xref: /linux/fs/namespace.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33 
34 #include "pnode.h"
35 #include "internal.h"
36 
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39 
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44 
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mhash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54 
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 	if (!str)
59 		return 0;
60 	mphash_entries = simple_strtoul(str, &str, 0);
61 	return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64 
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68 
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75 
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79 
80 /*
81  * vfsmount lock may be taken for read to prevent changes to the
82  * vfsmount hash, ie. during mountpoint lookups or walking back
83  * up the tree.
84  *
85  * It should be taken for write in all cases where the vfsmount
86  * tree or hash is modified or when a vfsmount structure is modified.
87  */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89 
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 	tmp = tmp + (tmp >> m_hash_shift);
95 	return &mount_hashtable[tmp & m_hash_mask];
96 }
97 
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 	tmp = tmp + (tmp >> mp_hash_shift);
102 	return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104 
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108 
109 	if (res < 0)
110 		return res;
111 	mnt->mnt_id = res;
112 	return 0;
113 }
114 
115 static void mnt_free_id(struct mount *mnt)
116 {
117 	ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119 
120 /*
121  * Allocate a new peer group ID
122  */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126 
127 	if (res < 0)
128 		return res;
129 	mnt->mnt_group_id = res;
130 	return 0;
131 }
132 
133 /*
134  * Release a peer group ID
135  */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 	mnt->mnt_group_id = 0;
140 }
141 
142 /*
143  * vfsmount lock must be held for read
144  */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 	preempt_disable();
151 	mnt->mnt_count += n;
152 	preempt_enable();
153 #endif
154 }
155 
156 /*
157  * vfsmount lock must be held for write
158  */
159 unsigned int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 	unsigned int count = 0;
163 	int cpu;
164 
165 	for_each_possible_cpu(cpu) {
166 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 	}
168 
169 	return count;
170 #else
171 	return mnt->mnt_count;
172 #endif
173 }
174 
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 	if (mnt) {
179 		int err;
180 
181 		err = mnt_alloc_id(mnt);
182 		if (err)
183 			goto out_free_cache;
184 
185 		if (name) {
186 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 			if (!mnt->mnt_devname)
188 				goto out_free_id;
189 		}
190 
191 #ifdef CONFIG_SMP
192 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 		if (!mnt->mnt_pcp)
194 			goto out_free_devname;
195 
196 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 		mnt->mnt_count = 1;
199 		mnt->mnt_writers = 0;
200 #endif
201 
202 		INIT_HLIST_NODE(&mnt->mnt_hash);
203 		INIT_LIST_HEAD(&mnt->mnt_child);
204 		INIT_LIST_HEAD(&mnt->mnt_mounts);
205 		INIT_LIST_HEAD(&mnt->mnt_list);
206 		INIT_LIST_HEAD(&mnt->mnt_expire);
207 		INIT_LIST_HEAD(&mnt->mnt_share);
208 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 		INIT_LIST_HEAD(&mnt->mnt_slave);
210 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 		INIT_LIST_HEAD(&mnt->mnt_umounting);
212 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 	}
214 	return mnt;
215 
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 	kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 	mnt_free_id(mnt);
222 out_free_cache:
223 	kmem_cache_free(mnt_cache, mnt);
224 	return NULL;
225 }
226 
227 /*
228  * Most r/o checks on a fs are for operations that take
229  * discrete amounts of time, like a write() or unlink().
230  * We must keep track of when those operations start
231  * (for permission checks) and when they end, so that
232  * we can determine when writes are able to occur to
233  * a filesystem.
234  */
235 /*
236  * __mnt_is_readonly: check whether a mount is read-only
237  * @mnt: the mount to check for its write status
238  *
239  * This shouldn't be used directly ouside of the VFS.
240  * It does not guarantee that the filesystem will stay
241  * r/w, just that it is right *now*.  This can not and
242  * should not be used in place of IS_RDONLY(inode).
243  * mnt_want/drop_write() will _keep_ the filesystem
244  * r/w.
245  */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251 
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 	mnt->mnt_writers++;
258 #endif
259 }
260 
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 	mnt->mnt_writers--;
267 #endif
268 }
269 
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 	unsigned int count = 0;
274 	int cpu;
275 
276 	for_each_possible_cpu(cpu) {
277 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 	}
279 
280 	return count;
281 #else
282 	return mnt->mnt_writers;
283 #endif
284 }
285 
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 	if (mnt->mnt_sb->s_readonly_remount)
289 		return 1;
290 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 	smp_rmb();
292 	return __mnt_is_readonly(mnt);
293 }
294 
295 /*
296  * Most r/o & frozen checks on a fs are for operations that take discrete
297  * amounts of time, like a write() or unlink().  We must keep track of when
298  * those operations start (for permission checks) and when they end, so that we
299  * can determine when writes are able to occur to a filesystem.
300  */
301 /**
302  * __mnt_want_write - get write access to a mount without freeze protection
303  * @m: the mount on which to take a write
304  *
305  * This tells the low-level filesystem that a write is about to be performed to
306  * it, and makes sure that writes are allowed (mnt it read-write) before
307  * returning success. This operation does not protect against filesystem being
308  * frozen. When the write operation is finished, __mnt_drop_write() must be
309  * called. This is effectively a refcount.
310  */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 	struct mount *mnt = real_mount(m);
314 	int ret = 0;
315 
316 	preempt_disable();
317 	mnt_inc_writers(mnt);
318 	/*
319 	 * The store to mnt_inc_writers must be visible before we pass
320 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 	 * incremented count after it has set MNT_WRITE_HOLD.
322 	 */
323 	smp_mb();
324 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 		cpu_relax();
326 	/*
327 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 	 * be set to match its requirements. So we must not load that until
329 	 * MNT_WRITE_HOLD is cleared.
330 	 */
331 	smp_rmb();
332 	if (mnt_is_readonly(m)) {
333 		mnt_dec_writers(mnt);
334 		ret = -EROFS;
335 	}
336 	preempt_enable();
337 
338 	return ret;
339 }
340 
341 /**
342  * mnt_want_write - get write access to a mount
343  * @m: the mount on which to take a write
344  *
345  * This tells the low-level filesystem that a write is about to be performed to
346  * it, and makes sure that writes are allowed (mount is read-write, filesystem
347  * is not frozen) before returning success.  When the write operation is
348  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
349  */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 	int ret;
353 
354 	sb_start_write(m->mnt_sb);
355 	ret = __mnt_want_write(m);
356 	if (ret)
357 		sb_end_write(m->mnt_sb);
358 	return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361 
362 /**
363  * mnt_clone_write - get write access to a mount
364  * @mnt: the mount on which to take a write
365  *
366  * This is effectively like mnt_want_write, except
367  * it must only be used to take an extra write reference
368  * on a mountpoint that we already know has a write reference
369  * on it. This allows some optimisation.
370  *
371  * After finished, mnt_drop_write must be called as usual to
372  * drop the reference.
373  */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 	/* superblock may be r/o */
377 	if (__mnt_is_readonly(mnt))
378 		return -EROFS;
379 	preempt_disable();
380 	mnt_inc_writers(real_mount(mnt));
381 	preempt_enable();
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385 
386 /**
387  * __mnt_want_write_file - get write access to a file's mount
388  * @file: the file who's mount on which to take a write
389  *
390  * This is like __mnt_want_write, but it takes a file and can
391  * do some optimisations if the file is open for write already
392  */
393 int __mnt_want_write_file(struct file *file)
394 {
395 	if (!(file->f_mode & FMODE_WRITER))
396 		return __mnt_want_write(file->f_path.mnt);
397 	else
398 		return mnt_clone_write(file->f_path.mnt);
399 }
400 
401 /**
402  * mnt_want_write_file - get write access to a file's mount
403  * @file: the file who's mount on which to take a write
404  *
405  * This is like mnt_want_write, but it takes a file and can
406  * do some optimisations if the file is open for write already
407  */
408 int mnt_want_write_file(struct file *file)
409 {
410 	int ret;
411 
412 	sb_start_write(file_inode(file)->i_sb);
413 	ret = __mnt_want_write_file(file);
414 	if (ret)
415 		sb_end_write(file_inode(file)->i_sb);
416 	return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419 
420 /**
421  * __mnt_drop_write - give up write access to a mount
422  * @mnt: the mount on which to give up write access
423  *
424  * Tells the low-level filesystem that we are done
425  * performing writes to it.  Must be matched with
426  * __mnt_want_write() call above.
427  */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 	preempt_disable();
431 	mnt_dec_writers(real_mount(mnt));
432 	preempt_enable();
433 }
434 
435 /**
436  * mnt_drop_write - give up write access to a mount
437  * @mnt: the mount on which to give up write access
438  *
439  * Tells the low-level filesystem that we are done performing writes to it and
440  * also allows filesystem to be frozen again.  Must be matched with
441  * mnt_want_write() call above.
442  */
443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 	__mnt_drop_write(mnt);
446 	sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449 
450 void __mnt_drop_write_file(struct file *file)
451 {
452 	__mnt_drop_write(file->f_path.mnt);
453 }
454 
455 void mnt_drop_write_file(struct file *file)
456 {
457 	__mnt_drop_write_file(file);
458 	sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL(mnt_drop_write_file);
461 
462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 	int ret = 0;
465 
466 	lock_mount_hash();
467 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 	/*
469 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 	 * should be visible before we do.
471 	 */
472 	smp_mb();
473 
474 	/*
475 	 * With writers on hold, if this value is zero, then there are
476 	 * definitely no active writers (although held writers may subsequently
477 	 * increment the count, they'll have to wait, and decrement it after
478 	 * seeing MNT_READONLY).
479 	 *
480 	 * It is OK to have counter incremented on one CPU and decremented on
481 	 * another: the sum will add up correctly. The danger would be when we
482 	 * sum up each counter, if we read a counter before it is incremented,
483 	 * but then read another CPU's count which it has been subsequently
484 	 * decremented from -- we would see more decrements than we should.
485 	 * MNT_WRITE_HOLD protects against this scenario, because
486 	 * mnt_want_write first increments count, then smp_mb, then spins on
487 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 	 * we're counting up here.
489 	 */
490 	if (mnt_get_writers(mnt) > 0)
491 		ret = -EBUSY;
492 	else
493 		mnt->mnt.mnt_flags |= MNT_READONLY;
494 	/*
495 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 	 * that become unheld will see MNT_READONLY.
497 	 */
498 	smp_wmb();
499 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 	unlock_mount_hash();
501 	return ret;
502 }
503 
504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 	lock_mount_hash();
507 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 	unlock_mount_hash();
509 	return 0;
510 }
511 
512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 	struct mount *mnt;
515 	int err = 0;
516 
517 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
518 	if (atomic_long_read(&sb->s_remove_count))
519 		return -EBUSY;
520 
521 	lock_mount_hash();
522 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 			smp_mb();
526 			if (mnt_get_writers(mnt) > 0) {
527 				err = -EBUSY;
528 				break;
529 			}
530 		}
531 	}
532 	if (!err && atomic_long_read(&sb->s_remove_count))
533 		err = -EBUSY;
534 
535 	if (!err) {
536 		sb->s_readonly_remount = 1;
537 		smp_wmb();
538 	}
539 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 	}
543 	unlock_mount_hash();
544 
545 	return err;
546 }
547 
548 static void free_vfsmnt(struct mount *mnt)
549 {
550 	kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 	free_percpu(mnt->mnt_pcp);
553 #endif
554 	kmem_cache_free(mnt_cache, mnt);
555 }
556 
557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561 
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 	struct mount *mnt;
566 	if (read_seqretry(&mount_lock, seq))
567 		return 1;
568 	if (bastard == NULL)
569 		return 0;
570 	mnt = real_mount(bastard);
571 	mnt_add_count(mnt, 1);
572 	smp_mb();			// see mntput_no_expire()
573 	if (likely(!read_seqretry(&mount_lock, seq)))
574 		return 0;
575 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 		mnt_add_count(mnt, -1);
577 		return 1;
578 	}
579 	lock_mount_hash();
580 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 		mnt_add_count(mnt, -1);
582 		unlock_mount_hash();
583 		return 1;
584 	}
585 	unlock_mount_hash();
586 	/* caller will mntput() */
587 	return -1;
588 }
589 
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 	int res = __legitimize_mnt(bastard, seq);
594 	if (likely(!res))
595 		return true;
596 	if (unlikely(res < 0)) {
597 		rcu_read_unlock();
598 		mntput(bastard);
599 		rcu_read_lock();
600 	}
601 	return false;
602 }
603 
604 /*
605  * find the first mount at @dentry on vfsmount @mnt.
606  * call under rcu_read_lock()
607  */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 	struct hlist_head *head = m_hash(mnt, dentry);
611 	struct mount *p;
612 
613 	hlist_for_each_entry_rcu(p, head, mnt_hash)
614 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 			return p;
616 	return NULL;
617 }
618 
619 /*
620  * lookup_mnt - Return the first child mount mounted at path
621  *
622  * "First" means first mounted chronologically.  If you create the
623  * following mounts:
624  *
625  * mount /dev/sda1 /mnt
626  * mount /dev/sda2 /mnt
627  * mount /dev/sda3 /mnt
628  *
629  * Then lookup_mnt() on the base /mnt dentry in the root mount will
630  * return successively the root dentry and vfsmount of /dev/sda1, then
631  * /dev/sda2, then /dev/sda3, then NULL.
632  *
633  * lookup_mnt takes a reference to the found vfsmount.
634  */
635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 	struct mount *child_mnt;
638 	struct vfsmount *m;
639 	unsigned seq;
640 
641 	rcu_read_lock();
642 	do {
643 		seq = read_seqbegin(&mount_lock);
644 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 		m = child_mnt ? &child_mnt->mnt : NULL;
646 	} while (!legitimize_mnt(m, seq));
647 	rcu_read_unlock();
648 	return m;
649 }
650 
651 /*
652  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653  *                         current mount namespace.
654  *
655  * The common case is dentries are not mountpoints at all and that
656  * test is handled inline.  For the slow case when we are actually
657  * dealing with a mountpoint of some kind, walk through all of the
658  * mounts in the current mount namespace and test to see if the dentry
659  * is a mountpoint.
660  *
661  * The mount_hashtable is not usable in the context because we
662  * need to identify all mounts that may be in the current mount
663  * namespace not just a mount that happens to have some specified
664  * parent mount.
