xref: /linux/fs/namespace.c (revision a078ccff5642a8fe792a43b3d973bcc3f6dd733f)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/ramfs.h>	/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27 
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30 
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37 
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41 
42 /* /sys/fs */
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
45 
46 /*
47  * vfsmount lock may be taken for read to prevent changes to the
48  * vfsmount hash, ie. during mountpoint lookups or walking back
49  * up the tree.
50  *
51  * It should be taken for write in all cases where the vfsmount
52  * tree or hash is modified or when a vfsmount structure is modified.
53  */
54 DEFINE_BRLOCK(vfsmount_lock);
55 
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 {
58 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 	tmp = tmp + (tmp >> HASH_SHIFT);
61 	return tmp & (HASH_SIZE - 1);
62 }
63 
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 
66 /*
67  * allocation is serialized by namespace_sem, but we need the spinlock to
68  * serialize with freeing.
69  */
70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 	int res;
73 
74 retry:
75 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 	spin_lock(&mnt_id_lock);
77 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 	if (!res)
79 		mnt_id_start = mnt->mnt_id + 1;
80 	spin_unlock(&mnt_id_lock);
81 	if (res == -EAGAIN)
82 		goto retry;
83 
84 	return res;
85 }
86 
87 static void mnt_free_id(struct mount *mnt)
88 {
89 	int id = mnt->mnt_id;
90 	spin_lock(&mnt_id_lock);
91 	ida_remove(&mnt_id_ida, id);
92 	if (mnt_id_start > id)
93 		mnt_id_start = id;
94 	spin_unlock(&mnt_id_lock);
95 }
96 
97 /*
98  * Allocate a new peer group ID
99  *
100  * mnt_group_ida is protected by namespace_sem
101  */
102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 	int res;
105 
106 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 		return -ENOMEM;
108 
109 	res = ida_get_new_above(&mnt_group_ida,
110 				mnt_group_start,
111 				&mnt->mnt_group_id);
112 	if (!res)
113 		mnt_group_start = mnt->mnt_group_id + 1;
114 
115 	return res;
116 }
117 
118 /*
119  * Release a peer group ID
120  */
121 void mnt_release_group_id(struct mount *mnt)
122 {
123 	int id = mnt->mnt_group_id;
124 	ida_remove(&mnt_group_ida, id);
125 	if (mnt_group_start > id)
126 		mnt_group_start = id;
127 	mnt->mnt_group_id = 0;
128 }
129 
130 /*
131  * vfsmount lock must be held for read
132  */
133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 	preempt_disable();
139 	mnt->mnt_count += n;
140 	preempt_enable();
141 #endif
142 }
143 
144 /*
145  * vfsmount lock must be held for write
146  */
147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 	unsigned int count = 0;
151 	int cpu;
152 
153 	for_each_possible_cpu(cpu) {
154 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 	}
156 
157 	return count;
158 #else
159 	return mnt->mnt_count;
160 #endif
161 }
162 
163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 	if (mnt) {
167 		int err;
168 
169 		err = mnt_alloc_id(mnt);
170 		if (err)
171 			goto out_free_cache;
172 
173 		if (name) {
174 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 			if (!mnt->mnt_devname)
176 				goto out_free_id;
177 		}
178 
179 #ifdef CONFIG_SMP
180 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 		if (!mnt->mnt_pcp)
182 			goto out_free_devname;
183 
184 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 		mnt->mnt_count = 1;
187 		mnt->mnt_writers = 0;
188 #endif
189 
190 		INIT_LIST_HEAD(&mnt->mnt_hash);
191 		INIT_LIST_HEAD(&mnt->mnt_child);
192 		INIT_LIST_HEAD(&mnt->mnt_mounts);
193 		INIT_LIST_HEAD(&mnt->mnt_list);
194 		INIT_LIST_HEAD(&mnt->mnt_expire);
195 		INIT_LIST_HEAD(&mnt->mnt_share);
196 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 		INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 	}
202 	return mnt;
203 
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 	kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 	mnt_free_id(mnt);
210 out_free_cache:
211 	kmem_cache_free(mnt_cache, mnt);
212 	return NULL;
213 }
214 
215 /*
216  * Most r/o checks on a fs are for operations that take
217  * discrete amounts of time, like a write() or unlink().
218  * We must keep track of when those operations start
219  * (for permission checks) and when they end, so that
220  * we can determine when writes are able to occur to
221  * a filesystem.
222  */
223 /*
224  * __mnt_is_readonly: check whether a mount is read-only
225  * @mnt: the mount to check for its write status
226  *
227  * This shouldn't be used directly ouside of the VFS.
228  * It does not guarantee that the filesystem will stay
229  * r/w, just that it is right *now*.  This can not and
230  * should not be used in place of IS_RDONLY(inode).
231  * mnt_want/drop_write() will _keep_ the filesystem
232  * r/w.
233  */
234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 	if (mnt->mnt_flags & MNT_READONLY)
237 		return 1;
238 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 		return 1;
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243 
244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 	mnt->mnt_writers++;
250 #endif
251 }
252 
253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 	mnt->mnt_writers--;
259 #endif
260 }
261 
262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 	unsigned int count = 0;
266 	int cpu;
267 
268 	for_each_possible_cpu(cpu) {
269 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 	}
271 
272 	return count;
273 #else
274 	return mnt->mnt_writers;
275 #endif
276 }
277 
278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 	if (mnt->mnt_sb->s_readonly_remount)
281 		return 1;
282 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 	smp_rmb();
284 	return __mnt_is_readonly(mnt);
285 }
286 
287 /*
288  * Most r/o & frozen checks on a fs are for operations that take discrete
289  * amounts of time, like a write() or unlink().  We must keep track of when
290  * those operations start (for permission checks) and when they end, so that we
291  * can determine when writes are able to occur to a filesystem.
292  */
293 /**
294  * __mnt_want_write - get write access to a mount without freeze protection
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is about to be performed to
298  * it, and makes sure that writes are allowed (mnt it read-write) before
299  * returning success. This operation does not protect against filesystem being
300  * frozen. When the write operation is finished, __mnt_drop_write() must be
301  * called. This is effectively a refcount.
302  */
303 int __mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 
330 	return ret;
331 }
332 
333 /**
334  * mnt_want_write - get write access to a mount
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mount is read-write, filesystem
339  * is not frozen) before returning success.  When the write operation is
340  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
341  */
342 int mnt_want_write(struct vfsmount *m)
343 {
344 	int ret;
345 
346 	sb_start_write(m->mnt_sb);
347 	ret = __mnt_want_write(m);
348 	if (ret)
349 		sb_end_write(m->mnt_sb);
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(mnt_want_write);
353 
354 /**
355  * mnt_clone_write - get write access to a mount
356  * @mnt: the mount on which to take a write
357  *
358  * This is effectively like mnt_want_write, except
359  * it must only be used to take an extra write reference
360  * on a mountpoint that we already know has a write reference
361  * on it. This allows some optimisation.
362  *
363  * After finished, mnt_drop_write must be called as usual to
364  * drop the reference.
365  */
366 int mnt_clone_write(struct vfsmount *mnt)
367 {
368 	/* superblock may be r/o */
369 	if (__mnt_is_readonly(mnt))
370 		return -EROFS;
371 	preempt_disable();
372 	mnt_inc_writers(real_mount(mnt));
373 	preempt_enable();
374 	return 0;
375 }
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
377 
378 /**
379  * __mnt_want_write_file - get write access to a file's mount
380  * @file: the file who's mount on which to take a write
381  *
382  * This is like __mnt_want_write, but it takes a file and can
383  * do some optimisations if the file is open for write already
384  */
385 int __mnt_want_write_file(struct file *file)
386 {
387 	struct inode *inode = file_inode(file);
388 
389 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 		return __mnt_want_write(file->f_path.mnt);
391 	else
392 		return mnt_clone_write(file->f_path.mnt);
393 }
394 
395 /**
396  * mnt_want_write_file - get write access to a file's mount
397  * @file: the file who's mount on which to take a write
398  *
399  * This is like mnt_want_write, but it takes a file and can
400  * do some optimisations if the file is open for write already
401  */
402 int mnt_want_write_file(struct file *file)
403 {
404 	int ret;
405 
406 	sb_start_write(file->f_path.mnt->mnt_sb);
407 	ret = __mnt_want_write_file(file);
408 	if (ret)
409 		sb_end_write(file->f_path.mnt->mnt_sb);
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
413 
414 /**
415  * __mnt_drop_write - give up write access to a mount
416  * @mnt: the mount on which to give up write access
417  *
418  * Tells the low-level filesystem that we are done
419  * performing writes to it.  Must be matched with
420  * __mnt_want_write() call above.
421  */
422 void __mnt_drop_write(struct vfsmount *mnt)
423 {
424 	preempt_disable();
425 	mnt_dec_writers(real_mount(mnt));
426 	preempt_enable();
427 }
428 
429 /**
430  * mnt_drop_write - give up write access to a mount
431  * @mnt: the mount on which to give up write access
432  *
433  * Tells the low-level filesystem that we are done performing writes to it and
434  * also allows filesystem to be frozen again.  Must be matched with
435  * mnt_want_write() call above.
436  */
437 void mnt_drop_write(struct vfsmount *mnt)
438 {
439 	__mnt_drop_write(mnt);
440 	sb_end_write(mnt->mnt_sb);
441 }
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
443 
444 void __mnt_drop_write_file(struct file *file)
445 {
446 	__mnt_drop_write(file->f_path.mnt);
447 }
448 
449 void mnt_drop_write_file(struct file *file)
450 {
451 	mnt_drop_write(file->f_path.mnt);
452 }
453 EXPORT_SYMBOL(mnt_drop_write_file);
454 
455 static int mnt_make_readonly(struct mount *mnt)
456 {
457 	int ret = 0;
458 
459 	br_write_lock(&vfsmount_lock);
460 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 	/*
462 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 	 * should be visible before we do.
464 	 */
465 	smp_mb();
466 
467 	/*
468 	 * With writers on hold, if this value is zero, then there are
469 	 * definitely no active writers (although held writers may subsequently
470 	 * increment the count, they'll have to wait, and decrement it after
471 	 * seeing MNT_READONLY).
472 	 *
473 	 * It is OK to have counter incremented on one CPU and decremented on
474 	 * another: the sum will add up correctly. The danger would be when we
475 	 * sum up each counter, if we read a counter before it is incremented,
476 	 * but then read another CPU's count which it has been subsequently
477 	 * decremented from -- we would see more decrements than we should.
478 	 * MNT_WRITE_HOLD protects against this scenario, because
479 	 * mnt_want_write first increments count, then smp_mb, then spins on
480 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 	 * we're counting up here.
