under rcu_read_lock(), the reference
1291 		 * we are dropping is not the final one.
1292 		 */
1293 		mnt_add_count(mnt, -1);
1294 		rcu_read_unlock();
1295 		return;
1296 	}
1297 	lock_mount_hash();
1298 	/*
1299 	 * make sure that if __legitimize_mnt() has not seen us grab
1300 	 * mount_lock, we'll see their refcount increment here.
1301 	 */
1302 	smp_mb();
1303 	mnt_add_count(mnt, -1);
1304 	count = mnt_get_count(mnt);
1305 	if (count != 0) {
1306 		WARN_ON(count < 0);
1307 		rcu_read_unlock();
1308 		unlock_mount_hash();
1309 		return;
1310 	}
1311 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1312 		rcu_read_unlock();
1313 		unlock_mount_hash();
1314 		return;
1315 	}
1316 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1317 	rcu_read_unlock();
1318 
1319 	list_del(&mnt->mnt_instance);
1320 
1321 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1322 		struct mount *p, *tmp;
1323 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1324 			__put_mountpoint(unhash_mnt(p), &list);
1325 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1326 		}
1327 	}
1328 	unlock_mount_hash();
1329 	shrink_dentry_list(&list);
1330 
1331 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1332 		struct task_struct *task = current;
1333 		if (likely(!(task->flags & PF_KTHREAD))) {
1334 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1335 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1336 				return;
1337 		}
1338 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1339 			schedule_delayed_work(&delayed_mntput_work, 1);
1340 		return;
1341 	}
1342 	cleanup_mnt(mnt);
1343 }
1344 
1345 void mntput(struct vfsmount *mnt)
1346 {
1347 	if (mnt) {
1348 		struct mount *m = real_mount(mnt);
1349 		/* avoid cacheline pingpong */
1350 		if (unlikely(m->mnt_expiry_mark))
1351 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1352 		mntput_no_expire(m);
1353 	}
1354 }
1355 EXPORT_SYMBOL(mntput);
1356 
1357 struct vfsmount *mntget(struct vfsmount *mnt)
1358 {
1359 	if (mnt)
1360 		mnt_add_count(real_mount(mnt), 1);
1361 	return mnt;
1362 }
1363 EXPORT_SYMBOL(mntget);
1364 
1365 /*
1366  * Make a mount point inaccessible to new lookups.
1367  * Because there may still be current users, the caller MUST WAIT
1368  * for an RCU grace period before destroying the mount point.
1369  */
1370 void mnt_make_shortterm(struct vfsmount *mnt)
1371 {
1372 	if (mnt)
1373 		real_mount(mnt)->mnt_ns = NULL;
1374 }
1375 
1376 /**
1377  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1378  * @path: path to check
1379  *
1380  *  d_mountpoint() can only be used reliably to establish if a dentry is
1381  *  not mounted in any namespace and that common case is handled inline.
1382  *  d_mountpoint() isn't aware of the possibility there may be multiple
1383  *  mounts using a given dentry in a different namespace. This function
1384  *  checks if the passed in path is a mountpoint rather than the dentry
1385  *  alone.
1386  */
1387 bool path_is_mountpoint(const struct path *path)
1388 {
1389 	unsigned seq;
1390 	bool res;
1391 
1392 	if (!d_mountpoint(path->dentry))
1393 		return false;
1394 
1395 	rcu_read_lock();
1396 	do {
1397 		seq = read_seqbegin(&mount_lock);
1398 		res = __path_is_mountpoint(path);
1399 	} while (read_seqretry(&mount_lock, seq));
1400 	rcu_read_unlock();
1401 
1402 	return res;
1403 }
1404 EXPORT_SYMBOL(path_is_mountpoint);
1405 
1406 struct vfsmount *mnt_clone_internal(const struct path *path)
1407 {
1408 	struct mount *p;
1409 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1410 	if (IS_ERR(p))
1411 		return ERR_CAST(p);
1412 	p->mnt.mnt_flags |= MNT_INTERNAL;
1413 	return &p->mnt;
1414 }
1415 
1416 #ifdef CONFIG_PROC_FS
1417 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1418 				   struct list_head *p)
1419 {
1420 	struct mount *mnt, *ret = NULL;
1421 
1422 	lock_ns_list(ns);
1423 	list_for_each_continue(p, &ns->list) {
1424 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1425 		if (!mnt_is_cursor(mnt)) {
1426 			ret = mnt;
1427 			break;
1428 		}
1429 	}
1430 	unlock_ns_list(ns);
1431 
1432 	return ret;
1433 }
1434 
1435 /* iterator; we want it to have access to namespace_sem, thus here... */
1436 static void *m_start(struct seq_file *m, loff_t *pos)
1437 {
1438 	struct proc_mounts *p = m->private;
1439 	struct list_head *prev;
1440 
1441 	down_read(&namespace_sem);
1442 	if (!*pos) {
1443 		prev = &p->ns->list;
1444 	} else {
1445 		prev = &p->cursor.mnt_list;
1446 
1447 		/* Read after we'd reached the end? */
1448 		if (list_empty(prev))
1449 			return NULL;
1450 	}
1451 
1452 	return mnt_list_next(p->ns, prev);
1453 }
1454 
1455 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1456 {
1457 	struct proc_mounts *p = m->private;
1458 	struct mount *mnt = v;
1459 
1460 	++*pos;
1461 	return mnt_list_next(p->ns, &mnt->mnt_list);
1462 }
1463 
1464 static void m_stop(struct seq_file *m, void *v)
1465 {
1466 	struct proc_mounts *p = m->private;
1467 	struct mount *mnt = v;
1468 
1469 	lock_ns_list(p->ns);
1470 	if (mnt)
1471 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1472 	else
1473 		list_del_init(&p->cursor.mnt_list);
1474 	unlock_ns_list(p->ns);
1475 	up_read(&namespace_sem);
1476 }
1477 
1478 static int m_show(struct seq_file *m, void *v)
1479 {
1480 	struct proc_mounts *p = m->private;
1481 	struct mount *r = v;
1482 	return p->show(m, &r->mnt);
1483 }
1484 
1485 const struct seq_operations mounts_op = {
1486 	.start	= m_start,
1487 	.next	= m_next,
1488 	.stop	= m_stop,
1489 	.show	= m_show,
1490 };
1491 
1492 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1493 {
1494 	down_read(&namespace_sem);
1495 	lock_ns_list(ns);
1496 	list_del(&cursor->mnt_list);
1497 	unlock_ns_list(ns);
1498 	up_read(&namespace_sem);
1499 }
1500 #endif  /* CONFIG_PROC_FS */
1501 
1502 /**
1503  * may_umount_tree - check if a mount tree is busy
1504  * @m: root of mount tree
1505  *
1506  * This is called to check if a tree of mounts has any
1507  * open files, pwds, chroots or sub mounts that are
1508  * busy.
1509  */
1510 int may_umount_tree(struct vfsmount *m)
1511 {
1512 	struct mount *mnt = real_mount(m);
1513 	int actual_refs = 0;
1514 	int minimum_refs = 0;
1515 	struct mount *p;
1516 	BUG_ON(!m);
1517 
1518 	/* write lock needed for mnt_get_count */
1519 	lock_mount_hash();
1520 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1521 		actual_refs += mnt_get_count(p);
1522 		minimum_refs += 2;
1523 	}
1524 	unlock_mount_hash();
1525 
1526 	if (actual_refs > minimum_refs)
1527 		return 0;
1528 
1529 	return 1;
1530 }
1531 
1532 EXPORT_SYMBOL(may_umount_tree);
1533 
1534 /**
1535  * may_umount - check if a mount point is busy
1536  * @mnt: root of mount
1537  *
1538  * This is called to check if a mount point has any
1539  * open files, pwds, chroots or sub mounts. If the
1540  * mount has sub mounts this will return busy
1541  * regardless of whether the sub mounts are busy.
1542  *
1543  * Doesn't take quota and stuff into account. IOW, in some cases it will
1544  * give false negatives. The main reason why it's here is that we need
1545  * a non-destructive way to look for easily umountable filesystems.
1546  */
1547 int may_umount(struct vfsmount *mnt)
1548 {
1549 	int ret = 1;
1550 	down_read(&namespace_sem);
1551 	lock_mount_hash();
1552 	if (propagate_mount_busy(real_mount(mnt), 2))
1553 		ret = 0;
1554 	unlock_mount_hash();
1555 	up_read(&namespace_sem);
1556 	return ret;
1557 }
1558 
1559 EXPORT_SYMBOL(may_umount);
1560 
1561 static void namespace_unlock(void)
1562 {
1563 	struct hlist_head head;
1564 	struct hlist_node *p;
1565 	struct mount *m;
1566 	LIST_HEAD(list);
1567 
1568 	hlist_move_list(&unmounted, &head);
1569 	list_splice_init(&ex_mountpoints, &list);
1570 
1571 	up_write(&namespace_sem);
1572 
1573 	shrink_dentry_list(&list);
1574 
1575 	if (likely(hlist_empty(&head)))
1576 		return;
1577 
1578 	synchronize_rcu_expedited();
1579 
1580 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1581 		hlist_del(&m->mnt_umount);
1582 		mntput(&m->mnt);
1583 	}
1584 }
1585 
1586 static inline void namespace_lock(void)
1587 {
1588 	down_write(&namespace_sem);
1589 }
1590 
1591 enum umount_tree_flags {
1592 	UMOUNT_SYNC = 1,
1593 	UMOUNT_PROPAGATE = 2,
1594 	UMOUNT_CONNECTED = 4,
1595 };
1596 
1597 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1598 {
1599 	/* Leaving mounts connected is only valid for lazy umounts */
1600 	if (how & UMOUNT_SYNC)
1601 		return true;
1602 
1603 	/* A mount without a parent has nothing to be connected to */
1604 	if (!mnt_has_parent(mnt))
1605 		return true;
1606 
1607 	/* Because the reference counting rules change when mounts are
1608 	 * unmounted and connected, umounted mounts may not be
1609 	 * connected to mounted mounts.
1610 	 */
1611 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1612 		return true;
1613 
1614 	/* Has it been requested that the mount remain connected? */
1615 	if (how & UMOUNT_CONNECTED)
1616 		return false;
1617 
1618 	/* Is the mount locked such that it needs to remain connected? */
1619 	if (IS_MNT_LOCKED(mnt))
1620 		return false;
1621 
1622 	/* By default disconnect the mount */
1623 	return true;
1624 }
1625 
1626 /*
1627  * mount_lock must be held
1628  * namespace_sem must be held for write
1629  */
1630 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1631 {
1632 	LIST_HEAD(tmp_list);
1633 	struct mount *p;
1634 
1635 	if (how & UMOUNT_PROPAGATE)
1636 		propagate_mount_unlock(mnt);
1637 
1638 	/* Gather the mounts to umount */
1639 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1640 		p->mnt.mnt_flags |= MNT_UMOUNT;
1641 		list_move(&p->mnt_list, &tmp_list);
1642 	}
1643 
1644 	/* Hide the mounts from mnt_mounts */
1645 	list_for_each_entry(p, &tmp_list, mnt_list) {
1646 		list_del_init(&p->mnt_child);
1647 	}
1648 
1649 	/* Add propogated mounts to the tmp_list */
1650 	if (how & UMOUNT_PROPAGATE)
1651 		propagate_umount(&tmp_list);
1652 
1653 	while (!list_empty(&tmp_list)) {
1654 		struct mnt_namespace *ns;
1655 		bool disconnect;
1656 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1657 		list_del_init(&p->mnt_expire);
1658 		list_del_init(&p->mnt_list);
1659 		ns = p->mnt_ns;
1660 		if (ns) {
1661 			ns->mounts--;
1662 			__touch_mnt_namespace(ns);
1663 		}
1664 		p->mnt_ns = NULL;
1665 		if (how & UMOUNT_SYNC)
1666 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1667 
1668 		disconnect = disconnect_mount(p, how);
1669 		if (mnt_has_parent(p)) {
1670 			mnt_add_count(p->mnt_parent, -1);
1671 			if (!disconnect) {
1672 				/* Don't forget about p */
1673 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1674 			} else {
1675 				umount_mnt(p);
1676 			}
1677 		}
1678 		change_mnt_propagation(p, MS_PRIVATE);
1679 		if (disconnect)
1680 			hlist_add_head(&p->mnt_umount, &unmounted);
1681 	}
1682 }
1683 
1684 static void shrink_submounts(struct mount *mnt);
1685 
1686 static int do_umount_root(struct super_block *sb)
1687 {
1688 	int ret = 0;
1689 
1690 	down_write(&sb->s_umount);
1691 	if (!sb_rdonly(sb)) {
1692 		struct fs_context *fc;
1693 
1694 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1695 						SB_RDONLY);
1696 		if (IS_ERR(fc)) {
1697 			ret = PTR_ERR(fc);
1698 		} else {
1699 			ret = parse_monolithic_mount_data(fc, NULL);
1700 			if (!ret)
1701 				ret = reconfigure_super(fc);
1702 			put_fs_context(fc);
1703 		}
1704 	}
1705 	up_write(&sb->s_umount);
1706 	return ret;
1707 }
1708 
1709 static int do_umount(struct mount *mnt, int flags)
1710 {
1711 	struct super_block *sb = mnt->mnt.mnt_sb;
1712 	int retval;
1713 
1714 	retval = security_sb_umount(&mnt->mnt, flags);
1715 	if (retval)
1716 		return retval;
1717 
1718 	/*
1719 	 * Allow userspace to request a mountpoint be expired rather than
1720 	 * unmounting unconditionally. Unmount only happens if:
1721 	 *  (1) the mark is already set (the mark is cleared by mntput())
1722 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1723 	 */
1724 	if (flags & MNT_EXPIRE) {
1725 		if (&mnt->mnt == current->fs->root.mnt ||
1726 		    flags & (MNT_FORCE | MNT_DETACH))
1727 			return -EINVAL;
1728 
1729 		/*
1730 		 * probably don't strictly need the lock here if we examined
1731 		 * all race cases, but it's a slowpath.