665  */
666 bool __is_local_mountpoint(struct dentry *dentry)
667 {
668 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 	struct mount *mnt;
670 	bool is_covered = false;
671 
672 	if (!d_mountpoint(dentry))
673 		goto out;
674 
675 	down_read(&namespace_sem);
676 	list_for_each_entry(mnt, &ns->list, mnt_list) {
677 		is_covered = (mnt->mnt_mountpoint == dentry);
678 		if (is_covered)
679 			break;
680 	}
681 	up_read(&namespace_sem);
682 out:
683 	return is_covered;
684 }
685 
686 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
687 {
688 	struct hlist_head *chain = mp_hash(dentry);
689 	struct mountpoint *mp;
690 
691 	hlist_for_each_entry(mp, chain, m_hash) {
692 		if (mp->m_dentry == dentry) {
693 			mp->m_count++;
694 			return mp;
695 		}
696 	}
697 	return NULL;
698 }
699 
700 static struct mountpoint *get_mountpoint(struct dentry *dentry)
701 {
702 	struct mountpoint *mp, *new = NULL;
703 	int ret;
704 
705 	if (d_mountpoint(dentry)) {
706 		/* might be worth a WARN_ON() */
707 		if (d_unlinked(dentry))
708 			return ERR_PTR(-ENOENT);
709 mountpoint:
710 		read_seqlock_excl(&mount_lock);
711 		mp = lookup_mountpoint(dentry);
712 		read_sequnlock_excl(&mount_lock);
713 		if (mp)
714 			goto done;
715 	}
716 
717 	if (!new)
718 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 	if (!new)
720 		return ERR_PTR(-ENOMEM);
721 
722 
723 	/* Exactly one processes may set d_mounted */
724 	ret = d_set_mounted(dentry);
725 
726 	/* Someone else set d_mounted? */
727 	if (ret == -EBUSY)
728 		goto mountpoint;
729 
730 	/* The dentry is not available as a mountpoint? */
731 	mp = ERR_PTR(ret);
732 	if (ret)
733 		goto done;
734 
735 	/* Add the new mountpoint to the hash table */
736 	read_seqlock_excl(&mount_lock);
737 	new->m_dentry = dget(dentry);
738 	new->m_count = 1;
739 	hlist_add_head(&new->m_hash, mp_hash(dentry));
740 	INIT_HLIST_HEAD(&new->m_list);
741 	read_sequnlock_excl(&mount_lock);
742 
743 	mp = new;
744 	new = NULL;
745 done:
746 	kfree(new);
747 	return mp;
748 }
749 
750 /*
751  * vfsmount lock must be held.  Additionally, the caller is responsible
752  * for serializing calls for given disposal list.
753  */
754 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
755 {
756 	if (!--mp->m_count) {
757 		struct dentry *dentry = mp->m_dentry;
758 		BUG_ON(!hlist_empty(&mp->m_list));
759 		spin_lock(&dentry->d_lock);
760 		dentry->d_flags &= ~DCACHE_MOUNTED;
761 		spin_unlock(&dentry->d_lock);
762 		dput_to_list(dentry, list);
763 		hlist_del(&mp->m_hash);
764 		kfree(mp);
765 	}
766 }
767 
768 /* called with namespace_lock and vfsmount lock */
769 static void put_mountpoint(struct mountpoint *mp)
770 {
771 	__put_mountpoint(mp, &ex_mountpoints);
772 }
773 
774 static inline int check_mnt(struct mount *mnt)
775 {
776 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
777 }
778 
779 /*
780  * vfsmount lock must be held for write
781  */
782 static void touch_mnt_namespace(struct mnt_namespace *ns)
783 {
784 	if (ns) {
785 		ns->event = ++event;
786 		wake_up_interruptible(&ns->poll);
787 	}
788 }
789 
790 /*
791  * vfsmount lock must be held for write
792  */
793 static void __touch_mnt_namespace(struct mnt_namespace *ns)
794 {
795 	if (ns && ns->event != event) {
796 		ns->event = event;
797 		wake_up_interruptible(&ns->poll);
798 	}
799 }
800 
801 /*
802  * vfsmount lock must be held for write
803  */
804 static struct mountpoint *unhash_mnt(struct mount *mnt)
805 {
806 	struct mountpoint *mp;
807 	mnt->mnt_parent = mnt;
808 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 	list_del_init(&mnt->mnt_child);
810 	hlist_del_init_rcu(&mnt->mnt_hash);
811 	hlist_del_init(&mnt->mnt_mp_list);
812 	mp = mnt->mnt_mp;
813 	mnt->mnt_mp = NULL;
814 	return mp;
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static void umount_mnt(struct mount *mnt)
821 {
822 	put_mountpoint(unhash_mnt(mnt));
823 }
824 
825 /*
826  * vfsmount lock must be held for write
827  */
828 void mnt_set_mountpoint(struct mount *mnt,
829 			struct mountpoint *mp,
830 			struct mount *child_mnt)
831 {
832 	mp->m_count++;
833 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
834 	child_mnt->mnt_mountpoint = mp->m_dentry;
835 	child_mnt->mnt_parent = mnt;
836 	child_mnt->mnt_mp = mp;
837 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
838 }
839 
840 static void __attach_mnt(struct mount *mnt, struct mount *parent)
841 {
842 	hlist_add_head_rcu(&mnt->mnt_hash,
843 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845 }
846 
847 /*
848  * vfsmount lock must be held for write
849  */
850 static void attach_mnt(struct mount *mnt,
851 			struct mount *parent,
852 			struct mountpoint *mp)
853 {
854 	mnt_set_mountpoint(parent, mp, mnt);
855 	__attach_mnt(mnt, parent);
856 }
857 
858 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
859 {
860 	struct mountpoint *old_mp = mnt->mnt_mp;
861 	struct mount *old_parent = mnt->mnt_parent;
862 
863 	list_del_init(&mnt->mnt_child);
864 	hlist_del_init(&mnt->mnt_mp_list);
865 	hlist_del_init_rcu(&mnt->mnt_hash);
866 
867 	attach_mnt(mnt, parent, mp);
868 
869 	put_mountpoint(old_mp);
870 	mnt_add_count(old_parent, -1);
871 }
872 
873 /*
874  * vfsmount lock must be held for write
875  */
876 static void commit_tree(struct mount *mnt)
877 {
878 	struct mount *parent = mnt->mnt_parent;
879 	struct mount *m;
880 	LIST_HEAD(head);
881 	struct mnt_namespace *n = parent->mnt_ns;
882 
883 	BUG_ON(parent == mnt);
884 
885 	list_add_tail(&head, &mnt->mnt_list);
886 	list_for_each_entry(m, &head, mnt_list)
887 		m->mnt_ns = n;
888 
889 	list_splice(&head, n->list.prev);
890 
891 	n->mounts += n->pending_mounts;
892 	n->pending_mounts = 0;
893 
894 	__attach_mnt(mnt, parent);
895 	touch_mnt_namespace(n);
896 }
897 
898 static struct mount *next_mnt(struct mount *p, struct mount *root)
899 {
900 	struct list_head *next = p->mnt_mounts.next;
901 	if (next == &p->mnt_mounts) {
902 		while (1) {
903 			if (p == root)
904 				return NULL;
905 			next = p->mnt_child.next;
906 			if (next != &p->mnt_parent->mnt_mounts)
907 				break;
908 			p = p->mnt_parent;
909 		}
910 	}
911 	return list_entry(next, struct mount, mnt_child);
912 }
913 
914 static struct mount *skip_mnt_tree(struct mount *p)
915 {
916 	struct list_head *prev = p->mnt_mounts.prev;
917 	while (prev != &p->mnt_mounts) {
918 		p = list_entry(prev, struct mount, mnt_child);
919 		prev = p->mnt_mounts.prev;
920 	}
921 	return p;
922 }
923 
924 /**
925  * vfs_create_mount - Create a mount for a configured superblock
926  * @fc: The configuration context with the superblock attached
927  *
928  * Create a mount to an already configured superblock.  If necessary, the
929  * caller should invoke vfs_get_tree() before calling this.
930  *
931  * Note that this does not attach the mount to anything.
932  */
933 struct vfsmount *vfs_create_mount(struct fs_context *fc)
934 {
935 	struct mount *mnt;
936 
937 	if (!fc->root)
938 		return ERR_PTR(-EINVAL);
939 
940 	mnt = alloc_vfsmnt(fc->source ?: "none");
941 	if (!mnt)
942 		return ERR_PTR(-ENOMEM);
943 
944 	if (fc->sb_flags & SB_KERNMOUNT)
945 		mnt->mnt.mnt_flags = MNT_INTERNAL;
946 
947 	atomic_inc(&fc->root->d_sb->s_active);
948 	mnt->mnt.mnt_sb		= fc->root->d_sb;
949 	mnt->mnt.mnt_root	= dget(fc->root);
950 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
951 	mnt->mnt_parent		= mnt;
952 
953 	lock_mount_hash();
954 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
955 	unlock_mount_hash();
956 	return &mnt->mnt;
957 }
958 EXPORT_SYMBOL(vfs_create_mount);
959 
960 struct vfsmount *fc_mount(struct fs_context *fc)
961 {
962 	int err = vfs_get_tree(fc);
963 	if (!err) {
964 		up_write(&fc->root->d_sb->s_umount);
965 		return vfs_create_mount(fc);
966 	}
967 	return ERR_PTR(err);
968 }
969 EXPORT_SYMBOL(fc_mount);
970 
971 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 				int flags, const char *name,
973 				void *data)
974 {
975 	struct fs_context *fc;
976 	struct vfsmount *mnt;
977 	int ret = 0;
978 
979 	if (!type)
980 		return ERR_PTR(-EINVAL);
981 
982 	fc = fs_context_for_mount(type, flags);
983 	if (IS_ERR(fc))
984 		return ERR_CAST(fc);
985 
986 	if (name)
987 		ret = vfs_parse_fs_string(fc, "source",
988 					  name, strlen(name));
989 	if (!ret)
990 		ret = parse_monolithic_mount_data(fc, data);
991 	if (!ret)
992 		mnt = fc_mount(fc);
993 	else
994 		mnt = ERR_PTR(ret);
995 
996 	put_fs_context(fc);
997 	return mnt;
998 }
999 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000 
1001 struct vfsmount *
1002 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 	     const char *name, void *data)
1004 {
1005 	/* Until it is worked out how to pass the user namespace
1006 	 * through from the parent mount to the submount don't support
1007 	 * unprivileged mounts with submounts.
1008 	 */
1009 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 		return ERR_PTR(-EPERM);
1011 
1012 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013 }
1014 EXPORT_SYMBOL_GPL(vfs_submount);
1015 
1016 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017 					int flag)
1018 {
1019 	struct super_block *sb = old->mnt.mnt_sb;
1020 	struct mount *mnt;
1021 	int err;
1022 
1023 	mnt = alloc_vfsmnt(old->mnt_devname);
1024 	if (!mnt)
1025 		return ERR_PTR(-ENOMEM);
1026 
1027 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028 		mnt->mnt_group_id = 0; /* not a peer of original */
1029 	else
1030 		mnt->mnt_group_id = old->mnt_group_id;
1031 
1032 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 		err = mnt_alloc_group_id(mnt);
1034 		if (err)
1035 			goto out_free;
1036 	}
1037 
1038 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040 
1041 	atomic_inc(&sb->s_active);
1042 	mnt->mnt.mnt_sb = sb;
1043 	mnt->mnt.mnt_root = dget(root);
1044 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 	mnt->mnt_parent = mnt;
1046 	lock_mount_hash();
1047 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048 	unlock_mount_hash();
1049 
1050 	if ((flag & CL_SLAVE) ||
1051 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 		mnt->mnt_master = old;
1054 		CLEAR_MNT_SHARED(mnt);
1055 	} else if (!(flag & CL_PRIVATE)) {
1056 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 			list_add(&mnt->mnt_share, &old->mnt_share);
1058 		if (IS_MNT_SLAVE(old))
1059 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 		mnt->mnt_master = old->mnt_master;
1061 	} else {
1062 		CLEAR_MNT_SHARED(mnt);
1063 	}
1064 	if (flag & CL_MAKE_SHARED)
1065 		set_mnt_shared(mnt);
1066 
1067 	/* stick the duplicate mount on the same expiry list
1068 	 * as the original if that was on one */
1069 	if (flag & CL_EXPIRE) {
1070 		if (!list_empty(&old->mnt_expire))
1071 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 	}
1073 
1074 	return mnt;
1075 
1076  out_free:
1077 	mnt_free_id(mnt);
1078 	free_vfsmnt(mnt);
1079 	return ERR_PTR(err);
1080 }
1081 
1082 static void cleanup_mnt(struct mount *mnt)
1083 {
1084 	struct hlist_node *p;
1085 	struct mount *m;
1086 	/*
1087 	 * The warning here probably indicates that somebody messed
1088 	 * up a mnt_want/drop_write() pair.  If this happens, the
1089 	 * filesystem was probably unable to make r/w->r/o transitions.
1090 	 * The locking used to deal with mnt_count decrement provides barriers,
1091 	 * so mnt_get_writers() below is safe.
1092 	 */
1093 	WARN_ON(mnt_get_writers(mnt));
1094 	if (unlikely(mnt->mnt_pins.first))
1095 		mnt_pin_kill(mnt);
1096 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 		hlist_del(&m->mnt_umount);
1098 		mntput(&m->mnt);
1099 	}
1100 	fsnotify_vfsmount_delete(&mnt->mnt);
1101 	dput(mnt->mnt.mnt_root);
1102 	deactivate_super(mnt->mnt.mnt_sb);
1103 	mnt_free_id(mnt);
1104 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105 }
1106 
1107 static void __cleanup_mnt(struct rcu_head *head)
1108 {
1109 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110 }
1111 
1112 static LLIST_HEAD(delayed_mntput_list);
1113 static void delayed_mntput(struct work_struct *unused)
1114 {
1115 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116 	struct mount *m, *t;
1117 
1118 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 		cleanup_mnt(m);
1120 }
1121 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122 
1123 static void mntput_no_expire(struct mount *mnt)
1124 {
1125 	LIST_HEAD(list);
1126 
1127 	rcu_read_lock();
1128 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1129 		/*
1130 		 * Since we don't do lock_mount_hash() here,
1131 		 * ->mnt_ns can change under us.  However, if it's
1132 		 * non-NULL, then there's a reference that won't
1133 		 * be dropped until after an RCU delay done after
1134 		 * turning ->mnt_ns NULL.  So if we observe it
1135 		 * non-NULL under rcu_read_lock(), the reference
1136 		 * we are dropping is not the final one.
1137 		 */
1138 		mnt_add_count(mnt, -1);
1139 		rcu_read_unlock();
1140 		return;
1141 	}
1142 	lock_mount_hash();
1143 	/*
1144 	 * make sure that if __legitimize_mnt() has not seen us grab
1145 	 * mount_lock, we'll see their refcount increment here.
