xref: /linux/fs/namespace.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mnt_idmap {
79 	struct user_namespace *owner;
80 	refcount_t count;
81 };
82 
83 /*
84  * Carries the initial idmapping of 0:0:4294967295 which is an identity
85  * mapping. This means that {g,u}id 0 is mapped to {g,u}id 0, {g,u}id 1 is
86  * mapped to {g,u}id 1, [...], {g,u}id 1000 to {g,u}id 1000, [...].
87  */
88 struct mnt_idmap nop_mnt_idmap = {
89 	.owner	= &init_user_ns,
90 	.count	= REFCOUNT_INIT(1),
91 };
92 EXPORT_SYMBOL_GPL(nop_mnt_idmap);
93 
94 struct mount_kattr {
95 	unsigned int attr_set;
96 	unsigned int attr_clr;
97 	unsigned int propagation;
98 	unsigned int lookup_flags;
99 	bool recurse;
100 	struct user_namespace *mnt_userns;
101 	struct mnt_idmap *mnt_idmap;
102 };
103 
104 /* /sys/fs */
105 struct kobject *fs_kobj;
106 EXPORT_SYMBOL_GPL(fs_kobj);
107 
108 /*
109  * vfsmount lock may be taken for read to prevent changes to the
110  * vfsmount hash, ie. during mountpoint lookups or walking back
111  * up the tree.
112  *
113  * It should be taken for write in all cases where the vfsmount
114  * tree or hash is modified or when a vfsmount structure is modified.
115  */
116 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
117 
118 static inline void lock_mount_hash(void)
119 {
120 	write_seqlock(&mount_lock);
121 }
122 
123 static inline void unlock_mount_hash(void)
124 {
125 	write_sequnlock(&mount_lock);
126 }
127 
128 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
129 {
130 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
131 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
132 	tmp = tmp + (tmp >> m_hash_shift);
133 	return &mount_hashtable[tmp & m_hash_mask];
134 }
135 
136 static inline struct hlist_head *mp_hash(struct dentry *dentry)
137 {
138 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
139 	tmp = tmp + (tmp >> mp_hash_shift);
140 	return &mountpoint_hashtable[tmp & mp_hash_mask];
141 }
142 
143 static int mnt_alloc_id(struct mount *mnt)
144 {
145 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_id = res;
150 	return 0;
151 }
152 
153 static void mnt_free_id(struct mount *mnt)
154 {
155 	ida_free(&mnt_id_ida, mnt->mnt_id);
156 }
157 
158 /*
159  * Allocate a new peer group ID
160  */
161 static int mnt_alloc_group_id(struct mount *mnt)
162 {
163 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
164 
165 	if (res < 0)
166 		return res;
167 	mnt->mnt_group_id = res;
168 	return 0;
169 }
170 
171 /*
172  * Release a peer group ID
173  */
174 void mnt_release_group_id(struct mount *mnt)
175 {
176 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
177 	mnt->mnt_group_id = 0;
178 }
179 
180 /*
181  * vfsmount lock must be held for read
182  */
183 static inline void mnt_add_count(struct mount *mnt, int n)
184 {
185 #ifdef CONFIG_SMP
186 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
187 #else
188 	preempt_disable();
189 	mnt->mnt_count += n;
190 	preempt_enable();
191 #endif
192 }
193 
194 /*
195  * vfsmount lock must be held for write
196  */
197 int mnt_get_count(struct mount *mnt)
198 {
199 #ifdef CONFIG_SMP
200 	int count = 0;
201 	int cpu;
202 
203 	for_each_possible_cpu(cpu) {
204 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
205 	}
206 
207 	return count;
208 #else
209 	return mnt->mnt_count;
210 #endif
211 }
212 
213 /**
214  * mnt_idmap_owner - retrieve owner of the mount's idmapping
215  * @idmap: mount idmapping
216  *
217  * This helper will go away once the conversion to use struct mnt_idmap
218  * everywhere has finished at which point the helper will be unexported.
219  *
220  * Only code that needs to perform permission checks based on the owner of the
221  * idmapping will get access to it. All other code will solely rely on
222  * idmappings. This will get us type safety so it's impossible to conflate
223  * filesystems idmappings with mount idmappings.
224  *
225  * Return: The owner of the idmapping.
226  */
227 struct user_namespace *mnt_idmap_owner(const struct mnt_idmap *idmap)
228 {
229 	return idmap->owner;
230 }
231 EXPORT_SYMBOL_GPL(mnt_idmap_owner);
232 
233 /**
234  * mnt_user_ns - retrieve owner of an idmapped mount
235  * @mnt: the relevant vfsmount
236  *
237  * This helper will go away once the conversion to use struct mnt_idmap
238  * everywhere has finished at which point the helper will be unexported.
239  *
240  * Only code that needs to perform permission checks based on the owner of the
241  * idmapping will get access to it. All other code will solely rely on
242  * idmappings. This will get us type safety so it's impossible to conflate
243  * filesystems idmappings with mount idmappings.
244  *
245  * Return: The owner of the idmapped.
246  */
247 struct user_namespace *mnt_user_ns(const struct vfsmount *mnt)
248 {
249 	struct mnt_idmap *idmap = mnt_idmap(mnt);
250 
251 	/* Return the actual owner of the filesystem instead of the nop. */
252 	if (idmap == &nop_mnt_idmap &&
253 	    !initial_idmapping(mnt->mnt_sb->s_user_ns))
254 		return mnt->mnt_sb->s_user_ns;
255 	return mnt_idmap_owner(idmap);
256 }
257 EXPORT_SYMBOL_GPL(mnt_user_ns);
258 
259 /**
260  * alloc_mnt_idmap - allocate a new idmapping for the mount
261  * @mnt_userns: owning userns of the idmapping
262  *
263  * Allocate a new struct mnt_idmap which carries the idmapping of the mount.
264  *
265  * Return: On success a new idmap, on error an error pointer is returned.
266  */
267 static struct mnt_idmap *alloc_mnt_idmap(struct user_namespace *mnt_userns)
268 {
269 	struct mnt_idmap *idmap;
270 
271 	idmap = kzalloc(sizeof(struct mnt_idmap), GFP_KERNEL_ACCOUNT);
272 	if (!idmap)
273 		return ERR_PTR(-ENOMEM);
274 
275 	idmap->owner = get_user_ns(mnt_userns);
276 	refcount_set(&idmap->count, 1);
277 	return idmap;
278 }
279 
280 /**
281  * mnt_idmap_get - get a reference to an idmapping
282  * @idmap: the idmap to bump the reference on
283  *
284  * If @idmap is not the @nop_mnt_idmap bump the reference count.
285  *
286  * Return: @idmap with reference count bumped if @not_mnt_idmap isn't passed.
287  */
288 static inline struct mnt_idmap *mnt_idmap_get(struct mnt_idmap *idmap)
289 {
290 	if (idmap != &nop_mnt_idmap)
291 		refcount_inc(&idmap->count);
292 
293 	return idmap;
294 }
295 
296 /**
297  * mnt_idmap_put - put a reference to an idmapping
298  * @idmap: the idmap to put the reference on
299  *
300  * If this is a non-initial idmapping, put the reference count when a mount is
301  * released and free it if we're the last user.
302  */
303 static inline void mnt_idmap_put(struct mnt_idmap *idmap)
304 {
305 	if (idmap != &nop_mnt_idmap && refcount_dec_and_test(&idmap->count)) {
306 		put_user_ns(idmap->owner);
307 		kfree(idmap);
308 	}
309 }
310 
311 static struct mount *alloc_vfsmnt(const char *name)
312 {
313 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
314 	if (mnt) {
315 		int err;
316 
317 		err = mnt_alloc_id(mnt);
318 		if (err)
319 			goto out_free_cache;
320 
321 		if (name) {
322 			mnt->mnt_devname = kstrdup_const(name,
323 							 GFP_KERNEL_ACCOUNT);
324 			if (!mnt->mnt_devname)
325 				goto out_free_id;
326 		}
327 
328 #ifdef CONFIG_SMP
329 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
330 		if (!mnt->mnt_pcp)
331 			goto out_free_devname;
332 
333 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
334 #else
335 		mnt->mnt_count = 1;
336 		mnt->mnt_writers = 0;
337 #endif
338 
339 		INIT_HLIST_NODE(&mnt->mnt_hash);
340 		INIT_LIST_HEAD(&mnt->mnt_child);
341 		INIT_LIST_HEAD(&mnt->mnt_mounts);
342 		INIT_LIST_HEAD(&mnt->mnt_list);
343 		INIT_LIST_HEAD(&mnt->mnt_expire);
344 		INIT_LIST_HEAD(&mnt->mnt_share);
345 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
346 		INIT_LIST_HEAD(&mnt->mnt_slave);
347 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
348 		INIT_LIST_HEAD(&mnt->mnt_umounting);
349 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
350 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
351 	}
352 	return mnt;
353 
354 #ifdef CONFIG_SMP
355 out_free_devname:
356 	kfree_const(mnt->mnt_devname);
357 #endif
358 out_free_id:
359 	mnt_free_id(mnt);
360 out_free_cache:
361 	kmem_cache_free(mnt_cache, mnt);
362 	return NULL;
363 }
364 
365 /*
366  * Most r/o checks on a fs are for operations that take
367  * discrete amounts of time, like a write() or unlink().
368  * We must keep track of when those operations start
369  * (for permission checks) and when they end, so that
370  * we can determine when writes are able to occur to
371  * a filesystem.
372  */
373 /*
374  * __mnt_is_readonly: check whether a mount is read-only
375  * @mnt: the mount to check for its write status
376  *
377  * This shouldn't be used directly ouside of the VFS.
378  * It does not guarantee that the filesystem will stay
379  * r/w, just that it is right *now*.  This can not and
380  * should not be used in place of IS_RDONLY(inode).
381  * mnt_want/drop_write() will _keep_ the filesystem
382  * r/w.
383  */
384 bool __mnt_is_readonly(struct vfsmount *mnt)
385 {
386 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
387 }
388 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
389 
390 static inline void mnt_inc_writers(struct mount *mnt)
391 {
392 #ifdef CONFIG_SMP
393 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
394 #else
395 	mnt->mnt_writers++;
396 #endif
397 }
398 
399 static inline void mnt_dec_writers(struct mount *mnt)
400 {
401 #ifdef CONFIG_SMP
402 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
403 #else
404 	mnt->mnt_writers--;
405 #endif
406 }
407 
408 static unsigned int mnt_get_writers(struct mount *mnt)
409 {
410 #ifdef CONFIG_SMP
411 	unsigned int count = 0;
412 	int cpu;
413 
414 	for_each_possible_cpu(cpu) {
415 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
416 	}
417 
418 	return count;
419 #else
420 	return mnt->mnt_writers;
421 #endif
422 }
423 
424 static int mnt_is_readonly(struct vfsmount *mnt)
425 {
426 	if (mnt->mnt_sb->s_readonly_remount)
427 		return 1;
428 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
429 	smp_rmb();
430 	return __mnt_is_readonly(mnt);
431 }
432 
433 /*
434  * Most r/o & frozen checks on a fs are for operations that take discrete
435  * amounts of time, like a write() or unlink().  We must keep track of when
436  * those operations start (for permission checks) and when they end, so that we
437  * can determine when writes are able to occur to a filesystem.
438  */
439 /**
440  * __mnt_want_write - get write access to a mount without freeze protection
441  * @m: the mount on which to take a write
442  *
443  * This tells the low-level filesystem that a write is about to be performed to
444  * it, and makes sure that writes are allowed (mnt it read-write) before
445  * returning success. This operation does not protect against filesystem being
446  * frozen. When the write operation is finished, __mnt_drop_write() must be
447  * called. This is effectively a refcount.
448  */
449 int __mnt_want_write(struct vfsmount *m)
450 {
451 	struct mount *mnt = real_mount(m);
452 	int ret = 0;
453 
454 	preempt_disable();
455 	mnt_inc_writers(mnt);
456 	/*
457 	 * The store to mnt_inc_writers must be visible before we pass
458 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
459 	 * incremented count after it has set MNT_WRITE_HOLD.
460 	 */
461 	smp_mb();
462 	might_lock(&mount_lock.lock);
463 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
464 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
465 			cpu_relax();
466 		} else {
467 			/*
468 			 * This prevents priority inversion, if the task
469 			 * setting MNT_WRITE_HOLD got preempted on a remote
470 			 * CPU, and it prevents life lock if the task setting
471 			 * MNT_WRITE_HOLD has a lower priority and is bound to
472 			 * the same CPU as the task that is spinning here.
473 			 */
474 			preempt_enable();
475 			lock_mount_hash();
476 			unlock_mount_hash();
477 			preempt_disable();
478 		}
479 	}
480 	/*
481 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
482 	 * be set to match its requirements. So we must not load that until
483 	 * MNT_WRITE_HOLD is cleared.
484 	 */
485 	smp_rmb();
486 	if (mnt_is_readonly(m)) {
487 		mnt_dec_writers(mnt);
488 		ret = -EROFS;
489 	}
490 	preempt_enable();
491 
492 	return ret;
493 }
494 
495 /**
496  * mnt_want_write - get write access to a mount
497  * @m: the mount on which to take a write
498  *
499  * This tells the low-level filesystem that a write is about to be performed to
500  * it, and makes sure that writes are allowed (mount is read-write, filesystem
501  * is not frozen) before returning success.  When the write operation is
502  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
503  */
504 int mnt_want_write(struct vfsmount *m)
505 {
506 	int ret;
507 
508 	sb_start_write(m->mnt_sb);
509 	ret = __mnt_want_write(m);
510 	if (ret)
511 		sb_end_write(m->mnt_sb);
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(mnt_want_write);
515 
516 /**
517  * __mnt_want_write_file - get write access to a file's mount
518  * @file: the file who's mount on which to take a write
519  *
520  * This is like __mnt_want_write, but if the file is already open for writing it
521  * skips incrementing mnt_writers (since the open file already has a reference)
522  * and instead only does the check for emergency r/o remounts.  This must be
523  * paired with __mnt_drop_write_file.
524  */
525 int __mnt_want_write_file(struct file *file)
526 {
527 	if (file->f_mode & FMODE_WRITER) {
528 		/*
529 		 * Superblock may have become readonly while there are still
530 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
531 		 */
532 		if (__mnt_is_readonly(file->f_path.mnt))
533 			return -EROFS;
534 		return 0;
535 	}
536 	return __mnt_want_write(file->f_path.mnt);
537 }
538 
539 /**
540  * mnt_want_write_file - get write access to a file's mount
541  * @file: the file who's mount on which to take a write
542  *
543  * This is like mnt_want_write, but if the file is already open for writing it
544  * skips incrementing mnt_writers (since the open file already has a reference)
545  * and instead only does the freeze protection and the check for emergency r/o
546  * remounts.  This must be paired with mnt_drop_write_file.
547  */
548 int mnt_want_write_file(struct file *file)
549 {
550 	int ret;
551 
552 	sb_start_write(file_inode(file)->i_sb);
553 	ret = __mnt_want_write_file(file);
554 	if (ret)
555 		sb_end_write(file_inode(file)->i_sb);
556 	return ret;
557 }
558 EXPORT_SYMBOL_GPL(mnt_want_write_file);
559 
560 /**
561  * __mnt_drop_write - give up write access to a mount
562  * @mnt: the mount on which to give up write access
563  *
564  * Tells the low-level filesystem that we are done
565  * performing writes to it.  Must be matched with
566  * __mnt_want_write() call above.
567  */
568 void __mnt_drop_write(struct vfsmount *mnt)
569 {
570 	preempt_disable();
571 	mnt_dec_writers(real_mount(mnt));
572 	preempt_enable();
573 }
574 
575 /**
576  * mnt_drop_write - give up write access to a mount
577  * @mnt: the mount on which to give up write access
578  *
579  * Tells the low-level filesystem that we are done performing writes to it and
580  * also allows filesystem to be frozen again.  Must be matched with
581  * mnt_want_write() call above.
582  */
583 void mnt_drop_write(struct vfsmount *mnt)
584 {
585 	__mnt_drop_write(mnt);
586 	sb_end_write(mnt->mnt_sb);
587 }
588 EXPORT_SYMBOL_GPL(mnt_drop_write);
589 
590 void __mnt_drop_write_file(struct file *file)
591 {
592 	if (!(file->f_mode & FMODE_WRITER))
593 		__mnt_drop_write(file->f_path.mnt);
594 }
595 
596 void mnt_drop_write_file(struct file *file)
597 {
598 	__mnt_drop_write_file(file);
599 	sb_end_write(file_inode(file)->i_sb);
600 }
601 EXPORT_SYMBOL(mnt_drop_write_file);
602 
603 /**
604  * mnt_hold_writers - prevent write access to the given mount
605  * @mnt: mnt to prevent write access to
606  *
607  * Prevents write access to @mnt if there are no active writers for @mnt.
608  * This function needs to be called and return successfully before changing
609  * properties of @mnt that need to remain stable for callers with write access
610  * to @mnt.
611  *
612  * After this functions has been called successfully callers must pair it with
613  * a call to mnt_unhold_writers() in order to stop preventing write access to
614  * @mnt.
615  *
616  * Context: This function expects lock_mount_hash() to be held serializing
617  *          setting MNT_WRITE_HOLD.
618  * Return: On success 0 is returned.
619  *	   On error, -EBUSY is returned.
620  */
621 static inline int mnt_hold_writers(struct mount *mnt)
622 {
623 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
624 	/*
625 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
626 	 * should be visible before we do.
627 	 */
628 	smp_mb();
629 
630 	/*
631 	 * With writers on hold, if this value is zero, then there are
632 	 * definitely no active writers (although held writers may subsequently
633 	 * increment the count, they'll have to wait, and decrement it after
634 	 * seeing MNT_READONLY).
635 	 *
636 	 * It is OK to have counter incremented on one CPU and decremented on
637 	 * another: the sum will add up correctly. The danger would be when we
638 	 * sum up each counter, if we read a counter before it is incremented,
639 	 * but then read another CPU's count which it has been subsequently
640 	 * decremented from -- we would see more decrements than we should.
641 	 * MNT_WRITE_HOLD protects against this scenario, because
642 	 * mnt_want_write first increments count, then smp_mb, then spins on
643 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
644 	 * we're counting up here.
