xref: /linux/fs/namespace.c (revision 95db3b255fde4e830e5f8cc011eb404023f669d4)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 	struct mount *m = container_of(p, struct mount, mnt_umount);
196 	dput(m->mnt_ex_mountpoint);
197 	pin_remove(p);
198 	mntput(&m->mnt);
199 }
200 
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 	if (mnt) {
205 		int err;
206 
207 		err = mnt_alloc_id(mnt);
208 		if (err)
209 			goto out_free_cache;
210 
211 		if (name) {
212 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 			if (!mnt->mnt_devname)
214 				goto out_free_id;
215 		}
216 
217 #ifdef CONFIG_SMP
218 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 		if (!mnt->mnt_pcp)
220 			goto out_free_devname;
221 
222 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 		mnt->mnt_count = 1;
225 		mnt->mnt_writers = 0;
226 #endif
227 
228 		INIT_HLIST_NODE(&mnt->mnt_hash);
229 		INIT_LIST_HEAD(&mnt->mnt_child);
230 		INIT_LIST_HEAD(&mnt->mnt_mounts);
231 		INIT_LIST_HEAD(&mnt->mnt_list);
232 		INIT_LIST_HEAD(&mnt->mnt_expire);
233 		INIT_LIST_HEAD(&mnt->mnt_share);
234 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 		INIT_LIST_HEAD(&mnt->mnt_slave);
236 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  */
440 int mnt_want_write_file(struct file *file)
441 {
442 	int ret;
443 
444 	sb_start_write(file->f_path.mnt->mnt_sb);
445 	ret = __mnt_want_write_file(file);
446 	if (ret)
447 		sb_end_write(file->f_path.mnt->mnt_sb);
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451 
452 /**
453  * __mnt_drop_write - give up write access to a mount
454  * @mnt: the mount on which to give up write access
455  *
456  * Tells the low-level filesystem that we are done
457  * performing writes to it.  Must be matched with
458  * __mnt_want_write() call above.
459  */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 	preempt_disable();
463 	mnt_dec_writers(real_mount(mnt));
464 	preempt_enable();
465 }
466 
467 /**
468  * mnt_drop_write - give up write access to a mount
469  * @mnt: the mount on which to give up write access
470  *
471  * Tells the low-level filesystem that we are done performing writes to it and
472  * also allows filesystem to be frozen again.  Must be matched with
473  * mnt_want_write() call above.
474  */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 	__mnt_drop_write(mnt);
478 	sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481 
482 void __mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write(file->f_path.mnt);
485 }
486 
487 void mnt_drop_write_file(struct file *file)
488 {
489 	mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492 
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 	int ret = 0;
496 
497 	lock_mount_hash();
498 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 	/*
500 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 	 * should be visible before we do.
502 	 */
503 	smp_mb();
504 
505 	/*
506 	 * With writers on hold, if this value is zero, then there are
507 	 * definitely no active writers (although held writers may subsequently
508 	 * increment the count, they'll have to wait, and decrement it after
509 	 * seeing MNT_READONLY).
510 	 *
511 	 * It is OK to have counter incremented on one CPU and decremented on
512 	 * another: the sum will add up correctly. The danger would be when we
513 	 * sum up each counter, if we read a counter before it is incremented,
514 	 * but then read another CPU's count which it has been subsequently
515 	 * decremented from -- we would see more decrements than we should.
516 	 * MNT_WRITE_HOLD protects against this scenario, because
517 	 * mnt_want_write first increments count, then smp_mb, then spins on
518 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 	 * we're counting up here.
520 	 */
521 	if (mnt_get_writers(mnt) > 0)
522 		ret = -EBUSY;
523 	else
524 		mnt->mnt.mnt_flags |= MNT_READONLY;
525 	/*
526 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 	 * that become unheld will see MNT_READONLY.
528 	 */
529 	smp_wmb();
530 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 	unlock_mount_hash();
532 	return ret;
533 }
534 
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 	lock_mount_hash();
538 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 	unlock_mount_hash();
540 }
541 
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 	struct mount *mnt;
545 	int err = 0;
546 
547 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
548 	if (atomic_long_read(&sb->s_remove_count))
549 		return -EBUSY;
550 
551 	lock_mount_hash();
552 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 			smp_mb();
556 			if (mnt_get_writers(mnt) > 0) {
557 				err = -EBUSY;
558 				break;
559 			}
560 		}
561 	}
562 	if (!err && atomic_long_read(&sb->s_remove_count))
563 		err = -EBUSY;
564 
565 	if (!err) {
566 		sb->s_readonly_remount = 1;
567 		smp_wmb();
568 	}
569 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 	}
573 	unlock_mount_hash();
574 
575 	return err;
576 }
577 
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 	kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 	free_percpu(mnt->mnt_pcp);
583 #endif
584 	kmem_cache_free(mnt_cache, mnt);
585 }
586 
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591 
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 	struct mount *mnt;
596 	if (read_seqretry(&mount_lock, seq))
597 		return 1;
598 	if (bastard == NULL)
599 		return 0;
600 	mnt = real_mount(bastard);
601 	mnt_add_count(mnt, 1);
602 	if (likely(!read_seqretry(&mount_lock, seq)))
603 		return 0;
604 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 		mnt_add_count(mnt, -1);
606 		return 1;
607 	}
608 	return -1;
609 }
610 
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 	int res = __legitimize_mnt(bastard, seq);
615 	if (likely(!res))
616 		return true;
617 	if (unlikely(res < 0)) {
618 		rcu_read_unlock();
619 		mntput(bastard);
620 		rcu_read_lock();
621 	}
622 	return false;
623 }
624 
625 /*
626  * find the first mount at @dentry on vfsmount @mnt.
627  * call under rcu_read_lock()
628  */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 	struct hlist_head *head = m_hash(mnt, dentry);
632 	struct mount *p;
633 
634 	hlist_for_each_entry_rcu(p, head, mnt_hash)
635 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 			return p;
637 	return NULL;
638 }
639 
640 /*
641  * find the last mount at @dentry on vfsmount @mnt.
642  * mount_lock must be held.
643  */
644 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
645 {
646 	struct mount *p, *res = NULL;
647 	p = __lookup_mnt(mnt, dentry);
648 	if (!p)
649 		goto out;
650 	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
651 		res = p;
652 	hlist_for_each_entry_continue(p, mnt_hash) {
653 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
654 			break;
655 		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
656 			res = p;
657 	}
658 out:
659 	return res;
660 }
661 
662 /*
663  * lookup_mnt - Return the first child mount mounted at path
664  *
665  * "First" means first mounted chronologically.  If you create the
666  * following mounts:
667  *
668  * mount /dev/sda1 /mnt
669  * mount /dev/sda2 /mnt
670  * mount /dev/sda3 /mnt
671  *
672  * Then lookup_mnt() on the base /mnt dentry in the root mount will
673  * return successively the root dentry and vfsmount of /dev/sda1, then
674  * /dev/sda2, then /dev/sda3, then NULL.
675  *
676  * lookup_mnt takes a reference to the found vfsmount.
677  */
678 struct vfsmount *lookup_mnt(struct path *path)
679 {
680 	struct mount *child_mnt;
681 	struct vfsmount *m;
682 	unsigned seq;
683 
684 	rcu_read_lock();
685 	do {
686 		seq = read_seqbegin(&mount_lock);
687 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
688 		m = child_mnt ? &child_mnt->mnt : NULL;
689 	} while (!legitimize_mnt(m, seq));
690 	rcu_read_unlock();
691 	return m;
692 }
693 
694 /*
695  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696  *                         current mount namespace.
697  *
698  * The common case is dentries are not mountpoints at all and that
699  * test is handled inline.  For the slow case when we are actually
700  * dealing with a mountpoint of some kind, walk through all of the
701  * mounts in the current mount namespace and test to see if the dentry
702  * is a mountpoint.
703  *
704  * The mount_hashtable is not usable in the context because we
705  * need to identify all mounts that may be in the current mount
706  * namespace not just a mount that happens to have some specified
707  * parent mount.