1146 	 */
1147 	smp_mb();
1148 	mnt_add_count(mnt, -1);
1149 	if (mnt_get_count(mnt)) {
1150 		rcu_read_unlock();
1151 		unlock_mount_hash();
1152 		return;
1153 	}
1154 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155 		rcu_read_unlock();
1156 		unlock_mount_hash();
1157 		return;
1158 	}
1159 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1160 	rcu_read_unlock();
1161 
1162 	list_del(&mnt->mnt_instance);
1163 
1164 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165 		struct mount *p, *tmp;
1166 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1167 			__put_mountpoint(unhash_mnt(p), &list);
1168 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169 		}
1170 	}
1171 	unlock_mount_hash();
1172 	shrink_dentry_list(&list);
1173 
1174 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175 		struct task_struct *task = current;
1176 		if (likely(!(task->flags & PF_KTHREAD))) {
1177 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1179 				return;
1180 		}
1181 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182 			schedule_delayed_work(&delayed_mntput_work, 1);
1183 		return;
1184 	}
1185 	cleanup_mnt(mnt);
1186 }
1187 
1188 void mntput(struct vfsmount *mnt)
1189 {
1190 	if (mnt) {
1191 		struct mount *m = real_mount(mnt);
1192 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193 		if (unlikely(m->mnt_expiry_mark))
1194 			m->mnt_expiry_mark = 0;
1195 		mntput_no_expire(m);
1196 	}
1197 }
1198 EXPORT_SYMBOL(mntput);
1199 
1200 struct vfsmount *mntget(struct vfsmount *mnt)
1201 {
1202 	if (mnt)
1203 		mnt_add_count(real_mount(mnt), 1);
1204 	return mnt;
1205 }
1206 EXPORT_SYMBOL(mntget);
1207 
1208 /* path_is_mountpoint() - Check if path is a mount in the current
1209  *                          namespace.
1210  *
1211  *  d_mountpoint() can only be used reliably to establish if a dentry is
1212  *  not mounted in any namespace and that common case is handled inline.
1213  *  d_mountpoint() isn't aware of the possibility there may be multiple
1214  *  mounts using a given dentry in a different namespace. This function
1215  *  checks if the passed in path is a mountpoint rather than the dentry
1216  *  alone.
1217  */
1218 bool path_is_mountpoint(const struct path *path)
1219 {
1220 	unsigned seq;
1221 	bool res;
1222 
1223 	if (!d_mountpoint(path->dentry))
1224 		return false;
1225 
1226 	rcu_read_lock();
1227 	do {
1228 		seq = read_seqbegin(&mount_lock);
1229 		res = __path_is_mountpoint(path);
1230 	} while (read_seqretry(&mount_lock, seq));
1231 	rcu_read_unlock();
1232 
1233 	return res;
1234 }
1235 EXPORT_SYMBOL(path_is_mountpoint);
1236 
1237 struct vfsmount *mnt_clone_internal(const struct path *path)
1238 {
1239 	struct mount *p;
1240 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241 	if (IS_ERR(p))
1242 		return ERR_CAST(p);
1243 	p->mnt.mnt_flags |= MNT_INTERNAL;
1244 	return &p->mnt;
1245 }
1246 
1247 #ifdef CONFIG_PROC_FS
1248 /* iterator; we want it to have access to namespace_sem, thus here... */
1249 static void *m_start(struct seq_file *m, loff_t *pos)
1250 {
1251 	struct proc_mounts *p = m->private;
1252 
1253 	down_read(&namespace_sem);
1254 	if (p->cached_event == p->ns->event) {
1255 		void *v = p->cached_mount;
1256 		if (*pos == p->cached_index)
1257 			return v;
1258 		if (*pos == p->cached_index + 1) {
1259 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260 			return p->cached_mount = v;
1261 		}
1262 	}
1263 
1264 	p->cached_event = p->ns->event;
1265 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266 	p->cached_index = *pos;
1267 	return p->cached_mount;
1268 }
1269 
1270 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271 {
1272 	struct proc_mounts *p = m->private;
1273 
1274 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275 	p->cached_index = *pos;
1276 	return p->cached_mount;
1277 }
1278 
1279 static void m_stop(struct seq_file *m, void *v)
1280 {
1281 	up_read(&namespace_sem);
1282 }
1283 
1284 static int m_show(struct seq_file *m, void *v)
1285 {
1286 	struct proc_mounts *p = m->private;
1287 	struct mount *r = list_entry(v, struct mount, mnt_list);
1288 	return p->show(m, &r->mnt);
1289 }
1290 
1291 const struct seq_operations mounts_op = {
1292 	.start	= m_start,
1293 	.next	= m_next,
1294 	.stop	= m_stop,
1295 	.show	= m_show,
1296 };
1297 #endif  /* CONFIG_PROC_FS */
1298 
1299 /**
1300  * may_umount_tree - check if a mount tree is busy
1301  * @mnt: root of mount tree
1302  *
1303  * This is called to check if a tree of mounts has any
1304  * open files, pwds, chroots or sub mounts that are
1305  * busy.
1306  */
1307 int may_umount_tree(struct vfsmount *m)
1308 {
1309 	struct mount *mnt = real_mount(m);
1310 	int actual_refs = 0;
1311 	int minimum_refs = 0;
1312 	struct mount *p;
1313 	BUG_ON(!m);
1314 
1315 	/* write lock needed for mnt_get_count */
1316 	lock_mount_hash();
1317 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1318 		actual_refs += mnt_get_count(p);
1319 		minimum_refs += 2;
1320 	}
1321 	unlock_mount_hash();
1322 
1323 	if (actual_refs > minimum_refs)
1324 		return 0;
1325 
1326 	return 1;
1327 }
1328 
1329 EXPORT_SYMBOL(may_umount_tree);
1330 
1331 /**
1332  * may_umount - check if a mount point is busy
1333  * @mnt: root of mount
1334  *
1335  * This is called to check if a mount point has any
1336  * open files, pwds, chroots or sub mounts. If the
1337  * mount has sub mounts this will return busy
1338  * regardless of whether the sub mounts are busy.
1339  *
1340  * Doesn't take quota and stuff into account. IOW, in some cases it will
1341  * give false negatives. The main reason why it's here is that we need
1342  * a non-destructive way to look for easily umountable filesystems.
1343  */
1344 int may_umount(struct vfsmount *mnt)
1345 {
1346 	int ret = 1;
1347 	down_read(&namespace_sem);
1348 	lock_mount_hash();
1349 	if (propagate_mount_busy(real_mount(mnt), 2))
1350 		ret = 0;
1351 	unlock_mount_hash();
1352 	up_read(&namespace_sem);
1353 	return ret;
1354 }
1355 
1356 EXPORT_SYMBOL(may_umount);
1357 
1358 static void namespace_unlock(void)
1359 {
1360 	struct hlist_head head;
1361 	struct hlist_node *p;
1362 	struct mount *m;
1363 	LIST_HEAD(list);
1364 
1365 	hlist_move_list(&unmounted, &head);
1366 	list_splice_init(&ex_mountpoints, &list);
1367 
1368 	up_write(&namespace_sem);
1369 
1370 	shrink_dentry_list(&list);
1371 
1372 	if (likely(hlist_empty(&head)))
1373 		return;
1374 
1375 	synchronize_rcu_expedited();
1376 
1377 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378 		hlist_del(&m->mnt_umount);
1379 		mntput(&m->mnt);
1380 	}
1381 }
1382 
1383 static inline void namespace_lock(void)
1384 {
1385 	down_write(&namespace_sem);
1386 }
1387 
1388 enum umount_tree_flags {
1389 	UMOUNT_SYNC = 1,
1390 	UMOUNT_PROPAGATE = 2,
1391 	UMOUNT_CONNECTED = 4,
1392 };
1393 
1394 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395 {
1396 	/* Leaving mounts connected is only valid for lazy umounts */
1397 	if (how & UMOUNT_SYNC)
1398 		return true;
1399 
1400 	/* A mount without a parent has nothing to be connected to */
1401 	if (!mnt_has_parent(mnt))
1402 		return true;
1403 
1404 	/* Because the reference counting rules change when mounts are
1405 	 * unmounted and connected, umounted mounts may not be
1406 	 * connected to mounted mounts.
1407 	 */
1408 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409 		return true;
1410 
1411 	/* Has it been requested that the mount remain connected? */
1412 	if (how & UMOUNT_CONNECTED)
1413 		return false;
1414 
1415 	/* Is the mount locked such that it needs to remain connected? */
1416 	if (IS_MNT_LOCKED(mnt))
1417 		return false;
1418 
1419 	/* By default disconnect the mount */
1420 	return true;
1421 }
1422 
1423 /*
1424  * mount_lock must be held
1425  * namespace_sem must be held for write
1426  */
1427 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428 {
1429 	LIST_HEAD(tmp_list);
1430 	struct mount *p;
1431 
1432 	if (how & UMOUNT_PROPAGATE)
1433 		propagate_mount_unlock(mnt);
1434 
1435 	/* Gather the mounts to umount */
1436 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1437 		p->mnt.mnt_flags |= MNT_UMOUNT;
1438 		list_move(&p->mnt_list, &tmp_list);
1439 	}
1440 
1441 	/* Hide the mounts from mnt_mounts */
1442 	list_for_each_entry(p, &tmp_list, mnt_list) {
1443 		list_del_init(&p->mnt_child);
1444 	}
1445 
1446 	/* Add propogated mounts to the tmp_list */
1447 	if (how & UMOUNT_PROPAGATE)
1448 		propagate_umount(&tmp_list);
1449 
1450 	while (!list_empty(&tmp_list)) {
1451 		struct mnt_namespace *ns;
1452 		bool disconnect;
1453 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454 		list_del_init(&p->mnt_expire);
1455 		list_del_init(&p->mnt_list);
1456 		ns = p->mnt_ns;
1457 		if (ns) {
1458 			ns->mounts--;
1459 			__touch_mnt_namespace(ns);
1460 		}
1461 		p->mnt_ns = NULL;
1462 		if (how & UMOUNT_SYNC)
1463 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464 
1465 		disconnect = disconnect_mount(p, how);
1466 		if (mnt_has_parent(p)) {
1467 			mnt_add_count(p->mnt_parent, -1);
1468 			if (!disconnect) {
1469 				/* Don't forget about p */
1470 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471 			} else {
1472 				umount_mnt(p);
1473 			}
1474 		}
1475 		change_mnt_propagation(p, MS_PRIVATE);
1476 		if (disconnect)
1477 			hlist_add_head(&p->mnt_umount, &unmounted);
1478 	}
1479 }
1480 
1481 static void shrink_submounts(struct mount *mnt);
1482 
1483 static int do_umount_root(struct super_block *sb)
1484 {
1485 	int ret = 0;
1486 
1487 	down_write(&sb->s_umount);
1488 	if (!sb_rdonly(sb)) {
1489 		struct fs_context *fc;
1490 
1491 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492 						SB_RDONLY);
1493 		if (IS_ERR(fc)) {
1494 			ret = PTR_ERR(fc);
1495 		} else {
1496 			ret = parse_monolithic_mount_data(fc, NULL);
1497 			if (!ret)
1498 				ret = reconfigure_super(fc);
1499 			put_fs_context(fc);
1500 		}
1501 	}
1502 	up_write(&sb->s_umount);
1503 	return ret;
1504 }
1505 
1506 static int do_umount(struct mount *mnt, int flags)
1507 {
1508 	struct super_block *sb = mnt->mnt.mnt_sb;
1509 	int retval;
1510 
1511 	retval = security_sb_umount(&mnt->mnt, flags);
1512 	if (retval)
1513 		return retval;
1514 
1515 	/*
1516 	 * Allow userspace to request a mountpoint be expired rather than
1517 	 * unmounting unconditionally. Unmount only happens if:
1518 	 *  (1) the mark is already set (the mark is cleared by mntput())
1519 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520 	 */
1521 	if (flags & MNT_EXPIRE) {
1522 		if (&mnt->mnt == current->fs->root.mnt ||
1523 		    flags & (MNT_FORCE | MNT_DETACH))
1524 			return -EINVAL;
1525 
1526 		/*
1527 		 * probably don't strictly need the lock here if we examined
1528 		 * all race cases, but it's a slowpath.
1529 		 */
1530 		lock_mount_hash();
1531 		if (mnt_get_count(mnt) != 2) {
1532 			unlock_mount_hash();
1533 			return -EBUSY;
1534 		}
1535 		unlock_mount_hash();
1536 
1537 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1538 			return -EAGAIN;
1539 	}
1540 
1541 	/*
1542 	 * If we may have to abort operations to get out of this
1543 	 * mount, and they will themselves hold resources we must
1544 	 * allow the fs to do things. In the Unix tradition of
1545 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546 	 * might fail to complete on the first run through as other tasks
1547 	 * must return, and the like. Thats for the mount program to worry
1548 	 * about for the moment.
1549 	 */
1550 
1551 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552 		sb->s_op->umount_begin(sb);
1553 	}
1554 
1555 	/*
1556 	 * No sense to grab the lock for this test, but test itself looks
1557 	 * somewhat bogus. Suggestions for better replacement?
1558 	 * Ho-hum... In principle, we might treat that as umount + switch
1559 	 * to rootfs. GC would eventually take care of the old vfsmount.
1560 	 * Actually it makes sense, especially if rootfs would contain a
1561 	 * /reboot - static binary that would close all descriptors and
1562 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563 	 */
1564 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565 		/*
1566 		 * Special case for "unmounting" root ...
1567 		 * we just try to remount it readonly.
1568 		 */
1569 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570 			return -EPERM;
1571 		return do_umount_root(sb);
1572 	}
1573 
1574 	namespace_lock();
1575 	lock_mount_hash();
1576 
1577 	/* Recheck MNT_LOCKED with the locks held */
1578 	retval = -EINVAL;
1579 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580 		goto out;
1581 
1582 	event++;
1583 	if (flags & MNT_DETACH) {
1584 		if (!list_empty(&mnt->mnt_list))
1585 			umount_tree(mnt, UMOUNT_PROPAGATE);
1586 		retval = 0;
1587 	} else {
1588 		shrink_submounts(mnt);
1589 		retval = -EBUSY;
1590 		if (!propagate_mount_busy(mnt, 2)) {
1591 			if (!list_empty(&mnt->mnt_list))
1592 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593 			retval = 0;
1594 		}
1595 	}
1596 out:
1597 	unlock_mount_hash();
1598 	namespace_unlock();
1599 	return retval;
1600 }
1601 
1602 /*
1603  * __detach_mounts - lazily unmount all mounts on the specified dentry
1604  *
1605  * During unlink, rmdir, and d_drop it is possible to loose the path
1606  * to an existing mountpoint, and wind up leaking the mount.
1607  * detach_mounts allows lazily unmounting those mounts instead of
1608  * leaking them.
1609  *
1610  * The caller may hold dentry->d_inode->i_mutex.
