1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/nospec.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_IDA(mnt_id_ida); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET); 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static DEFINE_RWLOCK(mnt_ns_tree_lock); 83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 84 85 struct mount_kattr { 86 unsigned int attr_set; 87 unsigned int attr_clr; 88 unsigned int propagation; 89 unsigned int lookup_flags; 90 bool recurse; 91 struct user_namespace *mnt_userns; 92 struct mnt_idmap *mnt_idmap; 93 }; 94 95 /* /sys/fs */ 96 struct kobject *fs_kobj __ro_after_init; 97 EXPORT_SYMBOL_GPL(fs_kobj); 98 99 /* 100 * vfsmount lock may be taken for read to prevent changes to the 101 * vfsmount hash, ie. during mountpoint lookups or walking back 102 * up the tree. 103 * 104 * It should be taken for write in all cases where the vfsmount 105 * tree or hash is modified or when a vfsmount structure is modified. 106 */ 107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 108 109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns) 110 { 111 u64 seq_b = ns->seq; 112 113 if (seq < seq_b) 114 return -1; 115 if (seq > seq_b) 116 return 1; 117 return 0; 118 } 119 120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 121 { 122 if (!node) 123 return NULL; 124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 125 } 126 127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b) 128 { 129 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 130 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 131 u64 seq_a = ns_a->seq; 132 133 return mnt_ns_cmp(seq_a, ns_b) < 0; 134 } 135 136 static void mnt_ns_tree_add(struct mnt_namespace *ns) 137 { 138 guard(write_lock)(&mnt_ns_tree_lock); 139 rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less); 140 } 141 142 static void mnt_ns_release(struct mnt_namespace *ns) 143 { 144 lockdep_assert_not_held(&mnt_ns_tree_lock); 145 146 /* keep alive for {list,stat}mount() */ 147 if (refcount_dec_and_test(&ns->passive)) { 148 put_user_ns(ns->user_ns); 149 kfree(ns); 150 } 151 } 152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 153 154 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 155 { 156 /* remove from global mount namespace list */ 157 if (!is_anon_ns(ns)) { 158 guard(write_lock)(&mnt_ns_tree_lock); 159 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 160 } 161 162 mnt_ns_release(ns); 163 } 164 165 /* 166 * Returns the mount namespace which either has the specified id, or has the 167 * next smallest id afer the specified one. 168 */ 169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id) 170 { 171 struct rb_node *node = mnt_ns_tree.rb_node; 172 struct mnt_namespace *ret = NULL; 173 174 lockdep_assert_held(&mnt_ns_tree_lock); 175 176 while (node) { 177 struct mnt_namespace *n = node_to_mnt_ns(node); 178 179 if (mnt_ns_id <= n->seq) { 180 ret = node_to_mnt_ns(node); 181 if (mnt_ns_id == n->seq) 182 break; 183 node = node->rb_left; 184 } else { 185 node = node->rb_right; 186 } 187 } 188 return ret; 189 } 190 191 /* 192 * Lookup a mount namespace by id and take a passive reference count. Taking a 193 * passive reference means the mount namespace can be emptied if e.g., the last 194 * task holding an active reference exits. To access the mounts of the 195 * namespace the @namespace_sem must first be acquired. If the namespace has 196 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 197 * see that the mount rbtree of the namespace is empty. 198 */ 199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 200 { 201 struct mnt_namespace *ns; 202 203 guard(read_lock)(&mnt_ns_tree_lock); 204 ns = mnt_ns_find_id_at(mnt_ns_id); 205 if (!ns || ns->seq != mnt_ns_id) 206 return NULL; 207 208 refcount_inc(&ns->passive); 209 return ns; 210 } 211 212 static inline void lock_mount_hash(void) 213 { 214 write_seqlock(&mount_lock); 215 } 216 217 static inline void unlock_mount_hash(void) 218 { 219 write_sequnlock(&mount_lock); 220 } 221 222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 223 { 224 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 225 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 226 tmp = tmp + (tmp >> m_hash_shift); 227 return &mount_hashtable[tmp & m_hash_mask]; 228 } 229 230 static inline struct hlist_head *mp_hash(struct dentry *dentry) 231 { 232 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 233 tmp = tmp + (tmp >> mp_hash_shift); 234 return &mountpoint_hashtable[tmp & mp_hash_mask]; 235 } 236 237 static int mnt_alloc_id(struct mount *mnt) 238 { 239 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 240 241 if (res < 0) 242 return res; 243 mnt->mnt_id = res; 244 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr); 245 return 0; 246 } 247 248 static void mnt_free_id(struct mount *mnt) 249 { 250 ida_free(&mnt_id_ida, mnt->mnt_id); 251 } 252 253 /* 254 * Allocate a new peer group ID 255 */ 256 static int mnt_alloc_group_id(struct mount *mnt) 257 { 258 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 259 260 if (res < 0) 261 return res; 262 mnt->mnt_group_id = res; 263 return 0; 264 } 265 266 /* 267 * Release a peer group ID 