645 	 */
646 	if (mnt_get_writers(mnt) > 0)
647 		return -EBUSY;
648 
649 	return 0;
650 }
651 
652 /**
653  * mnt_unhold_writers - stop preventing write access to the given mount
654  * @mnt: mnt to stop preventing write access to
655  *
656  * Stop preventing write access to @mnt allowing callers to gain write access
657  * to @mnt again.
658  *
659  * This function can only be called after a successful call to
660  * mnt_hold_writers().
661  *
662  * Context: This function expects lock_mount_hash() to be held.
663  */
664 static inline void mnt_unhold_writers(struct mount *mnt)
665 {
666 	/*
667 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
668 	 * that become unheld will see MNT_READONLY.
669 	 */
670 	smp_wmb();
671 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
672 }
673 
674 static int mnt_make_readonly(struct mount *mnt)
675 {
676 	int ret;
677 
678 	ret = mnt_hold_writers(mnt);
679 	if (!ret)
680 		mnt->mnt.mnt_flags |= MNT_READONLY;
681 	mnt_unhold_writers(mnt);
682 	return ret;
683 }
684 
685 int sb_prepare_remount_readonly(struct super_block *sb)
686 {
687 	struct mount *mnt;
688 	int err = 0;
689 
690 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
691 	if (atomic_long_read(&sb->s_remove_count))
692 		return -EBUSY;
693 
694 	lock_mount_hash();
695 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
696 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
697 			err = mnt_hold_writers(mnt);
698 			if (err)
699 				break;
700 		}
701 	}
702 	if (!err && atomic_long_read(&sb->s_remove_count))
703 		err = -EBUSY;
704 
705 	if (!err) {
706 		sb->s_readonly_remount = 1;
707 		smp_wmb();
708 	}
709 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
710 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
711 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
712 	}
713 	unlock_mount_hash();
714 
715 	return err;
716 }
717 
718 static void free_vfsmnt(struct mount *mnt)
719 {
720 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
721 	kfree_const(mnt->mnt_devname);
722 #ifdef CONFIG_SMP
723 	free_percpu(mnt->mnt_pcp);
724 #endif
725 	kmem_cache_free(mnt_cache, mnt);
726 }
727 
728 static void delayed_free_vfsmnt(struct rcu_head *head)
729 {
730 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
731 }
732 
733 /* call under rcu_read_lock */
734 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
735 {
736 	struct mount *mnt;
737 	if (read_seqretry(&mount_lock, seq))
738 		return 1;
739 	if (bastard == NULL)
740 		return 0;
741 	mnt = real_mount(bastard);
742 	mnt_add_count(mnt, 1);
743 	smp_mb();			// see mntput_no_expire()
744 	if (likely(!read_seqretry(&mount_lock, seq)))
745 		return 0;
746 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
747 		mnt_add_count(mnt, -1);
748 		return 1;
749 	}
750 	lock_mount_hash();
751 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
752 		mnt_add_count(mnt, -1);
753 		unlock_mount_hash();
754 		return 1;
755 	}
756 	unlock_mount_hash();
757 	/* caller will mntput() */
758 	return -1;
759 }
760 
761 /* call under rcu_read_lock */
762 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
763 {
764 	int res = __legitimize_mnt(bastard, seq);
765 	if (likely(!res))
766 		return true;
767 	if (unlikely(res < 0)) {
768 		rcu_read_unlock();
769 		mntput(bastard);
770 		rcu_read_lock();
771 	}
772 	return false;
773 }
774 
775 /*
776  * find the first mount at @dentry on vfsmount @mnt.
777  * call under rcu_read_lock()
778  */
779 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
780 {
781 	struct hlist_head *head = m_hash(mnt, dentry);
782 	struct mount *p;
783 
784 	hlist_for_each_entry_rcu(p, head, mnt_hash)
785 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
786 			return p;
787 	return NULL;
788 }
789 
790 /*
791  * lookup_mnt - Return the first child mount mounted at path
792  *
793  * "First" means first mounted chronologically.  If you create the
794  * following mounts:
795  *
796  * mount /dev/sda1 /mnt
797  * mount /dev/sda2 /mnt
798  * mount /dev/sda3 /mnt
799  *
800  * Then lookup_mnt() on the base /mnt dentry in the root mount will
801  * return successively the root dentry and vfsmount of /dev/sda1, then
802  * /dev/sda2, then /dev/sda3, then NULL.
803  *
804  * lookup_mnt takes a reference to the found vfsmount.
805  */
806 struct vfsmount *lookup_mnt(const struct path *path)
807 {
808 	struct mount *child_mnt;
809 	struct vfsmount *m;
810 	unsigned seq;
811 
812 	rcu_read_lock();
813 	do {
814 		seq = read_seqbegin(&mount_lock);
815 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
816 		m = child_mnt ? &child_mnt->mnt : NULL;
817 	} while (!legitimize_mnt(m, seq));
818 	rcu_read_unlock();
819 	return m;
820 }
821 
822 static inline void lock_ns_list(struct mnt_namespace *ns)
823 {
824 	spin_lock(&ns->ns_lock);
825 }
826 
827 static inline void unlock_ns_list(struct mnt_namespace *ns)
828 {
829 	spin_unlock(&ns->ns_lock);
830 }
831 
832 static inline bool mnt_is_cursor(struct mount *mnt)
833 {
834 	return mnt->mnt.mnt_flags & MNT_CURSOR;
835 }
836 
837 /*
838  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
839  *                         current mount namespace.
840  *
841  * The common case is dentries are not mountpoints at all and that
842  * test is handled inline.  For the slow case when we are actually
843  * dealing with a mountpoint of some kind, walk through all of the
844  * mounts in the current mount namespace and test to see if the dentry
845  * is a mountpoint.
846  *
847  * The mount_hashtable is not usable in the context because we
848  * need to identify all mounts that may be in the current mount
849  * namespace not just a mount that happens to have some specified
850  * parent mount.
851  */
852 bool __is_local_mountpoint(struct dentry *dentry)
853 {
854 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
855 	struct mount *mnt;
856 	bool is_covered = false;
857 
858 	down_read(&namespace_sem);
859 	lock_ns_list(ns);
860 	list_for_each_entry(mnt, &ns->list, mnt_list) {
861 		if (mnt_is_cursor(mnt))
862 			continue;
863 		is_covered = (mnt->mnt_mountpoint == dentry);
864 		if (is_covered)
865 			break;
866 	}
867 	unlock_ns_list(ns);
868 	up_read(&namespace_sem);
869 
870 	return is_covered;
871 }
872 
873 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
874 {
875 	struct hlist_head *chain = mp_hash(dentry);
876 	struct mountpoint *mp;
877 
878 	hlist_for_each_entry(mp, chain, m_hash) {
879 		if (mp->m_dentry == dentry) {
880 			mp->m_count++;
881 			return mp;
882 		}
883 	}
884 	return NULL;
885 }
886 
887 static struct mountpoint *get_mountpoint(struct dentry *dentry)
888 {
889 	struct mountpoint *mp, *new = NULL;
890 	int ret;
891 
892 	if (d_mountpoint(dentry)) {
893 		/* might be worth a WARN_ON() */
894 		if (d_unlinked(dentry))
895 			return ERR_PTR(-ENOENT);
896 mountpoint:
897 		read_seqlock_excl(&mount_lock);
898 		mp = lookup_mountpoint(dentry);
899 		read_sequnlock_excl(&mount_lock);
900 		if (mp)
901 			goto done;
902 	}
903 
904 	if (!new)
905 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
906 	if (!new)
907 		return ERR_PTR(-ENOMEM);
908 
909 
910 	/* Exactly one processes may set d_mounted */
911 	ret = d_set_mounted(dentry);
912 
913 	/* Someone else set d_mounted? */
914 	if (ret == -EBUSY)
915 		goto mountpoint;
916 
917 	/* The dentry is not available as a mountpoint? */
918 	mp = ERR_PTR(ret);
919 	if (ret)
920 		goto done;
921 
922 	/* Add the new mountpoint to the hash table */
923 	read_seqlock_excl(&mount_lock);
924 	new->m_dentry = dget(dentry);
925 	new->m_count = 1;
926 	hlist_add_head(&new->m_hash, mp_hash(dentry));
927 	INIT_HLIST_HEAD(&new->m_list);
928 	read_sequnlock_excl(&mount_lock);
929 
930 	mp = new;
931 	new = NULL;
932 done:
933 	kfree(new);
934 	return mp;
935 }
936 
937 /*
938  * vfsmount lock must be held.  Additionally, the caller is responsible
939  * for serializing calls for given disposal list.
940  */
941 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
942 {
943 	if (!--mp->m_count) {
944 		struct dentry *dentry = mp->m_dentry;
945 		BUG_ON(!hlist_empty(&mp->m_list));
946 		spin_lock(&dentry->d_lock);
947 		dentry->d_flags &= ~DCACHE_MOUNTED;
948 		spin_unlock(&dentry->d_lock);
949 		dput_to_list(dentry, list);
950 		hlist_del(&mp->m_hash);
951 		kfree(mp);
952 	}
953 }
954 
955 /* called with namespace_lock and vfsmount lock */
956 static void put_mountpoint(struct mountpoint *mp)
957 {
958 	__put_mountpoint(mp, &ex_mountpoints);
959 }
960 
961 static inline int check_mnt(struct mount *mnt)
962 {
963 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
964 }
965 
966 /*
967  * vfsmount lock must be held for write
968  */
969 static void touch_mnt_namespace(struct mnt_namespace *ns)
970 {
971 	if (ns) {
972 		ns->event = ++event;
973 		wake_up_interruptible(&ns->poll);
974 	}
975 }
976 
977 /*
978  * vfsmount lock must be held for write
979  */
980 static void __touch_mnt_namespace(struct mnt_namespace *ns)
981 {
982 	if (ns && ns->event != event) {
983 		ns->event = event;
984 		wake_up_interruptible(&ns->poll);
985 	}
986 }
987 
988 /*
989  * vfsmount lock must be held for write
990  */
991 static struct mountpoint *unhash_mnt(struct mount *mnt)
992 {
993 	struct mountpoint *mp;
994 	mnt->mnt_parent = mnt;
995 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
996 	list_del_init(&mnt->mnt_child);
997 	hlist_del_init_rcu(&mnt->mnt_hash);
998 	hlist_del_init(&mnt->mnt_mp_list);
999 	mp = mnt->mnt_mp;
1000 	mnt->mnt_mp = NULL;
1001 	return mp;
1002 }
1003 
1004 /*
1005  * vfsmount lock must be held for write
1006  */
1007 static void umount_mnt(struct mount *mnt)
1008 {
1009 	put_mountpoint(unhash_mnt(mnt));
1010 }
1011 
1012 /*
1013  * vfsmount lock must be held for write
1014  */
1015 void mnt_set_mountpoint(struct mount *mnt,
1016 			struct mountpoint *mp,
1017 			struct mount *child_mnt)
1018 {
1019 	mp->m_count++;
1020 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1021 	child_mnt->mnt_mountpoint = mp->m_dentry;
1022 	child_mnt->mnt_parent = mnt;
1023 	child_mnt->mnt_mp = mp;
1024 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1025 }
1026 
1027 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1028 {
1029 	hlist_add_head_rcu(&mnt->mnt_hash,
1030 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1031 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1032 }
1033 
1034 /*
1035  * vfsmount lock must be held for write
1036  */
1037 static void attach_mnt(struct mount *mnt,
1038 			struct mount *parent,
1039 			struct mountpoint *mp)
1040 {
1041 	mnt_set_mountpoint(parent, mp, mnt);
1042 	__attach_mnt(mnt, parent);
1043 }
1044 
1045 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1046 {
1047 	struct mountpoint *old_mp = mnt->mnt_mp;
1048 	struct mount *old_parent = mnt->mnt_parent;
1049 
1050 	list_del_init(&mnt->mnt_child);
1051 	hlist_del_init(&mnt->mnt_mp_list);
1052 	hlist_del_init_rcu(&mnt->mnt_hash);
1053 
1054 	attach_mnt(mnt, parent, mp);
1055 
1056 	put_mountpoint(old_mp);
1057 	mnt_add_count(old_parent, -1);
1058 }
1059 
1060 /*
1061  * vfsmount lock must be held for write
1062  */
1063 static void commit_tree(struct mount *mnt)
1064 {
1065 	struct mount *parent = mnt->mnt_parent;
1066 	struct mount *m;
1067 	LIST_HEAD(head);
1068 	struct mnt_namespace *n = parent->mnt_ns;
1069 
1070 	BUG_ON(parent == mnt);
1071 
1072 	list_add_tail(&head, &mnt->mnt_list);
1073 	list_for_each_entry(m, &head, mnt_list)
1074 		m->mnt_ns = n;
1075 
1076 	list_splice(&head, n->list.prev);
1077 
1078 	n->mounts += n->pending_mounts;
1079 	n->pending_mounts = 0;
1080 
1081 	__attach_mnt(mnt, parent);
1082 	touch_mnt_namespace(n);
1083 }
1084 
1085 static struct mount *next_mnt(struct mount *p, struct mount *root)
1086 {
1087 	struct list_head *next = p->mnt_mounts.next;
1088 	if (next == &p->mnt_mounts) {
1089 		while (1) {
1090 			if (p == root)
1091 				return NULL;
1092 			next = p->mnt_child.next;
1093 			if (next != &p->mnt_parent->mnt_mounts)
1094 				break;
1095 			p = p->mnt_parent;
1096 		}
1097 	}
1098 	return list_entry(next, struct mount, mnt_child);
1099 }
1100 
1101 static struct mount *skip_mnt_tree(struct mount *p)
1102 {
1103 	struct list_head *prev = p->mnt_mounts.prev;
1104 	while (prev != &p->mnt_mounts) {
1105 		p = list_entry(prev, struct mount, mnt_child);
1106 		prev = p->mnt_mounts.prev;
1107 	}
1108 	return p;
1109 }
1110 
1111 /**
1112  * vfs_create_mount - Create a mount for a configured superblock
1113  * @fc: The configuration context with the superblock attached
1114  *
1115  * Create a mount to an already configured superblock.  If necessary, the
1116  * caller should invoke vfs_get_tree() before calling this.
1117  *
1118  * Note that this does not attach the mount to anything.
1119  */
1120 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1121 {
1122 	struct mount *mnt;
1123 
1124 	if (!fc->root)
1125 		return ERR_PTR(-EINVAL);
1126 
1127 	mnt = alloc_vfsmnt(fc->source ?: "none");
1128 	if (!mnt)
1129 		return ERR_PTR(-ENOMEM);
1130 
1131 	if (fc->sb_flags & SB_KERNMOUNT)
1132 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1133 
1134 	atomic_inc(&fc->root->d_sb->s_active);
1135 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1136 	mnt->mnt.mnt_root	= dget(fc->root);
1137 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1138 	mnt->mnt_parent		= mnt;
1139 
1140 	lock_mount_hash();
1141 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1142 	unlock_mount_hash();
1143 	return &mnt->mnt;
1144 }
1145 EXPORT_SYMBOL(vfs_create_mount);
1146 
1147 struct vfsmount *fc_mount(struct fs_context *fc)
1148 {
1149 	int err = vfs_get_tree(fc);
1150 	if (!err) {
1151 		up_write(&fc->root->d_sb->s_umount);
1152 		return vfs_create_mount(fc);
1153 	}
1154 	return ERR_PTR(err);
1155 }
1156 EXPORT_SYMBOL(fc_mount);
1157 
1158 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1159 				int flags, const char *name,
1160 				void *data)
1161 {
1162 	struct fs_context *fc;
1163 	struct vfsmount *mnt;
1164 	int ret = 0;
1165 
1166 	if (!type)
1167 		return ERR_PTR(-EINVAL);
1168 
1169 	fc = fs_context_for_mount(type, flags);
1170 	if (IS_ERR(fc))
1171 		return ERR_CAST(fc);
1172 
1173 	if (name)
1174 		ret = vfs_parse_fs_string(fc, "source",
1175 					  name, strlen(name));
1176 	if (!ret)
1177 		ret = parse_monolithic_mount_data(fc, data);
1178 	if (!ret)
1179 		mnt = fc_mount(fc);
1180 	else
1181 		mnt = ERR_PTR(ret);
1182 
1183 	put_fs_context(fc);
1184 	return mnt;
1185 }
1186 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1187 
1188 struct vfsmount *
1189 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1190 	     const char *name, void *data)
1191 {
1192 	/* Until it is worked out how to pass the user namespace
1193 	 * through from the parent mount to the submount don't support
1194 	 * unprivileged mounts with submounts.
1195 	 */
1196 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1197 		return ERR_PTR(-EPERM);
1198 
1199 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1200 }
1201 EXPORT_SYMBOL_GPL(vfs_submount);
1202 
1203 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1204 					int flag)
1205 {
1206 	struct super_block *sb = old->mnt.mnt_sb;
1207 	struct mount *mnt;
1208 	int err;
1209 
1210 	mnt = alloc_vfsmnt(old->mnt_devname);
1211 	if (!mnt)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1215 		mnt->mnt_group_id = 0; /* not a peer of original */
1216 	else
1217 		mnt->mnt_group_id = old->mnt_group_id;
1218 
1219 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1220 		err = mnt_alloc_group_id(mnt);
1221 		if (err)
1222 			goto out_free;
1223 	}
1224 
1225 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1226 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1227 
1228 	atomic_inc(&sb->s_active);
1229 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1230 
1231 	mnt->mnt.mnt_sb = sb;
1232 	mnt->mnt.mnt_root = dget(root);
1233 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1234 	mnt->mnt_parent = mnt;
1235 	lock_mount_hash();
1236 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1237 	unlock_mount_hash();
1238 
1239 	if ((flag & CL_SLAVE) ||
1240 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1241 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1242 		mnt->mnt_master = old;
1243 		CLEAR_MNT_SHARED(mnt);
1244 	} else if (!(flag & CL_PRIVATE)) {
1245 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1246 			list_add(&mnt->mnt_share, &old->mnt_share);
1247 		if (IS_MNT_SLAVE(old))
1248 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1249 		mnt->mnt_master = old->mnt_master;
1250 	} else {
1251 		CLEAR_MNT_SHARED(mnt);
1252 	}
1253 	if (flag & CL_MAKE_SHARED)
1254 		set_mnt_shared(mnt);
1255 
1256 	/* stick the duplicate mount on the same expiry list
1257 	 * as the original if that was on one */
1258 	if (flag & CL_EXPIRE) {
1259 		if (!list_empty(&old->mnt_expire))
1260 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1261 	}
1262 
1263 	return mnt;
1264 
1265  out_free:
1266 	mnt_free_id(mnt);
1267 	free_vfsmnt(mnt);
1268 	return ERR_PTR(err);
1269 }
1270 
1271 static void cleanup_mnt(struct mount *mnt)
1272 {
1273 	struct hlist_node *p;
1274 	struct mount *m;
1275 	/*
1276 	 * The warning here probably indicates that somebody messed
1277 	 * up a mnt_want/drop_write() pair.  If this happens, the
1278 	 * filesystem was probably unable to make r/w->r/o transitions.
