xref: /linux/fs/namespace.c (revision ac4dfccb96571ca03af7cac64b7a0b2952c97f3a)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/namespace.c
4   *
5   * (C) Copyright Al Viro 2000, 2001
6   *
7   * Based on code from fs/super.c, copyright Linus Torvalds and others.
8   * Heavily rewritten.
9   */
10  
11  #include <linux/syscalls.h>
12  #include <linux/export.h>
13  #include <linux/capability.h>
14  #include <linux/mnt_namespace.h>
15  #include <linux/user_namespace.h>
16  #include <linux/namei.h>
17  #include <linux/security.h>
18  #include <linux/cred.h>
19  #include <linux/idr.h>
20  #include <linux/init.h>		/* init_rootfs */
21  #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22  #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23  #include <linux/file.h>
24  #include <linux/uaccess.h>
25  #include <linux/proc_ns.h>
26  #include <linux/magic.h>
27  #include <linux/memblock.h>
28  #include <linux/proc_fs.h>
29  #include <linux/task_work.h>
30  #include <linux/sched/task.h>
31  #include <uapi/linux/mount.h>
32  #include <linux/fs_context.h>
33  #include <linux/shmem_fs.h>
34  
35  #include "pnode.h"
36  #include "internal.h"
37  
38  /* Maximum number of mounts in a mount namespace */
39  unsigned int sysctl_mount_max __read_mostly = 100000;
40  
41  static unsigned int m_hash_mask __read_mostly;
42  static unsigned int m_hash_shift __read_mostly;
43  static unsigned int mp_hash_mask __read_mostly;
44  static unsigned int mp_hash_shift __read_mostly;
45  
46  static __initdata unsigned long mhash_entries;
47  static int __init set_mhash_entries(char *str)
48  {
49  	if (!str)
50  		return 0;
51  	mhash_entries = simple_strtoul(str, &str, 0);
52  	return 1;
53  }
54  __setup("mhash_entries=", set_mhash_entries);
55  
56  static __initdata unsigned long mphash_entries;
57  static int __init set_mphash_entries(char *str)
58  {
59  	if (!str)
60  		return 0;
61  	mphash_entries = simple_strtoul(str, &str, 0);
62  	return 1;
63  }
64  __setup("mphash_entries=", set_mphash_entries);
65  
66  static u64 event;
67  static DEFINE_IDA(mnt_id_ida);
68  static DEFINE_IDA(mnt_group_ida);
69  
70  static struct hlist_head *mount_hashtable __read_mostly;
71  static struct hlist_head *mountpoint_hashtable __read_mostly;
72  static struct kmem_cache *mnt_cache __read_mostly;
73  static DECLARE_RWSEM(namespace_sem);
74  static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75  static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76  
77  struct mount_kattr {
78  	unsigned int attr_set;
79  	unsigned int attr_clr;
80  	unsigned int propagation;
81  	unsigned int lookup_flags;
82  	bool recurse;
83  	struct user_namespace *mnt_userns;
84  };
85  
86  /* /sys/fs */
87  struct kobject *fs_kobj;
88  EXPORT_SYMBOL_GPL(fs_kobj);
89  
90  /*
91   * vfsmount lock may be taken for read to prevent changes to the
92   * vfsmount hash, ie. during mountpoint lookups or walking back
93   * up the tree.
94   *
95   * It should be taken for write in all cases where the vfsmount
96   * tree or hash is modified or when a vfsmount structure is modified.
97   */
98  __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99  
100  static inline void lock_mount_hash(void)
101  {
102  	write_seqlock(&mount_lock);
103  }
104  
105  static inline void unlock_mount_hash(void)
106  {
107  	write_sequnlock(&mount_lock);
108  }
109  
110  static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111  {
112  	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113  	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114  	tmp = tmp + (tmp >> m_hash_shift);
115  	return &mount_hashtable[tmp & m_hash_mask];
116  }
117  
118  static inline struct hlist_head *mp_hash(struct dentry *dentry)
119  {
120  	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121  	tmp = tmp + (tmp >> mp_hash_shift);
122  	return &mountpoint_hashtable[tmp & mp_hash_mask];
123  }
124  
125  static int mnt_alloc_id(struct mount *mnt)
126  {
127  	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128  
129  	if (res < 0)
130  		return res;
131  	mnt->mnt_id = res;
132  	return 0;
133  }
134  
135  static void mnt_free_id(struct mount *mnt)
136  {
137  	ida_free(&mnt_id_ida, mnt->mnt_id);
138  }
139  
140  /*
141   * Allocate a new peer group ID
142   */
143  static int mnt_alloc_group_id(struct mount *mnt)
144  {
145  	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146  
147  	if (res < 0)
148  		return res;
149  	mnt->mnt_group_id = res;
150  	return 0;
151  }
152  
153  /*
154   * Release a peer group ID
155   */
156  void mnt_release_group_id(struct mount *mnt)
157  {
158  	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159  	mnt->mnt_group_id = 0;
160  }
161  
162  /*
163   * vfsmount lock must be held for read
164   */
165  static inline void mnt_add_count(struct mount *mnt, int n)
166  {
167  #ifdef CONFIG_SMP
168  	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169  #else
170  	preempt_disable();
171  	mnt->mnt_count += n;
172  	preempt_enable();
173  #endif
174  }
175  
176  /*
177   * vfsmount lock must be held for write
178   */
179  int mnt_get_count(struct mount *mnt)
180  {
181  #ifdef CONFIG_SMP
182  	int count = 0;
183  	int cpu;
184  
185  	for_each_possible_cpu(cpu) {
186  		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187  	}
188  
189  	return count;
190  #else
191  	return mnt->mnt_count;
192  #endif
193  }
194  
195  static struct mount *alloc_vfsmnt(const char *name)
196  {
197  	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198  	if (mnt) {
199  		int err;
200  
201  		err = mnt_alloc_id(mnt);
202  		if (err)
203  			goto out_free_cache;
204  
205  		if (name) {
206  			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
207  			if (!mnt->mnt_devname)
208  				goto out_free_id;
209  		}
210  
211  #ifdef CONFIG_SMP
212  		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
213  		if (!mnt->mnt_pcp)
214  			goto out_free_devname;
215  
216  		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
217  #else
218  		mnt->mnt_count = 1;
219  		mnt->mnt_writers = 0;
220  #endif
221  
222  		INIT_HLIST_NODE(&mnt->mnt_hash);
223  		INIT_LIST_HEAD(&mnt->mnt_child);
224  		INIT_LIST_HEAD(&mnt->mnt_mounts);
225  		INIT_LIST_HEAD(&mnt->mnt_list);
226  		INIT_LIST_HEAD(&mnt->mnt_expire);
227  		INIT_LIST_HEAD(&mnt->mnt_share);
228  		INIT_LIST_HEAD(&mnt->mnt_slave_list);
229  		INIT_LIST_HEAD(&mnt->mnt_slave);
230  		INIT_HLIST_NODE(&mnt->mnt_mp_list);
231  		INIT_LIST_HEAD(&mnt->mnt_umounting);
232  		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
233  		mnt->mnt.mnt_userns = &init_user_ns;
234  	}
235  	return mnt;
236  
237  #ifdef CONFIG_SMP
238  out_free_devname:
239  	kfree_const(mnt->mnt_devname);
240  #endif
241  out_free_id:
242  	mnt_free_id(mnt);
243  out_free_cache:
244  	kmem_cache_free(mnt_cache, mnt);
245  	return NULL;
246  }
247  
248  /*
249   * Most r/o checks on a fs are for operations that take
250   * discrete amounts of time, like a write() or unlink().
251   * We must keep track of when those operations start
252   * (for permission checks) and when they end, so that
253   * we can determine when writes are able to occur to
254   * a filesystem.
255   */
256  /*
257   * __mnt_is_readonly: check whether a mount is read-only
258   * @mnt: the mount to check for its write status
259   *
260   * This shouldn't be used directly ouside of the VFS.
261   * It does not guarantee that the filesystem will stay
262   * r/w, just that it is right *now*.  This can not and
263   * should not be used in place of IS_RDONLY(inode).
264   * mnt_want/drop_write() will _keep_ the filesystem
265   * r/w.
266   */
267  bool __mnt_is_readonly(struct vfsmount *mnt)
268  {
269  	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
270  }
271  EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272  
273  static inline void mnt_inc_writers(struct mount *mnt)
274  {
275  #ifdef CONFIG_SMP
276  	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277  #else
278  	mnt->mnt_writers++;
279  #endif
280  }
281  
282  static inline void mnt_dec_writers(struct mount *mnt)
283  {
284  #ifdef CONFIG_SMP
285  	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286  #else
287  	mnt->mnt_writers--;
288  #endif
289  }
290  
291  static unsigned int mnt_get_writers(struct mount *mnt)
292  {
293  #ifdef CONFIG_SMP
294  	unsigned int count = 0;
295  	int cpu;
296  
297  	for_each_possible_cpu(cpu) {
298  		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299  	}
300  
301  	return count;
302  #else
303  	return mnt->mnt_writers;
304  #endif
305  }
306  
307  static int mnt_is_readonly(struct vfsmount *mnt)
308  {
309  	if (mnt->mnt_sb->s_readonly_remount)
310  		return 1;
311  	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312  	smp_rmb();
313  	return __mnt_is_readonly(mnt);
314  }
315  
316  /*
317   * Most r/o & frozen checks on a fs are for operations that take discrete
318   * amounts of time, like a write() or unlink().  We must keep track of when
319   * those operations start (for permission checks) and when they end, so that we
320   * can determine when writes are able to occur to a filesystem.
321   */
322  /**
323   * __mnt_want_write - get write access to a mount without freeze protection
324   * @m: the mount on which to take a write
325   *
326   * This tells the low-level filesystem that a write is about to be performed to
327   * it, and makes sure that writes are allowed (mnt it read-write) before
328   * returning success. This operation does not protect against filesystem being
329   * frozen. When the write operation is finished, __mnt_drop_write() must be
330   * called. This is effectively a refcount.
331   */
332  int __mnt_want_write(struct vfsmount *m)
333  {
334  	struct mount *mnt = real_mount(m);
335  	int ret = 0;
336  
337  	preempt_disable();
338  	mnt_inc_writers(mnt);
339  	/*
340  	 * The store to mnt_inc_writers must be visible before we pass
341  	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342  	 * incremented count after it has set MNT_WRITE_HOLD.
343  	 */
344  	smp_mb();
345  	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346  		cpu_relax();
347  	/*
348  	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349  	 * be set to match its requirements. So we must not load that until
350  	 * MNT_WRITE_HOLD is cleared.
351  	 */
352  	smp_rmb();
353  	if (mnt_is_readonly(m)) {
354  		mnt_dec_writers(mnt);
355  		ret = -EROFS;
356  	}
357  	preempt_enable();
358  
359  	return ret;
360  }
361  
362  /**
363   * mnt_want_write - get write access to a mount
364   * @m: the mount on which to take a write
365   *
366   * This tells the low-level filesystem that a write is about to be performed to
367   * it, and makes sure that writes are allowed (mount is read-write, filesystem
368   * is not frozen) before returning success.  When the write operation is
369   * finished, mnt_drop_write() must be called.  This is effectively a refcount.
370   */
371  int mnt_want_write(struct vfsmount *m)
372  {
373  	int ret;
374  
375  	sb_start_write(m->mnt_sb);
376  	ret = __mnt_want_write(m);
377  	if (ret)
378  		sb_end_write(m->mnt_sb);
379  	return ret;
380  }
381  EXPORT_SYMBOL_GPL(mnt_want_write);
382  
383  /**
384   * __mnt_want_write_file - get write access to a file's mount
385   * @file: the file who's mount on which to take a write
386   *
387   * This is like __mnt_want_write, but if the file is already open for writing it
388   * skips incrementing mnt_writers (since the open file already has a reference)
389   * and instead only does the check for emergency r/o remounts.  This must be
390   * paired with __mnt_drop_write_file.
391   */
392  int __mnt_want_write_file(struct file *file)
393  {
394  	if (file->f_mode & FMODE_WRITER) {
395  		/*
396  		 * Superblock may have become readonly while there are still
397  		 * writable fd's, e.g. due to a fs error with errors=remount-ro
398  		 */
399  		if (__mnt_is_readonly(file->f_path.mnt))
400  			return -EROFS;
401  		return 0;
402  	}
403  	return __mnt_want_write(file->f_path.mnt);
404  }
405  
406  /**
407   * mnt_want_write_file - get write access to a file's mount
408   * @file: the file who's mount on which to take a write
409   *
410   * This is like mnt_want_write, but if the file is already open for writing it
411   * skips incrementing mnt_writers (since the open file already has a reference)
412   * and instead only does the freeze protection and the check for emergency r/o
413   * remounts.  This must be paired with mnt_drop_write_file.
414   */
415  int mnt_want_write_file(struct file *file)
416  {
417  	int ret;
418  
419  	sb_start_write(file_inode(file)->i_sb);
420  	ret = __mnt_want_write_file(file);
421  	if (ret)
422  		sb_end_write(file_inode(file)->i_sb);
423  	return ret;
424  }
425  EXPORT_SYMBOL_GPL(mnt_want_write_file);
426  
427  /**
428   * __mnt_drop_write - give up write access to a mount
429   * @mnt: the mount on which to give up write access
430   *
431   * Tells the low-level filesystem that we are done
432   * performing writes to it.  Must be matched with
433   * __mnt_want_write() call above.
434   */
435  void __mnt_drop_write(struct vfsmount *mnt)
436  {
437  	preempt_disable();
438  	mnt_dec_writers(real_mount(mnt));
439  	preempt_enable();
440  }
441  
442  /**
443   * mnt_drop_write - give up write access to a mount
444   * @mnt: the mount on which to give up write access
445   *
446   * Tells the low-level filesystem that we are done performing writes to it and
447   * also allows filesystem to be frozen again.  Must be matched with
448   * mnt_want_write() call above.
449   */
450  void mnt_drop_write(struct vfsmount *mnt)
451  {
452  	__mnt_drop_write(mnt);
453  	sb_end_write(mnt->mnt_sb);
454  }
455  EXPORT_SYMBOL_GPL(mnt_drop_write);
456  
457  void __mnt_drop_write_file(struct file *file)
458  {
459  	if (!(file->f_mode & FMODE_WRITER))
460  		__mnt_drop_write(file->f_path.mnt);
461  }
462  
463  void mnt_drop_write_file(struct file *file)
464  {
465  	__mnt_drop_write_file(file);
466  	sb_end_write(file_inode(file)->i_sb);
467  }
468  EXPORT_SYMBOL(mnt_drop_write_file);
469  
470  static inline int mnt_hold_writers(struct mount *mnt)
471  {
472  	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473  	/*
474  	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475  	 * should be visible before we do.
476  	 */
477  	smp_mb();
478  
479  	/*
480  	 * With writers on hold, if this value is zero, then there are
481  	 * definitely no active writers (although held writers may subsequently
482  	 * increment the count, they'll have to wait, and decrement it after
483  	 * seeing MNT_READONLY).
484  	 *
485  	 * It is OK to have counter incremented on one CPU and decremented on
486  	 * another: the sum will add up correctly. The danger would be when we
487  	 * sum up each counter, if we read a counter before it is incremented,
488  	 * but then read another CPU's count which it has been subsequently
489  	 * decremented from -- we would see more decrements than we should.
490  	 * MNT_WRITE_HOLD protects against this scenario, because
491  	 * mnt_want_write first increments count, then smp_mb, then spins on
492  	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493  	 * we're counting up here.
494  	 */
495  	if (mnt_get_writers(mnt) > 0)
496  		return -EBUSY;
497  
498  	return 0;
499  }
500  
501  static inline void mnt_unhold_writers(struct mount *mnt)
502  {
503  	/*
504  	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
505  	 * that become unheld will see MNT_READONLY.
506  	 */
507  	smp_wmb();
508  	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
509  }
510  
511  static int mnt_make_readonly(struct mount *mnt)
512  {
513  	int ret;
514  
515  	ret = mnt_hold_writers(mnt);
516  	if (!ret)
517  		mnt->mnt.mnt_flags |= MNT_READONLY;
518  	mnt_unhold_writers(mnt);
519  	return ret;
520  }
521  
522  int sb_prepare_remount_readonly(struct super_block *sb)
523  {
524  	struct mount *mnt;
525  	int err = 0;
526  
527  	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
528  	if (atomic_long_read(&sb->s_remove_count))
529  		return -EBUSY;
530  
531  	lock_mount_hash();
532  	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533  		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
534  			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
535  			smp_mb();
536  			if (mnt_get_writers(mnt) > 0) {
537  				err = -EBUSY;
538  				break;
539  			}
540  		}
541  	}
542  	if (!err && atomic_long_read(&sb->s_remove_count))
543  		err = -EBUSY;
544  
545  	if (!err) {
546  		sb->s_readonly_remount = 1;
547  		smp_wmb();
548  	}
549  	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
550  		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
551  			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
552  	}
553  	unlock_mount_hash();
554  
555  	return err;
556  }
557  
558  static void free_vfsmnt(struct mount *mnt)
559  {
560  	struct user_namespace *mnt_userns;
561  
562  	mnt_userns = mnt_user_ns(&mnt->mnt);
563  	if (mnt_userns != &init_user_ns)
564  		put_user_ns(mnt_userns);
565  	kfree_const(mnt->mnt_devname);
566  #ifdef CONFIG_SMP
567  	free_percpu(mnt->mnt_pcp);
568  #endif
569  	kmem_cache_free(mnt_cache, mnt);
570  }
571  
572  static void delayed_free_vfsmnt(struct rcu_head *head)
573  {
574  	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
575  }
576  
577  /* call under rcu_read_lock */
578  int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
579  {
580  	struct mount *mnt;
581  	if (read_seqretry(&mount_lock, seq))
582  		return 1;
583  	if (bastard == NULL)
584  		return 0;
585  	mnt = real_mount(bastard);
586  	mnt_add_count(mnt, 1);
587  	smp_mb();			// see mntput_no_expire()
588  	if (likely(!read_seqretry(&mount_lock, seq)))
589  		return 0;
590  	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
591  		mnt_add_count(mnt, -1);
592  		return 1;
593  	}
594  	lock_mount_hash();
595  	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
596  		mnt_add_count(mnt, -1);
597  		unlock_mount_hash();
598  		return 1;
599  	}
600  	unlock_mount_hash();
601  	/* caller will mntput() */
602  	return -1;
603  }
604  
605  /* call under rcu_read_lock */
606  bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
607  {
608  	int res = __legitimize_mnt(bastard, seq);
609  	if (likely(!res))
610  		return true;
611  	if (unlikely(res < 0)) {
612  		rcu_read_unlock();
613  		mntput(bastard);
614  		rcu_read_lock();
615  	}
616  	return false;
617  }
618  
619  /*
620   * find the first mount at @dentry on vfsmount @mnt.
