1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/ramfs.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_fs.h> 25 #include "pnode.h" 26 #include "internal.h" 27 28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 29 #define HASH_SIZE (1UL << HASH_SHIFT) 30 31 static int event; 32 static DEFINE_IDA(mnt_id_ida); 33 static DEFINE_IDA(mnt_group_ida); 34 static DEFINE_SPINLOCK(mnt_id_lock); 35 static int mnt_id_start = 0; 36 static int mnt_group_start = 1; 37 38 static struct list_head *mount_hashtable __read_mostly; 39 static struct kmem_cache *mnt_cache __read_mostly; 40 static struct rw_semaphore namespace_sem; 41 42 /* /sys/fs */ 43 struct kobject *fs_kobj; 44 EXPORT_SYMBOL_GPL(fs_kobj); 45 46 /* 47 * vfsmount lock may be taken for read to prevent changes to the 48 * vfsmount hash, ie. during mountpoint lookups or walking back 49 * up the tree. 50 * 51 * It should be taken for write in all cases where the vfsmount 52 * tree or hash is modified or when a vfsmount structure is modified. 53 */ 54 DEFINE_BRLOCK(vfsmount_lock); 55 56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 57 { 58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 60 tmp = tmp + (tmp >> HASH_SHIFT); 61 return tmp & (HASH_SIZE - 1); 62 } 63 64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 65 66 /* 67 * allocation is serialized by namespace_sem, but we need the spinlock to 68 * serialize with freeing. 69 */ 70 static int mnt_alloc_id(struct mount *mnt) 71 { 72 int res; 73 74 retry: 75 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 76 spin_lock(&mnt_id_lock); 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 78 if (!res) 79 mnt_id_start = mnt->mnt_id + 1; 80 spin_unlock(&mnt_id_lock); 81 if (res == -EAGAIN) 82 goto retry; 83 84 return res; 85 } 86 87 static void mnt_free_id(struct mount *mnt) 88 { 89 int id = mnt->mnt_id; 90 spin_lock(&mnt_id_lock); 91 ida_remove(&mnt_id_ida, id); 92 if (mnt_id_start > id) 93 mnt_id_start = id; 94 spin_unlock(&mnt_id_lock); 95 } 96 97 /* 98 * Allocate a new peer group ID 99 * 100 * mnt_group_ida is protected by namespace_sem 101 */ 102 static int mnt_alloc_group_id(struct mount *mnt) 103 { 104 int res; 105 106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 107 return -ENOMEM; 108 109 res = ida_get_new_above(&mnt_group_ida, 110 mnt_group_start, 111 &mnt->mnt_group_id); 112 if (!res) 113 mnt_group_start = mnt->mnt_group_id + 1; 114 115 return res; 116 } 117 118 /* 119 * Release a peer group ID 120 */ 121 void mnt_release_group_id(struct mount *mnt) 122 { 123 int id = mnt->mnt_group_id; 124 ida_remove(&mnt_group_ida, id); 125 if (mnt_group_start > id) 126 mnt_group_start = id; 127 mnt->mnt_group_id = 0; 128 } 129 130 /* 131 * vfsmount lock must be held for read 132 */ 133 static inline void mnt_add_count(struct mount *mnt, int n) 134 { 135 #ifdef CONFIG_SMP 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 137 #else 138 preempt_disable(); 139 mnt->mnt_count += n; 140 preempt_enable(); 141 #endif 142 } 143 144 /* 145 * vfsmount lock must be held for write 146 */ 147 unsigned int mnt_get_count(struct mount *mnt) 148 { 149 #ifdef CONFIG_SMP 150 unsigned int count = 0; 151 int cpu; 152 153 for_each_possible_cpu(cpu) { 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 155 } 156 157 return count; 158 #else 159 return mnt->mnt_count; 160 #endif 161 } 162 163 static struct mount *alloc_vfsmnt(const char *name) 164 { 165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 166 if (mnt) { 167 int err; 168 169 err = mnt_alloc_id(mnt); 170 if (err) 171 goto out_free_cache; 172 173 if (name) { 174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 175 if (!mnt->mnt_devname) 176 goto out_free_id; 177 } 178 179 #ifdef CONFIG_SMP 180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 181 if (!mnt->mnt_pcp) 182 goto out_free_devname; 183 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 185 #else 186 mnt->mnt_count = 1; 187 mnt->mnt_writers = 0; 188 #endif 189 190 INIT_LIST_HEAD(&mnt->mnt_hash); 191 INIT_LIST_HEAD(&mnt->mnt_child); 192 INIT_LIST_HEAD(&mnt->mnt_mounts); 193 INIT_LIST_HEAD(&mnt->mnt_list); 194 INIT_LIST_HEAD(&mnt->mnt_expire); 195 INIT_LIST_HEAD(&mnt->mnt_share); 196 INIT_LIST_HEAD(&mnt->mnt_slave_list); 197 INIT_LIST_HEAD(&mnt->mnt_slave); 198 #ifdef CONFIG_FSNOTIFY 199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 200 #endif 201 } 202 return mnt; 203 204 #ifdef CONFIG_SMP 205 out_free_devname: 206 kfree(mnt->mnt_devname); 207 #endif 208 out_free_id: 209 mnt_free_id(mnt); 210 out_free_cache: 211 kmem_cache_free(mnt_cache, mnt); 212 return NULL; 213 } 214 215 /* 216 * Most r/o checks on a fs are for operations that take 217 * discrete amounts of time, like a write() or unlink(). 218 * We must keep track of when those operations start 219 * (for permission checks) and when they end, so that 220 * we can determine when writes are able to occur to 221 * a filesystem. 222 */ 223 /* 224 * __mnt_is_readonly: check whether a mount is read-only 225 * @mnt: the mount to check for its write status 226 * 227 * This shouldn't be used directly ouside of the VFS. 228 * It does not guarantee that the filesystem will stay 229 * r/w, just that it is right *now*. This can not and 230 * should not be used in place of IS_RDONLY(inode). 231 * mnt_want/drop_write() will _keep_ the filesystem 232 * r/w. 233 */ 234 int __mnt_is_readonly(struct vfsmount *mnt) 235 { 236 if (mnt->mnt_flags & MNT_READONLY) 237 return 1; 238 if (mnt->mnt_sb->s_flags & MS_RDONLY) 239 return 1; 240 return 0; 241 } 242 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 243 244 static inline void mnt_inc_writers(struct mount *mnt) 245 { 246 #ifdef CONFIG_SMP 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 248 #else 249 mnt->mnt_writers++; 250 #endif 251 } 252 253 static inline void mnt_dec_writers(struct mount *mnt) 254 { 255 #ifdef CONFIG_SMP 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 257 #else 258 mnt->mnt_writers--; 259 #endif 260 } 261 262 static unsigned int mnt_get_writers(struct mount *mnt) 263 { 264 #ifdef CONFIG_SMP 265 unsigned int count = 0; 266 int cpu; 267 268 for_each_possible_cpu(cpu) { 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 270 } 271 272 return count; 273 #else 274 return mnt->mnt_writers; 275 #endif 276 } 277 278 static int mnt_is_readonly(struct vfsmount *mnt) 279 { 280 if (mnt->mnt_sb->s_readonly_remount) 281 return 1; 282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 283 smp_rmb(); 284 return __mnt_is_readonly(mnt); 285 } 286 287 /* 288 * Most r/o & frozen checks on a fs are for operations that take discrete 289 * amounts of time, like a write() or unlink(). We must keep track of when 290 * those operations start (for permission checks) and when they end, so that we 291 * can determine when writes are able to occur to a filesystem. 292 */ 293 /** 294 * __mnt_want_write - get write access to a mount without freeze protection 295 * @m: the mount on which to take a write 296 * 297 * This tells the low-level filesystem that a write is about to be performed to 298 * it, and makes sure that writes are allowed (mnt it read-write) before 299 * returning success. This operation does not protect against filesystem being 300 * frozen. When the write operation is finished, __mnt_drop_write() must be 301 * called. This is effectively a refcount. 302 */ 303 int __mnt_want_write(struct vfsmount *m) 304 { 305 struct mount *mnt = real_mount(m); 306 int ret = 0; 307 308 preempt_disable(); 309 mnt_inc_writers(mnt); 310 /* 311 * The store to mnt_inc_writers must be visible before we pass 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 313 * incremented count after it has set MNT_WRITE_HOLD. 314 */ 315 smp_mb(); 316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 317 cpu_relax(); 318 /* 319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 320 * be set to match its requirements. So we must not load that until 321 * MNT_WRITE_HOLD is cleared. 322 */ 323 smp_rmb(); 324 if (mnt_is_readonly(m)) { 325 mnt_dec_writers(mnt); 326 ret = -EROFS; 327 } 328 preempt_enable(); 329 330 return ret; 331 } 332 333 /** 334 * mnt_want_write - get write access to a mount 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mount is read-write, filesystem 339 * is not frozen) before returning success. When the write operation is 340 * finished, mnt_drop_write() must be called. This is effectively a refcount. 341 */ 342 int mnt_want_write(struct vfsmount *m) 343 { 344 int ret; 345 346 sb_start_write(m->mnt_sb); 347 ret = __mnt_want_write(m); 348 if (ret) 349 sb_end_write(m->mnt_sb); 350 return ret; 351 } 352 EXPORT_SYMBOL_GPL(mnt_want_write); 353 354 /** 355 * mnt_clone_write - get write access to a mount 356 * @mnt: the mount on which to take a write 357 * 358 * This is effectively like mnt_want_write, except 359 * it must only be used to take an extra write reference 360 * on a mountpoint that we already know has a write reference 361 * on it. This allows some optimisation. 362 * 363 * After finished, mnt_drop_write must be called as usual to 364 * drop the reference. 