1732 		 */
1733 		lock_mount_hash();
1734 		if (mnt_get_count(mnt) != 2) {
1735 			unlock_mount_hash();
1736 			return -EBUSY;
1737 		}
1738 		unlock_mount_hash();
1739 
1740 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1741 			return -EAGAIN;
1742 	}
1743 
1744 	/*
1745 	 * If we may have to abort operations to get out of this
1746 	 * mount, and they will themselves hold resources we must
1747 	 * allow the fs to do things. In the Unix tradition of
1748 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1749 	 * might fail to complete on the first run through as other tasks
1750 	 * must return, and the like. Thats for the mount program to worry
1751 	 * about for the moment.
1752 	 */
1753 
1754 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1755 		sb->s_op->umount_begin(sb);
1756 	}
1757 
1758 	/*
1759 	 * No sense to grab the lock for this test, but test itself looks
1760 	 * somewhat bogus. Suggestions for better replacement?
1761 	 * Ho-hum... In principle, we might treat that as umount + switch
1762 	 * to rootfs. GC would eventually take care of the old vfsmount.
1763 	 * Actually it makes sense, especially if rootfs would contain a
1764 	 * /reboot - static binary that would close all descriptors and
1765 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1766 	 */
1767 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1768 		/*
1769 		 * Special case for "unmounting" root ...
1770 		 * we just try to remount it readonly.
1771 		 */
1772 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1773 			return -EPERM;
1774 		return do_umount_root(sb);
1775 	}
1776 
1777 	namespace_lock();
1778 	lock_mount_hash();
1779 
1780 	/* Recheck MNT_LOCKED with the locks held */
1781 	retval = -EINVAL;
1782 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1783 		goto out;
1784 
1785 	event++;
1786 	if (flags & MNT_DETACH) {
1787 		if (!list_empty(&mnt->mnt_list))
1788 			umount_tree(mnt, UMOUNT_PROPAGATE);
1789 		retval = 0;
1790 	} else {
1791 		shrink_submounts(mnt);
1792 		retval = -EBUSY;
1793 		if (!propagate_mount_busy(mnt, 2)) {
1794 			if (!list_empty(&mnt->mnt_list))
1795 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1796 			retval = 0;
1797 		}
1798 	}
1799 out:
1800 	unlock_mount_hash();
1801 	namespace_unlock();
1802 	return retval;
1803 }
1804 
1805 /*
1806  * __detach_mounts - lazily unmount all mounts on the specified dentry
1807  *
1808  * During unlink, rmdir, and d_drop it is possible to loose the path
1809  * to an existing mountpoint, and wind up leaking the mount.
1810  * detach_mounts allows lazily unmounting those mounts instead of
1811  * leaking them.
1812  *
1813  * The caller may hold dentry->d_inode->i_mutex.
1814  */
1815 void __detach_mounts(struct dentry *dentry)
1816 {
1817 	struct mountpoint *mp;
1818 	struct mount *mnt;
1819 
1820 	namespace_lock();
1821 	lock_mount_hash();
1822 	mp = lookup_mountpoint(dentry);
1823 	if (!mp)
1824 		goto out_unlock;
1825 
1826 	event++;
1827 	while (!hlist_empty(&mp->m_list)) {
1828 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1829 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1830 			umount_mnt(mnt);
1831 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1832 		}
1833 		else umount_tree(mnt, UMOUNT_CONNECTED);
1834 	}
1835 	put_mountpoint(mp);
1836 out_unlock:
1837 	unlock_mount_hash();
1838 	namespace_unlock();
1839 }
1840 
1841 /*
1842  * Is the caller allowed to modify his namespace?
1843  */
1844 bool may_mount(void)
1845 {
1846 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1847 }
1848 
1849 /**
1850  * path_mounted - check whether path is mounted
1851  * @path: path to check
1852  *
1853  * Determine whether @path refers to the root of a mount.
1854  *
1855  * Return: true if @path is the root of a mount, false if not.
1856  */
1857 static inline bool path_mounted(const struct path *path)
1858 {
1859 	return path->mnt->mnt_root == path->dentry;
1860 }
1861 
1862 static void warn_mandlock(void)
1863 {
1864 	pr_warn_once("=======================================================\n"
1865 		     "WARNING: The mand mount option has been deprecated and\n"
1866 		     "         and is ignored by this kernel. Remove the mand\n"
1867 		     "         option from the mount to silence this warning.\n"
1868 		     "=======================================================\n");
1869 }
1870 
1871 static int can_umount(const struct path *path, int flags)
1872 {
1873 	struct mount *mnt = real_mount(path->mnt);
1874 
1875 	if (!may_mount())
1876 		return -EPERM;
1877 	if (!path_mounted(path))
1878 		return -EINVAL;
1879 	if (!check_mnt(mnt))
1880 		return -EINVAL;
1881 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1882 		return -EINVAL;
1883 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1884 		return -EPERM;
1885 	return 0;
1886 }
1887 
1888 // caller is responsible for flags being sane
1889 int path_umount(struct path *path, int flags)
1890 {
1891 	struct mount *mnt = real_mount(path->mnt);
1892 	int ret;
1893 
1894 	ret = can_umount(path, flags);
1895 	if (!ret)
1896 		ret = do_umount(mnt, flags);
1897 
1898 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1899 	dput(path->dentry);
1900 	mntput_no_expire(mnt);
1901 	return ret;
1902 }
1903 
1904 static int ksys_umount(char __user *name, int flags)
1905 {
1906 	int lookup_flags = LOOKUP_MOUNTPOINT;
1907 	struct path path;
1908 	int ret;
1909 
1910 	// basic validity checks done first
1911 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1912 		return -EINVAL;
1913 
1914 	if (!(flags & UMOUNT_NOFOLLOW))
1915 		lookup_flags |= LOOKUP_FOLLOW;
1916 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1917 	if (ret)
1918 		return ret;
1919 	return path_umount(&path, flags);
1920 }
1921 
1922 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1923 {
1924 	return ksys_umount(name, flags);
1925 }
1926 
1927 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1928 
1929 /*
1930  *	The 2.0 compatible umount. No flags.
1931  */
1932 SYSCALL_DEFINE1(oldumount, char __user *, name)
1933 {
1934 	return ksys_umount(name, 0);
1935 }
1936 
1937 #endif
1938 
1939 static bool is_mnt_ns_file(struct dentry *dentry)
1940 {
1941 	/* Is this a proxy for a mount namespace? */
1942 	return dentry->d_op == &ns_dentry_operations &&
1943 	       dentry->d_fsdata == &mntns_operations;
1944 }
1945 
1946 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1947 {
1948 	return container_of(ns, struct mnt_namespace, ns);
1949 }
1950 
1951 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1952 {
1953 	return &mnt->ns;
1954 }
1955 
1956 static bool mnt_ns_loop(struct dentry *dentry)
1957 {
1958 	/* Could bind mounting the mount namespace inode cause a
1959 	 * mount namespace loop?
1960 	 */
1961 	struct mnt_namespace *mnt_ns;
1962 	if (!is_mnt_ns_file(dentry))
1963 		return false;
1964 
1965 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1966 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1967 }
1968 
1969 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1970 					int flag)
1971 {
1972 	struct mount *res, *p, *q, *r, *parent;
1973 
1974 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1975 		return ERR_PTR(-EINVAL);
1976 
1977 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1978 		return ERR_PTR(-EINVAL);
1979 
1980 	res = q = clone_mnt(mnt, dentry, flag);
1981 	if (IS_ERR(q))
1982 		return q;
1983 
1984 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1985 
1986 	p = mnt;
1987 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1988 		struct mount *s;
1989 		if (!is_subdir(r->mnt_mountpoint, dentry))
1990 			continue;
1991 
1992 		for (s = r; s; s = next_mnt(s, r)) {
1993 			if (!(flag & CL_COPY_UNBINDABLE) &&
1994 			    IS_MNT_UNBINDABLE(s)) {
1995 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1996 					/* Both unbindable and locked. */
1997 					q = ERR_PTR(-EPERM);
1998 					goto out;
1999 				} else {
2000 					s = skip_mnt_tree(s);
2001 					continue;
2002 				}
2003 			}
2004 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2005 			    is_mnt_ns_file(s->mnt.mnt_root)) {
2006 				s = skip_mnt_tree(s);
2007 				continue;
2008 			}
2009 			while (p != s->mnt_parent) {
2010 				p = p->mnt_parent;
2011 				q = q->mnt_parent;
2012 			}
2013 			p = s;
2014 			parent = q;
2015 			q = clone_mnt(p, p->mnt.mnt_root, flag);
2016 			if (IS_ERR(q))
2017 				goto out;
2018 			lock_mount_hash();
2019 			list_add_tail(&q->mnt_list, &res->mnt_list);
2020 			attach_mnt(q, parent, p->mnt_mp, false);
2021 			unlock_mount_hash();
2022 		}
2023 	}
2024 	return res;
2025 out:
2026 	if (res) {
2027 		lock_mount_hash();
2028 		umount_tree(res, UMOUNT_SYNC);
2029 		unlock_mount_hash();
2030 	}
2031 	return q;
2032 }
2033 
2034 /* Caller should check returned pointer for errors */
2035 
2036 struct vfsmount *collect_mounts(const struct path *path)
2037 {
2038 	struct mount *tree;
2039 	namespace_lock();
2040 	if (!check_mnt(real_mount(path->mnt)))
2041 		tree = ERR_PTR(-EINVAL);
2042 	else
2043 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2044 				 CL_COPY_ALL | CL_PRIVATE);
2045 	namespace_unlock();
2046 	if (IS_ERR(tree))
2047 		return ERR_CAST(tree);
2048 	return &tree->mnt;
2049 }
2050 
2051 static void free_mnt_ns(struct mnt_namespace *);
2052 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2053 
2054 void dissolve_on_fput(struct vfsmount *mnt)
2055 {
2056 	struct mnt_namespace *ns;
2057 	namespace_lock();
2058 	lock_mount_hash();
2059 	ns = real_mount(mnt)->mnt_ns;
2060 	if (ns) {
2061 		if (is_anon_ns(ns))
2062 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2063 		else
2064 			ns = NULL;
2065 	}
2066 	unlock_mount_hash();
2067 	namespace_unlock();
2068 	if (ns)
2069 		free_mnt_ns(ns);
2070 }
2071 
2072 void drop_collected_mounts(struct vfsmount *mnt)
2073 {
2074 	namespace_lock();
2075 	lock_mount_hash();
2076 	umount_tree(real_mount(mnt), 0);
2077 	unlock_mount_hash();
2078 	namespace_unlock();
2079 }
2080 
2081 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2082 {
2083 	struct mount *child;
2084 
2085 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2086 		if (!is_subdir(child->mnt_mountpoint, dentry))
2087 			continue;
2088 
2089 		if (child->mnt.mnt_flags & MNT_LOCKED)
2090 			return true;
2091 	}
2092 	return false;
2093 }
2094 
2095 /**
2096  * clone_private_mount - create a private clone of a path
2097  * @path: path to clone
2098  *
2099  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2100  * will not be attached anywhere in the namespace and will be private (i.e.
2101  * changes to the originating mount won't be propagated into this).
2102  *
2103  * Release with mntput().
2104  */
2105 struct vfsmount *clone_private_mount(const struct path *path)
2106 {
2107 	struct mount *old_mnt = real_mount(path->mnt);
2108 	struct mount *new_mnt;
2109 
2110 	down_read(&namespace_sem);
2111 	if (IS_MNT_UNBINDABLE(old_mnt))
2112 		goto invalid;
2113 
2114 	if (!check_mnt(old_mnt))
2115 		goto invalid;
2116 
2117 	if (has_locked_children(old_mnt, path->dentry))
2118 		goto invalid;
2119 
2120 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2121 	up_read(&namespace_sem);
2122 
2123 	if (IS_ERR(new_mnt))
2124 		return ERR_CAST(new_mnt);
2125 
2126 	/* Longterm mount to be removed by kern_unmount*() */
2127 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2128 
2129 	return &new_mnt->mnt;
2130 
2131 invalid:
2132 	up_read(&namespace_sem);
2133 	return ERR_PTR(-EINVAL);
2134 }
2135 EXPORT_SYMBOL_GPL(clone_private_mount);
2136 
2137 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2138 		   struct vfsmount *root)
2139 {
2140 	struct mount *mnt;
2141 	int res = f(root, arg);
2142 	if (res)
2143 		return res;
2144 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2145 		res = f(&mnt->mnt, arg);
2146 		if (res)
2147 			return res;
2148 	}
2149 	return 0;
2150 }
2151 
2152 static void lock_mnt_tree(struct mount *mnt)
2153 {
2154 	struct mount *p;
2155 
2156 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2157 		int flags = p->mnt.mnt_flags;
2158 		/* Don't allow unprivileged users to change mount flags */
2159 		flags |= MNT_LOCK_ATIME;
2160 
2161 		if (flags & MNT_READONLY)
2162 			flags |= MNT_LOCK_READONLY;
2163 
2164 		if (flags & MNT_NODEV)
2165 			flags |= MNT_LOCK_NODEV;
2166 
2167 		if (flags & MNT_NOSUID)
2168 			flags |= MNT_LOCK_NOSUID;
2169 
2170 		if (flags & MNT_NOEXEC)
2171 			flags |= MNT_LOCK_NOEXEC;
2172 		/* Don't allow unprivileged users to reveal what is under a mount */
2173 		if (list_empty(&p->mnt_expire))
2174 			flags |= MNT_LOCKED;
2175 		p->mnt.mnt_flags = flags;
2176 	}
2177 }
2178 
2179 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2180 {
2181 	struct mount *p;
2182 
2183 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2184 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2185 			mnt_release_group_id(p);
2186 	}
2187 }
2188 
2189 static int invent_group_ids(struct mount *mnt, bool recurse)
2190 {
2191 	struct mount *p;
2192 
2193 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2194 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2195 			int err = mnt_alloc_group_id(p);
2196 			if (err) {
2197 				cleanup_group_ids(mnt, p);
2198 				return err;
2199 			}
2200 		}
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2207 {
2208 	unsigned int max = READ_ONCE(sysctl_mount_max);
2209 	unsigned int mounts = 0;
2210 	struct mount *p;
2211 
2212 	if (ns->mounts >= max)
2213 		return -ENOSPC;
2214 	max -= ns->mounts;
2215 	if (ns->pending_mounts >= max)
2216 		return -ENOSPC;
2217 	max -= ns->pending_mounts;
2218 
2219 	for (p = mnt; p; p = next_mnt(p, mnt))
2220 		mounts++;
2221 
2222 	if (mounts > max)
2223 		return -ENOSPC;
2224 
2225 	ns->pending_mounts += mounts;
2226 	return 0;
2227 }
2228 
2229 enum mnt_tree_flags_t {
2230 	MNT_TREE_MOVE = BIT(0),
2231 	MNT_TREE_BENEATH = BIT(1),
2232 };
2233 
2234 /**
2235  * attach_recursive_mnt - attach a source mount tree
2236  * @source_mnt: mount tree to be attached
2237  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2238  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2239  * @flags:      modify how @source_mnt is supposed to be attached
2240  *
2241  *  NOTE: in the table below explains the semantics when a source mount
2242  *  of a given type is attached to a destination mount of a given type.