621   * call under rcu_read_lock()
622   */
623  struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
624  {
625  	struct hlist_head *head = m_hash(mnt, dentry);
626  	struct mount *p;
627  
628  	hlist_for_each_entry_rcu(p, head, mnt_hash)
629  		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
630  			return p;
631  	return NULL;
632  }
633  
634  /*
635   * lookup_mnt - Return the first child mount mounted at path
636   *
637   * "First" means first mounted chronologically.  If you create the
638   * following mounts:
639   *
640   * mount /dev/sda1 /mnt
641   * mount /dev/sda2 /mnt
642   * mount /dev/sda3 /mnt
643   *
644   * Then lookup_mnt() on the base /mnt dentry in the root mount will
645   * return successively the root dentry and vfsmount of /dev/sda1, then
646   * /dev/sda2, then /dev/sda3, then NULL.
647   *
648   * lookup_mnt takes a reference to the found vfsmount.
649   */
650  struct vfsmount *lookup_mnt(const struct path *path)
651  {
652  	struct mount *child_mnt;
653  	struct vfsmount *m;
654  	unsigned seq;
655  
656  	rcu_read_lock();
657  	do {
658  		seq = read_seqbegin(&mount_lock);
659  		child_mnt = __lookup_mnt(path->mnt, path->dentry);
660  		m = child_mnt ? &child_mnt->mnt : NULL;
661  	} while (!legitimize_mnt(m, seq));
662  	rcu_read_unlock();
663  	return m;
664  }
665  
666  static inline void lock_ns_list(struct mnt_namespace *ns)
667  {
668  	spin_lock(&ns->ns_lock);
669  }
670  
671  static inline void unlock_ns_list(struct mnt_namespace *ns)
672  {
673  	spin_unlock(&ns->ns_lock);
674  }
675  
676  static inline bool mnt_is_cursor(struct mount *mnt)
677  {
678  	return mnt->mnt.mnt_flags & MNT_CURSOR;
679  }
680  
681  /*
682   * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
683   *                         current mount namespace.
684   *
685   * The common case is dentries are not mountpoints at all and that
686   * test is handled inline.  For the slow case when we are actually
687   * dealing with a mountpoint of some kind, walk through all of the
688   * mounts in the current mount namespace and test to see if the dentry
689   * is a mountpoint.
690   *
691   * The mount_hashtable is not usable in the context because we
692   * need to identify all mounts that may be in the current mount
693   * namespace not just a mount that happens to have some specified
694   * parent mount.
695   */
696  bool __is_local_mountpoint(struct dentry *dentry)
697  {
698  	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
699  	struct mount *mnt;
700  	bool is_covered = false;
701  
702  	down_read(&namespace_sem);
703  	lock_ns_list(ns);
704  	list_for_each_entry(mnt, &ns->list, mnt_list) {
705  		if (mnt_is_cursor(mnt))
706  			continue;
707  		is_covered = (mnt->mnt_mountpoint == dentry);
708  		if (is_covered)
709  			break;
710  	}
711  	unlock_ns_list(ns);
712  	up_read(&namespace_sem);
713  
714  	return is_covered;
715  }
716  
717  static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
718  {
719  	struct hlist_head *chain = mp_hash(dentry);
720  	struct mountpoint *mp;
721  
722  	hlist_for_each_entry(mp, chain, m_hash) {
723  		if (mp->m_dentry == dentry) {
724  			mp->m_count++;
725  			return mp;
726  		}
727  	}
728  	return NULL;
729  }
730  
731  static struct mountpoint *get_mountpoint(struct dentry *dentry)
732  {
733  	struct mountpoint *mp, *new = NULL;
734  	int ret;
735  
736  	if (d_mountpoint(dentry)) {
737  		/* might be worth a WARN_ON() */
738  		if (d_unlinked(dentry))
739  			return ERR_PTR(-ENOENT);
740  mountpoint:
741  		read_seqlock_excl(&mount_lock);
742  		mp = lookup_mountpoint(dentry);
743  		read_sequnlock_excl(&mount_lock);
744  		if (mp)
745  			goto done;
746  	}
747  
748  	if (!new)
749  		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
750  	if (!new)
751  		return ERR_PTR(-ENOMEM);
752  
753  
754  	/* Exactly one processes may set d_mounted */
755  	ret = d_set_mounted(dentry);
756  
757  	/* Someone else set d_mounted? */
758  	if (ret == -EBUSY)
759  		goto mountpoint;
760  
761  	/* The dentry is not available as a mountpoint? */
762  	mp = ERR_PTR(ret);
763  	if (ret)
764  		goto done;
765  
766  	/* Add the new mountpoint to the hash table */
767  	read_seqlock_excl(&mount_lock);
768  	new->m_dentry = dget(dentry);
769  	new->m_count = 1;
770  	hlist_add_head(&new->m_hash, mp_hash(dentry));
771  	INIT_HLIST_HEAD(&new->m_list);
772  	read_sequnlock_excl(&mount_lock);
773  
774  	mp = new;
775  	new = NULL;
776  done:
777  	kfree(new);
778  	return mp;
779  }
780  
781  /*
782   * vfsmount lock must be held.  Additionally, the caller is responsible
783   * for serializing calls for given disposal list.
784   */
785  static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
786  {
787  	if (!--mp->m_count) {
788  		struct dentry *dentry = mp->m_dentry;
789  		BUG_ON(!hlist_empty(&mp->m_list));
790  		spin_lock(&dentry->d_lock);
791  		dentry->d_flags &= ~DCACHE_MOUNTED;
792  		spin_unlock(&dentry->d_lock);
793  		dput_to_list(dentry, list);
794  		hlist_del(&mp->m_hash);
795  		kfree(mp);
796  	}
797  }
798  
799  /* called with namespace_lock and vfsmount lock */
800  static void put_mountpoint(struct mountpoint *mp)
801  {
802  	__put_mountpoint(mp, &ex_mountpoints);
803  }
804  
805  static inline int check_mnt(struct mount *mnt)
806  {
807  	return mnt->mnt_ns == current->nsproxy->mnt_ns;
808  }
809  
810  /*
811   * vfsmount lock must be held for write
812   */
813  static void touch_mnt_namespace(struct mnt_namespace *ns)
814  {
815  	if (ns) {
816  		ns->event = ++event;
817  		wake_up_interruptible(&ns->poll);
818  	}
819  }
820  
821  /*
822   * vfsmount lock must be held for write
823   */
824  static void __touch_mnt_namespace(struct mnt_namespace *ns)
825  {
826  	if (ns && ns->event != event) {
827  		ns->event = event;
828  		wake_up_interruptible(&ns->poll);
829  	}
830  }
831  
832  /*
833   * vfsmount lock must be held for write
834   */
835  static struct mountpoint *unhash_mnt(struct mount *mnt)
836  {
837  	struct mountpoint *mp;
838  	mnt->mnt_parent = mnt;
839  	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
840  	list_del_init(&mnt->mnt_child);
841  	hlist_del_init_rcu(&mnt->mnt_hash);
842  	hlist_del_init(&mnt->mnt_mp_list);
843  	mp = mnt->mnt_mp;
844  	mnt->mnt_mp = NULL;
845  	return mp;
846  }
847  
848  /*
849   * vfsmount lock must be held for write
850   */
851  static void umount_mnt(struct mount *mnt)
852  {
853  	put_mountpoint(unhash_mnt(mnt));
854  }
855  
856  /*
857   * vfsmount lock must be held for write
858   */
859  void mnt_set_mountpoint(struct mount *mnt,
860  			struct mountpoint *mp,
861  			struct mount *child_mnt)
862  {
863  	mp->m_count++;
864  	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
865  	child_mnt->mnt_mountpoint = mp->m_dentry;
866  	child_mnt->mnt_parent = mnt;
867  	child_mnt->mnt_mp = mp;
868  	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
869  }
870  
871  static void __attach_mnt(struct mount *mnt, struct mount *parent)
872  {
873  	hlist_add_head_rcu(&mnt->mnt_hash,
874  			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
875  	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
876  }
877  
878  /*
879   * vfsmount lock must be held for write
880   */
881  static void attach_mnt(struct mount *mnt,
882  			struct mount *parent,
883  			struct mountpoint *mp)
884  {
885  	mnt_set_mountpoint(parent, mp, mnt);
886  	__attach_mnt(mnt, parent);
887  }
888  
889  void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
890  {
891  	struct mountpoint *old_mp = mnt->mnt_mp;
892  	struct mount *old_parent = mnt->mnt_parent;
893  
894  	list_del_init(&mnt->mnt_child);
895  	hlist_del_init(&mnt->mnt_mp_list);
896  	hlist_del_init_rcu(&mnt->mnt_hash);
897  
898  	attach_mnt(mnt, parent, mp);
899  
900  	put_mountpoint(old_mp);
901  	mnt_add_count(old_parent, -1);
902  }
903  
904  /*
905   * vfsmount lock must be held for write
906   */
907  static void commit_tree(struct mount *mnt)
908  {
909  	struct mount *parent = mnt->mnt_parent;
910  	struct mount *m;
911  	LIST_HEAD(head);
912  	struct mnt_namespace *n = parent->mnt_ns;
913  
914  	BUG_ON(parent == mnt);
915  
916  	list_add_tail(&head, &mnt->mnt_list);
917  	list_for_each_entry(m, &head, mnt_list)
918  		m->mnt_ns = n;
919  
920  	list_splice(&head, n->list.prev);
921  
922  	n->mounts += n->pending_mounts;
923  	n->pending_mounts = 0;
924  
925  	__attach_mnt(mnt, parent);
926  	touch_mnt_namespace(n);
927  }
928  
929  static struct mount *next_mnt(struct mount *p, struct mount *root)
930  {
931  	struct list_head *next = p->mnt_mounts.next;
932  	if (next == &p->mnt_mounts) {
933  		while (1) {
934  			if (p == root)
935  				return NULL;
936  			next = p->mnt_child.next;
937  			if (next != &p->mnt_parent->mnt_mounts)
938  				break;
939  			p = p->mnt_parent;
940  		}
941  	}
942  	return list_entry(next, struct mount, mnt_child);
943  }
944  
945  static struct mount *skip_mnt_tree(struct mount *p)
946  {
947  	struct list_head *prev = p->mnt_mounts.prev;
948  	while (prev != &p->mnt_mounts) {
949  		p = list_entry(prev, struct mount, mnt_child);
950  		prev = p->mnt_mounts.prev;
951  	}
952  	return p;
953  }
954  
955  /**
956   * vfs_create_mount - Create a mount for a configured superblock
957   * @fc: The configuration context with the superblock attached
958   *
959   * Create a mount to an already configured superblock.  If necessary, the
960   * caller should invoke vfs_get_tree() before calling this.
961   *
962   * Note that this does not attach the mount to anything.
963   */
964  struct vfsmount *vfs_create_mount(struct fs_context *fc)
965  {
966  	struct mount *mnt;
967  
968  	if (!fc->root)
969  		return ERR_PTR(-EINVAL);
970  
971  	mnt = alloc_vfsmnt(fc->source ?: "none");
972  	if (!mnt)
973  		return ERR_PTR(-ENOMEM);
974  
975  	if (fc->sb_flags & SB_KERNMOUNT)
976  		mnt->mnt.mnt_flags = MNT_INTERNAL;
977  
978  	atomic_inc(&fc->root->d_sb->s_active);
979  	mnt->mnt.mnt_sb		= fc->root->d_sb;
980  	mnt->mnt.mnt_root	= dget(fc->root);
981  	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
982  	mnt->mnt_parent		= mnt;
983  
984  	lock_mount_hash();
985  	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
986  	unlock_mount_hash();
987  	return &mnt->mnt;
988  }
989  EXPORT_SYMBOL(vfs_create_mount);
990  
991  struct vfsmount *fc_mount(struct fs_context *fc)
992  {
993  	int err = vfs_get_tree(fc);
994  	if (!err) {
995  		up_write(&fc->root->d_sb->s_umount);
996  		return vfs_create_mount(fc);
997  	}
998  	return ERR_PTR(err);
999  }
1000  EXPORT_SYMBOL(fc_mount);
1001  
1002  struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1003  				int flags, const char *name,
1004  				void *data)
1005  {
1006  	struct fs_context *fc;
1007  	struct vfsmount *mnt;
1008  	int ret = 0;
1009  
1010  	if (!type)
1011  		return ERR_PTR(-EINVAL);
1012  
1013  	fc = fs_context_for_mount(type, flags);
1014  	if (IS_ERR(fc))
1015  		return ERR_CAST(fc);
1016  
1017  	if (name)
1018  		ret = vfs_parse_fs_string(fc, "source",
1019  					  name, strlen(name));
1020  	if (!ret)
1021  		ret = parse_monolithic_mount_data(fc, data);
1022  	if (!ret)
1023  		mnt = fc_mount(fc);
1024  	else
1025  		mnt = ERR_PTR(ret);
1026  
1027  	put_fs_context(fc);
1028  	return mnt;
1029  }
1030  EXPORT_SYMBOL_GPL(vfs_kern_mount);
1031  
1032  struct vfsmount *
1033  vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1034  	     const char *name, void *data)
1035  {
1036  	/* Until it is worked out how to pass the user namespace
1037  	 * through from the parent mount to the submount don't support
1038  	 * unprivileged mounts with submounts.
1039  	 */
1040  	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1041  		return ERR_PTR(-EPERM);
1042  
1043  	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1044  }
1045  EXPORT_SYMBOL_GPL(vfs_submount);
1046  
1047  static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1048  					int flag)
1049  {
1050  	struct super_block *sb = old->mnt.mnt_sb;
1051  	struct mount *mnt;
1052  	int err;
1053  
1054  	mnt = alloc_vfsmnt(old->mnt_devname);
1055  	if (!mnt)
1056  		return ERR_PTR(-ENOMEM);
1057  
1058  	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1059  		mnt->mnt_group_id = 0; /* not a peer of original */
1060  	else
1061  		mnt->mnt_group_id = old->mnt_group_id;
1062  
1063  	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1064  		err = mnt_alloc_group_id(mnt);
1065  		if (err)
1066  			goto out_free;
1067  	}
1068  
1069  	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1070  	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1071  
1072  	atomic_inc(&sb->s_active);
1073  	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1074  	if (mnt->mnt.mnt_userns != &init_user_ns)
1075  		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1076  	mnt->mnt.mnt_sb = sb;
1077  	mnt->mnt.mnt_root = dget(root);
1078  	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1079  	mnt->mnt_parent = mnt;
1080  	lock_mount_hash();
1081  	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1082  	unlock_mount_hash();
1083  
1084  	if ((flag & CL_SLAVE) ||
1085  	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1086  		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1087  		mnt->mnt_master = old;
1088  		CLEAR_MNT_SHARED(mnt);
1089  	} else if (!(flag & CL_PRIVATE)) {
1090  		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1091  			list_add(&mnt->mnt_share, &old->mnt_share);
1092  		if (IS_MNT_SLAVE(old))
1093  			list_add(&mnt->mnt_slave, &old->mnt_slave);
1094  		mnt->mnt_master = old->mnt_master;
1095  	} else {
1096  		CLEAR_MNT_SHARED(mnt);
1097  	}
1098  	if (flag & CL_MAKE_SHARED)
1099  		set_mnt_shared(mnt);
1100  
1101  	/* stick the duplicate mount on the same expiry list
1102  	 * as the original if that was on one */
1103  	if (flag & CL_EXPIRE) {
1104  		if (!list_empty(&old->mnt_expire))
1105  			list_add(&mnt->mnt_expire, &old->mnt_expire);
1106  	}
1107  
1108  	return mnt;
1109  
1110   out_free:
1111  	mnt_free_id(mnt);
1112  	free_vfsmnt(mnt);
1113  	return ERR_PTR(err);
1114  }
1115  
1116  static void cleanup_mnt(struct mount *mnt)
1117  {
1118  	struct hlist_node *p;
1119  	struct mount *m;
1120  	/*
1121  	 * The warning here probably indicates that somebody messed
1122  	 * up a mnt_want/drop_write() pair.  If this happens, the
1123  	 * filesystem was probably unable to make r/w->r/o transitions.
1124  	 * The locking used to deal with mnt_count decrement provides barriers,
1125  	 * so mnt_get_writers() below is safe.