1279 	 * The locking used to deal with mnt_count decrement provides barriers,
1280 	 * so mnt_get_writers() below is safe.
1281 	 */
1282 	WARN_ON(mnt_get_writers(mnt));
1283 	if (unlikely(mnt->mnt_pins.first))
1284 		mnt_pin_kill(mnt);
1285 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1286 		hlist_del(&m->mnt_umount);
1287 		mntput(&m->mnt);
1288 	}
1289 	fsnotify_vfsmount_delete(&mnt->mnt);
1290 	dput(mnt->mnt.mnt_root);
1291 	deactivate_super(mnt->mnt.mnt_sb);
1292 	mnt_free_id(mnt);
1293 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1294 }
1295 
1296 static void __cleanup_mnt(struct rcu_head *head)
1297 {
1298 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1299 }
1300 
1301 static LLIST_HEAD(delayed_mntput_list);
1302 static void delayed_mntput(struct work_struct *unused)
1303 {
1304 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1305 	struct mount *m, *t;
1306 
1307 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1308 		cleanup_mnt(m);
1309 }
1310 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1311 
1312 static void mntput_no_expire(struct mount *mnt)
1313 {
1314 	LIST_HEAD(list);
1315 	int count;
1316 
1317 	rcu_read_lock();
1318 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1319 		/*
1320 		 * Since we don't do lock_mount_hash() here,
1321 		 * ->mnt_ns can change under us.  However, if it's
1322 		 * non-NULL, then there's a reference that won't
1323 		 * be dropped until after an RCU delay done after
1324 		 * turning ->mnt_ns NULL.  So if we observe it
1325 		 * non-NULL under rcu_read_lock(), the reference
1326 		 * we are dropping is not the final one.
1327 		 */
1328 		mnt_add_count(mnt, -1);
1329 		rcu_read_unlock();
1330 		return;
1331 	}
1332 	lock_mount_hash();
1333 	/*
1334 	 * make sure that if __legitimize_mnt() has not seen us grab
1335 	 * mount_lock, we'll see their refcount increment here.
1336 	 */
1337 	smp_mb();
1338 	mnt_add_count(mnt, -1);
1339 	count = mnt_get_count(mnt);
1340 	if (count != 0) {
1341 		WARN_ON(count < 0);
1342 		rcu_read_unlock();
1343 		unlock_mount_hash();
1344 		return;
1345 	}
1346 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1347 		rcu_read_unlock();
1348 		unlock_mount_hash();
1349 		return;
1350 	}
1351 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1352 	rcu_read_unlock();
1353 
1354 	list_del(&mnt->mnt_instance);
1355 
1356 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1357 		struct mount *p, *tmp;
1358 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1359 			__put_mountpoint(unhash_mnt(p), &list);
1360 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1361 		}
1362 	}
1363 	unlock_mount_hash();
1364 	shrink_dentry_list(&list);
1365 
1366 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1367 		struct task_struct *task = current;
1368 		if (likely(!(task->flags & PF_KTHREAD))) {
1369 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1370 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1371 				return;
1372 		}
1373 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1374 			schedule_delayed_work(&delayed_mntput_work, 1);
1375 		return;
1376 	}
1377 	cleanup_mnt(mnt);
1378 }
1379 
1380 void mntput(struct vfsmount *mnt)
1381 {
1382 	if (mnt) {
1383 		struct mount *m = real_mount(mnt);
1384 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1385 		if (unlikely(m->mnt_expiry_mark))
1386 			m->mnt_expiry_mark = 0;
1387 		mntput_no_expire(m);
1388 	}
1389 }
1390 EXPORT_SYMBOL(mntput);
1391 
1392 struct vfsmount *mntget(struct vfsmount *mnt)
1393 {
1394 	if (mnt)
1395 		mnt_add_count(real_mount(mnt), 1);
1396 	return mnt;
1397 }
1398 EXPORT_SYMBOL(mntget);
1399 
1400 /**
1401  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1402  * @path: path to check
1403  *
1404  *  d_mountpoint() can only be used reliably to establish if a dentry is
1405  *  not mounted in any namespace and that common case is handled inline.
1406  *  d_mountpoint() isn't aware of the possibility there may be multiple
1407  *  mounts using a given dentry in a different namespace. This function
1408  *  checks if the passed in path is a mountpoint rather than the dentry
1409  *  alone.
1410  */
1411 bool path_is_mountpoint(const struct path *path)
1412 {
1413 	unsigned seq;
1414 	bool res;
1415 
1416 	if (!d_mountpoint(path->dentry))
1417 		return false;
1418 
1419 	rcu_read_lock();
1420 	do {
1421 		seq = read_seqbegin(&mount_lock);
1422 		res = __path_is_mountpoint(path);
1423 	} while (read_seqretry(&mount_lock, seq));
1424 	rcu_read_unlock();
1425 
1426 	return res;
1427 }
1428 EXPORT_SYMBOL(path_is_mountpoint);
1429 
1430 struct vfsmount *mnt_clone_internal(const struct path *path)
1431 {
1432 	struct mount *p;
1433 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1434 	if (IS_ERR(p))
1435 		return ERR_CAST(p);
1436 	p->mnt.mnt_flags |= MNT_INTERNAL;
1437 	return &p->mnt;
1438 }
1439 
1440 #ifdef CONFIG_PROC_FS
1441 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1442 				   struct list_head *p)
1443 {
1444 	struct mount *mnt, *ret = NULL;
1445 
1446 	lock_ns_list(ns);
1447 	list_for_each_continue(p, &ns->list) {
1448 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1449 		if (!mnt_is_cursor(mnt)) {
1450 			ret = mnt;
1451 			break;
1452 		}
1453 	}
1454 	unlock_ns_list(ns);
1455 
1456 	return ret;
1457 }
1458 
1459 /* iterator; we want it to have access to namespace_sem, thus here... */
1460 static void *m_start(struct seq_file *m, loff_t *pos)
1461 {
1462 	struct proc_mounts *p = m->private;
1463 	struct list_head *prev;
1464 
1465 	down_read(&namespace_sem);
1466 	if (!*pos) {
1467 		prev = &p->ns->list;
1468 	} else {
1469 		prev = &p->cursor.mnt_list;
1470 
1471 		/* Read after we'd reached the end? */
1472 		if (list_empty(prev))
1473 			return NULL;
1474 	}
1475 
1476 	return mnt_list_next(p->ns, prev);
1477 }
1478 
1479 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1480 {
1481 	struct proc_mounts *p = m->private;
1482 	struct mount *mnt = v;
1483 
1484 	++*pos;
1485 	return mnt_list_next(p->ns, &mnt->mnt_list);
1486 }
1487 
1488 static void m_stop(struct seq_file *m, void *v)
1489 {
1490 	struct proc_mounts *p = m->private;
1491 	struct mount *mnt = v;
1492 
1493 	lock_ns_list(p->ns);
1494 	if (mnt)
1495 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1496 	else
1497 		list_del_init(&p->cursor.mnt_list);
1498 	unlock_ns_list(p->ns);
1499 	up_read(&namespace_sem);
1500 }
1501 
1502 static int m_show(struct seq_file *m, void *v)
1503 {
1504 	struct proc_mounts *p = m->private;
1505 	struct mount *r = v;
1506 	return p->show(m, &r->mnt);
1507 }
1508 
1509 const struct seq_operations mounts_op = {
1510 	.start	= m_start,
1511 	.next	= m_next,
1512 	.stop	= m_stop,
1513 	.show	= m_show,
1514 };
1515 
1516 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1517 {
1518 	down_read(&namespace_sem);
1519 	lock_ns_list(ns);
1520 	list_del(&cursor->mnt_list);
1521 	unlock_ns_list(ns);
1522 	up_read(&namespace_sem);
1523 }
1524 #endif  /* CONFIG_PROC_FS */
1525 
1526 /**
1527  * may_umount_tree - check if a mount tree is busy
1528  * @m: root of mount tree
1529  *
1530  * This is called to check if a tree of mounts has any
1531  * open files, pwds, chroots or sub mounts that are
1532  * busy.
1533  */
1534 int may_umount_tree(struct vfsmount *m)
1535 {
1536 	struct mount *mnt = real_mount(m);
1537 	int actual_refs = 0;
1538 	int minimum_refs = 0;
1539 	struct mount *p;
1540 	BUG_ON(!m);
1541 
1542 	/* write lock needed for mnt_get_count */
1543 	lock_mount_hash();
1544 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1545 		actual_refs += mnt_get_count(p);
1546 		minimum_refs += 2;
1547 	}
1548 	unlock_mount_hash();
1549 
1550 	if (actual_refs > minimum_refs)
1551 		return 0;
1552 
1553 	return 1;
1554 }
1555 
1556 EXPORT_SYMBOL(may_umount_tree);
1557 
1558 /**
1559  * may_umount - check if a mount point is busy
1560  * @mnt: root of mount
1561  *
1562  * This is called to check if a mount point has any
1563  * open files, pwds, chroots or sub mounts. If the
1564  * mount has sub mounts this will return busy
1565  * regardless of whether the sub mounts are busy.
1566  *
1567  * Doesn't take quota and stuff into account. IOW, in some cases it will
1568  * give false negatives. The main reason why it's here is that we need
1569  * a non-destructive way to look for easily umountable filesystems.
1570  */
1571 int may_umount(struct vfsmount *mnt)
1572 {
1573 	int ret = 1;
1574 	down_read(&namespace_sem);
1575 	lock_mount_hash();
1576 	if (propagate_mount_busy(real_mount(mnt), 2))
1577 		ret = 0;
1578 	unlock_mount_hash();
1579 	up_read(&namespace_sem);
1580 	return ret;
1581 }
1582 
1583 EXPORT_SYMBOL(may_umount);
1584 
1585 static void namespace_unlock(void)
1586 {
1587 	struct hlist_head head;
1588 	struct hlist_node *p;
1589 	struct mount *m;
1590 	LIST_HEAD(list);
1591 
1592 	hlist_move_list(&unmounted, &head);
1593 	list_splice_init(&ex_mountpoints, &list);
1594 
1595 	up_write(&namespace_sem);
1596 
1597 	shrink_dentry_list(&list);
1598 
1599 	if (likely(hlist_empty(&head)))
1600 		return;
1601 
1602 	synchronize_rcu_expedited();
1603 
1604 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1605 		hlist_del(&m->mnt_umount);
1606 		mntput(&m->mnt);
1607 	}
1608 }
1609 
1610 static inline void namespace_lock(void)
1611 {
1612 	down_write(&namespace_sem);
1613 }
1614 
1615 enum umount_tree_flags {
1616 	UMOUNT_SYNC = 1,
1617 	UMOUNT_PROPAGATE = 2,
1618 	UMOUNT_CONNECTED = 4,
1619 };
1620 
1621 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1622 {
1623 	/* Leaving mounts connected is only valid for lazy umounts */
1624 	if (how & UMOUNT_SYNC)
1625 		return true;
1626 
1627 	/* A mount without a parent has nothing to be connected to */
1628 	if (!mnt_has_parent(mnt))
1629 		return true;
1630 
1631 	/* Because the reference counting rules change when mounts are
1632 	 * unmounted and connected, umounted mounts may not be
1633 	 * connected to mounted mounts.
1634 	 */
1635 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1636 		return true;
1637 
1638 	/* Has it been requested that the mount remain connected? */
1639 	if (how & UMOUNT_CONNECTED)
1640 		return false;
1641 
1642 	/* Is the mount locked such that it needs to remain connected? */
1643 	if (IS_MNT_LOCKED(mnt))
1644 		return false;
1645 
1646 	/* By default disconnect the mount */
1647 	return true;
1648 }
1649 
1650 /*
1651  * mount_lock must be held
1652  * namespace_sem must be held for write
1653  */
1654 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1655 {
1656 	LIST_HEAD(tmp_list);
1657 	struct mount *p;
1658 
1659 	if (how & UMOUNT_PROPAGATE)
1660 		propagate_mount_unlock(mnt);
1661 
1662 	/* Gather the mounts to umount */
1663 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1664 		p->mnt.mnt_flags |= MNT_UMOUNT;
1665 		list_move(&p->mnt_list, &tmp_list);
1666 	}
1667 
1668 	/* Hide the mounts from mnt_mounts */
1669 	list_for_each_entry(p, &tmp_list, mnt_list) {
1670 		list_del_init(&p->mnt_child);
1671 	}
1672 
1673 	/* Add propogated mounts to the tmp_list */
1674 	if (how & UMOUNT_PROPAGATE)
1675 		propagate_umount(&tmp_list);
1676 
1677 	while (!list_empty(&tmp_list)) {
1678 		struct mnt_namespace *ns;
1679 		bool disconnect;
1680 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1681 		list_del_init(&p->mnt_expire);
1682 		list_del_init(&p->mnt_list);
1683 		ns = p->mnt_ns;
1684 		if (ns) {
1685 			ns->mounts--;
1686 			__touch_mnt_namespace(ns);
1687 		}
1688 		p->mnt_ns = NULL;
1689 		if (how & UMOUNT_SYNC)
1690 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1691 
1692 		disconnect = disconnect_mount(p, how);
1693 		if (mnt_has_parent(p)) {
1694 			mnt_add_count(p->mnt_parent, -1);
1695 			if (!disconnect) {
1696 				/* Don't forget about p */
1697 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1698 			} else {
1699 				umount_mnt(p);
1700 			}
1701 		}
1702 		change_mnt_propagation(p, MS_PRIVATE);
1703 		if (disconnect)
1704 			hlist_add_head(&p->mnt_umount, &unmounted);
1705 	}
1706 }
1707 
1708 static void shrink_submounts(struct mount *mnt);
1709 
1710 static int do_umount_root(struct super_block *sb)
1711 {
1712 	int ret = 0;
1713 
1714 	down_write(&sb->s_umount);
1715 	if (!sb_rdonly(sb)) {
1716 		struct fs_context *fc;
1717 
1718 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1719 						SB_RDONLY);
1720 		if (IS_ERR(fc)) {
1721 			ret = PTR_ERR(fc);
1722 		} else {
1723 			ret = parse_monolithic_mount_data(fc, NULL);
1724 			if (!ret)
1725 				ret = reconfigure_super(fc);
1726 			put_fs_context(fc);
1727 		}
1728 	}
1729 	up_write(&sb->s_umount);
1730 	return ret;
1731 }
1732 
1733 static int do_umount(struct mount *mnt, int flags)
1734 {
1735 	struct super_block *sb = mnt->mnt.mnt_sb;
1736 	int retval;
1737 
1738 	retval = security_sb_umount(&mnt->mnt, flags);
1739 	if (retval)
1740 		return retval;
1741 
1742 	/*
1743 	 * Allow userspace to request a mountpoint be expired rather than
1744 	 * unmounting unconditionally. Unmount only happens if:
1745 	 *  (1) the mark is already set (the mark is cleared by mntput())
1746 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1747 	 */
1748 	if (flags & MNT_EXPIRE) {
1749 		if (&mnt->mnt == current->fs->root.mnt ||
1750 		    flags & (MNT_FORCE | MNT_DETACH))
1751 			return -EINVAL;
1752 
1753 		/*
1754 		 * probably don't strictly need the lock here if we examined
1755 		 * all race cases, but it's a slowpath.
1756 		 */
1757 		lock_mount_hash();
1758 		if (mnt_get_count(mnt) != 2) {
1759 			unlock_mount_hash();
1760 			return -EBUSY;
1761 		}
1762 		unlock_mount_hash();
1763 
1764 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1765 			return -EAGAIN;
1766 	}
1767 
1768 	/*
1769 	 * If we may have to abort operations to get out of this
1770 	 * mount, and they will themselves hold resources we must
1771 	 * allow the fs to do things. In the Unix tradition of
1772 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1773 	 * might fail to complete on the first run through as other tasks
1774 	 * must return, and the like. Thats for the mount program to worry
1775 	 * about for the moment.
1776 	 */
1777 
1778 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1779 		sb->s_op->umount_begin(sb);
1780 	}
1781 
1782 	/*
1783 	 * No sense to grab the lock for this test, but test itself looks
1784 	 * somewhat bogus. Suggestions for better replacement?
1785 	 * Ho-hum... In principle, we might treat that as umount + switch
1786 	 * to rootfs. GC would eventually take care of the old vfsmount.
1787 	 * Actually it makes sense, especially if rootfs would contain a
1788 	 * /reboot - static binary that would close all descriptors and
1789 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1790 	 */
1791 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1792 		/*
1793 		 * Special case for "unmounting" root ...
1794 		 * we just try to remount it readonly.
1795 		 */
1796 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1797 			return -EPERM;
1798 		return do_umount_root(sb);
1799 	}
1800 
1801 	namespace_lock();
1802 	lock_mount_hash();
1803 
1804 	/* Recheck MNT_LOCKED with the locks held */
1805 	retval = -EINVAL;
1806 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1807 		goto out;
1808 
1809 	event++;
1810 	if (flags & MNT_DETACH) {
1811 		if (!list_empty(&mnt->mnt_list))
1812 			umount_tree(mnt, UMOUNT_PROPAGATE);
1813 		retval = 0;
1814 	} else {
1815 		shrink_submounts(mnt);
1816 		retval = -EBUSY;
1817 		if (!propagate_mount_busy(mnt, 2)) {
1818 			if (!list_empty(&mnt->mnt_list))
1819 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1820 			retval = 0;
1821 		}
1822 	}
1823 out:
1824 	unlock_mount_hash();
1825 	namespace_unlock();
1826 	return retval;
1827 }
1828 
1829 /*
1830  * __detach_mounts - lazily unmount all mounts on the specified dentry
1831  *
1832  * During unlink, rmdir, and d_drop it is possible to loose the path
1833  * to an existing mountpoint, and wind up leaking the mount.