2243  * ---------------------------------------------------------------------------
2244  * |         BIND MOUNT OPERATION                                            |
2245  * |**************************************************************************
2246  * | source-->| shared        |       private  |       slave    | unbindable |
2247  * | dest     |               |                |                |            |
2248  * |   |      |               |                |                |            |
2249  * |   v      |               |                |                |            |
2250  * |**************************************************************************
2251  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2252  * |          |               |                |                |            |
2253  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2254  * ***************************************************************************
2255  * A bind operation clones the source mount and mounts the clone on the
2256  * destination mount.
2257  *
2258  * (++)  the cloned mount is propagated to all the mounts in the propagation
2259  * 	 tree of the destination mount and the cloned mount is added to
2260  * 	 the peer group of the source mount.
2261  * (+)   the cloned mount is created under the destination mount and is marked
2262  *       as shared. The cloned mount is added to the peer group of the source
2263  *       mount.
2264  * (+++) the mount is propagated to all the mounts in the propagation tree
2265  *       of the destination mount and the cloned mount is made slave
2266  *       of the same master as that of the source mount. The cloned mount
2267  *       is marked as 'shared and slave'.
2268  * (*)   the cloned mount is made a slave of the same master as that of the
2269  * 	 source mount.
2270  *
2271  * ---------------------------------------------------------------------------
2272  * |         		MOVE MOUNT OPERATION                                 |
2273  * |**************************************************************************
2274  * | source-->| shared        |       private  |       slave    | unbindable |
2275  * | dest     |               |                |                |            |
2276  * |   |      |               |                |                |            |
2277  * |   v      |               |                |                |            |
2278  * |**************************************************************************
2279  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2280  * |          |               |                |                |            |
2281  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2282  * ***************************************************************************
2283  *
2284  * (+)  the mount is moved to the destination. And is then propagated to
2285  * 	all the mounts in the propagation tree of the destination mount.
2286  * (+*)  the mount is moved to the destination.
2287  * (+++)  the mount is moved to the destination and is then propagated to
2288  * 	all the mounts belonging to the destination mount's propagation tree.
2289  * 	the mount is marked as 'shared and slave'.
2290  * (*)	the mount continues to be a slave at the new location.
2291  *
2292  * if the source mount is a tree, the operations explained above is
2293  * applied to each mount in the tree.
2294  * Must be called without spinlocks held, since this function can sleep
2295  * in allocations.
2296  *
2297  * Context: The function expects namespace_lock() to be held.
2298  * Return: If @source_mnt was successfully attached 0 is returned.
2299  *         Otherwise a negative error code is returned.
2300  */
2301 static int attach_recursive_mnt(struct mount *source_mnt,
2302 				struct mount *top_mnt,
2303 				struct mountpoint *dest_mp,
2304 				enum mnt_tree_flags_t flags)
2305 {
2306 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2307 	HLIST_HEAD(tree_list);
2308 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2309 	struct mountpoint *smp;
2310 	struct mount *child, *dest_mnt, *p;
2311 	struct hlist_node *n;
2312 	int err = 0;
2313 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2314 
2315 	/*
2316 	 * Preallocate a mountpoint in case the new mounts need to be
2317 	 * mounted beneath mounts on the same mountpoint.
2318 	 */
2319 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2320 	if (IS_ERR(smp))
2321 		return PTR_ERR(smp);
2322 
2323 	/* Is there space to add these mounts to the mount namespace? */
2324 	if (!moving) {
2325 		err = count_mounts(ns, source_mnt);
2326 		if (err)
2327 			goto out;
2328 	}
2329 
2330 	if (beneath)
2331 		dest_mnt = top_mnt->mnt_parent;
2332 	else
2333 		dest_mnt = top_mnt;
2334 
2335 	if (IS_MNT_SHARED(dest_mnt)) {
2336 		err = invent_group_ids(source_mnt, true);
2337 		if (err)
2338 			goto out;
2339 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2340 	}
2341 	lock_mount_hash();
2342 	if (err)
2343 		goto out_cleanup_ids;
2344 
2345 	if (IS_MNT_SHARED(dest_mnt)) {
2346 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2347 			set_mnt_shared(p);
2348 	}
2349 
2350 	if (moving) {
2351 		if (beneath)
2352 			dest_mp = smp;
2353 		unhash_mnt(source_mnt);
2354 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2355 		touch_mnt_namespace(source_mnt->mnt_ns);
2356 	} else {
2357 		if (source_mnt->mnt_ns) {
2358 			/* move from anon - the caller will destroy */
2359 			list_del_init(&source_mnt->mnt_ns->list);
2360 		}
2361 		if (beneath)
2362 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2363 		else
2364 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2365 		commit_tree(source_mnt);
2366 	}
2367 
2368 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2369 		struct mount *q;
2370 		hlist_del_init(&child->mnt_hash);
2371 		q = __lookup_mnt(&child->mnt_parent->mnt,
2372 				 child->mnt_mountpoint);
2373 		if (q)
2374 			mnt_change_mountpoint(child, smp, q);
2375 		/* Notice when we are propagating across user namespaces */
2376 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2377 			lock_mnt_tree(child);
2378 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2379 		commit_tree(child);
2380 	}
2381 	put_mountpoint(smp);
2382 	unlock_mount_hash();
2383 
2384 	return 0;
2385 
2386  out_cleanup_ids:
2387 	while (!hlist_empty(&tree_list)) {
2388 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2389 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2390 		umount_tree(child, UMOUNT_SYNC);
2391 	}
2392 	unlock_mount_hash();
2393 	cleanup_group_ids(source_mnt, NULL);
2394  out:
2395 	ns->pending_mounts = 0;
2396 
2397 	read_seqlock_excl(&mount_lock);
2398 	put_mountpoint(smp);
2399 	read_sequnlock_excl(&mount_lock);
2400 
2401 	return err;
2402 }
2403 
2404 /**
2405  * do_lock_mount - lock mount and mountpoint
2406  * @path:    target path
2407  * @beneath: whether the intention is to mount beneath @path
2408  *
2409  * Follow the mount stack on @path until the top mount @mnt is found. If
2410  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2411  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2412  * until nothing is stacked on top of it anymore.
2413  *
2414  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2415  * against concurrent removal of the new mountpoint from another mount
2416  * namespace.
2417  *
2418  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2419  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2420  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2421  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2422  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2423  * on top of it for @beneath.
2424  *
2425  * In addition, @beneath needs to make sure that @mnt hasn't been
2426  * unmounted or moved from its current mountpoint in between dropping
2427  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2428  * being unmounted would be detected later by e.g., calling
2429  * check_mnt(mnt) in the function it's called from. For the @beneath
2430  * case however, it's useful to detect it directly in do_lock_mount().
2431  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2432  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2433  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2434  *
2435  * Return: Either the target mountpoint on the top mount or the top
2436  *         mount's mountpoint.
2437  */
2438 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2439 {
2440 	struct vfsmount *mnt = path->mnt;
2441 	struct dentry *dentry;
2442 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2443 
2444 	for (;;) {
2445 		struct mount *m;
2446 
2447 		if (beneath) {
2448 			m = real_mount(mnt);
2449 			read_seqlock_excl(&mount_lock);
2450 			dentry = dget(m->mnt_mountpoint);
2451 			read_sequnlock_excl(&mount_lock);
2452 		} else {
2453 			dentry = path->dentry;
2454 		}
2455 
2456 		inode_lock(dentry->d_inode);
2457 		if (unlikely(cant_mount(dentry))) {
2458 			inode_unlock(dentry->d_inode);
2459 			goto out;
2460 		}
2461 
2462 		namespace_lock();
2463 
2464 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2465 			namespace_unlock();
2466 			inode_unlock(dentry->d_inode);
2467 			goto out;
2468 		}
2469 
2470 		mnt = lookup_mnt(path);
2471 		if (likely(!mnt))
2472 			break;
2473 
2474 		namespace_unlock();
2475 		inode_unlock(dentry->d_inode);
2476 		if (beneath)
2477 			dput(dentry);
2478 		path_put(path);
2479 		path->mnt = mnt;
2480 		path->dentry = dget(mnt->mnt_root);
2481 	}
2482 
2483 	mp = get_mountpoint(dentry);
2484 	if (IS_ERR(mp)) {
2485 		namespace_unlock();
2486 		inode_unlock(dentry->d_inode);
2487 	}
2488 
2489 out:
2490 	if (beneath)
2491 		dput(dentry);
2492 
2493 	return mp;
2494 }
2495 
2496 static inline struct mountpoint *lock_mount(struct path *path)
2497 {
2498 	return do_lock_mount(path, false);
2499 }
2500 
2501 static void unlock_mount(struct mountpoint *where)
2502 {
2503 	struct dentry *dentry = where->m_dentry;
2504 
2505 	read_seqlock_excl(&mount_lock);
2506 	put_mountpoint(where);
2507 	read_sequnlock_excl(&mount_lock);
2508 
2509 	namespace_unlock();
2510 	inode_unlock(dentry->d_inode);
2511 }
2512 
2513 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2514 {
2515 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2516 		return -EINVAL;
2517 
2518 	if (d_is_dir(mp->m_dentry) !=
2519 	      d_is_dir(mnt->mnt.mnt_root))
2520 		return -ENOTDIR;
2521 
2522 	return attach_recursive_mnt(mnt, p, mp, 0);
2523 }
2524 
2525 /*
2526  * Sanity check the flags to change_mnt_propagation.
2527  */
2528 
2529 static int flags_to_propagation_type(int ms_flags)
2530 {
2531 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2532 
2533 	/* Fail if any non-propagation flags are set */
2534 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2535 		return 0;
2536 	/* Only one propagation flag should be set */
2537 	if (!is_power_of_2(type))
2538 		return 0;
2539 	return type;
2540 }
2541 
2542 /*
2543  * recursively change the type of the mountpoint.
2544  */
2545 static int do_change_type(struct path *path, int ms_flags)
2546 {
2547 	struct mount *m;
2548 	struct mount *mnt = real_mount(path->mnt);
2549 	int recurse = ms_flags & MS_REC;
2550 	int type;
2551 	int err = 0;
2552 
2553 	if (!path_mounted(path))
2554 		return -EINVAL;
2555 
2556 	type = flags_to_propagation_type(ms_flags);
2557 	if (!type)
2558 		return -EINVAL;
2559 
2560 	namespace_lock();
2561 	if (type == MS_SHARED) {
2562 		err = invent_group_ids(mnt, recurse);
2563 		if (err)
2564 			goto out_unlock;
2565 	}
2566 
2567 	lock_mount_hash();
2568 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2569 		change_mnt_propagation(m, type);
2570 	unlock_mount_hash();
2571 
2572  out_unlock:
2573 	namespace_unlock();
2574 	return err;
2575 }
2576 
2577 static struct mount *__do_loopback(struct path *old_path, int recurse)
2578 {
2579 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2580 
2581 	if (IS_MNT_UNBINDABLE(old))
2582 		return mnt;
2583 
2584 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2585 		return mnt;
2586 
2587 	if (!recurse && has_locked_children(old, old_path->dentry))
2588 		return mnt;
2589 
2590 	if (recurse)
2591 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2592 	else
2593 		mnt = clone_mnt(old, old_path->dentry, 0);
2594 
2595 	if (!IS_ERR(mnt))
2596 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2597 
2598 	return mnt;
2599 }
2600 
2601 /*
2602  * do loopback mount.
2603  */
2604 static int do_loopback(struct path *path, const char *old_name,
2605 				int recurse)
2606 {
2607 	struct path old_path;
2608 	struct mount *mnt = NULL, *parent;
2609 	struct mountpoint *mp;
2610 	int err;
2611 	if (!old_name || !*old_name)
2612 		return -EINVAL;
2613 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2614 	if (err)
2615 		return err;
2616 
2617 	err = -EINVAL;
2618 	if (mnt_ns_loop(old_path.dentry))
2619 		goto out;
2620 
2621 	mp = lock_mount(path);
2622 	if (IS_ERR(mp)) {
2623 		err = PTR_ERR(mp);
2624 		goto out;
2625 	}
2626 
2627 	parent = real_mount(path->mnt);
2628 	if (!check_mnt(parent))
2629 		goto out2;
2630 
2631 	mnt = __do_loopback(&old_path, recurse);
2632 	if (IS_ERR(mnt)) {
2633 		err = PTR_ERR(mnt);
2634 		goto out2;
2635 	}
2636 
2637 	err = graft_tree(mnt, parent, mp);
2638 	if (err) {
2639 		lock_mount_hash();
2640 		umount_tree(mnt, UMOUNT_SYNC);
2641 		unlock_mount_hash();
2642 	}
2643 out2:
2644 	unlock_mount(mp);
2645 out:
2646 	path_put(&old_path);
2647 	return err;
2648 }
2649 
2650 static struct file *open_detached_copy(struct path *path, bool recursive)
2651 {
2652 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2653 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2654 	struct mount *mnt, *p;
2655 	struct file *file;
2656 
2657 	if (IS_ERR(ns))
2658 		return ERR_CAST(ns);
2659 
2660 	namespace_lock();
2661 	mnt = __do_loopback(path, recursive);
2662 	if (IS_ERR(mnt)) {
2663 		namespace_unlock();
2664 		free_mnt_ns(ns);
2665 		return ERR_CAST(mnt);
2666 	}
2667 
2668 	lock_mount_hash();
2669 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2670 		p->mnt_ns = ns;
2671 		ns->mounts++;
2672 	}
2673 	ns->root = mnt;
2674 	list_add_tail(&ns->list, &mnt->mnt_list);
2675 	mntget(&mnt->mnt);
2676 	unlock_mount_hash();
2677 	namespace_unlock();
2678 
2679 	mntput(path->mnt);
2680 	path->mnt = &mnt->mnt;
2681 	file = dentry_open(path, O_PATH, current_cred());
2682 	if (IS_ERR(file))
2683 		dissolve_on_fput(path->mnt);
2684 	else
2685 		file->f_mode |= FMODE_NEED_UNMOUNT;
2686 	return file;
2687 }
2688 
2689 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2690 {
2691 	struct file *file;
2692 	struct path path;
2693 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2694 	bool detached = flags & OPEN_TREE_CLONE;
2695 	int error;
2696 	int fd;
2697 
2698 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2699 
2700 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2701 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2702 		      OPEN_TREE_CLOEXEC))
2703 		return -EINVAL;
2704 
2705 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2706 		return -EINVAL;
2707 
2708 	if (flags & AT_NO_AUTOMOUNT)
2709 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2710 	if (flags & AT_SYMLINK_NOFOLLOW)
2711 		lookup_flags &= ~LOOKUP_FOLLOW;
2712 	if (flags & AT_EMPTY_PATH)
2713 		lookup_flags |= LOOKUP_EMPTY;
2714 
2715 	if (detached && !may_mount())
2716 		return -EPERM;
2717 
2718 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2719 	if (fd < 0)
2720 		return fd;
2721 
2722 	error = user_path_at(dfd, filename, lookup_flags, &path);
2723 	if (unlikely(error)) {
2724 		file = ERR_PTR(error);
2725 	} else {
2726 		if (detached)
2727 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2728 		else
2729 			file = dentry_open(&path, O_PATH, current_cred());
2730 		path_put(&path);
2731 	}
2732 	if (IS_ERR(file)) {
2733 		put_unused_fd(fd);
2734 		return PTR_ERR(file);
2735 	}
2736 	fd_install(fd, file);
2737 	return fd;
2738 }
2739 
2740 /*
2741  * Don't allow locked mount flags to be cleared.