1126  	 */
1127  	WARN_ON(mnt_get_writers(mnt));
1128  	if (unlikely(mnt->mnt_pins.first))
1129  		mnt_pin_kill(mnt);
1130  	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1131  		hlist_del(&m->mnt_umount);
1132  		mntput(&m->mnt);
1133  	}
1134  	fsnotify_vfsmount_delete(&mnt->mnt);
1135  	dput(mnt->mnt.mnt_root);
1136  	deactivate_super(mnt->mnt.mnt_sb);
1137  	mnt_free_id(mnt);
1138  	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1139  }
1140  
1141  static void __cleanup_mnt(struct rcu_head *head)
1142  {
1143  	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1144  }
1145  
1146  static LLIST_HEAD(delayed_mntput_list);
1147  static void delayed_mntput(struct work_struct *unused)
1148  {
1149  	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1150  	struct mount *m, *t;
1151  
1152  	llist_for_each_entry_safe(m, t, node, mnt_llist)
1153  		cleanup_mnt(m);
1154  }
1155  static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156  
1157  static void mntput_no_expire(struct mount *mnt)
1158  {
1159  	LIST_HEAD(list);
1160  	int count;
1161  
1162  	rcu_read_lock();
1163  	if (likely(READ_ONCE(mnt->mnt_ns))) {
1164  		/*
1165  		 * Since we don't do lock_mount_hash() here,
1166  		 * ->mnt_ns can change under us.  However, if it's
1167  		 * non-NULL, then there's a reference that won't
1168  		 * be dropped until after an RCU delay done after
1169  		 * turning ->mnt_ns NULL.  So if we observe it
1170  		 * non-NULL under rcu_read_lock(), the reference
1171  		 * we are dropping is not the final one.
1172  		 */
1173  		mnt_add_count(mnt, -1);
1174  		rcu_read_unlock();
1175  		return;
1176  	}
1177  	lock_mount_hash();
1178  	/*
1179  	 * make sure that if __legitimize_mnt() has not seen us grab
1180  	 * mount_lock, we'll see their refcount increment here.
1181  	 */
1182  	smp_mb();
1183  	mnt_add_count(mnt, -1);
1184  	count = mnt_get_count(mnt);
1185  	if (count != 0) {
1186  		WARN_ON(count < 0);
1187  		rcu_read_unlock();
1188  		unlock_mount_hash();
1189  		return;
1190  	}
1191  	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1192  		rcu_read_unlock();
1193  		unlock_mount_hash();
1194  		return;
1195  	}
1196  	mnt->mnt.mnt_flags |= MNT_DOOMED;
1197  	rcu_read_unlock();
1198  
1199  	list_del(&mnt->mnt_instance);
1200  
1201  	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1202  		struct mount *p, *tmp;
1203  		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1204  			__put_mountpoint(unhash_mnt(p), &list);
1205  			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1206  		}
1207  	}
1208  	unlock_mount_hash();
1209  	shrink_dentry_list(&list);
1210  
1211  	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1212  		struct task_struct *task = current;
1213  		if (likely(!(task->flags & PF_KTHREAD))) {
1214  			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1215  			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1216  				return;
1217  		}
1218  		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1219  			schedule_delayed_work(&delayed_mntput_work, 1);
1220  		return;
1221  	}
1222  	cleanup_mnt(mnt);
1223  }
1224  
1225  void mntput(struct vfsmount *mnt)
1226  {
1227  	if (mnt) {
1228  		struct mount *m = real_mount(mnt);
1229  		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1230  		if (unlikely(m->mnt_expiry_mark))
1231  			m->mnt_expiry_mark = 0;
1232  		mntput_no_expire(m);
1233  	}
1234  }
1235  EXPORT_SYMBOL(mntput);
1236  
1237  struct vfsmount *mntget(struct vfsmount *mnt)
1238  {
1239  	if (mnt)
1240  		mnt_add_count(real_mount(mnt), 1);
1241  	return mnt;
1242  }
1243  EXPORT_SYMBOL(mntget);
1244  
1245  /**
1246   * path_is_mountpoint() - Check if path is a mount in the current namespace.
1247   * @path: path to check
1248   *
1249   *  d_mountpoint() can only be used reliably to establish if a dentry is
1250   *  not mounted in any namespace and that common case is handled inline.
1251   *  d_mountpoint() isn't aware of the possibility there may be multiple
1252   *  mounts using a given dentry in a different namespace. This function
1253   *  checks if the passed in path is a mountpoint rather than the dentry
1254   *  alone.
1255   */
1256  bool path_is_mountpoint(const struct path *path)
1257  {
1258  	unsigned seq;
1259  	bool res;
1260  
1261  	if (!d_mountpoint(path->dentry))
1262  		return false;
1263  
1264  	rcu_read_lock();
1265  	do {
1266  		seq = read_seqbegin(&mount_lock);
1267  		res = __path_is_mountpoint(path);
1268  	} while (read_seqretry(&mount_lock, seq));
1269  	rcu_read_unlock();
1270  
1271  	return res;
1272  }
1273  EXPORT_SYMBOL(path_is_mountpoint);
1274  
1275  struct vfsmount *mnt_clone_internal(const struct path *path)
1276  {
1277  	struct mount *p;
1278  	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1279  	if (IS_ERR(p))
1280  		return ERR_CAST(p);
1281  	p->mnt.mnt_flags |= MNT_INTERNAL;
1282  	return &p->mnt;
1283  }
1284  
1285  #ifdef CONFIG_PROC_FS
1286  static struct mount *mnt_list_next(struct mnt_namespace *ns,
1287  				   struct list_head *p)
1288  {
1289  	struct mount *mnt, *ret = NULL;
1290  
1291  	lock_ns_list(ns);
1292  	list_for_each_continue(p, &ns->list) {
1293  		mnt = list_entry(p, typeof(*mnt), mnt_list);
1294  		if (!mnt_is_cursor(mnt)) {
1295  			ret = mnt;
1296  			break;
1297  		}
1298  	}
1299  	unlock_ns_list(ns);
1300  
1301  	return ret;
1302  }
1303  
1304  /* iterator; we want it to have access to namespace_sem, thus here... */
1305  static void *m_start(struct seq_file *m, loff_t *pos)
1306  {
1307  	struct proc_mounts *p = m->private;
1308  	struct list_head *prev;
1309  
1310  	down_read(&namespace_sem);
1311  	if (!*pos) {
1312  		prev = &p->ns->list;
1313  	} else {
1314  		prev = &p->cursor.mnt_list;
1315  
1316  		/* Read after we'd reached the end? */
1317  		if (list_empty(prev))
1318  			return NULL;
1319  	}
1320  
1321  	return mnt_list_next(p->ns, prev);
1322  }
1323  
1324  static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1325  {
1326  	struct proc_mounts *p = m->private;
1327  	struct mount *mnt = v;
1328  
1329  	++*pos;
1330  	return mnt_list_next(p->ns, &mnt->mnt_list);
1331  }
1332  
1333  static void m_stop(struct seq_file *m, void *v)
1334  {
1335  	struct proc_mounts *p = m->private;
1336  	struct mount *mnt = v;
1337  
1338  	lock_ns_list(p->ns);
1339  	if (mnt)
1340  		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1341  	else
1342  		list_del_init(&p->cursor.mnt_list);
1343  	unlock_ns_list(p->ns);
1344  	up_read(&namespace_sem);
1345  }
1346  
1347  static int m_show(struct seq_file *m, void *v)
1348  {
1349  	struct proc_mounts *p = m->private;
1350  	struct mount *r = v;
1351  	return p->show(m, &r->mnt);
1352  }
1353  
1354  const struct seq_operations mounts_op = {
1355  	.start	= m_start,
1356  	.next	= m_next,
1357  	.stop	= m_stop,
1358  	.show	= m_show,
1359  };
1360  
1361  void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1362  {
1363  	down_read(&namespace_sem);
1364  	lock_ns_list(ns);
1365  	list_del(&cursor->mnt_list);
1366  	unlock_ns_list(ns);
1367  	up_read(&namespace_sem);
1368  }
1369  #endif  /* CONFIG_PROC_FS */
1370  
1371  /**
1372   * may_umount_tree - check if a mount tree is busy
1373   * @m: root of mount tree
1374   *
1375   * This is called to check if a tree of mounts has any
1376   * open files, pwds, chroots or sub mounts that are
1377   * busy.
1378   */
1379  int may_umount_tree(struct vfsmount *m)
1380  {
1381  	struct mount *mnt = real_mount(m);
1382  	int actual_refs = 0;
1383  	int minimum_refs = 0;
1384  	struct mount *p;
1385  	BUG_ON(!m);
1386  
1387  	/* write lock needed for mnt_get_count */
1388  	lock_mount_hash();
1389  	for (p = mnt; p; p = next_mnt(p, mnt)) {
1390  		actual_refs += mnt_get_count(p);
1391  		minimum_refs += 2;
1392  	}
1393  	unlock_mount_hash();
1394  
1395  	if (actual_refs > minimum_refs)
1396  		return 0;
1397  
1398  	return 1;
1399  }
1400  
1401  EXPORT_SYMBOL(may_umount_tree);
1402  
1403  /**
1404   * may_umount - check if a mount point is busy
1405   * @mnt: root of mount
1406   *
1407   * This is called to check if a mount point has any
1408   * open files, pwds, chroots or sub mounts. If the
1409   * mount has sub mounts this will return busy
1410   * regardless of whether the sub mounts are busy.
1411   *
1412   * Doesn't take quota and stuff into account. IOW, in some cases it will
1413   * give false negatives. The main reason why it's here is that we need
1414   * a non-destructive way to look for easily umountable filesystems.
1415   */
1416  int may_umount(struct vfsmount *mnt)
1417  {
1418  	int ret = 1;
1419  	down_read(&namespace_sem);
1420  	lock_mount_hash();
1421  	if (propagate_mount_busy(real_mount(mnt), 2))
1422  		ret = 0;
1423  	unlock_mount_hash();
1424  	up_read(&namespace_sem);
1425  	return ret;
1426  }
1427  
1428  EXPORT_SYMBOL(may_umount);
1429  
1430  static void namespace_unlock(void)
1431  {
1432  	struct hlist_head head;
1433  	struct hlist_node *p;
1434  	struct mount *m;
1435  	LIST_HEAD(list);
1436  
1437  	hlist_move_list(&unmounted, &head);
1438  	list_splice_init(&ex_mountpoints, &list);
1439  
1440  	up_write(&namespace_sem);
1441  
1442  	shrink_dentry_list(&list);
1443  
1444  	if (likely(hlist_empty(&head)))
1445  		return;
1446  
1447  	synchronize_rcu_expedited();
1448  
1449  	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1450  		hlist_del(&m->mnt_umount);
1451  		mntput(&m->mnt);
1452  	}
1453  }
1454  
1455  static inline void namespace_lock(void)
1456  {
1457  	down_write(&namespace_sem);
1458  }
1459  
1460  enum umount_tree_flags {
1461  	UMOUNT_SYNC = 1,
1462  	UMOUNT_PROPAGATE = 2,
1463  	UMOUNT_CONNECTED = 4,
1464  };
1465  
1466  static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1467  {
1468  	/* Leaving mounts connected is only valid for lazy umounts */
1469  	if (how & UMOUNT_SYNC)
1470  		return true;
1471  
1472  	/* A mount without a parent has nothing to be connected to */
1473  	if (!mnt_has_parent(mnt))
1474  		return true;
1475  
1476  	/* Because the reference counting rules change when mounts are
1477  	 * unmounted and connected, umounted mounts may not be
1478  	 * connected to mounted mounts.
1479  	 */
1480  	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1481  		return true;
1482  
1483  	/* Has it been requested that the mount remain connected? */
1484  	if (how & UMOUNT_CONNECTED)
1485  		return false;
1486  
1487  	/* Is the mount locked such that it needs to remain connected? */
1488  	if (IS_MNT_LOCKED(mnt))
1489  		return false;
1490  
1491  	/* By default disconnect the mount */
1492  	return true;
1493  }
1494  
1495  /*
1496   * mount_lock must be held
1497   * namespace_sem must be held for write
1498   */
1499  static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1500  {
1501  	LIST_HEAD(tmp_list);
1502  	struct mount *p;
1503  
1504  	if (how & UMOUNT_PROPAGATE)
1505  		propagate_mount_unlock(mnt);
1506  
1507  	/* Gather the mounts to umount */
1508  	for (p = mnt; p; p = next_mnt(p, mnt)) {
1509  		p->mnt.mnt_flags |= MNT_UMOUNT;
1510  		list_move(&p->mnt_list, &tmp_list);
1511  	}
1512  
1513  	/* Hide the mounts from mnt_mounts */
1514  	list_for_each_entry(p, &tmp_list, mnt_list) {
1515  		list_del_init(&p->mnt_child);
1516  	}
1517  
1518  	/* Add propogated mounts to the tmp_list */
1519  	if (how & UMOUNT_PROPAGATE)
1520  		propagate_umount(&tmp_list);
1521  
1522  	while (!list_empty(&tmp_list)) {
1523  		struct mnt_namespace *ns;
1524  		bool disconnect;
1525  		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1526  		list_del_init(&p->mnt_expire);
1527  		list_del_init(&p->mnt_list);
1528  		ns = p->mnt_ns;
1529  		if (ns) {
1530  			ns->mounts--;
1531  			__touch_mnt_namespace(ns);
1532  		}
1533  		p->mnt_ns = NULL;
1534  		if (how & UMOUNT_SYNC)
1535  			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1536  
1537  		disconnect = disconnect_mount(p, how);
1538  		if (mnt_has_parent(p)) {
1539  			mnt_add_count(p->mnt_parent, -1);
1540  			if (!disconnect) {
1541  				/* Don't forget about p */
1542  				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1543  			} else {
1544  				umount_mnt(p);
1545  			}
1546  		}
1547  		change_mnt_propagation(p, MS_PRIVATE);
1548  		if (disconnect)
1549  			hlist_add_head(&p->mnt_umount, &unmounted);
1550  	}
1551  }
1552  
1553  static void shrink_submounts(struct mount *mnt);
1554  
1555  static int do_umount_root(struct super_block *sb)
1556  {
1557  	int ret = 0;
1558  
1559  	down_write(&sb->s_umount);
1560  	if (!sb_rdonly(sb)) {
1561  		struct fs_context *fc;
1562  
1563  		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1564  						SB_RDONLY);
1565  		if (IS_ERR(fc)) {
1566  			ret = PTR_ERR(fc);
1567  		} else {
1568  			ret = parse_monolithic_mount_data(fc, NULL);
1569  			if (!ret)
1570  				ret = reconfigure_super(fc);
1571  			put_fs_context(fc);
1572  		}
1573  	}
1574  	up_write(&sb->s_umount);
1575  	return ret;
1576  }
1577  
1578  static int do_umount(struct mount *mnt, int flags)
1579  {
1580  	struct super_block *sb = mnt->mnt.mnt_sb;
1581  	int retval;
1582  
1583  	retval = security_sb_umount(&mnt->mnt, flags);
1584  	if (retval)
1585  		return retval;
1586  
1587  	/*
1588  	 * Allow userspace to request a mountpoint be expired rather than
1589  	 * unmounting unconditionally. Unmount only happens if:
1590  	 *  (1) the mark is already set (the mark is cleared by mntput())
1591  	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1592  	 */
1593  	if (flags & MNT_EXPIRE) {
1594  		if (&mnt->mnt == current->fs->root.mnt ||
1595  		    flags & (MNT_FORCE | MNT_DETACH))
1596  			return -EINVAL;
1597  
1598  		/*
1599  		 * probably don't strictly need the lock here if we examined
1600  		 * all race cases, but it's a slowpath.
1601  		 */
1602  		lock_mount_hash();
1603  		if (mnt_get_count(mnt) != 2) {
1604  			unlock_mount_hash();
1605  			return -EBUSY;
1606  		}
1607  		unlock_mount_hash();
1608  
1609  		if (!xchg(&mnt->mnt_expiry_mark, 1))
1610  			return -EAGAIN;
1611  	}
1612  
1613  	/*
1614  	 * If we may have to abort operations to get out of this
1615  	 * mount, and they will themselves hold resources we must
1616  	 * allow the fs to do things. In the Unix tradition of
1617  	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1618  	 * might fail to complete on the first run through as other tasks
1619  	 * must return, and the like. Thats for the mount program to worry
1620  	 * about for the moment.
1621  	 */
1622  
1623  	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1624  		sb->s_op->umount_begin(sb);
1625  	}
1626  
1627  	/*
1628  	 * No sense to grab the lock for this test, but test itself looks
1629  	 * somewhat bogus. Suggestions for better replacement?
1630  	 * Ho-hum... In principle, we might treat that as umount + switch
1631  	 * to rootfs. GC would eventually take care of the old vfsmount.
1632  	 * Actually it makes sense, especially if rootfs would contain a
1633  	 * /reboot - static binary that would close all descriptors and
1634  	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1635  	 */
1636  	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1637  		/*
1638  		 * Special case for "unmounting" root ...
1639  		 * we just try to remount it readonly.
1640  		 */
1641  		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1642  			return -EPERM;
1643  		return do_umount_root(sb);
1644  	}
1645  
1646  	namespace_lock();
1647  	lock_mount_hash();
1648  
1649  	/* Recheck MNT_LOCKED with the locks held */
1650  	retval = -EINVAL;
1651  	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1652  		goto out;
1653  
1654  	event++;
1655  	if (flags & MNT_DETACH) {
1656  		if (!list_empty(&mnt->mnt_list))
1657  			umount_tree(mnt, UMOUNT_PROPAGATE);
1658  		retval = 0;
1659  	} else {
1660  		shrink_submounts(mnt);
1661  		retval = -EBUSY;
1662  		if (!propagate_mount_busy(mnt, 2)) {
1663  			if (!list_empty(&mnt->mnt_list))
1664  				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1665  			retval = 0;
1666  		}
1667  	}
1668  out:
1669  	unlock_mount_hash();
1670  	namespace_unlock();
1671  	return retval;
1672  }
1673  
1674  /*
1675   * __detach_mounts - lazily unmount all mounts on the specified dentry
1676   *
1677   * During unlink, rmdir, and d_drop it is possible to loose the path
1678   * to an existing mountpoint, and wind up leaking the mount.
1679   * detach_mounts allows lazily unmounting those mounts instead of
1680   * leaking them.
1681   *
1682   * The caller may hold dentry->d_inode->i_mutex.