365 */ 366 int mnt_clone_write(struct vfsmount *mnt) 367 { 368 /* superblock may be r/o */ 369 if (__mnt_is_readonly(mnt)) 370 return -EROFS; 371 preempt_disable(); 372 mnt_inc_writers(real_mount(mnt)); 373 preempt_enable(); 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(mnt_clone_write); 377 378 /** 379 * __mnt_want_write_file - get write access to a file's mount 380 * @file: the file who's mount on which to take a write 381 * 382 * This is like __mnt_want_write, but it takes a file and can 383 * do some optimisations if the file is open for write already 384 */ 385 int __mnt_want_write_file(struct file *file) 386 { 387 struct inode *inode = file_inode(file); 388 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 390 return __mnt_want_write(file->f_path.mnt); 391 else 392 return mnt_clone_write(file->f_path.mnt); 393 } 394 395 /** 396 * mnt_want_write_file - get write access to a file's mount 397 * @file: the file who's mount on which to take a write 398 * 399 * This is like mnt_want_write, but it takes a file and can 400 * do some optimisations if the file is open for write already 401 */ 402 int mnt_want_write_file(struct file *file) 403 { 404 int ret; 405 406 sb_start_write(file->f_path.mnt->mnt_sb); 407 ret = __mnt_want_write_file(file); 408 if (ret) 409 sb_end_write(file->f_path.mnt->mnt_sb); 410 return ret; 411 } 412 EXPORT_SYMBOL_GPL(mnt_want_write_file); 413 414 /** 415 * __mnt_drop_write - give up write access to a mount 416 * @mnt: the mount on which to give up write access 417 * 418 * Tells the low-level filesystem that we are done 419 * performing writes to it. Must be matched with 420 * __mnt_want_write() call above. 421 */ 422 void __mnt_drop_write(struct vfsmount *mnt) 423 { 424 preempt_disable(); 425 mnt_dec_writers(real_mount(mnt)); 426 preempt_enable(); 427 } 428 429 /** 430 * mnt_drop_write - give up write access to a mount 431 * @mnt: the mount on which to give up write access 432 * 433 * Tells the low-level filesystem that we are done performing writes to it and 434 * also allows filesystem to be frozen again. Must be matched with 435 * mnt_want_write() call above. 436 */ 437 void mnt_drop_write(struct vfsmount *mnt) 438 { 439 __mnt_drop_write(mnt); 440 sb_end_write(mnt->mnt_sb); 441 } 442 EXPORT_SYMBOL_GPL(mnt_drop_write); 443 444 void __mnt_drop_write_file(struct file *file) 445 { 446 __mnt_drop_write(file->f_path.mnt); 447 } 448 449 void mnt_drop_write_file(struct file *file) 450 { 451 mnt_drop_write(file->f_path.mnt); 452 } 453 EXPORT_SYMBOL(mnt_drop_write_file); 454 455 static int mnt_make_readonly(struct mount *mnt) 456 { 457 int ret = 0; 458 459 br_write_lock(&vfsmount_lock); 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 461 /* 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 463 * should be visible before we do. 464 */ 465 smp_mb(); 466 467 /* 468 * With writers on hold, if this value is zero, then there are 469 * definitely no active writers (although held writers may subsequently 470 * increment the count, they'll have to wait, and decrement it after 471 * seeing MNT_READONLY). 472 * 473 * It is OK to have counter incremented on one CPU and decremented on 474 * another: the sum will add up correctly. The danger would be when we 475 * sum up each counter, if we read a counter before it is incremented, 476 * but then read another CPU's count which it has been subsequently 477 * decremented from -- we would see more decrements than we should. 478 * MNT_WRITE_HOLD protects against this scenario, because 479 * mnt_want_write first increments count, then smp_mb, then spins on 480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 481 * we're counting up here. 482 */ 483 if (mnt_get_writers(mnt) > 0) 484 ret = -EBUSY; 485 else 486 mnt->mnt.mnt_flags |= MNT_READONLY; 487 /* 488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 489 * that become unheld will see MNT_READONLY. 490 */ 491 smp_wmb(); 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 493 br_write_unlock(&vfsmount_lock); 494 return ret; 495 } 496 497 static void __mnt_unmake_readonly(struct mount *mnt) 498 { 499 br_write_lock(&vfsmount_lock); 500 mnt->mnt.mnt_flags &= ~MNT_READONLY; 501 br_write_unlock(&vfsmount_lock); 502 } 503 504 int sb_prepare_remount_readonly(struct super_block *sb) 505 { 506 struct mount *mnt; 507 int err = 0; 508 509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 510 if (atomic_long_read(&sb->s_remove_count)) 511 return -EBUSY; 512 513 br_write_lock(&vfsmount_lock); 514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 517 smp_mb(); 518 if (mnt_get_writers(mnt) > 0) { 519 err = -EBUSY; 520 break; 521 } 522 } 523 } 524 if (!err && atomic_long_read(&sb->s_remove_count)) 525 err = -EBUSY; 526 527 if (!err) { 528 sb->s_readonly_remount = 1; 529 smp_wmb(); 530 } 531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 534 } 535 br_write_unlock(&vfsmount_lock); 536 537 return err; 538 } 539 540 static void free_vfsmnt(struct mount *mnt) 541 { 542 kfree(mnt->mnt_devname); 543 mnt_free_id(mnt); 544 #ifdef CONFIG_SMP 545 free_percpu(mnt->mnt_pcp); 546 #endif 547 kmem_cache_free(mnt_cache, mnt); 548 } 549 550 /* 551 * find the first or last mount at @dentry on vfsmount @mnt depending on 552 * @dir. If @dir is set return the first mount else return the last mount. 553 * vfsmount_lock must be held for read or write. 554 */ 555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 556 int dir) 557 { 558 struct list_head *head = mount_hashtable + hash(mnt, dentry); 559 struct list_head *tmp = head; 560 struct mount *p, *found = NULL; 561 562 for (;;) { 563 tmp = dir ? tmp->next : tmp->prev; 564 p = NULL; 565 if (tmp == head) 566 break; 567 p = list_entry(tmp, struct mount, mnt_hash); 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 569 found = p; 570 break; 571 } 572 } 573 return found; 574 } 575 576 /* 577 * lookup_mnt - Return the first child mount mounted at path 578 * 579 * "First" means first mounted chronologically. If you create the 580 * following mounts: 581 * 582 * mount /dev/sda1 /mnt 583 * mount /dev/sda2 /mnt 584 * mount /dev/sda3 /mnt 585 * 586 * Then lookup_mnt() on the base /mnt dentry in the root mount will 587 * return successively the root dentry and vfsmount of /dev/sda1, then 588 * /dev/sda2, then /dev/sda3, then NULL. 589 * 590 * lookup_mnt takes a reference to the found vfsmount. 591 */ 592 struct vfsmount *lookup_mnt(struct path *path) 593 { 594 struct mount *child_mnt; 595 596 br_read_lock(&vfsmount_lock); 597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 598 if (child_mnt) { 599 mnt_add_count(child_mnt, 1); 600 br_read_unlock(&vfsmount_lock); 601 return &child_mnt->mnt; 602 } else { 603 br_read_unlock(&vfsmount_lock); 604 return NULL; 605 } 606 } 607 608 static inline int check_mnt(struct mount *mnt) 609 { 610 return mnt->mnt_ns == current->nsproxy->mnt_ns; 611 } 612 613 /* 614 * vfsmount lock must be held for write 615 */ 616 static void touch_mnt_namespace(struct mnt_namespace *ns) 617 { 618 if (ns) { 619 ns->event = ++event; 620 wake_up_interruptible(&ns->poll); 621 } 622 } 623 624 /* 625 * vfsmount lock must be held for write 626 */ 627 static void __touch_mnt_namespace(struct mnt_namespace *ns) 628 { 629 if (ns && ns->event != event) { 630 ns->event = event; 631 wake_up_interruptible(&ns->poll); 632 } 633 } 634 635 /* 636 * Clear dentry's mounted state if it has no remaining mounts. 637 * vfsmount_lock must be held for write. 638 */ 639 static void dentry_reset_mounted(struct dentry *dentry) 640 { 641 unsigned u; 642 643 for (u = 0; u < HASH_SIZE; u++) { 644 struct mount *p; 645 646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 647 if (p->mnt_mountpoint == dentry) 648 return; 649 } 650 } 651 spin_lock(&dentry->d_lock); 652 dentry->d_flags &= ~DCACHE_MOUNTED; 653 spin_unlock(&dentry->d_lock); 654 } 655 656 /* 657 * vfsmount lock must be held for write 658 */ 659 static void detach_mnt(struct mount *mnt, struct path *old_path) 660 { 661 old_path->dentry = mnt->mnt_mountpoint; 662 old_path->mnt = &mnt->mnt_parent->mnt; 663 mnt->mnt_parent = mnt; 664 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 665 list_del_init(&mnt->mnt_child); 666 list_del_init(&mnt->mnt_hash); 667 dentry_reset_mounted(old_path->dentry); 668 } 669 670 /* 671 * vfsmount lock must be held for write 672 */ 673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry, 674 struct mount *child_mnt) 675 { 676 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 677 child_mnt->mnt_mountpoint = dget(dentry); 678 child_mnt->mnt_parent = mnt; 679 spin_lock(&dentry->d_lock); 680 dentry->d_flags |= DCACHE_MOUNTED; 681 spin_unlock(&dentry->d_lock); 682 } 683 684 /* 685 * vfsmount lock must be held for write 686 */ 687 static void attach_mnt(struct mount *mnt, struct path *path) 688 { 689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt); 690 list_add_tail(&mnt->mnt_hash, mount_hashtable + 691 hash(path->mnt, path->dentry)); 692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts); 693 } 694 695 /* 696 * vfsmount lock must be held for write 697 */ 698 static void commit_tree(struct mount *mnt) 699 { 700 struct mount *parent = mnt->mnt_parent; 701 struct mount *m; 702 LIST_HEAD(head); 703 struct mnt_namespace *n = parent->mnt_ns; 704 705 BUG_ON(parent == mnt); 706 707 list_add_tail(&head, &mnt->mnt_list); 708 list_for_each_entry(m, &head, mnt_list) 709 m->mnt_ns = n; 710 711 list_splice(&head, n->list.prev); 712 713 list_add_tail(&mnt->mnt_hash, mount_hashtable + 714 hash(&parent->mnt, mnt->mnt_mountpoint)); 715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 716 touch_mnt_namespace(n); 717 } 718 719 static struct mount *next_mnt(struct mount *p, struct mount *root) 720 { 721 struct list_head *next = p->mnt_mounts.next; 722 if (next == &p->mnt_mounts) { 723 while (1) { 724 if (p == root) 725 return NULL; 726 next = p->mnt_child.next; 727 if (next != &p->mnt_parent->mnt_mounts) 728 break; 729 p = p->mnt_parent; 730 } 731 } 732 return list_entry(next, struct mount, mnt_child); 733 } 734 735 static struct mount *skip_mnt_tree(struct mount *p) 736 { 737 struct list_head *prev = p->mnt_mounts.prev; 738 while (prev != &p->mnt_mounts) { 739 p = list_entry(prev, struct mount, mnt_child); 740 prev = p->mnt_mounts.prev; 741 } 742 return p; 743 } 744 745 struct vfsmount * 