2742  *
2743  * No locks need to be held here while testing the various MNT_LOCK
2744  * flags because those flags can never be cleared once they are set.
2745  */
2746 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2747 {
2748 	unsigned int fl = mnt->mnt.mnt_flags;
2749 
2750 	if ((fl & MNT_LOCK_READONLY) &&
2751 	    !(mnt_flags & MNT_READONLY))
2752 		return false;
2753 
2754 	if ((fl & MNT_LOCK_NODEV) &&
2755 	    !(mnt_flags & MNT_NODEV))
2756 		return false;
2757 
2758 	if ((fl & MNT_LOCK_NOSUID) &&
2759 	    !(mnt_flags & MNT_NOSUID))
2760 		return false;
2761 
2762 	if ((fl & MNT_LOCK_NOEXEC) &&
2763 	    !(mnt_flags & MNT_NOEXEC))
2764 		return false;
2765 
2766 	if ((fl & MNT_LOCK_ATIME) &&
2767 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2768 		return false;
2769 
2770 	return true;
2771 }
2772 
2773 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2774 {
2775 	bool readonly_request = (mnt_flags & MNT_READONLY);
2776 
2777 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2778 		return 0;
2779 
2780 	if (readonly_request)
2781 		return mnt_make_readonly(mnt);
2782 
2783 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2784 	return 0;
2785 }
2786 
2787 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2788 {
2789 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2790 	mnt->mnt.mnt_flags = mnt_flags;
2791 	touch_mnt_namespace(mnt->mnt_ns);
2792 }
2793 
2794 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2795 {
2796 	struct super_block *sb = mnt->mnt_sb;
2797 
2798 	if (!__mnt_is_readonly(mnt) &&
2799 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2800 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2801 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2802 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2803 
2804 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2805 			sb->s_type->name,
2806 			is_mounted(mnt) ? "remounted" : "mounted",
2807 			mntpath, &sb->s_time_max,
2808 			(unsigned long long)sb->s_time_max);
2809 
2810 		free_page((unsigned long)buf);
2811 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2812 	}
2813 }
2814 
2815 /*
2816  * Handle reconfiguration of the mountpoint only without alteration of the
2817  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2818  * to mount(2).
2819  */
2820 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2821 {
2822 	struct super_block *sb = path->mnt->mnt_sb;
2823 	struct mount *mnt = real_mount(path->mnt);
2824 	int ret;
2825 
2826 	if (!check_mnt(mnt))
2827 		return -EINVAL;
2828 
2829 	if (!path_mounted(path))
2830 		return -EINVAL;
2831 
2832 	if (!can_change_locked_flags(mnt, mnt_flags))
2833 		return -EPERM;
2834 
2835 	/*
2836 	 * We're only checking whether the superblock is read-only not
2837 	 * changing it, so only take down_read(&sb->s_umount).
2838 	 */
2839 	down_read(&sb->s_umount);
2840 	lock_mount_hash();
2841 	ret = change_mount_ro_state(mnt, mnt_flags);
2842 	if (ret == 0)
2843 		set_mount_attributes(mnt, mnt_flags);
2844 	unlock_mount_hash();
2845 	up_read(&sb->s_umount);
2846 
2847 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2848 
2849 	return ret;
2850 }
2851 
2852 /*
2853  * change filesystem flags. dir should be a physical root of filesystem.
2854  * If you've mounted a non-root directory somewhere and want to do remount
2855  * on it - tough luck.
2856  */
2857 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2858 		      int mnt_flags, void *data)
2859 {
2860 	int err;
2861 	struct super_block *sb = path->mnt->mnt_sb;
2862 	struct mount *mnt = real_mount(path->mnt);
2863 	struct fs_context *fc;
2864 
2865 	if (!check_mnt(mnt))
2866 		return -EINVAL;
2867 
2868 	if (!path_mounted(path))
2869 		return -EINVAL;
2870 
2871 	if (!can_change_locked_flags(mnt, mnt_flags))
2872 		return -EPERM;
2873 
2874 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2875 	if (IS_ERR(fc))
2876 		return PTR_ERR(fc);
2877 
2878 	fc->oldapi = true;
2879 	err = parse_monolithic_mount_data(fc, data);
2880 	if (!err) {
2881 		down_write(&sb->s_umount);
2882 		err = -EPERM;
2883 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2884 			err = reconfigure_super(fc);
2885 			if (!err) {
2886 				lock_mount_hash();
2887 				set_mount_attributes(mnt, mnt_flags);
2888 				unlock_mount_hash();
2889 			}
2890 		}
2891 		up_write(&sb->s_umount);
2892 	}
2893 
2894 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2895 
2896 	put_fs_context(fc);
2897 	return err;
2898 }
2899 
2900 static inline int tree_contains_unbindable(struct mount *mnt)
2901 {
2902 	struct mount *p;
2903 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2904 		if (IS_MNT_UNBINDABLE(p))
2905 			return 1;
2906 	}
2907 	return 0;
2908 }
2909 
2910 /*
2911  * Check that there aren't references to earlier/same mount namespaces in the
2912  * specified subtree.  Such references can act as pins for mount namespaces
2913  * that aren't checked by the mount-cycle checking code, thereby allowing
2914  * cycles to be made.
2915  */
2916 static bool check_for_nsfs_mounts(struct mount *subtree)
2917 {
2918 	struct mount *p;
2919 	bool ret = false;
2920 
2921 	lock_mount_hash();
2922 	for (p = subtree; p; p = next_mnt(p, subtree))
2923 		if (mnt_ns_loop(p->mnt.mnt_root))
2924 			goto out;
2925 
2926 	ret = true;
2927 out:
2928 	unlock_mount_hash();
2929 	return ret;
2930 }
2931 
2932 static int do_set_group(struct path *from_path, struct path *to_path)
2933 {
2934 	struct mount *from, *to;
2935 	int err;
2936 
2937 	from = real_mount(from_path->mnt);
2938 	to = real_mount(to_path->mnt);
2939 
2940 	namespace_lock();
2941 
2942 	err = -EINVAL;
2943 	/* To and From must be mounted */
2944 	if (!is_mounted(&from->mnt))
2945 		goto out;
2946 	if (!is_mounted(&to->mnt))
2947 		goto out;
2948 
2949 	err = -EPERM;
2950 	/* We should be allowed to modify mount namespaces of both mounts */
2951 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2952 		goto out;
2953 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2954 		goto out;
2955 
2956 	err = -EINVAL;
2957 	/* To and From paths should be mount roots */
2958 	if (!path_mounted(from_path))
2959 		goto out;
2960 	if (!path_mounted(to_path))
2961 		goto out;
2962 
2963 	/* Setting sharing groups is only allowed across same superblock */
2964 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2965 		goto out;
2966 
2967 	/* From mount root should be wider than To mount root */
2968 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2969 		goto out;
2970 
2971 	/* From mount should not have locked children in place of To's root */
2972 	if (has_locked_children(from, to->mnt.mnt_root))
2973 		goto out;
2974 
2975 	/* Setting sharing groups is only allowed on private mounts */
2976 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2977 		goto out;
2978 
2979 	/* From should not be private */
2980 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2981 		goto out;
2982 
2983 	if (IS_MNT_SLAVE(from)) {
2984 		struct mount *m = from->mnt_master;
2985 
2986 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2987 		to->mnt_master = m;
2988 	}
2989 
2990 	if (IS_MNT_SHARED(from)) {
2991 		to->mnt_group_id = from->mnt_group_id;
2992 		list_add(&to->mnt_share, &from->mnt_share);
2993 		lock_mount_hash();
2994 		set_mnt_shared(to);
2995 		unlock_mount_hash();
2996 	}
2997 
2998 	err = 0;
2999 out:
3000 	namespace_unlock();
3001 	return err;
3002 }
3003 
3004 /**
3005  * path_overmounted - check if path is overmounted
3006  * @path: path to check
3007  *
3008  * Check if path is overmounted, i.e., if there's a mount on top of
3009  * @path->mnt with @path->dentry as mountpoint.
3010  *
3011  * Context: This function expects namespace_lock() to be held.
3012  * Return: If path is overmounted true is returned, false if not.
3013  */
3014 static inline bool path_overmounted(const struct path *path)
3015 {
3016 	rcu_read_lock();
3017 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3018 		rcu_read_unlock();
3019 		return true;
3020 	}
3021 	rcu_read_unlock();
3022 	return false;
3023 }
3024 
3025 /**
3026  * can_move_mount_beneath - check that we can mount beneath the top mount
3027  * @from: mount to mount beneath
3028  * @to:   mount under which to mount
3029  * @mp:   mountpoint of @to
3030  *
3031  * - Make sure that @to->dentry is actually the root of a mount under
3032  *   which we can mount another mount.
3033  * - Make sure that nothing can be mounted beneath the caller's current
3034  *   root or the rootfs of the namespace.
3035  * - Make sure that the caller can unmount the topmost mount ensuring
3036  *   that the caller could reveal the underlying mountpoint.
3037  * - Ensure that nothing has been mounted on top of @from before we
3038  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3039  * - Prevent mounting beneath a mount if the propagation relationship
3040  *   between the source mount, parent mount, and top mount would lead to
3041  *   nonsensical mount trees.
3042  *
3043  * Context: This function expects namespace_lock() to be held.
3044  * Return: On success 0, and on error a negative error code is returned.
3045  */
3046 static int can_move_mount_beneath(const struct path *from,
3047 				  const struct path *to,
3048 				  const struct mountpoint *mp)
3049 {
3050 	struct mount *mnt_from = real_mount(from->mnt),
3051 		     *mnt_to = real_mount(to->mnt),
3052 		     *parent_mnt_to = mnt_to->mnt_parent;
3053 
3054 	if (!mnt_has_parent(mnt_to))
3055 		return -EINVAL;
3056 
3057 	if (!path_mounted(to))
3058 		return -EINVAL;
3059 
3060 	if (IS_MNT_LOCKED(mnt_to))
3061 		return -EINVAL;
3062 
3063 	/* Avoid creating shadow mounts during mount propagation. */
3064 	if (path_overmounted(from))
3065 		return -EINVAL;
3066 
3067 	/*
3068 	 * Mounting beneath the rootfs only makes sense when the
3069 	 * semantics of pivot_root(".", ".") are used.
3070 	 */
3071 	if (&mnt_to->mnt == current->fs->root.mnt)
3072 		return -EINVAL;
3073 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3074 		return -EINVAL;
3075 
3076 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3077 		if (p == mnt_to)
3078 			return -EINVAL;
3079 
3080 	/*
3081 	 * If the parent mount propagates to the child mount this would
3082 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3083 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3084 	 * defeats the whole purpose of mounting beneath another mount.
3085 	 */
3086 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3087 		return -EINVAL;
3088 
3089 	/*
3090 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3091 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3092 	 * Afterwards @mnt_from would be mounted on top of
3093 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3094 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3095 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3096 	 * remounted on top of @c. Afterwards, @mnt_from would be
3097 	 * covered by a copy @c of @mnt_from and @c would be covered by
3098 	 * @mnt_from itself. This defeats the whole purpose of mounting
3099 	 * @mnt_from beneath @mnt_to.
3100 	 */
3101 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3102 		return -EINVAL;
3103 
3104 	return 0;
3105 }
3106 
3107 static int do_move_mount(struct path *old_path, struct path *new_path,
3108 			 bool beneath)
3109 {
3110 	struct mnt_namespace *ns;
3111 	struct mount *p;
3112 	struct mount *old;
3113 	struct mount *parent;
3114 	struct mountpoint *mp, *old_mp;
3115 	int err;
3116 	bool attached;
3117 	enum mnt_tree_flags_t flags = 0;
3118 
3119 	mp = do_lock_mount(new_path, beneath);
3120 	if (IS_ERR(mp))
3121 		return PTR_ERR(mp);
3122 
3123 	old = real_mount(old_path->mnt);
3124 	p = real_mount(new_path->mnt);
3125 	parent = old->mnt_parent;
3126 	attached = mnt_has_parent(old);
3127 	if (attached)
3128 		flags |= MNT_TREE_MOVE;
3129 	old_mp = old->mnt_mp;
3130 	ns = old->mnt_ns;
3131 
3132 	err = -EINVAL;
3133 	/* The mountpoint must be in our namespace. */
3134 	if (!check_mnt(p))
3135 		goto out;
3136 
3137 	/* The thing moved must be mounted... */
3138 	if (!is_mounted(&old->mnt))
3139 		goto out;
3140 
3141 	/* ... and either ours or the root of anon namespace */
3142 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3143 		goto out;
3144 
3145 	if (old->mnt.mnt_flags & MNT_LOCKED)
3146 		goto out;
3147 
3148 	if (!path_mounted(old_path))
3149 		goto out;
3150 
3151 	if (d_is_dir(new_path->dentry) !=
3152 	    d_is_dir(old_path->dentry))
3153 		goto out;
3154 	/*
3155 	 * Don't move a mount residing in a shared parent.