1834  * detach_mounts allows lazily unmounting those mounts instead of
1835  * leaking them.
1836  *
1837  * The caller may hold dentry->d_inode->i_mutex.
1838  */
1839 void __detach_mounts(struct dentry *dentry)
1840 {
1841 	struct mountpoint *mp;
1842 	struct mount *mnt;
1843 
1844 	namespace_lock();
1845 	lock_mount_hash();
1846 	mp = lookup_mountpoint(dentry);
1847 	if (!mp)
1848 		goto out_unlock;
1849 
1850 	event++;
1851 	while (!hlist_empty(&mp->m_list)) {
1852 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1853 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1854 			umount_mnt(mnt);
1855 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1856 		}
1857 		else umount_tree(mnt, UMOUNT_CONNECTED);
1858 	}
1859 	put_mountpoint(mp);
1860 out_unlock:
1861 	unlock_mount_hash();
1862 	namespace_unlock();
1863 }
1864 
1865 /*
1866  * Is the caller allowed to modify his namespace?
1867  */
1868 bool may_mount(void)
1869 {
1870 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1871 }
1872 
1873 static void warn_mandlock(void)
1874 {
1875 	pr_warn_once("=======================================================\n"
1876 		     "WARNING: The mand mount option has been deprecated and\n"
1877 		     "         and is ignored by this kernel. Remove the mand\n"
1878 		     "         option from the mount to silence this warning.\n"
1879 		     "=======================================================\n");
1880 }
1881 
1882 static int can_umount(const struct path *path, int flags)
1883 {
1884 	struct mount *mnt = real_mount(path->mnt);
1885 
1886 	if (!may_mount())
1887 		return -EPERM;
1888 	if (path->dentry != path->mnt->mnt_root)
1889 		return -EINVAL;
1890 	if (!check_mnt(mnt))
1891 		return -EINVAL;
1892 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1893 		return -EINVAL;
1894 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1895 		return -EPERM;
1896 	return 0;
1897 }
1898 
1899 // caller is responsible for flags being sane
1900 int path_umount(struct path *path, int flags)
1901 {
1902 	struct mount *mnt = real_mount(path->mnt);
1903 	int ret;
1904 
1905 	ret = can_umount(path, flags);
1906 	if (!ret)
1907 		ret = do_umount(mnt, flags);
1908 
1909 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1910 	dput(path->dentry);
1911 	mntput_no_expire(mnt);
1912 	return ret;
1913 }
1914 
1915 static int ksys_umount(char __user *name, int flags)
1916 {
1917 	int lookup_flags = LOOKUP_MOUNTPOINT;
1918 	struct path path;
1919 	int ret;
1920 
1921 	// basic validity checks done first
1922 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1923 		return -EINVAL;
1924 
1925 	if (!(flags & UMOUNT_NOFOLLOW))
1926 		lookup_flags |= LOOKUP_FOLLOW;
1927 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1928 	if (ret)
1929 		return ret;
1930 	return path_umount(&path, flags);
1931 }
1932 
1933 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1934 {
1935 	return ksys_umount(name, flags);
1936 }
1937 
1938 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1939 
1940 /*
1941  *	The 2.0 compatible umount. No flags.
1942  */
1943 SYSCALL_DEFINE1(oldumount, char __user *, name)
1944 {
1945 	return ksys_umount(name, 0);
1946 }
1947 
1948 #endif
1949 
1950 static bool is_mnt_ns_file(struct dentry *dentry)
1951 {
1952 	/* Is this a proxy for a mount namespace? */
1953 	return dentry->d_op == &ns_dentry_operations &&
1954 	       dentry->d_fsdata == &mntns_operations;
1955 }
1956 
1957 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1958 {
1959 	return container_of(ns, struct mnt_namespace, ns);
1960 }
1961 
1962 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1963 {
1964 	return &mnt->ns;
1965 }
1966 
1967 static bool mnt_ns_loop(struct dentry *dentry)
1968 {
1969 	/* Could bind mounting the mount namespace inode cause a
1970 	 * mount namespace loop?
1971 	 */
1972 	struct mnt_namespace *mnt_ns;
1973 	if (!is_mnt_ns_file(dentry))
1974 		return false;
1975 
1976 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1977 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1978 }
1979 
1980 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1981 					int flag)
1982 {
1983 	struct mount *res, *p, *q, *r, *parent;
1984 
1985 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1986 		return ERR_PTR(-EINVAL);
1987 
1988 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1989 		return ERR_PTR(-EINVAL);
1990 
1991 	res = q = clone_mnt(mnt, dentry, flag);
1992 	if (IS_ERR(q))
1993 		return q;
1994 
1995 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1996 
1997 	p = mnt;
1998 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1999 		struct mount *s;
2000 		if (!is_subdir(r->mnt_mountpoint, dentry))
2001 			continue;
2002 
2003 		for (s = r; s; s = next_mnt(s, r)) {
2004 			if (!(flag & CL_COPY_UNBINDABLE) &&
2005 			    IS_MNT_UNBINDABLE(s)) {
2006 				if (s->mnt.mnt_flags & MNT_LOCKED) {
2007 					/* Both unbindable and locked. */
2008 					q = ERR_PTR(-EPERM);
2009 					goto out;
2010 				} else {
2011 					s = skip_mnt_tree(s);
2012 					continue;
2013 				}
2014 			}
2015 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2016 			    is_mnt_ns_file(s->mnt.mnt_root)) {
2017 				s = skip_mnt_tree(s);
2018 				continue;
2019 			}
2020 			while (p != s->mnt_parent) {
2021 				p = p->mnt_parent;
2022 				q = q->mnt_parent;
2023 			}
2024 			p = s;
2025 			parent = q;
2026 			q = clone_mnt(p, p->mnt.mnt_root, flag);
2027 			if (IS_ERR(q))
2028 				goto out;
2029 			lock_mount_hash();
2030 			list_add_tail(&q->mnt_list, &res->mnt_list);
2031 			attach_mnt(q, parent, p->mnt_mp);
2032 			unlock_mount_hash();
2033 		}
2034 	}
2035 	return res;
2036 out:
2037 	if (res) {
2038 		lock_mount_hash();
2039 		umount_tree(res, UMOUNT_SYNC);
2040 		unlock_mount_hash();
2041 	}
2042 	return q;
2043 }
2044 
2045 /* Caller should check returned pointer for errors */
2046 
2047 struct vfsmount *collect_mounts(const struct path *path)
2048 {
2049 	struct mount *tree;
2050 	namespace_lock();
2051 	if (!check_mnt(real_mount(path->mnt)))
2052 		tree = ERR_PTR(-EINVAL);
2053 	else
2054 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2055 				 CL_COPY_ALL | CL_PRIVATE);
2056 	namespace_unlock();
2057 	if (IS_ERR(tree))
2058 		return ERR_CAST(tree);
2059 	return &tree->mnt;
2060 }
2061 
2062 static void free_mnt_ns(struct mnt_namespace *);
2063 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2064 
2065 void dissolve_on_fput(struct vfsmount *mnt)
2066 {
2067 	struct mnt_namespace *ns;
2068 	namespace_lock();
2069 	lock_mount_hash();
2070 	ns = real_mount(mnt)->mnt_ns;
2071 	if (ns) {
2072 		if (is_anon_ns(ns))
2073 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2074 		else
2075 			ns = NULL;
2076 	}
2077 	unlock_mount_hash();
2078 	namespace_unlock();
2079 	if (ns)
2080 		free_mnt_ns(ns);
2081 }
2082 
2083 void drop_collected_mounts(struct vfsmount *mnt)
2084 {
2085 	namespace_lock();
2086 	lock_mount_hash();
2087 	umount_tree(real_mount(mnt), 0);
2088 	unlock_mount_hash();
2089 	namespace_unlock();
2090 }
2091 
2092 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2093 {
2094 	struct mount *child;
2095 
2096 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2097 		if (!is_subdir(child->mnt_mountpoint, dentry))
2098 			continue;
2099 
2100 		if (child->mnt.mnt_flags & MNT_LOCKED)
2101 			return true;
2102 	}
2103 	return false;
2104 }
2105 
2106 /**
2107  * clone_private_mount - create a private clone of a path
2108  * @path: path to clone
2109  *
2110  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2111  * will not be attached anywhere in the namespace and will be private (i.e.
2112  * changes to the originating mount won't be propagated into this).
2113  *
2114  * Release with mntput().
2115  */
2116 struct vfsmount *clone_private_mount(const struct path *path)
2117 {
2118 	struct mount *old_mnt = real_mount(path->mnt);
2119 	struct mount *new_mnt;
2120 
2121 	down_read(&namespace_sem);
2122 	if (IS_MNT_UNBINDABLE(old_mnt))
2123 		goto invalid;
2124 
2125 	if (!check_mnt(old_mnt))
2126 		goto invalid;
2127 
2128 	if (has_locked_children(old_mnt, path->dentry))
2129 		goto invalid;
2130 
2131 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2132 	up_read(&namespace_sem);
2133 
2134 	if (IS_ERR(new_mnt))
2135 		return ERR_CAST(new_mnt);
2136 
2137 	/* Longterm mount to be removed by kern_unmount*() */
2138 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2139 
2140 	return &new_mnt->mnt;
2141 
2142 invalid:
2143 	up_read(&namespace_sem);
2144 	return ERR_PTR(-EINVAL);
2145 }
2146 EXPORT_SYMBOL_GPL(clone_private_mount);
2147 
2148 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2149 		   struct vfsmount *root)
2150 {
2151 	struct mount *mnt;
2152 	int res = f(root, arg);
2153 	if (res)
2154 		return res;
2155 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2156 		res = f(&mnt->mnt, arg);
2157 		if (res)
2158 			return res;
2159 	}
2160 	return 0;
2161 }
2162 
2163 static void lock_mnt_tree(struct mount *mnt)
2164 {
2165 	struct mount *p;
2166 
2167 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2168 		int flags = p->mnt.mnt_flags;
2169 		/* Don't allow unprivileged users to change mount flags */
2170 		flags |= MNT_LOCK_ATIME;
2171 
2172 		if (flags & MNT_READONLY)
2173 			flags |= MNT_LOCK_READONLY;
2174 
2175 		if (flags & MNT_NODEV)
2176 			flags |= MNT_LOCK_NODEV;
2177 
2178 		if (flags & MNT_NOSUID)
2179 			flags |= MNT_LOCK_NOSUID;
2180 
2181 		if (flags & MNT_NOEXEC)
2182 			flags |= MNT_LOCK_NOEXEC;
2183 		/* Don't allow unprivileged users to reveal what is under a mount */
2184 		if (list_empty(&p->mnt_expire))
2185 			flags |= MNT_LOCKED;
2186 		p->mnt.mnt_flags = flags;
2187 	}
2188 }
2189 
2190 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2191 {
2192 	struct mount *p;
2193 
2194 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2195 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2196 			mnt_release_group_id(p);
2197 	}
2198 }
2199 
2200 static int invent_group_ids(struct mount *mnt, bool recurse)
2201 {
2202 	struct mount *p;
2203 
2204 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2205 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2206 			int err = mnt_alloc_group_id(p);
2207 			if (err) {
2208 				cleanup_group_ids(mnt, p);
2209 				return err;
2210 			}
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2218 {
2219 	unsigned int max = READ_ONCE(sysctl_mount_max);
2220 	unsigned int mounts = 0;
2221 	struct mount *p;
2222 
2223 	if (ns->mounts >= max)
2224 		return -ENOSPC;
2225 	max -= ns->mounts;
2226 	if (ns->pending_mounts >= max)
2227 		return -ENOSPC;
2228 	max -= ns->pending_mounts;
2229 
2230 	for (p = mnt; p; p = next_mnt(p, mnt))
2231 		mounts++;
2232 
2233 	if (mounts > max)
2234 		return -ENOSPC;
2235 
2236 	ns->pending_mounts += mounts;
2237 	return 0;
2238 }
2239 
2240 /*
2241  *  @source_mnt : mount tree to be attached
2242  *  @nd         : place the mount tree @source_mnt is attached
2243  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2244  *  		   store the parent mount and mountpoint dentry.
2245  *  		   (done when source_mnt is moved)
2246  *
2247  *  NOTE: in the table below explains the semantics when a source mount
2248  *  of a given type is attached to a destination mount of a given type.
2249  * ---------------------------------------------------------------------------
2250  * |         BIND MOUNT OPERATION                                            |
2251  * |**************************************************************************
2252  * | source-->| shared        |       private  |       slave    | unbindable |
2253  * | dest     |               |                |                |            |
2254  * |   |      |               |                |                |            |
2255  * |   v      |               |                |                |            |
2256  * |**************************************************************************
2257  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2258  * |          |               |                |                |            |
2259  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2260  * ***************************************************************************
2261  * A bind operation clones the source mount and mounts the clone on the
2262  * destination mount.
2263  *
2264  * (++)  the cloned mount is propagated to all the mounts in the propagation
2265  * 	 tree of the destination mount and the cloned mount is added to
2266  * 	 the peer group of the source mount.
2267  * (+)   the cloned mount is created under the destination mount and is marked
2268  *       as shared. The cloned mount is added to the peer group of the source
2269  *       mount.
2270  * (+++) the mount is propagated to all the mounts in the propagation tree
2271  *       of the destination mount and the cloned mount is made slave
2272  *       of the same master as that of the source mount. The cloned mount
2273  *       is marked as 'shared and slave'.
2274  * (*)   the cloned mount is made a slave of the same master as that of the
2275  * 	 source mount.
2276  *
2277  * ---------------------------------------------------------------------------
2278  * |         		MOVE MOUNT OPERATION                                 |
2279  * |**************************************************************************
2280  * | source-->| shared        |       private  |       slave    | unbindable |
2281  * | dest     |               |                |                |            |
2282  * |   |      |               |                |                |            |
2283  * |   v      |               |                |                |            |
2284  * |**************************************************************************
2285  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2286  * |          |               |                |                |            |
2287  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2288  * ***************************************************************************
2289  *
2290  * (+)  the mount is moved to the destination. And is then propagated to
2291  * 	all the mounts in the propagation tree of the destination mount.
2292  * (+*)  the mount is moved to the destination.
2293  * (+++)  the mount is moved to the destination and is then propagated to
2294  * 	all the mounts belonging to the destination mount's propagation tree.
2295  * 	the mount is marked as 'shared and slave'.
2296  * (*)	the mount continues to be a slave at the new location.
2297  *
2298  * if the source mount is a tree, the operations explained above is
2299  * applied to each mount in the tree.
2300  * Must be called without spinlocks held, since this function can sleep
2301  * in allocations.
2302  */
2303 static int attach_recursive_mnt(struct mount *source_mnt,
2304 			struct mount *dest_mnt,
2305 			struct mountpoint *dest_mp,
2306 			bool moving)
2307 {
2308 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2309 	HLIST_HEAD(tree_list);
2310 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2311 	struct mountpoint *smp;
2312 	struct mount *child, *p;
2313 	struct hlist_node *n;
2314 	int err;
2315 
2316 	/* Preallocate a mountpoint in case the new mounts need
2317 	 * to be tucked under other mounts.
2318 	 */
2319 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2320 	if (IS_ERR(smp))
2321 		return PTR_ERR(smp);
2322 
2323 	/* Is there space to add these mounts to the mount namespace? */
2324 	if (!moving) {
2325 		err = count_mounts(ns, source_mnt);
2326 		if (err)
2327 			goto out;
2328 	}
2329 
2330 	if (IS_MNT_SHARED(dest_mnt)) {
2331 		err = invent_group_ids(source_mnt, true);
2332 		if (err)
2333 			goto out;
2334 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2335 		lock_mount_hash();
2336 		if (err)
2337 			goto out_cleanup_ids;
2338 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2339 			set_mnt_shared(p);
2340 	} else {
2341 		lock_mount_hash();
2342 	}
2343 	if (moving) {
2344 		unhash_mnt(source_mnt);
2345 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2346 		touch_mnt_namespace(source_mnt->mnt_ns);
2347 	} else {
2348 		if (source_mnt->mnt_ns) {
2349 			/* move from anon - the caller will destroy */
2350 			list_del_init(&source_mnt->mnt_ns->list);
2351 		}
2352 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2353 		commit_tree(source_mnt);
2354 	}
2355 
2356 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2357 		struct mount *q;
2358 		hlist_del_init(&child->mnt_hash);
2359 		q = __lookup_mnt(&child->mnt_parent->mnt,
2360 				 child->mnt_mountpoint);
2361 		if (q)
2362 			mnt_change_mountpoint(child, smp, q);
2363 		/* Notice when we are propagating across user namespaces */
2364 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2365 			lock_mnt_tree(child);
2366 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2367 		commit_tree(child);
2368 	}
2369 	put_mountpoint(smp);
2370 	unlock_mount_hash();
2371 
2372 	return 0;
2373 
2374  out_cleanup_ids:
2375 	while (!hlist_empty(&tree_list)) {
2376 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2377 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2378 		umount_tree(child, UMOUNT_SYNC);
2379 	}
2380 	unlock_mount_hash();
2381 	cleanup_group_ids(source_mnt, NULL);
2382  out:
2383 	ns->pending_mounts = 0;
2384 
2385 	read_seqlock_excl(&mount_lock);
2386 	put_mountpoint(smp);
2387 	read_sequnlock_excl(&mount_lock);
2388 
2389 	return err;
2390 }
2391 
2392 static struct mountpoint *lock_mount(struct path *path)
2393 {
2394 	struct vfsmount *mnt;
2395 	struct dentry *dentry = path->dentry;
2396 retry:
2397 	inode_lock(dentry->d_inode);
2398 	if (unlikely(cant_mount(dentry))) {
2399 		inode_unlock(dentry->d_inode);
2400 		return ERR_PTR(-ENOENT);
2401 	}
2402 	namespace_lock();
2403 	mnt = lookup_mnt(path);
2404 	if (likely(!mnt)) {
2405 		struct mountpoint *mp = get_mountpoint(dentry);
2406 		if (IS_ERR(mp)) {
2407 			namespace_unlock();
2408 			inode_unlock(dentry->d_inode);
2409 			return mp;
2410 		}
2411 		return mp;
2412 	}
2413 	namespace_unlock();
2414 	inode_unlock(path->dentry->d_inode);
2415 	path_put(path);
2416 	path->mnt = mnt;
2417 	dentry = path->dentry = dget(mnt->mnt_root);
2418 	goto retry;
2419 }
2420 
2421 static void unlock_mount(struct mountpoint *where)
2422 {
2423 	struct dentry *dentry = where->m_dentry;
2424 
2425 	read_seqlock_excl(&mount_lock);
2426 	put_mountpoint(where);
2427 	read_sequnlock_excl(&mount_lock);
2428 
2429 	namespace_unlock();
2430 	inode_unlock(dentry->d_inode);
2431 }
2432 
2433 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2434 {
2435 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2436 		return -EINVAL;
2437 
2438 	if (d_is_dir(mp->m_dentry) !=
2439 	      d_is_dir(mnt->mnt.mnt_root))
2440 		return -ENOTDIR;
2441 
2442 	return attach_recursive_mnt(mnt, p, mp, false);
2443 }
2444 
2445 /*
2446  * Sanity check the flags to change_mnt_propagation.