708  */
709 bool __is_local_mountpoint(struct dentry *dentry)
710 {
711 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 	struct mount *mnt;
713 	bool is_covered = false;
714 
715 	if (!d_mountpoint(dentry))
716 		goto out;
717 
718 	down_read(&namespace_sem);
719 	list_for_each_entry(mnt, &ns->list, mnt_list) {
720 		is_covered = (mnt->mnt_mountpoint == dentry);
721 		if (is_covered)
722 			break;
723 	}
724 	up_read(&namespace_sem);
725 out:
726 	return is_covered;
727 }
728 
729 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
730 {
731 	struct hlist_head *chain = mp_hash(dentry);
732 	struct mountpoint *mp;
733 
734 	hlist_for_each_entry(mp, chain, m_hash) {
735 		if (mp->m_dentry == dentry) {
736 			/* might be worth a WARN_ON() */
737 			if (d_unlinked(dentry))
738 				return ERR_PTR(-ENOENT);
739 			mp->m_count++;
740 			return mp;
741 		}
742 	}
743 	return NULL;
744 }
745 
746 static struct mountpoint *new_mountpoint(struct dentry *dentry)
747 {
748 	struct hlist_head *chain = mp_hash(dentry);
749 	struct mountpoint *mp;
750 	int ret;
751 
752 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 	if (!mp)
754 		return ERR_PTR(-ENOMEM);
755 
756 	ret = d_set_mounted(dentry);
757 	if (ret) {
758 		kfree(mp);
759 		return ERR_PTR(ret);
760 	}
761 
762 	mp->m_dentry = dentry;
763 	mp->m_count = 1;
764 	hlist_add_head(&mp->m_hash, chain);
765 	INIT_HLIST_HEAD(&mp->m_list);
766 	return mp;
767 }
768 
769 static void put_mountpoint(struct mountpoint *mp)
770 {
771 	if (!--mp->m_count) {
772 		struct dentry *dentry = mp->m_dentry;
773 		BUG_ON(!hlist_empty(&mp->m_list));
774 		spin_lock(&dentry->d_lock);
775 		dentry->d_flags &= ~DCACHE_MOUNTED;
776 		spin_unlock(&dentry->d_lock);
777 		hlist_del(&mp->m_hash);
778 		kfree(mp);
779 	}
780 }
781 
782 static inline int check_mnt(struct mount *mnt)
783 {
784 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
785 }
786 
787 /*
788  * vfsmount lock must be held for write
789  */
790 static void touch_mnt_namespace(struct mnt_namespace *ns)
791 {
792 	if (ns) {
793 		ns->event = ++event;
794 		wake_up_interruptible(&ns->poll);
795 	}
796 }
797 
798 /*
799  * vfsmount lock must be held for write
800  */
801 static void __touch_mnt_namespace(struct mnt_namespace *ns)
802 {
803 	if (ns && ns->event != event) {
804 		ns->event = event;
805 		wake_up_interruptible(&ns->poll);
806 	}
807 }
808 
809 /*
810  * vfsmount lock must be held for write
811  */
812 static void unhash_mnt(struct mount *mnt)
813 {
814 	mnt->mnt_parent = mnt;
815 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
816 	list_del_init(&mnt->mnt_child);
817 	hlist_del_init_rcu(&mnt->mnt_hash);
818 	hlist_del_init(&mnt->mnt_mp_list);
819 	put_mountpoint(mnt->mnt_mp);
820 	mnt->mnt_mp = NULL;
821 }
822 
823 /*
824  * vfsmount lock must be held for write
825  */
826 static void detach_mnt(struct mount *mnt, struct path *old_path)
827 {
828 	old_path->dentry = mnt->mnt_mountpoint;
829 	old_path->mnt = &mnt->mnt_parent->mnt;
830 	unhash_mnt(mnt);
831 }
832 
833 /*
834  * vfsmount lock must be held for write
835  */
836 static void umount_mnt(struct mount *mnt)
837 {
838 	/* old mountpoint will be dropped when we can do that */
839 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
840 	unhash_mnt(mnt);
841 }
842 
843 /*
844  * vfsmount lock must be held for write
845  */
846 void mnt_set_mountpoint(struct mount *mnt,
847 			struct mountpoint *mp,
848 			struct mount *child_mnt)
849 {
850 	mp->m_count++;
851 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
852 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
853 	child_mnt->mnt_parent = mnt;
854 	child_mnt->mnt_mp = mp;
855 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
856 }
857 
858 /*
859  * vfsmount lock must be held for write
860  */
861 static void attach_mnt(struct mount *mnt,
862 			struct mount *parent,
863 			struct mountpoint *mp)
864 {
865 	mnt_set_mountpoint(parent, mp, mnt);
866 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
867 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
868 }
869 
870 static void attach_shadowed(struct mount *mnt,
871 			struct mount *parent,
872 			struct mount *shadows)
873 {
874 	if (shadows) {
875 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
876 		list_add(&mnt->mnt_child, &shadows->mnt_child);
877 	} else {
878 		hlist_add_head_rcu(&mnt->mnt_hash,
879 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
880 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 	}
882 }
883 
884 /*
885  * vfsmount lock must be held for write
886  */
887 static void commit_tree(struct mount *mnt, struct mount *shadows)
888 {
889 	struct mount *parent = mnt->mnt_parent;
890 	struct mount *m;
891 	LIST_HEAD(head);
892 	struct mnt_namespace *n = parent->mnt_ns;
893 
894 	BUG_ON(parent == mnt);
895 
896 	list_add_tail(&head, &mnt->mnt_list);
897 	list_for_each_entry(m, &head, mnt_list)
898 		m->mnt_ns = n;
899 
900 	list_splice(&head, n->list.prev);
901 
902 	attach_shadowed(mnt, parent, shadows);
903 	touch_mnt_namespace(n);
904 }
905 
906 static struct mount *next_mnt(struct mount *p, struct mount *root)
907 {
908 	struct list_head *next = p->mnt_mounts.next;
909 	if (next == &p->mnt_mounts) {
910 		while (1) {
911 			if (p == root)
912 				return NULL;
913 			next = p->mnt_child.next;
914 			if (next != &p->mnt_parent->mnt_mounts)
915 				break;
916 			p = p->mnt_parent;
917 		}
918 	}
919 	return list_entry(next, struct mount, mnt_child);
920 }
921 
922 static struct mount *skip_mnt_tree(struct mount *p)
923 {
924 	struct list_head *prev = p->mnt_mounts.prev;
925 	while (prev != &p->mnt_mounts) {
926 		p = list_entry(prev, struct mount, mnt_child);
927 		prev = p->mnt_mounts.prev;
928 	}
929 	return p;
930 }
931 
932 struct vfsmount *
933 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
934 {
935 	struct mount *mnt;
936 	struct dentry *root;
937 
938 	if (!type)
939 		return ERR_PTR(-ENODEV);
940 
941 	mnt = alloc_vfsmnt(name);
942 	if (!mnt)
943 		return ERR_PTR(-ENOMEM);
944 
945 	if (flags & MS_KERNMOUNT)
946 		mnt->mnt.mnt_flags = MNT_INTERNAL;
947 
948 	root = mount_fs(type, flags, name, data);
949 	if (IS_ERR(root)) {
950 		mnt_free_id(mnt);
951 		free_vfsmnt(mnt);
952 		return ERR_CAST(root);
953 	}
954 
955 	mnt->mnt.mnt_root = root;
956 	mnt->mnt.mnt_sb = root->d_sb;
957 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
958 	mnt->mnt_parent = mnt;
959 	lock_mount_hash();
960 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
961 	unlock_mount_hash();
962 	return &mnt->mnt;
963 }
964 EXPORT_SYMBOL_GPL(vfs_kern_mount);
965 
966 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
967 					int flag)
968 {
969 	struct super_block *sb = old->mnt.mnt_sb;
970 	struct mount *mnt;
971 	int err;
972 
973 	mnt = alloc_vfsmnt(old->mnt_devname);
974 	if (!mnt)
975 		return ERR_PTR(-ENOMEM);
976 
977 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
978 		mnt->mnt_group_id = 0; /* not a peer of original */
979 	else
980 		mnt->mnt_group_id = old->mnt_group_id;
981 
982 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
983 		err = mnt_alloc_group_id(mnt);
984 		if (err)
985 			goto out_free;
986 	}
987 
988 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
989 	/* Don't allow unprivileged users to change mount flags */
990 	if (flag & CL_UNPRIVILEGED) {
991 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
992 
993 		if (mnt->mnt.mnt_flags & MNT_READONLY)
994 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
995 
996 		if (mnt->mnt.mnt_flags & MNT_NODEV)
997 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
998 
999 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1000 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1001 
1002 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1003 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1004 	}
1005 
1006 	/* Don't allow unprivileged users to reveal what is under a mount */
1007 	if ((flag & CL_UNPRIVILEGED) &&
1008 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1009 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1010 
1011 	atomic_inc(&sb->s_active);
1012 	mnt->mnt.mnt_sb = sb;
1013 	mnt->mnt.mnt_root = dget(root);
1014 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015 	mnt->mnt_parent = mnt;
1016 	lock_mount_hash();
1017 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1018 	unlock_mount_hash();
1019 
1020 	if ((flag & CL_SLAVE) ||
1021 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1022 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1023 		mnt->mnt_master = old;
1024 		CLEAR_MNT_SHARED(mnt);
1025 	} else if (!(flag & CL_PRIVATE)) {
1026 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1027 			list_add(&mnt->mnt_share, &old->mnt_share);
1028 		if (IS_MNT_SLAVE(old))
1029 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1030 		mnt->mnt_master = old->mnt_master;
1031 	}
1032 	if (flag & CL_MAKE_SHARED)
1033 		set_mnt_shared(mnt);
1034 
1035 	/* stick the duplicate mount on the same expiry list
1036 	 * as the original if that was on one */
1037 	if (flag & CL_EXPIRE) {
1038 		if (!list_empty(&old->mnt_expire))
1039 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1040 	}
1041 
1042 	return mnt;
1043 
1044  out_free:
1045 	mnt_free_id(mnt);
1046 	free_vfsmnt(mnt);
1047 	return ERR_PTR(err);
1048 }
1049 
1050 static void cleanup_mnt(struct mount *mnt)
1051 {
1052 	/*
1053 	 * This probably indicates that somebody messed
1054 	 * up a mnt_want/drop_write() pair.  If this
1055 	 * happens, the filesystem was probably unable
1056 	 * to make r/w->r/o transitions.
1057 	 */
1058 	/*
1059 	 * The locking used to deal with mnt_count decrement provides barriers,
1060 	 * so mnt_get_writers() below is safe.
1061 	 */
1062 	WARN_ON(mnt_get_writers(mnt));
1063 	if (unlikely(mnt->mnt_pins.first))
1064 		mnt_pin_kill(mnt);
1065 	fsnotify_vfsmount_delete(&mnt->mnt);
1066 	dput(mnt->mnt.mnt_root);
1067 	deactivate_super(mnt->mnt.mnt_sb);
1068 	mnt_free_id(mnt);
1069 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1070 }
1071 
1072 static void __cleanup_mnt(struct rcu_head *head)
1073 {
1074 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1075 }
1076 
1077 static LLIST_HEAD(delayed_mntput_list);
1078 static void delayed_mntput(struct work_struct *unused)
1079 {
1080 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1081 	struct llist_node *next;
1082 
1083 	for (; node; node = next) {
1084 		next = llist_next(node);
1085 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1086 	}
1087 }
1088 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1089 
1090 static void mntput_no_expire(struct mount *mnt)
1091 {
1092 	rcu_read_lock();
1093 	mnt_add_count(mnt, -1);
1094 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1095 		rcu_read_unlock();
1096 		return;
1097 	}
1098 	lock_mount_hash();
1099 	if (mnt_get_count(mnt)) {
1100 		rcu_read_unlock();
1101 		unlock_mount_hash();
1102 		return;
1103 	}
1104 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1105 		rcu_read_unlock();
1106 		unlock_mount_hash();
1107 		return;
1108 	}
1109 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1110 	rcu_read_unlock();
1111 
1112 	list_del(&mnt->mnt_instance);
1113 
1114 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1115 		struct mount *p, *tmp;
1116 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1117 			umount_mnt(p);
1118 		}
1119 	}
1120 	unlock_mount_hash();
1121 
1122 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1123 		struct task_struct *task = current;
1124 		if (likely(!(task->flags & PF_KTHREAD))) {
1125 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1126 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1127 				return;
1128 		}
1129 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1130 			schedule_delayed_work(&delayed_mntput_work, 1);
1131 		return;
1132 	}
1133 	cleanup_mnt(mnt);
1134 }
1135 
1136 void mntput(struct vfsmount *mnt)
1137 {
1138 	if (mnt) {
1139 		struct mount *m = real_mount(mnt);
1140 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1141 		if (unlikely(m->mnt_expiry_mark))
1142 			m->mnt_expiry_mark = 0;
1143 		mntput_no_expire(m);
1144 	}
1145 }
1146 EXPORT_SYMBOL(mntput);
1147 
1148 struct vfsmount *mntget(struct vfsmount *mnt)
1149 {
1150 	if (mnt)
1151 		mnt_add_count(real_mount(mnt), 1);
1152 	return mnt;
1153 }
1154 EXPORT_SYMBOL(mntget);
1155 
1156 struct vfsmount *mnt_clone_internal(struct path *path)
1157 {
1158 	struct mount *p;
1159 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1160 	if (IS_ERR(p))
1161 		return ERR_CAST(p);
1162 	p->mnt.mnt_flags |= MNT_INTERNAL;
1163 	return &p->mnt;
1164 }
1165 
1166 static inline void mangle(struct seq_file *m, const char *s)
1167 {
1168 	seq_escape(m, s, " \t\n\\");
1169 }
1170 
1171 /*
1172  * Simple .show_options callback for filesystems which don't want to
1173  * implement more complex mount option showing.
1174  *
1175  * See also save_mount_options().
1176  */
1177 int generic_show_options(struct seq_file *m, struct dentry *root)
1178 {
1179 	const char *options;
1180 
1181 	rcu_read_lock();
1182 	options = rcu_dereference(root->d_sb->s_options);
1183 
1184 	if (options != NULL && options[0]) {
1185 		seq_putc(m, ',');
1186 		mangle(m, options);
1187 	}
1188 	rcu_read_unlock();
1189 
1190 	return 0;
1191 }
1192 EXPORT_SYMBOL(generic_show_options);
1193 
1194 /*
1195  * If filesystem uses generic_show_options(), this function should be
1196  * called from the fill_super() callback.