1683   */
1684  void __detach_mounts(struct dentry *dentry)
1685  {
1686  	struct mountpoint *mp;
1687  	struct mount *mnt;
1688  
1689  	namespace_lock();
1690  	lock_mount_hash();
1691  	mp = lookup_mountpoint(dentry);
1692  	if (!mp)
1693  		goto out_unlock;
1694  
1695  	event++;
1696  	while (!hlist_empty(&mp->m_list)) {
1697  		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1698  		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1699  			umount_mnt(mnt);
1700  			hlist_add_head(&mnt->mnt_umount, &unmounted);
1701  		}
1702  		else umount_tree(mnt, UMOUNT_CONNECTED);
1703  	}
1704  	put_mountpoint(mp);
1705  out_unlock:
1706  	unlock_mount_hash();
1707  	namespace_unlock();
1708  }
1709  
1710  /*
1711   * Is the caller allowed to modify his namespace?
1712   */
1713  static inline bool may_mount(void)
1714  {
1715  	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1716  }
1717  
1718  #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1719  static bool may_mandlock(void)
1720  {
1721  	pr_warn_once("======================================================\n"
1722  		     "WARNING: the mand mount option is being deprecated and\n"
1723  		     "         will be removed in v5.15!\n"
1724  		     "======================================================\n");
1725  	return capable(CAP_SYS_ADMIN);
1726  }
1727  #else
1728  static inline bool may_mandlock(void)
1729  {
1730  	pr_warn("VFS: \"mand\" mount option not supported");
1731  	return false;
1732  }
1733  #endif
1734  
1735  static int can_umount(const struct path *path, int flags)
1736  {
1737  	struct mount *mnt = real_mount(path->mnt);
1738  
1739  	if (!may_mount())
1740  		return -EPERM;
1741  	if (path->dentry != path->mnt->mnt_root)
1742  		return -EINVAL;
1743  	if (!check_mnt(mnt))
1744  		return -EINVAL;
1745  	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1746  		return -EINVAL;
1747  	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1748  		return -EPERM;
1749  	return 0;
1750  }
1751  
1752  // caller is responsible for flags being sane
1753  int path_umount(struct path *path, int flags)
1754  {
1755  	struct mount *mnt = real_mount(path->mnt);
1756  	int ret;
1757  
1758  	ret = can_umount(path, flags);
1759  	if (!ret)
1760  		ret = do_umount(mnt, flags);
1761  
1762  	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1763  	dput(path->dentry);
1764  	mntput_no_expire(mnt);
1765  	return ret;
1766  }
1767  
1768  static int ksys_umount(char __user *name, int flags)
1769  {
1770  	int lookup_flags = LOOKUP_MOUNTPOINT;
1771  	struct path path;
1772  	int ret;
1773  
1774  	// basic validity checks done first
1775  	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1776  		return -EINVAL;
1777  
1778  	if (!(flags & UMOUNT_NOFOLLOW))
1779  		lookup_flags |= LOOKUP_FOLLOW;
1780  	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1781  	if (ret)
1782  		return ret;
1783  	return path_umount(&path, flags);
1784  }
1785  
1786  SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1787  {
1788  	return ksys_umount(name, flags);
1789  }
1790  
1791  #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1792  
1793  /*
1794   *	The 2.0 compatible umount. No flags.
1795   */
1796  SYSCALL_DEFINE1(oldumount, char __user *, name)
1797  {
1798  	return ksys_umount(name, 0);
1799  }
1800  
1801  #endif
1802  
1803  static bool is_mnt_ns_file(struct dentry *dentry)
1804  {
1805  	/* Is this a proxy for a mount namespace? */
1806  	return dentry->d_op == &ns_dentry_operations &&
1807  	       dentry->d_fsdata == &mntns_operations;
1808  }
1809  
1810  static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1811  {
1812  	return container_of(ns, struct mnt_namespace, ns);
1813  }
1814  
1815  struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1816  {
1817  	return &mnt->ns;
1818  }
1819  
1820  static bool mnt_ns_loop(struct dentry *dentry)
1821  {
1822  	/* Could bind mounting the mount namespace inode cause a
1823  	 * mount namespace loop?
1824  	 */
1825  	struct mnt_namespace *mnt_ns;
1826  	if (!is_mnt_ns_file(dentry))
1827  		return false;
1828  
1829  	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1830  	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1831  }
1832  
1833  struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1834  					int flag)
1835  {
1836  	struct mount *res, *p, *q, *r, *parent;
1837  
1838  	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1839  		return ERR_PTR(-EINVAL);
1840  
1841  	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1842  		return ERR_PTR(-EINVAL);
1843  
1844  	res = q = clone_mnt(mnt, dentry, flag);
1845  	if (IS_ERR(q))
1846  		return q;
1847  
1848  	q->mnt_mountpoint = mnt->mnt_mountpoint;
1849  
1850  	p = mnt;
1851  	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1852  		struct mount *s;
1853  		if (!is_subdir(r->mnt_mountpoint, dentry))
1854  			continue;
1855  
1856  		for (s = r; s; s = next_mnt(s, r)) {
1857  			if (!(flag & CL_COPY_UNBINDABLE) &&
1858  			    IS_MNT_UNBINDABLE(s)) {
1859  				if (s->mnt.mnt_flags & MNT_LOCKED) {
1860  					/* Both unbindable and locked. */
1861  					q = ERR_PTR(-EPERM);
1862  					goto out;
1863  				} else {
1864  					s = skip_mnt_tree(s);
1865  					continue;
1866  				}
1867  			}
1868  			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1869  			    is_mnt_ns_file(s->mnt.mnt_root)) {
1870  				s = skip_mnt_tree(s);
1871  				continue;
1872  			}
1873  			while (p != s->mnt_parent) {
1874  				p = p->mnt_parent;
1875  				q = q->mnt_parent;
1876  			}
1877  			p = s;
1878  			parent = q;
1879  			q = clone_mnt(p, p->mnt.mnt_root, flag);
1880  			if (IS_ERR(q))
1881  				goto out;
1882  			lock_mount_hash();
1883  			list_add_tail(&q->mnt_list, &res->mnt_list);
1884  			attach_mnt(q, parent, p->mnt_mp);
1885  			unlock_mount_hash();
1886  		}
1887  	}
1888  	return res;
1889  out:
1890  	if (res) {
1891  		lock_mount_hash();
1892  		umount_tree(res, UMOUNT_SYNC);
1893  		unlock_mount_hash();
1894  	}
1895  	return q;
1896  }
1897  
1898  /* Caller should check returned pointer for errors */
1899  
1900  struct vfsmount *collect_mounts(const struct path *path)
1901  {
1902  	struct mount *tree;
1903  	namespace_lock();
1904  	if (!check_mnt(real_mount(path->mnt)))
1905  		tree = ERR_PTR(-EINVAL);
1906  	else
1907  		tree = copy_tree(real_mount(path->mnt), path->dentry,
1908  				 CL_COPY_ALL | CL_PRIVATE);
1909  	namespace_unlock();
1910  	if (IS_ERR(tree))
1911  		return ERR_CAST(tree);
1912  	return &tree->mnt;
1913  }
1914  
1915  static void free_mnt_ns(struct mnt_namespace *);
1916  static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1917  
1918  void dissolve_on_fput(struct vfsmount *mnt)
1919  {
1920  	struct mnt_namespace *ns;
1921  	namespace_lock();
1922  	lock_mount_hash();
1923  	ns = real_mount(mnt)->mnt_ns;
1924  	if (ns) {
1925  		if (is_anon_ns(ns))
1926  			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1927  		else
1928  			ns = NULL;
1929  	}
1930  	unlock_mount_hash();
1931  	namespace_unlock();
1932  	if (ns)
1933  		free_mnt_ns(ns);
1934  }
1935  
1936  void drop_collected_mounts(struct vfsmount *mnt)
1937  {
1938  	namespace_lock();
1939  	lock_mount_hash();
1940  	umount_tree(real_mount(mnt), 0);
1941  	unlock_mount_hash();
1942  	namespace_unlock();
1943  }
1944  
1945  static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1946  {
1947  	struct mount *child;
1948  
1949  	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1950  		if (!is_subdir(child->mnt_mountpoint, dentry))
1951  			continue;
1952  
1953  		if (child->mnt.mnt_flags & MNT_LOCKED)
1954  			return true;
1955  	}
1956  	return false;
1957  }
1958  
1959  /**
1960   * clone_private_mount - create a private clone of a path
1961   * @path: path to clone
1962   *
1963   * This creates a new vfsmount, which will be the clone of @path.  The new mount
1964   * will not be attached anywhere in the namespace and will be private (i.e.
1965   * changes to the originating mount won't be propagated into this).
1966   *
1967   * Release with mntput().
1968   */
1969  struct vfsmount *clone_private_mount(const struct path *path)
1970  {
1971  	struct mount *old_mnt = real_mount(path->mnt);
1972  	struct mount *new_mnt;
1973  
1974  	down_read(&namespace_sem);
1975  	if (IS_MNT_UNBINDABLE(old_mnt))
1976  		goto invalid;
1977  
1978  	if (!check_mnt(old_mnt))
1979  		goto invalid;
1980  
1981  	if (has_locked_children(old_mnt, path->dentry))
1982  		goto invalid;
1983  
1984  	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1985  	up_read(&namespace_sem);
1986  
1987  	if (IS_ERR(new_mnt))
1988  		return ERR_CAST(new_mnt);
1989  
1990  	/* Longterm mount to be removed by kern_unmount*() */
1991  	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1992  
1993  	return &new_mnt->mnt;
1994  
1995  invalid:
1996  	up_read(&namespace_sem);
1997  	return ERR_PTR(-EINVAL);
1998  }
1999  EXPORT_SYMBOL_GPL(clone_private_mount);
2000  
2001  int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2002  		   struct vfsmount *root)
2003  {
2004  	struct mount *mnt;
2005  	int res = f(root, arg);
2006  	if (res)
2007  		return res;
2008  	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2009  		res = f(&mnt->mnt, arg);
2010  		if (res)
2011  			return res;
2012  	}
2013  	return 0;
2014  }
2015  
2016  static void lock_mnt_tree(struct mount *mnt)
2017  {
2018  	struct mount *p;
2019  
2020  	for (p = mnt; p; p = next_mnt(p, mnt)) {
2021  		int flags = p->mnt.mnt_flags;
2022  		/* Don't allow unprivileged users to change mount flags */
2023  		flags |= MNT_LOCK_ATIME;
2024  
2025  		if (flags & MNT_READONLY)
2026  			flags |= MNT_LOCK_READONLY;
2027  
2028  		if (flags & MNT_NODEV)
2029  			flags |= MNT_LOCK_NODEV;
2030  
2031  		if (flags & MNT_NOSUID)
2032  			flags |= MNT_LOCK_NOSUID;
2033  
2034  		if (flags & MNT_NOEXEC)
2035  			flags |= MNT_LOCK_NOEXEC;
2036  		/* Don't allow unprivileged users to reveal what is under a mount */
2037  		if (list_empty(&p->mnt_expire))
2038  			flags |= MNT_LOCKED;
2039  		p->mnt.mnt_flags = flags;
2040  	}
2041  }
2042  
2043  static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2044  {
2045  	struct mount *p;
2046  
2047  	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2048  		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2049  			mnt_release_group_id(p);
2050  	}
2051  }
2052  
2053  static int invent_group_ids(struct mount *mnt, bool recurse)
2054  {
2055  	struct mount *p;
2056  
2057  	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2058  		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2059  			int err = mnt_alloc_group_id(p);
2060  			if (err) {
2061  				cleanup_group_ids(mnt, p);
2062  				return err;
2063  			}
2064  		}
2065  	}
2066  
2067  	return 0;
2068  }
2069  
2070  int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2071  {
2072  	unsigned int max = READ_ONCE(sysctl_mount_max);
2073  	unsigned int mounts = 0, old, pending, sum;
2074  	struct mount *p;
2075  
2076  	for (p = mnt; p; p = next_mnt(p, mnt))
2077  		mounts++;
2078  
2079  	old = ns->mounts;
2080  	pending = ns->pending_mounts;
2081  	sum = old + pending;
2082  	if ((old > sum) ||
2083  	    (pending > sum) ||
2084  	    (max < sum) ||
2085  	    (mounts > (max - sum)))
2086  		return -ENOSPC;
2087  
2088  	ns->pending_mounts = pending + mounts;
2089  	return 0;
2090  }
2091  
2092  /*
2093   *  @source_mnt : mount tree to be attached
2094   *  @nd         : place the mount tree @source_mnt is attached
2095   *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2096   *  		   store the parent mount and mountpoint dentry.
2097   *  		   (done when source_mnt is moved)
2098   *
2099   *  NOTE: in the table below explains the semantics when a source mount
2100   *  of a given type is attached to a destination mount of a given type.
2101   * ---------------------------------------------------------------------------
2102   * |         BIND MOUNT OPERATION                                            |
2103   * |**************************************************************************
2104   * | source-->| shared        |       private  |       slave    | unbindable |
2105   * | dest     |               |                |                |            |
2106   * |   |      |               |                |                |            |
2107   * |   v      |               |                |                |            |
2108   * |**************************************************************************
2109   * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2110   * |          |               |                |                |            |
2111   * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2112   * ***************************************************************************
2113   * A bind operation clones the source mount and mounts the clone on the
2114   * destination mount.
2115   *
2116   * (++)  the cloned mount is propagated to all the mounts in the propagation
2117   * 	 tree of the destination mount and the cloned mount is added to
2118   * 	 the peer group of the source mount.
2119   * (+)   the cloned mount is created under the destination mount and is marked
2120   *       as shared. The cloned mount is added to the peer group of the source
2121   *       mount.
2122   * (+++) the mount is propagated to all the mounts in the propagation tree
2123   *       of the destination mount and the cloned mount is made slave
2124   *       of the same master as that of the source mount. The cloned mount
2125   *       is marked as 'shared and slave'.
2126   * (*)   the cloned mount is made a slave of the same master as that of the
2127   * 	 source mount.
2128   *
2129   * ---------------------------------------------------------------------------
2130   * |         		MOVE MOUNT OPERATION                                 |
2131   * |**************************************************************************
2132   * | source-->| shared        |       private  |       slave    | unbindable |
2133   * | dest     |               |                |                |            |
2134   * |   |      |               |                |                |            |
2135   * |   v      |               |                |                |            |
2136   * |**************************************************************************
2137   * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2138   * |          |               |                |                |            |
2139   * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2140   * ***************************************************************************
2141   *
2142   * (+)  the mount is moved to the destination. And is then propagated to
2143   * 	all the mounts in the propagation tree of the destination mount.
2144   * (+*)  the mount is moved to the destination.
2145   * (+++)  the mount is moved to the destination and is then propagated to
2146   * 	all the mounts belonging to the destination mount's propagation tree.
2147   * 	the mount is marked as 'shared and slave'.
2148   * (*)	the mount continues to be a slave at the new location.
2149   *
2150   * if the source mount is a tree, the operations explained above is
2151   * applied to each mount in the tree.
2152   * Must be called without spinlocks held, since this function can sleep
2153   * in allocations.
2154   */
2155  static int attach_recursive_mnt(struct mount *source_mnt,
2156  			struct mount *dest_mnt,
2157  			struct mountpoint *dest_mp,
2158  			bool moving)
2159  {
2160  	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2161  	HLIST_HEAD(tree_list);
2162  	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2163  	struct mountpoint *smp;
2164  	struct mount *child, *p;
2165  	struct hlist_node *n;
2166  	int err;
2167  
2168  	/* Preallocate a mountpoint in case the new mounts need
2169  	 * to be tucked under other mounts.
2170  	 */
2171  	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2172  	if (IS_ERR(smp))
2173  		return PTR_ERR(smp);
2174  
2175  	/* Is there space to add these mounts to the mount namespace? */
2176  	if (!moving) {
2177  		err = count_mounts(ns, source_mnt);
2178  		if (err)
2179  			goto out;
2180  	}
2181  
2182  	if (IS_MNT_SHARED(dest_mnt)) {
2183  		err = invent_group_ids(source_mnt, true);
2184  		if (err)
2185  			goto out;
2186  		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2187  		lock_mount_hash();
2188  		if (err)
2189  			goto out_cleanup_ids;
2190  		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2191  			set_mnt_shared(p);
2192  	} else {
2193  		lock_mount_hash();
2194  	}
2195  	if (moving) {
2196  		unhash_mnt(source_mnt);
2197  		attach_mnt(source_mnt, dest_mnt, dest_mp);
2198  		touch_mnt_namespace(source_mnt->mnt_ns);
2199  	} else {
2200  		if (source_mnt->mnt_ns) {
2201  			/* move from anon - the caller will destroy */
2202  			list_del_init(&source_mnt->mnt_ns->list);
2203  		}
2204  		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2205  		commit_tree(source_mnt);
2206  	}
2207  
2208  	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2209  		struct mount *q;
2210  		hlist_del_init(&child->mnt_hash);
2211  		q = __lookup_mnt(&child->mnt_parent->mnt,
2212  				 child->mnt_mountpoint);
2213  		if (q)
2214  			mnt_change_mountpoint(child, smp, q);
2215  		/* Notice when we are propagating across user namespaces */
2216  		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2217  			lock_mnt_tree(child);
2218  		child->mnt.mnt_flags &= ~MNT_LOCKED;
2219  		commit_tree(child);
2220  	}
2221  	put_mountpoint(smp);
2222  	unlock_mount_hash();
2223  
2224  	return 0;
2225  
2226   out_cleanup_ids:
2227  	while (!hlist_empty(&tree_list)) {
2228  		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2229  		child->mnt_parent->mnt_ns->pending_mounts = 0;
2230  		umount_tree(child, UMOUNT_SYNC);
2231  	}
2232  	unlock_mount_hash();
2233  	cleanup_group_ids(source_mnt, NULL);
2234   out:
2235  	ns->pending_mounts = 0;
2236  
2237  	read_seqlock_excl(&mount_lock);
2238  	put_mountpoint(smp);
2239  	read_sequnlock_excl(&mount_lock);
2240  
2241  	return err;
2242  }
2243  
2244  static struct mountpoint *lock_mount(struct path *path)
2245  {
2246  	struct vfsmount *mnt;
2247  	struct dentry *dentry = path->dentry;
2248  retry:
2249  	inode_lock(dentry->d_inode);
2250  	if (unlikely(cant_mount(dentry))) {
2251  		inode_unlock(dentry->d_inode);
2252  		return ERR_PTR(-ENOENT);
2253  	}
2254  	namespace_lock();
2255  	mnt = lookup_mnt(path);
2256  	if (likely(!mnt)) {
2257  		struct mountpoint *mp = get_mountpoint(dentry);
2258  		if (IS_ERR(mp)) {
2259  			namespace_unlock();
2260  			inode_unlock(dentry->d_inode);
2261  			return mp;
2262  		}
2263  		return mp;
2264  	}
2265  	namespace_unlock();
2266  	inode_unlock(path->dentry->d_inode);
2267  	path_put(path);
2268  	path->mnt = mnt;
2269  	dentry = path->dentry = dget(mnt->mnt_root);
2270  	goto retry;
2271  }
2272  
2273  static void unlock_mount(struct mountpoint *where)
2274  {
2275  	struct dentry *dentry = where->m_dentry;
2276  
2277  	read_seqlock_excl(&mount_lock);
2278  	put_mountpoint(where);
2279  	read_sequnlock_excl(&mount_lock);
2280  
2281  	namespace_unlock();
2282  	inode_unlock(dentry->d_inode);
2283  }
2284  
2285  static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2286  {
2287  	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2288  		return -EINVAL;
2289  
2290  	if (d_is_dir(mp->m_dentry) !=
2291  	      d_is_dir(mnt->mnt.mnt_root))
2292  		return -ENOTDIR;
2293  
2294  	return attach_recursive_mnt(mnt, p, mp, false);
2295  }
2296  
2297  /*
2298   * Sanity check the flags to change_mnt_propagation.