482 	 */
483 	if (mnt_get_writers(mnt) > 0)
484 		ret = -EBUSY;
485 	else
486 		mnt->mnt.mnt_flags |= MNT_READONLY;
487 	/*
488 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 	 * that become unheld will see MNT_READONLY.
490 	 */
491 	smp_wmb();
492 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 	br_write_unlock(&vfsmount_lock);
494 	return ret;
495 }
496 
497 static void __mnt_unmake_readonly(struct mount *mnt)
498 {
499 	br_write_lock(&vfsmount_lock);
500 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 	br_write_unlock(&vfsmount_lock);
502 }
503 
504 int sb_prepare_remount_readonly(struct super_block *sb)
505 {
506 	struct mount *mnt;
507 	int err = 0;
508 
509 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
510 	if (atomic_long_read(&sb->s_remove_count))
511 		return -EBUSY;
512 
513 	br_write_lock(&vfsmount_lock);
514 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 			smp_mb();
518 			if (mnt_get_writers(mnt) > 0) {
519 				err = -EBUSY;
520 				break;
521 			}
522 		}
523 	}
524 	if (!err && atomic_long_read(&sb->s_remove_count))
525 		err = -EBUSY;
526 
527 	if (!err) {
528 		sb->s_readonly_remount = 1;
529 		smp_wmb();
530 	}
531 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 	}
535 	br_write_unlock(&vfsmount_lock);
536 
537 	return err;
538 }
539 
540 static void free_vfsmnt(struct mount *mnt)
541 {
542 	kfree(mnt->mnt_devname);
543 	mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 	free_percpu(mnt->mnt_pcp);
546 #endif
547 	kmem_cache_free(mnt_cache, mnt);
548 }
549 
550 /*
551  * find the first or last mount at @dentry on vfsmount @mnt depending on
552  * @dir. If @dir is set return the first mount else return the last mount.
553  * vfsmount_lock must be held for read or write.
554  */
555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 			      int dir)
557 {
558 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 	struct list_head *tmp = head;
560 	struct mount *p, *found = NULL;
561 
562 	for (;;) {
563 		tmp = dir ? tmp->next : tmp->prev;
564 		p = NULL;
565 		if (tmp == head)
566 			break;
567 		p = list_entry(tmp, struct mount, mnt_hash);
568 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 			found = p;
570 			break;
571 		}
572 	}
573 	return found;
574 }
575 
576 /*
577  * lookup_mnt - Return the first child mount mounted at path
578  *
579  * "First" means first mounted chronologically.  If you create the
580  * following mounts:
581  *
582  * mount /dev/sda1 /mnt
583  * mount /dev/sda2 /mnt
584  * mount /dev/sda3 /mnt
585  *
586  * Then lookup_mnt() on the base /mnt dentry in the root mount will
587  * return successively the root dentry and vfsmount of /dev/sda1, then
588  * /dev/sda2, then /dev/sda3, then NULL.
589  *
590  * lookup_mnt takes a reference to the found vfsmount.
591  */
592 struct vfsmount *lookup_mnt(struct path *path)
593 {
594 	struct mount *child_mnt;
595 
596 	br_read_lock(&vfsmount_lock);
597 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 	if (child_mnt) {
599 		mnt_add_count(child_mnt, 1);
600 		br_read_unlock(&vfsmount_lock);
601 		return &child_mnt->mnt;
602 	} else {
603 		br_read_unlock(&vfsmount_lock);
604 		return NULL;
605 	}
606 }
607 
608 static inline int check_mnt(struct mount *mnt)
609 {
610 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
611 }
612 
613 /*
614  * vfsmount lock must be held for write
615  */
616 static void touch_mnt_namespace(struct mnt_namespace *ns)
617 {
618 	if (ns) {
619 		ns->event = ++event;
620 		wake_up_interruptible(&ns->poll);
621 	}
622 }
623 
624 /*
625  * vfsmount lock must be held for write
626  */
627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
628 {
629 	if (ns && ns->event != event) {
630 		ns->event = event;
631 		wake_up_interruptible(&ns->poll);
632 	}
633 }
634 
635 /*
636  * Clear dentry's mounted state if it has no remaining mounts.
637  * vfsmount_lock must be held for write.
638  */
639 static void dentry_reset_mounted(struct dentry *dentry)
640 {
641 	unsigned u;
642 
643 	for (u = 0; u < HASH_SIZE; u++) {
644 		struct mount *p;
645 
646 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 			if (p->mnt_mountpoint == dentry)
648 				return;
649 		}
650 	}
651 	spin_lock(&dentry->d_lock);
652 	dentry->d_flags &= ~DCACHE_MOUNTED;
653 	spin_unlock(&dentry->d_lock);
654 }
655 
656 /*
657  * vfsmount lock must be held for write
658  */
659 static void detach_mnt(struct mount *mnt, struct path *old_path)
660 {
661 	old_path->dentry = mnt->mnt_mountpoint;
662 	old_path->mnt = &mnt->mnt_parent->mnt;
663 	mnt->mnt_parent = mnt;
664 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 	list_del_init(&mnt->mnt_child);
666 	list_del_init(&mnt->mnt_hash);
667 	dentry_reset_mounted(old_path->dentry);
668 }
669 
670 /*
671  * vfsmount lock must be held for write
672  */
673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 			struct mount *child_mnt)
675 {
676 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
677 	child_mnt->mnt_mountpoint = dget(dentry);
678 	child_mnt->mnt_parent = mnt;
679 	spin_lock(&dentry->d_lock);
680 	dentry->d_flags |= DCACHE_MOUNTED;
681 	spin_unlock(&dentry->d_lock);
682 }
683 
684 /*
685  * vfsmount lock must be held for write
686  */
687 static void attach_mnt(struct mount *mnt, struct path *path)
688 {
689 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 			hash(path->mnt, path->dentry));
692 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
693 }
694 
695 /*
696  * vfsmount lock must be held for write
697  */
698 static void commit_tree(struct mount *mnt)
699 {
700 	struct mount *parent = mnt->mnt_parent;
701 	struct mount *m;
702 	LIST_HEAD(head);
703 	struct mnt_namespace *n = parent->mnt_ns;
704 
705 	BUG_ON(parent == mnt);
706 
707 	list_add_tail(&head, &mnt->mnt_list);
708 	list_for_each_entry(m, &head, mnt_list)
709 		m->mnt_ns = n;
710 
711 	list_splice(&head, n->list.prev);
712 
713 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 				hash(&parent->mnt, mnt->mnt_mountpoint));
715 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 	touch_mnt_namespace(n);
717 }
718 
719 static struct mount *next_mnt(struct mount *p, struct mount *root)
720 {
721 	struct list_head *next = p->mnt_mounts.next;
722 	if (next == &p->mnt_mounts) {
723 		while (1) {
724 			if (p == root)
725 				return NULL;
726 			next = p->mnt_child.next;
727 			if (next != &p->mnt_parent->mnt_mounts)
728 				break;
729 			p = p->mnt_parent;
730 		}
731 	}
732 	return list_entry(next, struct mount, mnt_child);
733 }
734 
735 static struct mount *skip_mnt_tree(struct mount *p)
736 {
737 	struct list_head *prev = p->mnt_mounts.prev;
738 	while (prev != &p->mnt_mounts) {
739 		p = list_entry(prev, struct mount, mnt_child);
740 		prev = p->mnt_mounts.prev;
741 	}
742 	return p;
743 }
744 
745 struct vfsmount *
746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747 {
748 	struct mount *mnt;
749 	struct dentry *root;
750 
751 	if (!type)
752 		return ERR_PTR(-ENODEV);
753 
754 	mnt = alloc_vfsmnt(name);
755 	if (!mnt)
756 		return ERR_PTR(-ENOMEM);
757 
758 	if (flags & MS_KERNMOUNT)
759 		mnt->mnt.mnt_flags = MNT_INTERNAL;
760 
761 	root = mount_fs(type, flags, name, data);
762 	if (IS_ERR(root)) {
763 		free_vfsmnt(mnt);
764 		return ERR_CAST(root);
765 	}
766 
767 	mnt->mnt.mnt_root = root;
768 	mnt->mnt.mnt_sb = root->d_sb;
769 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 	mnt->mnt_parent = mnt;
771 	br_write_lock(&vfsmount_lock);
772 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 	br_write_unlock(&vfsmount_lock);
774 	return &mnt->mnt;
775 }
776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
777 
778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
779 					int flag)
780 {
781 	struct super_block *sb = old->mnt.mnt_sb;
782 	struct mount *mnt;
783 	int err;
784 
785 	mnt = alloc_vfsmnt(old->mnt_devname);
786 	if (!mnt)
787 		return ERR_PTR(-ENOMEM);
788 
789 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
790 		mnt->mnt_group_id = 0; /* not a peer of original */
791 	else
792 		mnt->mnt_group_id = old->mnt_group_id;
793 
794 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 		err = mnt_alloc_group_id(mnt);
796 		if (err)
797 			goto out_free;
798 	}
799 
800 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 	/* Don't allow unprivileged users to change mount flags */
802 	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
803 		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
804 
805 	atomic_inc(&sb->s_active);
806 	mnt->mnt.mnt_sb = sb;
807 	mnt->mnt.mnt_root = dget(root);
808 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 	mnt->mnt_parent = mnt;
810 	br_write_lock(&vfsmount_lock);
811 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
812 	br_write_unlock(&vfsmount_lock);
813 
814 	if ((flag & CL_SLAVE) ||
815 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
816 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
817 		mnt->mnt_master = old;
818 		CLEAR_MNT_SHARED(mnt);
819 	} else if (!(flag & CL_PRIVATE)) {
820 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
821 			list_add(&mnt->mnt_share, &old->mnt_share);
822 		if (IS_MNT_SLAVE(old))
823 			list_add(&mnt->mnt_slave, &old->mnt_slave);
824 		mnt->mnt_master = old->mnt_master;
825 	}
826 	if (flag & CL_MAKE_SHARED)
827 		set_mnt_shared(mnt);
828 
829 	/* stick the duplicate mount on the same expiry list
830 	 * as the original if that was on one */
831 	if (flag & CL_EXPIRE) {
832 		if (!list_empty(&old->mnt_expire))
833 			list_add(&mnt->mnt_expire, &old->mnt_expire);
834 	}
835 
836 	return mnt;
837 
838  out_free:
839 	free_vfsmnt(mnt);
840 	return ERR_PTR(err);
841 }
842 
843 static inline void mntfree(struct mount *mnt)
844 {
845 	struct vfsmount *m = &mnt->mnt;
846 	struct super_block *sb = m->mnt_sb;
847 
848 	/*
849 	 * This probably indicates that somebody messed
850 	 * up a mnt_want/drop_write() pair.  If this
851 	 * happens, the filesystem was probably unable
852 	 * to make r/w->r/o transitions.