1611  */
1612 void __detach_mounts(struct dentry *dentry)
1613 {
1614 	struct mountpoint *mp;
1615 	struct mount *mnt;
1616 
1617 	namespace_lock();
1618 	lock_mount_hash();
1619 	mp = lookup_mountpoint(dentry);
1620 	if (!mp)
1621 		goto out_unlock;
1622 
1623 	event++;
1624 	while (!hlist_empty(&mp->m_list)) {
1625 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627 			umount_mnt(mnt);
1628 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1629 		}
1630 		else umount_tree(mnt, UMOUNT_CONNECTED);
1631 	}
1632 	put_mountpoint(mp);
1633 out_unlock:
1634 	unlock_mount_hash();
1635 	namespace_unlock();
1636 }
1637 
1638 /*
1639  * Is the caller allowed to modify his namespace?
1640  */
1641 static inline bool may_mount(void)
1642 {
1643 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644 }
1645 
1646 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1647 static inline bool may_mandlock(void)
1648 {
1649 	return capable(CAP_SYS_ADMIN);
1650 }
1651 #else
1652 static inline bool may_mandlock(void)
1653 {
1654 	pr_warn("VFS: \"mand\" mount option not supported");
1655 	return false;
1656 }
1657 #endif
1658 
1659 /*
1660  * Now umount can handle mount points as well as block devices.
1661  * This is important for filesystems which use unnamed block devices.
1662  *
1663  * We now support a flag for forced unmount like the other 'big iron'
1664  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665  */
1666 
1667 int ksys_umount(char __user *name, int flags)
1668 {
1669 	struct path path;
1670 	struct mount *mnt;
1671 	int retval;
1672 	int lookup_flags = 0;
1673 
1674 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675 		return -EINVAL;
1676 
1677 	if (!may_mount())
1678 		return -EPERM;
1679 
1680 	if (!(flags & UMOUNT_NOFOLLOW))
1681 		lookup_flags |= LOOKUP_FOLLOW;
1682 
1683 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1684 	if (retval)
1685 		goto out;
1686 	mnt = real_mount(path.mnt);
1687 	retval = -EINVAL;
1688 	if (path.dentry != path.mnt->mnt_root)
1689 		goto dput_and_out;
1690 	if (!check_mnt(mnt))
1691 		goto dput_and_out;
1692 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1693 		goto dput_and_out;
1694 	retval = -EPERM;
1695 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696 		goto dput_and_out;
1697 
1698 	retval = do_umount(mnt, flags);
1699 dput_and_out:
1700 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1701 	dput(path.dentry);
1702 	mntput_no_expire(mnt);
1703 out:
1704 	return retval;
1705 }
1706 
1707 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1708 {
1709 	return ksys_umount(name, flags);
1710 }
1711 
1712 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1713 
1714 /*
1715  *	The 2.0 compatible umount. No flags.
1716  */
1717 SYSCALL_DEFINE1(oldumount, char __user *, name)
1718 {
1719 	return ksys_umount(name, 0);
1720 }
1721 
1722 #endif
1723 
1724 static bool is_mnt_ns_file(struct dentry *dentry)
1725 {
1726 	/* Is this a proxy for a mount namespace? */
1727 	return dentry->d_op == &ns_dentry_operations &&
1728 	       dentry->d_fsdata == &mntns_operations;
1729 }
1730 
1731 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1732 {
1733 	return container_of(ns, struct mnt_namespace, ns);
1734 }
1735 
1736 static bool mnt_ns_loop(struct dentry *dentry)
1737 {
1738 	/* Could bind mounting the mount namespace inode cause a
1739 	 * mount namespace loop?
1740 	 */
1741 	struct mnt_namespace *mnt_ns;
1742 	if (!is_mnt_ns_file(dentry))
1743 		return false;
1744 
1745 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1746 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1747 }
1748 
1749 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1750 					int flag)
1751 {
1752 	struct mount *res, *p, *q, *r, *parent;
1753 
1754 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1758 		return ERR_PTR(-EINVAL);
1759 
1760 	res = q = clone_mnt(mnt, dentry, flag);
1761 	if (IS_ERR(q))
1762 		return q;
1763 
1764 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1765 
1766 	p = mnt;
1767 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1768 		struct mount *s;
1769 		if (!is_subdir(r->mnt_mountpoint, dentry))
1770 			continue;
1771 
1772 		for (s = r; s; s = next_mnt(s, r)) {
1773 			if (!(flag & CL_COPY_UNBINDABLE) &&
1774 			    IS_MNT_UNBINDABLE(s)) {
1775 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1776 					/* Both unbindable and locked. */
1777 					q = ERR_PTR(-EPERM);
1778 					goto out;
1779 				} else {
1780 					s = skip_mnt_tree(s);
1781 					continue;
1782 				}
1783 			}
1784 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1785 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1786 				s = skip_mnt_tree(s);
1787 				continue;
1788 			}
1789 			while (p != s->mnt_parent) {
1790 				p = p->mnt_parent;
1791 				q = q->mnt_parent;
1792 			}
1793 			p = s;
1794 			parent = q;
1795 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1796 			if (IS_ERR(q))
1797 				goto out;
1798 			lock_mount_hash();
1799 			list_add_tail(&q->mnt_list, &res->mnt_list);
1800 			attach_mnt(q, parent, p->mnt_mp);
1801 			unlock_mount_hash();
1802 		}
1803 	}
1804 	return res;
1805 out:
1806 	if (res) {
1807 		lock_mount_hash();
1808 		umount_tree(res, UMOUNT_SYNC);
1809 		unlock_mount_hash();
1810 	}
1811 	return q;
1812 }
1813 
1814 /* Caller should check returned pointer for errors */
1815 
1816 struct vfsmount *collect_mounts(const struct path *path)
1817 {
1818 	struct mount *tree;
1819 	namespace_lock();
1820 	if (!check_mnt(real_mount(path->mnt)))
1821 		tree = ERR_PTR(-EINVAL);
1822 	else
1823 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1824 				 CL_COPY_ALL | CL_PRIVATE);
1825 	namespace_unlock();
1826 	if (IS_ERR(tree))
1827 		return ERR_CAST(tree);
1828 	return &tree->mnt;
1829 }
1830 
1831 static void free_mnt_ns(struct mnt_namespace *);
1832 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1833 
1834 void dissolve_on_fput(struct vfsmount *mnt)
1835 {
1836 	struct mnt_namespace *ns;
1837 	namespace_lock();
1838 	lock_mount_hash();
1839 	ns = real_mount(mnt)->mnt_ns;
1840 	if (ns) {
1841 		if (is_anon_ns(ns))
1842 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1843 		else
1844 			ns = NULL;
1845 	}
1846 	unlock_mount_hash();
1847 	namespace_unlock();
1848 	if (ns)
1849 		free_mnt_ns(ns);
1850 }
1851 
1852 void drop_collected_mounts(struct vfsmount *mnt)
1853 {
1854 	namespace_lock();
1855 	lock_mount_hash();
1856 	umount_tree(real_mount(mnt), 0);
1857 	unlock_mount_hash();
1858 	namespace_unlock();
1859 }
1860 
1861 /**
1862  * clone_private_mount - create a private clone of a path
1863  *
1864  * This creates a new vfsmount, which will be the clone of @path.  The new will
1865  * not be attached anywhere in the namespace and will be private (i.e. changes
1866  * to the originating mount won't be propagated into this).
1867  *
1868  * Release with mntput().
1869  */
1870 struct vfsmount *clone_private_mount(const struct path *path)
1871 {
1872 	struct mount *old_mnt = real_mount(path->mnt);
1873 	struct mount *new_mnt;
1874 
1875 	if (IS_MNT_UNBINDABLE(old_mnt))
1876 		return ERR_PTR(-EINVAL);
1877 
1878 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1879 	if (IS_ERR(new_mnt))
1880 		return ERR_CAST(new_mnt);
1881 
1882 	return &new_mnt->mnt;
1883 }
1884 EXPORT_SYMBOL_GPL(clone_private_mount);
1885 
1886 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1887 		   struct vfsmount *root)
1888 {
1889 	struct mount *mnt;
1890 	int res = f(root, arg);
1891 	if (res)
1892 		return res;
1893 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1894 		res = f(&mnt->mnt, arg);
1895 		if (res)
1896 			return res;
1897 	}
1898 	return 0;
1899 }
1900 
1901 static void lock_mnt_tree(struct mount *mnt)
1902 {
1903 	struct mount *p;
1904 
1905 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1906 		int flags = p->mnt.mnt_flags;
1907 		/* Don't allow unprivileged users to change mount flags */
1908 		flags |= MNT_LOCK_ATIME;
1909 
1910 		if (flags & MNT_READONLY)
1911 			flags |= MNT_LOCK_READONLY;
1912 
1913 		if (flags & MNT_NODEV)
1914 			flags |= MNT_LOCK_NODEV;
1915 
1916 		if (flags & MNT_NOSUID)
1917 			flags |= MNT_LOCK_NOSUID;
1918 
1919 		if (flags & MNT_NOEXEC)
1920 			flags |= MNT_LOCK_NOEXEC;
1921 		/* Don't allow unprivileged users to reveal what is under a mount */
1922 		if (list_empty(&p->mnt_expire))
1923 			flags |= MNT_LOCKED;
1924 		p->mnt.mnt_flags = flags;
1925 	}
1926 }
1927 
1928 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1929 {
1930 	struct mount *p;
1931 
1932 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1933 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1934 			mnt_release_group_id(p);
1935 	}
1936 }
1937 
1938 static int invent_group_ids(struct mount *mnt, bool recurse)
1939 {
1940 	struct mount *p;
1941 
1942 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1943 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1944 			int err = mnt_alloc_group_id(p);
1945 			if (err) {
1946 				cleanup_group_ids(mnt, p);
1947 				return err;
1948 			}
1949 		}
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1956 {
1957 	unsigned int max = READ_ONCE(sysctl_mount_max);
1958 	unsigned int mounts = 0, old, pending, sum;
1959 	struct mount *p;
1960 
1961 	for (p = mnt; p; p = next_mnt(p, mnt))
1962 		mounts++;
1963 
1964 	old = ns->mounts;
1965 	pending = ns->pending_mounts;
1966 	sum = old + pending;
1967 	if ((old > sum) ||
1968 	    (pending > sum) ||
1969 	    (max < sum) ||
1970 	    (mounts > (max - sum)))
1971 		return -ENOSPC;
1972 
1973 	ns->pending_mounts = pending + mounts;
1974 	return 0;
1975 }
1976 
1977 /*
1978  *  @source_mnt : mount tree to be attached
1979  *  @nd         : place the mount tree @source_mnt is attached
1980  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1981  *  		   store the parent mount and mountpoint dentry.
1982  *  		   (done when source_mnt is moved)
1983  *
1984  *  NOTE: in the table below explains the semantics when a source mount
1985  *  of a given type is attached to a destination mount of a given type.
1986  * ---------------------------------------------------------------------------
1987  * |         BIND MOUNT OPERATION                                            |
1988  * |**************************************************************************
1989  * | source-->| shared        |       private  |       slave    | unbindable |
1990  * | dest     |               |                |                |            |
1991  * |   |      |               |                |                |            |
1992  * |   v      |               |                |                |            |
1993  * |**************************************************************************
1994  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1995  * |          |               |                |                |            |
1996  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1997  * ***************************************************************************
1998  * A bind operation clones the source mount and mounts the clone on the
1999  * destination mount.
2000  *
2001  * (++)  the cloned mount is propagated to all the mounts in the propagation
2002  * 	 tree of the destination mount and the cloned mount is added to
2003  * 	 the peer group of the source mount.
2004  * (+)   the cloned mount is created under the destination mount and is marked
2005  *       as shared. The cloned mount is added to the peer group of the source
2006  *       mount.
2007  * (+++) the mount is propagated to all the mounts in the propagation tree
2008  *       of the destination mount and the cloned mount is made slave
2009  *       of the same master as that of the source mount. The cloned mount
2010  *       is marked as 'shared and slave'.
2011  * (*)   the cloned mount is made a slave of the same master as that of the
2012  * 	 source mount.
2013  *
2014  * ---------------------------------------------------------------------------
2015  * |         		MOVE MOUNT OPERATION                                 |
2016  * |**************************************************************************
2017  * | source-->| shared        |       private  |       slave    | unbindable |
2018  * | dest     |               |                |                |            |
2019  * |   |      |               |                |                |            |
2020  * |   v      |               |                |                |            |
2021  * |**************************************************************************
2022  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2023  * |          |               |                |                |            |
2024  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2025  * ***************************************************************************
2026  *
2027  * (+)  the mount is moved to the destination. And is then propagated to
2028  * 	all the mounts in the propagation tree of the destination mount.
2029  * (+*)  the mount is moved to the destination.
2030  * (+++)  the mount is moved to the destination and is then propagated to
2031  * 	all the mounts belonging to the destination mount's propagation tree.
2032  * 	the mount is marked as 'shared and slave'.
2033  * (*)	the mount continues to be a slave at the new location.
2034  *
2035  * if the source mount is a tree, the operations explained above is
2036  * applied to each mount in the tree.
2037  * Must be called without spinlocks held, since this function can sleep
2038  * in allocations.
2039  */
2040 static int attach_recursive_mnt(struct mount *source_mnt,
2041 			struct mount *dest_mnt,
2042 			struct mountpoint *dest_mp,
2043 			bool moving)
2044 {
2045 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2046 	HLIST_HEAD(tree_list);
2047 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2048 	struct mountpoint *smp;
2049 	struct mount *child, *p;
2050 	struct hlist_node *n;
2051 	int err;
2052 
2053 	/* Preallocate a mountpoint in case the new mounts need
2054 	 * to be tucked under other mounts.