2447  */
2448 
2449 static int flags_to_propagation_type(int ms_flags)
2450 {
2451 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2452 
2453 	/* Fail if any non-propagation flags are set */
2454 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2455 		return 0;
2456 	/* Only one propagation flag should be set */
2457 	if (!is_power_of_2(type))
2458 		return 0;
2459 	return type;
2460 }
2461 
2462 /*
2463  * recursively change the type of the mountpoint.
2464  */
2465 static int do_change_type(struct path *path, int ms_flags)
2466 {
2467 	struct mount *m;
2468 	struct mount *mnt = real_mount(path->mnt);
2469 	int recurse = ms_flags & MS_REC;
2470 	int type;
2471 	int err = 0;
2472 
2473 	if (path->dentry != path->mnt->mnt_root)
2474 		return -EINVAL;
2475 
2476 	type = flags_to_propagation_type(ms_flags);
2477 	if (!type)
2478 		return -EINVAL;
2479 
2480 	namespace_lock();
2481 	if (type == MS_SHARED) {
2482 		err = invent_group_ids(mnt, recurse);
2483 		if (err)
2484 			goto out_unlock;
2485 	}
2486 
2487 	lock_mount_hash();
2488 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2489 		change_mnt_propagation(m, type);
2490 	unlock_mount_hash();
2491 
2492  out_unlock:
2493 	namespace_unlock();
2494 	return err;
2495 }
2496 
2497 static struct mount *__do_loopback(struct path *old_path, int recurse)
2498 {
2499 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2500 
2501 	if (IS_MNT_UNBINDABLE(old))
2502 		return mnt;
2503 
2504 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2505 		return mnt;
2506 
2507 	if (!recurse && has_locked_children(old, old_path->dentry))
2508 		return mnt;
2509 
2510 	if (recurse)
2511 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2512 	else
2513 		mnt = clone_mnt(old, old_path->dentry, 0);
2514 
2515 	if (!IS_ERR(mnt))
2516 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2517 
2518 	return mnt;
2519 }
2520 
2521 /*
2522  * do loopback mount.
2523  */
2524 static int do_loopback(struct path *path, const char *old_name,
2525 				int recurse)
2526 {
2527 	struct path old_path;
2528 	struct mount *mnt = NULL, *parent;
2529 	struct mountpoint *mp;
2530 	int err;
2531 	if (!old_name || !*old_name)
2532 		return -EINVAL;
2533 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2534 	if (err)
2535 		return err;
2536 
2537 	err = -EINVAL;
2538 	if (mnt_ns_loop(old_path.dentry))
2539 		goto out;
2540 
2541 	mp = lock_mount(path);
2542 	if (IS_ERR(mp)) {
2543 		err = PTR_ERR(mp);
2544 		goto out;
2545 	}
2546 
2547 	parent = real_mount(path->mnt);
2548 	if (!check_mnt(parent))
2549 		goto out2;
2550 
2551 	mnt = __do_loopback(&old_path, recurse);
2552 	if (IS_ERR(mnt)) {
2553 		err = PTR_ERR(mnt);
2554 		goto out2;
2555 	}
2556 
2557 	err = graft_tree(mnt, parent, mp);
2558 	if (err) {
2559 		lock_mount_hash();
2560 		umount_tree(mnt, UMOUNT_SYNC);
2561 		unlock_mount_hash();
2562 	}
2563 out2:
2564 	unlock_mount(mp);
2565 out:
2566 	path_put(&old_path);
2567 	return err;
2568 }
2569 
2570 static struct file *open_detached_copy(struct path *path, bool recursive)
2571 {
2572 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2573 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2574 	struct mount *mnt, *p;
2575 	struct file *file;
2576 
2577 	if (IS_ERR(ns))
2578 		return ERR_CAST(ns);
2579 
2580 	namespace_lock();
2581 	mnt = __do_loopback(path, recursive);
2582 	if (IS_ERR(mnt)) {
2583 		namespace_unlock();
2584 		free_mnt_ns(ns);
2585 		return ERR_CAST(mnt);
2586 	}
2587 
2588 	lock_mount_hash();
2589 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2590 		p->mnt_ns = ns;
2591 		ns->mounts++;
2592 	}
2593 	ns->root = mnt;
2594 	list_add_tail(&ns->list, &mnt->mnt_list);
2595 	mntget(&mnt->mnt);
2596 	unlock_mount_hash();
2597 	namespace_unlock();
2598 
2599 	mntput(path->mnt);
2600 	path->mnt = &mnt->mnt;
2601 	file = dentry_open(path, O_PATH, current_cred());
2602 	if (IS_ERR(file))
2603 		dissolve_on_fput(path->mnt);
2604 	else
2605 		file->f_mode |= FMODE_NEED_UNMOUNT;
2606 	return file;
2607 }
2608 
2609 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2610 {
2611 	struct file *file;
2612 	struct path path;
2613 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2614 	bool detached = flags & OPEN_TREE_CLONE;
2615 	int error;
2616 	int fd;
2617 
2618 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2619 
2620 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2621 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2622 		      OPEN_TREE_CLOEXEC))
2623 		return -EINVAL;
2624 
2625 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2626 		return -EINVAL;
2627 
2628 	if (flags & AT_NO_AUTOMOUNT)
2629 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2630 	if (flags & AT_SYMLINK_NOFOLLOW)
2631 		lookup_flags &= ~LOOKUP_FOLLOW;
2632 	if (flags & AT_EMPTY_PATH)
2633 		lookup_flags |= LOOKUP_EMPTY;
2634 
2635 	if (detached && !may_mount())
2636 		return -EPERM;
2637 
2638 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2639 	if (fd < 0)
2640 		return fd;
2641 
2642 	error = user_path_at(dfd, filename, lookup_flags, &path);
2643 	if (unlikely(error)) {
2644 		file = ERR_PTR(error);
2645 	} else {
2646 		if (detached)
2647 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2648 		else
2649 			file = dentry_open(&path, O_PATH, current_cred());
2650 		path_put(&path);
2651 	}
2652 	if (IS_ERR(file)) {
2653 		put_unused_fd(fd);
2654 		return PTR_ERR(file);
2655 	}
2656 	fd_install(fd, file);
2657 	return fd;
2658 }
2659 
2660 /*
2661  * Don't allow locked mount flags to be cleared.
2662  *
2663  * No locks need to be held here while testing the various MNT_LOCK
2664  * flags because those flags can never be cleared once they are set.
2665  */
2666 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2667 {
2668 	unsigned int fl = mnt->mnt.mnt_flags;
2669 
2670 	if ((fl & MNT_LOCK_READONLY) &&
2671 	    !(mnt_flags & MNT_READONLY))
2672 		return false;
2673 
2674 	if ((fl & MNT_LOCK_NODEV) &&
2675 	    !(mnt_flags & MNT_NODEV))
2676 		return false;
2677 
2678 	if ((fl & MNT_LOCK_NOSUID) &&
2679 	    !(mnt_flags & MNT_NOSUID))
2680 		return false;
2681 
2682 	if ((fl & MNT_LOCK_NOEXEC) &&
2683 	    !(mnt_flags & MNT_NOEXEC))
2684 		return false;
2685 
2686 	if ((fl & MNT_LOCK_ATIME) &&
2687 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2688 		return false;
2689 
2690 	return true;
2691 }
2692 
2693 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2694 {
2695 	bool readonly_request = (mnt_flags & MNT_READONLY);
2696 
2697 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2698 		return 0;
2699 
2700 	if (readonly_request)
2701 		return mnt_make_readonly(mnt);
2702 
2703 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2704 	return 0;
2705 }
2706 
2707 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2708 {
2709 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2710 	mnt->mnt.mnt_flags = mnt_flags;
2711 	touch_mnt_namespace(mnt->mnt_ns);
2712 }
2713 
2714 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2715 {
2716 	struct super_block *sb = mnt->mnt_sb;
2717 
2718 	if (!__mnt_is_readonly(mnt) &&
2719 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2720 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2721 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2722 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2723 		struct tm tm;
2724 
2725 		time64_to_tm(sb->s_time_max, 0, &tm);
2726 
2727 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2728 			sb->s_type->name,
2729 			is_mounted(mnt) ? "remounted" : "mounted",
2730 			mntpath,
2731 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2732 
2733 		free_page((unsigned long)buf);
2734 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2735 	}
2736 }
2737 
2738 /*
2739  * Handle reconfiguration of the mountpoint only without alteration of the
2740  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2741  * to mount(2).
2742  */
2743 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2744 {
2745 	struct super_block *sb = path->mnt->mnt_sb;
2746 	struct mount *mnt = real_mount(path->mnt);
2747 	int ret;
2748 
2749 	if (!check_mnt(mnt))
2750 		return -EINVAL;
2751 
2752 	if (path->dentry != mnt->mnt.mnt_root)
2753 		return -EINVAL;
2754 
2755 	if (!can_change_locked_flags(mnt, mnt_flags))
2756 		return -EPERM;
2757 
2758 	/*
2759 	 * We're only checking whether the superblock is read-only not
2760 	 * changing it, so only take down_read(&sb->s_umount).
2761 	 */
2762 	down_read(&sb->s_umount);
2763 	lock_mount_hash();
2764 	ret = change_mount_ro_state(mnt, mnt_flags);
2765 	if (ret == 0)
2766 		set_mount_attributes(mnt, mnt_flags);
2767 	unlock_mount_hash();
2768 	up_read(&sb->s_umount);
2769 
2770 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2771 
2772 	return ret;
2773 }
2774 
2775 /*
2776  * change filesystem flags. dir should be a physical root of filesystem.
2777  * If you've mounted a non-root directory somewhere and want to do remount
2778  * on it - tough luck.
2779  */
2780 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2781 		      int mnt_flags, void *data)
2782 {
2783 	int err;
2784 	struct super_block *sb = path->mnt->mnt_sb;
2785 	struct mount *mnt = real_mount(path->mnt);
2786 	struct fs_context *fc;
2787 
2788 	if (!check_mnt(mnt))
2789 		return -EINVAL;
2790 
2791 	if (path->dentry != path->mnt->mnt_root)
2792 		return -EINVAL;
2793 
2794 	if (!can_change_locked_flags(mnt, mnt_flags))
2795 		return -EPERM;
2796 
2797 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2798 	if (IS_ERR(fc))
2799 		return PTR_ERR(fc);
2800 
2801 	fc->oldapi = true;
2802 	err = parse_monolithic_mount_data(fc, data);
2803 	if (!err) {
2804 		down_write(&sb->s_umount);
2805 		err = -EPERM;
2806 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2807 			err = reconfigure_super(fc);
2808 			if (!err) {
2809 				lock_mount_hash();
2810 				set_mount_attributes(mnt, mnt_flags);
2811 				unlock_mount_hash();
2812 			}
2813 		}
2814 		up_write(&sb->s_umount);
2815 	}
2816 
2817 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2818 
2819 	put_fs_context(fc);
2820 	return err;
2821 }
2822 
2823 static inline int tree_contains_unbindable(struct mount *mnt)
2824 {
2825 	struct mount *p;
2826 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2827 		if (IS_MNT_UNBINDABLE(p))
2828 			return 1;
2829 	}
2830 	return 0;
2831 }
2832 
2833 /*
2834  * Check that there aren't references to earlier/same mount namespaces in the
2835  * specified subtree.  Such references can act as pins for mount namespaces
2836  * that aren't checked by the mount-cycle checking code, thereby allowing
2837  * cycles to be made.
2838  */
2839 static bool check_for_nsfs_mounts(struct mount *subtree)
2840 {
2841 	struct mount *p;
2842 	bool ret = false;
2843 
2844 	lock_mount_hash();
2845 	for (p = subtree; p; p = next_mnt(p, subtree))
2846 		if (mnt_ns_loop(p->mnt.mnt_root))
2847 			goto out;
2848 
2849 	ret = true;
2850 out:
2851 	unlock_mount_hash();
2852 	return ret;
2853 }
2854 
2855 static int do_set_group(struct path *from_path, struct path *to_path)
2856 {
2857 	struct mount *from, *to;
2858 	int err;
2859 
2860 	from = real_mount(from_path->mnt);
2861 	to = real_mount(to_path->mnt);
2862 
2863 	namespace_lock();
2864 
2865 	err = -EINVAL;
2866 	/* To and From must be mounted */
2867 	if (!is_mounted(&from->mnt))
2868 		goto out;
2869 	if (!is_mounted(&to->mnt))
2870 		goto out;
2871 
2872 	err = -EPERM;
2873 	/* We should be allowed to modify mount namespaces of both mounts */
2874 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2875 		goto out;
2876 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2877 		goto out;
2878 
2879 	err = -EINVAL;
2880 	/* To and From paths should be mount roots */
2881 	if (from_path->dentry != from_path->mnt->mnt_root)
2882 		goto out;
2883 	if (to_path->dentry != to_path->mnt->mnt_root)
2884 		goto out;
2885 
2886 	/* Setting sharing groups is only allowed across same superblock */
2887 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2888 		goto out;
2889 
2890 	/* From mount root should be wider than To mount root */
2891 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2892 		goto out;
2893 
2894 	/* From mount should not have locked children in place of To's root */
2895 	if (has_locked_children(from, to->mnt.mnt_root))
2896 		goto out;
2897 
2898 	/* Setting sharing groups is only allowed on private mounts */
2899 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2900 		goto out;
2901 
2902 	/* From should not be private */
2903 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2904 		goto out;
2905 
2906 	if (IS_MNT_SLAVE(from)) {
2907 		struct mount *m = from->mnt_master;
2908 
2909 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2910 		to->mnt_master = m;
2911 	}
2912 
2913 	if (IS_MNT_SHARED(from)) {
2914 		to->mnt_group_id = from->mnt_group_id;
2915 		list_add(&to->mnt_share, &from->mnt_share);
2916 		lock_mount_hash();
2917 		set_mnt_shared(to);
2918 		unlock_mount_hash();
2919 	}
2920 
2921 	err = 0;
2922 out:
2923 	namespace_unlock();
2924 	return err;
2925 }
2926 
2927 static int do_move_mount(struct path *old_path, struct path *new_path)
2928 {
2929 	struct mnt_namespace *ns;
2930 	struct mount *p;
2931 	struct mount *old;
2932 	struct mount *parent;
2933 	struct mountpoint *mp, *old_mp;
2934 	int err;
2935 	bool attached;
2936 
2937 	mp = lock_mount(new_path);
2938 	if (IS_ERR(mp))
2939 		return PTR_ERR(mp);
2940 
2941 	old = real_mount(old_path->mnt);
2942 	p = real_mount(new_path->mnt);
2943 	parent = old->mnt_parent;
2944 	attached = mnt_has_parent(old);
2945 	old_mp = old->mnt_mp;
2946 	ns = old->mnt_ns;
2947 
2948 	err = -EINVAL;
2949 	/* The mountpoint must be in our namespace. */
2950 	if (!check_mnt(p))
2951 		goto out;
2952 
2953 	/* The thing moved must be mounted... */
2954 	if (!is_mounted(&old->mnt))
2955 		goto out;
2956 
2957 	/* ... and either ours or the root of anon namespace */
2958 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2959 		goto out;
2960 
2961 	if (old->mnt.mnt_flags & MNT_LOCKED)
2962 		goto out;
2963 
2964 	if (old_path->dentry != old_path->mnt->mnt_root)
2965 		goto out;
2966 
2967 	if (d_is_dir(new_path->dentry) !=
2968 	    d_is_dir(old_path->dentry))
2969 		goto out;
2970 	/*
2971 	 * Don't move a mount residing in a shared parent.
2972 	 */
2973 	if (attached && IS_MNT_SHARED(parent))
2974 		goto out;
2975 	/*
2976 	 * Don't move a mount tree containing unbindable mounts to a destination
2977 	 * mount which is shared.
2978 	 */
2979 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2980 		goto out;
2981 	err = -ELOOP;
2982 	if (!check_for_nsfs_mounts(old))
2983 		goto out;
2984 	for (; mnt_has_parent(p); p = p->mnt_parent)
2985 		if (p == old)
2986 			goto out;
2987 
2988 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2989 				   attached);
2990 	if (err)
2991 		goto out;
2992 
2993 	/* if the mount is moved, it should no longer be expire
2994 	 * automatically */
2995 	list_del_init(&old->mnt_expire);
2996 	if (attached)
2997 		put_mountpoint(old_mp);
2998 out:
2999 	unlock_mount(mp);
3000 	if (!err) {
3001 		if (attached)
3002 			mntput_no_expire(parent);
3003 		else
3004 			free_mnt_ns(ns);
3005 	}
3006 	return err;
3007 }
3008 
3009 static int do_move_mount_old(struct path *path, const char *old_name)
3010 {
3011 	struct path old_path;
3012 	int err;
3013 
3014 	if (!old_name || !*old_name)
3015 		return -EINVAL;
3016 
3017 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3018 	if (err)
3019 		return err;
3020 
3021 	err = do_move_mount(&old_path, path);
3022 	path_put(&old_path);
3023 	return err;
3024 }
3025 
3026 /*
3027  * add a mount into a namespace's mount tree
3028  */
3029 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3030 			const struct path *path, int mnt_flags)
3031 {
3032 	struct mount *parent = real_mount(path->mnt);
3033 
3034 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3035 
3036 	if (unlikely(!check_mnt(parent))) {
3037 		/* that's acceptable only for automounts done in private ns */
3038 		if (!(mnt_flags & MNT_SHRINKABLE))
3039 			return -EINVAL;
3040 		/* ... and for those we'd better have mountpoint still alive */
3041 		if (!parent->mnt_ns)
3042 			return -EINVAL;
3043 	}
3044 
3045 	/* Refuse the same filesystem on the same mount point */
3046 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
3047 	    path->mnt->mnt_root == path->dentry)
3048 		return -EBUSY;
3049 
3050 	if (d_is_symlink(newmnt->mnt.mnt_root))
3051 		return -EINVAL;
3052 
3053 	newmnt->mnt.mnt_flags = mnt_flags;
3054 	return graft_tree(newmnt, parent, mp);
3055 }
3056 
3057 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3058 
3059 /*
3060  * Create a new mount using a superblock configuration and request it
3061  * be added to the namespace tree.