268 */ 269 void mnt_release_group_id(struct mount *mnt) 270 { 271 ida_free(&mnt_group_ida, mnt->mnt_group_id); 272 mnt->mnt_group_id = 0; 273 } 274 275 /* 276 * vfsmount lock must be held for read 277 */ 278 static inline void mnt_add_count(struct mount *mnt, int n) 279 { 280 #ifdef CONFIG_SMP 281 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 282 #else 283 preempt_disable(); 284 mnt->mnt_count += n; 285 preempt_enable(); 286 #endif 287 } 288 289 /* 290 * vfsmount lock must be held for write 291 */ 292 int mnt_get_count(struct mount *mnt) 293 { 294 #ifdef CONFIG_SMP 295 int count = 0; 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 300 } 301 302 return count; 303 #else 304 return mnt->mnt_count; 305 #endif 306 } 307 308 static struct mount *alloc_vfsmnt(const char *name) 309 { 310 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 311 if (mnt) { 312 int err; 313 314 err = mnt_alloc_id(mnt); 315 if (err) 316 goto out_free_cache; 317 318 if (name) { 319 mnt->mnt_devname = kstrdup_const(name, 320 GFP_KERNEL_ACCOUNT); 321 if (!mnt->mnt_devname) 322 goto out_free_id; 323 } 324 325 #ifdef CONFIG_SMP 326 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 327 if (!mnt->mnt_pcp) 328 goto out_free_devname; 329 330 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 331 #else 332 mnt->mnt_count = 1; 333 mnt->mnt_writers = 0; 334 #endif 335 336 INIT_HLIST_NODE(&mnt->mnt_hash); 337 INIT_LIST_HEAD(&mnt->mnt_child); 338 INIT_LIST_HEAD(&mnt->mnt_mounts); 339 INIT_LIST_HEAD(&mnt->mnt_list); 340 INIT_LIST_HEAD(&mnt->mnt_expire); 341 INIT_LIST_HEAD(&mnt->mnt_share); 342 INIT_LIST_HEAD(&mnt->mnt_slave_list); 343 INIT_LIST_HEAD(&mnt->mnt_slave); 344 INIT_HLIST_NODE(&mnt->mnt_mp_list); 345 INIT_LIST_HEAD(&mnt->mnt_umounting); 346 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 347 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 348 } 349 return mnt; 350 351 #ifdef CONFIG_SMP 352 out_free_devname: 353 kfree_const(mnt->mnt_devname); 354 #endif 355 out_free_id: 356 mnt_free_id(mnt); 357 out_free_cache: 358 kmem_cache_free(mnt_cache, mnt); 359 return NULL; 360 } 361 362 /* 363 * Most r/o checks on a fs are for operations that take 364 * discrete amounts of time, like a write() or unlink(). 365 * We must keep track of when those operations start 366 * (for permission checks) and when they end, so that 367 * we can determine when writes are able to occur to 368 * a filesystem. 369 */ 370 /* 371 * __mnt_is_readonly: check whether a mount is read-only 372 * @mnt: the mount to check for its write status 373 * 374 * This shouldn't be used directly ouside of the VFS. 375 * It does not guarantee that the filesystem will stay 376 * r/w, just that it is right *now*. This can not and 377 * should not be used in place of IS_RDONLY(inode). 378 * mnt_want/drop_write() will _keep_ the filesystem 379 * r/w. 380 */ 381 bool __mnt_is_readonly(struct vfsmount *mnt) 382 { 383 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 384 } 385 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 386 387 static inline void mnt_inc_writers(struct mount *mnt) 388 { 389 #ifdef CONFIG_SMP 390 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 391 #else 392 mnt->mnt_writers++; 393 #endif 394 } 395 396 static inline void mnt_dec_writers(struct mount *mnt) 397 { 398 #ifdef CONFIG_SMP 399 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 400 #else 401 mnt->mnt_writers--; 402 #endif 403 } 404 405 static unsigned int mnt_get_writers(struct mount *mnt) 406 { 407 #ifdef CONFIG_SMP 408 unsigned int count = 0; 409 int cpu; 410 411 for_each_possible_cpu(cpu) { 412 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 413 } 414 415 return count; 416 #else 417 return mnt->mnt_writers; 418 #endif 419 } 420 421 static int mnt_is_readonly(struct vfsmount *mnt) 422 { 423 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 424 return 1; 425 /* 426 * The barrier pairs with the barrier in sb_start_ro_state_change() 427 * making sure if we don't see s_readonly_remount set yet, we also will 428 * not see any superblock / mount flag changes done by remount. 429 * It also pairs with the barrier in sb_end_ro_state_change() 430 * assuring that if we see s_readonly_remount already cleared, we will 431 * see the values of superblock / mount flags updated by remount. 432 */ 433 smp_rmb(); 434 return __mnt_is_readonly(mnt); 435 } 436 437 /* 438 * Most r/o & frozen checks on a fs are for operations that take discrete 439 * amounts of time, like a write() or unlink(). We must keep track of when 440 * those operations start (for permission checks) and when they end, so that we 441 * can determine when writes are able to occur to a filesystem. 442 */ 443 /** 444 * mnt_get_write_access - get write access to a mount without freeze protection 445 * @m: the mount on which to take a write 446 * 447 * This tells the low-level filesystem that a write is about to be performed to 448 * it, and makes sure that writes are allowed (mnt it read-write) before 449 * returning success. This operation does not protect against filesystem being 450 * frozen. When the write operation is finished, mnt_put_write_access() must be 451 * called. This is effectively a refcount. 