2055 	 */
2056 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2057 	if (IS_ERR(smp))
2058 		return PTR_ERR(smp);
2059 
2060 	/* Is there space to add these mounts to the mount namespace? */
2061 	if (!moving) {
2062 		err = count_mounts(ns, source_mnt);
2063 		if (err)
2064 			goto out;
2065 	}
2066 
2067 	if (IS_MNT_SHARED(dest_mnt)) {
2068 		err = invent_group_ids(source_mnt, true);
2069 		if (err)
2070 			goto out;
2071 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2072 		lock_mount_hash();
2073 		if (err)
2074 			goto out_cleanup_ids;
2075 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2076 			set_mnt_shared(p);
2077 	} else {
2078 		lock_mount_hash();
2079 	}
2080 	if (moving) {
2081 		unhash_mnt(source_mnt);
2082 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2083 		touch_mnt_namespace(source_mnt->mnt_ns);
2084 	} else {
2085 		if (source_mnt->mnt_ns) {
2086 			/* move from anon - the caller will destroy */
2087 			list_del_init(&source_mnt->mnt_ns->list);
2088 		}
2089 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2090 		commit_tree(source_mnt);
2091 	}
2092 
2093 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2094 		struct mount *q;
2095 		hlist_del_init(&child->mnt_hash);
2096 		q = __lookup_mnt(&child->mnt_parent->mnt,
2097 				 child->mnt_mountpoint);
2098 		if (q)
2099 			mnt_change_mountpoint(child, smp, q);
2100 		/* Notice when we are propagating across user namespaces */
2101 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2102 			lock_mnt_tree(child);
2103 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2104 		commit_tree(child);
2105 	}
2106 	put_mountpoint(smp);
2107 	unlock_mount_hash();
2108 
2109 	return 0;
2110 
2111  out_cleanup_ids:
2112 	while (!hlist_empty(&tree_list)) {
2113 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2114 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2115 		umount_tree(child, UMOUNT_SYNC);
2116 	}
2117 	unlock_mount_hash();
2118 	cleanup_group_ids(source_mnt, NULL);
2119  out:
2120 	ns->pending_mounts = 0;
2121 
2122 	read_seqlock_excl(&mount_lock);
2123 	put_mountpoint(smp);
2124 	read_sequnlock_excl(&mount_lock);
2125 
2126 	return err;
2127 }
2128 
2129 static struct mountpoint *lock_mount(struct path *path)
2130 {
2131 	struct vfsmount *mnt;
2132 	struct dentry *dentry = path->dentry;
2133 retry:
2134 	inode_lock(dentry->d_inode);
2135 	if (unlikely(cant_mount(dentry))) {
2136 		inode_unlock(dentry->d_inode);
2137 		return ERR_PTR(-ENOENT);
2138 	}
2139 	namespace_lock();
2140 	mnt = lookup_mnt(path);
2141 	if (likely(!mnt)) {
2142 		struct mountpoint *mp = get_mountpoint(dentry);
2143 		if (IS_ERR(mp)) {
2144 			namespace_unlock();
2145 			inode_unlock(dentry->d_inode);
2146 			return mp;
2147 		}
2148 		return mp;
2149 	}
2150 	namespace_unlock();
2151 	inode_unlock(path->dentry->d_inode);
2152 	path_put(path);
2153 	path->mnt = mnt;
2154 	dentry = path->dentry = dget(mnt->mnt_root);
2155 	goto retry;
2156 }
2157 
2158 static void unlock_mount(struct mountpoint *where)
2159 {
2160 	struct dentry *dentry = where->m_dentry;
2161 
2162 	read_seqlock_excl(&mount_lock);
2163 	put_mountpoint(where);
2164 	read_sequnlock_excl(&mount_lock);
2165 
2166 	namespace_unlock();
2167 	inode_unlock(dentry->d_inode);
2168 }
2169 
2170 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2171 {
2172 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2173 		return -EINVAL;
2174 
2175 	if (d_is_dir(mp->m_dentry) !=
2176 	      d_is_dir(mnt->mnt.mnt_root))
2177 		return -ENOTDIR;
2178 
2179 	return attach_recursive_mnt(mnt, p, mp, false);
2180 }
2181 
2182 /*
2183  * Sanity check the flags to change_mnt_propagation.
2184  */
2185 
2186 static int flags_to_propagation_type(int ms_flags)
2187 {
2188 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2189 
2190 	/* Fail if any non-propagation flags are set */
2191 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2192 		return 0;
2193 	/* Only one propagation flag should be set */
2194 	if (!is_power_of_2(type))
2195 		return 0;
2196 	return type;
2197 }
2198 
2199 /*
2200  * recursively change the type of the mountpoint.
2201  */
2202 static int do_change_type(struct path *path, int ms_flags)
2203 {
2204 	struct mount *m;
2205 	struct mount *mnt = real_mount(path->mnt);
2206 	int recurse = ms_flags & MS_REC;
2207 	int type;
2208 	int err = 0;
2209 
2210 	if (path->dentry != path->mnt->mnt_root)
2211 		return -EINVAL;
2212 
2213 	type = flags_to_propagation_type(ms_flags);
2214 	if (!type)
2215 		return -EINVAL;
2216 
2217 	namespace_lock();
2218 	if (type == MS_SHARED) {
2219 		err = invent_group_ids(mnt, recurse);
2220 		if (err)
2221 			goto out_unlock;
2222 	}
2223 
2224 	lock_mount_hash();
2225 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2226 		change_mnt_propagation(m, type);
2227 	unlock_mount_hash();
2228 
2229  out_unlock:
2230 	namespace_unlock();
2231 	return err;
2232 }
2233 
2234 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235 {
2236 	struct mount *child;
2237 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2238 		if (!is_subdir(child->mnt_mountpoint, dentry))
2239 			continue;
2240 
2241 		if (child->mnt.mnt_flags & MNT_LOCKED)
2242 			return true;
2243 	}
2244 	return false;
2245 }
2246 
2247 static struct mount *__do_loopback(struct path *old_path, int recurse)
2248 {
2249 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2250 
2251 	if (IS_MNT_UNBINDABLE(old))
2252 		return mnt;
2253 
2254 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2255 		return mnt;
2256 
2257 	if (!recurse && has_locked_children(old, old_path->dentry))
2258 		return mnt;
2259 
2260 	if (recurse)
2261 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2262 	else
2263 		mnt = clone_mnt(old, old_path->dentry, 0);
2264 
2265 	if (!IS_ERR(mnt))
2266 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267 
2268 	return mnt;
2269 }
2270 
2271 /*
2272  * do loopback mount.
2273  */
2274 static int do_loopback(struct path *path, const char *old_name,
2275 				int recurse)
2276 {
2277 	struct path old_path;
2278 	struct mount *mnt = NULL, *parent;
2279 	struct mountpoint *mp;
2280 	int err;
2281 	if (!old_name || !*old_name)
2282 		return -EINVAL;
2283 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2284 	if (err)
2285 		return err;
2286 
2287 	err = -EINVAL;
2288 	if (mnt_ns_loop(old_path.dentry))
2289 		goto out;
2290 
2291 	mp = lock_mount(path);
2292 	if (IS_ERR(mp)) {
2293 		err = PTR_ERR(mp);
2294 		goto out;
2295 	}
2296 
2297 	parent = real_mount(path->mnt);
2298 	if (!check_mnt(parent))
2299 		goto out2;
2300 
2301 	mnt = __do_loopback(&old_path, recurse);
2302 	if (IS_ERR(mnt)) {
2303 		err = PTR_ERR(mnt);
2304 		goto out2;
2305 	}
2306 
2307 	err = graft_tree(mnt, parent, mp);
2308 	if (err) {
2309 		lock_mount_hash();
2310 		umount_tree(mnt, UMOUNT_SYNC);
2311 		unlock_mount_hash();
2312 	}
2313 out2:
2314 	unlock_mount(mp);
2315 out:
2316 	path_put(&old_path);
2317 	return err;
2318 }
2319 
2320 static struct file *open_detached_copy(struct path *path, bool recursive)
2321 {
2322 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2323 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2324 	struct mount *mnt, *p;
2325 	struct file *file;
2326 
2327 	if (IS_ERR(ns))
2328 		return ERR_CAST(ns);
2329 
2330 	namespace_lock();
2331 	mnt = __do_loopback(path, recursive);
2332 	if (IS_ERR(mnt)) {
2333 		namespace_unlock();
2334 		free_mnt_ns(ns);
2335 		return ERR_CAST(mnt);
2336 	}
2337 
2338 	lock_mount_hash();
2339 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2340 		p->mnt_ns = ns;
2341 		ns->mounts++;
2342 	}
2343 	ns->root = mnt;
2344 	list_add_tail(&ns->list, &mnt->mnt_list);
2345 	mntget(&mnt->mnt);
2346 	unlock_mount_hash();
2347 	namespace_unlock();
2348 
2349 	mntput(path->mnt);
2350 	path->mnt = &mnt->mnt;
2351 	file = dentry_open(path, O_PATH, current_cred());
2352 	if (IS_ERR(file))
2353 		dissolve_on_fput(path->mnt);
2354 	else
2355 		file->f_mode |= FMODE_NEED_UNMOUNT;
2356 	return file;
2357 }
2358 
2359 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2360 {
2361 	struct file *file;
2362 	struct path path;
2363 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2364 	bool detached = flags & OPEN_TREE_CLONE;
2365 	int error;
2366 	int fd;
2367 
2368 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2369 
2370 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2371 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2372 		      OPEN_TREE_CLOEXEC))
2373 		return -EINVAL;
2374 
2375 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2376 		return -EINVAL;
2377 
2378 	if (flags & AT_NO_AUTOMOUNT)
2379 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2380 	if (flags & AT_SYMLINK_NOFOLLOW)
2381 		lookup_flags &= ~LOOKUP_FOLLOW;
2382 	if (flags & AT_EMPTY_PATH)
2383 		lookup_flags |= LOOKUP_EMPTY;
2384 
2385 	if (detached && !may_mount())
2386 		return -EPERM;
2387 
2388 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2389 	if (fd < 0)
2390 		return fd;
2391 
2392 	error = user_path_at(dfd, filename, lookup_flags, &path);
2393 	if (unlikely(error)) {
2394 		file = ERR_PTR(error);
2395 	} else {
2396 		if (detached)
2397 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2398 		else
2399 			file = dentry_open(&path, O_PATH, current_cred());
2400 		path_put(&path);
2401 	}
2402 	if (IS_ERR(file)) {
2403 		put_unused_fd(fd);
2404 		return PTR_ERR(file);
2405 	}
2406 	fd_install(fd, file);
2407 	return fd;
2408 }
2409 
2410 /*
2411  * Don't allow locked mount flags to be cleared.
2412  *
2413  * No locks need to be held here while testing the various MNT_LOCK
2414  * flags because those flags can never be cleared once they are set.
2415  */
2416 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2417 {
2418 	unsigned int fl = mnt->mnt.mnt_flags;
2419 
2420 	if ((fl & MNT_LOCK_READONLY) &&
2421 	    !(mnt_flags & MNT_READONLY))
2422 		return false;
2423 
2424 	if ((fl & MNT_LOCK_NODEV) &&
2425 	    !(mnt_flags & MNT_NODEV))
2426 		return false;
2427 
2428 	if ((fl & MNT_LOCK_NOSUID) &&
2429 	    !(mnt_flags & MNT_NOSUID))
2430 		return false;
2431 
2432 	if ((fl & MNT_LOCK_NOEXEC) &&
2433 	    !(mnt_flags & MNT_NOEXEC))
2434 		return false;
2435 
2436 	if ((fl & MNT_LOCK_ATIME) &&
2437 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2438 		return false;
2439 
2440 	return true;
2441 }
2442 
2443 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2444 {
2445 	bool readonly_request = (mnt_flags & MNT_READONLY);
2446 
2447 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2448 		return 0;
2449 
2450 	if (readonly_request)
2451 		return mnt_make_readonly(mnt);
2452 
2453 	return __mnt_unmake_readonly(mnt);
2454 }
2455 
2456 /*
2457  * Update the user-settable attributes on a mount.  The caller must hold
2458  * sb->s_umount for writing.
2459  */
2460 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2461 {
2462 	lock_mount_hash();
2463 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2464 	mnt->mnt.mnt_flags = mnt_flags;
2465 	touch_mnt_namespace(mnt->mnt_ns);
2466 	unlock_mount_hash();
2467 }
2468 
2469 /*
2470  * Handle reconfiguration of the mountpoint only without alteration of the
2471  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2472  * to mount(2).
2473  */
2474 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2475 {
2476 	struct super_block *sb = path->mnt->mnt_sb;
2477 	struct mount *mnt = real_mount(path->mnt);
2478 	int ret;
2479 
2480 	if (!check_mnt(mnt))
2481 		return -EINVAL;
2482 
2483 	if (path->dentry != mnt->mnt.mnt_root)
2484 		return -EINVAL;
2485 
2486 	if (!can_change_locked_flags(mnt, mnt_flags))
2487 		return -EPERM;
2488 
2489 	down_write(&sb->s_umount);
2490 	ret = change_mount_ro_state(mnt, mnt_flags);
2491 	if (ret == 0)
2492 		set_mount_attributes(mnt, mnt_flags);
2493 	up_write(&sb->s_umount);
2494 	return ret;
2495 }
2496 
2497 /*
2498  * change filesystem flags. dir should be a physical root of filesystem.
2499  * If you've mounted a non-root directory somewhere and want to do remount
2500  * on it - tough luck.
2501  */
2502 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2503 		      int mnt_flags, void *data)
2504 {
2505 	int err;
2506 	struct super_block *sb = path->mnt->mnt_sb;
2507 	struct mount *mnt = real_mount(path->mnt);
2508 	struct fs_context *fc;
2509 
2510 	if (!check_mnt(mnt))
2511 		return -EINVAL;
2512 
2513 	if (path->dentry != path->mnt->mnt_root)
2514 		return -EINVAL;
2515 
2516 	if (!can_change_locked_flags(mnt, mnt_flags))
2517 		return -EPERM;
2518 
2519 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2520 	if (IS_ERR(fc))
2521 		return PTR_ERR(fc);
2522 
2523 	err = parse_monolithic_mount_data(fc, data);
2524 	if (!err) {
2525 		down_write(&sb->s_umount);
2526 		err = -EPERM;
2527 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2528 			err = reconfigure_super(fc);
2529 			if (!err)
2530 				set_mount_attributes(mnt, mnt_flags);
2531 		}
2532 		up_write(&sb->s_umount);
2533 	}
2534 	put_fs_context(fc);
2535 	return err;
2536 }
2537 
2538 static inline int tree_contains_unbindable(struct mount *mnt)
2539 {
2540 	struct mount *p;
2541 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2542 		if (IS_MNT_UNBINDABLE(p))
2543 			return 1;
2544 	}
2545 	return 0;
2546 }
2547 
2548 /*
2549  * Check that there aren't references to earlier/same mount namespaces in the
2550  * specified subtree.  Such references can act as pins for mount namespaces
2551  * that aren't checked by the mount-cycle checking code, thereby allowing
2552  * cycles to be made.