853 	 */
854 	/*
855 	 * The locking used to deal with mnt_count decrement provides barriers,
856 	 * so mnt_get_writers() below is safe.
857 	 */
858 	WARN_ON(mnt_get_writers(mnt));
859 	fsnotify_vfsmount_delete(m);
860 	dput(m->mnt_root);
861 	free_vfsmnt(mnt);
862 	deactivate_super(sb);
863 }
864 
865 static void mntput_no_expire(struct mount *mnt)
866 {
867 put_again:
868 #ifdef CONFIG_SMP
869 	br_read_lock(&vfsmount_lock);
870 	if (likely(mnt->mnt_ns)) {
871 		/* shouldn't be the last one */
872 		mnt_add_count(mnt, -1);
873 		br_read_unlock(&vfsmount_lock);
874 		return;
875 	}
876 	br_read_unlock(&vfsmount_lock);
877 
878 	br_write_lock(&vfsmount_lock);
879 	mnt_add_count(mnt, -1);
880 	if (mnt_get_count(mnt)) {
881 		br_write_unlock(&vfsmount_lock);
882 		return;
883 	}
884 #else
885 	mnt_add_count(mnt, -1);
886 	if (likely(mnt_get_count(mnt)))
887 		return;
888 	br_write_lock(&vfsmount_lock);
889 #endif
890 	if (unlikely(mnt->mnt_pinned)) {
891 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
892 		mnt->mnt_pinned = 0;
893 		br_write_unlock(&vfsmount_lock);
894 		acct_auto_close_mnt(&mnt->mnt);
895 		goto put_again;
896 	}
897 
898 	list_del(&mnt->mnt_instance);
899 	br_write_unlock(&vfsmount_lock);
900 	mntfree(mnt);
901 }
902 
903 void mntput(struct vfsmount *mnt)
904 {
905 	if (mnt) {
906 		struct mount *m = real_mount(mnt);
907 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
908 		if (unlikely(m->mnt_expiry_mark))
909 			m->mnt_expiry_mark = 0;
910 		mntput_no_expire(m);
911 	}
912 }
913 EXPORT_SYMBOL(mntput);
914 
915 struct vfsmount *mntget(struct vfsmount *mnt)
916 {
917 	if (mnt)
918 		mnt_add_count(real_mount(mnt), 1);
919 	return mnt;
920 }
921 EXPORT_SYMBOL(mntget);
922 
923 void mnt_pin(struct vfsmount *mnt)
924 {
925 	br_write_lock(&vfsmount_lock);
926 	real_mount(mnt)->mnt_pinned++;
927 	br_write_unlock(&vfsmount_lock);
928 }
929 EXPORT_SYMBOL(mnt_pin);
930 
931 void mnt_unpin(struct vfsmount *m)
932 {
933 	struct mount *mnt = real_mount(m);
934 	br_write_lock(&vfsmount_lock);
935 	if (mnt->mnt_pinned) {
936 		mnt_add_count(mnt, 1);
937 		mnt->mnt_pinned--;
938 	}
939 	br_write_unlock(&vfsmount_lock);
940 }
941 EXPORT_SYMBOL(mnt_unpin);
942 
943 static inline void mangle(struct seq_file *m, const char *s)
944 {
945 	seq_escape(m, s, " \t\n\\");
946 }
947 
948 /*
949  * Simple .show_options callback for filesystems which don't want to
950  * implement more complex mount option showing.
951  *
952  * See also save_mount_options().
953  */
954 int generic_show_options(struct seq_file *m, struct dentry *root)
955 {
956 	const char *options;
957 
958 	rcu_read_lock();
959 	options = rcu_dereference(root->d_sb->s_options);
960 
961 	if (options != NULL && options[0]) {
962 		seq_putc(m, ',');
963 		mangle(m, options);
964 	}
965 	rcu_read_unlock();
966 
967 	return 0;
968 }
969 EXPORT_SYMBOL(generic_show_options);
970 
971 /*
972  * If filesystem uses generic_show_options(), this function should be
973  * called from the fill_super() callback.
974  *
975  * The .remount_fs callback usually needs to be handled in a special
976  * way, to make sure, that previous options are not overwritten if the
977  * remount fails.
978  *
979  * Also note, that if the filesystem's .remount_fs function doesn't
980  * reset all options to their default value, but changes only newly
981  * given options, then the displayed options will not reflect reality
982  * any more.
983  */
984 void save_mount_options(struct super_block *sb, char *options)
985 {
986 	BUG_ON(sb->s_options);
987 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
988 }
989 EXPORT_SYMBOL(save_mount_options);
990 
991 void replace_mount_options(struct super_block *sb, char *options)
992 {
993 	char *old = sb->s_options;
994 	rcu_assign_pointer(sb->s_options, options);
995 	if (old) {
996 		synchronize_rcu();
997 		kfree(old);
998 	}
999 }
1000 EXPORT_SYMBOL(replace_mount_options);
1001 
1002 #ifdef CONFIG_PROC_FS
1003 /* iterator; we want it to have access to namespace_sem, thus here... */
1004 static void *m_start(struct seq_file *m, loff_t *pos)
1005 {
1006 	struct proc_mounts *p = proc_mounts(m);
1007 
1008 	down_read(&namespace_sem);
1009 	return seq_list_start(&p->ns->list, *pos);
1010 }
1011 
1012 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1013 {
1014 	struct proc_mounts *p = proc_mounts(m);
1015 
1016 	return seq_list_next(v, &p->ns->list, pos);
1017 }
1018 
1019 static void m_stop(struct seq_file *m, void *v)
1020 {
1021 	up_read(&namespace_sem);
1022 }
1023 
1024 static int m_show(struct seq_file *m, void *v)
1025 {
1026 	struct proc_mounts *p = proc_mounts(m);
1027 	struct mount *r = list_entry(v, struct mount, mnt_list);
1028 	return p->show(m, &r->mnt);
1029 }
1030 
1031 const struct seq_operations mounts_op = {
1032 	.start	= m_start,
1033 	.next	= m_next,
1034 	.stop	= m_stop,
1035 	.show	= m_show,
1036 };
1037 #endif  /* CONFIG_PROC_FS */
1038 
1039 /**
1040  * may_umount_tree - check if a mount tree is busy
1041  * @mnt: root of mount tree
1042  *
1043  * This is called to check if a tree of mounts has any
1044  * open files, pwds, chroots or sub mounts that are
1045  * busy.
1046  */
1047 int may_umount_tree(struct vfsmount *m)
1048 {
1049 	struct mount *mnt = real_mount(m);
1050 	int actual_refs = 0;
1051 	int minimum_refs = 0;
1052 	struct mount *p;
1053 	BUG_ON(!m);
1054 
1055 	/* write lock needed for mnt_get_count */
1056 	br_write_lock(&vfsmount_lock);
1057 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1058 		actual_refs += mnt_get_count(p);
1059 		minimum_refs += 2;
1060 	}
1061 	br_write_unlock(&vfsmount_lock);
1062 
1063 	if (actual_refs > minimum_refs)
1064 		return 0;
1065 
1066 	return 1;
1067 }
1068 
1069 EXPORT_SYMBOL(may_umount_tree);
1070 
1071 /**
1072  * may_umount - check if a mount point is busy
1073  * @mnt: root of mount
1074  *
1075  * This is called to check if a mount point has any
1076  * open files, pwds, chroots or sub mounts. If the
1077  * mount has sub mounts this will return busy
1078  * regardless of whether the sub mounts are busy.
1079  *
1080  * Doesn't take quota and stuff into account. IOW, in some cases it will
1081  * give false negatives. The main reason why it's here is that we need
1082  * a non-destructive way to look for easily umountable filesystems.
1083  */
1084 int may_umount(struct vfsmount *mnt)
1085 {
1086 	int ret = 1;
1087 	down_read(&namespace_sem);
1088 	br_write_lock(&vfsmount_lock);
1089 	if (propagate_mount_busy(real_mount(mnt), 2))
1090 		ret = 0;
1091 	br_write_unlock(&vfsmount_lock);
1092 	up_read(&namespace_sem);
1093 	return ret;
1094 }
1095 
1096 EXPORT_SYMBOL(may_umount);
1097 
1098 void release_mounts(struct list_head *head)
1099 {
1100 	struct mount *mnt;
1101 	while (!list_empty(head)) {
1102 		mnt = list_first_entry(head, struct mount, mnt_hash);
1103 		list_del_init(&mnt->mnt_hash);
1104 		if (mnt_has_parent(mnt)) {
1105 			struct dentry *dentry;
1106 			struct mount *m;
1107 
1108 			br_write_lock(&vfsmount_lock);
1109 			dentry = mnt->mnt_mountpoint;
1110 			m = mnt->mnt_parent;
1111 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1112 			mnt->mnt_parent = mnt;
1113 			m->mnt_ghosts--;
1114 			br_write_unlock(&vfsmount_lock);
1115 			dput(dentry);
1116 			mntput(&m->mnt);
1117 		}
1118 		mntput(&mnt->mnt);
1119 	}
1120 }
1121 
1122 /*
1123  * vfsmount lock must be held for write
1124  * namespace_sem must be held for write
1125  */
1126 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1127 {
1128 	LIST_HEAD(tmp_list);
1129 	struct mount *p;
1130 
1131 	for (p = mnt; p; p = next_mnt(p, mnt))
1132 		list_move(&p->mnt_hash, &tmp_list);
1133 
1134 	if (propagate)
1135 		propagate_umount(&tmp_list);
1136 
1137 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1138 		list_del_init(&p->mnt_expire);
1139 		list_del_init(&p->mnt_list);
1140 		__touch_mnt_namespace(p->mnt_ns);
1141 		p->mnt_ns = NULL;
1142 		list_del_init(&p->mnt_child);
1143 		if (mnt_has_parent(p)) {
1144 			p->mnt_parent->mnt_ghosts++;
1145 			dentry_reset_mounted(p->mnt_mountpoint);
1146 		}
1147 		change_mnt_propagation(p, MS_PRIVATE);
1148 	}
1149 	list_splice(&tmp_list, kill);
1150 }
1151 
1152 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1153 
1154 static int do_umount(struct mount *mnt, int flags)
1155 {
1156 	struct super_block *sb = mnt->mnt.mnt_sb;
1157 	int retval;
1158 	LIST_HEAD(umount_list);
1159 
1160 	retval = security_sb_umount(&mnt->mnt, flags);
1161 	if (retval)
1162 		return retval;
1163 
1164 	/*
1165 	 * Allow userspace to request a mountpoint be expired rather than
1166 	 * unmounting unconditionally. Unmount only happens if:
1167 	 *  (1) the mark is already set (the mark is cleared by mntput())
1168 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1169 	 */
1170 	if (flags & MNT_EXPIRE) {
1171 		if (&mnt->mnt == current->fs->root.mnt ||
1172 		    flags & (MNT_FORCE | MNT_DETACH))
1173 			return -EINVAL;
1174 
1175 		/*
1176 		 * probably don't strictly need the lock here if we examined
1177 		 * all race cases, but it's a slowpath.