452 */ 453 int mnt_get_write_access(struct vfsmount *m) 454 { 455 struct mount *mnt = real_mount(m); 456 int ret = 0; 457 458 preempt_disable(); 459 mnt_inc_writers(mnt); 460 /* 461 * The store to mnt_inc_writers must be visible before we pass 462 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 463 * incremented count after it has set MNT_WRITE_HOLD. 464 */ 465 smp_mb(); 466 might_lock(&mount_lock.lock); 467 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 468 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 469 cpu_relax(); 470 } else { 471 /* 472 * This prevents priority inversion, if the task 473 * setting MNT_WRITE_HOLD got preempted on a remote 474 * CPU, and it prevents life lock if the task setting 475 * MNT_WRITE_HOLD has a lower priority and is bound to 476 * the same CPU as the task that is spinning here. 477 */ 478 preempt_enable(); 479 lock_mount_hash(); 480 unlock_mount_hash(); 481 preempt_disable(); 482 } 483 } 484 /* 485 * The barrier pairs with the barrier sb_start_ro_state_change() making 486 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 487 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 488 * mnt_is_readonly() and bail in case we are racing with remount 489 * read-only. 490 */ 491 smp_rmb(); 492 if (mnt_is_readonly(m)) { 493 mnt_dec_writers(mnt); 494 ret = -EROFS; 495 } 496 preempt_enable(); 497 498 return ret; 499 } 500 EXPORT_SYMBOL_GPL(mnt_get_write_access); 501 502 /** 503 * mnt_want_write - get write access to a mount 504 * @m: the mount on which to take a write 505 * 506 * This tells the low-level filesystem that a write is about to be performed to 507 * it, and makes sure that writes are allowed (mount is read-write, filesystem 508 * is not frozen) before returning success. When the write operation is 509 * finished, mnt_drop_write() must be called. This is effectively a refcount. 510 */ 511 int mnt_want_write(struct vfsmount *m) 512 { 513 int ret; 514 515 sb_start_write(m->mnt_sb); 516 ret = mnt_get_write_access(m); 517 if (ret) 518 sb_end_write(m->mnt_sb); 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(mnt_want_write); 522 523 /** 524 * mnt_get_write_access_file - get write access to a file's mount 525 * @file: the file who's mount on which to take a write 526 * 527 * This is like mnt_get_write_access, but if @file is already open for write it 528 * skips incrementing mnt_writers (since the open file already has a reference) 529 * and instead only does the check for emergency r/o remounts. This must be 530 * paired with mnt_put_write_access_file. 531 */ 532 int mnt_get_write_access_file(struct file *file) 533 { 534 if (file->f_mode & FMODE_WRITER) { 535 /* 536 * Superblock may have become readonly while there are still 537 * writable fd's, e.g. due to a fs error with errors=remount-ro 538 */ 539 if (__mnt_is_readonly(file->f_path.mnt)) 540 return -EROFS; 541 return 0; 542 } 543 return mnt_get_write_access(file->f_path.mnt); 544 } 545 546 /** 547 * mnt_want_write_file - get write access to a file's mount 548 * @file: the file who's mount on which to take a write 549 * 550 * This is like mnt_want_write, but if the file is already open for writing it 551 * skips incrementing mnt_writers (since the open file already has a reference) 552 * and instead only does the freeze protection and the check for emergency r/o 553 * remounts. This must be paired with mnt_drop_write_file. 554 */ 555 int mnt_want_write_file(struct file *file) 556 { 557 int ret; 558 559 sb_start_write(file_inode(file)->i_sb); 560 ret = mnt_get_write_access_file(file); 561 if (ret) 562 sb_end_write(file_inode(file)->i_sb); 563 return ret; 564 } 565 EXPORT_SYMBOL_GPL(mnt_want_write_file); 566 567 /** 568 * mnt_put_write_access - give up write access to a mount 569 * @mnt: the mount on which to give up write access 570 * 571 * Tells the low-level filesystem that we are done 572 * performing writes to it. Must be matched with 573 * mnt_get_write_access() call above. 574 */ 575 void mnt_put_write_access(struct vfsmount *mnt) 576 { 577 preempt_disable(); 578 mnt_dec_writers(real_mount(mnt)); 579 preempt_enable(); 580 } 581 EXPORT_SYMBOL_GPL(mnt_put_write_access); 582 583 /** 584 * mnt_drop_write - give up write access to a mount 585 * @mnt: the mount on which to give up write access 586 * 587 * Tells the low-level filesystem that we are done performing writes to it and 588 * also allows filesystem to be frozen again. Must be matched with 589 * mnt_want_write() call above. 590 */ 591 void mnt_drop_write(struct vfsmount *mnt) 592 { 593 mnt_put_write_access(mnt); 594 sb_end_write(mnt->mnt_sb); 595 } 596 EXPORT_SYMBOL_GPL(mnt_drop_write); 597 598 void mnt_put_write_access_file(struct file *file) 599 { 600 if (!