2299   */
2300  
2301  static int flags_to_propagation_type(int ms_flags)
2302  {
2303  	int type = ms_flags & ~(MS_REC | MS_SILENT);
2304  
2305  	/* Fail if any non-propagation flags are set */
2306  	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2307  		return 0;
2308  	/* Only one propagation flag should be set */
2309  	if (!is_power_of_2(type))
2310  		return 0;
2311  	return type;
2312  }
2313  
2314  /*
2315   * recursively change the type of the mountpoint.
2316   */
2317  static int do_change_type(struct path *path, int ms_flags)
2318  {
2319  	struct mount *m;
2320  	struct mount *mnt = real_mount(path->mnt);
2321  	int recurse = ms_flags & MS_REC;
2322  	int type;
2323  	int err = 0;
2324  
2325  	if (path->dentry != path->mnt->mnt_root)
2326  		return -EINVAL;
2327  
2328  	type = flags_to_propagation_type(ms_flags);
2329  	if (!type)
2330  		return -EINVAL;
2331  
2332  	namespace_lock();
2333  	if (type == MS_SHARED) {
2334  		err = invent_group_ids(mnt, recurse);
2335  		if (err)
2336  			goto out_unlock;
2337  	}
2338  
2339  	lock_mount_hash();
2340  	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2341  		change_mnt_propagation(m, type);
2342  	unlock_mount_hash();
2343  
2344   out_unlock:
2345  	namespace_unlock();
2346  	return err;
2347  }
2348  
2349  static struct mount *__do_loopback(struct path *old_path, int recurse)
2350  {
2351  	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2352  
2353  	if (IS_MNT_UNBINDABLE(old))
2354  		return mnt;
2355  
2356  	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2357  		return mnt;
2358  
2359  	if (!recurse && has_locked_children(old, old_path->dentry))
2360  		return mnt;
2361  
2362  	if (recurse)
2363  		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2364  	else
2365  		mnt = clone_mnt(old, old_path->dentry, 0);
2366  
2367  	if (!IS_ERR(mnt))
2368  		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2369  
2370  	return mnt;
2371  }
2372  
2373  /*
2374   * do loopback mount.
2375   */
2376  static int do_loopback(struct path *path, const char *old_name,
2377  				int recurse)
2378  {
2379  	struct path old_path;
2380  	struct mount *mnt = NULL, *parent;
2381  	struct mountpoint *mp;
2382  	int err;
2383  	if (!old_name || !*old_name)
2384  		return -EINVAL;
2385  	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2386  	if (err)
2387  		return err;
2388  
2389  	err = -EINVAL;
2390  	if (mnt_ns_loop(old_path.dentry))
2391  		goto out;
2392  
2393  	mp = lock_mount(path);
2394  	if (IS_ERR(mp)) {
2395  		err = PTR_ERR(mp);
2396  		goto out;
2397  	}
2398  
2399  	parent = real_mount(path->mnt);
2400  	if (!check_mnt(parent))
2401  		goto out2;
2402  
2403  	mnt = __do_loopback(&old_path, recurse);
2404  	if (IS_ERR(mnt)) {
2405  		err = PTR_ERR(mnt);
2406  		goto out2;
2407  	}
2408  
2409  	err = graft_tree(mnt, parent, mp);
2410  	if (err) {
2411  		lock_mount_hash();
2412  		umount_tree(mnt, UMOUNT_SYNC);
2413  		unlock_mount_hash();
2414  	}
2415  out2:
2416  	unlock_mount(mp);
2417  out:
2418  	path_put(&old_path);
2419  	return err;
2420  }
2421  
2422  static struct file *open_detached_copy(struct path *path, bool recursive)
2423  {
2424  	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2425  	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2426  	struct mount *mnt, *p;
2427  	struct file *file;
2428  
2429  	if (IS_ERR(ns))
2430  		return ERR_CAST(ns);
2431  
2432  	namespace_lock();
2433  	mnt = __do_loopback(path, recursive);
2434  	if (IS_ERR(mnt)) {
2435  		namespace_unlock();
2436  		free_mnt_ns(ns);
2437  		return ERR_CAST(mnt);
2438  	}
2439  
2440  	lock_mount_hash();
2441  	for (p = mnt; p; p = next_mnt(p, mnt)) {
2442  		p->mnt_ns = ns;
2443  		ns->mounts++;
2444  	}
2445  	ns->root = mnt;
2446  	list_add_tail(&ns->list, &mnt->mnt_list);
2447  	mntget(&mnt->mnt);
2448  	unlock_mount_hash();
2449  	namespace_unlock();
2450  
2451  	mntput(path->mnt);
2452  	path->mnt = &mnt->mnt;
2453  	file = dentry_open(path, O_PATH, current_cred());
2454  	if (IS_ERR(file))
2455  		dissolve_on_fput(path->mnt);
2456  	else
2457  		file->f_mode |= FMODE_NEED_UNMOUNT;
2458  	return file;
2459  }
2460  
2461  SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2462  {
2463  	struct file *file;
2464  	struct path path;
2465  	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2466  	bool detached = flags & OPEN_TREE_CLONE;
2467  	int error;
2468  	int fd;
2469  
2470  	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2471  
2472  	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2473  		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2474  		      OPEN_TREE_CLOEXEC))
2475  		return -EINVAL;
2476  
2477  	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2478  		return -EINVAL;
2479  
2480  	if (flags & AT_NO_AUTOMOUNT)
2481  		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2482  	if (flags & AT_SYMLINK_NOFOLLOW)
2483  		lookup_flags &= ~LOOKUP_FOLLOW;
2484  	if (flags & AT_EMPTY_PATH)
2485  		lookup_flags |= LOOKUP_EMPTY;
2486  
2487  	if (detached && !may_mount())
2488  		return -EPERM;
2489  
2490  	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2491  	if (fd < 0)
2492  		return fd;
2493  
2494  	error = user_path_at(dfd, filename, lookup_flags, &path);
2495  	if (unlikely(error)) {
2496  		file = ERR_PTR(error);
2497  	} else {
2498  		if (detached)
2499  			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2500  		else
2501  			file = dentry_open(&path, O_PATH, current_cred());
2502  		path_put(&path);
2503  	}
2504  	if (IS_ERR(file)) {
2505  		put_unused_fd(fd);
2506  		return PTR_ERR(file);
2507  	}
2508  	fd_install(fd, file);
2509  	return fd;
2510  }
2511  
2512  /*
2513   * Don't allow locked mount flags to be cleared.
2514   *
2515   * No locks need to be held here while testing the various MNT_LOCK
2516   * flags because those flags can never be cleared once they are set.
2517   */
2518  static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2519  {
2520  	unsigned int fl = mnt->mnt.mnt_flags;
2521  
2522  	if ((fl & MNT_LOCK_READONLY) &&
2523  	    !(mnt_flags & MNT_READONLY))
2524  		return false;
2525  
2526  	if ((fl & MNT_LOCK_NODEV) &&
2527  	    !(mnt_flags & MNT_NODEV))
2528  		return false;
2529  
2530  	if ((fl & MNT_LOCK_NOSUID) &&
2531  	    !(mnt_flags & MNT_NOSUID))
2532  		return false;
2533  
2534  	if ((fl & MNT_LOCK_NOEXEC) &&
2535  	    !(mnt_flags & MNT_NOEXEC))
2536  		return false;
2537  
2538  	if ((fl & MNT_LOCK_ATIME) &&
2539  	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2540  		return false;
2541  
2542  	return true;
2543  }
2544  
2545  static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2546  {
2547  	bool readonly_request = (mnt_flags & MNT_READONLY);
2548  
2549  	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2550  		return 0;
2551  
2552  	if (readonly_request)
2553  		return mnt_make_readonly(mnt);
2554  
2555  	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2556  	return 0;
2557  }
2558  
2559  static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2560  {
2561  	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2562  	mnt->mnt.mnt_flags = mnt_flags;
2563  	touch_mnt_namespace(mnt->mnt_ns);
2564  }
2565  
2566  static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2567  {
2568  	struct super_block *sb = mnt->mnt_sb;
2569  
2570  	if (!__mnt_is_readonly(mnt) &&
2571  	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2572  		char *buf = (char *)__get_free_page(GFP_KERNEL);
2573  		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2574  		struct tm tm;
2575  
2576  		time64_to_tm(sb->s_time_max, 0, &tm);
2577  
2578  		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2579  			sb->s_type->name,
2580  			is_mounted(mnt) ? "remounted" : "mounted",
2581  			mntpath,
2582  			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2583  
2584  		free_page((unsigned long)buf);
2585  	}
2586  }
2587  
2588  /*
2589   * Handle reconfiguration of the mountpoint only without alteration of the
2590   * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2591   * to mount(2).
2592   */
2593  static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2594  {
2595  	struct super_block *sb = path->mnt->mnt_sb;
2596  	struct mount *mnt = real_mount(path->mnt);
2597  	int ret;
2598  
2599  	if (!check_mnt(mnt))
2600  		return -EINVAL;
2601  
2602  	if (path->dentry != mnt->mnt.mnt_root)
2603  		return -EINVAL;
2604  
2605  	if (!can_change_locked_flags(mnt, mnt_flags))
2606  		return -EPERM;
2607  
2608  	/*
2609  	 * We're only checking whether the superblock is read-only not
2610  	 * changing it, so only take down_read(&sb->s_umount).
2611  	 */
2612  	down_read(&sb->s_umount);
2613  	lock_mount_hash();
2614  	ret = change_mount_ro_state(mnt, mnt_flags);
2615  	if (ret == 0)
2616  		set_mount_attributes(mnt, mnt_flags);
2617  	unlock_mount_hash();
2618  	up_read(&sb->s_umount);
2619  
2620  	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2621  
2622  	return ret;
2623  }
2624  
2625  /*
2626   * change filesystem flags. dir should be a physical root of filesystem.
2627   * If you've mounted a non-root directory somewhere and want to do remount
2628   * on it - tough luck.
2629   */
2630  static int do_remount(struct path *path, int ms_flags, int sb_flags,
2631  		      int mnt_flags, void *data)
2632  {
2633  	int err;
2634  	struct super_block *sb = path->mnt->mnt_sb;
2635  	struct mount *mnt = real_mount(path->mnt);
2636  	struct fs_context *fc;
2637  
2638  	if (!check_mnt(mnt))
2639  		return -EINVAL;
2640  
2641  	if (path->dentry != path->mnt->mnt_root)
2642  		return -EINVAL;
2643  
2644  	if (!can_change_locked_flags(mnt, mnt_flags))
2645  		return -EPERM;
2646  
2647  	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2648  	if (IS_ERR(fc))
2649  		return PTR_ERR(fc);
2650  
2651  	fc->oldapi = true;
2652  	err = parse_monolithic_mount_data(fc, data);
2653  	if (!err) {
2654  		down_write(&sb->s_umount);
2655  		err = -EPERM;
2656  		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2657  			err = reconfigure_super(fc);
2658  			if (!err) {
2659  				lock_mount_hash();
2660  				set_mount_attributes(mnt, mnt_flags);
2661  				unlock_mount_hash();
2662  			}
2663  		}
2664  		up_write(&sb->s_umount);
2665  	}
2666  
2667  	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2668  
2669  	put_fs_context(fc);
2670  	return err;
2671  }
2672  
2673  static inline int tree_contains_unbindable(struct mount *mnt)
2674  {
2675  	struct mount *p;
2676  	for (p = mnt; p; p = next_mnt(p, mnt)) {
2677  		if (IS_MNT_UNBINDABLE(p))
2678  			return 1;
2679  	}
2680  	return 0;
2681  }
2682  
2683  /*
2684   * Check that there aren't references to earlier/same mount namespaces in the
2685   * specified subtree.  Such references can act as pins for mount namespaces
2686   * that aren't checked by the mount-cycle checking code, thereby allowing
2687   * cycles to be made.
2688   */
2689  static bool check_for_nsfs_mounts(struct mount *subtree)
2690  {
2691  	struct mount *p;
2692  	bool ret = false;
2693  
2694  	lock_mount_hash();
2695  	for (p = subtree; p; p = next_mnt(p, subtree))
2696  		if (mnt_ns_loop(p->mnt.mnt_root))
2697  			goto out;
2698  
2699  	ret = true;
2700  out:
2701  	unlock_mount_hash();
2702  	return ret;
2703  }
2704  
2705  static int do_move_mount(struct path *old_path, struct path *new_path)
2706  {
2707  	struct mnt_namespace *ns;
2708  	struct mount *p;
2709  	struct mount *old;
2710  	struct mount *parent;
2711  	struct mountpoint *mp, *old_mp;
2712  	int err;
2713  	bool attached;
2714  
2715  	mp = lock_mount(new_path);
2716  	if (IS_ERR(mp))
2717  		return PTR_ERR(mp);
2718  
2719  	old = real_mount(old_path->mnt);
2720  	p = real_mount(new_path->mnt);
2721  	parent = old->mnt_parent;
2722  	attached = mnt_has_parent(old);
2723  	old_mp = old->mnt_mp;
2724  	ns = old->mnt_ns;
2725  
2726  	err = -EINVAL;
2727  	/* The mountpoint must be in our namespace. */
2728  	if (!check_mnt(p))
2729  		goto out;
2730  
2731  	/* The thing moved must be mounted... */
2732  	if (!is_mounted(&old->mnt))
2733  		goto out;
2734  
2735  	/* ... and either ours or the root of anon namespace */
2736  	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2737  		goto out;
2738  
2739  	if (old->mnt.mnt_flags & MNT_LOCKED)
2740  		goto out;
2741  
2742  	if (old_path->dentry != old_path->mnt->mnt_root)
2743  		goto out;
2744  
2745  	if (d_is_dir(new_path->dentry) !=
2746  	    d_is_dir(old_path->dentry))
2747  		goto out;
2748  	/*
2749  	 * Don't move a mount residing in a shared parent.
2750  	 */
2751  	if (attached && IS_MNT_SHARED(parent))
2752  		goto out;
2753  	/*
2754  	 * Don't move a mount tree containing unbindable mounts to a destination
2755  	 * mount which is shared.
2756  	 */
2757  	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2758  		goto out;
2759  	err = -ELOOP;
2760  	if (!check_for_nsfs_mounts(old))
2761  		goto out;
2762  	for (; mnt_has_parent(p); p = p->mnt_parent)
2763  		if (p == old)
2764  			goto out;
2765  
2766  	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2767  				   attached);
2768  	if (err)
2769  		goto out;
2770  
2771  	/* if the mount is moved, it should no longer be expire
2772  	 * automatically */
2773  	list_del_init(&old->mnt_expire);
2774  	if (attached)
2775  		put_mountpoint(old_mp);
2776  out:
2777  	unlock_mount(mp);
2778  	if (!err) {
2779  		if (attached)
2780  			mntput_no_expire(parent);
2781  		else
2782  			free_mnt_ns(ns);
2783  	}
2784  	return err;
2785  }
2786  
2787  static int do_move_mount_old(struct path *path, const char *old_name)
2788  {
2789  	struct path old_path;
2790  	int err;
2791  
2792  	if (!old_name || !*old_name)
2793  		return -EINVAL;
2794  
2795  	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2796  	if (err)
2797  		return err;
2798  
2799  	err = do_move_mount(&old_path, path);
2800  	path_put(&old_path);
2801  	return err;
2802  }
2803  
2804  /*
2805   * add a mount into a namespace's mount tree
2806   */
2807  static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2808  			struct path *path, int mnt_flags)
2809  {
2810  	struct mount *parent = real_mount(path->mnt);
2811  
2812  	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2813  
2814  	if (unlikely(!check_mnt(parent))) {
2815  		/* that's acceptable only for automounts done in private ns */
2816  		if (!(mnt_flags & MNT_SHRINKABLE))
2817  			return -EINVAL;
2818  		/* ... and for those we'd better have mountpoint still alive */
2819  		if (!parent->mnt_ns)
2820  			return -EINVAL;
2821  	}
2822  
2823  	/* Refuse the same filesystem on the same mount point */
2824  	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2825  	    path->mnt->mnt_root == path->dentry)
2826  		return -EBUSY;
2827  
2828  	if (d_is_symlink(newmnt->mnt.mnt_root))
2829  		return -EINVAL;
2830  
2831  	newmnt->mnt.mnt_flags = mnt_flags;
2832  	return graft_tree(newmnt, parent, mp);
2833  }
2834  
2835  static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2836  
2837  /*
2838   * Create a new mount using a superblock configuration and request it
2839   * be added to the namespace tree.