1178 		 */
1179 		br_write_lock(&vfsmount_lock);
1180 		if (mnt_get_count(mnt) != 2) {
1181 			br_write_unlock(&vfsmount_lock);
1182 			return -EBUSY;
1183 		}
1184 		br_write_unlock(&vfsmount_lock);
1185 
1186 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1187 			return -EAGAIN;
1188 	}
1189 
1190 	/*
1191 	 * If we may have to abort operations to get out of this
1192 	 * mount, and they will themselves hold resources we must
1193 	 * allow the fs to do things. In the Unix tradition of
1194 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1195 	 * might fail to complete on the first run through as other tasks
1196 	 * must return, and the like. Thats for the mount program to worry
1197 	 * about for the moment.
1198 	 */
1199 
1200 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1201 		sb->s_op->umount_begin(sb);
1202 	}
1203 
1204 	/*
1205 	 * No sense to grab the lock for this test, but test itself looks
1206 	 * somewhat bogus. Suggestions for better replacement?
1207 	 * Ho-hum... In principle, we might treat that as umount + switch
1208 	 * to rootfs. GC would eventually take care of the old vfsmount.
1209 	 * Actually it makes sense, especially if rootfs would contain a
1210 	 * /reboot - static binary that would close all descriptors and
1211 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1212 	 */
1213 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1214 		/*
1215 		 * Special case for "unmounting" root ...
1216 		 * we just try to remount it readonly.
1217 		 */
1218 		down_write(&sb->s_umount);
1219 		if (!(sb->s_flags & MS_RDONLY))
1220 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1221 		up_write(&sb->s_umount);
1222 		return retval;
1223 	}
1224 
1225 	down_write(&namespace_sem);
1226 	br_write_lock(&vfsmount_lock);
1227 	event++;
1228 
1229 	if (!(flags & MNT_DETACH))
1230 		shrink_submounts(mnt, &umount_list);
1231 
1232 	retval = -EBUSY;
1233 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1234 		if (!list_empty(&mnt->mnt_list))
1235 			umount_tree(mnt, 1, &umount_list);
1236 		retval = 0;
1237 	}
1238 	br_write_unlock(&vfsmount_lock);
1239 	up_write(&namespace_sem);
1240 	release_mounts(&umount_list);
1241 	return retval;
1242 }
1243 
1244 /*
1245  * Is the caller allowed to modify his namespace?
1246  */
1247 static inline bool may_mount(void)
1248 {
1249 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1250 }
1251 
1252 /*
1253  * Now umount can handle mount points as well as block devices.
1254  * This is important for filesystems which use unnamed block devices.
1255  *
1256  * We now support a flag for forced unmount like the other 'big iron'
1257  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1258  */
1259 
1260 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1261 {
1262 	struct path path;
1263 	struct mount *mnt;
1264 	int retval;
1265 	int lookup_flags = 0;
1266 
1267 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1268 		return -EINVAL;
1269 
1270 	if (!may_mount())
1271 		return -EPERM;
1272 
1273 	if (!(flags & UMOUNT_NOFOLLOW))
1274 		lookup_flags |= LOOKUP_FOLLOW;
1275 
1276 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1277 	if (retval)
1278 		goto out;
1279 	mnt = real_mount(path.mnt);
1280 	retval = -EINVAL;
1281 	if (path.dentry != path.mnt->mnt_root)
1282 		goto dput_and_out;
1283 	if (!check_mnt(mnt))
1284 		goto dput_and_out;
1285 
1286 	retval = do_umount(mnt, flags);
1287 dput_and_out:
1288 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1289 	dput(path.dentry);
1290 	mntput_no_expire(mnt);
1291 out:
1292 	return retval;
1293 }
1294 
1295 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1296 
1297 /*
1298  *	The 2.0 compatible umount. No flags.
1299  */
1300 SYSCALL_DEFINE1(oldumount, char __user *, name)
1301 {
1302 	return sys_umount(name, 0);
1303 }
1304 
1305 #endif
1306 
1307 static bool mnt_ns_loop(struct path *path)
1308 {
1309 	/* Could bind mounting the mount namespace inode cause a
1310 	 * mount namespace loop?
1311 	 */
1312 	struct inode *inode = path->dentry->d_inode;
1313 	struct proc_inode *ei;
1314 	struct mnt_namespace *mnt_ns;
1315 
1316 	if (!proc_ns_inode(inode))
1317 		return false;
1318 
1319 	ei = PROC_I(inode);
1320 	if (ei->ns_ops != &mntns_operations)
1321 		return false;
1322 
1323 	mnt_ns = ei->ns;
1324 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1325 }
1326 
1327 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1328 					int flag)
1329 {
1330 	struct mount *res, *p, *q, *r;
1331 	struct path path;
1332 
1333 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1334 		return ERR_PTR(-EINVAL);
1335 
1336 	res = q = clone_mnt(mnt, dentry, flag);
1337 	if (IS_ERR(q))
1338 		return q;
1339 
1340 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1341 
1342 	p = mnt;
1343 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1344 		struct mount *s;
1345 		if (!is_subdir(r->mnt_mountpoint, dentry))
1346 			continue;
1347 
1348 		for (s = r; s; s = next_mnt(s, r)) {
1349 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1350 				s = skip_mnt_tree(s);
1351 				continue;
1352 			}
1353 			while (p != s->mnt_parent) {
1354 				p = p->mnt_parent;
1355 				q = q->mnt_parent;
1356 			}
1357 			p = s;
1358 			path.mnt = &q->mnt;
1359 			path.dentry = p->mnt_mountpoint;
1360 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1361 			if (IS_ERR(q))
1362 				goto out;
1363 			br_write_lock(&vfsmount_lock);
1364 			list_add_tail(&q->mnt_list, &res->mnt_list);
1365 			attach_mnt(q, &path);
1366 			br_write_unlock(&vfsmount_lock);
1367 		}
1368 	}
1369 	return res;
1370 out:
1371 	if (res) {
1372 		LIST_HEAD(umount_list);
1373 		br_write_lock(&vfsmount_lock);
1374 		umount_tree(res, 0, &umount_list);
1375 		br_write_unlock(&vfsmount_lock);
1376 		release_mounts(&umount_list);
1377 	}
1378 	return q;
1379 }
1380 
1381 /* Caller should check returned pointer for errors */
1382 
1383 struct vfsmount *collect_mounts(struct path *path)
1384 {
1385 	struct mount *tree;
1386 	down_write(&namespace_sem);
1387 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1388 			 CL_COPY_ALL | CL_PRIVATE);
1389 	up_write(&namespace_sem);
1390 	if (IS_ERR(tree))
1391 		return NULL;
1392 	return &tree->mnt;
1393 }
1394 
1395 void drop_collected_mounts(struct vfsmount *mnt)
1396 {
1397 	LIST_HEAD(umount_list);
1398 	down_write(&namespace_sem);
1399 	br_write_lock(&vfsmount_lock);
1400 	umount_tree(real_mount(mnt), 0, &umount_list);
1401 	br_write_unlock(&vfsmount_lock);
1402 	up_write(&namespace_sem);
1403 	release_mounts(&umount_list);
1404 }
1405 
1406 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1407 		   struct vfsmount *root)
1408 {
1409 	struct mount *mnt;
1410 	int res = f(root, arg);
1411 	if (res)
1412 		return res;
1413 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1414 		res = f(&mnt->mnt, arg);
1415 		if (res)
1416 			return res;
1417 	}
1418 	return 0;
1419 }
1420 
1421 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1422 {
1423 	struct mount *p;
1424 
1425 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1426 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1427 			mnt_release_group_id(p);
1428 	}
1429 }
1430 
1431 static int invent_group_ids(struct mount *mnt, bool recurse)
1432 {
1433 	struct mount *p;
1434 
1435 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1436 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1437 			int err = mnt_alloc_group_id(p);
1438 			if (err) {
1439 				cleanup_group_ids(mnt, p);
1440 				return err;
1441 			}
1442 		}
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  *  @source_mnt : mount tree to be attached
1450  *  @nd         : place the mount tree @source_mnt is attached
1451  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1452  *  		   store the parent mount and mountpoint dentry.
1453  *  		   (done when source_mnt is moved)
1454  *
1455  *  NOTE: in the table below explains the semantics when a source mount
1456  *  of a given type is attached to a destination mount of a given type.
1457  * ---------------------------------------------------------------------------
1458  * |         BIND MOUNT OPERATION                                            |
1459  * |**************************************************************************
1460  * | source-->| shared        |       private  |       slave    | unbindable |
1461  * | dest     |               |                |                |            |
1462  * |   |      |               |                |                |            |
1463  * |   v      |               |                |                |            |
1464  * |**************************************************************************
1465  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1466  * |          |               |                |                |            |
1467  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1468  * ***************************************************************************
1469  * A bind operation clones the source mount and mounts the clone on the
1470  * destination mount.
1471  *
1472  * (++)  the cloned mount is propagated to all the mounts in the propagation
1473  * 	 tree of the destination mount and the cloned mount is added to
1474  * 	 the peer group of the source mount.
1475  * (+)   the cloned mount is created under the destination mount and is marked
1476  *       as shared. The cloned mount is added to the peer group of the source
1477  *       mount.
1478  * (+++) the mount is propagated to all the mounts in the propagation tree
1479  *       of the destination mount and the cloned mount is made slave
1480  *       of the same master as that of the source mount. The cloned mount
1481  *       is marked as 'shared and slave'.
1482  * (*)   the cloned mount is made a slave of the same master as that of the
1483  * 	 source mount.
1484  *
1485  * ---------------------------------------------------------------------------
1486  * |         		MOVE MOUNT OPERATION                                 |
1487  * |**************************************************************************
1488  * | source-->| shared        |       private  |       slave    | unbindable |
1489  * | dest     |               |                |                |            |
1490  * |   |      |               |                |                |            |
1491  * |   v      |               |                |                |            |
1492  * |**************************************************************************
1493  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1494  * |          |               |                |                |            |
1495  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1496  * ***************************************************************************
1497  *
1498  * (+)  the mount is moved to the destination. And is then propagated to
1499  * 	all the mounts in the propagation tree of the destination mount.