1197  *
1198  * The .remount_fs callback usually needs to be handled in a special
1199  * way, to make sure, that previous options are not overwritten if the
1200  * remount fails.
1201  *
1202  * Also note, that if the filesystem's .remount_fs function doesn't
1203  * reset all options to their default value, but changes only newly
1204  * given options, then the displayed options will not reflect reality
1205  * any more.
1206  */
1207 void save_mount_options(struct super_block *sb, char *options)
1208 {
1209 	BUG_ON(sb->s_options);
1210 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1211 }
1212 EXPORT_SYMBOL(save_mount_options);
1213 
1214 void replace_mount_options(struct super_block *sb, char *options)
1215 {
1216 	char *old = sb->s_options;
1217 	rcu_assign_pointer(sb->s_options, options);
1218 	if (old) {
1219 		synchronize_rcu();
1220 		kfree(old);
1221 	}
1222 }
1223 EXPORT_SYMBOL(replace_mount_options);
1224 
1225 #ifdef CONFIG_PROC_FS
1226 /* iterator; we want it to have access to namespace_sem, thus here... */
1227 static void *m_start(struct seq_file *m, loff_t *pos)
1228 {
1229 	struct proc_mounts *p = m->private;
1230 
1231 	down_read(&namespace_sem);
1232 	if (p->cached_event == p->ns->event) {
1233 		void *v = p->cached_mount;
1234 		if (*pos == p->cached_index)
1235 			return v;
1236 		if (*pos == p->cached_index + 1) {
1237 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1238 			return p->cached_mount = v;
1239 		}
1240 	}
1241 
1242 	p->cached_event = p->ns->event;
1243 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1244 	p->cached_index = *pos;
1245 	return p->cached_mount;
1246 }
1247 
1248 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1249 {
1250 	struct proc_mounts *p = m->private;
1251 
1252 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1253 	p->cached_index = *pos;
1254 	return p->cached_mount;
1255 }
1256 
1257 static void m_stop(struct seq_file *m, void *v)
1258 {
1259 	up_read(&namespace_sem);
1260 }
1261 
1262 static int m_show(struct seq_file *m, void *v)
1263 {
1264 	struct proc_mounts *p = m->private;
1265 	struct mount *r = list_entry(v, struct mount, mnt_list);
1266 	return p->show(m, &r->mnt);
1267 }
1268 
1269 const struct seq_operations mounts_op = {
1270 	.start	= m_start,
1271 	.next	= m_next,
1272 	.stop	= m_stop,
1273 	.show	= m_show,
1274 };
1275 #endif  /* CONFIG_PROC_FS */
1276 
1277 /**
1278  * may_umount_tree - check if a mount tree is busy
1279  * @mnt: root of mount tree
1280  *
1281  * This is called to check if a tree of mounts has any
1282  * open files, pwds, chroots or sub mounts that are
1283  * busy.
1284  */
1285 int may_umount_tree(struct vfsmount *m)
1286 {
1287 	struct mount *mnt = real_mount(m);
1288 	int actual_refs = 0;
1289 	int minimum_refs = 0;
1290 	struct mount *p;
1291 	BUG_ON(!m);
1292 
1293 	/* write lock needed for mnt_get_count */
1294 	lock_mount_hash();
1295 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1296 		actual_refs += mnt_get_count(p);
1297 		minimum_refs += 2;
1298 	}
1299 	unlock_mount_hash();
1300 
1301 	if (actual_refs > minimum_refs)
1302 		return 0;
1303 
1304 	return 1;
1305 }
1306 
1307 EXPORT_SYMBOL(may_umount_tree);
1308 
1309 /**
1310  * may_umount - check if a mount point is busy
1311  * @mnt: root of mount
1312  *
1313  * This is called to check if a mount point has any
1314  * open files, pwds, chroots or sub mounts. If the
1315  * mount has sub mounts this will return busy
1316  * regardless of whether the sub mounts are busy.
1317  *
1318  * Doesn't take quota and stuff into account. IOW, in some cases it will
1319  * give false negatives. The main reason why it's here is that we need
1320  * a non-destructive way to look for easily umountable filesystems.
1321  */
1322 int may_umount(struct vfsmount *mnt)
1323 {
1324 	int ret = 1;
1325 	down_read(&namespace_sem);
1326 	lock_mount_hash();
1327 	if (propagate_mount_busy(real_mount(mnt), 2))
1328 		ret = 0;
1329 	unlock_mount_hash();
1330 	up_read(&namespace_sem);
1331 	return ret;
1332 }
1333 
1334 EXPORT_SYMBOL(may_umount);
1335 
1336 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1337 
1338 static void namespace_unlock(void)
1339 {
1340 	struct hlist_head head;
1341 
1342 	hlist_move_list(&unmounted, &head);
1343 
1344 	up_write(&namespace_sem);
1345 
1346 	if (likely(hlist_empty(&head)))
1347 		return;
1348 
1349 	synchronize_rcu();
1350 
1351 	group_pin_kill(&head);
1352 }
1353 
1354 static inline void namespace_lock(void)
1355 {
1356 	down_write(&namespace_sem);
1357 }
1358 
1359 enum umount_tree_flags {
1360 	UMOUNT_SYNC = 1,
1361 	UMOUNT_PROPAGATE = 2,
1362 	UMOUNT_CONNECTED = 4,
1363 };
1364 
1365 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1366 {
1367 	/* Leaving mounts connected is only valid for lazy umounts */
1368 	if (how & UMOUNT_SYNC)
1369 		return true;
1370 
1371 	/* A mount without a parent has nothing to be connected to */
1372 	if (!mnt_has_parent(mnt))
1373 		return true;
1374 
1375 	/* Because the reference counting rules change when mounts are
1376 	 * unmounted and connected, umounted mounts may not be
1377 	 * connected to mounted mounts.
1378 	 */
1379 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1380 		return true;
1381 
1382 	/* Has it been requested that the mount remain connected? */
1383 	if (how & UMOUNT_CONNECTED)
1384 		return false;
1385 
1386 	/* Is the mount locked such that it needs to remain connected? */
1387 	if (IS_MNT_LOCKED(mnt))
1388 		return false;
1389 
1390 	/* By default disconnect the mount */
1391 	return true;
1392 }
1393 
1394 /*
1395  * mount_lock must be held
1396  * namespace_sem must be held for write
1397  */
1398 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1399 {
1400 	LIST_HEAD(tmp_list);
1401 	struct mount *p;
1402 
1403 	if (how & UMOUNT_PROPAGATE)
1404 		propagate_mount_unlock(mnt);
1405 
1406 	/* Gather the mounts to umount */
1407 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1408 		p->mnt.mnt_flags |= MNT_UMOUNT;
1409 		list_move(&p->mnt_list, &tmp_list);
1410 	}
1411 
1412 	/* Hide the mounts from mnt_mounts */
1413 	list_for_each_entry(p, &tmp_list, mnt_list) {
1414 		list_del_init(&p->mnt_child);
1415 	}
1416 
1417 	/* Add propogated mounts to the tmp_list */
1418 	if (how & UMOUNT_PROPAGATE)
1419 		propagate_umount(&tmp_list);
1420 
1421 	while (!list_empty(&tmp_list)) {
1422 		bool disconnect;
1423 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1424 		list_del_init(&p->mnt_expire);
1425 		list_del_init(&p->mnt_list);
1426 		__touch_mnt_namespace(p->mnt_ns);
1427 		p->mnt_ns = NULL;
1428 		if (how & UMOUNT_SYNC)
1429 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1430 
1431 		disconnect = disconnect_mount(p, how);
1432 
1433 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1434 				 disconnect ? &unmounted : NULL);
1435 		if (mnt_has_parent(p)) {
1436 			mnt_add_count(p->mnt_parent, -1);
1437 			if (!disconnect) {
1438 				/* Don't forget about p */
1439 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1440 			} else {
1441 				umount_mnt(p);
1442 			}
1443 		}
1444 		change_mnt_propagation(p, MS_PRIVATE);
1445 	}
1446 }
1447 
1448 static void shrink_submounts(struct mount *mnt);
1449 
1450 static int do_umount(struct mount *mnt, int flags)
1451 {
1452 	struct super_block *sb = mnt->mnt.mnt_sb;
1453 	int retval;
1454 
1455 	retval = security_sb_umount(&mnt->mnt, flags);
1456 	if (retval)
1457 		return retval;
1458 
1459 	/*
1460 	 * Allow userspace to request a mountpoint be expired rather than
1461 	 * unmounting unconditionally. Unmount only happens if:
1462 	 *  (1) the mark is already set (the mark is cleared by mntput())
1463 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1464 	 */
1465 	if (flags & MNT_EXPIRE) {
1466 		if (&mnt->mnt == current->fs->root.mnt ||
1467 		    flags & (MNT_FORCE | MNT_DETACH))
1468 			return -EINVAL;
1469 
1470 		/*
1471 		 * probably don't strictly need the lock here if we examined
1472 		 * all race cases, but it's a slowpath.
1473 		 */
1474 		lock_mount_hash();
1475 		if (mnt_get_count(mnt) != 2) {
1476 			unlock_mount_hash();
1477 			return -EBUSY;
1478 		}
1479 		unlock_mount_hash();
1480 
1481 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1482 			return -EAGAIN;
1483 	}
1484 
1485 	/*
1486 	 * If we may have to abort operations to get out of this
1487 	 * mount, and they will themselves hold resources we must
1488 	 * allow the fs to do things. In the Unix tradition of
1489 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1490 	 * might fail to complete on the first run through as other tasks
1491 	 * must return, and the like. Thats for the mount program to worry
1492 	 * about for the moment.
1493 	 */
1494 
1495 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1496 		sb->s_op->umount_begin(sb);
1497 	}
1498 
1499 	/*
1500 	 * No sense to grab the lock for this test, but test itself looks
1501 	 * somewhat bogus. Suggestions for better replacement?
1502 	 * Ho-hum... In principle, we might treat that as umount + switch
1503 	 * to rootfs. GC would eventually take care of the old vfsmount.
1504 	 * Actually it makes sense, especially if rootfs would contain a
1505 	 * /reboot - static binary that would close all descriptors and
1506 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1507 	 */
1508 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1509 		/*
1510 		 * Special case for "unmounting" root ...
1511 		 * we just try to remount it readonly.
1512 		 */
1513 		if (!capable(CAP_SYS_ADMIN))
1514 			return -EPERM;
1515 		down_write(&sb->s_umount);
1516 		if (!(sb->s_flags & MS_RDONLY))
1517 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1518 		up_write(&sb->s_umount);
1519 		return retval;
1520 	}
1521 
1522 	namespace_lock();
1523 	lock_mount_hash();
1524 	event++;
1525 
1526 	if (flags & MNT_DETACH) {
1527 		if (!list_empty(&mnt->mnt_list))
1528 			umount_tree(mnt, UMOUNT_PROPAGATE);
1529 		retval = 0;
1530 	} else {
1531 		shrink_submounts(mnt);
1532 		retval = -EBUSY;
1533 		if (!propagate_mount_busy(mnt, 2)) {
1534 			if (!list_empty(&mnt->mnt_list))
1535 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1536 			retval = 0;
1537 		}
1538 	}
1539 	unlock_mount_hash();
1540 	namespace_unlock();
1541 	return retval;
1542 }
1543 
1544 /*
1545  * __detach_mounts - lazily unmount all mounts on the specified dentry
1546  *
1547  * During unlink, rmdir, and d_drop it is possible to loose the path
1548  * to an existing mountpoint, and wind up leaking the mount.