746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 747 { 748 struct mount *mnt; 749 struct dentry *root; 750 751 if (!type) 752 return ERR_PTR(-ENODEV); 753 754 mnt = alloc_vfsmnt(name); 755 if (!mnt) 756 return ERR_PTR(-ENOMEM); 757 758 if (flags & MS_KERNMOUNT) 759 mnt->mnt.mnt_flags = MNT_INTERNAL; 760 761 root = mount_fs(type, flags, name, data); 762 if (IS_ERR(root)) { 763 free_vfsmnt(mnt); 764 return ERR_CAST(root); 765 } 766 767 mnt->mnt.mnt_root = root; 768 mnt->mnt.mnt_sb = root->d_sb; 769 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 770 mnt->mnt_parent = mnt; 771 br_write_lock(&vfsmount_lock); 772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 773 br_write_unlock(&vfsmount_lock); 774 return &mnt->mnt; 775 } 776 EXPORT_SYMBOL_GPL(vfs_kern_mount); 777 778 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 779 int flag) 780 { 781 struct super_block *sb = old->mnt.mnt_sb; 782 struct mount *mnt; 783 int err; 784 785 mnt = alloc_vfsmnt(old->mnt_devname); 786 if (!mnt) 787 return ERR_PTR(-ENOMEM); 788 789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 790 mnt->mnt_group_id = 0; /* not a peer of original */ 791 else 792 mnt->mnt_group_id = old->mnt_group_id; 793 794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 795 err = mnt_alloc_group_id(mnt); 796 if (err) 797 goto out_free; 798 } 799 800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 801 /* Don't allow unprivileged users to change mount flags */ 802 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY)) 803 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 804 805 atomic_inc(&sb->s_active); 806 mnt->mnt.mnt_sb = sb; 807 mnt->mnt.mnt_root = dget(root); 808 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 809 mnt->mnt_parent = mnt; 810 br_write_lock(&vfsmount_lock); 811 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 812 br_write_unlock(&vfsmount_lock); 813 814 if ((flag & CL_SLAVE) || 815 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 816 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 817 mnt->mnt_master = old; 818 CLEAR_MNT_SHARED(mnt); 819 } else if (!(flag & CL_PRIVATE)) { 820 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 821 list_add(&mnt->mnt_share, &old->mnt_share); 822 if (IS_MNT_SLAVE(old)) 823 list_add(&mnt->mnt_slave, &old->mnt_slave); 824 mnt->mnt_master = old->mnt_master; 825 } 826 if (flag & CL_MAKE_SHARED) 827 set_mnt_shared(mnt); 828 829 /* stick the duplicate mount on the same expiry list 830 * as the original if that was on one */ 831 if (flag & CL_EXPIRE) { 832 if (!list_empty(&old->mnt_expire)) 833 list_add(&mnt->mnt_expire, &old->mnt_expire); 834 } 835 836 return mnt; 837 838 out_free: 839 free_vfsmnt(mnt); 840 return ERR_PTR(err); 841 } 842 843 static inline void mntfree(struct mount *mnt) 844 { 845 struct vfsmount *m = &mnt->mnt; 846 struct super_block *sb = m->mnt_sb; 847 848 /* 849 * This probably indicates that somebody messed 850 * up a mnt_want/drop_write() pair. If this 851 * happens, the filesystem was probably unable 852 * to make r/w->r/o transitions. 853 */ 854 /* 855 * The locking used to deal with mnt_count decrement provides barriers, 856 * so mnt_get_writers() below is safe. 857 */ 858 WARN_ON(mnt_get_writers(mnt)); 859 fsnotify_vfsmount_delete(m); 860 dput(m->mnt_root); 861 free_vfsmnt(mnt); 862 deactivate_super(sb); 863 } 864 865 static void mntput_no_expire(struct mount *mnt) 866 { 867 put_again: 868 #ifdef CONFIG_SMP 869 br_read_lock(&vfsmount_lock); 870 if (likely(mnt->mnt_ns)) { 871 /* shouldn't be the last one */ 872 mnt_add_count(mnt, -1); 873 br_read_unlock(&vfsmount_lock); 874 return; 875 } 876 br_read_unlock(&vfsmount_lock); 877 878 br_write_lock(&vfsmount_lock); 879 mnt_add_count(mnt, -1); 880 if (mnt_get_count(mnt)) { 881 br_write_unlock(&vfsmount_lock); 882 return; 883 } 884 #else 885 mnt_add_count(mnt, -1); 886 if (likely(mnt_get_count(mnt))) 887 return; 888 br_write_lock(&vfsmount_lock); 889 #endif 890 if (unlikely(mnt->mnt_pinned)) { 891 mnt_add_count(mnt, mnt->mnt_pinned + 1); 892 mnt->mnt_pinned = 0; 893 br_write_unlock(&vfsmount_lock); 894 acct_auto_close_mnt(&mnt->mnt); 895 goto put_again; 896 } 897 898 list_del(&mnt->mnt_instance); 899 br_write_unlock(&vfsmount_lock); 900 mntfree(mnt); 901 } 902 903 void mntput(struct vfsmount *mnt) 904 { 905 if (mnt) { 906 struct mount *m = real_mount(mnt); 907 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 908 if (unlikely(m->mnt_expiry_mark)) 909 m->mnt_expiry_mark = 0; 910 mntput_no_expire(m); 911 } 912 } 913 EXPORT_SYMBOL(mntput); 914 915 struct vfsmount *mntget(struct vfsmount *mnt) 916 { 917 if (mnt) 918 mnt_add_count(real_mount(mnt), 1); 919 return mnt; 920 } 921 EXPORT_SYMBOL(mntget); 922 923 void mnt_pin(struct vfsmount *mnt) 924 { 925 br_write_lock(&vfsmount_lock); 926 real_mount(mnt)->mnt_pinned++; 927 br_write_unlock(&vfsmount_lock); 928 } 929 EXPORT_SYMBOL(mnt_pin); 930 931 void mnt_unpin(struct vfsmount *m) 932 { 933 struct mount *mnt = real_mount(m); 934 br_write_lock(&vfsmount_lock); 935 if (mnt->mnt_pinned) { 936 mnt_add_count(mnt, 1); 937 mnt->mnt_pinned--; 938 } 939 br_write_unlock(&vfsmount_lock); 940 } 941 EXPORT_SYMBOL(mnt_unpin); 942 943 static inline void mangle(struct seq_file *m, const char *s) 944 { 945 seq_escape(m, s, " \t\n\\"); 946 } 947 948 /* 949 * Simple .show_options callback for filesystems which don't want to 950 * implement more complex mount option showing. 951 * 952 * See also save_mount_options(). 953 */ 954 int generic_show_options(struct seq_file *m, struct dentry *root) 955 { 956 const char *options; 957 958 rcu_read_lock(); 959 options = rcu_dereference(root->d_sb->s_options); 960 961 if (options != NULL && options[0]) { 962 seq_putc(m, ','); 963 mangle(m, options); 964 } 965 rcu_read_unlock(); 966 967 return 0; 968 } 969 EXPORT_SYMBOL(generic_show_options); 970 971 /* 972 * If filesystem uses generic_show_options(), this function should be 973 * called from the fill_super() callback. 974 * 975 * The .remount_fs callback usually needs to be handled in a special 976 * way, to make sure, that previous options are not overwritten if the 977 * remount fails. 978 * 979 * Also note, that if the filesystem's .remount_fs function doesn't 980 * reset all options to their default value, but changes only newly 981 * given options, then the displayed options will not reflect reality 982 * any more. 983 */ 984 void save_mount_options(struct super_block *sb, char *options) 985 { 986 BUG_ON(sb->s_options); 987 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 988 } 989 EXPORT_SYMBOL(save_mount_options); 990 991 void replace_mount_options(struct super_block *sb, char *options) 992 { 993 char *old = sb->s_options; 994 rcu_assign_pointer(sb->s_options, options); 995 if (old) { 996 synchronize_rcu(); 997 kfree(old); 998 } 999 } 1000 EXPORT_SYMBOL(replace_mount_options); 1001 1002 #ifdef CONFIG_PROC_FS 1003 /* iterator; we want it to have access to namespace_sem, thus here... */ 1004 static void *m_start(struct seq_file *m, loff_t *pos) 1005 { 1006 struct proc_mounts *p = proc_mounts(m); 1007 1008 down_read(&namespace_sem); 1009 return seq_list_start(&p->ns->list, *pos); 1010 } 1011 1012 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1013 { 1014 struct proc_mounts *p = proc_mounts(m); 1015 1016 return seq_list_next(v, &p->ns->list, pos); 1017 } 1018 1019 static void m_stop(struct seq_file *m, void *v) 1020 { 1021 up_read(&namespace_sem); 1022 } 1023 1024 static int m_show(struct seq_file *m, void *v) 1025 { 1026 struct proc_mounts *p = proc_mounts(m); 1027 struct mount *r = list_entry(v, struct mount, mnt_list); 1028 return p->show(m, &r->mnt); 1029 } 1030 1031 const struct seq_operations mounts_op = { 1032 .start = m_start, 1033 .next = m_next, 1034 .stop = m_stop, 1035 .show = m_show, 1036 }; 1037 #endif /* CONFIG_PROC_FS */ 1038 1039 /** 1040 * may_umount_tree - check if a mount tree is busy 1041 * @mnt: root of mount tree 1042 * 1043 * This is called to check if a tree of mounts has any 1044 * open files, pwds, chroots or sub mounts that are 1045 * busy. 1046 */ 1047 int may_umount_tree(struct vfsmount *m) 1048 { 1049 struct mount *mnt = real_mount(m); 1050 int actual_refs = 0; 1051 int minimum_refs = 0; 1052 struct mount *p; 1053 BUG_ON(!m); 1054 1055 /* write lock needed for mnt_get_count */ 1056 br_write_lock(&vfsmount_lock); 1057 for (p = mnt; p; p = next_mnt(p, mnt)) { 1058 actual_refs += mnt_get_count(p); 1059 minimum_refs += 2; 1060 } 1061 br_write_unlock(&vfsmount_lock); 1062 1063 if (actual_refs > minimum_refs) 1064 return 0; 1065 1066 return 1; 1067 } 1068 1069 EXPORT_SYMBOL(may_umount_tree); 1070 1071 /** 1072 * may_umount - check if a mount point is busy 1073 * @mnt: root of mount 1074 * 1075 * This is called to check if a mount point has any 1076 * open files, pwds, chroots or sub mounts. If the 1077 * mount has sub mounts this will return busy 1078 * regardless of whether the sub mounts are busy. 1079 * 1080 * Doesn't take quota and stuff into account. IOW, in some cases it will 1081 * give false negatives. The main reason why it's here is that we need 1082 * a non-destructive way to look for easily umountable filesystems. 