(file->f_mode & FMODE_WRITER)) 601 mnt_put_write_access(file->f_path.mnt); 602 } 603 604 void mnt_drop_write_file(struct file *file) 605 { 606 mnt_put_write_access_file(file); 607 sb_end_write(file_inode(file)->i_sb); 608 } 609 EXPORT_SYMBOL(mnt_drop_write_file); 610 611 /** 612 * mnt_hold_writers - prevent write access to the given mount 613 * @mnt: mnt to prevent write access to 614 * 615 * Prevents write access to @mnt if there are no active writers for @mnt. 616 * This function needs to be called and return successfully before changing 617 * properties of @mnt that need to remain stable for callers with write access 618 * to @mnt. 619 * 620 * After this functions has been called successfully callers must pair it with 621 * a call to mnt_unhold_writers() in order to stop preventing write access to 622 * @mnt. 623 * 624 * Context: This function expects lock_mount_hash() to be held serializing 625 * setting MNT_WRITE_HOLD. 626 * Return: On success 0 is returned. 627 * On error, -EBUSY is returned. 628 */ 629 static inline int mnt_hold_writers(struct mount *mnt) 630 { 631 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 632 /* 633 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 634 * should be visible before we do. 635 */ 636 smp_mb(); 637 638 /* 639 * With writers on hold, if this value is zero, then there are 640 * definitely no active writers (although held writers may subsequently 641 * increment the count, they'll have to wait, and decrement it after 642 * seeing MNT_READONLY). 643 * 644 * It is OK to have counter incremented on one CPU and decremented on 645 * another: the sum will add up correctly. The danger would be when we 646 * sum up each counter, if we read a counter before it is incremented, 647 * but then read another CPU's count which it has been subsequently 648 * decremented from -- we would see more decrements than we should. 649 * MNT_WRITE_HOLD protects against this scenario, because 650 * mnt_want_write first increments count, then smp_mb, then spins on 651 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 652 * we're counting up here. 653 */ 654 if (mnt_get_writers(mnt) > 0) 655 return -EBUSY; 656 657 return 0; 658 } 659 660 /** 661 * mnt_unhold_writers - stop preventing write access to the given mount 662 * @mnt: mnt to stop preventing write access to 663 * 664 * Stop preventing write access to @mnt allowing callers to gain write access 665 * to @mnt again. 666 * 667 * This function can only be called after a successful call to 668 * mnt_hold_writers(). 669 * 670 * Context: This function expects lock_mount_hash() to be held. 671 */ 672 static inline void mnt_unhold_writers(struct mount *mnt) 673 { 674 /* 675 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 676 * that become unheld will see MNT_READONLY. 677 */ 678 smp_wmb(); 679 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 680 } 681 682 static int mnt_make_readonly(struct mount *mnt) 683 { 684 int ret; 685 686 ret = mnt_hold_writers(mnt); 687 if (!ret) 688 mnt->mnt.mnt_flags |= MNT_READONLY; 689 mnt_unhold_writers(mnt); 690 return ret; 691 } 692 693 int sb_prepare_remount_readonly(struct super_block *sb) 694 { 695 struct mount *mnt; 696 int err = 0; 697 698 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 699 if (atomic_long_read(&sb->s_remove_count)) 700 return -EBUSY; 701 702 lock_mount_hash(); 703 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 704 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 705 err = mnt_hold_writers(mnt); 706 if (err) 707 break; 708 } 709 } 710 if (!err && atomic_long_read(&sb->s_remove_count)) 711 err = -EBUSY; 712 713 if (!err) 714 sb_start_ro_state_change(sb); 715 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 716 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 717 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 718 } 719 unlock_mount_hash(); 720 721 return err; 722 } 723 724 static void free_vfsmnt(struct mount *mnt) 725 { 726 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 727 kfree_const(mnt->mnt_devname); 728 #ifdef CONFIG_SMP 729 free_percpu(mnt->mnt_pcp); 730 #endif 731 kmem_cache_free(mnt_cache, mnt); 732 } 733 734 static void delayed_free_vfsmnt(struct rcu_head *head) 735 { 736 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 737 } 738 739 /* call under rcu_read_lock */ 740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 741 { 742 struct mount *mnt; 743 if (read_seqretry(&mount_lock, seq)) 744 return 1; 745 if (bastard == NULL) 746 return 0; 747 mnt = real_mount(bastard); 748 mnt_add_count(mnt, 1); 749 smp_mb(); // see mntput_no_expire() 750 if (likely(!read_seqretry(&mount_lock, seq))) 751 return 0; 752 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 753 mnt_add_count(mnt, -1); 754 return 1; 755 } 756 lock_mount_hash(); 757 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 758 mnt_add_count(mnt, -1); 759 unlock_mount_hash(); 760 return 1; 761 } 762 unlock_mount_hash(); 763 /* caller will mntput() */ 764 return -1; 765 } 766 767 /* call under rcu_read_lock */ 768 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 769 { 770 int res = __legitimize_mnt(bastard, seq); 771 if (likely(!res)) 772 return true; 773 if (unlikely(res < 0)) { 774 rcu_read_unlock(); 775 mntput(bastard); 776 rcu_read_lock(); 777 } 778 return false; 779 } 780 781 /** 782 * __lookup_mnt - find first child mount 783 * @mnt: parent mount 784 * @dentry: mountpoint 785 * 786 * If @mnt has a child mount @c mounted @dentry find and return it. 787 * 788 * Note that the child mount @c need not be unique. There are cases 789 * where shadow mounts are created. For example, during mount 790 * propagation when a source mount @mnt whose root got overmounted by a 791 * mount @o after path lookup but before @namespace_sem could be 792 * acquired gets copied and propagated. So @mnt gets copied including 793 * @o. When @mnt is propagated to a destination mount @d that already 794 * has another mount @n mounted at the same mountpoint then the source 795 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 796 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 797 * on @dentry. 