2553  */
2554 static bool check_for_nsfs_mounts(struct mount *subtree)
2555 {
2556 	struct mount *p;
2557 	bool ret = false;
2558 
2559 	lock_mount_hash();
2560 	for (p = subtree; p; p = next_mnt(p, subtree))
2561 		if (mnt_ns_loop(p->mnt.mnt_root))
2562 			goto out;
2563 
2564 	ret = true;
2565 out:
2566 	unlock_mount_hash();
2567 	return ret;
2568 }
2569 
2570 static int do_move_mount(struct path *old_path, struct path *new_path)
2571 {
2572 	struct mnt_namespace *ns;
2573 	struct mount *p;
2574 	struct mount *old;
2575 	struct mount *parent;
2576 	struct mountpoint *mp, *old_mp;
2577 	int err;
2578 	bool attached;
2579 
2580 	mp = lock_mount(new_path);
2581 	if (IS_ERR(mp))
2582 		return PTR_ERR(mp);
2583 
2584 	old = real_mount(old_path->mnt);
2585 	p = real_mount(new_path->mnt);
2586 	parent = old->mnt_parent;
2587 	attached = mnt_has_parent(old);
2588 	old_mp = old->mnt_mp;
2589 	ns = old->mnt_ns;
2590 
2591 	err = -EINVAL;
2592 	/* The mountpoint must be in our namespace. */
2593 	if (!check_mnt(p))
2594 		goto out;
2595 
2596 	/* The thing moved must be mounted... */
2597 	if (!is_mounted(&old->mnt))
2598 		goto out;
2599 
2600 	/* ... and either ours or the root of anon namespace */
2601 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2602 		goto out;
2603 
2604 	if (old->mnt.mnt_flags & MNT_LOCKED)
2605 		goto out;
2606 
2607 	if (old_path->dentry != old_path->mnt->mnt_root)
2608 		goto out;
2609 
2610 	if (d_is_dir(new_path->dentry) !=
2611 	    d_is_dir(old_path->dentry))
2612 		goto out;
2613 	/*
2614 	 * Don't move a mount residing in a shared parent.
2615 	 */
2616 	if (attached && IS_MNT_SHARED(parent))
2617 		goto out;
2618 	/*
2619 	 * Don't move a mount tree containing unbindable mounts to a destination
2620 	 * mount which is shared.
2621 	 */
2622 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2623 		goto out;
2624 	err = -ELOOP;
2625 	if (!check_for_nsfs_mounts(old))
2626 		goto out;
2627 	for (; mnt_has_parent(p); p = p->mnt_parent)
2628 		if (p == old)
2629 			goto out;
2630 
2631 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2632 				   attached);
2633 	if (err)
2634 		goto out;
2635 
2636 	/* if the mount is moved, it should no longer be expire
2637 	 * automatically */
2638 	list_del_init(&old->mnt_expire);
2639 	if (attached)
2640 		put_mountpoint(old_mp);
2641 out:
2642 	unlock_mount(mp);
2643 	if (!err) {
2644 		if (attached)
2645 			mntput_no_expire(parent);
2646 		else
2647 			free_mnt_ns(ns);
2648 	}
2649 	return err;
2650 }
2651 
2652 static int do_move_mount_old(struct path *path, const char *old_name)
2653 {
2654 	struct path old_path;
2655 	int err;
2656 
2657 	if (!old_name || !*old_name)
2658 		return -EINVAL;
2659 
2660 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2661 	if (err)
2662 		return err;
2663 
2664 	err = do_move_mount(&old_path, path);
2665 	path_put(&old_path);
2666 	return err;
2667 }
2668 
2669 /*
2670  * add a mount into a namespace's mount tree
2671  */
2672 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2673 {
2674 	struct mountpoint *mp;
2675 	struct mount *parent;
2676 	int err;
2677 
2678 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2679 
2680 	mp = lock_mount(path);
2681 	if (IS_ERR(mp))
2682 		return PTR_ERR(mp);
2683 
2684 	parent = real_mount(path->mnt);
2685 	err = -EINVAL;
2686 	if (unlikely(!check_mnt(parent))) {
2687 		/* that's acceptable only for automounts done in private ns */
2688 		if (!(mnt_flags & MNT_SHRINKABLE))
2689 			goto unlock;
2690 		/* ... and for those we'd better have mountpoint still alive */
2691 		if (!parent->mnt_ns)
2692 			goto unlock;
2693 	}
2694 
2695 	/* Refuse the same filesystem on the same mount point */
2696 	err = -EBUSY;
2697 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2698 	    path->mnt->mnt_root == path->dentry)
2699 		goto unlock;
2700 
2701 	err = -EINVAL;
2702 	if (d_is_symlink(newmnt->mnt.mnt_root))
2703 		goto unlock;
2704 
2705 	newmnt->mnt.mnt_flags = mnt_flags;
2706 	err = graft_tree(newmnt, parent, mp);
2707 
2708 unlock:
2709 	unlock_mount(mp);
2710 	return err;
2711 }
2712 
2713 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2714 
2715 /*
2716  * Create a new mount using a superblock configuration and request it
2717  * be added to the namespace tree.
2718  */
2719 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2720 			   unsigned int mnt_flags)
2721 {
2722 	struct vfsmount *mnt;
2723 	struct super_block *sb = fc->root->d_sb;
2724 	int error;
2725 
2726 	error = security_sb_kern_mount(sb);
2727 	if (!error && mount_too_revealing(sb, &mnt_flags))
2728 		error = -EPERM;
2729 
2730 	if (unlikely(error)) {
2731 		fc_drop_locked(fc);
2732 		return error;
2733 	}
2734 
2735 	up_write(&sb->s_umount);
2736 
2737 	mnt = vfs_create_mount(fc);
2738 	if (IS_ERR(mnt))
2739 		return PTR_ERR(mnt);
2740 
2741 	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2742 	if (error < 0)
2743 		mntput(mnt);
2744 	return error;
2745 }
2746 
2747 /*
2748  * create a new mount for userspace and request it to be added into the
2749  * namespace's tree
2750  */
2751 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2752 			int mnt_flags, const char *name, void *data)
2753 {
2754 	struct file_system_type *type;
2755 	struct fs_context *fc;
2756 	const char *subtype = NULL;
2757 	int err = 0;
2758 
2759 	if (!fstype)
2760 		return -EINVAL;
2761 
2762 	type = get_fs_type(fstype);
2763 	if (!type)
2764 		return -ENODEV;
2765 
2766 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2767 		subtype = strchr(fstype, '.');
2768 		if (subtype) {
2769 			subtype++;
2770 			if (!*subtype) {
2771 				put_filesystem(type);
2772 				return -EINVAL;
2773 			}
2774 		} else {
2775 			subtype = "";
2776 		}
2777 	}
2778 
2779 	fc = fs_context_for_mount(type, sb_flags);
2780 	put_filesystem(type);
2781 	if (IS_ERR(fc))
2782 		return PTR_ERR(fc);
2783 
2784 	if (subtype)
2785 		err = vfs_parse_fs_string(fc, "subtype",
2786 					  subtype, strlen(subtype));
2787 	if (!err && name)
2788 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2789 	if (!err)
2790 		err = parse_monolithic_mount_data(fc, data);
2791 	if (!err && !mount_capable(fc))
2792 		err = -EPERM;
2793 	if (!err)
2794 		err = vfs_get_tree(fc);
2795 	if (!err)
2796 		err = do_new_mount_fc(fc, path, mnt_flags);
2797 
2798 	put_fs_context(fc);
2799 	return err;
2800 }
2801 
2802 int finish_automount(struct vfsmount *m, struct path *path)
2803 {
2804 	struct mount *mnt = real_mount(m);
2805 	int err;
2806 	/* The new mount record should have at least 2 refs to prevent it being
2807 	 * expired before we get a chance to add it
2808 	 */
2809 	BUG_ON(mnt_get_count(mnt) < 2);
2810 
2811 	if (m->mnt_sb == path->mnt->mnt_sb &&
2812 	    m->mnt_root == path->dentry) {
2813 		err = -ELOOP;
2814 		goto fail;
2815 	}
2816 
2817 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2818 	if (!err)
2819 		return 0;
2820 fail:
2821 	/* remove m from any expiration list it may be on */
2822 	if (!list_empty(&mnt->mnt_expire)) {
2823 		namespace_lock();
2824 		list_del_init(&mnt->mnt_expire);
2825 		namespace_unlock();
2826 	}
2827 	mntput(m);
2828 	mntput(m);
2829 	return err;
2830 }
2831 
2832 /**
2833  * mnt_set_expiry - Put a mount on an expiration list
2834  * @mnt: The mount to list.
2835  * @expiry_list: The list to add the mount to.
2836  */
2837 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2838 {
2839 	namespace_lock();
2840 
2841 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2842 
2843 	namespace_unlock();
2844 }
2845 EXPORT_SYMBOL(mnt_set_expiry);
2846 
2847 /*
2848  * process a list of expirable mountpoints with the intent of discarding any
2849  * mountpoints that aren't in use and haven't been touched since last we came
2850  * here
2851  */
2852 void mark_mounts_for_expiry(struct list_head *mounts)
2853 {
2854 	struct mount *mnt, *next;
2855 	LIST_HEAD(graveyard);
2856 
2857 	if (list_empty(mounts))
2858 		return;
2859 
2860 	namespace_lock();
2861 	lock_mount_hash();
2862 
2863 	/* extract from the expiration list every vfsmount that matches the
2864 	 * following criteria:
2865 	 * - only referenced by its parent vfsmount
2866 	 * - still marked for expiry (marked on the last call here; marks are
2867 	 *   cleared by mntput())
2868 	 */
2869 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2870 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2871 			propagate_mount_busy(mnt, 1))
2872 			continue;
2873 		list_move(&mnt->mnt_expire, &graveyard);
2874 	}
2875 	while (!list_empty(&graveyard)) {
2876 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2877 		touch_mnt_namespace(mnt->mnt_ns);
2878 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2879 	}
2880 	unlock_mount_hash();
2881 	namespace_unlock();
2882 }
2883 
2884 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2885 
2886 /*
2887  * Ripoff of 'select_parent()'
2888  *
2889  * search the list of submounts for a given mountpoint, and move any
2890  * shrinkable submounts to the 'graveyard' list.
2891  */
2892 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2893 {
2894 	struct mount *this_parent = parent;
2895 	struct list_head *next;
2896 	int found = 0;
2897 
2898 repeat:
2899 	next = this_parent->mnt_mounts.next;
2900 resume:
2901 	while (next != &this_parent->mnt_mounts) {
2902 		struct list_head *tmp = next;
2903 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2904 
2905 		next = tmp->next;
2906 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2907 			continue;
2908 		/*
2909 		 * Descend a level if the d_mounts list is non-empty.
2910 		 */
2911 		if (!list_empty(&mnt->mnt_mounts)) {
2912 			this_parent = mnt;
2913 			goto repeat;
2914 		}
2915 
2916 		if (!propagate_mount_busy(mnt, 1)) {
2917 			list_move_tail(&mnt->mnt_expire, graveyard);
2918 			found++;
2919 		}
2920 	}
2921 	/*
2922 	 * All done at this level ... ascend and resume the search
2923 	 */
2924 	if (this_parent != parent) {
2925 		next = this_parent->mnt_child.next;
2926 		this_parent = this_parent->mnt_parent;
2927 		goto resume;
2928 	}
2929 	return found;
2930 }
2931 
2932 /*
2933  * process a list of expirable mountpoints with the intent of discarding any
2934  * submounts of a specific parent mountpoint
2935  *
2936  * mount_lock must be held for write
2937  */
2938 static void shrink_submounts(struct mount *mnt)
2939 {
2940 	LIST_HEAD(graveyard);
2941 	struct mount *m;
2942 
2943 	/* extract submounts of 'mountpoint' from the expiration list */
2944 	while (select_submounts(mnt, &graveyard)) {
2945 		while (!list_empty(&graveyard)) {
2946 			m = list_first_entry(&graveyard, struct mount,
2947 						mnt_expire);
2948 			touch_mnt_namespace(m->mnt_ns);
2949 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2950 		}
2951 	}
2952 }
2953 
2954 /*
2955  * Some copy_from_user() implementations do not return the exact number of
2956  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2957  * Note that this function differs from copy_from_user() in that it will oops
2958  * on bad values of `to', rather than returning a short copy.
2959  */
2960 static long exact_copy_from_user(void *to, const void __user * from,
2961 				 unsigned long n)
2962 {
2963 	char *t = to;
2964 	const char __user *f = from;
2965 	char c;
2966 
2967 	if (!access_ok(from, n))
2968 		return n;
2969 
2970 	while (n) {
2971 		if (__get_user(c, f)) {
2972 			memset(t, 0, n);
2973 			break;
2974 		}
2975 		*t++ = c;
2976 		f++;
2977 		n--;
2978 	}
2979 	return n;
2980 }
2981 
2982 void *copy_mount_options(const void __user * data)
2983 {
2984 	int i;
2985 	unsigned long size;
2986 	char *copy;
2987 
2988 	if (!data)
2989 		return NULL;
2990 
2991 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2992 	if (!copy)
2993 		return ERR_PTR(-ENOMEM);
2994 
2995 	/* We only care that *some* data at the address the user
2996 	 * gave us is valid.  Just in case, we'll zero
2997 	 * the remainder of the page.
2998 	 */
2999 	/* copy_from_user cannot cross TASK_SIZE ! */
3000 	size = TASK_SIZE - (unsigned long)data;
3001 	if (size > PAGE_SIZE)
3002 		size = PAGE_SIZE;
3003 
3004 	i = size - exact_copy_from_user(copy, data, size);
3005 	if (!i) {
3006 		kfree(copy);
3007 		return ERR_PTR(-EFAULT);
3008 	}
3009 	if (i != PAGE_SIZE)
3010 		memset(copy + i, 0, PAGE_SIZE - i);
3011 	return copy;
3012 }
3013 
3014 char *copy_mount_string(const void __user *data)
3015 {
3016 	return data ? strndup_user(data, PATH_MAX) : NULL;
3017 }
3018 
3019 /*
3020  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3021  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3022  *
3023  * data is a (void *) that can point to any structure up to
3024  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3025  * information (or be NULL).
3026  *
3027  * Pre-0.97 versions of mount() didn't have a flags word.
3028  * When the flags word was introduced its top half was required
3029  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3030  * Therefore, if this magic number is present, it carries no information
3031  * and must be discarded.