1083 */ 1084 int may_umount(struct vfsmount *mnt) 1085 { 1086 int ret = 1; 1087 down_read(&namespace_sem); 1088 br_write_lock(&vfsmount_lock); 1089 if (propagate_mount_busy(real_mount(mnt), 2)) 1090 ret = 0; 1091 br_write_unlock(&vfsmount_lock); 1092 up_read(&namespace_sem); 1093 return ret; 1094 } 1095 1096 EXPORT_SYMBOL(may_umount); 1097 1098 void release_mounts(struct list_head *head) 1099 { 1100 struct mount *mnt; 1101 while (!list_empty(head)) { 1102 mnt = list_first_entry(head, struct mount, mnt_hash); 1103 list_del_init(&mnt->mnt_hash); 1104 if (mnt_has_parent(mnt)) { 1105 struct dentry *dentry; 1106 struct mount *m; 1107 1108 br_write_lock(&vfsmount_lock); 1109 dentry = mnt->mnt_mountpoint; 1110 m = mnt->mnt_parent; 1111 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1112 mnt->mnt_parent = mnt; 1113 m->mnt_ghosts--; 1114 br_write_unlock(&vfsmount_lock); 1115 dput(dentry); 1116 mntput(&m->mnt); 1117 } 1118 mntput(&mnt->mnt); 1119 } 1120 } 1121 1122 /* 1123 * vfsmount lock must be held for write 1124 * namespace_sem must be held for write 1125 */ 1126 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill) 1127 { 1128 LIST_HEAD(tmp_list); 1129 struct mount *p; 1130 1131 for (p = mnt; p; p = next_mnt(p, mnt)) 1132 list_move(&p->mnt_hash, &tmp_list); 1133 1134 if (propagate) 1135 propagate_umount(&tmp_list); 1136 1137 list_for_each_entry(p, &tmp_list, mnt_hash) { 1138 list_del_init(&p->mnt_expire); 1139 list_del_init(&p->mnt_list); 1140 __touch_mnt_namespace(p->mnt_ns); 1141 p->mnt_ns = NULL; 1142 list_del_init(&p->mnt_child); 1143 if (mnt_has_parent(p)) { 1144 p->mnt_parent->mnt_ghosts++; 1145 dentry_reset_mounted(p->mnt_mountpoint); 1146 } 1147 change_mnt_propagation(p, MS_PRIVATE); 1148 } 1149 list_splice(&tmp_list, kill); 1150 } 1151 1152 static void shrink_submounts(struct mount *mnt, struct list_head *umounts); 1153 1154 static int do_umount(struct mount *mnt, int flags) 1155 { 1156 struct super_block *sb = mnt->mnt.mnt_sb; 1157 int retval; 1158 LIST_HEAD(umount_list); 1159 1160 retval = security_sb_umount(&mnt->mnt, flags); 1161 if (retval) 1162 return retval; 1163 1164 /* 1165 * Allow userspace to request a mountpoint be expired rather than 1166 * unmounting unconditionally. Unmount only happens if: 1167 * (1) the mark is already set (the mark is cleared by mntput()) 1168 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1169 */ 1170 if (flags & MNT_EXPIRE) { 1171 if (&mnt->mnt == current->fs->root.mnt || 1172 flags & (MNT_FORCE | MNT_DETACH)) 1173 return -EINVAL; 1174 1175 /* 1176 * probably don't strictly need the lock here if we examined 1177 * all race cases, but it's a slowpath. 1178 */ 1179 br_write_lock(&vfsmount_lock); 1180 if (mnt_get_count(mnt) != 2) { 1181 br_write_unlock(&vfsmount_lock); 1182 return -EBUSY; 1183 } 1184 br_write_unlock(&vfsmount_lock); 1185 1186 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1187 return -EAGAIN; 1188 } 1189 1190 /* 1191 * If we may have to abort operations to get out of this 1192 * mount, and they will themselves hold resources we must 1193 * allow the fs to do things. In the Unix tradition of 1194 * 'Gee thats tricky lets do it in userspace' the umount_begin 1195 * might fail to complete on the first run through as other tasks 1196 * must return, and the like. Thats for the mount program to worry 1197 * about for the moment. 1198 */ 1199 1200 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1201 sb->s_op->umount_begin(sb); 1202 } 1203 1204 /* 1205 * No sense to grab the lock for this test, but test itself looks 1206 * somewhat bogus. Suggestions for better replacement? 1207 * Ho-hum... In principle, we might treat that as umount + switch 1208 * to rootfs. GC would eventually take care of the old vfsmount. 1209 * Actually it makes sense, especially if rootfs would contain a 1210 * /reboot - static binary that would close all descriptors and 1211 * call reboot(9). Then init(8) could umount root and exec /reboot. 1212 */ 1213 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1214 /* 1215 * Special case for "unmounting" root ... 1216 * we just try to remount it readonly. 1217 */ 1218 down_write(&sb->s_umount); 1219 if (!(sb->s_flags & MS_RDONLY)) 1220 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1221 up_write(&sb->s_umount); 1222 return retval; 1223 } 1224 1225 down_write(&namespace_sem); 1226 br_write_lock(&vfsmount_lock); 1227 event++; 1228 1229 if (!(flags & MNT_DETACH)) 1230 shrink_submounts(mnt, &umount_list); 1231 1232 retval = -EBUSY; 1233 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1234 if (!list_empty(&mnt->mnt_list)) 1235 umount_tree(mnt, 1, &umount_list); 1236 retval = 0; 1237 } 1238 br_write_unlock(&vfsmount_lock); 1239 up_write(&namespace_sem); 1240 release_mounts(&umount_list); 1241 return retval; 1242 } 1243 1244 /* 1245 * Is the caller allowed to modify his namespace? 1246 */ 1247 static inline bool may_mount(void) 1248 { 1249 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1250 } 1251 1252 /* 1253 * Now umount can handle mount points as well as block devices. 1254 * This is important for filesystems which use unnamed block devices. 1255 * 1256 * We now support a flag for forced unmount like the other 'big iron' 1257 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1258 */ 1259 1260 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1261 { 1262 struct path path; 1263 struct mount *mnt; 1264 int retval; 1265 int lookup_flags = 0; 1266 1267 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1268 return -EINVAL; 1269 1270 if (!may_mount()) 1271 return -EPERM; 1272 1273 if (!(flags & UMOUNT_NOFOLLOW)) 1274 lookup_flags |= LOOKUP_FOLLOW; 1275 1276 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1277 if (retval) 1278 goto out; 1279 mnt = real_mount(path.mnt); 1280 retval = -EINVAL; 1281 if (path.dentry != path.mnt->mnt_root) 1282 goto dput_and_out; 1283 if (!check_mnt(mnt)) 1284 goto dput_and_out; 1285 1286 retval = do_umount(mnt, flags); 1287 dput_and_out: 1288 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1289 dput(path.dentry); 1290 mntput_no_expire(mnt); 1291 out: 1292 return retval; 1293 } 1294 1295 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1296 1297 /* 1298 * The 2.0 compatible umount. No flags. 1299 */ 1300 SYSCALL_DEFINE1(oldumount, char __user *, name) 1301 { 1302 return sys_umount(name, 0); 1303 } 1304 1305 #endif 1306 1307 static bool mnt_ns_loop(struct path *path) 1308 { 1309 /* Could bind mounting the mount namespace inode cause a 1310 * mount namespace loop? 1311 */ 1312 struct inode *inode = path->dentry->d_inode; 1313 struct proc_inode *ei; 1314 struct mnt_namespace *mnt_ns; 1315 1316 if (!proc_ns_inode(inode)) 1317 return false; 1318 1319 ei = PROC_I(inode); 1320 if (ei->ns_ops != &mntns_operations) 1321 return false; 1322 1323 mnt_ns = ei->ns; 1324 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1325 } 1326 1327 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1328 int flag) 1329 { 1330 struct mount *res, *p, *q, *r; 1331 struct path path; 1332 1333 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1334 return ERR_PTR(-EINVAL); 1335 1336 res = q = clone_mnt(mnt, dentry, flag); 1337 if (IS_ERR(q)) 1338 return q; 1339 1340 q->mnt_mountpoint = mnt->mnt_mountpoint; 1341 1342 p = mnt; 1343 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1344 struct mount *s; 1345 if (!is_subdir(r->mnt_mountpoint, dentry)) 1346 continue; 1347 1348 for (s = r; s; s = next_mnt(s, r)) { 1349 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1350 s = skip_mnt_tree(s); 1351 continue; 1352 } 1353 while (p != s->mnt_parent) { 1354 p = p->mnt_parent; 1355 q = q->mnt_parent; 1356 } 1357 p = s; 1358 path.mnt = &q->mnt; 1359 path.dentry = p->mnt_mountpoint; 1360 q = clone_mnt(p, p->mnt.mnt_root, flag); 1361 if (IS_ERR(q)) 1362 goto out; 1363 br_write_lock(&vfsmount_lock); 1364 list_add_tail(&q->mnt_list, &res->mnt_list); 1365 attach_mnt(q, &path); 1366 br_write_unlock(&vfsmount_lock); 1367 } 1368 } 1369 return res; 1370 out: 1371 if (res) { 1372 LIST_HEAD(umount_list); 1373 br_write_lock(&vfsmount_lock); 1374 umount_tree(res, 0, &umount_list); 1375 br_write_unlock(&vfsmount_lock); 1376 release_mounts(&umount_list); 1377 } 1378 return q; 1379 } 1380 1381 /* Caller should check returned pointer for errors */ 1382 1383 struct vfsmount *collect_mounts(struct path *path) 1384 { 1385 struct mount *tree; 1386 down_write(&namespace_sem); 1387 tree = copy_tree(real_mount(path->mnt), path->dentry, 1388 CL_COPY_ALL | CL_PRIVATE); 1389 up_write(&namespace_sem); 1390 if (IS_ERR(tree)) 1391 return NULL; 1392 return &tree->mnt; 1393 } 1394 1395 void drop_collected_mounts(struct vfsmount *mnt) 1396 { 1397 LIST_HEAD(umount_list); 1398 down_write(&namespace_sem); 1399 br_write_lock(&vfsmount_lock); 1400 umount_tree(real_mount(mnt), 0, &umount_list); 1401 br_write_unlock(&vfsmount_lock); 1402 up_write(&namespace_sem); 1403 release_mounts(&umount_list); 1404 } 1405 1406 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1407 struct vfsmount *root) 1408 { 1409 struct mount *mnt; 1410 int res = f(root, arg); 1411 if (res) 1412 return res; 1413 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1414 res = f(&mnt->mnt, arg); 1415 if (res) 1416 return res; 1417 } 1418 return 0; 1419 } 1420 1421 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1422 { 1423 struct mount *p; 1424 1425 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1426 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1427 mnt_release_group_id(p); 1428 } 1429 } 1430 1431 static int invent_group_ids(struct mount *mnt, bool recurse) 1432 { 1433 struct mount *p; 1434 1435 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1436 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1437 int err = mnt_alloc_group_id(p); 1438 if (err) { 1439 cleanup_group_ids(mnt, p); 1440 return err; 1441 } 1442 } 1443 } 1444 1445 return 0; 1446 } 1447 1448 /* 1449 * @source_mnt : mount tree to be attached 1450 * @nd : place the mount tree @source_mnt is attached 1451 * @parent_nd : if non-null, detach the source_mnt from its parent and 1452 * store the parent mount and mountpoint dentry. 