1549  * detach_mounts allows lazily unmounting those mounts instead of
1550  * leaking them.
1551  *
1552  * The caller may hold dentry->d_inode->i_mutex.
1553  */
1554 void __detach_mounts(struct dentry *dentry)
1555 {
1556 	struct mountpoint *mp;
1557 	struct mount *mnt;
1558 
1559 	namespace_lock();
1560 	mp = lookup_mountpoint(dentry);
1561 	if (IS_ERR_OR_NULL(mp))
1562 		goto out_unlock;
1563 
1564 	lock_mount_hash();
1565 	event++;
1566 	while (!hlist_empty(&mp->m_list)) {
1567 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1568 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1569 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1570 			umount_mnt(mnt);
1571 		}
1572 		else umount_tree(mnt, UMOUNT_CONNECTED);
1573 	}
1574 	unlock_mount_hash();
1575 	put_mountpoint(mp);
1576 out_unlock:
1577 	namespace_unlock();
1578 }
1579 
1580 /*
1581  * Is the caller allowed to modify his namespace?
1582  */
1583 static inline bool may_mount(void)
1584 {
1585 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1586 }
1587 
1588 static inline bool may_mandlock(void)
1589 {
1590 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1591 	return false;
1592 #endif
1593 	return capable(CAP_SYS_ADMIN);
1594 }
1595 
1596 /*
1597  * Now umount can handle mount points as well as block devices.
1598  * This is important for filesystems which use unnamed block devices.
1599  *
1600  * We now support a flag for forced unmount like the other 'big iron'
1601  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1602  */
1603 
1604 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1605 {
1606 	struct path path;
1607 	struct mount *mnt;
1608 	int retval;
1609 	int lookup_flags = 0;
1610 
1611 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1612 		return -EINVAL;
1613 
1614 	if (!may_mount())
1615 		return -EPERM;
1616 
1617 	if (!(flags & UMOUNT_NOFOLLOW))
1618 		lookup_flags |= LOOKUP_FOLLOW;
1619 
1620 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1621 	if (retval)
1622 		goto out;
1623 	mnt = real_mount(path.mnt);
1624 	retval = -EINVAL;
1625 	if (path.dentry != path.mnt->mnt_root)
1626 		goto dput_and_out;
1627 	if (!check_mnt(mnt))
1628 		goto dput_and_out;
1629 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630 		goto dput_and_out;
1631 	retval = -EPERM;
1632 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1633 		goto dput_and_out;
1634 
1635 	retval = do_umount(mnt, flags);
1636 dput_and_out:
1637 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1638 	dput(path.dentry);
1639 	mntput_no_expire(mnt);
1640 out:
1641 	return retval;
1642 }
1643 
1644 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1645 
1646 /*
1647  *	The 2.0 compatible umount. No flags.
1648  */
1649 SYSCALL_DEFINE1(oldumount, char __user *, name)
1650 {
1651 	return sys_umount(name, 0);
1652 }
1653 
1654 #endif
1655 
1656 static bool is_mnt_ns_file(struct dentry *dentry)
1657 {
1658 	/* Is this a proxy for a mount namespace? */
1659 	return dentry->d_op == &ns_dentry_operations &&
1660 	       dentry->d_fsdata == &mntns_operations;
1661 }
1662 
1663 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1664 {
1665 	return container_of(ns, struct mnt_namespace, ns);
1666 }
1667 
1668 static bool mnt_ns_loop(struct dentry *dentry)
1669 {
1670 	/* Could bind mounting the mount namespace inode cause a
1671 	 * mount namespace loop?
1672 	 */
1673 	struct mnt_namespace *mnt_ns;
1674 	if (!is_mnt_ns_file(dentry))
1675 		return false;
1676 
1677 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1678 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1679 }
1680 
1681 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1682 					int flag)
1683 {
1684 	struct mount *res, *p, *q, *r, *parent;
1685 
1686 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1687 		return ERR_PTR(-EINVAL);
1688 
1689 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1690 		return ERR_PTR(-EINVAL);
1691 
1692 	res = q = clone_mnt(mnt, dentry, flag);
1693 	if (IS_ERR(q))
1694 		return q;
1695 
1696 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1697 
1698 	p = mnt;
1699 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1700 		struct mount *s;
1701 		if (!is_subdir(r->mnt_mountpoint, dentry))
1702 			continue;
1703 
1704 		for (s = r; s; s = next_mnt(s, r)) {
1705 			struct mount *t = NULL;
1706 			if (!(flag & CL_COPY_UNBINDABLE) &&
1707 			    IS_MNT_UNBINDABLE(s)) {
1708 				s = skip_mnt_tree(s);
1709 				continue;
1710 			}
1711 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1712 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1713 				s = skip_mnt_tree(s);
1714 				continue;
1715 			}
1716 			while (p != s->mnt_parent) {
1717 				p = p->mnt_parent;
1718 				q = q->mnt_parent;
1719 			}
1720 			p = s;
1721 			parent = q;
1722 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1723 			if (IS_ERR(q))
1724 				goto out;
1725 			lock_mount_hash();
1726 			list_add_tail(&q->mnt_list, &res->mnt_list);
1727 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1728 			if (!list_empty(&parent->mnt_mounts)) {
1729 				t = list_last_entry(&parent->mnt_mounts,
1730 					struct mount, mnt_child);
1731 				if (t->mnt_mp != p->mnt_mp)
1732 					t = NULL;
1733 			}
1734 			attach_shadowed(q, parent, t);
1735 			unlock_mount_hash();
1736 		}
1737 	}
1738 	return res;
1739 out:
1740 	if (res) {
1741 		lock_mount_hash();
1742 		umount_tree(res, UMOUNT_SYNC);
1743 		unlock_mount_hash();
1744 	}
1745 	return q;
1746 }
1747 
1748 /* Caller should check returned pointer for errors */
1749 
1750 struct vfsmount *collect_mounts(struct path *path)
1751 {
1752 	struct mount *tree;
1753 	namespace_lock();
1754 	if (!check_mnt(real_mount(path->mnt)))
1755 		tree = ERR_PTR(-EINVAL);
1756 	else
1757 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1758 				 CL_COPY_ALL | CL_PRIVATE);
1759 	namespace_unlock();
1760 	if (IS_ERR(tree))
1761 		return ERR_CAST(tree);
1762 	return &tree->mnt;
1763 }
1764 
1765 void drop_collected_mounts(struct vfsmount *mnt)
1766 {
1767 	namespace_lock();
1768 	lock_mount_hash();
1769 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1770 	unlock_mount_hash();
1771 	namespace_unlock();
1772 }
1773 
1774 /**
1775  * clone_private_mount - create a private clone of a path
1776  *
1777  * This creates a new vfsmount, which will be the clone of @path.  The new will
1778  * not be attached anywhere in the namespace and will be private (i.e. changes
1779  * to the originating mount won't be propagated into this).
1780  *
1781  * Release with mntput().
1782  */
1783 struct vfsmount *clone_private_mount(struct path *path)
1784 {
1785 	struct mount *old_mnt = real_mount(path->mnt);
1786 	struct mount *new_mnt;
1787 
1788 	if (IS_MNT_UNBINDABLE(old_mnt))
1789 		return ERR_PTR(-EINVAL);
1790 
1791 	down_read(&namespace_sem);
1792 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1793 	up_read(&namespace_sem);
1794 	if (IS_ERR(new_mnt))
1795 		return ERR_CAST(new_mnt);
1796 
1797 	return &new_mnt->mnt;
1798 }
1799 EXPORT_SYMBOL_GPL(clone_private_mount);
1800 
1801 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1802 		   struct vfsmount *root)
1803 {
1804 	struct mount *mnt;
1805 	int res = f(root, arg);
1806 	if (res)
1807 		return res;
1808 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1809 		res = f(&mnt->mnt, arg);
1810 		if (res)
1811 			return res;
1812 	}
1813 	return 0;
1814 }
1815 
1816 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1817 {
1818 	struct mount *p;
1819 
1820 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1821 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1822 			mnt_release_group_id(p);
1823 	}
1824 }
1825 
1826 static int invent_group_ids(struct mount *mnt, bool recurse)
1827 {
1828 	struct mount *p;
1829 
1830 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1831 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1832 			int err = mnt_alloc_group_id(p);
1833 			if (err) {
1834 				cleanup_group_ids(mnt, p);
1835 				return err;
1836 			}
1837 		}
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 /*
1844  *  @source_mnt : mount tree to be attached
1845  *  @nd         : place the mount tree @source_mnt is attached
1846  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1847  *  		   store the parent mount and mountpoint dentry.
1848  *  		   (done when source_mnt is moved)
1849  *
1850  *  NOTE: in the table below explains the semantics when a source mount
1851  *  of a given type is attached to a destination mount of a given type.
1852  * ---------------------------------------------------------------------------
1853  * |         BIND MOUNT OPERATION                                            |
1854  * |**************************************************************************
1855  * | source-->| shared        |       private  |       slave    | unbindable |
1856  * | dest     |               |                |                |            |
1857  * |   |      |               |                |                |            |
1858  * |   v      |               |                |                |            |
1859  * |**************************************************************************
1860  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1861  * |          |               |                |                |            |
1862  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1863  * ***************************************************************************
1864  * A bind operation clones the source mount and mounts the clone on the
1865  * destination mount.
1866  *
1867  * (++)  the cloned mount is propagated to all the mounts in the propagation
1868  * 	 tree of the destination mount and the cloned mount is added to
1869  * 	 the peer group of the source mount.
1870  * (+)   the cloned mount is created under the destination mount and is marked
1871  *       as shared. The cloned mount is added to the peer group of the source
1872  *       mount.
1873  * (+++) the mount is propagated to all the mounts in the propagation tree
1874  *       of the destination mount and the cloned mount is made slave
1875  *       of the same master as that of the source mount. The cloned mount
1876  *       is marked as 'shared and slave'.
1877  * (*)   the cloned mount is made a slave of the same master as that of the
1878  * 	 source mount.
1879  *
1880  * ---------------------------------------------------------------------------
1881  * |         		MOVE MOUNT OPERATION                                 |
1882  * |**************************************************************************
1883  * | source-->| shared        |       private  |       slave    | unbindable |
1884  * | dest     |               |                |                |            |
1885  * |   |      |               |                |                |            |
1886  * |   v      |               |                |                |            |
1887  * |**************************************************************************
1888  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1889  * |          |               |                |                |            |
1890  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1891  * ***************************************************************************
1892  *
1893  * (+)  the mount is moved to the destination. And is then propagated to
1894  * 	all the mounts in the propagation tree of the destination mount.
1895  * (+*)  the mount is moved to the destination.
1896  * (+++)  the mount is moved to the destination and is then propagated to
1897  * 	all the mounts belonging to the destination mount's propagation tree.
1898  * 	the mount is marked as 'shared and slave'.
1899  * (*)	the mount continues to be a slave at the new location.