1500  * (+*)  the mount is moved to the destination.
1501  * (+++)  the mount is moved to the destination and is then propagated to
1502  * 	all the mounts belonging to the destination mount's propagation tree.
1503  * 	the mount is marked as 'shared and slave'.
1504  * (*)	the mount continues to be a slave at the new location.
1505  *
1506  * if the source mount is a tree, the operations explained above is
1507  * applied to each mount in the tree.
1508  * Must be called without spinlocks held, since this function can sleep
1509  * in allocations.
1510  */
1511 static int attach_recursive_mnt(struct mount *source_mnt,
1512 			struct path *path, struct path *parent_path)
1513 {
1514 	LIST_HEAD(tree_list);
1515 	struct mount *dest_mnt = real_mount(path->mnt);
1516 	struct dentry *dest_dentry = path->dentry;
1517 	struct mount *child, *p;
1518 	int err;
1519 
1520 	if (IS_MNT_SHARED(dest_mnt)) {
1521 		err = invent_group_ids(source_mnt, true);
1522 		if (err)
1523 			goto out;
1524 	}
1525 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1526 	if (err)
1527 		goto out_cleanup_ids;
1528 
1529 	br_write_lock(&vfsmount_lock);
1530 
1531 	if (IS_MNT_SHARED(dest_mnt)) {
1532 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1533 			set_mnt_shared(p);
1534 	}
1535 	if (parent_path) {
1536 		detach_mnt(source_mnt, parent_path);
1537 		attach_mnt(source_mnt, path);
1538 		touch_mnt_namespace(source_mnt->mnt_ns);
1539 	} else {
1540 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1541 		commit_tree(source_mnt);
1542 	}
1543 
1544 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1545 		list_del_init(&child->mnt_hash);
1546 		commit_tree(child);
1547 	}
1548 	br_write_unlock(&vfsmount_lock);
1549 
1550 	return 0;
1551 
1552  out_cleanup_ids:
1553 	if (IS_MNT_SHARED(dest_mnt))
1554 		cleanup_group_ids(source_mnt, NULL);
1555  out:
1556 	return err;
1557 }
1558 
1559 static int lock_mount(struct path *path)
1560 {
1561 	struct vfsmount *mnt;
1562 retry:
1563 	mutex_lock(&path->dentry->d_inode->i_mutex);
1564 	if (unlikely(cant_mount(path->dentry))) {
1565 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1566 		return -ENOENT;
1567 	}
1568 	down_write(&namespace_sem);
1569 	mnt = lookup_mnt(path);
1570 	if (likely(!mnt))
1571 		return 0;
1572 	up_write(&namespace_sem);
1573 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1574 	path_put(path);
1575 	path->mnt = mnt;
1576 	path->dentry = dget(mnt->mnt_root);
1577 	goto retry;
1578 }
1579 
1580 static void unlock_mount(struct path *path)
1581 {
1582 	up_write(&namespace_sem);
1583 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1584 }
1585 
1586 static int graft_tree(struct mount *mnt, struct path *path)
1587 {
1588 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1589 		return -EINVAL;
1590 
1591 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1592 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1593 		return -ENOTDIR;
1594 
1595 	if (d_unlinked(path->dentry))
1596 		return -ENOENT;
1597 
1598 	return attach_recursive_mnt(mnt, path, NULL);
1599 }
1600 
1601 /*
1602  * Sanity check the flags to change_mnt_propagation.
1603  */
1604 
1605 static int flags_to_propagation_type(int flags)
1606 {
1607 	int type = flags & ~(MS_REC | MS_SILENT);
1608 
1609 	/* Fail if any non-propagation flags are set */
1610 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1611 		return 0;
1612 	/* Only one propagation flag should be set */
1613 	if (!is_power_of_2(type))
1614 		return 0;
1615 	return type;
1616 }
1617 
1618 /*
1619  * recursively change the type of the mountpoint.
1620  */
1621 static int do_change_type(struct path *path, int flag)
1622 {
1623 	struct mount *m;
1624 	struct mount *mnt = real_mount(path->mnt);
1625 	int recurse = flag & MS_REC;
1626 	int type;
1627 	int err = 0;
1628 
1629 	if (path->dentry != path->mnt->mnt_root)
1630 		return -EINVAL;
1631 
1632 	type = flags_to_propagation_type(flag);
1633 	if (!type)
1634 		return -EINVAL;
1635 
1636 	down_write(&namespace_sem);
1637 	if (type == MS_SHARED) {
1638 		err = invent_group_ids(mnt, recurse);
1639 		if (err)
1640 			goto out_unlock;
1641 	}
1642 
1643 	br_write_lock(&vfsmount_lock);
1644 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1645 		change_mnt_propagation(m, type);
1646 	br_write_unlock(&vfsmount_lock);
1647 
1648  out_unlock:
1649 	up_write(&namespace_sem);
1650 	return err;
1651 }
1652 
1653 /*
1654  * do loopback mount.
1655  */
1656 static int do_loopback(struct path *path, const char *old_name,
1657 				int recurse)
1658 {
1659 	LIST_HEAD(umount_list);
1660 	struct path old_path;
1661 	struct mount *mnt = NULL, *old;
1662 	int err;
1663 	if (!old_name || !*old_name)
1664 		return -EINVAL;
1665 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1666 	if (err)
1667 		return err;
1668 
1669 	err = -EINVAL;
1670 	if (mnt_ns_loop(&old_path))
1671 		goto out;
1672 
1673 	err = lock_mount(path);
1674 	if (err)
1675 		goto out;
1676 
1677 	old = real_mount(old_path.mnt);
1678 
1679 	err = -EINVAL;
1680 	if (IS_MNT_UNBINDABLE(old))
1681 		goto out2;
1682 
1683 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1684 		goto out2;
1685 
1686 	if (recurse)
1687 		mnt = copy_tree(old, old_path.dentry, 0);
1688 	else
1689 		mnt = clone_mnt(old, old_path.dentry, 0);
1690 
1691 	if (IS_ERR(mnt)) {
1692 		err = PTR_ERR(mnt);
1693 		goto out2;
1694 	}
1695 
1696 	err = graft_tree(mnt, path);
1697 	if (err) {
1698 		br_write_lock(&vfsmount_lock);
1699 		umount_tree(mnt, 0, &umount_list);
1700 		br_write_unlock(&vfsmount_lock);
1701 	}
1702 out2:
1703 	unlock_mount(path);
1704 	release_mounts(&umount_list);
1705 out:
1706 	path_put(&old_path);
1707 	return err;
1708 }
1709 
1710 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1711 {
1712 	int error = 0;
1713 	int readonly_request = 0;
1714 
1715 	if (ms_flags & MS_RDONLY)
1716 		readonly_request = 1;
1717 	if (readonly_request == __mnt_is_readonly(mnt))
1718 		return 0;
1719 
1720 	if (mnt->mnt_flags & MNT_LOCK_READONLY)
1721 		return -EPERM;
1722 
1723 	if (readonly_request)
1724 		error = mnt_make_readonly(real_mount(mnt));
1725 	else
1726 		__mnt_unmake_readonly(real_mount(mnt));
1727 	return error;
1728 }
1729 
1730 /*
1731  * change filesystem flags. dir should be a physical root of filesystem.
1732  * If you've mounted a non-root directory somewhere and want to do remount
1733  * on it - tough luck.
1734  */
1735 static int do_remount(struct path *path, int flags, int mnt_flags,
1736 		      void *data)
1737 {
1738 	int err;
1739 	struct super_block *sb = path->mnt->mnt_sb;
1740 	struct mount *mnt = real_mount(path->mnt);
1741 
1742 	if (!check_mnt(mnt))
1743 		return -EINVAL;
1744 
1745 	if (path->dentry != path->mnt->mnt_root)
1746 		return -EINVAL;
1747 
1748 	err = security_sb_remount(sb, data);
1749 	if (err)
1750 		return err;
1751 
1752 	down_write(&sb->s_umount);
1753 	if (flags & MS_BIND)
1754 		err = change_mount_flags(path->mnt, flags);
1755 	else if (!capable(CAP_SYS_ADMIN))
1756 		err = -EPERM;
1757 	else
1758 		err = do_remount_sb(sb, flags, data, 0);
1759 	if (!err) {
1760 		br_write_lock(&vfsmount_lock);
1761 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1762 		mnt->mnt.mnt_flags = mnt_flags;
1763 		br_write_unlock(&vfsmount_lock);
1764 	}
1765 	up_write(&sb->s_umount);
1766 	if (!err) {
1767 		br_write_lock(&vfsmount_lock);
1768 		touch_mnt_namespace(mnt->mnt_ns);
1769 		br_write_unlock(&vfsmount_lock);
1770 	}
1771 	return err;
1772 }
1773 
1774 static inline int tree_contains_unbindable(struct mount *mnt)
1775 {
1776 	struct mount *p;
1777 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1778 		if (IS_MNT_UNBINDABLE(p))
1779 			return 1;
1780 	}
1781 	return 0;
1782 }
1783 
1784 static int do_move_mount(struct path *path, const char *old_name)
1785 {
1786 	struct path old_path, parent_path;
1787 	struct mount *p;
1788 	struct mount *old;
1789 	int err;
1790 	if (!old_name || !*old_name)
1791 		return -EINVAL;
1792 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1793 	if (err)
1794 		return err;
1795 
1796 	err = lock_mount(path);
1797 	if (err < 0)
1798 		goto out;
1799 
1800 	old = real_mount(old_path.mnt);
1801 	p = real_mount(path->mnt);
1802 
1803 	err = -EINVAL;
1804 	if (!check_mnt(p) || !check_mnt(old))
1805 		goto out1;
1806 
1807 	if (d_unlinked(path->dentry))
1808 		goto out1;
1809 
1810 	err = -EINVAL;
1811 	if (old_path.dentry != old_path.mnt->mnt_root)
1812 		goto out1;
1813 
1814 	if (!mnt_has_parent(old))
1815 		goto out1;
1816 
1817 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1818 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1819 		goto out1;
1820 	/*
1821 	 * Don't move a mount residing in a shared parent.
1822 	 */
1823 	if (IS_MNT_SHARED(old->mnt_parent))
1824 		goto out1;
1825 	/*
1826 	 * Don't move a mount tree containing unbindable mounts to a destination
1827 	 * mount which is shared.