3062  */
3063 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3064 			   unsigned int mnt_flags)
3065 {
3066 	struct vfsmount *mnt;
3067 	struct mountpoint *mp;
3068 	struct super_block *sb = fc->root->d_sb;
3069 	int error;
3070 
3071 	error = security_sb_kern_mount(sb);
3072 	if (!error && mount_too_revealing(sb, &mnt_flags))
3073 		error = -EPERM;
3074 
3075 	if (unlikely(error)) {
3076 		fc_drop_locked(fc);
3077 		return error;
3078 	}
3079 
3080 	up_write(&sb->s_umount);
3081 
3082 	mnt = vfs_create_mount(fc);
3083 	if (IS_ERR(mnt))
3084 		return PTR_ERR(mnt);
3085 
3086 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3087 
3088 	mp = lock_mount(mountpoint);
3089 	if (IS_ERR(mp)) {
3090 		mntput(mnt);
3091 		return PTR_ERR(mp);
3092 	}
3093 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3094 	unlock_mount(mp);
3095 	if (error < 0)
3096 		mntput(mnt);
3097 	return error;
3098 }
3099 
3100 /*
3101  * create a new mount for userspace and request it to be added into the
3102  * namespace's tree
3103  */
3104 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3105 			int mnt_flags, const char *name, void *data)
3106 {
3107 	struct file_system_type *type;
3108 	struct fs_context *fc;
3109 	const char *subtype = NULL;
3110 	int err = 0;
3111 
3112 	if (!fstype)
3113 		return -EINVAL;
3114 
3115 	type = get_fs_type(fstype);
3116 	if (!type)
3117 		return -ENODEV;
3118 
3119 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3120 		subtype = strchr(fstype, '.');
3121 		if (subtype) {
3122 			subtype++;
3123 			if (!*subtype) {
3124 				put_filesystem(type);
3125 				return -EINVAL;
3126 			}
3127 		}
3128 	}
3129 
3130 	fc = fs_context_for_mount(type, sb_flags);
3131 	put_filesystem(type);
3132 	if (IS_ERR(fc))
3133 		return PTR_ERR(fc);
3134 
3135 	if (subtype)
3136 		err = vfs_parse_fs_string(fc, "subtype",
3137 					  subtype, strlen(subtype));
3138 	if (!err && name)
3139 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3140 	if (!err)
3141 		err = parse_monolithic_mount_data(fc, data);
3142 	if (!err && !mount_capable(fc))
3143 		err = -EPERM;
3144 	if (!err)
3145 		err = vfs_get_tree(fc);
3146 	if (!err)
3147 		err = do_new_mount_fc(fc, path, mnt_flags);
3148 
3149 	put_fs_context(fc);
3150 	return err;
3151 }
3152 
3153 int finish_automount(struct vfsmount *m, const struct path *path)
3154 {
3155 	struct dentry *dentry = path->dentry;
3156 	struct mountpoint *mp;
3157 	struct mount *mnt;
3158 	int err;
3159 
3160 	if (!m)
3161 		return 0;
3162 	if (IS_ERR(m))
3163 		return PTR_ERR(m);
3164 
3165 	mnt = real_mount(m);
3166 	/* The new mount record should have at least 2 refs to prevent it being
3167 	 * expired before we get a chance to add it
3168 	 */
3169 	BUG_ON(mnt_get_count(mnt) < 2);
3170 
3171 	if (m->mnt_sb == path->mnt->mnt_sb &&
3172 	    m->mnt_root == dentry) {
3173 		err = -ELOOP;
3174 		goto discard;
3175 	}
3176 
3177 	/*
3178 	 * we don't want to use lock_mount() - in this case finding something
3179 	 * that overmounts our mountpoint to be means "quitely drop what we've
3180 	 * got", not "try to mount it on top".
3181 	 */
3182 	inode_lock(dentry->d_inode);
3183 	namespace_lock();
3184 	if (unlikely(cant_mount(dentry))) {
3185 		err = -ENOENT;
3186 		goto discard_locked;
3187 	}
3188 	rcu_read_lock();
3189 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3190 		rcu_read_unlock();
3191 		err = 0;
3192 		goto discard_locked;
3193 	}
3194 	rcu_read_unlock();
3195 	mp = get_mountpoint(dentry);
3196 	if (IS_ERR(mp)) {
3197 		err = PTR_ERR(mp);
3198 		goto discard_locked;
3199 	}
3200 
3201 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3202 	unlock_mount(mp);
3203 	if (unlikely(err))
3204 		goto discard;
3205 	mntput(m);
3206 	return 0;
3207 
3208 discard_locked:
3209 	namespace_unlock();
3210 	inode_unlock(dentry->d_inode);
3211 discard:
3212 	/* remove m from any expiration list it may be on */
3213 	if (!list_empty(&mnt->mnt_expire)) {
3214 		namespace_lock();
3215 		list_del_init(&mnt->mnt_expire);
3216 		namespace_unlock();
3217 	}
3218 	mntput(m);
3219 	mntput(m);
3220 	return err;
3221 }
3222 
3223 /**
3224  * mnt_set_expiry - Put a mount on an expiration list
3225  * @mnt: The mount to list.
3226  * @expiry_list: The list to add the mount to.
3227  */
3228 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3229 {
3230 	namespace_lock();
3231 
3232 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3233 
3234 	namespace_unlock();
3235 }
3236 EXPORT_SYMBOL(mnt_set_expiry);
3237 
3238 /*
3239  * process a list of expirable mountpoints with the intent of discarding any
3240  * mountpoints that aren't in use and haven't been touched since last we came
3241  * here
3242  */
3243 void mark_mounts_for_expiry(struct list_head *mounts)
3244 {
3245 	struct mount *mnt, *next;
3246 	LIST_HEAD(graveyard);
3247 
3248 	if (list_empty(mounts))
3249 		return;
3250 
3251 	namespace_lock();
3252 	lock_mount_hash();
3253 
3254 	/* extract from the expiration list every vfsmount that matches the
3255 	 * following criteria:
3256 	 * - only referenced by its parent vfsmount
3257 	 * - still marked for expiry (marked on the last call here; marks are
3258 	 *   cleared by mntput())
3259 	 */
3260 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3261 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3262 			propagate_mount_busy(mnt, 1))
3263 			continue;
3264 		list_move(&mnt->mnt_expire, &graveyard);
3265 	}
3266 	while (!list_empty(&graveyard)) {
3267 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3268 		touch_mnt_namespace(mnt->mnt_ns);
3269 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3270 	}
3271 	unlock_mount_hash();
3272 	namespace_unlock();
3273 }
3274 
3275 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3276 
3277 /*
3278  * Ripoff of 'select_parent()'
3279  *
3280  * search the list of submounts for a given mountpoint, and move any
3281  * shrinkable submounts to the 'graveyard' list.
3282  */
3283 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3284 {
3285 	struct mount *this_parent = parent;
3286 	struct list_head *next;
3287 	int found = 0;
3288 
3289 repeat:
3290 	next = this_parent->mnt_mounts.next;
3291 resume:
3292 	while (next != &this_parent->mnt_mounts) {
3293 		struct list_head *tmp = next;
3294 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3295 
3296 		next = tmp->next;
3297 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3298 			continue;
3299 		/*
3300 		 * Descend a level if the d_mounts list is non-empty.
3301 		 */
3302 		if (!list_empty(&mnt->mnt_mounts)) {
3303 			this_parent = mnt;
3304 			goto repeat;
3305 		}
3306 
3307 		if (!propagate_mount_busy(mnt, 1)) {
3308 			list_move_tail(&mnt->mnt_expire, graveyard);
3309 			found++;
3310 		}
3311 	}
3312 	/*
3313 	 * All done at this level ... ascend and resume the search
3314 	 */
3315 	if (this_parent != parent) {
3316 		next = this_parent->mnt_child.next;
3317 		this_parent = this_parent->mnt_parent;
3318 		goto resume;
3319 	}
3320 	return found;
3321 }
3322 
3323 /*
3324  * process a list of expirable mountpoints with the intent of discarding any
3325  * submounts of a specific parent mountpoint
3326  *
3327  * mount_lock must be held for write
3328  */
3329 static void shrink_submounts(struct mount *mnt)
3330 {
3331 	LIST_HEAD(graveyard);
3332 	struct mount *m;
3333 
3334 	/* extract submounts of 'mountpoint' from the expiration list */
3335 	while (select_submounts(mnt, &graveyard)) {
3336 		while (!list_empty(&graveyard)) {
3337 			m = list_first_entry(&graveyard, struct mount,
3338 						mnt_expire);
3339 			touch_mnt_namespace(m->mnt_ns);
3340 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3341 		}
3342 	}
3343 }
3344 
3345 static void *copy_mount_options(const void __user * data)
3346 {
3347 	char *copy;
3348 	unsigned left, offset;
3349 
3350 	if (!data)
3351 		return NULL;
3352 
3353 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3354 	if (!copy)
3355 		return ERR_PTR(-ENOMEM);
3356 
3357 	left = copy_from_user(copy, data, PAGE_SIZE);
3358 
3359 	/*
3360 	 * Not all architectures have an exact copy_from_user(). Resort to
3361 	 * byte at a time.
3362 	 */
3363 	offset = PAGE_SIZE - left;
3364 	while (left) {
3365 		char c;
3366 		if (get_user(c, (const char __user *)data + offset))
3367 			break;
3368 		copy[offset] = c;
3369 		left--;
3370 		offset++;
3371 	}
3372 
3373 	if (left == PAGE_SIZE) {
3374 		kfree(copy);
3375 		return ERR_PTR(-EFAULT);
3376 	}
3377 
3378 	return copy;
3379 }
3380 
3381 static char *copy_mount_string(const void __user *data)
3382 {
3383 	return data ? strndup_user(data, PATH_MAX) : NULL;
3384 }
3385 
3386 /*
3387  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3388  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3389  *
3390  * data is a (void *) that can point to any structure up to
3391  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3392  * information (or be NULL).
3393  *
3394  * Pre-0.97 versions of mount() didn't have a flags word.
3395  * When the flags word was introduced its top half was required
3396  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3397  * Therefore, if this magic number is present, it carries no information
3398  * and must be discarded.
3399  */
3400 int path_mount(const char *dev_name, struct path *path,
3401 		const char *type_page, unsigned long flags, void *data_page)
3402 {
3403 	unsigned int mnt_flags = 0, sb_flags;
3404 	int ret;
3405 
3406 	/* Discard magic */
3407 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3408 		flags &= ~MS_MGC_MSK;
3409 
3410 	/* Basic sanity checks */
3411 	if (data_page)
3412 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3413 
3414 	if (flags & MS_NOUSER)
3415 		return -EINVAL;
3416 
3417 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3418 	if (ret)
3419 		return ret;
3420 	if (!may_mount())
3421 		return -EPERM;
3422 	if (flags & SB_MANDLOCK)
3423 		warn_mandlock();
3424 
3425 	/* Default to relatime unless overriden */
3426 	if (!(flags & MS_NOATIME))
3427 		mnt_flags |= MNT_RELATIME;
3428 
3429 	/* Separate the per-mountpoint flags */
3430 	if (flags & MS_NOSUID)
3431 		mnt_flags |= MNT_NOSUID;
3432 	if (flags & MS_NODEV)
3433 		mnt_flags |= MNT_NODEV;
3434 	if (flags & MS_NOEXEC)
3435 		mnt_flags |= MNT_NOEXEC;
3436 	if (flags & MS_NOATIME)
3437 		mnt_flags |= MNT_NOATIME;
3438 	if (flags & MS_NODIRATIME)
3439 		mnt_flags |= MNT_NODIRATIME;
3440 	if (flags & MS_STRICTATIME)
3441 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3442 	if (flags & MS_RDONLY)
3443 		mnt_flags |= MNT_READONLY;
3444 	if (flags & MS_NOSYMFOLLOW)
3445 		mnt_flags |= MNT_NOSYMFOLLOW;
3446 
3447 	/* The default atime for remount is preservation */
3448 	if ((flags & MS_REMOUNT) &&
3449 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3450 		       MS_STRICTATIME)) == 0)) {
3451 		mnt_flags &= ~MNT_ATIME_MASK;
3452 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3453 	}
3454 
3455 	sb_flags = flags & (SB_RDONLY |
3456 			    SB_SYNCHRONOUS |
3457 			    SB_MANDLOCK |
3458 			    SB_DIRSYNC |
3459 			    SB_SILENT |
3460 			    SB_POSIXACL |
3461 			    SB_LAZYTIME |
3462 			    SB_I_VERSION);
3463 
3464 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3465 		return do_reconfigure_mnt(path, mnt_flags);
3466 	if (flags & MS_REMOUNT)
3467 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3468 	if (flags & MS_BIND)
3469 		return do_loopback(path, dev_name, flags & MS_REC);
3470 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3471 		return do_change_type(path, flags);
3472 	if (flags & MS_MOVE)
3473 		return do_move_mount_old(path, dev_name);
3474 
3475 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3476 			    data_page);
3477 }
3478 
3479 long do_mount(const char *dev_name, const char __user *dir_name,
3480 		const char *type_page, unsigned long flags, void *data_page)
3481 {
3482 	struct path path;
3483 	int ret;
3484 
3485 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3486 	if (ret)
3487 		return ret;
3488 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3489 	path_put(&path);
3490 	return ret;
3491 }
3492 
3493 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3494 {
3495 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3496 }
3497 
3498 static void dec_mnt_namespaces(struct ucounts *ucounts)
3499 {
3500 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3501 }
3502 
3503 static void free_mnt_ns(struct mnt_namespace *ns)
3504 {
3505 	if (!is_anon_ns(ns))
3506 		ns_free_inum(&ns->ns);
3507 	dec_mnt_namespaces(ns->ucounts);
3508 	put_user_ns(ns->user_ns);
3509 	kfree(ns);
3510 }
3511 
3512 /*
3513  * Assign a sequence number so we can detect when we attempt to bind
3514  * mount a reference to an older mount namespace into the current
3515  * mount namespace, preventing reference counting loops.  A 64bit
3516  * number incrementing at 10Ghz will take 12,427 years to wrap which
3517  * is effectively never, so we can ignore the possibility.
3518  */
3519 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3520 
3521 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3522 {
3523 	struct mnt_namespace *new_ns;
3524 	struct ucounts *ucounts;
3525 	int ret;
3526 
3527 	ucounts = inc_mnt_namespaces(user_ns);
3528 	if (!ucounts)
3529 		return ERR_PTR(-ENOSPC);
3530 
3531 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3532 	if (!new_ns) {
3533 		dec_mnt_namespaces(ucounts);
3534 		return ERR_PTR(-ENOMEM);
3535 	}
3536 	if (!anon) {
3537 		ret = ns_alloc_inum(&new_ns->ns);
3538 		if (ret) {
3539 			kfree(new_ns);
3540 			dec_mnt_namespaces(ucounts);
3541 			return ERR_PTR(ret);
3542 		}
3543 	}
3544 	new_ns->ns.ops = &mntns_operations;
3545 	if (!anon)
3546 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3547 	refcount_set(&new_ns->ns.count, 1);
3548 	INIT_LIST_HEAD(&new_ns->list);
3549 	init_waitqueue_head(&new_ns->poll);
3550 	spin_lock_init(&new_ns->ns_lock);
3551 	new_ns->user_ns = get_user_ns(user_ns);
3552 	new_ns->ucounts = ucounts;
3553 	return new_ns;
3554 }
3555 
3556 __latent_entropy
3557 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3558 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3559 {
3560 	struct mnt_namespace *new_ns;
3561 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3562 	struct mount *p, *q;
3563 	struct mount *old;
3564 	struct mount *new;
3565 	int copy_flags;
3566 
3567 	BUG_ON(!ns);
3568 
3569 	if (likely(!(flags & CLONE_NEWNS))) {
3570 		get_mnt_ns(ns);
3571 		return ns;
3572 	}
3573 
3574 	old = ns->root;
3575 
3576 	new_ns = alloc_mnt_ns(user_ns, false);
3577 	if (IS_ERR(new_ns))
3578 		return new_ns;
3579 
3580 	namespace_lock();
3581 	/* First pass: copy the tree topology */
3582 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3583 	if (user_ns != ns->user_ns)
3584 		copy_flags |= CL_SHARED_TO_SLAVE;
3585 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3586 	if (IS_ERR(new)) {
3587 		namespace_unlock();
3588 		free_mnt_ns(new_ns);
3589 		return ERR_CAST(new);
3590 	}
3591 	if (user_ns != ns->user_ns) {
3592 		lock_mount_hash();
3593 		lock_mnt_tree(new);
3594 		unlock_mount_hash();
3595 	}
3596 	new_ns->root = new;
3597 	list_add_tail(&new_ns->list, &new->mnt_list);
3598 
3599 	/*
3600 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3601 	 * as belonging to new namespace.  We have already acquired a private
3602 	 * fs_struct, so tsk->fs->lock is not needed.
3603 	 */
3604 	p = old;
3605 	q = new;
3606 	while (p) {
3607 		q->mnt_ns = new_ns;
3608 		new_ns->mounts++;
3609 		if (new_fs) {
3610 			if (&p->mnt == new_fs->root.mnt) {
3611 				new_fs->root.mnt = mntget(&q->mnt);
3612 				rootmnt = &p->mnt;
3613 			}
3614 			if (&p->mnt == new_fs->pwd.mnt) {
3615 				new_fs->pwd.mnt = mntget(&q->mnt);
3616 				pwdmnt = &p->mnt;
3617 			}
3618 		}
3619 		p = next_mnt(p, old);
3620 		q = next_mnt(q, new);
3621 		if (!q)
3622 			break;
3623 		// an mntns binding we'd skipped?