1453 * (done when source_mnt is moved) 1454 * 1455 * NOTE: in the table below explains the semantics when a source mount 1456 * of a given type is attached to a destination mount of a given type. 1457 * --------------------------------------------------------------------------- 1458 * | BIND MOUNT OPERATION | 1459 * |************************************************************************** 1460 * | source-->| shared | private | slave | unbindable | 1461 * | dest | | | | | 1462 * | | | | | | | 1463 * | v | | | | | 1464 * |************************************************************************** 1465 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1466 * | | | | | | 1467 * |non-shared| shared (+) | private | slave (*) | invalid | 1468 * *************************************************************************** 1469 * A bind operation clones the source mount and mounts the clone on the 1470 * destination mount. 1471 * 1472 * (++) the cloned mount is propagated to all the mounts in the propagation 1473 * tree of the destination mount and the cloned mount is added to 1474 * the peer group of the source mount. 1475 * (+) the cloned mount is created under the destination mount and is marked 1476 * as shared. The cloned mount is added to the peer group of the source 1477 * mount. 1478 * (+++) the mount is propagated to all the mounts in the propagation tree 1479 * of the destination mount and the cloned mount is made slave 1480 * of the same master as that of the source mount. The cloned mount 1481 * is marked as 'shared and slave'. 1482 * (*) the cloned mount is made a slave of the same master as that of the 1483 * source mount. 1484 * 1485 * --------------------------------------------------------------------------- 1486 * | MOVE MOUNT OPERATION | 1487 * |************************************************************************** 1488 * | source-->| shared | private | slave | unbindable | 1489 * | dest | | | | | 1490 * | | | | | | | 1491 * | v | | | | | 1492 * |************************************************************************** 1493 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1494 * | | | | | | 1495 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1496 * *************************************************************************** 1497 * 1498 * (+) the mount is moved to the destination. And is then propagated to 1499 * all the mounts in the propagation tree of the destination mount. 1500 * (+*) the mount is moved to the destination. 1501 * (+++) the mount is moved to the destination and is then propagated to 1502 * all the mounts belonging to the destination mount's propagation tree. 1503 * the mount is marked as 'shared and slave'. 1504 * (*) the mount continues to be a slave at the new location. 1505 * 1506 * if the source mount is a tree, the operations explained above is 1507 * applied to each mount in the tree. 1508 * Must be called without spinlocks held, since this function can sleep 1509 * in allocations. 1510 */ 1511 static int attach_recursive_mnt(struct mount *source_mnt, 1512 struct path *path, struct path *parent_path) 1513 { 1514 LIST_HEAD(tree_list); 1515 struct mount *dest_mnt = real_mount(path->mnt); 1516 struct dentry *dest_dentry = path->dentry; 1517 struct mount *child, *p; 1518 int err; 1519 1520 if (IS_MNT_SHARED(dest_mnt)) { 1521 err = invent_group_ids(source_mnt, true); 1522 if (err) 1523 goto out; 1524 } 1525 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1526 if (err) 1527 goto out_cleanup_ids; 1528 1529 br_write_lock(&vfsmount_lock); 1530 1531 if (IS_MNT_SHARED(dest_mnt)) { 1532 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1533 set_mnt_shared(p); 1534 } 1535 if (parent_path) { 1536 detach_mnt(source_mnt, parent_path); 1537 attach_mnt(source_mnt, path); 1538 touch_mnt_namespace(source_mnt->mnt_ns); 1539 } else { 1540 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1541 commit_tree(source_mnt); 1542 } 1543 1544 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1545 list_del_init(&child->mnt_hash); 1546 commit_tree(child); 1547 } 1548 br_write_unlock(&vfsmount_lock); 1549 1550 return 0; 1551 1552 out_cleanup_ids: 1553 if (IS_MNT_SHARED(dest_mnt)) 1554 cleanup_group_ids(source_mnt, NULL); 1555 out: 1556 return err; 1557 } 1558 1559 static int lock_mount(struct path *path) 1560 { 1561 struct vfsmount *mnt; 1562 retry: 1563 mutex_lock(&path->dentry->d_inode->i_mutex); 1564 if (unlikely(cant_mount(path->dentry))) { 1565 mutex_unlock(&path->dentry->d_inode->i_mutex); 1566 return -ENOENT; 1567 } 1568 down_write(&namespace_sem); 1569 mnt = lookup_mnt(path); 1570 if (likely(!mnt)) 1571 return 0; 1572 up_write(&namespace_sem); 1573 mutex_unlock(&path->dentry->d_inode->i_mutex); 1574 path_put(path); 1575 path->mnt = mnt; 1576 path->dentry = dget(mnt->mnt_root); 1577 goto retry; 1578 } 1579 1580 static void unlock_mount(struct path *path) 1581 { 1582 up_write(&namespace_sem); 1583 mutex_unlock(&path->dentry->d_inode->i_mutex); 1584 } 1585 1586 static int graft_tree(struct mount *mnt, struct path *path) 1587 { 1588 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1589 return -EINVAL; 1590 1591 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1592 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1593 return -ENOTDIR; 1594 1595 if (d_unlinked(path->dentry)) 1596 return -ENOENT; 1597 1598 return attach_recursive_mnt(mnt, path, NULL); 1599 } 1600 1601 /* 1602 * Sanity check the flags to change_mnt_propagation. 1603 */ 1604 1605 static int flags_to_propagation_type(int flags) 1606 { 1607 int type = flags & ~(MS_REC | MS_SILENT); 1608 1609 /* Fail if any non-propagation flags are set */ 1610 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1611 return 0; 1612 /* Only one propagation flag should be set */ 1613 if (!is_power_of_2(type)) 1614 return 0; 1615 return type; 1616 } 1617 1618 /* 1619 * recursively change the type of the mountpoint. 1620 */ 1621 static int do_change_type(struct path *path, int flag) 1622 { 1623 struct mount *m; 1624 struct mount *mnt = real_mount(path->mnt); 1625 int recurse = flag & MS_REC; 1626 int type; 1627 int err = 0; 1628 1629 if (path->dentry != path->mnt->mnt_root) 1630 return -EINVAL; 1631 1632 type = flags_to_propagation_type(flag); 1633 if (!type) 1634 return -EINVAL; 1635 1636 down_write(&namespace_sem); 1637 if (type == MS_SHARED) { 1638 err = invent_group_ids(mnt, recurse); 1639 if (err) 1640 goto out_unlock; 1641 } 1642 1643 br_write_lock(&vfsmount_lock); 1644 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1645 change_mnt_propagation(m, type); 1646 br_write_unlock(&vfsmount_lock); 1647 1648 out_unlock: 1649 up_write(&namespace_sem); 1650 return err; 1651 } 1652 1653 /* 1654 * do loopback mount. 1655 */ 1656 static int do_loopback(struct path *path, const char *old_name, 1657 int recurse) 1658 { 1659 LIST_HEAD(umount_list); 1660 struct path old_path; 1661 struct mount *mnt = NULL, *old; 1662 int err; 1663 if (!old_name || !*old_name) 1664 return -EINVAL; 1665 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1666 if (err) 1667 return err; 1668 1669 err = -EINVAL; 1670 if (mnt_ns_loop(&old_path)) 1671 goto out; 1672 1673 err = lock_mount(path); 1674 if (err) 1675 goto out; 1676 1677 old = real_mount(old_path.mnt); 1678 1679 err = -EINVAL; 1680 if (IS_MNT_UNBINDABLE(old)) 1681 goto out2; 1682 1683 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old)) 1684 goto out2; 1685 1686 if (recurse) 1687 mnt = copy_tree(old, old_path.dentry, 0); 1688 else 1689 mnt = clone_mnt(old, old_path.dentry, 0); 1690 1691 if (IS_ERR(mnt)) { 1692 err = PTR_ERR(mnt); 1693 goto out2; 1694 } 1695 1696 err = graft_tree(mnt, path); 1697 if (err) { 1698 br_write_lock(&vfsmount_lock); 1699 umount_tree(mnt, 0, &umount_list); 1700 br_write_unlock(&vfsmount_lock); 1701 } 1702 out2: 1703 unlock_mount(path); 1704 release_mounts(&umount_list); 1705 out: 1706 path_put(&old_path); 1707 return err; 1708 } 1709 1710 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1711 { 1712 int error = 0; 1713 int readonly_request = 0; 1714 1715 if (ms_flags & MS_RDONLY) 1716 readonly_request = 1; 1717 if (readonly_request == __mnt_is_readonly(mnt)) 1718 return 0; 1719 1720 if (mnt->mnt_flags & MNT_LOCK_READONLY) 1721 return -EPERM; 1722 1723 if (readonly_request) 1724 error = mnt_make_readonly(real_mount(mnt)); 1725 else 1726 __mnt_unmake_readonly(real_mount(mnt)); 1727 return error; 1728 } 1729 1730 /* 1731 * change filesystem flags. dir should be a physical root of filesystem. 1732 * If you've mounted a non-root directory somewhere and want to do remount 1733 * on it - tough luck. 1734 */ 1735 static int do_remount(struct path *path, int flags, int mnt_flags, 1736 void *data) 1737 { 1738 int err; 1739 struct super_block *sb = path->mnt->mnt_sb; 1740 struct mount *mnt = real_mount(path->mnt); 1741 1742 if (!check_mnt(mnt)) 1743 return -EINVAL; 1744 1745 if (path->dentry != path->mnt->mnt_root) 1746 return -EINVAL; 1747 1748 err = security_sb_remount(sb, data); 1749 if (err) 1750 return err; 1751 1752 down_write(&sb->s_umount); 1753 if (flags & MS_BIND) 1754 err = change_mount_flags(path->mnt, flags); 1755 else if (!capable(CAP_SYS_ADMIN)) 1756 err = -EPERM; 1757 else 1758 err = do_remount_sb(sb, flags, data, 0); 1759 if (!err) { 1760 br_write_lock(&vfsmount_lock); 1761 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1762 mnt->mnt.mnt_flags = mnt_flags; 1763 br_write_unlock(&vfsmount_lock); 1764 } 1765 up_write(&sb->s_umount); 1766 if (!err) { 1767 br_write_lock(&vfsmount_lock); 1768 touch_mnt_namespace(mnt->mnt_ns); 1769 br_write_unlock(&vfsmount_lock); 1770 } 1771 return err; 1772 } 1773 1774 static inline int tree_contains_unbindable(struct mount *mnt) 1775 { 1776 struct mount *p; 1777 for (p = mnt; p; p = next_mnt(p, mnt)) { 1778 if (IS_MNT_UNBINDABLE(p)) 1779 return 1; 1780 } 1781 return 0; 1782 } 1783 1784 static int do_move_mount(struct path *path, const char *old_name) 1785 { 1786 struct path old_path, parent_path; 1787 struct mount *p; 1788 struct mount *old; 1789 int err; 1790 if (!old_name || !