1828 	 */
1829 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1830 		goto out1;
1831 	err = -ELOOP;
1832 	for (; mnt_has_parent(p); p = p->mnt_parent)
1833 		if (p == old)
1834 			goto out1;
1835 
1836 	err = attach_recursive_mnt(old, path, &parent_path);
1837 	if (err)
1838 		goto out1;
1839 
1840 	/* if the mount is moved, it should no longer be expire
1841 	 * automatically */
1842 	list_del_init(&old->mnt_expire);
1843 out1:
1844 	unlock_mount(path);
1845 out:
1846 	if (!err)
1847 		path_put(&parent_path);
1848 	path_put(&old_path);
1849 	return err;
1850 }
1851 
1852 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1853 {
1854 	int err;
1855 	const char *subtype = strchr(fstype, '.');
1856 	if (subtype) {
1857 		subtype++;
1858 		err = -EINVAL;
1859 		if (!subtype[0])
1860 			goto err;
1861 	} else
1862 		subtype = "";
1863 
1864 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1865 	err = -ENOMEM;
1866 	if (!mnt->mnt_sb->s_subtype)
1867 		goto err;
1868 	return mnt;
1869 
1870  err:
1871 	mntput(mnt);
1872 	return ERR_PTR(err);
1873 }
1874 
1875 /*
1876  * add a mount into a namespace's mount tree
1877  */
1878 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1879 {
1880 	int err;
1881 
1882 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1883 
1884 	err = lock_mount(path);
1885 	if (err)
1886 		return err;
1887 
1888 	err = -EINVAL;
1889 	if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1890 		/* that's acceptable only for automounts done in private ns */
1891 		if (!(mnt_flags & MNT_SHRINKABLE))
1892 			goto unlock;
1893 		/* ... and for those we'd better have mountpoint still alive */
1894 		if (!real_mount(path->mnt)->mnt_ns)
1895 			goto unlock;
1896 	}
1897 
1898 	/* Refuse the same filesystem on the same mount point */
1899 	err = -EBUSY;
1900 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1901 	    path->mnt->mnt_root == path->dentry)
1902 		goto unlock;
1903 
1904 	err = -EINVAL;
1905 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1906 		goto unlock;
1907 
1908 	newmnt->mnt.mnt_flags = mnt_flags;
1909 	err = graft_tree(newmnt, path);
1910 
1911 unlock:
1912 	unlock_mount(path);
1913 	return err;
1914 }
1915 
1916 /*
1917  * create a new mount for userspace and request it to be added into the
1918  * namespace's tree
1919  */
1920 static int do_new_mount(struct path *path, const char *fstype, int flags,
1921 			int mnt_flags, const char *name, void *data)
1922 {
1923 	struct file_system_type *type;
1924 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1925 	struct vfsmount *mnt;
1926 	int err;
1927 
1928 	if (!fstype)
1929 		return -EINVAL;
1930 
1931 	type = get_fs_type(fstype);
1932 	if (!type)
1933 		return -ENODEV;
1934 
1935 	if (user_ns != &init_user_ns) {
1936 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1937 			put_filesystem(type);
1938 			return -EPERM;
1939 		}
1940 		/* Only in special cases allow devices from mounts
1941 		 * created outside the initial user namespace.
1942 		 */
1943 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1944 			flags |= MS_NODEV;
1945 			mnt_flags |= MNT_NODEV;
1946 		}
1947 	}
1948 
1949 	mnt = vfs_kern_mount(type, flags, name, data);
1950 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1951 	    !mnt->mnt_sb->s_subtype)
1952 		mnt = fs_set_subtype(mnt, fstype);
1953 
1954 	put_filesystem(type);
1955 	if (IS_ERR(mnt))
1956 		return PTR_ERR(mnt);
1957 
1958 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1959 	if (err)
1960 		mntput(mnt);
1961 	return err;
1962 }
1963 
1964 int finish_automount(struct vfsmount *m, struct path *path)
1965 {
1966 	struct mount *mnt = real_mount(m);
1967 	int err;
1968 	/* The new mount record should have at least 2 refs to prevent it being
1969 	 * expired before we get a chance to add it
1970 	 */
1971 	BUG_ON(mnt_get_count(mnt) < 2);
1972 
1973 	if (m->mnt_sb == path->mnt->mnt_sb &&
1974 	    m->mnt_root == path->dentry) {
1975 		err = -ELOOP;
1976 		goto fail;
1977 	}
1978 
1979 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1980 	if (!err)
1981 		return 0;
1982 fail:
1983 	/* remove m from any expiration list it may be on */
1984 	if (!list_empty(&mnt->mnt_expire)) {
1985 		down_write(&namespace_sem);
1986 		br_write_lock(&vfsmount_lock);
1987 		list_del_init(&mnt->mnt_expire);
1988 		br_write_unlock(&vfsmount_lock);
1989 		up_write(&namespace_sem);
1990 	}
1991 	mntput(m);
1992 	mntput(m);
1993 	return err;
1994 }
1995 
1996 /**
1997  * mnt_set_expiry - Put a mount on an expiration list
1998  * @mnt: The mount to list.
1999  * @expiry_list: The list to add the mount to.
2000  */
2001 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2002 {
2003 	down_write(&namespace_sem);
2004 	br_write_lock(&vfsmount_lock);
2005 
2006 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2007 
2008 	br_write_unlock(&vfsmount_lock);
2009 	up_write(&namespace_sem);
2010 }
2011 EXPORT_SYMBOL(mnt_set_expiry);
2012 
2013 /*
2014  * process a list of expirable mountpoints with the intent of discarding any
2015  * mountpoints that aren't in use and haven't been touched since last we came
2016  * here
2017  */
2018 void mark_mounts_for_expiry(struct list_head *mounts)
2019 {
2020 	struct mount *mnt, *next;
2021 	LIST_HEAD(graveyard);
2022 	LIST_HEAD(umounts);
2023 
2024 	if (list_empty(mounts))
2025 		return;
2026 
2027 	down_write(&namespace_sem);
2028 	br_write_lock(&vfsmount_lock);
2029 
2030 	/* extract from the expiration list every vfsmount that matches the
2031 	 * following criteria:
2032 	 * - only referenced by its parent vfsmount
2033 	 * - still marked for expiry (marked on the last call here; marks are
2034 	 *   cleared by mntput())
2035 	 */
2036 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2037 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2038 			propagate_mount_busy(mnt, 1))
2039 			continue;
2040 		list_move(&mnt->mnt_expire, &graveyard);
2041 	}
2042 	while (!list_empty(&graveyard)) {
2043 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2044 		touch_mnt_namespace(mnt->mnt_ns);
2045 		umount_tree(mnt, 1, &umounts);
2046 	}
2047 	br_write_unlock(&vfsmount_lock);
2048 	up_write(&namespace_sem);
2049 
2050 	release_mounts(&umounts);
2051 }
2052 
2053 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2054 
2055 /*
2056  * Ripoff of 'select_parent()'
2057  *
2058  * search the list of submounts for a given mountpoint, and move any
2059  * shrinkable submounts to the 'graveyard' list.
2060  */
2061 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2062 {
2063 	struct mount *this_parent = parent;
2064 	struct list_head *next;
2065 	int found = 0;
2066 
2067 repeat:
2068 	next = this_parent->mnt_mounts.next;
2069 resume:
2070 	while (next != &this_parent->mnt_mounts) {
2071 		struct list_head *tmp = next;
2072 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2073 
2074 		next = tmp->next;
2075 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2076 			continue;
2077 		/*
2078 		 * Descend a level if the d_mounts list is non-empty.
2079 		 */
2080 		if (!list_empty(&mnt->mnt_mounts)) {
2081 			this_parent = mnt;
2082 			goto repeat;
2083 		}
2084 
2085 		if (!propagate_mount_busy(mnt, 1)) {
2086 			list_move_tail(&mnt->mnt_expire, graveyard);
2087 			found++;
2088 		}
2089 	}
2090 	/*
2091 	 * All done at this level ... ascend and resume the search
2092 	 */
2093 	if (this_parent != parent) {
2094 		next = this_parent->mnt_child.next;
2095 		this_parent = this_parent->mnt_parent;
2096 		goto resume;
2097 	}
2098 	return found;
2099 }
2100 
2101 /*
2102  * process a list of expirable mountpoints with the intent of discarding any
2103  * submounts of a specific parent mountpoint
2104  *
2105  * vfsmount_lock must be held for write
2106  */
2107 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2108 {
2109 	LIST_HEAD(graveyard);
2110 	struct mount *m;
2111 
2112 	/* extract submounts of 'mountpoint' from the expiration list */
2113 	while (select_submounts(mnt, &graveyard)) {
2114 		while (!list_empty(&graveyard)) {
2115 			m = list_first_entry(&graveyard, struct mount,
2116 						mnt_expire);
2117 			touch_mnt_namespace(m->mnt_ns);
2118 			umount_tree(m, 1, umounts);
2119 		}
2120 	}
2121 }
2122 
2123 /*
2124  * Some copy_from_user() implementations do not return the exact number of
2125  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2126  * Note that this function differs from copy_from_user() in that it will oops
2127  * on bad values of `to', rather than returning a short copy.
2128  */
2129 static long exact_copy_from_user(void *to, const void __user * from,
2130 				 unsigned long n)
2131 {
2132 	char *t = to;
2133 	const char __user *f = from;
2134 	char c;
2135 
2136 	if (!access_ok(VERIFY_READ, from, n))
2137 		return n;
2138 
2139 	while (n) {
2140 		if (__get_user(c, f)) {
2141 			memset(t, 0, n);
2142 			break;
2143 		}
2144 		*t++ = c;
2145 		f++;
2146 		n--;
2147 	}
2148 	return n;
2149 }
2150 
2151 int copy_mount_options(const void __user * data, unsigned long *where)
2152 {
2153 	int i;
2154 	unsigned long page;
2155 	unsigned long size;
2156 
2157 	*where = 0;
2158 	if (!data)
2159 		return 0;
2160 
2161 	if (!(page = __get_free_page(GFP_KERNEL)))
2162 		return -ENOMEM;
2163 
2164 	/* We only care that *some* data at the address the user
2165 	 * gave us is valid.  Just in case, we'll zero
2166 	 * the remainder of the page.