798 * 799 * Return: The first child of @mnt mounted @dentry or NULL. 800 */ 801 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 802 { 803 struct hlist_head *head = m_hash(mnt, dentry); 804 struct mount *p; 805 806 hlist_for_each_entry_rcu(p, head, mnt_hash) 807 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 808 return p; 809 return NULL; 810 } 811 812 /* 813 * lookup_mnt - Return the first child mount mounted at path 814 * 815 * "First" means first mounted chronologically. If you create the 816 * following mounts: 817 * 818 * mount /dev/sda1 /mnt 819 * mount /dev/sda2 /mnt 820 * mount /dev/sda3 /mnt 821 * 822 * Then lookup_mnt() on the base /mnt dentry in the root mount will 823 * return successively the root dentry and vfsmount of /dev/sda1, then 824 * /dev/sda2, then /dev/sda3, then NULL. 825 * 826 * lookup_mnt takes a reference to the found vfsmount. 827 */ 828 struct vfsmount *lookup_mnt(const struct path *path) 829 { 830 struct mount *child_mnt; 831 struct vfsmount *m; 832 unsigned seq; 833 834 rcu_read_lock(); 835 do { 836 seq = read_seqbegin(&mount_lock); 837 child_mnt = __lookup_mnt(path->mnt, path->dentry); 838 m = child_mnt ? &child_mnt->mnt : NULL; 839 } while (!legitimize_mnt(m, seq)); 840 rcu_read_unlock(); 841 return m; 842 } 843 844 /* 845 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 846 * current mount namespace. 847 * 848 * The common case is dentries are not mountpoints at all and that 849 * test is handled inline. For the slow case when we are actually 850 * dealing with a mountpoint of some kind, walk through all of the 851 * mounts in the current mount namespace and test to see if the dentry 852 * is a mountpoint. 853 * 854 * The mount_hashtable is not usable in the context because we 855 * need to identify all mounts that may be in the current mount 856 * namespace not just a mount that happens to have some specified 857 * parent mount. 858 */ 859 bool __is_local_mountpoint(struct dentry *dentry) 860 { 861 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 862 struct mount *mnt, *n; 863 bool is_covered = false; 864 865 down_read(&namespace_sem); 866 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 867 is_covered = (mnt->mnt_mountpoint == dentry); 868 if (is_covered) 869 break; 870 } 871 up_read(&namespace_sem); 872 873 return is_covered; 874 } 875 876 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 877 { 878 struct hlist_head *chain = mp_hash(dentry); 879 struct mountpoint *mp; 880 881 hlist_for_each_entry(mp, chain, m_hash) { 882 if (mp->m_dentry == dentry) { 883 mp->m_count++; 884 return mp; 885 } 886 } 887 return NULL; 888 } 889 890 static struct mountpoint *get_mountpoint(struct dentry *dentry) 891 { 892 struct mountpoint *mp, *new = NULL; 893 int ret; 894 895 if (d_mountpoint(dentry)) { 896 /* might be worth a WARN_ON() */ 897 if (d_unlinked(dentry)) 898 return ERR_PTR(-ENOENT); 899 mountpoint: 900 read_seqlock_excl(&mount_lock); 901 mp = lookup_mountpoint(dentry); 902 read_sequnlock_excl(&mount_lock); 903 if (mp) 904 goto done; 905 } 906 907 if (!new) 908 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 909 if (!new) 910 return ERR_PTR(-ENOMEM); 911 912 913 /* Exactly one processes may set d_mounted */ 914 ret = d_set_mounted(dentry); 915 916 /* Someone else set d_mounted? */ 917 if (ret == -EBUSY) 918 goto mountpoint; 919 920 /* The dentry is not available as a mountpoint? */ 921 mp = ERR_PTR(ret); 922 if (ret) 923 goto done; 924 925 /* Add the new mountpoint to the hash table */ 926 read_seqlock_excl(&mount_lock); 927 new->m_dentry = dget(dentry); 928 new->m_count = 1; 929 hlist_add_head(&new->m_hash, mp_hash(dentry)); 930 INIT_HLIST_HEAD(&new->m_list); 931 read_sequnlock_excl(&mount_lock); 932 933 mp = new; 934 new = NULL; 935 done: 936 kfree(new); 937 return mp; 938 } 939 940 /* 941 * vfsmount lock must be held. Additionally, the caller is responsible 942 * for serializing calls for given disposal list. 943 */ 944 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 945 { 946 if (!