3156 	 */
3157 	if (attached && IS_MNT_SHARED(parent))
3158 		goto out;
3159 
3160 	if (beneath) {
3161 		err = can_move_mount_beneath(old_path, new_path, mp);
3162 		if (err)
3163 			goto out;
3164 
3165 		err = -EINVAL;
3166 		p = p->mnt_parent;
3167 		flags |= MNT_TREE_BENEATH;
3168 	}
3169 
3170 	/*
3171 	 * Don't move a mount tree containing unbindable mounts to a destination
3172 	 * mount which is shared.
3173 	 */
3174 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3175 		goto out;
3176 	err = -ELOOP;
3177 	if (!check_for_nsfs_mounts(old))
3178 		goto out;
3179 	for (; mnt_has_parent(p); p = p->mnt_parent)
3180 		if (p == old)
3181 			goto out;
3182 
3183 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3184 	if (err)
3185 		goto out;
3186 
3187 	/* if the mount is moved, it should no longer be expire
3188 	 * automatically */
3189 	list_del_init(&old->mnt_expire);
3190 	if (attached)
3191 		put_mountpoint(old_mp);
3192 out:
3193 	unlock_mount(mp);
3194 	if (!err) {
3195 		if (attached)
3196 			mntput_no_expire(parent);
3197 		else
3198 			free_mnt_ns(ns);
3199 	}
3200 	return err;
3201 }
3202 
3203 static int do_move_mount_old(struct path *path, const char *old_name)
3204 {
3205 	struct path old_path;
3206 	int err;
3207 
3208 	if (!old_name || !*old_name)
3209 		return -EINVAL;
3210 
3211 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3212 	if (err)
3213 		return err;
3214 
3215 	err = do_move_mount(&old_path, path, false);
3216 	path_put(&old_path);
3217 	return err;
3218 }
3219 
3220 /*
3221  * add a mount into a namespace's mount tree
3222  */
3223 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3224 			const struct path *path, int mnt_flags)
3225 {
3226 	struct mount *parent = real_mount(path->mnt);
3227 
3228 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3229 
3230 	if (unlikely(!check_mnt(parent))) {
3231 		/* that's acceptable only for automounts done in private ns */
3232 		if (!(mnt_flags & MNT_SHRINKABLE))
3233 			return -EINVAL;
3234 		/* ... and for those we'd better have mountpoint still alive */
3235 		if (!parent->mnt_ns)
3236 			return -EINVAL;
3237 	}
3238 
3239 	/* Refuse the same filesystem on the same mount point */
3240 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3241 		return -EBUSY;
3242 
3243 	if (d_is_symlink(newmnt->mnt.mnt_root))
3244 		return -EINVAL;
3245 
3246 	newmnt->mnt.mnt_flags = mnt_flags;
3247 	return graft_tree(newmnt, parent, mp);
3248 }
3249 
3250 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3251 
3252 /*
3253  * Create a new mount using a superblock configuration and request it
3254  * be added to the namespace tree.
3255  */
3256 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3257 			   unsigned int mnt_flags)
3258 {
3259 	struct vfsmount *mnt;
3260 	struct mountpoint *mp;
3261 	struct super_block *sb = fc->root->d_sb;
3262 	int error;
3263 
3264 	error = security_sb_kern_mount(sb);
3265 	if (!error && mount_too_revealing(sb, &mnt_flags))
3266 		error = -EPERM;
3267 
3268 	if (unlikely(error)) {
3269 		fc_drop_locked(fc);
3270 		return error;
3271 	}
3272 
3273 	up_write(&sb->s_umount);
3274 
3275 	mnt = vfs_create_mount(fc);
3276 	if (IS_ERR(mnt))
3277 		return PTR_ERR(mnt);
3278 
3279 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3280 
3281 	mp = lock_mount(mountpoint);
3282 	if (IS_ERR(mp)) {
3283 		mntput(mnt);
3284 		return PTR_ERR(mp);
3285 	}
3286 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3287 	unlock_mount(mp);
3288 	if (error < 0)
3289 		mntput(mnt);
3290 	return error;
3291 }
3292 
3293 /*
3294  * create a new mount for userspace and request it to be added into the
3295  * namespace's tree
3296  */
3297 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3298 			int mnt_flags, const char *name, void *data)
3299 {
3300 	struct file_system_type *type;
3301 	struct fs_context *fc;
3302 	const char *subtype = NULL;
3303 	int err = 0;
3304 
3305 	if (!fstype)
3306 		return -EINVAL;
3307 
3308 	type = get_fs_type(fstype);
3309 	if (!type)
3310 		return -ENODEV;
3311 
3312 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3313 		subtype = strchr(fstype, '.');
3314 		if (subtype) {
3315 			subtype++;
3316 			if (!*subtype) {
3317 				put_filesystem(type);
3318 				return -EINVAL;
3319 			}
3320 		}
3321 	}
3322 
3323 	fc = fs_context_for_mount(type, sb_flags);
3324 	put_filesystem(type);
3325 	if (IS_ERR(fc))
3326 		return PTR_ERR(fc);
3327 
3328 	if (subtype)
3329 		err = vfs_parse_fs_string(fc, "subtype",
3330 					  subtype, strlen(subtype));
3331 	if (!err && name)
3332 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3333 	if (!err)
3334 		err = parse_monolithic_mount_data(fc, data);
3335 	if (!err && !mount_capable(fc))
3336 		err = -EPERM;
3337 	if (!err)
3338 		err = vfs_get_tree(fc);
3339 	if (!err)
3340 		err = do_new_mount_fc(fc, path, mnt_flags);
3341 
3342 	put_fs_context(fc);
3343 	return err;
3344 }
3345 
3346 int finish_automount(struct vfsmount *m, const struct path *path)
3347 {
3348 	struct dentry *dentry = path->dentry;
3349 	struct mountpoint *mp;
3350 	struct mount *mnt;
3351 	int err;
3352 
3353 	if (!m)
3354 		return 0;
3355 	if (IS_ERR(m))
3356 		return PTR_ERR(m);
3357 
3358 	mnt = real_mount(m);
3359 	/* The new mount record should have at least 2 refs to prevent it being
3360 	 * expired before we get a chance to add it
3361 	 */
3362 	BUG_ON(mnt_get_count(mnt) < 2);
3363 
3364 	if (m->mnt_sb == path->mnt->mnt_sb &&
3365 	    m->mnt_root == dentry) {
3366 		err = -ELOOP;
3367 		goto discard;
3368 	}
3369 
3370 	/*
3371 	 * we don't want to use lock_mount() - in this case finding something
3372 	 * that overmounts our mountpoint to be means "quitely drop what we've
3373 	 * got", not "try to mount it on top".
3374 	 */
3375 	inode_lock(dentry->d_inode);
3376 	namespace_lock();
3377 	if (unlikely(cant_mount(dentry))) {
3378 		err = -ENOENT;
3379 		goto discard_locked;
3380 	}
3381 	if (path_overmounted(path)) {
3382 		err = 0;
3383 		goto discard_locked;
3384 	}
3385 	mp = get_mountpoint(dentry);
3386 	if (IS_ERR(mp)) {
3387 		err = PTR_ERR(mp);
3388 		goto discard_locked;
3389 	}
3390 
3391 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3392 	unlock_mount(mp);
3393 	if (unlikely(err))
3394 		goto discard;
3395 	mntput(m);
3396 	return 0;
3397 
3398 discard_locked:
3399 	namespace_unlock();
3400 	inode_unlock(dentry->d_inode);
3401 discard:
3402 	/* remove m from any expiration list it may be on */
3403 	if (!list_empty(&mnt->mnt_expire)) {
3404 		namespace_lock();
3405 		list_del_init(&mnt->mnt_expire);
3406 		namespace_unlock();
3407 	}
3408 	mntput(m);
3409 	mntput(m);
3410 	return err;
3411 }
3412 
3413 /**
3414  * mnt_set_expiry - Put a mount on an expiration list
3415  * @mnt: The mount to list.
3416  * @expiry_list: The list to add the mount to.
3417  */
3418 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3419 {
3420 	namespace_lock();
3421 
3422 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3423 
3424 	namespace_unlock();
3425 }
3426 EXPORT_SYMBOL(mnt_set_expiry);
3427 
3428 /*
3429  * process a list of expirable mountpoints with the intent of discarding any
3430  * mountpoints that aren't in use and haven't been touched since last we came
3431  * here
3432  */
3433 void mark_mounts_for_expiry(struct list_head *mounts)
3434 {
3435 	struct mount *mnt, *next;
3436 	LIST_HEAD(graveyard);
3437 
3438 	if (list_empty(mounts))
3439 		return;
3440 
3441 	namespace_lock();
3442 	lock_mount_hash();
3443 
3444 	/* extract from the expiration list every vfsmount that matches the
3445 	 * following criteria:
3446 	 * - only referenced by its parent vfsmount
3447 	 * - still marked for expiry (marked on the last call here; marks are
3448 	 *   cleared by mntput())
3449 	 */
3450 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3451 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3452 			propagate_mount_busy(mnt, 1))
3453 			continue;
3454 		list_move(&mnt->mnt_expire, &graveyard);
3455 	}
3456 	while (!list_empty(&graveyard)) {
3457 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3458 		touch_mnt_namespace(mnt->mnt_ns);
3459 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3460 	}
3461 	unlock_mount_hash();
3462 	namespace_unlock();
3463 }
3464 
3465 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3466 
3467 /*
3468  * Ripoff of 'select_parent()'
3469  *
3470  * search the list of submounts for a given mountpoint, and move any
3471  * shrinkable submounts to the 'graveyard' list.
3472  */
3473 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3474 {
3475 	struct mount *this_parent = parent;
3476 	struct list_head *next;
3477 	int found = 0;
3478 
3479 repeat:
3480 	next = this_parent->mnt_mounts.next;
3481 resume:
3482 	while (next != &this_parent->mnt_mounts) {
3483 		struct list_head *tmp = next;
3484 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3485 
3486 		next = tmp->next;
3487 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3488 			continue;
3489 		/*
3490 		 * Descend a level if the d_mounts list is non-empty.
3491 		 */
3492 		if (!list_empty(&mnt->mnt_mounts)) {
3493 			this_parent = mnt;
3494 			goto repeat;
3495 		}
3496 
3497 		if (!propagate_mount_busy(mnt, 1)) {
3498 			list_move_tail(&mnt->mnt_expire, graveyard);
3499 			found++;
3500 		}
3501 	}
3502 	/*
3503 	 * All done at this level ... ascend and resume the search
3504 	 */
3505 	if (this_parent != parent) {
3506 		next = this_parent->mnt_child.next;
3507 		this_parent = this_parent->mnt_parent;
3508 		goto resume;
3509 	}
3510 	return found;
3511 }
3512 
3513 /*
3514  * process a list of expirable mountpoints with the intent of discarding any
3515  * submounts of a specific parent mountpoint
3516  *
3517  * mount_lock must be held for write
3518  */
3519 static void shrink_submounts(struct mount *mnt)
3520 {
3521 	LIST_HEAD(graveyard);
3522 	struct mount *m;
3523 
3524 	/* extract submounts of 'mountpoint' from the expiration list */
3525 	while (select_submounts(mnt, &graveyard)) {
3526 		while (!list_empty(&graveyard)) {
3527 			m = list_first_entry(&graveyard, struct mount,
3528 						mnt_expire);
3529 			touch_mnt_namespace(m->mnt_ns);
3530 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3531 		}
3532 	}
3533 }
3534 
3535 static void *copy_mount_options(const void __user * data)
3536 {
3537 	char *copy;
3538 	unsigned left, offset;
3539 
3540 	if (!data)
3541 		return NULL;
3542 
3543 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3544 	if (!copy)
3545 		return ERR_PTR(-ENOMEM);
3546 
3547 	left = copy_from_user(copy, data, PAGE_SIZE);
3548 
3549 	/*
3550 	 * Not all architectures have an exact copy_from_user(). Resort to
3551 	 * byte at a time.
3552 	 */
3553 	offset = PAGE_SIZE - left;
3554 	while (left) {
3555 		char c;
3556 		if (get_user(c, (const char __user *)data + offset))
3557 			break;
3558 		copy[offset] = c;
3559 		left--;
3560 		offset++;
3561 	}
3562 
3563 	if (left == PAGE_SIZE) {
3564 		kfree(copy);
3565 		return ERR_PTR(-EFAULT);
3566 	}
3567 
3568 	return copy;
3569 }
3570 
3571 static char *copy_mount_string(const void __user *data)
3572 {
3573 	return data ? strndup_user(data, PATH_MAX) : NULL;
3574 }
3575 
3576 /*
3577  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3578  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3579  *
3580  * data is a (void *) that can point to any structure up to
3581  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3582  * information (or be NULL).
3583  *
3584  * Pre-0.97 versions of mount() didn't have a flags word.
3585  * When the flags word was introduced its top half was required
3586  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3587  * Therefore, if this magic number is present, it carries no information
3588  * and must be discarded.