*old_name) 1791 return -EINVAL; 1792 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1793 if (err) 1794 return err; 1795 1796 err = lock_mount(path); 1797 if (err < 0) 1798 goto out; 1799 1800 old = real_mount(old_path.mnt); 1801 p = real_mount(path->mnt); 1802 1803 err = -EINVAL; 1804 if (!check_mnt(p) || !check_mnt(old)) 1805 goto out1; 1806 1807 if (d_unlinked(path->dentry)) 1808 goto out1; 1809 1810 err = -EINVAL; 1811 if (old_path.dentry != old_path.mnt->mnt_root) 1812 goto out1; 1813 1814 if (!mnt_has_parent(old)) 1815 goto out1; 1816 1817 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1818 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1819 goto out1; 1820 /* 1821 * Don't move a mount residing in a shared parent. 1822 */ 1823 if (IS_MNT_SHARED(old->mnt_parent)) 1824 goto out1; 1825 /* 1826 * Don't move a mount tree containing unbindable mounts to a destination 1827 * mount which is shared. 1828 */ 1829 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1830 goto out1; 1831 err = -ELOOP; 1832 for (; mnt_has_parent(p); p = p->mnt_parent) 1833 if (p == old) 1834 goto out1; 1835 1836 err = attach_recursive_mnt(old, path, &parent_path); 1837 if (err) 1838 goto out1; 1839 1840 /* if the mount is moved, it should no longer be expire 1841 * automatically */ 1842 list_del_init(&old->mnt_expire); 1843 out1: 1844 unlock_mount(path); 1845 out: 1846 if (!err) 1847 path_put(&parent_path); 1848 path_put(&old_path); 1849 return err; 1850 } 1851 1852 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1853 { 1854 int err; 1855 const char *subtype = strchr(fstype, '.'); 1856 if (subtype) { 1857 subtype++; 1858 err = -EINVAL; 1859 if (!subtype[0]) 1860 goto err; 1861 } else 1862 subtype = ""; 1863 1864 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1865 err = -ENOMEM; 1866 if (!mnt->mnt_sb->s_subtype) 1867 goto err; 1868 return mnt; 1869 1870 err: 1871 mntput(mnt); 1872 return ERR_PTR(err); 1873 } 1874 1875 /* 1876 * add a mount into a namespace's mount tree 1877 */ 1878 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1879 { 1880 int err; 1881 1882 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1883 1884 err = lock_mount(path); 1885 if (err) 1886 return err; 1887 1888 err = -EINVAL; 1889 if (unlikely(!check_mnt(real_mount(path->mnt)))) { 1890 /* that's acceptable only for automounts done in private ns */ 1891 if (!(mnt_flags & MNT_SHRINKABLE)) 1892 goto unlock; 1893 /* ... and for those we'd better have mountpoint still alive */ 1894 if (!real_mount(path->mnt)->mnt_ns) 1895 goto unlock; 1896 } 1897 1898 /* Refuse the same filesystem on the same mount point */ 1899 err = -EBUSY; 1900 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1901 path->mnt->mnt_root == path->dentry) 1902 goto unlock; 1903 1904 err = -EINVAL; 1905 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1906 goto unlock; 1907 1908 newmnt->mnt.mnt_flags = mnt_flags; 1909 err = graft_tree(newmnt, path); 1910 1911 unlock: 1912 unlock_mount(path); 1913 return err; 1914 } 1915 1916 /* 1917 * create a new mount for userspace and request it to be added into the 1918 * namespace's tree 1919 */ 1920 static int do_new_mount(struct path *path, const char *fstype, int flags, 1921 int mnt_flags, const char *name, void *data) 1922 { 1923 struct file_system_type *type; 1924 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 1925 struct vfsmount *mnt; 1926 int err; 1927 1928 if (!fstype) 1929 return -EINVAL; 1930 1931 type = get_fs_type(fstype); 1932 if (!type) 1933 return -ENODEV; 1934 1935 if (user_ns != &init_user_ns) { 1936 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 1937 put_filesystem(type); 1938 return -EPERM; 1939 } 1940 /* Only in special cases allow devices from mounts 1941 * created outside the initial user namespace. 1942 */ 1943 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 1944 flags |= MS_NODEV; 1945 mnt_flags |= MNT_NODEV; 1946 } 1947 } 1948 1949 mnt = vfs_kern_mount(type, flags, name, data); 1950 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1951 !mnt->mnt_sb->s_subtype) 1952 mnt = fs_set_subtype(mnt, fstype); 1953 1954 put_filesystem(type); 1955 if (IS_ERR(mnt)) 1956 return PTR_ERR(mnt); 1957 1958 err = do_add_mount(real_mount(mnt), path, mnt_flags); 1959 if (err) 1960 mntput(mnt); 1961 return err; 1962 } 1963 1964 int finish_automount(struct vfsmount *m, struct path *path) 1965 { 1966 struct mount *mnt = real_mount(m); 1967 int err; 1968 /* The new mount record should have at least 2 refs to prevent it being 1969 * expired before we get a chance to add it 1970 */ 1971 BUG_ON(mnt_get_count(mnt) < 2); 1972 1973 if (m->mnt_sb == path->mnt->mnt_sb && 1974 m->mnt_root == path->dentry) { 1975 err = -ELOOP; 1976 goto fail; 1977 } 1978 1979 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 1980 if (!err) 1981 return 0; 1982 fail: 1983 /* remove m from any expiration list it may be on */ 1984 if (!list_empty(&mnt->mnt_expire)) { 1985 down_write(&namespace_sem); 1986 br_write_lock(&vfsmount_lock); 1987 list_del_init(&mnt->mnt_expire); 1988 br_write_unlock(&vfsmount_lock); 1989 up_write(&namespace_sem); 1990 } 1991 mntput(m); 1992 mntput(m); 1993 return err; 1994 } 1995 1996 /** 1997 * mnt_set_expiry - Put a mount on an expiration list 1998 * @mnt: The mount to list. 1999 * @expiry_list: The list to add the mount to. 2000 */ 2001 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2002 { 2003 down_write(&namespace_sem); 2004 br_write_lock(&vfsmount_lock); 2005 2006 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2007 2008 br_write_unlock(&vfsmount_lock); 2009 up_write(&namespace_sem); 2010 } 2011 EXPORT_SYMBOL(mnt_set_expiry); 2012 2013 /* 2014 * process a list of expirable mountpoints with the intent of discarding any 2015 * mountpoints that aren't in use and haven't been touched since last we came 2016 * here 2017 */ 2018 void mark_mounts_for_expiry(struct list_head *mounts) 2019 { 2020 struct mount *mnt, *next; 2021 LIST_HEAD(graveyard); 2022 LIST_HEAD(umounts); 2023 2024 if (list_empty(mounts)) 2025 return; 2026 2027 down_write(&namespace_sem); 2028 br_write_lock(&vfsmount_lock); 2029 2030 /* extract from the expiration list every vfsmount that matches the 2031 * following criteria: 2032 * - only referenced by its parent vfsmount 2033 * - still marked for expiry (marked on the last call here; marks are 2034 * cleared by mntput()) 2035 */ 2036 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2037 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2038 propagate_mount_busy(mnt, 1)) 2039 continue; 2040 list_move(&mnt->mnt_expire, &graveyard); 2041 } 2042 while (!list_empty(&graveyard)) { 2043 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2044 touch_mnt_namespace(mnt->mnt_ns); 2045 umount_tree(mnt, 1, &umounts); 2046 } 2047 br_write_unlock(&vfsmount_lock); 2048 up_write(&namespace_sem); 2049 2050 release_mounts(&umounts); 2051 } 2052 2053 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2054 2055 /* 2056 * Ripoff of 'select_parent()' 2057 * 2058 * search the list of submounts for a given mountpoint, and move any 2059 * shrinkable submounts to the 'graveyard' list. 2060 */ 2061 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2062 { 2063 struct mount *this_parent = parent; 2064 struct list_head *next; 2065 int found = 0; 2066 2067 repeat: 2068 next = this_parent->mnt_mounts.next; 2069 resume: 2070 while (next != &this_parent->mnt_mounts) { 2071 struct list_head *tmp = next; 2072 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2073 2074 next = tmp->next; 2075 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2076 continue; 2077 /* 2078 * Descend a level if the d_mounts list is non-empty. 2079 */ 2080 if (!list_empty(&mnt->mnt_mounts)) { 2081 this_parent = mnt; 2082 goto repeat; 2083 } 2084 2085 if (!propagate_mount_busy(mnt, 1)) { 2086 list_move_tail(&mnt->mnt_expire, graveyard); 2087 found++; 2088 } 2089 } 2090 /* 2091 * All done at this level ... ascend and resume the search 2092 */ 2093 if (this_parent != parent) { 2094 next = this_parent->mnt_child.next; 2095 this_parent = this_parent->mnt_parent; 2096 goto resume; 2097 } 2098 return found; 2099 } 2100 2101 /* 2102 * process a list of expirable mountpoints with the intent of discarding any 2103 * submounts of a specific parent mountpoint 2104 * 2105 * vfsmount_lock must be held for write 2106 */ 2107 static void shrink_submounts(struct mount *mnt, struct list_head *umounts) 2108 { 2109 LIST_HEAD(graveyard); 2110 struct mount *m; 2111 2112 /* extract submounts of 'mountpoint' from the expiration list */ 2113 while (select_submounts(mnt, &graveyard)) { 2114 while (!list_empty(&graveyard)) { 2115 m = list_first_entry(&graveyard, struct mount, 2116 mnt_expire); 2117 touch_mnt_namespace(m->mnt_ns); 2118 umount_tree(m, 1, umounts); 2119 } 2120 } 2121 } 2122 2123 /* 2124 * Some copy_from_user() implementations do not return the exact number of 2125 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2126 * Note that this function differs from copy_from_user() in that it will oops 2127 * on bad values of `to', rather than returning a short copy. 2128 */ 2129 static long exact_copy_from_user(void *to, const void __user * from, 2130 unsigned long n) 2131 { 2132 char *t = to; 2133 const char __user *f = from; 2134 char c; 2135 2136 if (!access_ok(VERIFY_READ, from, n)) 2137 return n; 2138 2139 while (n) { 2140 if (__get_user(c, f)) { 2141 memset(t, 0, n); 2142 break; 2143 } 2144 *t++ = c; 2145 f++; 2146 n--; 2147 } 2148 return n; 2149 } 2150 2151 int copy_mount_options(const void __user * data, unsigned long *where) 2152 { 2153 int i; 2154 unsigned long page; 2155 unsigned long size; 2156 2157 *where = 0; 2158 if (!data) 2159 return 0; 2160 2161 if (!