3624 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3625 			p = next_mnt(skip_mnt_tree(p), old);
3626 	}
3627 	namespace_unlock();
3628 
3629 	if (rootmnt)
3630 		mntput(rootmnt);
3631 	if (pwdmnt)
3632 		mntput(pwdmnt);
3633 
3634 	return new_ns;
3635 }
3636 
3637 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3638 {
3639 	struct mount *mnt = real_mount(m);
3640 	struct mnt_namespace *ns;
3641 	struct super_block *s;
3642 	struct path path;
3643 	int err;
3644 
3645 	ns = alloc_mnt_ns(&init_user_ns, true);
3646 	if (IS_ERR(ns)) {
3647 		mntput(m);
3648 		return ERR_CAST(ns);
3649 	}
3650 	mnt->mnt_ns = ns;
3651 	ns->root = mnt;
3652 	ns->mounts++;
3653 	list_add(&mnt->mnt_list, &ns->list);
3654 
3655 	err = vfs_path_lookup(m->mnt_root, m,
3656 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3657 
3658 	put_mnt_ns(ns);
3659 
3660 	if (err)
3661 		return ERR_PTR(err);
3662 
3663 	/* trade a vfsmount reference for active sb one */
3664 	s = path.mnt->mnt_sb;
3665 	atomic_inc(&s->s_active);
3666 	mntput(path.mnt);
3667 	/* lock the sucker */
3668 	down_write(&s->s_umount);
3669 	/* ... and return the root of (sub)tree on it */
3670 	return path.dentry;
3671 }
3672 EXPORT_SYMBOL(mount_subtree);
3673 
3674 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3675 		char __user *, type, unsigned long, flags, void __user *, data)
3676 {
3677 	int ret;
3678 	char *kernel_type;
3679 	char *kernel_dev;
3680 	void *options;
3681 
3682 	kernel_type = copy_mount_string(type);
3683 	ret = PTR_ERR(kernel_type);
3684 	if (IS_ERR(kernel_type))
3685 		goto out_type;
3686 
3687 	kernel_dev = copy_mount_string(dev_name);
3688 	ret = PTR_ERR(kernel_dev);
3689 	if (IS_ERR(kernel_dev))
3690 		goto out_dev;
3691 
3692 	options = copy_mount_options(data);
3693 	ret = PTR_ERR(options);
3694 	if (IS_ERR(options))
3695 		goto out_data;
3696 
3697 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3698 
3699 	kfree(options);
3700 out_data:
3701 	kfree(kernel_dev);
3702 out_dev:
3703 	kfree(kernel_type);
3704 out_type:
3705 	return ret;
3706 }
3707 
3708 #define FSMOUNT_VALID_FLAGS                                                    \
3709 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3710 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3711 	 MOUNT_ATTR_NOSYMFOLLOW)
3712 
3713 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3714 
3715 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3716 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3717 
3718 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3719 {
3720 	unsigned int mnt_flags = 0;
3721 
3722 	if (attr_flags & MOUNT_ATTR_RDONLY)
3723 		mnt_flags |= MNT_READONLY;
3724 	if (attr_flags & MOUNT_ATTR_NOSUID)
3725 		mnt_flags |= MNT_NOSUID;
3726 	if (attr_flags & MOUNT_ATTR_NODEV)
3727 		mnt_flags |= MNT_NODEV;
3728 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3729 		mnt_flags |= MNT_NOEXEC;
3730 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3731 		mnt_flags |= MNT_NODIRATIME;
3732 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3733 		mnt_flags |= MNT_NOSYMFOLLOW;
3734 
3735 	return mnt_flags;
3736 }
3737 
3738 /*
3739  * Create a kernel mount representation for a new, prepared superblock
3740  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3741  */
3742 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3743 		unsigned int, attr_flags)
3744 {
3745 	struct mnt_namespace *ns;
3746 	struct fs_context *fc;
3747 	struct file *file;
3748 	struct path newmount;
3749 	struct mount *mnt;
3750 	struct fd f;
3751 	unsigned int mnt_flags = 0;
3752 	long ret;
3753 
3754 	if (!may_mount())
3755 		return -EPERM;
3756 
3757 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3758 		return -EINVAL;
3759 
3760 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3761 		return -EINVAL;
3762 
3763 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3764 
3765 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3766 	case MOUNT_ATTR_STRICTATIME:
3767 		break;
3768 	case MOUNT_ATTR_NOATIME:
3769 		mnt_flags |= MNT_NOATIME;
3770 		break;
3771 	case MOUNT_ATTR_RELATIME:
3772 		mnt_flags |= MNT_RELATIME;
3773 		break;
3774 	default:
3775 		return -EINVAL;
3776 	}
3777 
3778 	f = fdget(fs_fd);
3779 	if (!f.file)
3780 		return -EBADF;
3781 
3782 	ret = -EINVAL;
3783 	if (f.file->f_op != &fscontext_fops)
3784 		goto err_fsfd;
3785 
3786 	fc = f.file->private_data;
3787 
3788 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3789 	if (ret < 0)
3790 		goto err_fsfd;
3791 
3792 	/* There must be a valid superblock or we can't mount it */
3793 	ret = -EINVAL;
3794 	if (!fc->root)
3795 		goto err_unlock;
3796 
3797 	ret = -EPERM;
3798 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3799 		pr_warn("VFS: Mount too revealing\n");
3800 		goto err_unlock;
3801 	}
3802 
3803 	ret = -EBUSY;
3804 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3805 		goto err_unlock;
3806 
3807 	if (fc->sb_flags & SB_MANDLOCK)
3808 		warn_mandlock();
3809 
3810 	newmount.mnt = vfs_create_mount(fc);
3811 	if (IS_ERR(newmount.mnt)) {
3812 		ret = PTR_ERR(newmount.mnt);
3813 		goto err_unlock;
3814 	}
3815 	newmount.dentry = dget(fc->root);
3816 	newmount.mnt->mnt_flags = mnt_flags;
3817 
3818 	/* We've done the mount bit - now move the file context into more or
3819 	 * less the same state as if we'd done an fspick().  We don't want to
3820 	 * do any memory allocation or anything like that at this point as we
3821 	 * don't want to have to handle any errors incurred.
3822 	 */
3823 	vfs_clean_context(fc);
3824 
3825 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3826 	if (IS_ERR(ns)) {
3827 		ret = PTR_ERR(ns);
3828 		goto err_path;
3829 	}
3830 	mnt = real_mount(newmount.mnt);
3831 	mnt->mnt_ns = ns;
3832 	ns->root = mnt;
3833 	ns->mounts = 1;
3834 	list_add(&mnt->mnt_list, &ns->list);
3835 	mntget(newmount.mnt);
3836 
3837 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3838 	 * it, not just simply put it.
3839 	 */
3840 	file = dentry_open(&newmount, O_PATH, fc->cred);
3841 	if (IS_ERR(file)) {
3842 		dissolve_on_fput(newmount.mnt);
3843 		ret = PTR_ERR(file);
3844 		goto err_path;
3845 	}
3846 	file->f_mode |= FMODE_NEED_UNMOUNT;
3847 
3848 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3849 	if (ret >= 0)
3850 		fd_install(ret, file);
3851 	else
3852 		fput(file);
3853 
3854 err_path:
3855 	path_put(&newmount);
3856 err_unlock:
3857 	mutex_unlock(&fc->uapi_mutex);
3858 err_fsfd:
3859 	fdput(f);
3860 	return ret;
3861 }
3862 
3863 /*
3864  * Move a mount from one place to another.  In combination with
3865  * fsopen()/fsmount() this is used to install a new mount and in combination
3866  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3867  * a mount subtree.
3868  *
3869  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3870  */
3871 SYSCALL_DEFINE5(move_mount,
3872 		int, from_dfd, const char __user *, from_pathname,
3873 		int, to_dfd, const char __user *, to_pathname,
3874 		unsigned int, flags)
3875 {
3876 	struct path from_path, to_path;
3877 	unsigned int lflags;
3878 	int ret = 0;
3879 
3880 	if (!may_mount())
3881 		return -EPERM;
3882 
3883 	if (flags & ~MOVE_MOUNT__MASK)
3884 		return -EINVAL;
3885 
3886 	/* If someone gives a pathname, they aren't permitted to move
3887 	 * from an fd that requires unmount as we can't get at the flag
3888 	 * to clear it afterwards.
3889 	 */
3890 	lflags = 0;
3891 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3892 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3893 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3894 
3895 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3896 	if (ret < 0)
3897 		return ret;
3898 
3899 	lflags = 0;
3900 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3901 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3902 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3903 
3904 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3905 	if (ret < 0)
3906 		goto out_from;
3907 
3908 	ret = security_move_mount(&from_path, &to_path);
3909 	if (ret < 0)
3910 		goto out_to;
3911 
3912 	if (flags & MOVE_MOUNT_SET_GROUP)
3913 		ret = do_set_group(&from_path, &to_path);
3914 	else
3915 		ret = do_move_mount(&from_path, &to_path);
3916 
3917 out_to:
3918 	path_put(&to_path);
3919 out_from:
3920 	path_put(&from_path);
3921 	return ret;
3922 }
3923 
3924 /*
3925  * Return true if path is reachable from root
3926  *
3927  * namespace_sem or mount_lock is held
3928  */
3929 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3930 			 const struct path *root)
3931 {
3932 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3933 		dentry = mnt->mnt_mountpoint;
3934 		mnt = mnt->mnt_parent;
3935 	}
3936 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3937 }
3938 
3939 bool path_is_under(const struct path *path1, const struct path *path2)
3940 {
3941 	bool res;
3942 	read_seqlock_excl(&mount_lock);
3943 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3944 	read_sequnlock_excl(&mount_lock);
3945 	return res;
3946 }
3947 EXPORT_SYMBOL(path_is_under);
3948 
3949 /*
3950  * pivot_root Semantics:
3951  * Moves the root file system of the current process to the directory put_old,
3952  * makes new_root as the new root file system of the current process, and sets
3953  * root/cwd of all processes which had them on the current root to new_root.
3954  *
3955  * Restrictions:
3956  * The new_root and put_old must be directories, and  must not be on the
3957  * same file  system as the current process root. The put_old  must  be
3958  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3959  * pointed to by put_old must yield the same directory as new_root. No other
3960  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3961  *
3962  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3963  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3964  * in this situation.
3965  *
3966  * Notes:
3967  *  - we don't move root/cwd if they are not at the root (reason: if something
3968  *    cared enough to change them, it's probably wrong to force them elsewhere)
3969  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3970  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3971  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3972  *    first.
3973  */
3974 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3975 		const char __user *, put_old)
3976 {
3977 	struct path new, old, root;
3978 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3979 	struct mountpoint *old_mp, *root_mp;
3980 	int error;
3981 
3982 	if (!may_mount())
3983 		return -EPERM;
3984 
3985 	error = user_path_at(AT_FDCWD, new_root,
3986 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3987 	if (error)
3988 		goto out0;
3989 
3990 	error = user_path_at(AT_FDCWD, put_old,
3991 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3992 	if (error)
3993 		goto out1;
3994 
3995 	error = security_sb_pivotroot(&old, &new);
3996 	if (error)
3997 		goto out2;
3998 
3999 	get_fs_root(current->fs, &root);
4000 	old_mp = lock_mount(&old);
4001 	error = PTR_ERR(old_mp);
4002 	if (IS_ERR(old_mp))
4003 		goto out3;
4004 
4005 	error = -EINVAL;
4006 	new_mnt = real_mount(new.mnt);
4007 	root_mnt = real_mount(root.mnt);
4008 	old_mnt = real_mount(old.mnt);
4009 	ex_parent = new_mnt->mnt_parent;
4010 	root_parent = root_mnt->mnt_parent;
4011 	if (IS_MNT_SHARED(old_mnt) ||
4012 		IS_MNT_SHARED(ex_parent) ||
4013 		IS_MNT_SHARED(root_parent))
4014 		goto out4;
4015 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4016 		goto out4;
4017 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4018 		goto out4;
4019 	error = -ENOENT;
4020 	if (d_unlinked(new.dentry))
4021 		goto out4;
4022 	error = -EBUSY;
4023 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4024 		goto out4; /* loop, on the same file system  */
4025 	error = -EINVAL;
4026 	if (root.mnt->mnt_root != root.dentry)
4027 		goto out4; /* not a mountpoint */
4028 	if (!mnt_has_parent(root_mnt))
4029 		goto out4; /* not attached */
4030 	if (new.mnt->mnt_root != new.dentry)
4031 		goto out4; /* not a mountpoint */
4032 	if (!mnt_has_parent(new_mnt))
4033 		goto out4; /* not attached */
4034 	/* make sure we can reach put_old from new_root */
4035 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4036 		goto out4;
4037 	/* make certain new is below the root */
4038 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4039 		goto out4;
4040 	lock_mount_hash();
4041 	umount_mnt(new_mnt);
4042 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4043 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4044 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4045 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4046 	}
4047 	/* mount old root on put_old */
4048 	attach_mnt(root_mnt, old_mnt, old_mp);
4049 	/* mount new_root on / */
4050 	attach_mnt(new_mnt, root_parent, root_mp);
4051 	mnt_add_count(root_parent, -1);
4052 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4053 	/* A moved mount should not expire automatically */
4054 	list_del_init(&new_mnt->mnt_expire);
4055 	put_mountpoint(root_mp);
4056 	unlock_mount_hash();
4057 	chroot_fs_refs(&root, &new);
4058 	error = 0;
4059 out4:
4060 	unlock_mount(old_mp);
4061 	if (!error)
4062 		mntput_no_expire(ex_parent);
4063 out3:
4064 	path_put(&root);
4065 out2:
4066 	path_put(&old);
4067 out1:
4068 	path_put(&new);
4069 out0:
4070 	return error;
4071 }
4072 
4073 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4074 {
4075 	unsigned int flags = mnt->mnt.mnt_flags;
4076 
4077 	/*  flags to clear */
4078 	flags &= ~kattr->attr_clr;
4079 	/* flags to raise */
4080 	flags |= kattr->attr_set;
4081 
4082 	return flags;
4083 }
4084 
4085 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4086 {
4087 	struct vfsmount *m = &mnt->mnt;
4088 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4089 
4090 	if (!kattr->mnt_idmap)
4091 		return 0;
4092 
4093 	/*
4094 	 * Creating an idmapped mount with the filesystem wide idmapping
4095 	 * doesn't make sense so block that. We don't allow mushy semantics.
4096 	 */
4097 	if (mnt_idmap_owner(kattr->mnt_idmap) == fs_userns)
4098 		return -EINVAL;
4099 
4100 	/*
4101 	 * Once a mount has been idmapped we don't allow it to change its
4102 	 * mapping. It makes things simpler and callers can just create
4103 	 * another bind-mount they can idmap if they want to.
4104 	 */
4105 	if (is_idmapped_mnt(m))
4106 		return -EPERM;
4107 
4108 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4109 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4110 		return -EINVAL;
4111 
4112 	/* We're not controlling the superblock. */
4113 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4114 		return -EPERM;
4115 
4116 	/* Mount has already been visible in the filesystem hierarchy. */
4117 	if (!is_anon_ns(mnt->mnt_ns))
4118 		return -EINVAL;
4119 
4120 	return 0;
4121 }
4122 
4123 /**
4124  * mnt_allow_writers() - check whether the attribute change allows writers
4125  * @kattr: the new mount attributes
4126  * @mnt: the mount to which @kattr will be applied
4127  *
4128  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4129  *
4130  * Return: true if writers need to be held, false if not
4131  */
4132 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4133 				     const struct mount *mnt)
4134 {
4135 	return (!(kattr->attr_set & MNT_READONLY) ||
4136 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4137 	       !kattr->mnt_idmap;
4138 }
4139 
4140 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4141 {
4142 	struct mount *m;
4143 	int err;
4144 
4145 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4146 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4147 			err = -EPERM;
4148 			break;
4149 		}
4150 
4151 		err = can_idmap_mount(kattr, m);
4152 		if (err)
4153 			break;
4154 
4155 		if (!mnt_allow_writers(kattr, m)) {
4156 			err = mnt_hold_writers(m);
4157 			if (err)
4158 				break;
4159 		}
4160 
4161 		if (!kattr->recurse)
4162 			return 0;
4163 	}
4164 
4165 	if (err) {
4166 		struct mount *p;
4167 
4168 		/*
4169 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4170 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4171 		 * mounts and needs to take care to include the first mount.
4172 		 */
4173 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4174 			/* If we had to hold writers unblock them. */
4175 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4176 				mnt_unhold_writers(p);
4177 
4178 			/*
4179 			 * We're done once the first mount we changed got
4180 			 * MNT_WRITE_HOLD unset.
4181 			 */
4182 			if (p == m)
4183 				break;
4184 		}
4185 	}
4186 	return err;
4187 }
4188 
4189 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4190 {
4191 	if (!kattr->mnt_idmap)
4192 		return;
4193 
4194 	/*
4195 	 * Pairs with smp_load_acquire() in mnt_idmap().
4196 	 *
4197 	 * Since we only allow a mount to change the idmapping once and
4198 	 * verified this in can_idmap_mount() we know that the mount has
4199 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4200 	 * references.
4201 	 */
4202 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4203 }
4204 
4205 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4206 {
4207 	struct mount *m;
4208 
4209 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4210 		unsigned int flags;
4211 
4212 		do_idmap_mount(kattr, m);
4213 		flags = recalc_flags(kattr, m);
4214 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4215 
4216 		/* If we had to hold writers unblock them. */
4217 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4218 			mnt_unhold_writers(m);
4219 
4220 		if (kattr->propagation)
4221 			change_mnt_propagation(m, kattr->propagation);
4222 		if (!kattr->recurse)
4223 			break;
4224 	}
4225 	touch_mnt_namespace(mnt->mnt_ns);
4226 }
4227 
4228 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4229 {
4230 	struct mount *mnt = real_mount(path->mnt);
4231 	int err = 0;
4232 
4233 	if (path->dentry != mnt->mnt.mnt_root)
4234 		return -EINVAL;
4235 
4236 	if (kattr->mnt_userns) {
4237 		struct mnt_idmap *mnt_idmap;
4238 
4239 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4240 		if (IS_ERR(mnt_idmap))
4241 			return PTR_ERR(mnt_idmap);
4242 		kattr->mnt_idmap = mnt_idmap;
4243 	}
4244 
4245 	if (kattr->propagation) {
4246 		/*
4247 		 * Only take namespace_lock() if we're actually changing
4248 		 * propagation.