--mp->m_count) { 947 struct dentry *dentry = mp->m_dentry; 948 BUG_ON(!hlist_empty(&mp->m_list)); 949 spin_lock(&dentry->d_lock); 950 dentry->d_flags &= ~DCACHE_MOUNTED; 951 spin_unlock(&dentry->d_lock); 952 dput_to_list(dentry, list); 953 hlist_del(&mp->m_hash); 954 kfree(mp); 955 } 956 } 957 958 /* called with namespace_lock and vfsmount lock */ 959 static void put_mountpoint(struct mountpoint *mp) 960 { 961 __put_mountpoint(mp, &ex_mountpoints); 962 } 963 964 static inline int check_mnt(struct mount *mnt) 965 { 966 return mnt->mnt_ns == current->nsproxy->mnt_ns; 967 } 968 969 /* 970 * vfsmount lock must be held for write 971 */ 972 static void touch_mnt_namespace(struct mnt_namespace *ns) 973 { 974 if (ns) { 975 ns->event = ++event; 976 wake_up_interruptible(&ns->poll); 977 } 978 } 979 980 /* 981 * vfsmount lock must be held for write 982 */ 983 static void __touch_mnt_namespace(struct mnt_namespace *ns) 984 { 985 if (ns && ns->event != event) { 986 ns->event = event; 987 wake_up_interruptible(&ns->poll); 988 } 989 } 990 991 /* 992 * vfsmount lock must be held for write 993 */ 994 static struct mountpoint *unhash_mnt(struct mount *mnt) 995 { 996 struct mountpoint *mp; 997 mnt->mnt_parent = mnt; 998 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 999 list_del_init(&mnt->mnt_child); 1000 hlist_del_init_rcu(&mnt->mnt_hash); 1001 hlist_del_init(&mnt->mnt_mp_list); 1002 mp = mnt->mnt_mp; 1003 mnt->mnt_mp = NULL; 1004 return mp; 1005 } 1006 1007 /* 1008 * vfsmount lock must be held for write 1009 */ 1010 static void umount_mnt(struct mount *mnt) 1011 { 1012 put_mountpoint(unhash_mnt(mnt)); 1013 } 1014 1015 /* 1016 * vfsmount lock must be held for write 1017 */ 1018 void mnt_set_mountpoint(struct mount *mnt, 1019 struct mountpoint *mp, 1020 struct mount *child_mnt) 1021 { 1022 mp->m_count++; 1023 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1024 child_mnt->mnt_mountpoint = mp->m_dentry; 1025 child_mnt->mnt_parent = mnt; 1026 child_mnt->mnt_mp = mp; 1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1028 } 1029 1030 /** 1031 * mnt_set_mountpoint_beneath - mount a mount beneath another one 1032 * 1033 * @new_parent: the source mount 1034 * @top_mnt: the mount beneath which @new_parent is mounted 1035 * @new_mp: the new mountpoint of @top_mnt on @new_parent 1036 * 1037 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 1038 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 1039 * @new_mp. And mount @new_parent on the old parent and old 1040 * mountpoint of @top_mnt. 1041 * 1042 * Context: This function expects namespace_lock() and lock_mount_hash() 1043 * to have been acquired in that order. 1044 */ 1045 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 1046 struct mount *top_mnt, 1047 struct mountpoint *new_mp) 1048 { 1049 struct mount *old_top_parent = top_mnt->mnt_parent; 1050 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 1051 1052 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 1053 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 1054 } 1055 1056 1057 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1058 { 1059 hlist_add_head_rcu(&mnt->mnt_hash, 1060 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1061 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1062 } 1063 1064 /** 1065 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1066 * list of child mounts 1067 * @parent: the parent 1068 * @mnt: the new mount 1069 * @mp: the new mountpoint 1070 * @beneath: whether to mount @mnt beneath or on top of @parent 1071 * 1072 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 1073 * to @parent's child mount list and to @mount_hashtable. 1074 * 1075 * If @beneath is true, remove @mnt from its current parent and 1076 * mountpoint and mount it on @mp on @parent, and mount @parent on the 1077 * old parent and old mountpoint of @mnt. Finally, attach @parent to 1078 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 1079 * 1080 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 1081 * to the correct parent. 1082 * 1083 * Context: This function expects namespace_lock() and lock_mount_hash() 1084 * to have been acquired in that order. 1085 */ 1086 static void attach_mnt(struct mount *mnt, struct mount *parent, 1087 struct mountpoint *mp, bool beneath) 1088 { 1089 if (beneath) 1090 mnt_set_mountpoint_beneath(mnt, parent, mp); 1091 else 1092 mnt_set_mountpoint(parent, mp, mnt); 1093 /* 1094 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1095 * beneath @parent then @mnt will need to be attached to 1096 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1097 * isn't the same mount as @parent. 1098 */ 1099 __attach_mnt(mnt, mnt->mnt_parent); 1100 } 1101 1102 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1103 { 1104 struct mountpoint *old_mp = mnt->mnt_mp; 1105 struct mount *old_parent = mnt->mnt_parent; 1106 1107 list_del_init(&mnt->mnt_child); 1108 hlist_del_init(&mnt->mnt_mp_list); 1109 hlist_del_init_rcu(&mnt->mnt_hash); 1110 1111 attach_mnt(mnt, parent, mp, false); 1112 1113 put_mountpoint(old_mp); 1114 mnt_add_count(old_parent, -1); 1115 } 1116 1117 static inline struct mount *node_to_mount(struct rb_node *node) 1118 { 1119 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1120 } 1121 1122 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1123 { 1124 struct rb_node **link = &ns->mounts.rb_node; 1125 struct rb_node *parent = NULL; 1126 1127 WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB); 1128 mnt->mnt_ns = ns; 1129 while (*link) { 1130 parent = *link; 1131 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) 1132 link = &parent->rb_left; 1133 else 1134 link = &parent->rb_right; 1135 } 1136 rb_link_node(&mnt->mnt_node, parent, link); 1137 