1900  *
1901  * if the source mount is a tree, the operations explained above is
1902  * applied to each mount in the tree.
1903  * Must be called without spinlocks held, since this function can sleep
1904  * in allocations.
1905  */
1906 static int attach_recursive_mnt(struct mount *source_mnt,
1907 			struct mount *dest_mnt,
1908 			struct mountpoint *dest_mp,
1909 			struct path *parent_path)
1910 {
1911 	HLIST_HEAD(tree_list);
1912 	struct mount *child, *p;
1913 	struct hlist_node *n;
1914 	int err;
1915 
1916 	if (IS_MNT_SHARED(dest_mnt)) {
1917 		err = invent_group_ids(source_mnt, true);
1918 		if (err)
1919 			goto out;
1920 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1921 		lock_mount_hash();
1922 		if (err)
1923 			goto out_cleanup_ids;
1924 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1925 			set_mnt_shared(p);
1926 	} else {
1927 		lock_mount_hash();
1928 	}
1929 	if (parent_path) {
1930 		detach_mnt(source_mnt, parent_path);
1931 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1932 		touch_mnt_namespace(source_mnt->mnt_ns);
1933 	} else {
1934 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1935 		commit_tree(source_mnt, NULL);
1936 	}
1937 
1938 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1939 		struct mount *q;
1940 		hlist_del_init(&child->mnt_hash);
1941 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1942 				      child->mnt_mountpoint);
1943 		commit_tree(child, q);
1944 	}
1945 	unlock_mount_hash();
1946 
1947 	return 0;
1948 
1949  out_cleanup_ids:
1950 	while (!hlist_empty(&tree_list)) {
1951 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1952 		umount_tree(child, UMOUNT_SYNC);
1953 	}
1954 	unlock_mount_hash();
1955 	cleanup_group_ids(source_mnt, NULL);
1956  out:
1957 	return err;
1958 }
1959 
1960 static struct mountpoint *lock_mount(struct path *path)
1961 {
1962 	struct vfsmount *mnt;
1963 	struct dentry *dentry = path->dentry;
1964 retry:
1965 	inode_lock(dentry->d_inode);
1966 	if (unlikely(cant_mount(dentry))) {
1967 		inode_unlock(dentry->d_inode);
1968 		return ERR_PTR(-ENOENT);
1969 	}
1970 	namespace_lock();
1971 	mnt = lookup_mnt(path);
1972 	if (likely(!mnt)) {
1973 		struct mountpoint *mp = lookup_mountpoint(dentry);
1974 		if (!mp)
1975 			mp = new_mountpoint(dentry);
1976 		if (IS_ERR(mp)) {
1977 			namespace_unlock();
1978 			inode_unlock(dentry->d_inode);
1979 			return mp;
1980 		}
1981 		return mp;
1982 	}
1983 	namespace_unlock();
1984 	inode_unlock(path->dentry->d_inode);
1985 	path_put(path);
1986 	path->mnt = mnt;
1987 	dentry = path->dentry = dget(mnt->mnt_root);
1988 	goto retry;
1989 }
1990 
1991 static void unlock_mount(struct mountpoint *where)
1992 {
1993 	struct dentry *dentry = where->m_dentry;
1994 	put_mountpoint(where);
1995 	namespace_unlock();
1996 	inode_unlock(dentry->d_inode);
1997 }
1998 
1999 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2000 {
2001 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2002 		return -EINVAL;
2003 
2004 	if (d_is_dir(mp->m_dentry) !=
2005 	      d_is_dir(mnt->mnt.mnt_root))
2006 		return -ENOTDIR;
2007 
2008 	return attach_recursive_mnt(mnt, p, mp, NULL);
2009 }
2010 
2011 /*
2012  * Sanity check the flags to change_mnt_propagation.
2013  */
2014 
2015 static int flags_to_propagation_type(int flags)
2016 {
2017 	int type = flags & ~(MS_REC | MS_SILENT);
2018 
2019 	/* Fail if any non-propagation flags are set */
2020 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2021 		return 0;
2022 	/* Only one propagation flag should be set */
2023 	if (!is_power_of_2(type))
2024 		return 0;
2025 	return type;
2026 }
2027 
2028 /*
2029  * recursively change the type of the mountpoint.
2030  */
2031 static int do_change_type(struct path *path, int flag)
2032 {
2033 	struct mount *m;
2034 	struct mount *mnt = real_mount(path->mnt);
2035 	int recurse = flag & MS_REC;
2036 	int type;
2037 	int err = 0;
2038 
2039 	if (path->dentry != path->mnt->mnt_root)
2040 		return -EINVAL;
2041 
2042 	type = flags_to_propagation_type(flag);
2043 	if (!type)
2044 		return -EINVAL;
2045 
2046 	namespace_lock();
2047 	if (type == MS_SHARED) {
2048 		err = invent_group_ids(mnt, recurse);
2049 		if (err)
2050 			goto out_unlock;
2051 	}
2052 
2053 	lock_mount_hash();
2054 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2055 		change_mnt_propagation(m, type);
2056 	unlock_mount_hash();
2057 
2058  out_unlock:
2059 	namespace_unlock();
2060 	return err;
2061 }
2062 
2063 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2064 {
2065 	struct mount *child;
2066 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2067 		if (!is_subdir(child->mnt_mountpoint, dentry))
2068 			continue;
2069 
2070 		if (child->mnt.mnt_flags & MNT_LOCKED)
2071 			return true;
2072 	}
2073 	return false;
2074 }
2075 
2076 /*
2077  * do loopback mount.
2078  */
2079 static int do_loopback(struct path *path, const char *old_name,
2080 				int recurse)
2081 {
2082 	struct path old_path;
2083 	struct mount *mnt = NULL, *old, *parent;
2084 	struct mountpoint *mp;
2085 	int err;
2086 	if (!old_name || !*old_name)
2087 		return -EINVAL;
2088 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2089 	if (err)
2090 		return err;
2091 
2092 	err = -EINVAL;
2093 	if (mnt_ns_loop(old_path.dentry))
2094 		goto out;
2095 
2096 	mp = lock_mount(path);
2097 	err = PTR_ERR(mp);
2098 	if (IS_ERR(mp))
2099 		goto out;
2100 
2101 	old = real_mount(old_path.mnt);
2102 	parent = real_mount(path->mnt);
2103 
2104 	err = -EINVAL;
2105 	if (IS_MNT_UNBINDABLE(old))
2106 		goto out2;
2107 
2108 	if (!check_mnt(parent))
2109 		goto out2;
2110 
2111 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2112 		goto out2;
2113 
2114 	if (!recurse && has_locked_children(old, old_path.dentry))
2115 		goto out2;
2116 
2117 	if (recurse)
2118 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2119 	else
2120 		mnt = clone_mnt(old, old_path.dentry, 0);
2121 
2122 	if (IS_ERR(mnt)) {
2123 		err = PTR_ERR(mnt);
2124 		goto out2;
2125 	}
2126 
2127 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2128 
2129 	err = graft_tree(mnt, parent, mp);
2130 	if (err) {
2131 		lock_mount_hash();
2132 		umount_tree(mnt, UMOUNT_SYNC);
2133 		unlock_mount_hash();
2134 	}
2135 out2:
2136 	unlock_mount(mp);
2137 out:
2138 	path_put(&old_path);
2139 	return err;
2140 }
2141 
2142 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2143 {
2144 	int error = 0;
2145 	int readonly_request = 0;
2146 
2147 	if (ms_flags & MS_RDONLY)
2148 		readonly_request = 1;
2149 	if (readonly_request == __mnt_is_readonly(mnt))
2150 		return 0;
2151 
2152 	if (readonly_request)
2153 		error = mnt_make_readonly(real_mount(mnt));
2154 	else
2155 		__mnt_unmake_readonly(real_mount(mnt));
2156 	return error;
2157 }
2158 
2159 /*
2160  * change filesystem flags. dir should be a physical root of filesystem.
2161  * If you've mounted a non-root directory somewhere and want to do remount
2162  * on it - tough luck.
2163  */
2164 static int do_remount(struct path *path, int flags, int mnt_flags,
2165 		      void *data)
2166 {
2167 	int err;
2168 	struct super_block *sb = path->mnt->mnt_sb;
2169 	struct mount *mnt = real_mount(path->mnt);
2170 
2171 	if (!check_mnt(mnt))
2172 		return -EINVAL;
2173 
2174 	if (path->dentry != path->mnt->mnt_root)
2175 		return -EINVAL;
2176 
2177 	/* Don't allow changing of locked mnt flags.
2178 	 *
2179 	 * No locks need to be held here while testing the various
2180 	 * MNT_LOCK flags because those flags can never be cleared
2181 	 * once they are set.
2182 	 */
2183 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2184 	    !(mnt_flags & MNT_READONLY)) {
2185 		return -EPERM;
2186 	}
2187 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2188 	    !(mnt_flags & MNT_NODEV)) {
2189 		/* Was the nodev implicitly added in mount? */
2190 		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2191 		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2192 			mnt_flags |= MNT_NODEV;
2193 		} else {
2194 			return -EPERM;
2195 		}
2196 	}
2197 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2198 	    !(mnt_flags & MNT_NOSUID)) {
2199 		return -EPERM;
2200 	}
2201 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2202 	    !(mnt_flags & MNT_NOEXEC)) {
2203 		return -EPERM;
2204 	}
2205 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2206 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2207 		return -EPERM;
2208 	}
2209 
2210 	err = security_sb_remount(sb, data);
2211 	if (err)
2212 		return err;
2213 
2214 	down_write(&sb->s_umount);
2215 	if (flags & MS_BIND)
2216 		err = change_mount_flags(path->mnt, flags);
2217 	else if (!capable(CAP_SYS_ADMIN))
2218 		err = -EPERM;
2219 	else
2220 		err = do_remount_sb(sb, flags, data, 0);
2221 	if (!err) {
2222 		lock_mount_hash();
2223 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2224 		mnt->mnt.mnt_flags = mnt_flags;
2225 		touch_mnt_namespace(mnt->mnt_ns);
2226 		unlock_mount_hash();
2227 	}
2228 	up_write(&sb->s_umount);
2229 	return err;
2230 }
2231 
2232 static inline int tree_contains_unbindable(struct mount *mnt)
2233 {
2234 	struct mount *p;
2235 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2236 		if (IS_MNT_UNBINDABLE(p))
2237 			return 1;
2238 	}
2239 	return 0;
2240 }
2241 
2242 static int do_move_mount(struct path *path, const char *old_name)
2243 {
2244 	struct path old_path, parent_path;
2245 	struct mount *p;
2246 	struct mount *old;
2247 	struct mountpoint *mp;
2248 	int err;
2249 	if (!old_name || !*old_name)
2250 		return -EINVAL;
2251 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2252 	if (err)
2253 		return err;
2254 
2255 	mp = lock_mount(path);
2256 	err = PTR_ERR(mp);
2257 	if (IS_ERR(mp))
2258 		goto out;
2259 
2260 	old = real_mount(old_path.mnt);
2261 	p = real_mount(path->mnt);
2262 
2263 	err = -EINVAL;
2264 	if (!check_mnt(p) || !check_mnt(old))
2265 		goto out1;
2266 
2267 	if (old->mnt.mnt_flags & MNT_LOCKED)
2268 		goto out1;
2269 
2270 	err = -EINVAL;
2271 	if (old_path.dentry != old_path.mnt->mnt_root)
2272 		goto out1;
2273 
2274 	if (!mnt_has_parent(old))
2275 		goto out1;
2276 
2277 	if (d_is_dir(path->dentry) !=
2278 	      d_is_dir(old_path.dentry))
2279 		goto out1;
2280 	/*
2281 	 * Don't move a mount residing in a shared parent.