(page = __get_free_page(GFP_KERNEL))) 2162 return -ENOMEM; 2163 2164 /* We only care that *some* data at the address the user 2165 * gave us is valid. Just in case, we'll zero 2166 * the remainder of the page. 2167 */ 2168 /* copy_from_user cannot cross TASK_SIZE ! */ 2169 size = TASK_SIZE - (unsigned long)data; 2170 if (size > PAGE_SIZE) 2171 size = PAGE_SIZE; 2172 2173 i = size - exact_copy_from_user((void *)page, data, size); 2174 if (!i) { 2175 free_page(page); 2176 return -EFAULT; 2177 } 2178 if (i != PAGE_SIZE) 2179 memset((char *)page + i, 0, PAGE_SIZE - i); 2180 *where = page; 2181 return 0; 2182 } 2183 2184 int copy_mount_string(const void __user *data, char **where) 2185 { 2186 char *tmp; 2187 2188 if (!data) { 2189 *where = NULL; 2190 return 0; 2191 } 2192 2193 tmp = strndup_user(data, PAGE_SIZE); 2194 if (IS_ERR(tmp)) 2195 return PTR_ERR(tmp); 2196 2197 *where = tmp; 2198 return 0; 2199 } 2200 2201 /* 2202 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2203 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2204 * 2205 * data is a (void *) that can point to any structure up to 2206 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2207 * information (or be NULL). 2208 * 2209 * Pre-0.97 versions of mount() didn't have a flags word. 2210 * When the flags word was introduced its top half was required 2211 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2212 * Therefore, if this magic number is present, it carries no information 2213 * and must be discarded. 2214 */ 2215 long do_mount(const char *dev_name, const char *dir_name, 2216 const char *type_page, unsigned long flags, void *data_page) 2217 { 2218 struct path path; 2219 int retval = 0; 2220 int mnt_flags = 0; 2221 2222 /* Discard magic */ 2223 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2224 flags &= ~MS_MGC_MSK; 2225 2226 /* Basic sanity checks */ 2227 2228 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2229 return -EINVAL; 2230 2231 if (data_page) 2232 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2233 2234 /* ... and get the mountpoint */ 2235 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2236 if (retval) 2237 return retval; 2238 2239 retval = security_sb_mount(dev_name, &path, 2240 type_page, flags, data_page); 2241 if (retval) 2242 goto dput_out; 2243 2244 if (!may_mount()) 2245 return -EPERM; 2246 2247 /* Default to relatime unless overriden */ 2248 if (!(flags & MS_NOATIME)) 2249 mnt_flags |= MNT_RELATIME; 2250 2251 /* Separate the per-mountpoint flags */ 2252 if (flags & MS_NOSUID) 2253 mnt_flags |= MNT_NOSUID; 2254 if (flags & MS_NODEV) 2255 mnt_flags |= MNT_NODEV; 2256 if (flags & MS_NOEXEC) 2257 mnt_flags |= MNT_NOEXEC; 2258 if (flags & MS_NOATIME) 2259 mnt_flags |= MNT_NOATIME; 2260 if (flags & MS_NODIRATIME) 2261 mnt_flags |= MNT_NODIRATIME; 2262 if (flags & MS_STRICTATIME) 2263 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2264 if (flags & MS_RDONLY) 2265 mnt_flags |= MNT_READONLY; 2266 2267 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2268 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2269 MS_STRICTATIME); 2270 2271 if (flags & MS_REMOUNT) 2272 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2273 data_page); 2274 else if (flags & MS_BIND) 2275 retval = do_loopback(&path, dev_name, flags & MS_REC); 2276 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2277 retval = do_change_type(&path, flags); 2278 else if (flags & MS_MOVE) 2279 retval = do_move_mount(&path, dev_name); 2280 else 2281 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2282 dev_name, data_page); 2283 dput_out: 2284 path_put(&path); 2285 return retval; 2286 } 2287 2288 static void free_mnt_ns(struct mnt_namespace *ns) 2289 { 2290 proc_free_inum(ns->proc_inum); 2291 put_user_ns(ns->user_ns); 2292 kfree(ns); 2293 } 2294 2295 /* 2296 * Assign a sequence number so we can detect when we attempt to bind 2297 * mount a reference to an older mount namespace into the current 2298 * mount namespace, preventing reference counting loops. A 64bit 2299 * number incrementing at 10Ghz will take 12,427 years to wrap which 2300 * is effectively never, so we can ignore the possibility. 2301 */ 2302 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2303 2304 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2305 { 2306 struct mnt_namespace *new_ns; 2307 int ret; 2308 2309 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2310 if (!new_ns) 2311 return ERR_PTR(-ENOMEM); 2312 ret = proc_alloc_inum(&new_ns->proc_inum); 2313 if (ret) { 2314 kfree(new_ns); 2315 return ERR_PTR(ret); 2316 } 2317 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2318 atomic_set(&new_ns->count, 1); 2319 new_ns->root = NULL; 2320 INIT_LIST_HEAD(&new_ns->list); 2321 init_waitqueue_head(&new_ns->poll); 2322 new_ns->event = 0; 2323 new_ns->user_ns = get_user_ns(user_ns); 2324 return new_ns; 2325 } 2326 2327 /* 2328 * Allocate a new namespace structure and populate it with contents 2329 * copied from the namespace of the passed in task structure. 2330 */ 2331 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2332 struct user_namespace *user_ns, struct fs_struct *fs) 2333 { 2334 struct mnt_namespace *new_ns; 2335 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2336 struct mount *p, *q; 2337 struct mount *old = mnt_ns->root; 2338 struct mount *new; 2339 int copy_flags; 2340 2341 new_ns = alloc_mnt_ns(user_ns); 2342 if (IS_ERR(new_ns)) 2343 return new_ns; 2344 2345 down_write(&namespace_sem); 2346 /* First pass: copy the tree topology */ 2347 copy_flags = CL_COPY_ALL | CL_EXPIRE; 2348 if (user_ns != mnt_ns->user_ns) 2349 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2350 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2351 if (IS_ERR(new)) { 2352 up_write(&namespace_sem); 2353 free_mnt_ns(new_ns); 2354 return ERR_CAST(new); 2355 } 2356 new_ns->root = new; 2357 br_write_lock(&vfsmount_lock); 2358 list_add_tail(&new_ns->list, &new->mnt_list); 2359 br_write_unlock(&vfsmount_lock); 2360 2361 /* 2362 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2363 * as belonging to new namespace. We have already acquired a private 2364 * fs_struct, so tsk->fs->lock is not needed. 2365 */ 2366 p = old; 2367 q = new; 2368 while (p) { 2369 q->mnt_ns = new_ns; 2370 if (fs) { 2371 if (&p->mnt == fs->root.mnt) { 2372 fs->root.mnt = mntget(&q->mnt); 2373 rootmnt = &p->mnt; 2374 } 2375 if (&p->mnt == fs->pwd.mnt) { 2376 fs->pwd.mnt = mntget(&q->mnt); 2377 pwdmnt = &p->mnt; 2378 } 2379 } 2380 p = next_mnt(p, old); 2381 q = next_mnt(q, new); 2382 } 2383 up_write(&namespace_sem); 2384 2385 if (rootmnt) 2386 mntput(rootmnt); 2387 if (pwdmnt) 2388 mntput(pwdmnt); 2389 2390 return new_ns; 2391 } 2392 2393 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2394 struct user_namespace *user_ns, struct fs_struct *new_fs) 2395 { 2396 struct mnt_namespace *new_ns; 2397 2398 BUG_ON(!ns); 2399 get_mnt_ns(ns); 2400 2401 if (!(flags & CLONE_NEWNS)) 2402 return ns; 2403 2404 new_ns = dup_mnt_ns(ns, user_ns, new_fs); 2405 2406 put_mnt_ns(ns); 2407 return new_ns; 2408 } 2409 2410 /** 2411 * create_mnt_ns - creates a private namespace and adds a root filesystem 2412 * @mnt: pointer to the new root filesystem mountpoint 2413 */ 2414 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2415 { 2416 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2417 if (!IS_ERR(new_ns)) { 2418 struct mount *mnt = real_mount(m); 2419 mnt->mnt_ns = new_ns; 2420 new_ns->root = mnt; 2421 list_add(&new_ns->list, &mnt->mnt_list); 2422 } else { 2423 mntput(m); 2424 } 2425 return new_ns; 2426 } 2427 2428 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2429 { 2430 struct mnt_namespace *ns; 2431 struct super_block *s; 2432 struct path path; 2433 int err; 2434 2435 ns = create_mnt_ns(mnt); 2436 if (IS_ERR(ns)) 2437 return ERR_CAST(ns); 2438 2439 err = vfs_path_lookup(mnt->mnt_root, mnt, 2440 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2441 2442 put_mnt_ns(ns); 2443 2444 if (err) 2445 return ERR_PTR(err); 2446 2447 /* trade a vfsmount reference for active sb one */ 2448 s = path.mnt->mnt_sb; 2449 atomic_inc(&s->s_active); 2450 mntput(path.mnt); 2451 /* lock the sucker */ 2452 down_write(&s->s_umount); 2453 /* ... and return the root of (sub)tree on it */ 2454 return path.dentry; 2455 } 2456 EXPORT_SYMBOL(mount_subtree); 2457 2458 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2459 char __user *, type, unsigned long, flags, void __user *, data) 2460 { 2461 int ret; 2462 char *kernel_type; 2463 struct filename *kernel_dir; 2464 char *kernel_dev; 2465 unsigned long data_page; 2466 2467 ret = copy_mount_string(type, &kernel_type); 2468 if (ret < 0) 2469 goto out_type; 2470 2471 kernel_dir = getname(dir_name); 2472 if (IS_ERR(kernel_dir)) { 2473 ret = PTR_ERR(kernel_dir); 2474 goto out_dir; 2475 } 2476 2477 ret = copy_mount_string(dev_name, &kernel_dev); 2478 if (ret < 0) 2479 goto out_dev; 2480 2481 ret = copy_mount_options(data, &data_page); 2482 if (ret < 0) 2483 goto out_data; 2484 2485 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2486 (void *) data_page); 2487 2488 free_page(data_page); 2489 out_data: 2490 kfree(kernel_dev); 2491 out_dev: 2492 putname(kernel_dir); 2493 out_dir: 2494 kfree(kernel_type); 2495 out_type: 2496 return ret; 2497 } 2498 2499 /* 2500 * Return true if path is reachable from root 2501 * 2502 * namespace_sem or vfsmount_lock is held 2503 */ 2504 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2505 const struct path *root) 2506 { 2507 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2508 dentry = mnt->mnt_mountpoint; 2509 mnt = mnt->mnt_parent; 2510 } 2511 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2512 } 2513 2514 int path_is_under(struct path *path1, struct path *path2) 2515 { 2516 int res; 2517 br_read_lock(&vfsmount_lock); 2518 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2519 br_read_unlock(&vfsmount_lock); 2520 return res; 2521 } 2522 EXPORT_SYMBOL(path_is_under); 2523 2524 /* 2525 * pivot_root Semantics: 2526 * Moves the root file system of the current process to the directory put_old, 2527 * makes new_root as the new root file system of the current process, and sets 2528 * root/cwd of all processes which had them on the current root to new_root. 2529 * 2530 * Restrictions: 2531 * The new_root and put_old must be directories, and must not be on the 2532 * same file system as the current process root. The put_old must be 2533 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2534 * pointed to by put_old must yield the same directory as new_root. No other 2535 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2536 * 2537 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2538 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2539 * in this situation. 