2167 	 */
2168 	/* copy_from_user cannot cross TASK_SIZE ! */
2169 	size = TASK_SIZE - (unsigned long)data;
2170 	if (size > PAGE_SIZE)
2171 		size = PAGE_SIZE;
2172 
2173 	i = size - exact_copy_from_user((void *)page, data, size);
2174 	if (!i) {
2175 		free_page(page);
2176 		return -EFAULT;
2177 	}
2178 	if (i != PAGE_SIZE)
2179 		memset((char *)page + i, 0, PAGE_SIZE - i);
2180 	*where = page;
2181 	return 0;
2182 }
2183 
2184 int copy_mount_string(const void __user *data, char **where)
2185 {
2186 	char *tmp;
2187 
2188 	if (!data) {
2189 		*where = NULL;
2190 		return 0;
2191 	}
2192 
2193 	tmp = strndup_user(data, PAGE_SIZE);
2194 	if (IS_ERR(tmp))
2195 		return PTR_ERR(tmp);
2196 
2197 	*where = tmp;
2198 	return 0;
2199 }
2200 
2201 /*
2202  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2203  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2204  *
2205  * data is a (void *) that can point to any structure up to
2206  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2207  * information (or be NULL).
2208  *
2209  * Pre-0.97 versions of mount() didn't have a flags word.
2210  * When the flags word was introduced its top half was required
2211  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2212  * Therefore, if this magic number is present, it carries no information
2213  * and must be discarded.
2214  */
2215 long do_mount(const char *dev_name, const char *dir_name,
2216 		const char *type_page, unsigned long flags, void *data_page)
2217 {
2218 	struct path path;
2219 	int retval = 0;
2220 	int mnt_flags = 0;
2221 
2222 	/* Discard magic */
2223 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2224 		flags &= ~MS_MGC_MSK;
2225 
2226 	/* Basic sanity checks */
2227 
2228 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2229 		return -EINVAL;
2230 
2231 	if (data_page)
2232 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2233 
2234 	/* ... and get the mountpoint */
2235 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2236 	if (retval)
2237 		return retval;
2238 
2239 	retval = security_sb_mount(dev_name, &path,
2240 				   type_page, flags, data_page);
2241 	if (retval)
2242 		goto dput_out;
2243 
2244 	if (!may_mount())
2245 		return -EPERM;
2246 
2247 	/* Default to relatime unless overriden */
2248 	if (!(flags & MS_NOATIME))
2249 		mnt_flags |= MNT_RELATIME;
2250 
2251 	/* Separate the per-mountpoint flags */
2252 	if (flags & MS_NOSUID)
2253 		mnt_flags |= MNT_NOSUID;
2254 	if (flags & MS_NODEV)
2255 		mnt_flags |= MNT_NODEV;
2256 	if (flags & MS_NOEXEC)
2257 		mnt_flags |= MNT_NOEXEC;
2258 	if (flags & MS_NOATIME)
2259 		mnt_flags |= MNT_NOATIME;
2260 	if (flags & MS_NODIRATIME)
2261 		mnt_flags |= MNT_NODIRATIME;
2262 	if (flags & MS_STRICTATIME)
2263 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2264 	if (flags & MS_RDONLY)
2265 		mnt_flags |= MNT_READONLY;
2266 
2267 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2268 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2269 		   MS_STRICTATIME);
2270 
2271 	if (flags & MS_REMOUNT)
2272 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2273 				    data_page);
2274 	else if (flags & MS_BIND)
2275 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2276 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2277 		retval = do_change_type(&path, flags);
2278 	else if (flags & MS_MOVE)
2279 		retval = do_move_mount(&path, dev_name);
2280 	else
2281 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2282 				      dev_name, data_page);
2283 dput_out:
2284 	path_put(&path);
2285 	return retval;
2286 }
2287 
2288 static void free_mnt_ns(struct mnt_namespace *ns)
2289 {
2290 	proc_free_inum(ns->proc_inum);
2291 	put_user_ns(ns->user_ns);
2292 	kfree(ns);
2293 }
2294 
2295 /*
2296  * Assign a sequence number so we can detect when we attempt to bind
2297  * mount a reference to an older mount namespace into the current
2298  * mount namespace, preventing reference counting loops.  A 64bit
2299  * number incrementing at 10Ghz will take 12,427 years to wrap which
2300  * is effectively never, so we can ignore the possibility.
2301  */
2302 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2303 
2304 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2305 {
2306 	struct mnt_namespace *new_ns;
2307 	int ret;
2308 
2309 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2310 	if (!new_ns)
2311 		return ERR_PTR(-ENOMEM);
2312 	ret = proc_alloc_inum(&new_ns->proc_inum);
2313 	if (ret) {
2314 		kfree(new_ns);
2315 		return ERR_PTR(ret);
2316 	}
2317 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2318 	atomic_set(&new_ns->count, 1);
2319 	new_ns->root = NULL;
2320 	INIT_LIST_HEAD(&new_ns->list);
2321 	init_waitqueue_head(&new_ns->poll);
2322 	new_ns->event = 0;
2323 	new_ns->user_ns = get_user_ns(user_ns);
2324 	return new_ns;
2325 }
2326 
2327 /*
2328  * Allocate a new namespace structure and populate it with contents
2329  * copied from the namespace of the passed in task structure.
2330  */
2331 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2332 		struct user_namespace *user_ns, struct fs_struct *fs)
2333 {
2334 	struct mnt_namespace *new_ns;
2335 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2336 	struct mount *p, *q;
2337 	struct mount *old = mnt_ns->root;
2338 	struct mount *new;
2339 	int copy_flags;
2340 
2341 	new_ns = alloc_mnt_ns(user_ns);
2342 	if (IS_ERR(new_ns))
2343 		return new_ns;
2344 
2345 	down_write(&namespace_sem);
2346 	/* First pass: copy the tree topology */
2347 	copy_flags = CL_COPY_ALL | CL_EXPIRE;
2348 	if (user_ns != mnt_ns->user_ns)
2349 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2350 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2351 	if (IS_ERR(new)) {
2352 		up_write(&namespace_sem);
2353 		free_mnt_ns(new_ns);
2354 		return ERR_CAST(new);
2355 	}
2356 	new_ns->root = new;
2357 	br_write_lock(&vfsmount_lock);
2358 	list_add_tail(&new_ns->list, &new->mnt_list);
2359 	br_write_unlock(&vfsmount_lock);
2360 
2361 	/*
2362 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2363 	 * as belonging to new namespace.  We have already acquired a private
2364 	 * fs_struct, so tsk->fs->lock is not needed.
2365 	 */
2366 	p = old;
2367 	q = new;
2368 	while (p) {
2369 		q->mnt_ns = new_ns;
2370 		if (fs) {
2371 			if (&p->mnt == fs->root.mnt) {
2372 				fs->root.mnt = mntget(&q->mnt);
2373 				rootmnt = &p->mnt;
2374 			}
2375 			if (&p->mnt == fs->pwd.mnt) {
2376 				fs->pwd.mnt = mntget(&q->mnt);
2377 				pwdmnt = &p->mnt;
2378 			}
2379 		}
2380 		p = next_mnt(p, old);
2381 		q = next_mnt(q, new);
2382 	}
2383 	up_write(&namespace_sem);
2384 
2385 	if (rootmnt)
2386 		mntput(rootmnt);
2387 	if (pwdmnt)
2388 		mntput(pwdmnt);
2389 
2390 	return new_ns;
2391 }
2392 
2393 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2394 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2395 {
2396 	struct mnt_namespace *new_ns;
2397 
2398 	BUG_ON(!ns);
2399 	get_mnt_ns(ns);
2400 
2401 	if (!(flags & CLONE_NEWNS))
2402 		return ns;
2403 
2404 	new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2405 
2406 	put_mnt_ns(ns);
2407 	return new_ns;
2408 }
2409 
2410 /**
2411  * create_mnt_ns - creates a private namespace and adds a root filesystem
2412  * @mnt: pointer to the new root filesystem mountpoint
2413  */
2414 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2415 {
2416 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2417 	if (!IS_ERR(new_ns)) {
2418 		struct mount *mnt = real_mount(m);
2419 		mnt->mnt_ns = new_ns;
2420 		new_ns->root = mnt;
2421 		list_add(&new_ns->list, &mnt->mnt_list);
2422 	} else {
2423 		mntput(m);
2424 	}
2425 	return new_ns;
2426 }
2427 
2428 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2429 {
2430 	struct mnt_namespace *ns;
2431 	struct super_block *s;
2432 	struct path path;
2433 	int err;
2434 
2435 	ns = create_mnt_ns(mnt);
2436 	if (IS_ERR(ns))
2437 		return ERR_CAST(ns);
2438 
2439 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2440 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2441 
2442 	put_mnt_ns(ns);
2443 
2444 	if (err)
2445 		return ERR_PTR(err);
2446 
2447 	/* trade a vfsmount reference for active sb one */
2448 	s = path.mnt->mnt_sb;
2449 	atomic_inc(&s->s_active);
2450 	mntput(path.mnt);
2451 	/* lock the sucker */
2452 	down_write(&s->s_umount);
2453 	/* ... and return the root of (sub)tree on it */
2454 	return path.dentry;
2455 }
2456 EXPORT_SYMBOL(mount_subtree);
2457 
2458 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2459 		char __user *, type, unsigned long, flags, void __user *, data)
2460 {
2461 	int ret;
2462 	char *kernel_type;
2463 	struct filename *kernel_dir;
2464 	char *kernel_dev;
2465 	unsigned long data_page;
2466 
2467 	ret = copy_mount_string(type, &kernel_type);
2468 	if (ret < 0)
2469 		goto out_type;
2470 
2471 	kernel_dir = getname(dir_name);
2472 	if (IS_ERR(kernel_dir)) {
2473 		ret = PTR_ERR(kernel_dir);
2474 		goto out_dir;
2475 	}
2476 
2477 	ret = copy_mount_string(dev_name, &kernel_dev);
2478 	if (ret < 0)
2479 		goto out_dev;
2480 
2481 	ret = copy_mount_options(data, &data_page);
2482 	if (ret < 0)
2483 		goto out_data;
2484 
2485 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2486 		(void *) data_page);
2487 
2488 	free_page(data_page);
2489 out_data:
2490 	kfree(kernel_dev);
2491 out_dev:
2492 	putname(kernel_dir);
2493 out_dir:
2494 	kfree(kernel_type);
2495 out_type:
2496 	return ret;
2497 }
2498 
2499 /*
2500  * Return true if path is reachable from root
2501  *
2502  * namespace_sem or vfsmount_lock is held
2503  */
2504 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2505 			 const struct path *root)
2506 {
2507 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2508 		dentry = mnt->mnt_mountpoint;
2509 		mnt = mnt->mnt_parent;
2510 	}
2511 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2512 }
2513 
2514 int path_is_under(struct path *path1, struct path *path2)
2515 {
2516 	int res;
2517 	br_read_lock(&vfsmount_lock);
2518 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2519 	br_read_unlock(&vfsmount_lock);
2520 	return res;
2521 }
2522 EXPORT_SYMBOL(path_is_under);
2523 
2524 /*
2525  * pivot_root Semantics:
2526  * Moves the root file system of the current process to the directory put_old,
2527  * makes new_root as the new root file system of the current process, and sets
2528  * root/cwd of all processes which had them on the current root to new_root.