2282 	 */
2283 	if (IS_MNT_SHARED(old->mnt_parent))
2284 		goto out1;
2285 	/*
2286 	 * Don't move a mount tree containing unbindable mounts to a destination
2287 	 * mount which is shared.
2288 	 */
2289 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2290 		goto out1;
2291 	err = -ELOOP;
2292 	for (; mnt_has_parent(p); p = p->mnt_parent)
2293 		if (p == old)
2294 			goto out1;
2295 
2296 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2297 	if (err)
2298 		goto out1;
2299 
2300 	/* if the mount is moved, it should no longer be expire
2301 	 * automatically */
2302 	list_del_init(&old->mnt_expire);
2303 out1:
2304 	unlock_mount(mp);
2305 out:
2306 	if (!err)
2307 		path_put(&parent_path);
2308 	path_put(&old_path);
2309 	return err;
2310 }
2311 
2312 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2313 {
2314 	int err;
2315 	const char *subtype = strchr(fstype, '.');
2316 	if (subtype) {
2317 		subtype++;
2318 		err = -EINVAL;
2319 		if (!subtype[0])
2320 			goto err;
2321 	} else
2322 		subtype = "";
2323 
2324 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2325 	err = -ENOMEM;
2326 	if (!mnt->mnt_sb->s_subtype)
2327 		goto err;
2328 	return mnt;
2329 
2330  err:
2331 	mntput(mnt);
2332 	return ERR_PTR(err);
2333 }
2334 
2335 /*
2336  * add a mount into a namespace's mount tree
2337  */
2338 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2339 {
2340 	struct mountpoint *mp;
2341 	struct mount *parent;
2342 	int err;
2343 
2344 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2345 
2346 	mp = lock_mount(path);
2347 	if (IS_ERR(mp))
2348 		return PTR_ERR(mp);
2349 
2350 	parent = real_mount(path->mnt);
2351 	err = -EINVAL;
2352 	if (unlikely(!check_mnt(parent))) {
2353 		/* that's acceptable only for automounts done in private ns */
2354 		if (!(mnt_flags & MNT_SHRINKABLE))
2355 			goto unlock;
2356 		/* ... and for those we'd better have mountpoint still alive */
2357 		if (!parent->mnt_ns)
2358 			goto unlock;
2359 	}
2360 
2361 	/* Refuse the same filesystem on the same mount point */
2362 	err = -EBUSY;
2363 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2364 	    path->mnt->mnt_root == path->dentry)
2365 		goto unlock;
2366 
2367 	err = -EINVAL;
2368 	if (d_is_symlink(newmnt->mnt.mnt_root))
2369 		goto unlock;
2370 
2371 	newmnt->mnt.mnt_flags = mnt_flags;
2372 	err = graft_tree(newmnt, parent, mp);
2373 
2374 unlock:
2375 	unlock_mount(mp);
2376 	return err;
2377 }
2378 
2379 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2380 
2381 /*
2382  * create a new mount for userspace and request it to be added into the
2383  * namespace's tree
2384  */
2385 static int do_new_mount(struct path *path, const char *fstype, int flags,
2386 			int mnt_flags, const char *name, void *data)
2387 {
2388 	struct file_system_type *type;
2389 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2390 	struct vfsmount *mnt;
2391 	int err;
2392 
2393 	if (!fstype)
2394 		return -EINVAL;
2395 
2396 	type = get_fs_type(fstype);
2397 	if (!type)
2398 		return -ENODEV;
2399 
2400 	if (user_ns != &init_user_ns) {
2401 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2402 			put_filesystem(type);
2403 			return -EPERM;
2404 		}
2405 		/* Only in special cases allow devices from mounts
2406 		 * created outside the initial user namespace.
2407 		 */
2408 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2409 			flags |= MS_NODEV;
2410 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2411 		}
2412 		if (type->fs_flags & FS_USERNS_VISIBLE) {
2413 			if (!fs_fully_visible(type, &mnt_flags)) {
2414 				put_filesystem(type);
2415 				return -EPERM;
2416 			}
2417 		}
2418 	}
2419 
2420 	mnt = vfs_kern_mount(type, flags, name, data);
2421 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2422 	    !mnt->mnt_sb->s_subtype)
2423 		mnt = fs_set_subtype(mnt, fstype);
2424 
2425 	put_filesystem(type);
2426 	if (IS_ERR(mnt))
2427 		return PTR_ERR(mnt);
2428 
2429 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2430 	if (err)
2431 		mntput(mnt);
2432 	return err;
2433 }
2434 
2435 int finish_automount(struct vfsmount *m, struct path *path)
2436 {
2437 	struct mount *mnt = real_mount(m);
2438 	int err;
2439 	/* The new mount record should have at least 2 refs to prevent it being
2440 	 * expired before we get a chance to add it
2441 	 */
2442 	BUG_ON(mnt_get_count(mnt) < 2);
2443 
2444 	if (m->mnt_sb == path->mnt->mnt_sb &&
2445 	    m->mnt_root == path->dentry) {
2446 		err = -ELOOP;
2447 		goto fail;
2448 	}
2449 
2450 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2451 	if (!err)
2452 		return 0;
2453 fail:
2454 	/* remove m from any expiration list it may be on */
2455 	if (!list_empty(&mnt->mnt_expire)) {
2456 		namespace_lock();
2457 		list_del_init(&mnt->mnt_expire);
2458 		namespace_unlock();
2459 	}
2460 	mntput(m);
2461 	mntput(m);
2462 	return err;
2463 }
2464 
2465 /**
2466  * mnt_set_expiry - Put a mount on an expiration list
2467  * @mnt: The mount to list.
2468  * @expiry_list: The list to add the mount to.
2469  */
2470 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2471 {
2472 	namespace_lock();
2473 
2474 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2475 
2476 	namespace_unlock();
2477 }
2478 EXPORT_SYMBOL(mnt_set_expiry);
2479 
2480 /*
2481  * process a list of expirable mountpoints with the intent of discarding any
2482  * mountpoints that aren't in use and haven't been touched since last we came
2483  * here
2484  */
2485 void mark_mounts_for_expiry(struct list_head *mounts)
2486 {
2487 	struct mount *mnt, *next;
2488 	LIST_HEAD(graveyard);
2489 
2490 	if (list_empty(mounts))
2491 		return;
2492 
2493 	namespace_lock();
2494 	lock_mount_hash();
2495 
2496 	/* extract from the expiration list every vfsmount that matches the
2497 	 * following criteria:
2498 	 * - only referenced by its parent vfsmount
2499 	 * - still marked for expiry (marked on the last call here; marks are
2500 	 *   cleared by mntput())
2501 	 */
2502 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2503 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2504 			propagate_mount_busy(mnt, 1))
2505 			continue;
2506 		list_move(&mnt->mnt_expire, &graveyard);
2507 	}
2508 	while (!list_empty(&graveyard)) {
2509 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2510 		touch_mnt_namespace(mnt->mnt_ns);
2511 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2512 	}
2513 	unlock_mount_hash();
2514 	namespace_unlock();
2515 }
2516 
2517 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2518 
2519 /*
2520  * Ripoff of 'select_parent()'
2521  *
2522  * search the list of submounts for a given mountpoint, and move any
2523  * shrinkable submounts to the 'graveyard' list.
2524  */
2525 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2526 {
2527 	struct mount *this_parent = parent;
2528 	struct list_head *next;
2529 	int found = 0;
2530 
2531 repeat:
2532 	next = this_parent->mnt_mounts.next;
2533 resume:
2534 	while (next != &this_parent->mnt_mounts) {
2535 		struct list_head *tmp = next;
2536 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2537 
2538 		next = tmp->next;
2539 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2540 			continue;
2541 		/*
2542 		 * Descend a level if the d_mounts list is non-empty.
2543 		 */
2544 		if (!list_empty(&mnt->mnt_mounts)) {
2545 			this_parent = mnt;
2546 			goto repeat;
2547 		}
2548 
2549 		if (!propagate_mount_busy(mnt, 1)) {
2550 			list_move_tail(&mnt->mnt_expire, graveyard);
2551 			found++;
2552 		}
2553 	}
2554 	/*
2555 	 * All done at this level ... ascend and resume the search
2556 	 */
2557 	if (this_parent != parent) {
2558 		next = this_parent->mnt_child.next;
2559 		this_parent = this_parent->mnt_parent;
2560 		goto resume;
2561 	}
2562 	return found;
2563 }
2564 
2565 /*
2566  * process a list of expirable mountpoints with the intent of discarding any
2567  * submounts of a specific parent mountpoint
2568  *
2569  * mount_lock must be held for write
2570  */
2571 static void shrink_submounts(struct mount *mnt)
2572 {
2573 	LIST_HEAD(graveyard);
2574 	struct mount *m;
2575 
2576 	/* extract submounts of 'mountpoint' from the expiration list */
2577 	while (select_submounts(mnt, &graveyard)) {
2578 		while (!list_empty(&graveyard)) {
2579 			m = list_first_entry(&graveyard, struct mount,
2580 						mnt_expire);
2581 			touch_mnt_namespace(m->mnt_ns);
2582 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2583 		}
2584 	}
2585 }
2586 
2587 /*
2588  * Some copy_from_user() implementations do not return the exact number of
2589  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2590  * Note that this function differs from copy_from_user() in that it will oops
2591  * on bad values of `to', rather than returning a short copy.
2592  */
2593 static long exact_copy_from_user(void *to, const void __user * from,
2594 				 unsigned long n)
2595 {
2596 	char *t = to;
2597 	const char __user *f = from;
2598 	char c;
2599 
2600 	if (!access_ok(VERIFY_READ, from, n))
2601 		return n;
2602 
2603 	while (n) {
2604 		if (__get_user(c, f)) {
2605 			memset(t, 0, n);
2606 			break;
2607 		}
2608 		*t++ = c;
2609 		f++;
2610 		n--;
2611 	}
2612 	return n;
2613 }
2614 
2615 void *copy_mount_options(const void __user * data)
2616 {
2617 	int i;
2618 	unsigned long size;
2619 	char *copy;
2620 
2621 	if (!data)
2622 		return NULL;
2623 
2624 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2625 	if (!copy)
2626 		return ERR_PTR(-ENOMEM);
2627 
2628 	/* We only care that *some* data at the address the user
2629 	 * gave us is valid.  Just in case, we'll zero
2630 	 * the remainder of the page.
2631 	 */
2632 	/* copy_from_user cannot cross TASK_SIZE ! */
2633 	size = TASK_SIZE - (unsigned long)data;
2634 	if (size > PAGE_SIZE)
2635 		size = PAGE_SIZE;
2636 
2637 	i = size - exact_copy_from_user(copy, data, size);
2638 	if (!i) {
2639 		kfree(copy);
2640 		return ERR_PTR(-EFAULT);
2641 	}
2642 	if (i != PAGE_SIZE)
2643 		memset(copy + i, 0, PAGE_SIZE - i);
2644 	return copy;
2645 }
2646 
2647 char *copy_mount_string(const void __user *data)
2648 {
2649 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2650 }
2651 
2652 /*
2653  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2654  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2655  *
2656  * data is a (void *) that can point to any structure up to
2657  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2658  * information (or be NULL).