2840   */
2841  static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2842  			   unsigned int mnt_flags)
2843  {
2844  	struct vfsmount *mnt;
2845  	struct mountpoint *mp;
2846  	struct super_block *sb = fc->root->d_sb;
2847  	int error;
2848  
2849  	error = security_sb_kern_mount(sb);
2850  	if (!error && mount_too_revealing(sb, &mnt_flags))
2851  		error = -EPERM;
2852  
2853  	if (unlikely(error)) {
2854  		fc_drop_locked(fc);
2855  		return error;
2856  	}
2857  
2858  	up_write(&sb->s_umount);
2859  
2860  	mnt = vfs_create_mount(fc);
2861  	if (IS_ERR(mnt))
2862  		return PTR_ERR(mnt);
2863  
2864  	mnt_warn_timestamp_expiry(mountpoint, mnt);
2865  
2866  	mp = lock_mount(mountpoint);
2867  	if (IS_ERR(mp)) {
2868  		mntput(mnt);
2869  		return PTR_ERR(mp);
2870  	}
2871  	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2872  	unlock_mount(mp);
2873  	if (error < 0)
2874  		mntput(mnt);
2875  	return error;
2876  }
2877  
2878  /*
2879   * create a new mount for userspace and request it to be added into the
2880   * namespace's tree
2881   */
2882  static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2883  			int mnt_flags, const char *name, void *data)
2884  {
2885  	struct file_system_type *type;
2886  	struct fs_context *fc;
2887  	const char *subtype = NULL;
2888  	int err = 0;
2889  
2890  	if (!fstype)
2891  		return -EINVAL;
2892  
2893  	type = get_fs_type(fstype);
2894  	if (!type)
2895  		return -ENODEV;
2896  
2897  	if (type->fs_flags & FS_HAS_SUBTYPE) {
2898  		subtype = strchr(fstype, '.');
2899  		if (subtype) {
2900  			subtype++;
2901  			if (!*subtype) {
2902  				put_filesystem(type);
2903  				return -EINVAL;
2904  			}
2905  		}
2906  	}
2907  
2908  	fc = fs_context_for_mount(type, sb_flags);
2909  	put_filesystem(type);
2910  	if (IS_ERR(fc))
2911  		return PTR_ERR(fc);
2912  
2913  	if (subtype)
2914  		err = vfs_parse_fs_string(fc, "subtype",
2915  					  subtype, strlen(subtype));
2916  	if (!err && name)
2917  		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2918  	if (!err)
2919  		err = parse_monolithic_mount_data(fc, data);
2920  	if (!err && !mount_capable(fc))
2921  		err = -EPERM;
2922  	if (!err)
2923  		err = vfs_get_tree(fc);
2924  	if (!err)
2925  		err = do_new_mount_fc(fc, path, mnt_flags);
2926  
2927  	put_fs_context(fc);
2928  	return err;
2929  }
2930  
2931  int finish_automount(struct vfsmount *m, struct path *path)
2932  {
2933  	struct dentry *dentry = path->dentry;
2934  	struct mountpoint *mp;
2935  	struct mount *mnt;
2936  	int err;
2937  
2938  	if (!m)
2939  		return 0;
2940  	if (IS_ERR(m))
2941  		return PTR_ERR(m);
2942  
2943  	mnt = real_mount(m);
2944  	/* The new mount record should have at least 2 refs to prevent it being
2945  	 * expired before we get a chance to add it
2946  	 */
2947  	BUG_ON(mnt_get_count(mnt) < 2);
2948  
2949  	if (m->mnt_sb == path->mnt->mnt_sb &&
2950  	    m->mnt_root == dentry) {
2951  		err = -ELOOP;
2952  		goto discard;
2953  	}
2954  
2955  	/*
2956  	 * we don't want to use lock_mount() - in this case finding something
2957  	 * that overmounts our mountpoint to be means "quitely drop what we've
2958  	 * got", not "try to mount it on top".
2959  	 */
2960  	inode_lock(dentry->d_inode);
2961  	namespace_lock();
2962  	if (unlikely(cant_mount(dentry))) {
2963  		err = -ENOENT;
2964  		goto discard_locked;
2965  	}
2966  	rcu_read_lock();
2967  	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2968  		rcu_read_unlock();
2969  		err = 0;
2970  		goto discard_locked;
2971  	}
2972  	rcu_read_unlock();
2973  	mp = get_mountpoint(dentry);
2974  	if (IS_ERR(mp)) {
2975  		err = PTR_ERR(mp);
2976  		goto discard_locked;
2977  	}
2978  
2979  	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2980  	unlock_mount(mp);
2981  	if (unlikely(err))
2982  		goto discard;
2983  	mntput(m);
2984  	return 0;
2985  
2986  discard_locked:
2987  	namespace_unlock();
2988  	inode_unlock(dentry->d_inode);
2989  discard:
2990  	/* remove m from any expiration list it may be on */
2991  	if (!list_empty(&mnt->mnt_expire)) {
2992  		namespace_lock();
2993  		list_del_init(&mnt->mnt_expire);
2994  		namespace_unlock();
2995  	}
2996  	mntput(m);
2997  	mntput(m);
2998  	return err;
2999  }
3000  
3001  /**
3002   * mnt_set_expiry - Put a mount on an expiration list
3003   * @mnt: The mount to list.
3004   * @expiry_list: The list to add the mount to.
3005   */
3006  void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3007  {
3008  	namespace_lock();
3009  
3010  	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3011  
3012  	namespace_unlock();
3013  }
3014  EXPORT_SYMBOL(mnt_set_expiry);
3015  
3016  /*
3017   * process a list of expirable mountpoints with the intent of discarding any
3018   * mountpoints that aren't in use and haven't been touched since last we came
3019   * here
3020   */
3021  void mark_mounts_for_expiry(struct list_head *mounts)
3022  {
3023  	struct mount *mnt, *next;
3024  	LIST_HEAD(graveyard);
3025  
3026  	if (list_empty(mounts))
3027  		return;
3028  
3029  	namespace_lock();
3030  	lock_mount_hash();
3031  
3032  	/* extract from the expiration list every vfsmount that matches the
3033  	 * following criteria:
3034  	 * - only referenced by its parent vfsmount
3035  	 * - still marked for expiry (marked on the last call here; marks are
3036  	 *   cleared by mntput())
3037  	 */
3038  	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3039  		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3040  			propagate_mount_busy(mnt, 1))
3041  			continue;
3042  		list_move(&mnt->mnt_expire, &graveyard);
3043  	}
3044  	while (!list_empty(&graveyard)) {
3045  		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3046  		touch_mnt_namespace(mnt->mnt_ns);
3047  		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3048  	}
3049  	unlock_mount_hash();
3050  	namespace_unlock();
3051  }
3052  
3053  EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3054  
3055  /*
3056   * Ripoff of 'select_parent()'
3057   *
3058   * search the list of submounts for a given mountpoint, and move any
3059   * shrinkable submounts to the 'graveyard' list.
3060   */
3061  static int select_submounts(struct mount *parent, struct list_head *graveyard)
3062  {
3063  	struct mount *this_parent = parent;
3064  	struct list_head *next;
3065  	int found = 0;
3066  
3067  repeat:
3068  	next = this_parent->mnt_mounts.next;
3069  resume:
3070  	while (next != &this_parent->mnt_mounts) {
3071  		struct list_head *tmp = next;
3072  		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3073  
3074  		next = tmp->next;
3075  		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3076  			continue;
3077  		/*
3078  		 * Descend a level if the d_mounts list is non-empty.
3079  		 */
3080  		if (!list_empty(&mnt->mnt_mounts)) {
3081  			this_parent = mnt;
3082  			goto repeat;
3083  		}
3084  
3085  		if (!propagate_mount_busy(mnt, 1)) {
3086  			list_move_tail(&mnt->mnt_expire, graveyard);
3087  			found++;
3088  		}
3089  	}
3090  	/*
3091  	 * All done at this level ... ascend and resume the search
3092  	 */
3093  	if (this_parent != parent) {
3094  		next = this_parent->mnt_child.next;
3095  		this_parent = this_parent->mnt_parent;
3096  		goto resume;
3097  	}
3098  	return found;
3099  }
3100  
3101  /*
3102   * process a list of expirable mountpoints with the intent of discarding any
3103   * submounts of a specific parent mountpoint
3104   *
3105   * mount_lock must be held for write
3106   */
3107  static void shrink_submounts(struct mount *mnt)
3108  {
3109  	LIST_HEAD(graveyard);
3110  	struct mount *m;
3111  
3112  	/* extract submounts of 'mountpoint' from the expiration list */
3113  	while (select_submounts(mnt, &graveyard)) {
3114  		while (!list_empty(&graveyard)) {
3115  			m = list_first_entry(&graveyard, struct mount,
3116  						mnt_expire);
3117  			touch_mnt_namespace(m->mnt_ns);
3118  			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3119  		}
3120  	}
3121  }
3122  
3123  static void *copy_mount_options(const void __user * data)
3124  {
3125  	char *copy;
3126  	unsigned left, offset;
3127  
3128  	if (!data)
3129  		return NULL;
3130  
3131  	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3132  	if (!copy)
3133  		return ERR_PTR(-ENOMEM);
3134  
3135  	left = copy_from_user(copy, data, PAGE_SIZE);
3136  
3137  	/*
3138  	 * Not all architectures have an exact copy_from_user(). Resort to
3139  	 * byte at a time.
3140  	 */
3141  	offset = PAGE_SIZE - left;
3142  	while (left) {
3143  		char c;
3144  		if (get_user(c, (const char __user *)data + offset))
3145  			break;
3146  		copy[offset] = c;
3147  		left--;
3148  		offset++;
3149  	}
3150  
3151  	if (left == PAGE_SIZE) {
3152  		kfree(copy);
3153  		return ERR_PTR(-EFAULT);
3154  	}
3155  
3156  	return copy;
3157  }
3158  
3159  static char *copy_mount_string(const void __user *data)
3160  {
3161  	return data ? strndup_user(data, PATH_MAX) : NULL;
3162  }
3163  
3164  /*
3165   * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3166   * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3167   *
3168   * data is a (void *) that can point to any structure up to
3169   * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3170   * information (or be NULL).
3171   *
3172   * Pre-0.97 versions of mount() didn't have a flags word.
3173   * When the flags word was introduced its top half was required
3174   * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3175   * Therefore, if this magic number is present, it carries no information
3176   * and must be discarded.
3177   */
3178  int path_mount(const char *dev_name, struct path *path,
3179  		const char *type_page, unsigned long flags, void *data_page)
3180  {
3181  	unsigned int mnt_flags = 0, sb_flags;
3182  	int ret;
3183  
3184  	/* Discard magic */
3185  	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3186  		flags &= ~MS_MGC_MSK;
3187  
3188  	/* Basic sanity checks */
3189  	if (data_page)
3190  		((char *)data_page)[PAGE_SIZE - 1] = 0;
3191  
3192  	if (flags & MS_NOUSER)
3193  		return -EINVAL;
3194  
3195  	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3196  	if (ret)
3197  		return ret;
3198  	if (!may_mount())
3199  		return -EPERM;
3200  	if ((flags & SB_MANDLOCK) && !may_mandlock())
3201  		return -EPERM;
3202  
3203  	/* Default to relatime unless overriden */
3204  	if (!(flags & MS_NOATIME))
3205  		mnt_flags |= MNT_RELATIME;
3206  
3207  	/* Separate the per-mountpoint flags */
3208  	if (flags & MS_NOSUID)
3209  		mnt_flags |= MNT_NOSUID;
3210  	if (flags & MS_NODEV)
3211  		mnt_flags |= MNT_NODEV;
3212  	if (flags & MS_NOEXEC)
3213  		mnt_flags |= MNT_NOEXEC;
3214  	if (flags & MS_NOATIME)
3215  		mnt_flags |= MNT_NOATIME;
3216  	if (flags & MS_NODIRATIME)
3217  		mnt_flags |= MNT_NODIRATIME;
3218  	if (flags & MS_STRICTATIME)
3219  		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3220  	if (flags & MS_RDONLY)
3221  		mnt_flags |= MNT_READONLY;
3222  	if (flags & MS_NOSYMFOLLOW)
3223  		mnt_flags |= MNT_NOSYMFOLLOW;
3224  
3225  	/* The default atime for remount is preservation */
3226  	if ((flags & MS_REMOUNT) &&
3227  	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3228  		       MS_STRICTATIME)) == 0)) {
3229  		mnt_flags &= ~MNT_ATIME_MASK;
3230  		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3231  	}
3232  
3233  	sb_flags = flags & (SB_RDONLY |
3234  			    SB_SYNCHRONOUS |
3235  			    SB_MANDLOCK |
3236  			    SB_DIRSYNC |
3237  			    SB_SILENT |
3238  			    SB_POSIXACL |
3239  			    SB_LAZYTIME |
3240  			    SB_I_VERSION);
3241  
3242  	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3243  		return do_reconfigure_mnt(path, mnt_flags);
3244  	if (flags & MS_REMOUNT)
3245  		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3246  	if (flags & MS_BIND)
3247  		return do_loopback(path, dev_name, flags & MS_REC);
3248  	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3249  		return do_change_type(path, flags);
3250  	if (flags & MS_MOVE)
3251  		return do_move_mount_old(path, dev_name);
3252  
3253  	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3254  			    data_page);
3255  }
3256  
3257  long do_mount(const char *dev_name, const char __user *dir_name,
3258  		const char *type_page, unsigned long flags, void *data_page)
3259  {
3260  	struct path path;
3261  	int ret;
3262  
3263  	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3264  	if (ret)
3265  		return ret;
3266  	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3267  	path_put(&path);
3268  	return ret;
3269  }
3270  
3271  static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3272  {
3273  	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3274  }
3275  
3276  static void dec_mnt_namespaces(struct ucounts *ucounts)
3277  {
3278  	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3279  }
3280  
3281  static void free_mnt_ns(struct mnt_namespace *ns)
3282  {
3283  	if (!is_anon_ns(ns))
3284  		ns_free_inum(&ns->ns);
3285  	dec_mnt_namespaces(ns->ucounts);
3286  	put_user_ns(ns->user_ns);
3287  	kfree(ns);
3288  }
3289  
3290  /*
3291   * Assign a sequence number so we can detect when we attempt to bind
3292   * mount a reference to an older mount namespace into the current
3293   * mount namespace, preventing reference counting loops.  A 64bit
3294   * number incrementing at 10Ghz will take 12,427 years to wrap which
3295   * is effectively never, so we can ignore the possibility.
3296   */
3297  static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3298  
3299  static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3300  {
3301  	struct mnt_namespace *new_ns;
3302  	struct ucounts *ucounts;
3303  	int ret;
3304  
3305  	ucounts = inc_mnt_namespaces(user_ns);
3306  	if (!ucounts)
3307  		return ERR_PTR(-ENOSPC);
3308  
3309  	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3310  	if (!new_ns) {
3311  		dec_mnt_namespaces(ucounts);
3312  		return ERR_PTR(-ENOMEM);
3313  	}
3314  	if (!anon) {
3315  		ret = ns_alloc_inum(&new_ns->ns);
3316  		if (ret) {
3317  			kfree(new_ns);
3318  			dec_mnt_namespaces(ucounts);
3319  			return ERR_PTR(ret);
3320  		}
3321  	}
3322  	new_ns->ns.ops = &mntns_operations;
3323  	if (!anon)
3324  		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3325  	refcount_set(&new_ns->ns.count, 1);
3326  	INIT_LIST_HEAD(&new_ns->list);
3327  	init_waitqueue_head(&new_ns->poll);
3328  	spin_lock_init(&new_ns->ns_lock);
3329  	new_ns->user_ns = get_user_ns(user_ns);
3330  	new_ns->ucounts = ucounts;
3331  	return new_ns;
3332  }
3333  
3334  __latent_entropy
3335  struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3336  		struct user_namespace *user_ns, struct fs_struct *new_fs)
3337  {
3338  	struct mnt_namespace *new_ns;
3339  	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3340  	struct mount *p, *q;
3341  	struct mount *old;
3342  	struct mount *new;
3343  	int copy_flags;
3344  
3345  	BUG_ON(!ns);
3346  
3347  	if (likely(!(flags & CLONE_NEWNS))) {
3348  		get_mnt_ns(ns);
3349  		return ns;
3350  	}
3351  
3352  	old = ns->root;
3353  
3354  	new_ns = alloc_mnt_ns(user_ns, false);
3355  	if (IS_ERR(new_ns))
3356  		return new_ns;
3357  
3358  	namespace_lock();
3359  	/* First pass: copy the tree topology */
3360  	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3361  	if (user_ns != ns->user_ns)
3362  		copy_flags |= CL_SHARED_TO_SLAVE;
3363  	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3364  	if (IS_ERR(new)) {
3365  		namespace_unlock();
3366  		free_mnt_ns(new_ns);
3367  		return ERR_CAST(new);
3368  	}
3369  	if (user_ns != ns->user_ns) {
3370  		lock_mount_hash();
3371  		lock_mnt_tree(new);
3372  		unlock_mount_hash();
3373  	}
3374  	new_ns->root = new;
3375  	list_add_tail(&new_ns->list, &new->mnt_list);
3376  
3377  	/*
3378  	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3379  	 * as belonging to new namespace.  We have already acquired a private
3380  	 * fs_struct, so tsk->fs->lock is not needed.