3032  */
3033 long do_mount(const char *dev_name, const char __user *dir_name,
3034 		const char *type_page, unsigned long flags, void *data_page)
3035 {
3036 	struct path path;
3037 	unsigned int mnt_flags = 0, sb_flags;
3038 	int retval = 0;
3039 
3040 	/* Discard magic */
3041 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3042 		flags &= ~MS_MGC_MSK;
3043 
3044 	/* Basic sanity checks */
3045 	if (data_page)
3046 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3047 
3048 	if (flags & MS_NOUSER)
3049 		return -EINVAL;
3050 
3051 	/* ... and get the mountpoint */
3052 	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3053 	if (retval)
3054 		return retval;
3055 
3056 	retval = security_sb_mount(dev_name, &path,
3057 				   type_page, flags, data_page);
3058 	if (!retval && !may_mount())
3059 		retval = -EPERM;
3060 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3061 		retval = -EPERM;
3062 	if (retval)
3063 		goto dput_out;
3064 
3065 	/* Default to relatime unless overriden */
3066 	if (!(flags & MS_NOATIME))
3067 		mnt_flags |= MNT_RELATIME;
3068 
3069 	/* Separate the per-mountpoint flags */
3070 	if (flags & MS_NOSUID)
3071 		mnt_flags |= MNT_NOSUID;
3072 	if (flags & MS_NODEV)
3073 		mnt_flags |= MNT_NODEV;
3074 	if (flags & MS_NOEXEC)
3075 		mnt_flags |= MNT_NOEXEC;
3076 	if (flags & MS_NOATIME)
3077 		mnt_flags |= MNT_NOATIME;
3078 	if (flags & MS_NODIRATIME)
3079 		mnt_flags |= MNT_NODIRATIME;
3080 	if (flags & MS_STRICTATIME)
3081 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3082 	if (flags & MS_RDONLY)
3083 		mnt_flags |= MNT_READONLY;
3084 
3085 	/* The default atime for remount is preservation */
3086 	if ((flags & MS_REMOUNT) &&
3087 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3088 		       MS_STRICTATIME)) == 0)) {
3089 		mnt_flags &= ~MNT_ATIME_MASK;
3090 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3091 	}
3092 
3093 	sb_flags = flags & (SB_RDONLY |
3094 			    SB_SYNCHRONOUS |
3095 			    SB_MANDLOCK |
3096 			    SB_DIRSYNC |
3097 			    SB_SILENT |
3098 			    SB_POSIXACL |
3099 			    SB_LAZYTIME |
3100 			    SB_I_VERSION);
3101 
3102 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3103 		retval = do_reconfigure_mnt(&path, mnt_flags);
3104 	else if (flags & MS_REMOUNT)
3105 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3106 				    data_page);
3107 	else if (flags & MS_BIND)
3108 		retval = do_loopback(&path, dev_name, flags & MS_REC);
3109 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3110 		retval = do_change_type(&path, flags);
3111 	else if (flags & MS_MOVE)
3112 		retval = do_move_mount_old(&path, dev_name);
3113 	else
3114 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3115 				      dev_name, data_page);
3116 dput_out:
3117 	path_put(&path);
3118 	return retval;
3119 }
3120 
3121 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3122 {
3123 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3124 }
3125 
3126 static void dec_mnt_namespaces(struct ucounts *ucounts)
3127 {
3128 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3129 }
3130 
3131 static void free_mnt_ns(struct mnt_namespace *ns)
3132 {
3133 	if (!is_anon_ns(ns))
3134 		ns_free_inum(&ns->ns);
3135 	dec_mnt_namespaces(ns->ucounts);
3136 	put_user_ns(ns->user_ns);
3137 	kfree(ns);
3138 }
3139 
3140 /*
3141  * Assign a sequence number so we can detect when we attempt to bind
3142  * mount a reference to an older mount namespace into the current
3143  * mount namespace, preventing reference counting loops.  A 64bit
3144  * number incrementing at 10Ghz will take 12,427 years to wrap which
3145  * is effectively never, so we can ignore the possibility.
3146  */
3147 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3148 
3149 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3150 {
3151 	struct mnt_namespace *new_ns;
3152 	struct ucounts *ucounts;
3153 	int ret;
3154 
3155 	ucounts = inc_mnt_namespaces(user_ns);
3156 	if (!ucounts)
3157 		return ERR_PTR(-ENOSPC);
3158 
3159 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3160 	if (!new_ns) {
3161 		dec_mnt_namespaces(ucounts);
3162 		return ERR_PTR(-ENOMEM);
3163 	}
3164 	if (!anon) {
3165 		ret = ns_alloc_inum(&new_ns->ns);
3166 		if (ret) {
3167 			kfree(new_ns);
3168 			dec_mnt_namespaces(ucounts);
3169 			return ERR_PTR(ret);
3170 		}
3171 	}
3172 	new_ns->ns.ops = &mntns_operations;
3173 	if (!anon)
3174 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3175 	atomic_set(&new_ns->count, 1);
3176 	INIT_LIST_HEAD(&new_ns->list);
3177 	init_waitqueue_head(&new_ns->poll);
3178 	new_ns->user_ns = get_user_ns(user_ns);
3179 	new_ns->ucounts = ucounts;
3180 	return new_ns;
3181 }
3182 
3183 __latent_entropy
3184 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3185 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3186 {
3187 	struct mnt_namespace *new_ns;
3188 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3189 	struct mount *p, *q;
3190 	struct mount *old;
3191 	struct mount *new;
3192 	int copy_flags;
3193 
3194 	BUG_ON(!ns);
3195 
3196 	if (likely(!(flags & CLONE_NEWNS))) {
3197 		get_mnt_ns(ns);
3198 		return ns;
3199 	}
3200 
3201 	old = ns->root;
3202 
3203 	new_ns = alloc_mnt_ns(user_ns, false);
3204 	if (IS_ERR(new_ns))
3205 		return new_ns;
3206 
3207 	namespace_lock();
3208 	/* First pass: copy the tree topology */
3209 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3210 	if (user_ns != ns->user_ns)
3211 		copy_flags |= CL_SHARED_TO_SLAVE;
3212 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3213 	if (IS_ERR(new)) {
3214 		namespace_unlock();
3215 		free_mnt_ns(new_ns);
3216 		return ERR_CAST(new);
3217 	}
3218 	if (user_ns != ns->user_ns) {
3219 		lock_mount_hash();
3220 		lock_mnt_tree(new);
3221 		unlock_mount_hash();
3222 	}
3223 	new_ns->root = new;
3224 	list_add_tail(&new_ns->list, &new->mnt_list);
3225 
3226 	/*
3227 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3228 	 * as belonging to new namespace.  We have already acquired a private
3229 	 * fs_struct, so tsk->fs->lock is not needed.
3230 	 */
3231 	p = old;
3232 	q = new;
3233 	while (p) {
3234 		q->mnt_ns = new_ns;
3235 		new_ns->mounts++;
3236 		if (new_fs) {
3237 			if (&p->mnt == new_fs->root.mnt) {
3238 				new_fs->root.mnt = mntget(&q->mnt);
3239 				rootmnt = &p->mnt;
3240 			}
3241 			if (&p->mnt == new_fs->pwd.mnt) {
3242 				new_fs->pwd.mnt = mntget(&q->mnt);
3243 				pwdmnt = &p->mnt;
3244 			}
3245 		}
3246 		p = next_mnt(p, old);
3247 		q = next_mnt(q, new);
3248 		if (!q)
3249 			break;
3250 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3251 			p = next_mnt(p, old);
3252 	}
3253 	namespace_unlock();
3254 
3255 	if (rootmnt)
3256 		mntput(rootmnt);
3257 	if (pwdmnt)
3258 		mntput(pwdmnt);
3259 
3260 	return new_ns;
3261 }
3262 
3263 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3264 {
3265 	struct mount *mnt = real_mount(m);
3266 	struct mnt_namespace *ns;
3267 	struct super_block *s;
3268 	struct path path;
3269 	int err;
3270 
3271 	ns = alloc_mnt_ns(&init_user_ns, true);
3272 	if (IS_ERR(ns)) {
3273 		mntput(m);
3274 		return ERR_CAST(ns);
3275 	}
3276 	mnt->mnt_ns = ns;
3277 	ns->root = mnt;
3278 	ns->mounts++;
3279 	list_add(&mnt->mnt_list, &ns->list);
3280 
3281 	err = vfs_path_lookup(m->mnt_root, m,
3282 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3283 
3284 	put_mnt_ns(ns);
3285 
3286 	if (err)
3287 		return ERR_PTR(err);
3288 
3289 	/* trade a vfsmount reference for active sb one */
3290 	s = path.mnt->mnt_sb;
3291 	atomic_inc(&s->s_active);
3292 	mntput(path.mnt);
3293 	/* lock the sucker */
3294 	down_write(&s->s_umount);
3295 	/* ... and return the root of (sub)tree on it */
3296 	return path.dentry;
3297 }
3298 EXPORT_SYMBOL(mount_subtree);
3299 
3300 int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3301 	       const char __user *type, unsigned long flags, void __user *data)
3302 {
3303 	int ret;
3304 	char *kernel_type;
3305 	char *kernel_dev;
3306 	void *options;
3307 
3308 	kernel_type = copy_mount_string(type);
3309 	ret = PTR_ERR(kernel_type);
3310 	if (IS_ERR(kernel_type))
3311 		goto out_type;
3312 
3313 	kernel_dev = copy_mount_string(dev_name);
3314 	ret = PTR_ERR(kernel_dev);
3315 	if (IS_ERR(kernel_dev))
3316 		goto out_dev;
3317 
3318 	options = copy_mount_options(data);
3319 	ret = PTR_ERR(options);
3320 	if (IS_ERR(options))
3321 		goto out_data;
3322 
3323 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3324 
3325 	kfree(options);
3326 out_data:
3327 	kfree(kernel_dev);
3328 out_dev:
3329 	kfree(kernel_type);
3330 out_type:
3331 	return ret;
3332 }
3333 
3334 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3335 		char __user *, type, unsigned long, flags, void __user *, data)
3336 {
3337 	return ksys_mount(dev_name, dir_name, type, flags, data);
3338 }
3339 
3340 /*
3341  * Create a kernel mount representation for a new, prepared superblock
3342  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3343  */
3344 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3345 		unsigned int, attr_flags)
3346 {
3347 	struct mnt_namespace *ns;
3348 	struct fs_context *fc;
3349 	struct file *file;
3350 	struct path newmount;
3351 	struct mount *mnt;
3352 	struct fd f;
3353 	unsigned int mnt_flags = 0;
3354 	long ret;
3355 
3356 	if (!may_mount())
3357 		return -EPERM;
3358 
3359 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3360 		return -EINVAL;
3361 
3362 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3363 			   MOUNT_ATTR_NOSUID |
3364 			   MOUNT_ATTR_NODEV |
3365 			   MOUNT_ATTR_NOEXEC |
3366 			   MOUNT_ATTR__ATIME |
3367 			   MOUNT_ATTR_NODIRATIME))
3368 		return -EINVAL;
3369 
3370 	if (attr_flags & MOUNT_ATTR_RDONLY)
3371 		mnt_flags |= MNT_READONLY;
3372 	if (attr_flags & MOUNT_ATTR_NOSUID)
3373 		mnt_flags |= MNT_NOSUID;
3374 	if (attr_flags & MOUNT_ATTR_NODEV)
3375 		mnt_flags |= MNT_NODEV;
3376 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3377 		mnt_flags |= MNT_NOEXEC;
3378 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3379 		mnt_flags |= MNT_NODIRATIME;
3380 
3381 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3382 	case MOUNT_ATTR_STRICTATIME:
3383 		break;
3384 	case MOUNT_ATTR_NOATIME:
3385 		mnt_flags |= MNT_NOATIME;
3386 		break;
3387 	case MOUNT_ATTR_RELATIME:
3388 		mnt_flags |= MNT_RELATIME;
3389 		break;
3390 	default:
3391 		return -EINVAL;
3392 	}
3393 
3394 	f = fdget(fs_fd);
3395 	if (!f.file)
3396 		return -EBADF;
3397 
3398 	ret = -EINVAL;
3399 	if (f.file->f_op != &fscontext_fops)
3400 		goto err_fsfd;
3401 
3402 	fc = f.file->private_data;
3403 
3404 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3405 	if (ret < 0)
3406 		goto err_fsfd;
3407 
3408 	/* There must be a valid superblock or we can't mount it */
3409 	ret = -EINVAL;
3410 	if (!fc->root)
3411 		goto err_unlock;
3412 
3413 	ret = -EPERM;
3414 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3415 		pr_warn("VFS: Mount too revealing\n");
3416 		goto err_unlock;
3417 	}
3418 
3419 	ret = -EBUSY;
3420 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3421 		goto err_unlock;
3422 
3423 	ret = -EPERM;
3424 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3425 		goto err_unlock;
3426 
3427 	newmount.mnt = vfs_create_mount(fc);
3428 	if (IS_ERR(newmount.mnt)) {
3429 		ret = PTR_ERR(newmount.mnt);
3430 		goto err_unlock;
3431 	}
3432 	newmount.dentry = dget(fc->root);
3433 	newmount.mnt->mnt_flags = mnt_flags;
3434 
3435 	/* We've done the mount bit - now move the file context into more or
3436 	 * less the same state as if we'd done an fspick().  We don't want to
3437 	 * do any memory allocation or anything like that at this point as we
3438 	 * don't want to have to handle any errors incurred.
3439 	 */
3440 	vfs_clean_context(fc);
3441 
3442 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3443 	if (IS_ERR(ns)) {
3444 		ret = PTR_ERR(ns);
3445 		goto err_path;
3446 	}
3447 	mnt = real_mount(newmount.mnt);
3448 	mnt->mnt_ns = ns;
3449 	ns->root = mnt;
3450 	ns->mounts = 1;
3451 	list_add(&mnt->mnt_list, &ns->list);
3452 	mntget(newmount.mnt);
3453 
3454 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3455 	 * it, not just simply put it.
3456 	 */
3457 	file = dentry_open(&newmount, O_PATH, fc->cred);
3458 	if (IS_ERR(file)) {
3459 		dissolve_on_fput(newmount.mnt);
3460 		ret = PTR_ERR(file);
3461 		goto err_path;
3462 	}
3463 	file->f_mode |= FMODE_NEED_UNMOUNT;
3464 
3465 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3466 	if (ret >= 0)
3467 		fd_install(ret, file);
3468 	else
3469 		fput(file);
3470 
3471 err_path:
3472 	path_put(&newmount);
3473 err_unlock:
3474 	mutex_unlock(&fc->uapi_mutex);
3475 err_fsfd:
3476 	fdput(f);
3477 	return ret;
3478 }
3479 
3480 /*
3481  * Move a mount from one place to another.  In combination with
3482  * fsopen()/fsmount() this is used to install a new mount and in combination
3483  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3484  * a mount subtree.
3485  *
3486  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3487  */
3488 SYSCALL_DEFINE5(move_mount,
3489 		int, from_dfd, const char *, from_pathname,
3490 		int, to_dfd, const char *, to_pathname,
3491 		unsigned int, flags)
3492 {
3493 	struct path from_path, to_path;
3494 	unsigned int lflags;
3495 	int ret = 0;
3496 
3497 	if (!may_mount())
3498 		return -EPERM;
3499 
3500 	if (flags & ~MOVE_MOUNT__MASK)
3501 		return -EINVAL;
3502 
3503 	/* If someone gives a pathname, they aren't permitted to move
3504 	 * from an fd that requires unmount as we can't get at the flag
3505 	 * to clear it afterwards.