2659  *
2660  * Pre-0.97 versions of mount() didn't have a flags word.
2661  * When the flags word was introduced its top half was required
2662  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2663  * Therefore, if this magic number is present, it carries no information
2664  * and must be discarded.
2665  */
2666 long do_mount(const char *dev_name, const char __user *dir_name,
2667 		const char *type_page, unsigned long flags, void *data_page)
2668 {
2669 	struct path path;
2670 	int retval = 0;
2671 	int mnt_flags = 0;
2672 
2673 	/* Discard magic */
2674 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2675 		flags &= ~MS_MGC_MSK;
2676 
2677 	/* Basic sanity checks */
2678 	if (data_page)
2679 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2680 
2681 	/* ... and get the mountpoint */
2682 	retval = user_path(dir_name, &path);
2683 	if (retval)
2684 		return retval;
2685 
2686 	retval = security_sb_mount(dev_name, &path,
2687 				   type_page, flags, data_page);
2688 	if (!retval && !may_mount())
2689 		retval = -EPERM;
2690 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2691 		retval = -EPERM;
2692 	if (retval)
2693 		goto dput_out;
2694 
2695 	/* Default to relatime unless overriden */
2696 	if (!(flags & MS_NOATIME))
2697 		mnt_flags |= MNT_RELATIME;
2698 
2699 	/* Separate the per-mountpoint flags */
2700 	if (flags & MS_NOSUID)
2701 		mnt_flags |= MNT_NOSUID;
2702 	if (flags & MS_NODEV)
2703 		mnt_flags |= MNT_NODEV;
2704 	if (flags & MS_NOEXEC)
2705 		mnt_flags |= MNT_NOEXEC;
2706 	if (flags & MS_NOATIME)
2707 		mnt_flags |= MNT_NOATIME;
2708 	if (flags & MS_NODIRATIME)
2709 		mnt_flags |= MNT_NODIRATIME;
2710 	if (flags & MS_STRICTATIME)
2711 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2712 	if (flags & MS_RDONLY)
2713 		mnt_flags |= MNT_READONLY;
2714 
2715 	/* The default atime for remount is preservation */
2716 	if ((flags & MS_REMOUNT) &&
2717 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2718 		       MS_STRICTATIME)) == 0)) {
2719 		mnt_flags &= ~MNT_ATIME_MASK;
2720 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2721 	}
2722 
2723 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2724 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2725 		   MS_STRICTATIME);
2726 
2727 	if (flags & MS_REMOUNT)
2728 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2729 				    data_page);
2730 	else if (flags & MS_BIND)
2731 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2732 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2733 		retval = do_change_type(&path, flags);
2734 	else if (flags & MS_MOVE)
2735 		retval = do_move_mount(&path, dev_name);
2736 	else
2737 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2738 				      dev_name, data_page);
2739 dput_out:
2740 	path_put(&path);
2741 	return retval;
2742 }
2743 
2744 static void free_mnt_ns(struct mnt_namespace *ns)
2745 {
2746 	ns_free_inum(&ns->ns);
2747 	put_user_ns(ns->user_ns);
2748 	kfree(ns);
2749 }
2750 
2751 /*
2752  * Assign a sequence number so we can detect when we attempt to bind
2753  * mount a reference to an older mount namespace into the current
2754  * mount namespace, preventing reference counting loops.  A 64bit
2755  * number incrementing at 10Ghz will take 12,427 years to wrap which
2756  * is effectively never, so we can ignore the possibility.
2757  */
2758 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2759 
2760 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2761 {
2762 	struct mnt_namespace *new_ns;
2763 	int ret;
2764 
2765 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2766 	if (!new_ns)
2767 		return ERR_PTR(-ENOMEM);
2768 	ret = ns_alloc_inum(&new_ns->ns);
2769 	if (ret) {
2770 		kfree(new_ns);
2771 		return ERR_PTR(ret);
2772 	}
2773 	new_ns->ns.ops = &mntns_operations;
2774 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2775 	atomic_set(&new_ns->count, 1);
2776 	new_ns->root = NULL;
2777 	INIT_LIST_HEAD(&new_ns->list);
2778 	init_waitqueue_head(&new_ns->poll);
2779 	new_ns->event = 0;
2780 	new_ns->user_ns = get_user_ns(user_ns);
2781 	return new_ns;
2782 }
2783 
2784 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2785 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2786 {
2787 	struct mnt_namespace *new_ns;
2788 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2789 	struct mount *p, *q;
2790 	struct mount *old;
2791 	struct mount *new;
2792 	int copy_flags;
2793 
2794 	BUG_ON(!ns);
2795 
2796 	if (likely(!(flags & CLONE_NEWNS))) {
2797 		get_mnt_ns(ns);
2798 		return ns;
2799 	}
2800 
2801 	old = ns->root;
2802 
2803 	new_ns = alloc_mnt_ns(user_ns);
2804 	if (IS_ERR(new_ns))
2805 		return new_ns;
2806 
2807 	namespace_lock();
2808 	/* First pass: copy the tree topology */
2809 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2810 	if (user_ns != ns->user_ns)
2811 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2812 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2813 	if (IS_ERR(new)) {
2814 		namespace_unlock();
2815 		free_mnt_ns(new_ns);
2816 		return ERR_CAST(new);
2817 	}
2818 	new_ns->root = new;
2819 	list_add_tail(&new_ns->list, &new->mnt_list);
2820 
2821 	/*
2822 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2823 	 * as belonging to new namespace.  We have already acquired a private
2824 	 * fs_struct, so tsk->fs->lock is not needed.
2825 	 */
2826 	p = old;
2827 	q = new;
2828 	while (p) {
2829 		q->mnt_ns = new_ns;
2830 		if (new_fs) {
2831 			if (&p->mnt == new_fs->root.mnt) {
2832 				new_fs->root.mnt = mntget(&q->mnt);
2833 				rootmnt = &p->mnt;
2834 			}
2835 			if (&p->mnt == new_fs->pwd.mnt) {
2836 				new_fs->pwd.mnt = mntget(&q->mnt);
2837 				pwdmnt = &p->mnt;
2838 			}
2839 		}
2840 		p = next_mnt(p, old);
2841 		q = next_mnt(q, new);
2842 		if (!q)
2843 			break;
2844 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2845 			p = next_mnt(p, old);
2846 	}
2847 	namespace_unlock();
2848 
2849 	if (rootmnt)
2850 		mntput(rootmnt);
2851 	if (pwdmnt)
2852 		mntput(pwdmnt);
2853 
2854 	return new_ns;
2855 }
2856 
2857 /**
2858  * create_mnt_ns - creates a private namespace and adds a root filesystem
2859  * @mnt: pointer to the new root filesystem mountpoint
2860  */
2861 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2862 {
2863 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2864 	if (!IS_ERR(new_ns)) {
2865 		struct mount *mnt = real_mount(m);
2866 		mnt->mnt_ns = new_ns;
2867 		new_ns->root = mnt;
2868 		list_add(&mnt->mnt_list, &new_ns->list);
2869 	} else {
2870 		mntput(m);
2871 	}
2872 	return new_ns;
2873 }
2874 
2875 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2876 {
2877 	struct mnt_namespace *ns;
2878 	struct super_block *s;
2879 	struct path path;
2880 	int err;
2881 
2882 	ns = create_mnt_ns(mnt);
2883 	if (IS_ERR(ns))
2884 		return ERR_CAST(ns);
2885 
2886 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2887 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2888 
2889 	put_mnt_ns(ns);
2890 
2891 	if (err)
2892 		return ERR_PTR(err);
2893 
2894 	/* trade a vfsmount reference for active sb one */
2895 	s = path.mnt->mnt_sb;
2896 	atomic_inc(&s->s_active);
2897 	mntput(path.mnt);
2898 	/* lock the sucker */
2899 	down_write(&s->s_umount);
2900 	/* ... and return the root of (sub)tree on it */
2901 	return path.dentry;
2902 }
2903 EXPORT_SYMBOL(mount_subtree);
2904 
2905 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2906 		char __user *, type, unsigned long, flags, void __user *, data)
2907 {
2908 	int ret;
2909 	char *kernel_type;
2910 	char *kernel_dev;
2911 	void *options;
2912 
2913 	kernel_type = copy_mount_string(type);
2914 	ret = PTR_ERR(kernel_type);
2915 	if (IS_ERR(kernel_type))
2916 		goto out_type;
2917 
2918 	kernel_dev = copy_mount_string(dev_name);
2919 	ret = PTR_ERR(kernel_dev);
2920 	if (IS_ERR(kernel_dev))
2921 		goto out_dev;
2922 
2923 	options = copy_mount_options(data);
2924 	ret = PTR_ERR(options);
2925 	if (IS_ERR(options))
2926 		goto out_data;
2927 
2928 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2929 
2930 	kfree(options);
2931 out_data:
2932 	kfree(kernel_dev);
2933 out_dev:
2934 	kfree(kernel_type);
2935 out_type:
2936 	return ret;
2937 }
2938 
2939 /*
2940  * Return true if path is reachable from root
2941  *
2942  * namespace_sem or mount_lock is held
2943  */
2944 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2945 			 const struct path *root)
2946 {
2947 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2948 		dentry = mnt->mnt_mountpoint;
2949 		mnt = mnt->mnt_parent;
2950 	}
2951 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2952 }
2953 
2954 bool path_is_under(struct path *path1, struct path *path2)
2955 {
2956 	bool res;
2957 	read_seqlock_excl(&mount_lock);
2958 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2959 	read_sequnlock_excl(&mount_lock);
2960 	return res;
2961 }
2962 EXPORT_SYMBOL(path_is_under);
2963 
2964 /*
2965  * pivot_root Semantics:
2966  * Moves the root file system of the current process to the directory put_old,
2967  * makes new_root as the new root file system of the current process, and sets
2968  * root/cwd of all processes which had them on the current root to new_root.
2969  *
2970  * Restrictions:
2971  * The new_root and put_old must be directories, and  must not be on the
2972  * same file  system as the current process root. The put_old  must  be
2973  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2974  * pointed to by put_old must yield the same directory as new_root. No other
2975  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2976  *
2977  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2978  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2979  * in this situation.
2980  *
2981  * Notes:
2982  *  - we don't move root/cwd if they are not at the root (reason: if something
2983  *    cared enough to change them, it's probably wrong to force them elsewhere)
2984  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2985  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2986  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2987  *    first.