3589  */
3590 int path_mount(const char *dev_name, struct path *path,
3591 		const char *type_page, unsigned long flags, void *data_page)
3592 {
3593 	unsigned int mnt_flags = 0, sb_flags;
3594 	int ret;
3595 
3596 	/* Discard magic */
3597 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3598 		flags &= ~MS_MGC_MSK;
3599 
3600 	/* Basic sanity checks */
3601 	if (data_page)
3602 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3603 
3604 	if (flags & MS_NOUSER)
3605 		return -EINVAL;
3606 
3607 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3608 	if (ret)
3609 		return ret;
3610 	if (!may_mount())
3611 		return -EPERM;
3612 	if (flags & SB_MANDLOCK)
3613 		warn_mandlock();
3614 
3615 	/* Default to relatime unless overriden */
3616 	if (!(flags & MS_NOATIME))
3617 		mnt_flags |= MNT_RELATIME;
3618 
3619 	/* Separate the per-mountpoint flags */
3620 	if (flags & MS_NOSUID)
3621 		mnt_flags |= MNT_NOSUID;
3622 	if (flags & MS_NODEV)
3623 		mnt_flags |= MNT_NODEV;
3624 	if (flags & MS_NOEXEC)
3625 		mnt_flags |= MNT_NOEXEC;
3626 	if (flags & MS_NOATIME)
3627 		mnt_flags |= MNT_NOATIME;
3628 	if (flags & MS_NODIRATIME)
3629 		mnt_flags |= MNT_NODIRATIME;
3630 	if (flags & MS_STRICTATIME)
3631 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3632 	if (flags & MS_RDONLY)
3633 		mnt_flags |= MNT_READONLY;
3634 	if (flags & MS_NOSYMFOLLOW)
3635 		mnt_flags |= MNT_NOSYMFOLLOW;
3636 
3637 	/* The default atime for remount is preservation */
3638 	if ((flags & MS_REMOUNT) &&
3639 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3640 		       MS_STRICTATIME)) == 0)) {
3641 		mnt_flags &= ~MNT_ATIME_MASK;
3642 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3643 	}
3644 
3645 	sb_flags = flags & (SB_RDONLY |
3646 			    SB_SYNCHRONOUS |
3647 			    SB_MANDLOCK |
3648 			    SB_DIRSYNC |
3649 			    SB_SILENT |
3650 			    SB_POSIXACL |
3651 			    SB_LAZYTIME |
3652 			    SB_I_VERSION);
3653 
3654 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3655 		return do_reconfigure_mnt(path, mnt_flags);
3656 	if (flags & MS_REMOUNT)
3657 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3658 	if (flags & MS_BIND)
3659 		return do_loopback(path, dev_name, flags & MS_REC);
3660 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3661 		return do_change_type(path, flags);
3662 	if (flags & MS_MOVE)
3663 		return do_move_mount_old(path, dev_name);
3664 
3665 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3666 			    data_page);
3667 }
3668 
3669 long do_mount(const char *dev_name, const char __user *dir_name,
3670 		const char *type_page, unsigned long flags, void *data_page)
3671 {
3672 	struct path path;
3673 	int ret;
3674 
3675 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3676 	if (ret)
3677 		return ret;
3678 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3679 	path_put(&path);
3680 	return ret;
3681 }
3682 
3683 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3684 {
3685 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3686 }
3687 
3688 static void dec_mnt_namespaces(struct ucounts *ucounts)
3689 {
3690 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3691 }
3692 
3693 static void free_mnt_ns(struct mnt_namespace *ns)
3694 {
3695 	if (!is_anon_ns(ns))
3696 		ns_free_inum(&ns->ns);
3697 	dec_mnt_namespaces(ns->ucounts);
3698 	put_user_ns(ns->user_ns);
3699 	kfree(ns);
3700 }
3701 
3702 /*
3703  * Assign a sequence number so we can detect when we attempt to bind
3704  * mount a reference to an older mount namespace into the current
3705  * mount namespace, preventing reference counting loops.  A 64bit
3706  * number incrementing at 10Ghz will take 12,427 years to wrap which
3707  * is effectively never, so we can ignore the possibility.
3708  */
3709 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3710 
3711 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3712 {
3713 	struct mnt_namespace *new_ns;
3714 	struct ucounts *ucounts;
3715 	int ret;
3716 
3717 	ucounts = inc_mnt_namespaces(user_ns);
3718 	if (!ucounts)
3719 		return ERR_PTR(-ENOSPC);
3720 
3721 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3722 	if (!new_ns) {
3723 		dec_mnt_namespaces(ucounts);
3724 		return ERR_PTR(-ENOMEM);
3725 	}
3726 	if (!anon) {
3727 		ret = ns_alloc_inum(&new_ns->ns);
3728 		if (ret) {
3729 			kfree(new_ns);
3730 			dec_mnt_namespaces(ucounts);
3731 			return ERR_PTR(ret);
3732 		}
3733 	}
3734 	new_ns->ns.ops = &mntns_operations;
3735 	if (!anon)
3736 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3737 	refcount_set(&new_ns->ns.count, 1);
3738 	INIT_LIST_HEAD(&new_ns->list);
3739 	init_waitqueue_head(&new_ns->poll);
3740 	spin_lock_init(&new_ns->ns_lock);
3741 	new_ns->user_ns = get_user_ns(user_ns);
3742 	new_ns->ucounts = ucounts;
3743 	return new_ns;
3744 }
3745 
3746 __latent_entropy
3747 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3748 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3749 {
3750 	struct mnt_namespace *new_ns;
3751 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3752 	struct mount *p, *q;
3753 	struct mount *old;
3754 	struct mount *new;
3755 	int copy_flags;
3756 
3757 	BUG_ON(!ns);
3758 
3759 	if (likely(!(flags & CLONE_NEWNS))) {
3760 		get_mnt_ns(ns);
3761 		return ns;
3762 	}
3763 
3764 	old = ns->root;
3765 
3766 	new_ns = alloc_mnt_ns(user_ns, false);
3767 	if (IS_ERR(new_ns))
3768 		return new_ns;
3769 
3770 	namespace_lock();
3771 	/* First pass: copy the tree topology */
3772 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3773 	if (user_ns != ns->user_ns)
3774 		copy_flags |= CL_SHARED_TO_SLAVE;
3775 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3776 	if (IS_ERR(new)) {
3777 		namespace_unlock();
3778 		free_mnt_ns(new_ns);
3779 		return ERR_CAST(new);
3780 	}
3781 	if (user_ns != ns->user_ns) {
3782 		lock_mount_hash();
3783 		lock_mnt_tree(new);
3784 		unlock_mount_hash();
3785 	}
3786 	new_ns->root = new;
3787 	list_add_tail(&new_ns->list, &new->mnt_list);
3788 
3789 	/*
3790 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3791 	 * as belonging to new namespace.  We have already acquired a private
3792 	 * fs_struct, so tsk->fs->lock is not needed.
3793 	 */
3794 	p = old;
3795 	q = new;
3796 	while (p) {
3797 		q->mnt_ns = new_ns;
3798 		new_ns->mounts++;
3799 		if (new_fs) {
3800 			if (&p->mnt == new_fs->root.mnt) {
3801 				new_fs->root.mnt = mntget(&q->mnt);
3802 				rootmnt = &p->mnt;
3803 			}
3804 			if (&p->mnt == new_fs->pwd.mnt) {
3805 				new_fs->pwd.mnt = mntget(&q->mnt);
3806 				pwdmnt = &p->mnt;
3807 			}
3808 		}
3809 		p = next_mnt(p, old);
3810 		q = next_mnt(q, new);
3811 		if (!q)
3812 			break;
3813 		// an mntns binding we'd skipped?
3814 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3815 			p = next_mnt(skip_mnt_tree(p), old);
3816 	}
3817 	namespace_unlock();
3818 
3819 	if (rootmnt)
3820 		mntput(rootmnt);
3821 	if (pwdmnt)
3822 		mntput(pwdmnt);
3823 
3824 	return new_ns;
3825 }
3826 
3827 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3828 {
3829 	struct mount *mnt = real_mount(m);
3830 	struct mnt_namespace *ns;
3831 	struct super_block *s;
3832 	struct path path;
3833 	int err;
3834 
3835 	ns = alloc_mnt_ns(&init_user_ns, true);
3836 	if (IS_ERR(ns)) {
3837 		mntput(m);
3838 		return ERR_CAST(ns);
3839 	}
3840 	mnt->mnt_ns = ns;
3841 	ns->root = mnt;
3842 	ns->mounts++;
3843 	list_add(&mnt->mnt_list, &ns->list);
3844 
3845 	err = vfs_path_lookup(m->mnt_root, m,
3846 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3847 
3848 	put_mnt_ns(ns);
3849 
3850 	if (err)
3851 		return ERR_PTR(err);
3852 
3853 	/* trade a vfsmount reference for active sb one */
3854 	s = path.mnt->mnt_sb;
3855 	atomic_inc(&s->s_active);
3856 	mntput(path.mnt);
3857 	/* lock the sucker */
3858 	down_write(&s->s_umount);
3859 	/* ... and return the root of (sub)tree on it */
3860 	return path.dentry;
3861 }
3862 EXPORT_SYMBOL(mount_subtree);
3863 
3864 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3865 		char __user *, type, unsigned long, flags, void __user *, data)
3866 {
3867 	int ret;
3868 	char *kernel_type;
3869 	char *kernel_dev;
3870 	void *options;
3871 
3872 	kernel_type = copy_mount_string(type);
3873 	ret = PTR_ERR(kernel_type);
3874 	if (IS_ERR(kernel_type))
3875 		goto out_type;
3876 
3877 	kernel_dev = copy_mount_string(dev_name);
3878 	ret = PTR_ERR(kernel_dev);
3879 	if (IS_ERR(kernel_dev))
3880 		goto out_dev;
3881 
3882 	options = copy_mount_options(data);
3883 	ret = PTR_ERR(options);
3884 	if (IS_ERR(options))
3885 		goto out_data;
3886 
3887 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3888 
3889 	kfree(options);
3890 out_data:
3891 	kfree(kernel_dev);
3892 out_dev:
3893 	kfree(kernel_type);
3894 out_type:
3895 	return ret;
3896 }
3897 
3898 #define FSMOUNT_VALID_FLAGS                                                    \
3899 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3900 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3901 	 MOUNT_ATTR_NOSYMFOLLOW)
3902 
3903 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3904 
3905 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3906 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3907 
3908 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3909 {
3910 	unsigned int mnt_flags = 0;
3911 
3912 	if (attr_flags & MOUNT_ATTR_RDONLY)
3913 		mnt_flags |= MNT_READONLY;
3914 	if (attr_flags & MOUNT_ATTR_NOSUID)
3915 		mnt_flags |= MNT_NOSUID;
3916 	if (attr_flags & MOUNT_ATTR_NODEV)
3917 		mnt_flags |= MNT_NODEV;
3918 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3919 		mnt_flags |= MNT_NOEXEC;
3920 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3921 		mnt_flags |= MNT_NODIRATIME;
3922 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3923 		mnt_flags |= MNT_NOSYMFOLLOW;
3924 
3925 	return mnt_flags;
3926 }
3927 
3928 /*
3929  * Create a kernel mount representation for a new, prepared superblock
3930  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3931  */
3932 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3933 		unsigned int, attr_flags)
3934 {
3935 	struct mnt_namespace *ns;
3936 	struct fs_context *fc;
3937 	struct file *file;
3938 	struct path newmount;
3939 	struct mount *mnt;
3940 	struct fd f;
3941 	unsigned int mnt_flags = 0;
3942 	long ret;
3943 
3944 	if (!may_mount())
3945 		return -EPERM;
3946 
3947 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3948 		return -EINVAL;
3949 
3950 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3951 		return -EINVAL;
3952 
3953 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3954 
3955 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3956 	case MOUNT_ATTR_STRICTATIME:
3957 		break;
3958 	case MOUNT_ATTR_NOATIME:
3959 		mnt_flags |= MNT_NOATIME;
3960 		break;
3961 	case MOUNT_ATTR_RELATIME:
3962 		mnt_flags |= MNT_RELATIME;
3963 		break;
3964 	default:
3965 		return -EINVAL;
3966 	}
3967 
3968 	f = fdget(fs_fd);
3969 	if (!f.file)
3970 		return -EBADF;
3971 
3972 	ret = -EINVAL;
3973 	if (f.file->f_op != &fscontext_fops)
3974 		goto err_fsfd;
3975 
3976 	fc = f.file->private_data;
3977 
3978 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3979 	if (ret < 0)
3980 		goto err_fsfd;
3981 
3982 	/* There must be a valid superblock or we can't mount it */
3983 	ret = -EINVAL;
3984 	if (!fc->root)
3985 		goto err_unlock;
3986 
3987 	ret = -EPERM;
3988 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3989 		pr_warn("VFS: Mount too revealing\n");
3990 		goto err_unlock;
3991 	}
3992 
3993 	ret = -EBUSY;
3994 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3995 		goto err_unlock;
3996 
3997 	if (fc->sb_flags & SB_MANDLOCK)
3998 		warn_mandlock();
3999 
4000 	newmount.mnt = vfs_create_mount(fc);
4001 	if (IS_ERR(newmount.mnt)) {
4002 		ret = PTR_ERR(newmount.mnt);
4003 		goto err_unlock;
4004 	}
4005 	newmount.dentry = dget(fc->root);
4006 	newmount.mnt->mnt_flags = mnt_flags;
4007 
4008 	/* We've done the mount bit - now move the file context into more or
4009 	 * less the same state as if we'd done an fspick().  We don't want to
4010 	 * do any memory allocation or anything like that at this point as we
4011 	 * don't want to have to handle any errors incurred.
4012 	 */
4013 	vfs_clean_context(fc);
4014 
4015 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4016 	if (IS_ERR(ns)) {
4017 		ret = PTR_ERR(ns);
4018 		goto err_path;
4019 	}
4020 	mnt = real_mount(newmount.mnt);
4021 	mnt->mnt_ns = ns;
4022 	ns->root = mnt;
4023 	ns->mounts = 1;
4024 	list_add(&mnt->mnt_list, &ns->list);
4025 	mntget(newmount.mnt);
4026 
4027 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4028 	 * it, not just simply put it.
4029 	 */
4030 	file = dentry_open(&newmount, O_PATH, fc->cred);
4031 	if (IS_ERR(file)) {
4032 		dissolve_on_fput(newmount.mnt);
4033 		ret = PTR_ERR(file);
4034 		goto err_path;
4035 	}
4036 	file->f_mode |= FMODE_NEED_UNMOUNT;
4037 
4038 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4039 	if (ret >= 0)
4040 		fd_install(ret, file);
4041 	else
4042 		fput(file);
4043 
4044 err_path:
4045 	path_put(&newmount);
4046 err_unlock:
4047 	mutex_unlock(&fc->uapi_mutex);
4048 err_fsfd:
4049 	fdput(f);
4050 	return ret;
4051 }
4052 
4053 /*
4054  * Move a mount from one place to another.  In combination with
4055  * fsopen()/fsmount() this is used to install a new mount and in combination
4056  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4057  * a mount subtree.