2529  *
2530  * Restrictions:
2531  * The new_root and put_old must be directories, and  must not be on the
2532  * same file  system as the current process root. The put_old  must  be
2533  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2534  * pointed to by put_old must yield the same directory as new_root. No other
2535  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2536  *
2537  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2538  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2539  * in this situation.
2540  *
2541  * Notes:
2542  *  - we don't move root/cwd if they are not at the root (reason: if something
2543  *    cared enough to change them, it's probably wrong to force them elsewhere)
2544  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2545  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2546  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2547  *    first.
2548  */
2549 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2550 		const char __user *, put_old)
2551 {
2552 	struct path new, old, parent_path, root_parent, root;
2553 	struct mount *new_mnt, *root_mnt;
2554 	int error;
2555 
2556 	if (!may_mount())
2557 		return -EPERM;
2558 
2559 	error = user_path_dir(new_root, &new);
2560 	if (error)
2561 		goto out0;
2562 
2563 	error = user_path_dir(put_old, &old);
2564 	if (error)
2565 		goto out1;
2566 
2567 	error = security_sb_pivotroot(&old, &new);
2568 	if (error)
2569 		goto out2;
2570 
2571 	get_fs_root(current->fs, &root);
2572 	error = lock_mount(&old);
2573 	if (error)
2574 		goto out3;
2575 
2576 	error = -EINVAL;
2577 	new_mnt = real_mount(new.mnt);
2578 	root_mnt = real_mount(root.mnt);
2579 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2580 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2581 		IS_MNT_SHARED(root_mnt->mnt_parent))
2582 		goto out4;
2583 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2584 		goto out4;
2585 	error = -ENOENT;
2586 	if (d_unlinked(new.dentry))
2587 		goto out4;
2588 	if (d_unlinked(old.dentry))
2589 		goto out4;
2590 	error = -EBUSY;
2591 	if (new.mnt == root.mnt ||
2592 	    old.mnt == root.mnt)
2593 		goto out4; /* loop, on the same file system  */
2594 	error = -EINVAL;
2595 	if (root.mnt->mnt_root != root.dentry)
2596 		goto out4; /* not a mountpoint */
2597 	if (!mnt_has_parent(root_mnt))
2598 		goto out4; /* not attached */
2599 	if (new.mnt->mnt_root != new.dentry)
2600 		goto out4; /* not a mountpoint */
2601 	if (!mnt_has_parent(new_mnt))
2602 		goto out4; /* not attached */
2603 	/* make sure we can reach put_old from new_root */
2604 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2605 		goto out4;
2606 	br_write_lock(&vfsmount_lock);
2607 	detach_mnt(new_mnt, &parent_path);
2608 	detach_mnt(root_mnt, &root_parent);
2609 	/* mount old root on put_old */
2610 	attach_mnt(root_mnt, &old);
2611 	/* mount new_root on / */
2612 	attach_mnt(new_mnt, &root_parent);
2613 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2614 	br_write_unlock(&vfsmount_lock);
2615 	chroot_fs_refs(&root, &new);
2616 	error = 0;
2617 out4:
2618 	unlock_mount(&old);
2619 	if (!error) {
2620 		path_put(&root_parent);
2621 		path_put(&parent_path);
2622 	}
2623 out3:
2624 	path_put(&root);
2625 out2:
2626 	path_put(&old);
2627 out1:
2628 	path_put(&new);
2629 out0:
2630 	return error;
2631 }
2632 
2633 static void __init init_mount_tree(void)
2634 {
2635 	struct vfsmount *mnt;
2636 	struct mnt_namespace *ns;
2637 	struct path root;
2638 	struct file_system_type *type;
2639 
2640 	type = get_fs_type("rootfs");
2641 	if (!type)
2642 		panic("Can't find rootfs type");
2643 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2644 	put_filesystem(type);
2645 	if (IS_ERR(mnt))
2646 		panic("Can't create rootfs");
2647 
2648 	ns = create_mnt_ns(mnt);
2649 	if (IS_ERR(ns))
2650 		panic("Can't allocate initial namespace");
2651 
2652 	init_task.nsproxy->mnt_ns = ns;
2653 	get_mnt_ns(ns);
2654 
2655 	root.mnt = mnt;
2656 	root.dentry = mnt->mnt_root;
2657 
2658 	set_fs_pwd(current->fs, &root);
2659 	set_fs_root(current->fs, &root);
2660 }
2661 
2662 void __init mnt_init(void)
2663 {
2664 	unsigned u;
2665 	int err;
2666 
2667 	init_rwsem(&namespace_sem);
2668 
2669 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2670 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2671 
2672 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2673 
2674 	if (!mount_hashtable)
2675 		panic("Failed to allocate mount hash table\n");
2676 
2677 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2678 
2679 	for (u = 0; u < HASH_SIZE; u++)
2680 		INIT_LIST_HEAD(&mount_hashtable[u]);
2681 
2682 	br_lock_init(&vfsmount_lock);
2683 
2684 	err = sysfs_init();
2685 	if (err)
2686 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2687 			__func__, err);
2688 	fs_kobj = kobject_create_and_add("fs", NULL);
2689 	if (!fs_kobj)
2690 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2691 	init_rootfs();
2692 	init_mount_tree();
2693 }
2694 
2695 void put_mnt_ns(struct mnt_namespace *ns)
2696 {
2697 	LIST_HEAD(umount_list);
2698 
2699 	if (!atomic_dec_and_test(&ns->count))
2700 		return;
2701 	down_write(&namespace_sem);
2702 	br_write_lock(&vfsmount_lock);
2703 	umount_tree(ns->root, 0, &umount_list);
2704 	br_write_unlock(&vfsmount_lock);
2705 	up_write(&namespace_sem);
2706 	release_mounts(&umount_list);
2707 	free_mnt_ns(ns);
2708 }
2709 
2710 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2711 {
2712 	struct vfsmount *mnt;
2713 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2714 	if (!IS_ERR(mnt)) {
2715 		/*
2716 		 * it is a longterm mount, don't release mnt until
2717 		 * we unmount before file sys is unregistered
2718 		*/
2719 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2720 	}
2721 	return mnt;
2722 }
2723 EXPORT_SYMBOL_GPL(kern_mount_data);
2724 
2725 void kern_unmount(struct vfsmount *mnt)
2726 {
2727 	/* release long term mount so mount point can be released */
2728 	if (!IS_ERR_OR_NULL(mnt)) {
2729 		br_write_lock(&vfsmount_lock);
2730 		real_mount(mnt)->mnt_ns = NULL;
2731 		br_write_unlock(&vfsmount_lock);
2732 		mntput(mnt);
2733 	}
2734 }
2735 EXPORT_SYMBOL(kern_unmount);
2736 
2737 bool our_mnt(struct vfsmount *mnt)
2738 {
2739 	return check_mnt(real_mount(mnt));
2740 }
2741 
2742 bool current_chrooted(void)
2743 {
2744 	/* Does the current process have a non-standard root */
2745 	struct path ns_root;
2746 	struct path fs_root;
2747 	bool chrooted;
2748 
2749 	/* Find the namespace root */
2750 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2751 	ns_root.dentry = ns_root.mnt->mnt_root;
2752 	path_get(&ns_root);
2753 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2754 		;
2755 
2756 	get_fs_root(current->fs, &fs_root);
2757 
2758 	chrooted = !path_equal(&fs_root, &ns_root);
2759 
2760 	path_put(&fs_root);
2761 	path_put(&ns_root);
2762 
2763 	return chrooted;
2764 }
2765 
2766 void update_mnt_policy(struct user_namespace *userns)
2767 {
2768 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2769 	struct mount *mnt;
2770 
2771 	down_read(&namespace_sem);
2772 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2773 		switch (mnt->mnt.mnt_sb->s_magic) {
2774 		case SYSFS_MAGIC:
2775 			userns->may_mount_sysfs = true;
2776 			break;
2777 		case PROC_SUPER_MAGIC:
2778 			userns->may_mount_proc = true;
2779 			break;
2780 		}
2781 		if (userns->may_mount_sysfs && userns->may_mount_proc)
2782 			break;
2783 	}
2784 	up_read(&namespace_sem);
2785 }
2786 
2787 static void *mntns_get(struct task_struct *task)
2788 {
2789 	struct mnt_namespace *ns = NULL;
2790 	struct nsproxy *nsproxy;
2791 
2792 	rcu_read_lock();
2793 	nsproxy = task_nsproxy(task);
2794 	if (nsproxy) {
2795 		ns = nsproxy->mnt_ns;
2796 		get_mnt_ns(ns);
2797 	}
2798 	rcu_read_unlock();
2799 
2800 	return ns;
2801 }
2802 
2803 static void mntns_put(void *ns)
2804 {
2805 	put_mnt_ns(ns);
2806 }
2807 
2808 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2809 {
2810 	struct fs_struct *fs = current->fs;
2811 	struct mnt_namespace *mnt_ns = ns;
2812 	struct path root;
2813 
2814 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2815 	    !nsown_capable(CAP_SYS_CHROOT) ||
2816 	    !nsown_capable(CAP_SYS_ADMIN))
2817 		return -EPERM;
2818 
2819 	if (fs->users != 1)
2820 		return -EINVAL;
2821 
2822 	get_mnt_ns(mnt_ns);
2823 	put_mnt_ns(nsproxy->mnt_ns);
2824 	nsproxy->mnt_ns = mnt_ns;
2825 
2826 	/* Find the root */
2827 	root.mnt    = &mnt_ns->root->mnt;
2828 	root.dentry = mnt_ns->root->mnt.mnt_root;
2829 	path_get(&root);
2830 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2831 		;
2832 
2833 	/* Update the pwd and root */
2834 	set_fs_pwd(fs, &root);
2835 	set_fs_root(fs, &root);
2836 
2837 	path_put(&root);
2838 	return 0;
2839 }
2840 
2841 static unsigned int mntns_inum(void *ns)
2842 {
2843 	struct mnt_namespace *mnt_ns = ns;
2844 	return mnt_ns->proc_inum;
2845 }
2846 
2847 const struct proc_ns_operations mntns_operations = {
2848 	.name		= "mnt",
2849 	.type		= CLONE_NEWNS,
2850 	.get		= mntns_get,
2851 	.put		= mntns_put,
2852 	.install	= mntns_install,
2853 	.inum		= mntns_inum,
2854 };
2855