2988  */
2989 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2990 		const char __user *, put_old)
2991 {
2992 	struct path new, old, parent_path, root_parent, root;
2993 	struct mount *new_mnt, *root_mnt, *old_mnt;
2994 	struct mountpoint *old_mp, *root_mp;
2995 	int error;
2996 
2997 	if (!may_mount())
2998 		return -EPERM;
2999 
3000 	error = user_path_dir(new_root, &new);
3001 	if (error)
3002 		goto out0;
3003 
3004 	error = user_path_dir(put_old, &old);
3005 	if (error)
3006 		goto out1;
3007 
3008 	error = security_sb_pivotroot(&old, &new);
3009 	if (error)
3010 		goto out2;
3011 
3012 	get_fs_root(current->fs, &root);
3013 	old_mp = lock_mount(&old);
3014 	error = PTR_ERR(old_mp);
3015 	if (IS_ERR(old_mp))
3016 		goto out3;
3017 
3018 	error = -EINVAL;
3019 	new_mnt = real_mount(new.mnt);
3020 	root_mnt = real_mount(root.mnt);
3021 	old_mnt = real_mount(old.mnt);
3022 	if (IS_MNT_SHARED(old_mnt) ||
3023 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3024 		IS_MNT_SHARED(root_mnt->mnt_parent))
3025 		goto out4;
3026 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3027 		goto out4;
3028 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3029 		goto out4;
3030 	error = -ENOENT;
3031 	if (d_unlinked(new.dentry))
3032 		goto out4;
3033 	error = -EBUSY;
3034 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3035 		goto out4; /* loop, on the same file system  */
3036 	error = -EINVAL;
3037 	if (root.mnt->mnt_root != root.dentry)
3038 		goto out4; /* not a mountpoint */
3039 	if (!mnt_has_parent(root_mnt))
3040 		goto out4; /* not attached */
3041 	root_mp = root_mnt->mnt_mp;
3042 	if (new.mnt->mnt_root != new.dentry)
3043 		goto out4; /* not a mountpoint */
3044 	if (!mnt_has_parent(new_mnt))
3045 		goto out4; /* not attached */
3046 	/* make sure we can reach put_old from new_root */
3047 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3048 		goto out4;
3049 	/* make certain new is below the root */
3050 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3051 		goto out4;
3052 	root_mp->m_count++; /* pin it so it won't go away */
3053 	lock_mount_hash();
3054 	detach_mnt(new_mnt, &parent_path);
3055 	detach_mnt(root_mnt, &root_parent);
3056 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3057 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3058 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3059 	}
3060 	/* mount old root on put_old */
3061 	attach_mnt(root_mnt, old_mnt, old_mp);
3062 	/* mount new_root on / */
3063 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3064 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3065 	/* A moved mount should not expire automatically */
3066 	list_del_init(&new_mnt->mnt_expire);
3067 	unlock_mount_hash();
3068 	chroot_fs_refs(&root, &new);
3069 	put_mountpoint(root_mp);
3070 	error = 0;
3071 out4:
3072 	unlock_mount(old_mp);
3073 	if (!error) {
3074 		path_put(&root_parent);
3075 		path_put(&parent_path);
3076 	}
3077 out3:
3078 	path_put(&root);
3079 out2:
3080 	path_put(&old);
3081 out1:
3082 	path_put(&new);
3083 out0:
3084 	return error;
3085 }
3086 
3087 static void __init init_mount_tree(void)
3088 {
3089 	struct vfsmount *mnt;
3090 	struct mnt_namespace *ns;
3091 	struct path root;
3092 	struct file_system_type *type;
3093 
3094 	type = get_fs_type("rootfs");
3095 	if (!type)
3096 		panic("Can't find rootfs type");
3097 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3098 	put_filesystem(type);
3099 	if (IS_ERR(mnt))
3100 		panic("Can't create rootfs");
3101 
3102 	ns = create_mnt_ns(mnt);
3103 	if (IS_ERR(ns))
3104 		panic("Can't allocate initial namespace");
3105 
3106 	init_task.nsproxy->mnt_ns = ns;
3107 	get_mnt_ns(ns);
3108 
3109 	root.mnt = mnt;
3110 	root.dentry = mnt->mnt_root;
3111 	mnt->mnt_flags |= MNT_LOCKED;
3112 
3113 	set_fs_pwd(current->fs, &root);
3114 	set_fs_root(current->fs, &root);
3115 }
3116 
3117 void __init mnt_init(void)
3118 {
3119 	unsigned u;
3120 	int err;
3121 
3122 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3123 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3124 
3125 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3126 				sizeof(struct hlist_head),
3127 				mhash_entries, 19,
3128 				0,
3129 				&m_hash_shift, &m_hash_mask, 0, 0);
3130 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3131 				sizeof(struct hlist_head),
3132 				mphash_entries, 19,
3133 				0,
3134 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3135 
3136 	if (!mount_hashtable || !mountpoint_hashtable)
3137 		panic("Failed to allocate mount hash table\n");
3138 
3139 	for (u = 0; u <= m_hash_mask; u++)
3140 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3141 	for (u = 0; u <= mp_hash_mask; u++)
3142 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3143 
3144 	kernfs_init();
3145 
3146 	err = sysfs_init();
3147 	if (err)
3148 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3149 			__func__, err);
3150 	fs_kobj = kobject_create_and_add("fs", NULL);
3151 	if (!fs_kobj)
3152 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3153 	init_rootfs();
3154 	init_mount_tree();
3155 }
3156 
3157 void put_mnt_ns(struct mnt_namespace *ns)
3158 {
3159 	if (!atomic_dec_and_test(&ns->count))
3160 		return;
3161 	drop_collected_mounts(&ns->root->mnt);
3162 	free_mnt_ns(ns);
3163 }
3164 
3165 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3166 {
3167 	struct vfsmount *mnt;
3168 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3169 	if (!IS_ERR(mnt)) {
3170 		/*
3171 		 * it is a longterm mount, don't release mnt until
3172 		 * we unmount before file sys is unregistered
3173 		*/
3174 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3175 	}
3176 	return mnt;
3177 }
3178 EXPORT_SYMBOL_GPL(kern_mount_data);
3179 
3180 void kern_unmount(struct vfsmount *mnt)
3181 {
3182 	/* release long term mount so mount point can be released */
3183 	if (!IS_ERR_OR_NULL(mnt)) {
3184 		real_mount(mnt)->mnt_ns = NULL;
3185 		synchronize_rcu();	/* yecchhh... */
3186 		mntput(mnt);
3187 	}
3188 }
3189 EXPORT_SYMBOL(kern_unmount);
3190 
3191 bool our_mnt(struct vfsmount *mnt)
3192 {
3193 	return check_mnt(real_mount(mnt));
3194 }
3195 
3196 bool current_chrooted(void)
3197 {
3198 	/* Does the current process have a non-standard root */
3199 	struct path ns_root;
3200 	struct path fs_root;
3201 	bool chrooted;
3202 
3203 	/* Find the namespace root */
3204 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3205 	ns_root.dentry = ns_root.mnt->mnt_root;
3206 	path_get(&ns_root);
3207 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3208 		;
3209 
3210 	get_fs_root(current->fs, &fs_root);
3211 
3212 	chrooted = !path_equal(&fs_root, &ns_root);
3213 
3214 	path_put(&fs_root);
3215 	path_put(&ns_root);
3216 
3217 	return chrooted;
3218 }
3219 
3220 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3221 {
3222 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3223 	int new_flags = *new_mnt_flags;
3224 	struct mount *mnt;
3225 	bool visible = false;
3226 
3227 	if (unlikely(!ns))
3228 		return false;
3229 
3230 	down_read(&namespace_sem);
3231 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3232 		struct mount *child;
3233 		int mnt_flags;
3234 
3235 		if (mnt->mnt.mnt_sb->s_type != type)
3236 			continue;
3237 
3238 		/* This mount is not fully visible if it's root directory
3239 		 * is not the root directory of the filesystem.
3240 		 */
3241 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3242 			continue;
3243 
3244 		/* Read the mount flags and filter out flags that
3245 		 * may safely be ignored.
3246 		 */
3247 		mnt_flags = mnt->mnt.mnt_flags;
3248 		if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3249 			mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3250 
3251 		/* Don't miss readonly hidden in the superblock flags */
3252 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3253 			mnt_flags |= MNT_LOCK_READONLY;
3254 
3255 		/* Verify the mount flags are equal to or more permissive
3256 		 * than the proposed new mount.
3257 		 */
3258 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3259 		    !(new_flags & MNT_READONLY))
3260 			continue;
3261 		if ((mnt_flags & MNT_LOCK_NODEV) &&
3262 		    !(new_flags & MNT_NODEV))
3263 			continue;
3264 		if ((mnt_flags & MNT_LOCK_NOSUID) &&
3265 		    !(new_flags & MNT_NOSUID))
3266 			continue;
3267 		if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3268 		    !(new_flags & MNT_NOEXEC))
3269 			continue;
3270 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3271 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3272 			continue;
3273 
3274 		/* This mount is not fully visible if there are any
3275 		 * locked child mounts that cover anything except for
3276 		 * empty directories.
3277 		 */
3278 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3279 			struct inode *inode = child->mnt_mountpoint->d_inode;
3280 			/* Only worry about locked mounts */
3281 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3282 				continue;
3283 			/* Is the directory permanetly empty? */
3284 			if (!is_empty_dir_inode(inode))
3285 				goto next;
3286 		}
3287 		/* Preserve the locked attributes */
3288 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3289 					       MNT_LOCK_NODEV    | \
3290 					       MNT_LOCK_NOSUID   | \
3291 					       MNT_LOCK_NOEXEC   | \
3292 					       MNT_LOCK_ATIME);
3293 		visible = true;
3294 		goto found;
3295 	next:	;
3296 	}
3297 found:
3298 	up_read(&namespace_sem);
3299 	return visible;
3300 }
3301 
3302 static struct ns_common *mntns_get(struct task_struct *task)
3303 {
3304 	struct ns_common *ns = NULL;
3305 	struct nsproxy *nsproxy;
3306 
3307 	task_lock(task);
3308 	nsproxy = task->nsproxy;
3309 	if (nsproxy) {
3310 		ns = &nsproxy->mnt_ns->ns;
3311 		get_mnt_ns(to_mnt_ns(ns));
3312 	}
3313 	task_unlock(task);
3314 
3315 	return ns;
3316 }
3317 
3318 static void mntns_put(struct ns_common *ns)
3319 {
3320 	put_mnt_ns(to_mnt_ns(ns));
3321 }
3322 
3323 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3324 {
3325 	struct fs_struct *fs = current->fs;
3326 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3327 	struct path root;
3328 
3329 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3330 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3331 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3332 		return -EPERM;
3333 
3334 	if (fs->users != 1)
3335 		return -EINVAL;
3336 
3337 	get_mnt_ns(mnt_ns);
3338 	put_mnt_ns(nsproxy->mnt_ns);
3339 	nsproxy->mnt_ns = mnt_ns;
3340 
3341 	/* Find the root */
3342 	root.mnt    = &mnt_ns->root->mnt;
3343 	root.dentry = mnt_ns->root->mnt.mnt_root;
3344 	path_get(&root);
3345 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3346 		;
3347 
3348 	/* Update the pwd and root */
3349 	set_fs_pwd(fs, &root);
3350 	set_fs_root(fs, &root);
3351 
3352 	path_put(&root);
3353 	return 0;
3354 }
3355 
3356 const struct proc_ns_operations mntns_operations = {
3357 	.name		= "mnt",
3358 	.type		= CLONE_NEWNS,
3359 	.get		= mntns_get,
3360 	.put		= mntns_put,
3361 	.install	= mntns_install,
3362 };
3363