4058  *
4059  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4060  */
4061 SYSCALL_DEFINE5(move_mount,
4062 		int, from_dfd, const char __user *, from_pathname,
4063 		int, to_dfd, const char __user *, to_pathname,
4064 		unsigned int, flags)
4065 {
4066 	struct path from_path, to_path;
4067 	unsigned int lflags;
4068 	int ret = 0;
4069 
4070 	if (!may_mount())
4071 		return -EPERM;
4072 
4073 	if (flags & ~MOVE_MOUNT__MASK)
4074 		return -EINVAL;
4075 
4076 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4077 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4078 		return -EINVAL;
4079 
4080 	/* If someone gives a pathname, they aren't permitted to move
4081 	 * from an fd that requires unmount as we can't get at the flag
4082 	 * to clear it afterwards.
4083 	 */
4084 	lflags = 0;
4085 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4086 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4087 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4088 
4089 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4090 	if (ret < 0)
4091 		return ret;
4092 
4093 	lflags = 0;
4094 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4095 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4096 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4097 
4098 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4099 	if (ret < 0)
4100 		goto out_from;
4101 
4102 	ret = security_move_mount(&from_path, &to_path);
4103 	if (ret < 0)
4104 		goto out_to;
4105 
4106 	if (flags & MOVE_MOUNT_SET_GROUP)
4107 		ret = do_set_group(&from_path, &to_path);
4108 	else
4109 		ret = do_move_mount(&from_path, &to_path,
4110 				    (flags & MOVE_MOUNT_BENEATH));
4111 
4112 out_to:
4113 	path_put(&to_path);
4114 out_from:
4115 	path_put(&from_path);
4116 	return ret;
4117 }
4118 
4119 /*
4120  * Return true if path is reachable from root
4121  *
4122  * namespace_sem or mount_lock is held
4123  */
4124 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4125 			 const struct path *root)
4126 {
4127 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4128 		dentry = mnt->mnt_mountpoint;
4129 		mnt = mnt->mnt_parent;
4130 	}
4131 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4132 }
4133 
4134 bool path_is_under(const struct path *path1, const struct path *path2)
4135 {
4136 	bool res;
4137 	read_seqlock_excl(&mount_lock);
4138 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4139 	read_sequnlock_excl(&mount_lock);
4140 	return res;
4141 }
4142 EXPORT_SYMBOL(path_is_under);
4143 
4144 /*
4145  * pivot_root Semantics:
4146  * Moves the root file system of the current process to the directory put_old,
4147  * makes new_root as the new root file system of the current process, and sets
4148  * root/cwd of all processes which had them on the current root to new_root.
4149  *
4150  * Restrictions:
4151  * The new_root and put_old must be directories, and  must not be on the
4152  * same file  system as the current process root. The put_old  must  be
4153  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4154  * pointed to by put_old must yield the same directory as new_root. No other
4155  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4156  *
4157  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4158  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4159  * in this situation.
4160  *
4161  * Notes:
4162  *  - we don't move root/cwd if they are not at the root (reason: if something
4163  *    cared enough to change them, it's probably wrong to force them elsewhere)
4164  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4165  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4166  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4167  *    first.
4168  */
4169 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4170 		const char __user *, put_old)
4171 {
4172 	struct path new, old, root;
4173 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4174 	struct mountpoint *old_mp, *root_mp;
4175 	int error;
4176 
4177 	if (!may_mount())
4178 		return -EPERM;
4179 
4180 	error = user_path_at(AT_FDCWD, new_root,
4181 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4182 	if (error)
4183 		goto out0;
4184 
4185 	error = user_path_at(AT_FDCWD, put_old,
4186 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4187 	if (error)
4188 		goto out1;
4189 
4190 	error = security_sb_pivotroot(&old, &new);
4191 	if (error)
4192 		goto out2;
4193 
4194 	get_fs_root(current->fs, &root);
4195 	old_mp = lock_mount(&old);
4196 	error = PTR_ERR(old_mp);
4197 	if (IS_ERR(old_mp))
4198 		goto out3;
4199 
4200 	error = -EINVAL;
4201 	new_mnt = real_mount(new.mnt);
4202 	root_mnt = real_mount(root.mnt);
4203 	old_mnt = real_mount(old.mnt);
4204 	ex_parent = new_mnt->mnt_parent;
4205 	root_parent = root_mnt->mnt_parent;
4206 	if (IS_MNT_SHARED(old_mnt) ||
4207 		IS_MNT_SHARED(ex_parent) ||
4208 		IS_MNT_SHARED(root_parent))
4209 		goto out4;
4210 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4211 		goto out4;
4212 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4213 		goto out4;
4214 	error = -ENOENT;
4215 	if (d_unlinked(new.dentry))
4216 		goto out4;
4217 	error = -EBUSY;
4218 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4219 		goto out4; /* loop, on the same file system  */
4220 	error = -EINVAL;
4221 	if (!path_mounted(&root))
4222 		goto out4; /* not a mountpoint */
4223 	if (!mnt_has_parent(root_mnt))
4224 		goto out4; /* not attached */
4225 	if (!path_mounted(&new))
4226 		goto out4; /* not a mountpoint */
4227 	if (!mnt_has_parent(new_mnt))
4228 		goto out4; /* not attached */
4229 	/* make sure we can reach put_old from new_root */
4230 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4231 		goto out4;
4232 	/* make certain new is below the root */
4233 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4234 		goto out4;
4235 	lock_mount_hash();
4236 	umount_mnt(new_mnt);
4237 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4238 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4239 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4240 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4241 	}
4242 	/* mount old root on put_old */
4243 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4244 	/* mount new_root on / */
4245 	attach_mnt(new_mnt, root_parent, root_mp, false);
4246 	mnt_add_count(root_parent, -1);
4247 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4248 	/* A moved mount should not expire automatically */
4249 	list_del_init(&new_mnt->mnt_expire);
4250 	put_mountpoint(root_mp);
4251 	unlock_mount_hash();
4252 	chroot_fs_refs(&root, &new);
4253 	error = 0;
4254 out4:
4255 	unlock_mount(old_mp);
4256 	if (!error)
4257 		mntput_no_expire(ex_parent);
4258 out3:
4259 	path_put(&root);
4260 out2:
4261 	path_put(&old);
4262 out1:
4263 	path_put(&new);
4264 out0:
4265 	return error;
4266 }
4267 
4268 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4269 {
4270 	unsigned int flags = mnt->mnt.mnt_flags;
4271 
4272 	/*  flags to clear */
4273 	flags &= ~kattr->attr_clr;
4274 	/* flags to raise */
4275 	flags |= kattr->attr_set;
4276 
4277 	return flags;
4278 }
4279 
4280 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4281 {
4282 	struct vfsmount *m = &mnt->mnt;
4283 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4284 
4285 	if (!kattr->mnt_idmap)
4286 		return 0;
4287 
4288 	/*
4289 	 * Creating an idmapped mount with the filesystem wide idmapping
4290 	 * doesn't make sense so block that. We don't allow mushy semantics.
4291 	 */
4292 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4293 		return -EINVAL;
4294 
4295 	/*
4296 	 * Once a mount has been idmapped we don't allow it to change its
4297 	 * mapping. It makes things simpler and callers can just create
4298 	 * another bind-mount they can idmap if they want to.
4299 	 */
4300 	if (is_idmapped_mnt(m))
4301 		return -EPERM;
4302 
4303 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4304 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4305 		return -EINVAL;
4306 
4307 	/* We're not controlling the superblock. */
4308 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4309 		return -EPERM;
4310 
4311 	/* Mount has already been visible in the filesystem hierarchy. */
4312 	if (!is_anon_ns(mnt->mnt_ns))
4313 		return -EINVAL;
4314 
4315 	return 0;
4316 }
4317 
4318 /**
4319  * mnt_allow_writers() - check whether the attribute change allows writers
4320  * @kattr: the new mount attributes
4321  * @mnt: the mount to which @kattr will be applied
4322  *
4323  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4324  *
4325  * Return: true if writers need to be held, false if not
4326  */
4327 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4328 				     const struct mount *mnt)
4329 {
4330 	return (!(kattr->attr_set & MNT_READONLY) ||
4331 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4332 	       !kattr->mnt_idmap;
4333 }
4334 
4335 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4336 {
4337 	struct mount *m;
4338 	int err;
4339 
4340 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4341 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4342 			err = -EPERM;
4343 			break;
4344 		}
4345 
4346 		err = can_idmap_mount(kattr, m);
4347 		if (err)
4348 			break;
4349 
4350 		if (!mnt_allow_writers(kattr, m)) {
4351 			err = mnt_hold_writers(m);
4352 			if (err)
4353 				break;
4354 		}
4355 
4356 		if (!kattr->recurse)
4357 			return 0;
4358 	}
4359 
4360 	if (err) {
4361 		struct mount *p;
4362 
4363 		/*
4364 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4365 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4366 		 * mounts and needs to take care to include the first mount.
4367 		 */
4368 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4369 			/* If we had to hold writers unblock them. */
4370 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4371 				mnt_unhold_writers(p);
4372 
4373 			/*
4374 			 * We're done once the first mount we changed got
4375 			 * MNT_WRITE_HOLD unset.
4376 			 */
4377 			if (p == m)
4378 				break;
4379 		}
4380 	}
4381 	return err;
4382 }
4383 
4384 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4385 {
4386 	if (!kattr->mnt_idmap)
4387 		return;
4388 
4389 	/*
4390 	 * Pairs with smp_load_acquire() in mnt_idmap().
4391 	 *
4392 	 * Since we only allow a mount to change the idmapping once and
4393 	 * verified this in can_idmap_mount() we know that the mount has
4394 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4395 	 * references.
4396 	 */
4397 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4398 }
4399 
4400 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4401 {
4402 	struct mount *m;
4403 
4404 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4405 		unsigned int flags;
4406 
4407 		do_idmap_mount(kattr, m);
4408 		flags = recalc_flags(kattr, m);
4409 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4410 
4411 		/* If we had to hold writers unblock them. */
4412 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4413 			mnt_unhold_writers(m);
4414 
4415 		if (kattr->propagation)
4416 			change_mnt_propagation(m, kattr->propagation);
4417 		if (!kattr->recurse)
4418 			break;
4419 	}
4420 	touch_mnt_namespace(mnt->mnt_ns);
4421 }
4422 
4423 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4424 {
4425 	struct mount *mnt = real_mount(path->mnt);
4426 	int err = 0;
4427 
4428 	if (!path_mounted(path))
4429 		return -EINVAL;
4430 
4431 	if (kattr->mnt_userns) {
4432 		struct mnt_idmap *mnt_idmap;
4433 
4434 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4435 		if (IS_ERR(mnt_idmap))
4436 			return PTR_ERR(mnt_idmap);
4437 		kattr->mnt_idmap = mnt_idmap;
4438 	}
4439 
4440 	if (kattr->propagation) {
4441 		/*
4442 		 * Only take namespace_lock() if we're actually changing
4443 		 * propagation.
4444 		 */
4445 		namespace_lock();
4446 		if (kattr->propagation == MS_SHARED) {
4447 			err = invent_group_ids(mnt, kattr->recurse);
4448 			if (err) {
4449 				namespace_unlock();
4450 				return err;
4451 			}
4452 		}
4453 	}
4454 
4455 	err = -EINVAL;
4456 	lock_mount_hash();
4457 
4458 	/* Ensure that this isn't anything purely vfs internal. */
4459 	if (!is_mounted(&mnt->mnt))
4460 		goto out;
4461 
4462 	/*
4463 	 * If this is an attached mount make sure it's located in the callers
4464 	 * mount namespace. If it's not don't let the caller interact with it.
4465 	 * If this is a detached mount make sure it has an anonymous mount
4466 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4467 	 */
4468 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4469 		goto out;
4470 
4471 	/*
4472 	 * First, we get the mount tree in a shape where we can change mount
4473 	 * properties without failure. If we succeeded to do so we commit all
4474 	 * changes and if we failed we clean up.
4475 	 */
4476 	err = mount_setattr_prepare(kattr, mnt);
4477 	if (!err)
4478 		mount_setattr_commit(kattr, mnt);
4479 
4480 out:
4481 	unlock_mount_hash();
4482 
4483 	if (kattr->propagation) {
4484 		if (err)
4485 			cleanup_group_ids(mnt, NULL);
4486 		namespace_unlock();
4487 	}
4488 
4489 	return err;
4490 }
4491 
4492 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4493 				struct mount_kattr *kattr, unsigned int flags)
4494 {
4495 	int err = 0;
4496 	struct ns_common *ns;
4497 	struct user_namespace *mnt_userns;
4498 	struct fd f;
4499 
4500 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4501 		return 0;
4502 
4503 	/*
4504 	 * We currently do not support clearing an idmapped mount. If this ever
4505 	 * is a use-case we can revisit this but for now let's keep it simple
4506 	 * and not allow it.
4507 	 */
4508 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4509 		return -EINVAL;
4510 
4511 	if (attr->userns_fd > INT_MAX)
4512 		return -EINVAL;
4513 
4514 	f = fdget(attr->userns_fd);
4515 	if (!f.file)
4516 		return -EBADF;
4517 
4518 	if (!proc_ns_file(f.file)) {
4519 		err = -EINVAL;
4520 		goto out_fput;
4521 	}
4522 
4523 	ns = get_proc_ns(file_inode(f.file));
4524 	if (ns->ops->type != CLONE_NEWUSER) {
4525 		err = -EINVAL;
4526 		goto out_fput;
4527 	}
4528 
4529 	/*
4530 	 * The initial idmapping cannot be used to create an idmapped
4531 	 * mount. We use the initial idmapping as an indicator of a mount
4532 	 * that is not idmapped. It can simply be passed into helpers that
4533 	 * are aware of idmapped mounts as a convenient shortcut. A user
4534 	 * can just create a dedicated identity mapping to achieve the same
4535 	 * result.