3381  	 */
3382  	p = old;
3383  	q = new;
3384  	while (p) {
3385  		q->mnt_ns = new_ns;
3386  		new_ns->mounts++;
3387  		if (new_fs) {
3388  			if (&p->mnt == new_fs->root.mnt) {
3389  				new_fs->root.mnt = mntget(&q->mnt);
3390  				rootmnt = &p->mnt;
3391  			}
3392  			if (&p->mnt == new_fs->pwd.mnt) {
3393  				new_fs->pwd.mnt = mntget(&q->mnt);
3394  				pwdmnt = &p->mnt;
3395  			}
3396  		}
3397  		p = next_mnt(p, old);
3398  		q = next_mnt(q, new);
3399  		if (!q)
3400  			break;
3401  		while (p->mnt.mnt_root != q->mnt.mnt_root)
3402  			p = next_mnt(p, old);
3403  	}
3404  	namespace_unlock();
3405  
3406  	if (rootmnt)
3407  		mntput(rootmnt);
3408  	if (pwdmnt)
3409  		mntput(pwdmnt);
3410  
3411  	return new_ns;
3412  }
3413  
3414  struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3415  {
3416  	struct mount *mnt = real_mount(m);
3417  	struct mnt_namespace *ns;
3418  	struct super_block *s;
3419  	struct path path;
3420  	int err;
3421  
3422  	ns = alloc_mnt_ns(&init_user_ns, true);
3423  	if (IS_ERR(ns)) {
3424  		mntput(m);
3425  		return ERR_CAST(ns);
3426  	}
3427  	mnt->mnt_ns = ns;
3428  	ns->root = mnt;
3429  	ns->mounts++;
3430  	list_add(&mnt->mnt_list, &ns->list);
3431  
3432  	err = vfs_path_lookup(m->mnt_root, m,
3433  			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3434  
3435  	put_mnt_ns(ns);
3436  
3437  	if (err)
3438  		return ERR_PTR(err);
3439  
3440  	/* trade a vfsmount reference for active sb one */
3441  	s = path.mnt->mnt_sb;
3442  	atomic_inc(&s->s_active);
3443  	mntput(path.mnt);
3444  	/* lock the sucker */
3445  	down_write(&s->s_umount);
3446  	/* ... and return the root of (sub)tree on it */
3447  	return path.dentry;
3448  }
3449  EXPORT_SYMBOL(mount_subtree);
3450  
3451  SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3452  		char __user *, type, unsigned long, flags, void __user *, data)
3453  {
3454  	int ret;
3455  	char *kernel_type;
3456  	char *kernel_dev;
3457  	void *options;
3458  
3459  	kernel_type = copy_mount_string(type);
3460  	ret = PTR_ERR(kernel_type);
3461  	if (IS_ERR(kernel_type))
3462  		goto out_type;
3463  
3464  	kernel_dev = copy_mount_string(dev_name);
3465  	ret = PTR_ERR(kernel_dev);
3466  	if (IS_ERR(kernel_dev))
3467  		goto out_dev;
3468  
3469  	options = copy_mount_options(data);
3470  	ret = PTR_ERR(options);
3471  	if (IS_ERR(options))
3472  		goto out_data;
3473  
3474  	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3475  
3476  	kfree(options);
3477  out_data:
3478  	kfree(kernel_dev);
3479  out_dev:
3480  	kfree(kernel_type);
3481  out_type:
3482  	return ret;
3483  }
3484  
3485  #define FSMOUNT_VALID_FLAGS                                                    \
3486  	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3487  	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3488  	 MOUNT_ATTR_NOSYMFOLLOW)
3489  
3490  #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3491  
3492  #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3493  	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3494  
3495  static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3496  {
3497  	unsigned int mnt_flags = 0;
3498  
3499  	if (attr_flags & MOUNT_ATTR_RDONLY)
3500  		mnt_flags |= MNT_READONLY;
3501  	if (attr_flags & MOUNT_ATTR_NOSUID)
3502  		mnt_flags |= MNT_NOSUID;
3503  	if (attr_flags & MOUNT_ATTR_NODEV)
3504  		mnt_flags |= MNT_NODEV;
3505  	if (attr_flags & MOUNT_ATTR_NOEXEC)
3506  		mnt_flags |= MNT_NOEXEC;
3507  	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3508  		mnt_flags |= MNT_NODIRATIME;
3509  	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3510  		mnt_flags |= MNT_NOSYMFOLLOW;
3511  
3512  	return mnt_flags;
3513  }
3514  
3515  /*
3516   * Create a kernel mount representation for a new, prepared superblock
3517   * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3518   */
3519  SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3520  		unsigned int, attr_flags)
3521  {
3522  	struct mnt_namespace *ns;
3523  	struct fs_context *fc;
3524  	struct file *file;
3525  	struct path newmount;
3526  	struct mount *mnt;
3527  	struct fd f;
3528  	unsigned int mnt_flags = 0;
3529  	long ret;
3530  
3531  	if (!may_mount())
3532  		return -EPERM;
3533  
3534  	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3535  		return -EINVAL;
3536  
3537  	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3538  		return -EINVAL;
3539  
3540  	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3541  
3542  	switch (attr_flags & MOUNT_ATTR__ATIME) {
3543  	case MOUNT_ATTR_STRICTATIME:
3544  		break;
3545  	case MOUNT_ATTR_NOATIME:
3546  		mnt_flags |= MNT_NOATIME;
3547  		break;
3548  	case MOUNT_ATTR_RELATIME:
3549  		mnt_flags |= MNT_RELATIME;
3550  		break;
3551  	default:
3552  		return -EINVAL;
3553  	}
3554  
3555  	f = fdget(fs_fd);
3556  	if (!f.file)
3557  		return -EBADF;
3558  
3559  	ret = -EINVAL;
3560  	if (f.file->f_op != &fscontext_fops)
3561  		goto err_fsfd;
3562  
3563  	fc = f.file->private_data;
3564  
3565  	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3566  	if (ret < 0)
3567  		goto err_fsfd;
3568  
3569  	/* There must be a valid superblock or we can't mount it */
3570  	ret = -EINVAL;
3571  	if (!fc->root)
3572  		goto err_unlock;
3573  
3574  	ret = -EPERM;
3575  	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3576  		pr_warn("VFS: Mount too revealing\n");
3577  		goto err_unlock;
3578  	}
3579  
3580  	ret = -EBUSY;
3581  	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3582  		goto err_unlock;
3583  
3584  	ret = -EPERM;
3585  	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3586  		goto err_unlock;
3587  
3588  	newmount.mnt = vfs_create_mount(fc);
3589  	if (IS_ERR(newmount.mnt)) {
3590  		ret = PTR_ERR(newmount.mnt);
3591  		goto err_unlock;
3592  	}
3593  	newmount.dentry = dget(fc->root);
3594  	newmount.mnt->mnt_flags = mnt_flags;
3595  
3596  	/* We've done the mount bit - now move the file context into more or
3597  	 * less the same state as if we'd done an fspick().  We don't want to
3598  	 * do any memory allocation or anything like that at this point as we
3599  	 * don't want to have to handle any errors incurred.
3600  	 */
3601  	vfs_clean_context(fc);
3602  
3603  	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3604  	if (IS_ERR(ns)) {
3605  		ret = PTR_ERR(ns);
3606  		goto err_path;
3607  	}
3608  	mnt = real_mount(newmount.mnt);
3609  	mnt->mnt_ns = ns;
3610  	ns->root = mnt;
3611  	ns->mounts = 1;
3612  	list_add(&mnt->mnt_list, &ns->list);
3613  	mntget(newmount.mnt);
3614  
3615  	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3616  	 * it, not just simply put it.
3617  	 */
3618  	file = dentry_open(&newmount, O_PATH, fc->cred);
3619  	if (IS_ERR(file)) {
3620  		dissolve_on_fput(newmount.mnt);
3621  		ret = PTR_ERR(file);
3622  		goto err_path;
3623  	}
3624  	file->f_mode |= FMODE_NEED_UNMOUNT;
3625  
3626  	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3627  	if (ret >= 0)
3628  		fd_install(ret, file);
3629  	else
3630  		fput(file);
3631  
3632  err_path:
3633  	path_put(&newmount);
3634  err_unlock:
3635  	mutex_unlock(&fc->uapi_mutex);
3636  err_fsfd:
3637  	fdput(f);
3638  	return ret;
3639  }
3640  
3641  /*
3642   * Move a mount from one place to another.  In combination with
3643   * fsopen()/fsmount() this is used to install a new mount and in combination
3644   * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3645   * a mount subtree.
3646   *
3647   * Note the flags value is a combination of MOVE_MOUNT_* flags.
3648   */
3649  SYSCALL_DEFINE5(move_mount,
3650  		int, from_dfd, const char __user *, from_pathname,
3651  		int, to_dfd, const char __user *, to_pathname,
3652  		unsigned int, flags)
3653  {
3654  	struct path from_path, to_path;
3655  	unsigned int lflags;
3656  	int ret = 0;
3657  
3658  	if (!may_mount())
3659  		return -EPERM;
3660  
3661  	if (flags & ~MOVE_MOUNT__MASK)
3662  		return -EINVAL;
3663  
3664  	/* If someone gives a pathname, they aren't permitted to move
3665  	 * from an fd that requires unmount as we can't get at the flag
3666  	 * to clear it afterwards.
3667  	 */
3668  	lflags = 0;
3669  	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3670  	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3671  	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3672  
3673  	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3674  	if (ret < 0)
3675  		return ret;
3676  
3677  	lflags = 0;
3678  	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3679  	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3680  	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3681  
3682  	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3683  	if (ret < 0)
3684  		goto out_from;
3685  
3686  	ret = security_move_mount(&from_path, &to_path);
3687  	if (ret < 0)
3688  		goto out_to;
3689  
3690  	ret = do_move_mount(&from_path, &to_path);
3691  
3692  out_to:
3693  	path_put(&to_path);
3694  out_from:
3695  	path_put(&from_path);
3696  	return ret;
3697  }
3698  
3699  /*
3700   * Return true if path is reachable from root
3701   *
3702   * namespace_sem or mount_lock is held
3703   */
3704  bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3705  			 const struct path *root)
3706  {
3707  	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3708  		dentry = mnt->mnt_mountpoint;
3709  		mnt = mnt->mnt_parent;
3710  	}
3711  	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3712  }
3713  
3714  bool path_is_under(const struct path *path1, const struct path *path2)
3715  {
3716  	bool res;
3717  	read_seqlock_excl(&mount_lock);
3718  	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3719  	read_sequnlock_excl(&mount_lock);
3720  	return res;
3721  }
3722  EXPORT_SYMBOL(path_is_under);
3723  
3724  /*
3725   * pivot_root Semantics:
3726   * Moves the root file system of the current process to the directory put_old,
3727   * makes new_root as the new root file system of the current process, and sets
3728   * root/cwd of all processes which had them on the current root to new_root.
3729   *
3730   * Restrictions:
3731   * The new_root and put_old must be directories, and  must not be on the
3732   * same file  system as the current process root. The put_old  must  be
3733   * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3734   * pointed to by put_old must yield the same directory as new_root. No other
3735   * file system may be mounted on put_old. After all, new_root is a mountpoint.
3736   *
3737   * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3738   * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3739   * in this situation.
3740   *
3741   * Notes:
3742   *  - we don't move root/cwd if they are not at the root (reason: if something
3743   *    cared enough to change them, it's probably wrong to force them elsewhere)
3744   *  - it's okay to pick a root that isn't the root of a file system, e.g.
3745   *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3746   *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3747   *    first.
3748   */
3749  SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3750  		const char __user *, put_old)
3751  {
3752  	struct path new, old, root;
3753  	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3754  	struct mountpoint *old_mp, *root_mp;
3755  	int error;
3756  
3757  	if (!may_mount())
3758  		return -EPERM;
3759  
3760  	error = user_path_at(AT_FDCWD, new_root,
3761  			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3762  	if (error)
3763  		goto out0;
3764  
3765  	error = user_path_at(AT_FDCWD, put_old,
3766  			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3767  	if (error)
3768  		goto out1;
3769  
3770  	error = security_sb_pivotroot(&old, &new);
3771  	if (error)
3772  		goto out2;
3773  
3774  	get_fs_root(current->fs, &root);
3775  	old_mp = lock_mount(&old);
3776  	error = PTR_ERR(old_mp);
3777  	if (IS_ERR(old_mp))
3778  		goto out3;
3779  
3780  	error = -EINVAL;
3781  	new_mnt = real_mount(new.mnt);
3782  	root_mnt = real_mount(root.mnt);
3783  	old_mnt = real_mount(old.mnt);
3784  	ex_parent = new_mnt->mnt_parent;
3785  	root_parent = root_mnt->mnt_parent;
3786  	if (IS_MNT_SHARED(old_mnt) ||
3787  		IS_MNT_SHARED(ex_parent) ||
3788  		IS_MNT_SHARED(root_parent))
3789  		goto out4;
3790  	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3791  		goto out4;
3792  	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3793  		goto out4;
3794  	error = -ENOENT;
3795  	if (d_unlinked(new.dentry))
3796  		goto out4;
3797  	error = -EBUSY;
3798  	if (new_mnt == root_mnt || old_mnt == root_mnt)
3799  		goto out4; /* loop, on the same file system  */
3800  	error = -EINVAL;
3801  	if (root.mnt->mnt_root != root.dentry)
3802  		goto out4; /* not a mountpoint */
3803  	if (!mnt_has_parent(root_mnt))
3804  		goto out4; /* not attached */
3805  	if (new.mnt->mnt_root != new.dentry)
3806  		goto out4; /* not a mountpoint */
3807  	if (!mnt_has_parent(new_mnt))
3808  		goto out4; /* not attached */
3809  	/* make sure we can reach put_old from new_root */
3810  	if (!is_path_reachable(old_mnt, old.dentry, &new))
3811  		goto out4;
3812  	/* make certain new is below the root */
3813  	if (!is_path_reachable(new_mnt, new.dentry, &root))
3814  		goto out4;
3815  	lock_mount_hash();
3816  	umount_mnt(new_mnt);
3817  	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3818  	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3819  		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3820  		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3821  	}
3822  	/* mount old root on put_old */
3823  	attach_mnt(root_mnt, old_mnt, old_mp);
3824  	/* mount new_root on / */
3825  	attach_mnt(new_mnt, root_parent, root_mp);
3826  	mnt_add_count(root_parent, -1);
3827  	touch_mnt_namespace(current->nsproxy->mnt_ns);
3828  	/* A moved mount should not expire automatically */
3829  	list_del_init(&new_mnt->mnt_expire);
3830  	put_mountpoint(root_mp);
3831  	unlock_mount_hash();
3832  	chroot_fs_refs(&root, &new);
3833  	error = 0;
3834  out4:
3835  	unlock_mount(old_mp);
3836  	if (!error)
3837  		mntput_no_expire(ex_parent);
3838  out3:
3839  	path_put(&root);
3840  out2:
3841  	path_put(&old);
3842  out1:
3843  	path_put(&new);
3844  out0:
3845  	return error;
3846  }
3847  
3848  static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3849  {
3850  	unsigned int flags = mnt->mnt.mnt_flags;
3851  
3852  	/*  flags to clear */
3853  	flags &= ~kattr->attr_clr;
3854  	/* flags to raise */
3855  	flags |= kattr->attr_set;
3856  
3857  	return flags;
3858  }
3859  
3860  static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3861  {
3862  	struct vfsmount *m = &mnt->mnt;
3863  
3864  	if (!kattr->mnt_userns)
3865  		return 0;
3866  
3867  	/*
3868  	 * Once a mount has been idmapped we don't allow it to change its
3869  	 * mapping. It makes things simpler and callers can just create
3870  	 * another bind-mount they can idmap if they want to.
3871  	 */
3872  	if (mnt_user_ns(m) != &init_user_ns)
3873  		return -EPERM;
3874  
3875  	/* The underlying filesystem doesn't support idmapped mounts yet. */
3876  	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3877  		return -EINVAL;
3878  
3879  	/* Don't yet support filesystem mountable in user namespaces. */
3880  	if (m->mnt_sb->s_user_ns != &init_user_ns)
3881  		return -EINVAL;
3882  
3883  	/* We're not controlling the superblock. */
3884  	if (!capable(CAP_SYS_ADMIN))
3885  		return -EPERM;
3886  
3887  	/* Mount has already been visible in the filesystem hierarchy. */
3888  	if (!is_anon_ns(mnt->mnt_ns))
3889  		return -EINVAL;
3890  
3891  	return 0;
3892  }
3893  
3894  static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3895  					   struct mount *mnt, int *err)
3896  {
3897  	struct mount *m = mnt, *last = NULL;
3898  
3899  	if (!is_mounted(&m->mnt)) {
3900  		*err = -EINVAL;
3901  		goto out;
3902  	}
3903  
3904  	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3905  		*err = -EINVAL;
3906  		goto out;
3907  	}
3908  
3909  	do {
3910  		unsigned int flags;
3911  
3912  		flags = recalc_flags(kattr, m);
3913  		if (!can_change_locked_flags(m, flags)) {
3914  			*err = -EPERM;
3915  			goto out;
3916  		}
3917  
3918  		*err = can_idmap_mount(kattr, m);
3919  		if (*err)
3920  			goto out;
3921  
3922  		last = m;
3923  
3924  		if ((kattr->attr_set & MNT_READONLY) &&
3925  		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3926  			*err = mnt_hold_writers(m);
3927  			if (*err)
3928  				goto out;
3929  		}
3930  	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3931  
3932  out:
3933  	return last;
3934  }
3935  
3936  static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3937  {
3938  	struct user_namespace *mnt_userns;
3939  
3940  	if (!kattr->mnt_userns)
3941  		return;
3942  
3943  	mnt_userns = get_user_ns(kattr->mnt_userns);
3944  	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
3945  	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3946  }
3947  
3948  static void mount_setattr_commit(struct mount_kattr *kattr,
3949  				 struct mount *mnt, struct mount *last,
3950  				 int err)
3951  {
3952  	struct mount *m = mnt;
3953  
3954  	do {
3955  		if (!err) {
3956  			unsigned int flags;
3957  
3958  			do_idmap_mount(kattr, m);
3959  			flags = recalc_flags(kattr, m);
3960  			WRITE_ONCE(m->mnt.mnt_flags, flags);
3961  		}
3962  
3963  		/*
3964  		 * We either set MNT_READONLY above so make it visible
3965  		 * before ~MNT_WRITE_HOLD or we failed to recursively
3966  		 * apply mount options.