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1138 mnt->mnt.mnt_flags |= MNT_ONRB; 1139 } 1140 1141 /* 1142 * vfsmount lock must be held for write 1143 */ 1144 static void commit_tree(struct mount *mnt) 1145 { 1146 struct mount *parent = mnt->mnt_parent; 1147 struct mount *m; 1148 LIST_HEAD(head); 1149 struct mnt_namespace *n = parent->mnt_ns; 1150 1151 BUG_ON(parent == mnt); 1152 1153 list_add_tail(&head, &mnt->mnt_list); 1154 while (!list_empty(&head)) { 1155 m = list_first_entry(&head, typeof(*m), mnt_list); 1156 list_del(&m->mnt_list); 1157 1158 mnt_add_to_ns(n, m); 1159 } 1160 n->nr_mounts += n->pending_mounts; 1161 n->pending_mounts = 0; 1162 1163 __attach_mnt(mnt, parent); 1164 touch_mnt_namespace(n); 1165 } 1166 1167 static struct mount *next_mnt(struct mount *p, struct mount *root) 1168 { 1169 struct list_head *next = p->mnt_mounts.next; 1170 if (next == &p->mnt_mounts) { 1171 while (1) { 1172 if (p == root) 1173 return NULL; 1174 next = p->mnt_child.next; 1175 if (next != &p->mnt_parent->mnt_mounts) 1176 break; 1177 p = p->mnt_parent; 1178 } 1179 } 1180 return list_entry(next, struct mount, mnt_child); 1181 } 1182 1183 static struct mount *skip_mnt_tree(struct mount *p) 1184 { 1185 struct list_head *prev = p->mnt_mounts.prev; 1186 while (prev != &p->mnt_mounts) { 1187 p = list_entry(prev, struct mount, mnt_child); 1188 prev = p->mnt_mounts.prev; 1189 } 1190 return p; 1191 } 1192 1193 /** 1194 * vfs_create_mount - Create a mount for a configured superblock 1195 * @fc: The configuration context with the superblock attached 1196 * 1197 * Create a mount to an already configured superblock. If necessary, the 1198 * caller should invoke vfs_get_tree() before calling this. 1199 * 1200 * Note that this does not attach the mount to anything. 1201 */ 1202 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1203 { 1204 struct mount *mnt; 1205 1206 if (!fc->root) 1207 return ERR_PTR(-EINVAL); 1208 1209 mnt = alloc_vfsmnt(fc->source ?: "none"); 1210 if (!mnt) 1211 return ERR_PTR(-ENOMEM); 1212 1213 if (fc->sb_flags & SB_KERNMOUNT) 1214 mnt->mnt.mnt_flags = MNT_INTERNAL; 1215 1216 atomic_inc(&fc->root->d_sb->s_active); 1217 mnt->mnt.mnt_sb = fc->root->d_sb; 1218 mnt->mnt.mnt_root = dget(fc->root); 1219 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1220 mnt->mnt_parent = mnt; 1221 1222 lock_mount_hash(); 1223 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1224 unlock_mount_hash(); 1225 return &mnt->mnt; 1226 } 1227 EXPORT_SYMBOL(vfs_create_mount); 1228 1229 struct vfsmount *fc_mount(struct fs_context *fc) 1230 { 1231 int err = vfs_get_tree(fc); 1232 if (!err) { 1233 up_write(&fc->root->d_sb->s_umount); 1234 return vfs_create_mount(fc); 1235 } 1236 return ERR_PTR(err); 1237 } 1238 EXPORT_SYMBOL(fc_mount); 1239 1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1241 int flags, const char *name, 1242 void *data) 1243 { 1244 struct fs_context *fc; 1245 struct vfsmount *mnt; 1246 int ret = 0; 1247 1248 if (!type) 1249 return ERR_PTR(-EINVAL); 1250 1251 fc = fs_context_for_mount(type, flags); 1252 if (IS_ERR(fc)) 1253 return ERR_CAST(fc); 1254 1255 if (name) 1256 ret = vfs_parse_fs_string(fc, "source", 1257 name, strlen(name)); 1258 if (!ret) 1259 ret = parse_monolithic_mount_data(fc, data); 1260 if (!ret) 1261 mnt = fc_mount(fc); 1262 else 1263 mnt = ERR_PTR(ret); 1264 1265 put_fs_context(fc); 1266 return mnt; 1267 } 1268 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1269 1270 struct vfsmount * 1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1272 const char *name, void *data) 1273 { 1274 /* Until it is worked out how to pass the user namespace 1275 * through from the parent mount to the submount don't support 1276 * unprivileged mounts with submounts. 1277 */ 1278 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1279 return ERR_PTR(-EPERM); 1280 1281 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1282 } 1283 EXPORT_SYMBOL_GPL(vfs_submount); 1284 1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1286 int flag) 1287 { 1288 struct super_block *sb = old->mnt.mnt_sb; 1289 struct mount *mnt; 1290 int err; 1291 1292 mnt = alloc_vfsmnt(old->mnt_devname); 1293 if (!mnt) 1294 return ERR_PTR(-ENOMEM); 1295 1296 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1297 mnt->mnt_group_id = 0; /* not a peer of original */ 1298 else 1299 mnt->mnt_group_id = old->mnt_group_id; 1300 1301 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1302 err = mnt_alloc_group_id(mnt); 1303 if (err) 1304 goto out_free; 1305 } 1306 1307 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1308 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB); 1309 1310 atomic_inc(&sb->s_active); 1311 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1312 1313 mnt->mnt.mnt_sb = sb; 1314 mnt->mnt.mnt_root = dget(root); 1315 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1316 mnt->mnt_parent = mnt; 1317 lock_mount_hash(); 1318 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1319 unlock_mount_hash(); 1320 1321 if ((flag & CL_SLAVE) || 1322 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1323 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1324 mnt->mnt_master = old; 1325 CLEAR_MNT_SHARED(mnt); 1326 } else if (!