4249 		 */
4250 		namespace_lock();
4251 		if (kattr->propagation == MS_SHARED) {
4252 			err = invent_group_ids(mnt, kattr->recurse);
4253 			if (err) {
4254 				namespace_unlock();
4255 				return err;
4256 			}
4257 		}
4258 	}
4259 
4260 	err = -EINVAL;
4261 	lock_mount_hash();
4262 
4263 	/* Ensure that this isn't anything purely vfs internal. */
4264 	if (!is_mounted(&mnt->mnt))
4265 		goto out;
4266 
4267 	/*
4268 	 * If this is an attached mount make sure it's located in the callers
4269 	 * mount namespace. If it's not don't let the caller interact with it.
4270 	 * If this is a detached mount make sure it has an anonymous mount
4271 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4272 	 */
4273 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4274 		goto out;
4275 
4276 	/*
4277 	 * First, we get the mount tree in a shape where we can change mount
4278 	 * properties without failure. If we succeeded to do so we commit all
4279 	 * changes and if we failed we clean up.
4280 	 */
4281 	err = mount_setattr_prepare(kattr, mnt);
4282 	if (!err)
4283 		mount_setattr_commit(kattr, mnt);
4284 
4285 out:
4286 	unlock_mount_hash();
4287 
4288 	if (kattr->propagation) {
4289 		namespace_unlock();
4290 		if (err)
4291 			cleanup_group_ids(mnt, NULL);
4292 	}
4293 
4294 	return err;
4295 }
4296 
4297 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4298 				struct mount_kattr *kattr, unsigned int flags)
4299 {
4300 	int err = 0;
4301 	struct ns_common *ns;
4302 	struct user_namespace *mnt_userns;
4303 	struct file *file;
4304 
4305 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4306 		return 0;
4307 
4308 	/*
4309 	 * We currently do not support clearing an idmapped mount. If this ever
4310 	 * is a use-case we can revisit this but for now let's keep it simple
4311 	 * and not allow it.
4312 	 */
4313 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4314 		return -EINVAL;
4315 
4316 	if (attr->userns_fd > INT_MAX)
4317 		return -EINVAL;
4318 
4319 	file = fget(attr->userns_fd);
4320 	if (!file)
4321 		return -EBADF;
4322 
4323 	if (!proc_ns_file(file)) {
4324 		err = -EINVAL;
4325 		goto out_fput;
4326 	}
4327 
4328 	ns = get_proc_ns(file_inode(file));
4329 	if (ns->ops->type != CLONE_NEWUSER) {
4330 		err = -EINVAL;
4331 		goto out_fput;
4332 	}
4333 
4334 	/*
4335 	 * The initial idmapping cannot be used to create an idmapped
4336 	 * mount. We use the initial idmapping as an indicator of a mount
4337 	 * that is not idmapped. It can simply be passed into helpers that
4338 	 * are aware of idmapped mounts as a convenient shortcut. A user
4339 	 * can just create a dedicated identity mapping to achieve the same
4340 	 * result.
4341 	 */
4342 	mnt_userns = container_of(ns, struct user_namespace, ns);
4343 	if (initial_idmapping(mnt_userns)) {
4344 		err = -EPERM;
4345 		goto out_fput;
4346 	}
4347 
4348 	/* We're not controlling the target namespace. */
4349 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4350 		err = -EPERM;
4351 		goto out_fput;
4352 	}
4353 
4354 	kattr->mnt_userns = get_user_ns(mnt_userns);
4355 
4356 out_fput:
4357 	fput(file);
4358 	return err;
4359 }
4360 
4361 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4362 			     struct mount_kattr *kattr, unsigned int flags)
4363 {
4364 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4365 
4366 	if (flags & AT_NO_AUTOMOUNT)
4367 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4368 	if (flags & AT_SYMLINK_NOFOLLOW)
4369 		lookup_flags &= ~LOOKUP_FOLLOW;
4370 	if (flags & AT_EMPTY_PATH)
4371 		lookup_flags |= LOOKUP_EMPTY;
4372 
4373 	*kattr = (struct mount_kattr) {
4374 		.lookup_flags	= lookup_flags,
4375 		.recurse	= !!(flags & AT_RECURSIVE),
4376 	};
4377 
4378 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4379 		return -EINVAL;
4380 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4381 		return -EINVAL;
4382 	kattr->propagation = attr->propagation;
4383 
4384 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4385 		return -EINVAL;
4386 
4387 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4388 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4389 
4390 	/*
4391 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4392 	 * users wanting to transition to a different atime setting cannot
4393 	 * simply specify the atime setting in @attr_set, but must also
4394 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4395 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4396 	 * @attr_clr and that @attr_set can't have any atime bits set if
4397 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4398 	 */
4399 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4400 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4401 			return -EINVAL;
4402 
4403 		/*
4404 		 * Clear all previous time settings as they are mutually
4405 		 * exclusive.
4406 		 */
4407 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4408 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4409 		case MOUNT_ATTR_RELATIME:
4410 			kattr->attr_set |= MNT_RELATIME;
4411 			break;
4412 		case MOUNT_ATTR_NOATIME:
4413 			kattr->attr_set |= MNT_NOATIME;
4414 			break;
4415 		case MOUNT_ATTR_STRICTATIME:
4416 			break;
4417 		default:
4418 			return -EINVAL;
4419 		}
4420 	} else {
4421 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4422 			return -EINVAL;
4423 	}
4424 
4425 	return build_mount_idmapped(attr, usize, kattr, flags);
4426 }
4427 
4428 static void finish_mount_kattr(struct mount_kattr *kattr)
4429 {
4430 	put_user_ns(kattr->mnt_userns);
4431 	kattr->mnt_userns = NULL;
4432 
4433 	if (kattr->mnt_idmap)
4434 		mnt_idmap_put(kattr->mnt_idmap);
4435 }
4436 
4437 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4438 		unsigned int, flags, struct mount_attr __user *, uattr,
4439 		size_t, usize)
4440 {
4441 	int err;
4442 	struct path target;
4443 	struct mount_attr attr;
4444 	struct mount_kattr kattr;
4445 
4446 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4447 
4448 	if (flags & ~(AT_EMPTY_PATH |
4449 		      AT_RECURSIVE |
4450 		      AT_SYMLINK_NOFOLLOW |
4451 		      AT_NO_AUTOMOUNT))
4452 		return -EINVAL;
4453 
4454 	if (unlikely(usize > PAGE_SIZE))
4455 		return -E2BIG;
4456 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4457 		return -EINVAL;
4458 
4459 	if (!may_mount())
4460 		return -EPERM;
4461 
4462 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4463 	if (err)
4464 		return err;
4465 
4466 	/* Don't bother walking through the mounts if this is a nop. */
4467 	if (attr.attr_set == 0 &&
4468 	    attr.attr_clr == 0 &&
4469 	    attr.propagation == 0)
4470 		return 0;
4471 
4472 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4473 	if (err)
4474 		return err;
4475 
4476 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4477 	if (!err) {
4478 		err = do_mount_setattr(&target, &kattr);
4479 		path_put(&target);
4480 	}
4481 	finish_mount_kattr(&kattr);
4482 	return err;
4483 }
4484 
4485 static void __init init_mount_tree(void)
4486 {
4487 	struct vfsmount *mnt;
4488 	struct mount *m;
4489 	struct mnt_namespace *ns;
4490 	struct path root;
4491 
4492 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4493 	if (IS_ERR(mnt))
4494 		panic("Can't create rootfs");
4495 
4496 	ns = alloc_mnt_ns(&init_user_ns, false);
4497 	if (IS_ERR(ns))
4498 		panic("Can't allocate initial namespace");
4499 	m = real_mount(mnt);
4500 	m->mnt_ns = ns;
4501 	ns->root = m;
4502 	ns->mounts = 1;
4503 	list_add(&m->mnt_list, &ns->list);
4504 	init_task.nsproxy->mnt_ns = ns;
4505 	get_mnt_ns(ns);
4506 
4507 	root.mnt = mnt;
4508 	root.dentry = mnt->mnt_root;
4509 	mnt->mnt_flags |= MNT_LOCKED;
4510 
4511 	set_fs_pwd(current->fs, &root);
4512 	set_fs_root(current->fs, &root);
4513 }
4514 
4515 void __init mnt_init(void)
4516 {
4517 	int err;
4518 
4519 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4520 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4521 
4522 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4523 				sizeof(struct hlist_head),
4524 				mhash_entries, 19,
4525 				HASH_ZERO,
4526 				&m_hash_shift, &m_hash_mask, 0, 0);
4527 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4528 				sizeof(struct hlist_head),
4529 				mphash_entries, 19,
4530 				HASH_ZERO,
4531 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4532 
4533 	if (!mount_hashtable || !mountpoint_hashtable)
4534 		panic("Failed to allocate mount hash table\n");
4535 
4536 	kernfs_init();
4537 
4538 	err = sysfs_init();
4539 	if (err)
4540 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4541 			__func__, err);
4542 	fs_kobj = kobject_create_and_add("fs", NULL);
4543 	if (!fs_kobj)
4544 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4545 	shmem_init();
4546 	init_rootfs();
4547 	init_mount_tree();
4548 }
4549 
4550 void put_mnt_ns(struct mnt_namespace *ns)
4551 {
4552 	if (!refcount_dec_and_test(&ns->ns.count))
4553 		return;
4554 	drop_collected_mounts(&ns->root->mnt);
4555 	free_mnt_ns(ns);
4556 }
4557 
4558 struct vfsmount *kern_mount(struct file_system_type *type)
4559 {
4560 	struct vfsmount *mnt;
4561 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4562 	if (!IS_ERR(mnt)) {
4563 		/*
4564 		 * it is a longterm mount, don't release mnt until
4565 		 * we unmount before file sys is unregistered
4566 		*/
4567 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4568 	}
4569 	return mnt;
4570 }
4571 EXPORT_SYMBOL_GPL(kern_mount);
4572 
4573 void kern_unmount(struct vfsmount *mnt)
4574 {
4575 	/* release long term mount so mount point can be released */
4576 	if (!IS_ERR_OR_NULL(mnt)) {
4577 		real_mount(mnt)->mnt_ns = NULL;
4578 		synchronize_rcu();	/* yecchhh... */
4579 		mntput(mnt);
4580 	}
4581 }
4582 EXPORT_SYMBOL(kern_unmount);
4583 
4584 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4585 {
4586 	unsigned int i;
4587 
4588 	for (i = 0; i < num; i++)
4589 		if (mnt[i])
4590 			real_mount(mnt[i])->mnt_ns = NULL;
4591 	synchronize_rcu_expedited();
4592 	for (i = 0; i < num; i++)
4593 		mntput(mnt[i]);
4594 }
4595 EXPORT_SYMBOL(kern_unmount_array);
4596 
4597 bool our_mnt(struct vfsmount *mnt)
4598 {
4599 	return check_mnt(real_mount(mnt));
4600 }
4601 
4602 bool current_chrooted(void)
4603 {
4604 	/* Does the current process have a non-standard root */
4605 	struct path ns_root;
4606 	struct path fs_root;
4607 	bool chrooted;
4608 
4609 	/* Find the namespace root */
4610 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4611 	ns_root.dentry = ns_root.mnt->mnt_root;
4612 	path_get(&ns_root);
4613 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4614 		;
4615 
4616 	get_fs_root(current->fs, &fs_root);
4617 
4618 	chrooted = !path_equal(&fs_root, &ns_root);
4619 
4620 	path_put(&fs_root);
4621 	path_put(&ns_root);
4622 
4623 	return chrooted;
4624 }
4625 
4626 static bool mnt_already_visible(struct mnt_namespace *ns,
4627 				const struct super_block *sb,
4628 				int *new_mnt_flags)
4629 {
4630 	int new_flags = *new_mnt_flags;
4631 	struct mount *mnt;
4632 	bool visible = false;
4633 
4634 	down_read(&namespace_sem);
4635 	lock_ns_list(ns);
4636 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4637 		struct mount *child;
4638 		int mnt_flags;
4639 
4640 		if (mnt_is_cursor(mnt))
4641 			continue;
4642 
4643 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4644 			continue;
4645 
4646 		/* This mount is not fully visible if it's root directory
4647 		 * is not the root directory of the filesystem.
4648 		 */
4649 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4650 			continue;
4651 
4652 		/* A local view of the mount flags */
4653 		mnt_flags = mnt->mnt.mnt_flags;
4654 
4655 		/* Don't miss readonly hidden in the superblock flags */
4656 		if (sb_rdonly(mnt->mnt.mnt_sb))
4657 			mnt_flags |= MNT_LOCK_READONLY;
4658 
4659 		/* Verify the mount flags are equal to or more permissive
4660 		 * than the proposed new mount.
4661 		 */
4662 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4663 		    !(new_flags & MNT_READONLY))
4664 			continue;
4665 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4666 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4667 			continue;
4668 
4669 		/* This mount is not fully visible if there are any
4670 		 * locked child mounts that cover anything except for
4671 		 * empty directories.
4672 		 */
4673 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4674 			struct inode *inode = child->mnt_mountpoint->d_inode;
4675 			/* Only worry about locked mounts */
4676 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4677 				continue;
4678 			/* Is the directory permanetly empty? */
4679 			if (!is_empty_dir_inode(inode))
4680 				goto next;
4681 		}
4682 		/* Preserve the locked attributes */
4683 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4684 					       MNT_LOCK_ATIME);
4685 		visible = true;
4686 		goto found;
4687 	next:	;
4688 	}
4689 found:
4690 	unlock_ns_list(ns);
4691 	up_read(&namespace_sem);
4692 	return visible;
4693 }
4694 
4695 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4696 {
4697 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4698 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4699 	unsigned long s_iflags;
4700 
4701 	if (ns->user_ns == &init_user_ns)
4702 		return false;
4703 
4704 	/* Can this filesystem be too revealing? */
4705 	s_iflags = sb->s_iflags;
4706 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4707 		return false;
4708 
4709 	if ((s_iflags & required_iflags) != required_iflags) {
4710 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4711 			  required_iflags);
4712 		return true;
4713 	}
4714 
4715 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4716 }
4717 
4718 bool mnt_may_suid(struct vfsmount *mnt)
4719 {
4720 	/*
4721 	 * Foreign mounts (accessed via fchdir or through /proc
4722 	 * symlinks) are always treated as if they are nosuid.  This
4723 	 * prevents namespaces from trusting potentially unsafe
4724 	 * suid/sgid bits, file caps, or security labels that originate
4725 	 * in other namespaces.
4726 	 */
4727 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4728 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4729 }
4730 
4731 static struct ns_common *mntns_get(struct task_struct *task)
4732 {
4733 	struct ns_common *ns = NULL;
4734 	struct nsproxy *nsproxy;
4735 
4736 	task_lock(task);
4737 	nsproxy = task->nsproxy;
4738 	if (nsproxy) {
4739 		ns = &nsproxy->mnt_ns->ns;
4740 		get_mnt_ns(to_mnt_ns(ns));
4741 	}
4742 	task_unlock(task);
4743 
4744 	return ns;
4745 }
4746 
4747 static void mntns_put(struct ns_common *ns)
4748 {
4749 	put_mnt_ns(to_mnt_ns(ns));
4750 }
4751 
4752 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4753 {
4754 	struct nsproxy *nsproxy = nsset->nsproxy;
4755 	struct fs_struct *fs = nsset->fs;
4756 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4757 	struct user_namespace *user_ns = nsset->cred->user_ns;
4758 	struct path root;
4759 	int err;
4760 
4761 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4762 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4763 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4764 		return -EPERM;
4765 
4766 	if (is_anon_ns(mnt_ns))
4767 		return -EINVAL;
4768 
4769 	if (fs->users != 1)
4770 		return -EINVAL;
4771 
4772 	get_mnt_ns(mnt_ns);
4773 	old_mnt_ns = nsproxy->mnt_ns;
4774 	nsproxy->mnt_ns = mnt_ns;
4775 
4776 	/* Find the root */
4777 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4778 				"/", LOOKUP_DOWN, &root);
4779 	if (err) {
4780 		/* revert to old namespace */
4781 		nsproxy->mnt_ns = old_mnt_ns;
4782 		put_mnt_ns(mnt_ns);
4783 		return err;
4784 	}
4785 
4786 	put_mnt_ns(old_mnt_ns);
4787 
4788 	/* Update the pwd and root */
4789 	set_fs_pwd(fs, &root);
4790 	set_fs_root(fs, &root);
4791 
4792 	path_put(&root);
4793 	return 0;
4794 }
4795 
4796 static struct user_namespace *mntns_owner(struct ns_common *ns)
4797 {
4798 	return to_mnt_ns(ns)->user_ns;
4799 }
4800 
4801 const struct proc_ns_operations mntns_operations = {
4802 	.name		= "mnt",
4803 	.type		= CLONE_NEWNS,
4804 	.get		= mntns_get,
4805 	.put		= mntns_put,
4806 	.install	= mntns_install,
4807 	.owner		= mntns_owner,
4808 };
4809 
4810 #ifdef CONFIG_SYSCTL
4811 static struct ctl_table fs_namespace_sysctls[] = {
4812 	{
4813 		.procname	= "mount-max",
4814 		.data		= &sysctl_mount_max,
4815 		.maxlen		= sizeof(unsigned int),
4816 		.mode		= 0644,
4817 		.proc_handler	= proc_dointvec_minmax,
4818 		.extra1		= SYSCTL_ONE,
4819 	},
4820 	{ }
4821 };
4822 
4823 static int __init init_fs_namespace_sysctls(void)
4824 {
4825 	register_sysctl_init("fs", fs_namespace_sysctls);
4826 	return 0;
4827 }
4828 fs_initcall(init_fs_namespace_sysctls);
4829 
4830 #endif /* CONFIG_SYSCTL */
4831