3967  		 */
3968  		if ((kattr->attr_set & MNT_READONLY) &&
3969  		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3970  			mnt_unhold_writers(m);
3971  
3972  		if (!err && kattr->propagation)
3973  			change_mnt_propagation(m, kattr->propagation);
3974  
3975  		/*
3976  		 * On failure, only cleanup until we found the first mount
3977  		 * we failed to handle.
3978  		 */
3979  		if (err && m == last)
3980  			break;
3981  	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3982  
3983  	if (!err)
3984  		touch_mnt_namespace(mnt->mnt_ns);
3985  }
3986  
3987  static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3988  {
3989  	struct mount *mnt = real_mount(path->mnt), *last = NULL;
3990  	int err = 0;
3991  
3992  	if (path->dentry != mnt->mnt.mnt_root)
3993  		return -EINVAL;
3994  
3995  	if (kattr->propagation) {
3996  		/*
3997  		 * Only take namespace_lock() if we're actually changing
3998  		 * propagation.
3999  		 */
4000  		namespace_lock();
4001  		if (kattr->propagation == MS_SHARED) {
4002  			err = invent_group_ids(mnt, kattr->recurse);
4003  			if (err) {
4004  				namespace_unlock();
4005  				return err;
4006  			}
4007  		}
4008  	}
4009  
4010  	lock_mount_hash();
4011  
4012  	/*
4013  	 * Get the mount tree in a shape where we can change mount
4014  	 * properties without failure.
4015  	 */
4016  	last = mount_setattr_prepare(kattr, mnt, &err);
4017  	if (last) /* Commit all changes or revert to the old state. */
4018  		mount_setattr_commit(kattr, mnt, last, err);
4019  
4020  	unlock_mount_hash();
4021  
4022  	if (kattr->propagation) {
4023  		namespace_unlock();
4024  		if (err)
4025  			cleanup_group_ids(mnt, NULL);
4026  	}
4027  
4028  	return err;
4029  }
4030  
4031  static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4032  				struct mount_kattr *kattr, unsigned int flags)
4033  {
4034  	int err = 0;
4035  	struct ns_common *ns;
4036  	struct user_namespace *mnt_userns;
4037  	struct file *file;
4038  
4039  	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4040  		return 0;
4041  
4042  	/*
4043  	 * We currently do not support clearing an idmapped mount. If this ever
4044  	 * is a use-case we can revisit this but for now let's keep it simple
4045  	 * and not allow it.
4046  	 */
4047  	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4048  		return -EINVAL;
4049  
4050  	if (attr->userns_fd > INT_MAX)
4051  		return -EINVAL;
4052  
4053  	file = fget(attr->userns_fd);
4054  	if (!file)
4055  		return -EBADF;
4056  
4057  	if (!proc_ns_file(file)) {
4058  		err = -EINVAL;
4059  		goto out_fput;
4060  	}
4061  
4062  	ns = get_proc_ns(file_inode(file));
4063  	if (ns->ops->type != CLONE_NEWUSER) {
4064  		err = -EINVAL;
4065  		goto out_fput;
4066  	}
4067  
4068  	/*
4069  	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4070  	 * This is simpler than just having to treat NULL as unmapped. Users
4071  	 * wanting to idmap a mount to init_user_ns can just use a namespace
4072  	 * with an identity mapping.
4073  	 */
4074  	mnt_userns = container_of(ns, struct user_namespace, ns);
4075  	if (mnt_userns == &init_user_ns) {
4076  		err = -EPERM;
4077  		goto out_fput;
4078  	}
4079  	kattr->mnt_userns = get_user_ns(mnt_userns);
4080  
4081  out_fput:
4082  	fput(file);
4083  	return err;
4084  }
4085  
4086  static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4087  			     struct mount_kattr *kattr, unsigned int flags)
4088  {
4089  	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4090  
4091  	if (flags & AT_NO_AUTOMOUNT)
4092  		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4093  	if (flags & AT_SYMLINK_NOFOLLOW)
4094  		lookup_flags &= ~LOOKUP_FOLLOW;
4095  	if (flags & AT_EMPTY_PATH)
4096  		lookup_flags |= LOOKUP_EMPTY;
4097  
4098  	*kattr = (struct mount_kattr) {
4099  		.lookup_flags	= lookup_flags,
4100  		.recurse	= !!(flags & AT_RECURSIVE),
4101  	};
4102  
4103  	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4104  		return -EINVAL;
4105  	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4106  		return -EINVAL;
4107  	kattr->propagation = attr->propagation;
4108  
4109  	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4110  		return -EINVAL;
4111  
4112  	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4113  	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4114  
4115  	/*
4116  	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4117  	 * users wanting to transition to a different atime setting cannot
4118  	 * simply specify the atime setting in @attr_set, but must also
4119  	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4120  	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4121  	 * @attr_clr and that @attr_set can't have any atime bits set if
4122  	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4123  	 */
4124  	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4125  		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4126  			return -EINVAL;
4127  
4128  		/*
4129  		 * Clear all previous time settings as they are mutually
4130  		 * exclusive.
4131  		 */
4132  		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4133  		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4134  		case MOUNT_ATTR_RELATIME:
4135  			kattr->attr_set |= MNT_RELATIME;
4136  			break;
4137  		case MOUNT_ATTR_NOATIME:
4138  			kattr->attr_set |= MNT_NOATIME;
4139  			break;
4140  		case MOUNT_ATTR_STRICTATIME:
4141  			break;
4142  		default:
4143  			return -EINVAL;
4144  		}
4145  	} else {
4146  		if (attr->attr_set & MOUNT_ATTR__ATIME)
4147  			return -EINVAL;
4148  	}
4149  
4150  	return build_mount_idmapped(attr, usize, kattr, flags);
4151  }
4152  
4153  static void finish_mount_kattr(struct mount_kattr *kattr)
4154  {
4155  	put_user_ns(kattr->mnt_userns);
4156  	kattr->mnt_userns = NULL;
4157  }
4158  
4159  SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4160  		unsigned int, flags, struct mount_attr __user *, uattr,
4161  		size_t, usize)
4162  {
4163  	int err;
4164  	struct path target;
4165  	struct mount_attr attr;
4166  	struct mount_kattr kattr;
4167  
4168  	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4169  
4170  	if (flags & ~(AT_EMPTY_PATH |
4171  		      AT_RECURSIVE |
4172  		      AT_SYMLINK_NOFOLLOW |
4173  		      AT_NO_AUTOMOUNT))
4174  		return -EINVAL;
4175  
4176  	if (unlikely(usize > PAGE_SIZE))
4177  		return -E2BIG;
4178  	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4179  		return -EINVAL;
4180  
4181  	if (!may_mount())
4182  		return -EPERM;
4183  
4184  	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4185  	if (err)
4186  		return err;
4187  
4188  	/* Don't bother walking through the mounts if this is a nop. */
4189  	if (attr.attr_set == 0 &&
4190  	    attr.attr_clr == 0 &&
4191  	    attr.propagation == 0)
4192  		return 0;
4193  
4194  	err = build_mount_kattr(&attr, usize, &kattr, flags);
4195  	if (err)
4196  		return err;
4197  
4198  	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4199  	if (err)
4200  		return err;
4201  
4202  	err = do_mount_setattr(&target, &kattr);
4203  	finish_mount_kattr(&kattr);
4204  	path_put(&target);
4205  	return err;
4206  }
4207  
4208  static void __init init_mount_tree(void)
4209  {
4210  	struct vfsmount *mnt;
4211  	struct mount *m;
4212  	struct mnt_namespace *ns;
4213  	struct path root;
4214  
4215  	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4216  	if (IS_ERR(mnt))
4217  		panic("Can't create rootfs");
4218  
4219  	ns = alloc_mnt_ns(&init_user_ns, false);
4220  	if (IS_ERR(ns))
4221  		panic("Can't allocate initial namespace");
4222  	m = real_mount(mnt);
4223  	m->mnt_ns = ns;
4224  	ns->root = m;
4225  	ns->mounts = 1;
4226  	list_add(&m->mnt_list, &ns->list);
4227  	init_task.nsproxy->mnt_ns = ns;
4228  	get_mnt_ns(ns);
4229  
4230  	root.mnt = mnt;
4231  	root.dentry = mnt->mnt_root;
4232  	mnt->mnt_flags |= MNT_LOCKED;
4233  
4234  	set_fs_pwd(current->fs, &root);
4235  	set_fs_root(current->fs, &root);
4236  }
4237  
4238  void __init mnt_init(void)
4239  {
4240  	int err;
4241  
4242  	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4243  			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4244  
4245  	mount_hashtable = alloc_large_system_hash("Mount-cache",
4246  				sizeof(struct hlist_head),
4247  				mhash_entries, 19,
4248  				HASH_ZERO,
4249  				&m_hash_shift, &m_hash_mask, 0, 0);
4250  	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4251  				sizeof(struct hlist_head),
4252  				mphash_entries, 19,
4253  				HASH_ZERO,
4254  				&mp_hash_shift, &mp_hash_mask, 0, 0);
4255  
4256  	if (!mount_hashtable || !mountpoint_hashtable)
4257  		panic("Failed to allocate mount hash table\n");
4258  
4259  	kernfs_init();
4260  
4261  	err = sysfs_init();
4262  	if (err)
4263  		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4264  			__func__, err);
4265  	fs_kobj = kobject_create_and_add("fs", NULL);
4266  	if (!fs_kobj)
4267  		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4268  	shmem_init();
4269  	init_rootfs();
4270  	init_mount_tree();
4271  }
4272  
4273  void put_mnt_ns(struct mnt_namespace *ns)
4274  {
4275  	if (!refcount_dec_and_test(&ns->ns.count))
4276  		return;
4277  	drop_collected_mounts(&ns->root->mnt);
4278  	free_mnt_ns(ns);
4279  }
4280  
4281  struct vfsmount *kern_mount(struct file_system_type *type)
4282  {
4283  	struct vfsmount *mnt;
4284  	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4285  	if (!IS_ERR(mnt)) {
4286  		/*
4287  		 * it is a longterm mount, don't release mnt until
4288  		 * we unmount before file sys is unregistered
4289  		*/
4290  		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4291  	}
4292  	return mnt;
4293  }
4294  EXPORT_SYMBOL_GPL(kern_mount);
4295  
4296  void kern_unmount(struct vfsmount *mnt)
4297  {
4298  	/* release long term mount so mount point can be released */
4299  	if (!IS_ERR_OR_NULL(mnt)) {
4300  		real_mount(mnt)->mnt_ns = NULL;
4301  		synchronize_rcu();	/* yecchhh... */
4302  		mntput(mnt);
4303  	}
4304  }
4305  EXPORT_SYMBOL(kern_unmount);
4306  
4307  void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4308  {
4309  	unsigned int i;
4310  
4311  	for (i = 0; i < num; i++)
4312  		if (mnt[i])
4313  			real_mount(mnt[i])->mnt_ns = NULL;
4314  	synchronize_rcu_expedited();
4315  	for (i = 0; i < num; i++)
4316  		mntput(mnt[i]);
4317  }
4318  EXPORT_SYMBOL(kern_unmount_array);
4319  
4320  bool our_mnt(struct vfsmount *mnt)
4321  {
4322  	return check_mnt(real_mount(mnt));
4323  }
4324  
4325  bool current_chrooted(void)
4326  {
4327  	/* Does the current process have a non-standard root */
4328  	struct path ns_root;
4329  	struct path fs_root;
4330  	bool chrooted;
4331  
4332  	/* Find the namespace root */
4333  	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4334  	ns_root.dentry = ns_root.mnt->mnt_root;
4335  	path_get(&ns_root);
4336  	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4337  		;
4338  
4339  	get_fs_root(current->fs, &fs_root);
4340  
4341  	chrooted = !path_equal(&fs_root, &ns_root);
4342  
4343  	path_put(&fs_root);
4344  	path_put(&ns_root);
4345  
4346  	return chrooted;
4347  }
4348  
4349  static bool mnt_already_visible(struct mnt_namespace *ns,
4350  				const struct super_block *sb,
4351  				int *new_mnt_flags)
4352  {
4353  	int new_flags = *new_mnt_flags;
4354  	struct mount *mnt;
4355  	bool visible = false;
4356  
4357  	down_read(&namespace_sem);
4358  	lock_ns_list(ns);
4359  	list_for_each_entry(mnt, &ns->list, mnt_list) {
4360  		struct mount *child;
4361  		int mnt_flags;
4362  
4363  		if (mnt_is_cursor(mnt))
4364  			continue;
4365  
4366  		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4367  			continue;
4368  
4369  		/* This mount is not fully visible if it's root directory
4370  		 * is not the root directory of the filesystem.
4371  		 */
4372  		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4373  			continue;
4374  
4375  		/* A local view of the mount flags */
4376  		mnt_flags = mnt->mnt.mnt_flags;
4377  
4378  		/* Don't miss readonly hidden in the superblock flags */
4379  		if (sb_rdonly(mnt->mnt.mnt_sb))
4380  			mnt_flags |= MNT_LOCK_READONLY;
4381  
4382  		/* Verify the mount flags are equal to or more permissive
4383  		 * than the proposed new mount.
4384  		 */
4385  		if ((mnt_flags & MNT_LOCK_READONLY) &&
4386  		    !(new_flags & MNT_READONLY))
4387  			continue;
4388  		if ((mnt_flags & MNT_LOCK_ATIME) &&
4389  		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4390  			continue;
4391  
4392  		/* This mount is not fully visible if there are any
4393  		 * locked child mounts that cover anything except for
4394  		 * empty directories.
4395  		 */
4396  		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4397  			struct inode *inode = child->mnt_mountpoint->d_inode;
4398  			/* Only worry about locked mounts */
4399  			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4400  				continue;
4401  			/* Is the directory permanetly empty? */
4402  			if (!is_empty_dir_inode(inode))
4403  				goto next;
4404  		}
4405  		/* Preserve the locked attributes */
4406  		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4407  					       MNT_LOCK_ATIME);
4408  		visible = true;
4409  		goto found;
4410  	next:	;
4411  	}
4412  found:
4413  	unlock_ns_list(ns);
4414  	up_read(&namespace_sem);
4415  	return visible;
4416  }
4417  
4418  static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4419  {
4420  	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4421  	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4422  	unsigned long s_iflags;
4423  
4424  	if (ns->user_ns == &init_user_ns)
4425  		return false;
4426  
4427  	/* Can this filesystem be too revealing? */
4428  	s_iflags = sb->s_iflags;
4429  	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4430  		return false;
4431  
4432  	if ((s_iflags & required_iflags) != required_iflags) {
4433  		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4434  			  required_iflags);
4435  		return true;
4436  	}
4437  
4438  	return !mnt_already_visible(ns, sb, new_mnt_flags);
4439  }
4440  
4441  bool mnt_may_suid(struct vfsmount *mnt)
4442  {
4443  	/*
4444  	 * Foreign mounts (accessed via fchdir or through /proc
4445  	 * symlinks) are always treated as if they are nosuid.  This
4446  	 * prevents namespaces from trusting potentially unsafe
4447  	 * suid/sgid bits, file caps, or security labels that originate
4448  	 * in other namespaces.
4449  	 */
4450  	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4451  	       current_in_userns(mnt->mnt_sb->s_user_ns);
4452  }
4453  
4454  static struct ns_common *mntns_get(struct task_struct *task)
4455  {
4456  	struct ns_common *ns = NULL;
4457  	struct nsproxy *nsproxy;
4458  
4459  	task_lock(task);
4460  	nsproxy = task->nsproxy;
4461  	if (nsproxy) {
4462  		ns = &nsproxy->mnt_ns->ns;
4463  		get_mnt_ns(to_mnt_ns(ns));
4464  	}
4465  	task_unlock(task);
4466  
4467  	return ns;
4468  }
4469  
4470  static void mntns_put(struct ns_common *ns)
4471  {
4472  	put_mnt_ns(to_mnt_ns(ns));
4473  }
4474  
4475  static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4476  {
4477  	struct nsproxy *nsproxy = nsset->nsproxy;
4478  	struct fs_struct *fs = nsset->fs;
4479  	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4480  	struct user_namespace *user_ns = nsset->cred->user_ns;
4481  	struct path root;
4482  	int err;
4483  
4484  	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4485  	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4486  	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4487  		return -EPERM;
4488  
4489  	if (is_anon_ns(mnt_ns))
4490  		return -EINVAL;
4491  
4492  	if (fs->users != 1)
4493  		return -EINVAL;
4494  
4495  	get_mnt_ns(mnt_ns);
4496  	old_mnt_ns = nsproxy->mnt_ns;
4497  	nsproxy->mnt_ns = mnt_ns;
4498  
4499  	/* Find the root */
4500  	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4501  				"/", LOOKUP_DOWN, &root);
4502  	if (err) {
4503  		/* revert to old namespace */
4504  		nsproxy->mnt_ns = old_mnt_ns;
4505  		put_mnt_ns(mnt_ns);
4506  		return err;
4507  	}
4508  
4509  	put_mnt_ns(old_mnt_ns);
4510  
4511  	/* Update the pwd and root */
4512  	set_fs_pwd(fs, &root);
4513  	set_fs_root(fs, &root);
4514  
4515  	path_put(&root);
4516  	return 0;
4517  }
4518  
4519  static struct user_namespace *mntns_owner(struct ns_common *ns)
4520  {
4521  	return to_mnt_ns(ns)->user_ns;
4522  }
4523  
4524  const struct proc_ns_operations mntns_operations = {
4525  	.name		= "mnt",
4526  	.type		= CLONE_NEWNS,
4527  	.get		= mntns_get,
4528  	.put		= mntns_put,
4529  	.install	= mntns_install,
4530  	.owner		= mntns_owner,
4531  };
4532