4536 	 */
4537 	mnt_userns = container_of(ns, struct user_namespace, ns);
4538 	if (mnt_userns == &init_user_ns) {
4539 		err = -EPERM;
4540 		goto out_fput;
4541 	}
4542 
4543 	/* We're not controlling the target namespace. */
4544 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4545 		err = -EPERM;
4546 		goto out_fput;
4547 	}
4548 
4549 	kattr->mnt_userns = get_user_ns(mnt_userns);
4550 
4551 out_fput:
4552 	fdput(f);
4553 	return err;
4554 }
4555 
4556 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4557 			     struct mount_kattr *kattr, unsigned int flags)
4558 {
4559 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4560 
4561 	if (flags & AT_NO_AUTOMOUNT)
4562 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4563 	if (flags & AT_SYMLINK_NOFOLLOW)
4564 		lookup_flags &= ~LOOKUP_FOLLOW;
4565 	if (flags & AT_EMPTY_PATH)
4566 		lookup_flags |= LOOKUP_EMPTY;
4567 
4568 	*kattr = (struct mount_kattr) {
4569 		.lookup_flags	= lookup_flags,
4570 		.recurse	= !!(flags & AT_RECURSIVE),
4571 	};
4572 
4573 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4574 		return -EINVAL;
4575 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4576 		return -EINVAL;
4577 	kattr->propagation = attr->propagation;
4578 
4579 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4580 		return -EINVAL;
4581 
4582 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4583 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4584 
4585 	/*
4586 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4587 	 * users wanting to transition to a different atime setting cannot
4588 	 * simply specify the atime setting in @attr_set, but must also
4589 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4590 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4591 	 * @attr_clr and that @attr_set can't have any atime bits set if
4592 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4593 	 */
4594 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4595 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4596 			return -EINVAL;
4597 
4598 		/*
4599 		 * Clear all previous time settings as they are mutually
4600 		 * exclusive.
4601 		 */
4602 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4603 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4604 		case MOUNT_ATTR_RELATIME:
4605 			kattr->attr_set |= MNT_RELATIME;
4606 			break;
4607 		case MOUNT_ATTR_NOATIME:
4608 			kattr->attr_set |= MNT_NOATIME;
4609 			break;
4610 		case MOUNT_ATTR_STRICTATIME:
4611 			break;
4612 		default:
4613 			return -EINVAL;
4614 		}
4615 	} else {
4616 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4617 			return -EINVAL;
4618 	}
4619 
4620 	return build_mount_idmapped(attr, usize, kattr, flags);
4621 }
4622 
4623 static void finish_mount_kattr(struct mount_kattr *kattr)
4624 {
4625 	put_user_ns(kattr->mnt_userns);
4626 	kattr->mnt_userns = NULL;
4627 
4628 	if (kattr->mnt_idmap)
4629 		mnt_idmap_put(kattr->mnt_idmap);
4630 }
4631 
4632 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4633 		unsigned int, flags, struct mount_attr __user *, uattr,
4634 		size_t, usize)
4635 {
4636 	int err;
4637 	struct path target;
4638 	struct mount_attr attr;
4639 	struct mount_kattr kattr;
4640 
4641 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4642 
4643 	if (flags & ~(AT_EMPTY_PATH |
4644 		      AT_RECURSIVE |
4645 		      AT_SYMLINK_NOFOLLOW |
4646 		      AT_NO_AUTOMOUNT))
4647 		return -EINVAL;
4648 
4649 	if (unlikely(usize > PAGE_SIZE))
4650 		return -E2BIG;
4651 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4652 		return -EINVAL;
4653 
4654 	if (!may_mount())
4655 		return -EPERM;
4656 
4657 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4658 	if (err)
4659 		return err;
4660 
4661 	/* Don't bother walking through the mounts if this is a nop. */
4662 	if (attr.attr_set == 0 &&
4663 	    attr.attr_clr == 0 &&
4664 	    attr.propagation == 0)
4665 		return 0;
4666 
4667 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4668 	if (err)
4669 		return err;
4670 
4671 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4672 	if (!err) {
4673 		err = do_mount_setattr(&target, &kattr);
4674 		path_put(&target);
4675 	}
4676 	finish_mount_kattr(&kattr);
4677 	return err;
4678 }
4679 
4680 static void __init init_mount_tree(void)
4681 {
4682 	struct vfsmount *mnt;
4683 	struct mount *m;
4684 	struct mnt_namespace *ns;
4685 	struct path root;
4686 
4687 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4688 	if (IS_ERR(mnt))
4689 		panic("Can't create rootfs");
4690 
4691 	ns = alloc_mnt_ns(&init_user_ns, false);
4692 	if (IS_ERR(ns))
4693 		panic("Can't allocate initial namespace");
4694 	m = real_mount(mnt);
4695 	m->mnt_ns = ns;
4696 	ns->root = m;
4697 	ns->mounts = 1;
4698 	list_add(&m->mnt_list, &ns->list);
4699 	init_task.nsproxy->mnt_ns = ns;
4700 	get_mnt_ns(ns);
4701 
4702 	root.mnt = mnt;
4703 	root.dentry = mnt->mnt_root;
4704 	mnt->mnt_flags |= MNT_LOCKED;
4705 
4706 	set_fs_pwd(current->fs, &root);
4707 	set_fs_root(current->fs, &root);
4708 }
4709 
4710 void __init mnt_init(void)
4711 {
4712 	int err;
4713 
4714 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4715 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4716 
4717 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4718 				sizeof(struct hlist_head),
4719 				mhash_entries, 19,
4720 				HASH_ZERO,
4721 				&m_hash_shift, &m_hash_mask, 0, 0);
4722 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4723 				sizeof(struct hlist_head),
4724 				mphash_entries, 19,
4725 				HASH_ZERO,
4726 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4727 
4728 	if (!mount_hashtable || !mountpoint_hashtable)
4729 		panic("Failed to allocate mount hash table\n");
4730 
4731 	kernfs_init();
4732 
4733 	err = sysfs_init();
4734 	if (err)
4735 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4736 			__func__, err);
4737 	fs_kobj = kobject_create_and_add("fs", NULL);
4738 	if (!fs_kobj)
4739 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4740 	shmem_init();
4741 	init_rootfs();
4742 	init_mount_tree();
4743 }
4744 
4745 void put_mnt_ns(struct mnt_namespace *ns)
4746 {
4747 	if (!refcount_dec_and_test(&ns->ns.count))
4748 		return;
4749 	drop_collected_mounts(&ns->root->mnt);
4750 	free_mnt_ns(ns);
4751 }
4752 
4753 struct vfsmount *kern_mount(struct file_system_type *type)
4754 {
4755 	struct vfsmount *mnt;
4756 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4757 	if (!IS_ERR(mnt)) {
4758 		/*
4759 		 * it is a longterm mount, don't release mnt until
4760 		 * we unmount before file sys is unregistered
4761 		*/
4762 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4763 	}
4764 	return mnt;
4765 }
4766 EXPORT_SYMBOL_GPL(kern_mount);
4767 
4768 void kern_unmount(struct vfsmount *mnt)
4769 {
4770 	/* release long term mount so mount point can be released */
4771 	if (!IS_ERR(mnt)) {
4772 		mnt_make_shortterm(mnt);
4773 		synchronize_rcu();	/* yecchhh... */
4774 		mntput(mnt);
4775 	}
4776 }
4777 EXPORT_SYMBOL(kern_unmount);
4778 
4779 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4780 {
4781 	unsigned int i;
4782 
4783 	for (i = 0; i < num; i++)
4784 		mnt_make_shortterm(mnt[i]);
4785 	synchronize_rcu_expedited();
4786 	for (i = 0; i < num; i++)
4787 		mntput(mnt[i]);
4788 }
4789 EXPORT_SYMBOL(kern_unmount_array);
4790 
4791 bool our_mnt(struct vfsmount *mnt)
4792 {
4793 	return check_mnt(real_mount(mnt));
4794 }
4795 
4796 bool current_chrooted(void)
4797 {
4798 	/* Does the current process have a non-standard root */
4799 	struct path ns_root;
4800 	struct path fs_root;
4801 	bool chrooted;
4802 
4803 	/* Find the namespace root */
4804 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4805 	ns_root.dentry = ns_root.mnt->mnt_root;
4806 	path_get(&ns_root);
4807 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4808 		;
4809 
4810 	get_fs_root(current->fs, &fs_root);
4811 
4812 	chrooted = !path_equal(&fs_root, &ns_root);
4813 
4814 	path_put(&fs_root);
4815 	path_put(&ns_root);
4816 
4817 	return chrooted;
4818 }
4819 
4820 static bool mnt_already_visible(struct mnt_namespace *ns,
4821 				const struct super_block *sb,
4822 				int *new_mnt_flags)
4823 {
4824 	int new_flags = *new_mnt_flags;
4825 	struct mount *mnt;
4826 	bool visible = false;
4827 
4828 	down_read(&namespace_sem);
4829 	lock_ns_list(ns);
4830 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4831 		struct mount *child;
4832 		int mnt_flags;
4833 
4834 		if (mnt_is_cursor(mnt))
4835 			continue;
4836 
4837 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4838 			continue;
4839 
4840 		/* This mount is not fully visible if it's root directory
4841 		 * is not the root directory of the filesystem.
4842 		 */
4843 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4844 			continue;
4845 
4846 		/* A local view of the mount flags */
4847 		mnt_flags = mnt->mnt.mnt_flags;
4848 
4849 		/* Don't miss readonly hidden in the superblock flags */
4850 		if (sb_rdonly(mnt->mnt.mnt_sb))
4851 			mnt_flags |= MNT_LOCK_READONLY;
4852 
4853 		/* Verify the mount flags are equal to or more permissive
4854 		 * than the proposed new mount.
4855 		 */
4856 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4857 		    !(new_flags & MNT_READONLY))
4858 			continue;
4859 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4860 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4861 			continue;
4862 
4863 		/* This mount is not fully visible if there are any
4864 		 * locked child mounts that cover anything except for
4865 		 * empty directories.
4866 		 */
4867 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4868 			struct inode *inode = child->mnt_mountpoint->d_inode;
4869 			/* Only worry about locked mounts */
4870 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4871 				continue;
4872 			/* Is the directory permanetly empty? */
4873 			if (!is_empty_dir_inode(inode))
4874 				goto next;
4875 		}
4876 		/* Preserve the locked attributes */
4877 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4878 					       MNT_LOCK_ATIME);
4879 		visible = true;
4880 		goto found;
4881 	next:	;
4882 	}
4883 found:
4884 	unlock_ns_list(ns);
4885 	up_read(&namespace_sem);
4886 	return visible;
4887 }
4888 
4889 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4890 {
4891 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4892 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4893 	unsigned long s_iflags;
4894 
4895 	if (ns->user_ns == &init_user_ns)
4896 		return false;
4897 
4898 	/* Can this filesystem be too revealing? */
4899 	s_iflags = sb->s_iflags;
4900 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4901 		return false;
4902 
4903 	if ((s_iflags & required_iflags) != required_iflags) {
4904 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4905 			  required_iflags);
4906 		return true;
4907 	}
4908 
4909 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4910 }
4911 
4912 bool mnt_may_suid(struct vfsmount *mnt)
4913 {
4914 	/*
4915 	 * Foreign mounts (accessed via fchdir or through /proc
4916 	 * symlinks) are always treated as if they are nosuid.  This
4917 	 * prevents namespaces from trusting potentially unsafe
4918 	 * suid/sgid bits, file caps, or security labels that originate
4919 	 * in other namespaces.
4920 	 */
4921 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4922 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4923 }
4924 
4925 static struct ns_common *mntns_get(struct task_struct *task)
4926 {
4927 	struct ns_common *ns = NULL;
4928 	struct nsproxy *nsproxy;
4929 
4930 	task_lock(task);
4931 	nsproxy = task->nsproxy;
4932 	if (nsproxy) {
4933 		ns = &nsproxy->mnt_ns->ns;
4934 		get_mnt_ns(to_mnt_ns(ns));
4935 	}
4936 	task_unlock(task);
4937 
4938 	return ns;
4939 }
4940 
4941 static void mntns_put(struct ns_common *ns)
4942 {
4943 	put_mnt_ns(to_mnt_ns(ns));
4944 }
4945 
4946 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4947 {
4948 	struct nsproxy *nsproxy = nsset->nsproxy;
4949 	struct fs_struct *fs = nsset->fs;
4950 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4951 	struct user_namespace *user_ns = nsset->cred->user_ns;
4952 	struct path root;
4953 	int err;
4954 
4955 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4956 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4957 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4958 		return -EPERM;
4959 
4960 	if (is_anon_ns(mnt_ns))
4961 		return -EINVAL;
4962 
4963 	if (fs->users != 1)
4964 		return -EINVAL;
4965 
4966 	get_mnt_ns(mnt_ns);
4967 	old_mnt_ns = nsproxy->mnt_ns;
4968 	nsproxy->mnt_ns = mnt_ns;
4969 
4970 	/* Find the root */
4971 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4972 				"/", LOOKUP_DOWN, &root);
4973 	if (err) {
4974 		/* revert to old namespace */
4975 		nsproxy->mnt_ns = old_mnt_ns;
4976 		put_mnt_ns(mnt_ns);
4977 		return err;
4978 	}
4979 
4980 	put_mnt_ns(old_mnt_ns);
4981 
4982 	/* Update the pwd and root */
4983 	set_fs_pwd(fs, &root);
4984 	set_fs_root(fs, &root);
4985 
4986 	path_put(&root);
4987 	return 0;
4988 }
4989 
4990 static struct user_namespace *mntns_owner(struct ns_common *ns)
4991 {
4992 	return to_mnt_ns(ns)->user_ns;
4993 }
4994 
4995 const struct proc_ns_operations mntns_operations = {
4996 	.name		= "mnt",
4997 	.type		= CLONE_NEWNS,
4998 	.get		= mntns_get,
4999 	.put		= mntns_put,
5000 	.install	= mntns_install,
5001 	.owner		= mntns_owner,
5002 };
5003 
5004 #ifdef CONFIG_SYSCTL
5005 static struct ctl_table fs_namespace_sysctls[] = {
5006 	{
5007 		.procname	= "mount-max",
5008 		.data		= &sysctl_mount_max,
5009 		.maxlen		= sizeof(unsigned int),
5010 		.mode		= 0644,
5011 		.proc_handler	= proc_dointvec_minmax,
5012 		.extra1		= SYSCTL_ONE,
5013 	},
5014 	{ }
5015 };
5016 
5017 static int __init init_fs_namespace_sysctls(void)
5018 {
5019 	register_sysctl_init("fs", fs_namespace_sysctls);
5020 	return 0;
5021 }
5022 fs_initcall(init_fs_namespace_sysctls);
5023 
5024 #endif /* CONFIG_SYSCTL */
5025