3506 	 */
3507 	lflags = 0;
3508 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3509 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3510 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3511 
3512 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3513 	if (ret < 0)
3514 		return ret;
3515 
3516 	lflags = 0;
3517 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3518 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3519 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3520 
3521 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3522 	if (ret < 0)
3523 		goto out_from;
3524 
3525 	ret = security_move_mount(&from_path, &to_path);
3526 	if (ret < 0)
3527 		goto out_to;
3528 
3529 	ret = do_move_mount(&from_path, &to_path);
3530 
3531 out_to:
3532 	path_put(&to_path);
3533 out_from:
3534 	path_put(&from_path);
3535 	return ret;
3536 }
3537 
3538 /*
3539  * Return true if path is reachable from root
3540  *
3541  * namespace_sem or mount_lock is held
3542  */
3543 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3544 			 const struct path *root)
3545 {
3546 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3547 		dentry = mnt->mnt_mountpoint;
3548 		mnt = mnt->mnt_parent;
3549 	}
3550 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3551 }
3552 
3553 bool path_is_under(const struct path *path1, const struct path *path2)
3554 {
3555 	bool res;
3556 	read_seqlock_excl(&mount_lock);
3557 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3558 	read_sequnlock_excl(&mount_lock);
3559 	return res;
3560 }
3561 EXPORT_SYMBOL(path_is_under);
3562 
3563 /*
3564  * pivot_root Semantics:
3565  * Moves the root file system of the current process to the directory put_old,
3566  * makes new_root as the new root file system of the current process, and sets
3567  * root/cwd of all processes which had them on the current root to new_root.
3568  *
3569  * Restrictions:
3570  * The new_root and put_old must be directories, and  must not be on the
3571  * same file  system as the current process root. The put_old  must  be
3572  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3573  * pointed to by put_old must yield the same directory as new_root. No other
3574  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3575  *
3576  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3577  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3578  * in this situation.
3579  *
3580  * Notes:
3581  *  - we don't move root/cwd if they are not at the root (reason: if something
3582  *    cared enough to change them, it's probably wrong to force them elsewhere)
3583  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3584  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3585  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3586  *    first.
3587  */
3588 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3589 		const char __user *, put_old)
3590 {
3591 	struct path new, old, root;
3592 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3593 	struct mountpoint *old_mp, *root_mp;
3594 	int error;
3595 
3596 	if (!may_mount())
3597 		return -EPERM;
3598 
3599 	error = user_path_at(AT_FDCWD, new_root,
3600 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3601 	if (error)
3602 		goto out0;
3603 
3604 	error = user_path_at(AT_FDCWD, put_old,
3605 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3606 	if (error)
3607 		goto out1;
3608 
3609 	error = security_sb_pivotroot(&old, &new);
3610 	if (error)
3611 		goto out2;
3612 
3613 	get_fs_root(current->fs, &root);
3614 	old_mp = lock_mount(&old);
3615 	error = PTR_ERR(old_mp);
3616 	if (IS_ERR(old_mp))
3617 		goto out3;
3618 
3619 	error = -EINVAL;
3620 	new_mnt = real_mount(new.mnt);
3621 	root_mnt = real_mount(root.mnt);
3622 	old_mnt = real_mount(old.mnt);
3623 	ex_parent = new_mnt->mnt_parent;
3624 	root_parent = root_mnt->mnt_parent;
3625 	if (IS_MNT_SHARED(old_mnt) ||
3626 		IS_MNT_SHARED(ex_parent) ||
3627 		IS_MNT_SHARED(root_parent))
3628 		goto out4;
3629 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3630 		goto out4;
3631 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3632 		goto out4;
3633 	error = -ENOENT;
3634 	if (d_unlinked(new.dentry))
3635 		goto out4;
3636 	error = -EBUSY;
3637 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3638 		goto out4; /* loop, on the same file system  */
3639 	error = -EINVAL;
3640 	if (root.mnt->mnt_root != root.dentry)
3641 		goto out4; /* not a mountpoint */
3642 	if (!mnt_has_parent(root_mnt))
3643 		goto out4; /* not attached */
3644 	if (new.mnt->mnt_root != new.dentry)
3645 		goto out4; /* not a mountpoint */
3646 	if (!mnt_has_parent(new_mnt))
3647 		goto out4; /* not attached */
3648 	/* make sure we can reach put_old from new_root */
3649 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3650 		goto out4;
3651 	/* make certain new is below the root */
3652 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3653 		goto out4;
3654 	lock_mount_hash();
3655 	umount_mnt(new_mnt);
3656 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3657 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3658 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3659 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3660 	}
3661 	/* mount old root on put_old */
3662 	attach_mnt(root_mnt, old_mnt, old_mp);
3663 	/* mount new_root on / */
3664 	attach_mnt(new_mnt, root_parent, root_mp);
3665 	mnt_add_count(root_parent, -1);
3666 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3667 	/* A moved mount should not expire automatically */
3668 	list_del_init(&new_mnt->mnt_expire);
3669 	put_mountpoint(root_mp);
3670 	unlock_mount_hash();
3671 	chroot_fs_refs(&root, &new);
3672 	error = 0;
3673 out4:
3674 	unlock_mount(old_mp);
3675 	if (!error)
3676 		mntput_no_expire(ex_parent);
3677 out3:
3678 	path_put(&root);
3679 out2:
3680 	path_put(&old);
3681 out1:
3682 	path_put(&new);
3683 out0:
3684 	return error;
3685 }
3686 
3687 static void __init init_mount_tree(void)
3688 {
3689 	struct vfsmount *mnt;
3690 	struct mount *m;
3691 	struct mnt_namespace *ns;
3692 	struct path root;
3693 
3694 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3695 	if (IS_ERR(mnt))
3696 		panic("Can't create rootfs");
3697 
3698 	ns = alloc_mnt_ns(&init_user_ns, false);
3699 	if (IS_ERR(ns))
3700 		panic("Can't allocate initial namespace");
3701 	m = real_mount(mnt);
3702 	m->mnt_ns = ns;
3703 	ns->root = m;
3704 	ns->mounts = 1;
3705 	list_add(&m->mnt_list, &ns->list);
3706 	init_task.nsproxy->mnt_ns = ns;
3707 	get_mnt_ns(ns);
3708 
3709 	root.mnt = mnt;
3710 	root.dentry = mnt->mnt_root;
3711 	mnt->mnt_flags |= MNT_LOCKED;
3712 
3713 	set_fs_pwd(current->fs, &root);
3714 	set_fs_root(current->fs, &root);
3715 }
3716 
3717 void __init mnt_init(void)
3718 {
3719 	int err;
3720 
3721 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3722 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3723 
3724 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3725 				sizeof(struct hlist_head),
3726 				mhash_entries, 19,
3727 				HASH_ZERO,
3728 				&m_hash_shift, &m_hash_mask, 0, 0);
3729 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3730 				sizeof(struct hlist_head),
3731 				mphash_entries, 19,
3732 				HASH_ZERO,
3733 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3734 
3735 	if (!mount_hashtable || !mountpoint_hashtable)
3736 		panic("Failed to allocate mount hash table\n");
3737 
3738 	kernfs_init();
3739 
3740 	err = sysfs_init();
3741 	if (err)
3742 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3743 			__func__, err);
3744 	fs_kobj = kobject_create_and_add("fs", NULL);
3745 	if (!fs_kobj)
3746 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3747 	shmem_init();
3748 	init_rootfs();
3749 	init_mount_tree();
3750 }
3751 
3752 void put_mnt_ns(struct mnt_namespace *ns)
3753 {
3754 	if (!atomic_dec_and_test(&ns->count))
3755 		return;
3756 	drop_collected_mounts(&ns->root->mnt);
3757 	free_mnt_ns(ns);
3758 }
3759 
3760 struct vfsmount *kern_mount(struct file_system_type *type)
3761 {
3762 	struct vfsmount *mnt;
3763 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3764 	if (!IS_ERR(mnt)) {
3765 		/*
3766 		 * it is a longterm mount, don't release mnt until
3767 		 * we unmount before file sys is unregistered
3768 		*/
3769 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3770 	}
3771 	return mnt;
3772 }
3773 EXPORT_SYMBOL_GPL(kern_mount);
3774 
3775 void kern_unmount(struct vfsmount *mnt)
3776 {
3777 	/* release long term mount so mount point can be released */
3778 	if (!IS_ERR_OR_NULL(mnt)) {
3779 		real_mount(mnt)->mnt_ns = NULL;
3780 		synchronize_rcu();	/* yecchhh... */
3781 		mntput(mnt);
3782 	}
3783 }
3784 EXPORT_SYMBOL(kern_unmount);
3785 
3786 bool our_mnt(struct vfsmount *mnt)
3787 {
3788 	return check_mnt(real_mount(mnt));
3789 }
3790 
3791 bool current_chrooted(void)
3792 {
3793 	/* Does the current process have a non-standard root */
3794 	struct path ns_root;
3795 	struct path fs_root;
3796 	bool chrooted;
3797 
3798 	/* Find the namespace root */
3799 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3800 	ns_root.dentry = ns_root.mnt->mnt_root;
3801 	path_get(&ns_root);
3802 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3803 		;
3804 
3805 	get_fs_root(current->fs, &fs_root);
3806 
3807 	chrooted = !path_equal(&fs_root, &ns_root);
3808 
3809 	path_put(&fs_root);
3810 	path_put(&ns_root);
3811 
3812 	return chrooted;
3813 }
3814 
3815 static bool mnt_already_visible(struct mnt_namespace *ns,
3816 				const struct super_block *sb,
3817 				int *new_mnt_flags)
3818 {
3819 	int new_flags = *new_mnt_flags;
3820 	struct mount *mnt;
3821 	bool visible = false;
3822 
3823 	down_read(&namespace_sem);
3824 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3825 		struct mount *child;
3826 		int mnt_flags;
3827 
3828 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3829 			continue;
3830 
3831 		/* This mount is not fully visible if it's root directory
3832 		 * is not the root directory of the filesystem.
3833 		 */
3834 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3835 			continue;
3836 
3837 		/* A local view of the mount flags */
3838 		mnt_flags = mnt->mnt.mnt_flags;
3839 
3840 		/* Don't miss readonly hidden in the superblock flags */
3841 		if (sb_rdonly(mnt->mnt.mnt_sb))
3842 			mnt_flags |= MNT_LOCK_READONLY;
3843 
3844 		/* Verify the mount flags are equal to or more permissive
3845 		 * than the proposed new mount.
3846 		 */
3847 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3848 		    !(new_flags & MNT_READONLY))
3849 			continue;
3850 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3851 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3852 			continue;
3853 
3854 		/* This mount is not fully visible if there are any
3855 		 * locked child mounts that cover anything except for
3856 		 * empty directories.
3857 		 */
3858 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3859 			struct inode *inode = child->mnt_mountpoint->d_inode;
3860 			/* Only worry about locked mounts */
3861 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3862 				continue;
3863 			/* Is the directory permanetly empty? */
3864 			if (!is_empty_dir_inode(inode))
3865 				goto next;
3866 		}
3867 		/* Preserve the locked attributes */
3868 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3869 					       MNT_LOCK_ATIME);
3870 		visible = true;
3871 		goto found;
3872 	next:	;
3873 	}
3874 found:
3875 	up_read(&namespace_sem);
3876 	return visible;
3877 }
3878 
3879 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3880 {
3881 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3882 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3883 	unsigned long s_iflags;
3884 
3885 	if (ns->user_ns == &init_user_ns)
3886 		return false;
3887 
3888 	/* Can this filesystem be too revealing? */
3889 	s_iflags = sb->s_iflags;
3890 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3891 		return false;
3892 
3893 	if ((s_iflags & required_iflags) != required_iflags) {
3894 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3895 			  required_iflags);
3896 		return true;
3897 	}
3898 
3899 	return !mnt_already_visible(ns, sb, new_mnt_flags);
3900 }
3901 
3902 bool mnt_may_suid(struct vfsmount *mnt)
3903 {
3904 	/*
3905 	 * Foreign mounts (accessed via fchdir or through /proc
3906 	 * symlinks) are always treated as if they are nosuid.  This
3907 	 * prevents namespaces from trusting potentially unsafe
3908 	 * suid/sgid bits, file caps, or security labels that originate
3909 	 * in other namespaces.
3910 	 */
3911 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3912 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3913 }
3914 
3915 static struct ns_common *mntns_get(struct task_struct *task)
3916 {
3917 	struct ns_common *ns = NULL;
3918 	struct nsproxy *nsproxy;
3919 
3920 	task_lock(task);
3921 	nsproxy = task->nsproxy;
3922 	if (nsproxy) {
3923 		ns = &nsproxy->mnt_ns->ns;
3924 		get_mnt_ns(to_mnt_ns(ns));
3925 	}
3926 	task_unlock(task);
3927 
3928 	return ns;
3929 }
3930 
3931 static void mntns_put(struct ns_common *ns)
3932 {
3933 	put_mnt_ns(to_mnt_ns(ns));
3934 }
3935 
3936 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3937 {
3938 	struct fs_struct *fs = current->fs;
3939 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3940 	struct path root;
3941 	int err;
3942 
3943 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3944 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3945 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3946 		return -EPERM;
3947 
3948 	if (is_anon_ns(mnt_ns))
3949 		return -EINVAL;
3950 
3951 	if (fs->users != 1)
3952 		return -EINVAL;
3953 
3954 	get_mnt_ns(mnt_ns);
3955 	old_mnt_ns = nsproxy->mnt_ns;
3956 	nsproxy->mnt_ns = mnt_ns;
3957 
3958 	/* Find the root */
3959 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3960 				"/", LOOKUP_DOWN, &root);
3961 	if (err) {
3962 		/* revert to old namespace */
3963 		nsproxy->mnt_ns = old_mnt_ns;
3964 		put_mnt_ns(mnt_ns);
3965 		return err;
3966 	}
3967 
3968 	put_mnt_ns(old_mnt_ns);
3969 
3970 	/* Update the pwd and root */
3971 	set_fs_pwd(fs, &root);
3972 	set_fs_root(fs, &root);
3973 
3974 	path_put(&root);
3975 	return 0;
3976 }
3977 
3978 static struct user_namespace *mntns_owner(struct ns_common *ns)
3979 {
3980 	return to_mnt_ns(ns)->user_ns;
3981 }
3982 
3983 const struct proc_ns_operations mntns_operations = {
3984 	.name		= "mnt",
3985 	.type		= CLONE_NEWNS,
3986 	.get		= mntns_get,
3987 	.put		= mntns_put,
3988 	.install	= mntns_install,
3989 	.owner		= mntns_owner,
3990 };
3991