2540 * 2541 * Notes: 2542 * - we don't move root/cwd if they are not at the root (reason: if something 2543 * cared enough to change them, it's probably wrong to force them elsewhere) 2544 * - it's okay to pick a root that isn't the root of a file system, e.g. 2545 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2546 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2547 * first. 2548 */ 2549 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2550 const char __user *, put_old) 2551 { 2552 struct path new, old, parent_path, root_parent, root; 2553 struct mount *new_mnt, *root_mnt; 2554 int error; 2555 2556 if (!may_mount()) 2557 return -EPERM; 2558 2559 error = user_path_dir(new_root, &new); 2560 if (error) 2561 goto out0; 2562 2563 error = user_path_dir(put_old, &old); 2564 if (error) 2565 goto out1; 2566 2567 error = security_sb_pivotroot(&old, &new); 2568 if (error) 2569 goto out2; 2570 2571 get_fs_root(current->fs, &root); 2572 error = lock_mount(&old); 2573 if (error) 2574 goto out3; 2575 2576 error = -EINVAL; 2577 new_mnt = real_mount(new.mnt); 2578 root_mnt = real_mount(root.mnt); 2579 if (IS_MNT_SHARED(real_mount(old.mnt)) || 2580 IS_MNT_SHARED(new_mnt->mnt_parent) || 2581 IS_MNT_SHARED(root_mnt->mnt_parent)) 2582 goto out4; 2583 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2584 goto out4; 2585 error = -ENOENT; 2586 if (d_unlinked(new.dentry)) 2587 goto out4; 2588 if (d_unlinked(old.dentry)) 2589 goto out4; 2590 error = -EBUSY; 2591 if (new.mnt == root.mnt || 2592 old.mnt == root.mnt) 2593 goto out4; /* loop, on the same file system */ 2594 error = -EINVAL; 2595 if (root.mnt->mnt_root != root.dentry) 2596 goto out4; /* not a mountpoint */ 2597 if (!mnt_has_parent(root_mnt)) 2598 goto out4; /* not attached */ 2599 if (new.mnt->mnt_root != new.dentry) 2600 goto out4; /* not a mountpoint */ 2601 if (!mnt_has_parent(new_mnt)) 2602 goto out4; /* not attached */ 2603 /* make sure we can reach put_old from new_root */ 2604 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new)) 2605 goto out4; 2606 br_write_lock(&vfsmount_lock); 2607 detach_mnt(new_mnt, &parent_path); 2608 detach_mnt(root_mnt, &root_parent); 2609 /* mount old root on put_old */ 2610 attach_mnt(root_mnt, &old); 2611 /* mount new_root on / */ 2612 attach_mnt(new_mnt, &root_parent); 2613 touch_mnt_namespace(current->nsproxy->mnt_ns); 2614 br_write_unlock(&vfsmount_lock); 2615 chroot_fs_refs(&root, &new); 2616 error = 0; 2617 out4: 2618 unlock_mount(&old); 2619 if (!error) { 2620 path_put(&root_parent); 2621 path_put(&parent_path); 2622 } 2623 out3: 2624 path_put(&root); 2625 out2: 2626 path_put(&old); 2627 out1: 2628 path_put(&new); 2629 out0: 2630 return error; 2631 } 2632 2633 static void __init init_mount_tree(void) 2634 { 2635 struct vfsmount *mnt; 2636 struct mnt_namespace *ns; 2637 struct path root; 2638 struct file_system_type *type; 2639 2640 type = get_fs_type("rootfs"); 2641 if (!type) 2642 panic("Can't find rootfs type"); 2643 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2644 put_filesystem(type); 2645 if (IS_ERR(mnt)) 2646 panic("Can't create rootfs"); 2647 2648 ns = create_mnt_ns(mnt); 2649 if (IS_ERR(ns)) 2650 panic("Can't allocate initial namespace"); 2651 2652 init_task.nsproxy->mnt_ns = ns; 2653 get_mnt_ns(ns); 2654 2655 root.mnt = mnt; 2656 root.dentry = mnt->mnt_root; 2657 2658 set_fs_pwd(current->fs, &root); 2659 set_fs_root(current->fs, &root); 2660 } 2661 2662 void __init mnt_init(void) 2663 { 2664 unsigned u; 2665 int err; 2666 2667 init_rwsem(&namespace_sem); 2668 2669 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2670 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2671 2672 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2673 2674 if (!mount_hashtable) 2675 panic("Failed to allocate mount hash table\n"); 2676 2677 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2678 2679 for (u = 0; u < HASH_SIZE; u++) 2680 INIT_LIST_HEAD(&mount_hashtable[u]); 2681 2682 br_lock_init(&vfsmount_lock); 2683 2684 err = sysfs_init(); 2685 if (err) 2686 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2687 __func__, err); 2688 fs_kobj = kobject_create_and_add("fs", NULL); 2689 if (!fs_kobj) 2690 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2691 init_rootfs(); 2692 init_mount_tree(); 2693 } 2694 2695 void put_mnt_ns(struct mnt_namespace *ns) 2696 { 2697 LIST_HEAD(umount_list); 2698 2699 if (!atomic_dec_and_test(&ns->count)) 2700 return; 2701 down_write(&namespace_sem); 2702 br_write_lock(&vfsmount_lock); 2703 umount_tree(ns->root, 0, &umount_list); 2704 br_write_unlock(&vfsmount_lock); 2705 up_write(&namespace_sem); 2706 release_mounts(&umount_list); 2707 free_mnt_ns(ns); 2708 } 2709 2710 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2711 { 2712 struct vfsmount *mnt; 2713 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2714 if (!IS_ERR(mnt)) { 2715 /* 2716 * it is a longterm mount, don't release mnt until 2717 * we unmount before file sys is unregistered 2718 */ 2719 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2720 } 2721 return mnt; 2722 } 2723 EXPORT_SYMBOL_GPL(kern_mount_data); 2724 2725 void kern_unmount(struct vfsmount *mnt) 2726 { 2727 /* release long term mount so mount point can be released */ 2728 if (!IS_ERR_OR_NULL(mnt)) { 2729 br_write_lock(&vfsmount_lock); 2730 real_mount(mnt)->mnt_ns = NULL; 2731 br_write_unlock(&vfsmount_lock); 2732 mntput(mnt); 2733 } 2734 } 2735 EXPORT_SYMBOL(kern_unmount); 2736 2737 bool our_mnt(struct vfsmount *mnt) 2738 { 2739 return check_mnt(real_mount(mnt)); 2740 } 2741 2742 bool current_chrooted(void) 2743 { 2744 /* Does the current process have a non-standard root */ 2745 struct path ns_root; 2746 struct path fs_root; 2747 bool chrooted; 2748 2749 /* Find the namespace root */ 2750 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 2751 ns_root.dentry = ns_root.mnt->mnt_root; 2752 path_get(&ns_root); 2753 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 2754 ; 2755 2756 get_fs_root(current->fs, &fs_root); 2757 2758 chrooted = !path_equal(&fs_root, &ns_root); 2759 2760 path_put(&fs_root); 2761 path_put(&ns_root); 2762 2763 return chrooted; 2764 } 2765 2766 void update_mnt_policy(struct user_namespace *userns) 2767 { 2768 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 2769 struct mount *mnt; 2770 2771 down_read(&namespace_sem); 2772 list_for_each_entry(mnt, &ns->list, mnt_list) { 2773 switch (mnt->mnt.mnt_sb->s_magic) { 2774 case SYSFS_MAGIC: 2775 userns->may_mount_sysfs = true; 2776 break; 2777 case PROC_SUPER_MAGIC: 2778 userns->may_mount_proc = true; 2779 break; 2780 } 2781 if (userns->may_mount_sysfs && userns->may_mount_proc) 2782 break; 2783 } 2784 up_read(&namespace_sem); 2785 } 2786 2787 static void *mntns_get(struct task_struct *task) 2788 { 2789 struct mnt_namespace *ns = NULL; 2790 struct nsproxy *nsproxy; 2791 2792 rcu_read_lock(); 2793 nsproxy = task_nsproxy(task); 2794 if (nsproxy) { 2795 ns = nsproxy->mnt_ns; 2796 get_mnt_ns(ns); 2797 } 2798 rcu_read_unlock(); 2799 2800 return ns; 2801 } 2802 2803 static void mntns_put(void *ns) 2804 { 2805 put_mnt_ns(ns); 2806 } 2807 2808 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2809 { 2810 struct fs_struct *fs = current->fs; 2811 struct mnt_namespace *mnt_ns = ns; 2812 struct path root; 2813 2814 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2815 !nsown_capable(CAP_SYS_CHROOT) || 2816 !nsown_capable(CAP_SYS_ADMIN)) 2817 return -EPERM; 2818 2819 if (fs->users != 1) 2820 return -EINVAL; 2821 2822 get_mnt_ns(mnt_ns); 2823 put_mnt_ns(nsproxy->mnt_ns); 2824 nsproxy->mnt_ns = mnt_ns; 2825 2826 /* Find the root */ 2827 root.mnt = &mnt_ns->root->mnt; 2828 root.dentry = mnt_ns->root->mnt.mnt_root; 2829 path_get(&root); 2830 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 2831 ; 2832 2833 /* Update the pwd and root */ 2834 set_fs_pwd(fs, &root); 2835 set_fs_root(fs, &root); 2836 2837 path_put(&root); 2838 return 0; 2839 } 2840 2841 static unsigned int mntns_inum(void *ns) 2842 { 2843 struct mnt_namespace *mnt_ns = ns; 2844 return mnt_ns->proc_inum; 2845 } 2846 2847 const struct proc_ns_operations mntns_operations = { 2848 .name = "mnt", 2849 .type = CLONE_NEWNS, 2850 .get = mntns_get, 2851 .put = mntns_put, 2852 .install = mntns_install, 2853 .inum = mntns_inum, 2854 }; 2855