(flag & CL_PRIVATE)) { 1327 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1328 list_add(&mnt->mnt_share, &old->mnt_share); 1329 if (IS_MNT_SLAVE(old)) 1330 list_add(&mnt->mnt_slave, &old->mnt_slave); 1331 mnt->mnt_master = old->mnt_master; 1332 } else { 1333 CLEAR_MNT_SHARED(mnt); 1334 } 1335 if (flag & CL_MAKE_SHARED) 1336 set_mnt_shared(mnt); 1337 1338 /* stick the duplicate mount on the same expiry list 1339 * as the original if that was on one */ 1340 if (flag & CL_EXPIRE) { 1341 if (!list_empty(&old->mnt_expire)) 1342 list_add(&mnt->mnt_expire, &old->mnt_expire); 1343 } 1344 1345 return mnt; 1346 1347 out_free: 1348 mnt_free_id(mnt); 1349 free_vfsmnt(mnt); 1350 return ERR_PTR(err); 1351 } 1352 1353 static void cleanup_mnt(struct mount *mnt) 1354 { 1355 struct hlist_node *p; 1356 struct mount *m; 1357 /* 1358 * The warning here probably indicates that somebody messed 1359 * up a mnt_want/drop_write() pair. If this happens, the 1360 * filesystem was probably unable to make r/w->r/o transitions. 1361 * The locking used to deal with mnt_count decrement provides barriers, 1362 * so mnt_get_writers() below is safe. 1363 */ 1364 WARN_ON(mnt_get_writers(mnt)); 1365 if (unlikely(mnt->mnt_pins.first)) 1366 mnt_pin_kill(mnt); 1367 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1368 hlist_del(&m->mnt_umount); 1369 mntput(&m->mnt); 1370 } 1371 fsnotify_vfsmount_delete(&mnt->mnt); 1372 dput(mnt->mnt.mnt_root); 1373 deactivate_super(mnt->mnt.mnt_sb); 1374 mnt_free_id(mnt); 1375 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1376 } 1377 1378 static void __cleanup_mnt(struct rcu_head *head) 1379 { 1380 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1381 } 1382 1383 static LLIST_HEAD(delayed_mntput_list); 1384 static void delayed_mntput(struct work_struct *unused) 1385 { 1386 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1387 struct mount *m, *t; 1388 1389 llist_for_each_entry_safe(m, t, node, mnt_llist) 1390 cleanup_mnt(m); 1391 } 1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1393 1394 static void mntput_no_expire(struct mount *mnt) 1395 { 1396 LIST_HEAD(list); 1397 int count; 1398 1399 rcu_read_lock(); 1400 if (likely(READ_ONCE(mnt->mnt_ns))) { 1401 /* 1402 * Since we don't do lock_mount_hash() here, 1403 * ->mnt_ns can change under us. However, if it's 1404 * non-NULL, then there's a reference that won't 1405 * be dropped until after an RCU delay done after 1406 * turning ->mnt_ns NULL. So if we observe it 1407 * non-NULL under rcu_read_lock(), the reference 1408 * we are dropping is not the final one. 1409 */ 1410 mnt_add_count(mnt, -1); 1411 rcu_read_unlock(); 1412 return; 1413 } 1414 lock_mount_hash(); 1415 /* 1416 * make sure that if __legitimize_mnt() has not seen us grab 1417 * mount_lock, we'll see their refcount increment here. 1418 */ 1419 smp_mb(); 1420 mnt_add_count(mnt, -1); 1421 count = mnt_get_count(mnt); 1422 if (count != 0) { 1423 WARN_ON(count < 0); 1424 rcu_read_unlock(); 1425 unlock_mount_hash(); 1426 return; 1427 } 1428 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1429 rcu_read_unlock(); 1430 unlock_mount_hash(); 1431 return; 1432 } 1433 mnt->mnt.mnt_flags |= MNT_DOOMED; 1434 rcu_read_unlock(); 1435 1436 list_del(&mnt->mnt_instance); 1437 1438 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1439 struct mount *p, *tmp; 1440 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1441 __put_mountpoint(unhash_mnt(p), &list); 1442 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1443 } 1444 } 1445 unlock_mount_hash(); 1446 shrink_dentry_list(&list); 1447 1448 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1449 struct task_struct *task = current; 1450 if (likely(!(task->flags & PF_KTHREAD))) { 1451 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1452 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1453 return; 1454 } 1455 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1456 schedule_delayed_work(&delayed_mntput_work, 1); 1457 return; 1458 } 1459 cleanup_mnt(mnt); 1460 } 1461 1462 void mntput(struct vfsmount *mnt) 1463 { 1464 if (mnt) { 1465 struct mount *m = real_mount(mnt); 1466 /* avoid cacheline pingpong */ 1467 if (unlikely(m->mnt_expiry_mark)) 1468 WRITE_ONCE(m->mnt_expiry_mark, 0); 1469 mntput_no_expire(m); 1470 } 1471 } 1472 EXPORT_SYMBOL(mntput); 1473 1474 struct vfsmount *mntget(struct vfsmount *mnt) 1475 { 1476 if (mnt) 1477 mnt_add_count(real_mount(mnt), 1); 1478 return mnt; 1479 } 1480 EXPORT_SYMBOL(mntget); 1481 1482 /* 1483 * Make a mount point inaccessible to new lookups. 1484 * Because there may still be current users, the caller MUST WAIT 1485 * for an RCU grace period before destroying the mount point. 1486 */ 1487 void mnt_make_shortterm(struct vfsmount *mnt) 1488 { 1489 if (mnt) 1490 real_mount(mnt)->mnt_ns = NULL; 1491 } 1492 1493 /** 1494 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1495 * @path: path to check 1496 * 1497 * d_mountpoint() can only be used reliably to establish if a dentry is 1498 * not mounted in any namespace and that common case is handled inline. 1499 * d_mountpoint() isn't aware of the possibility there may be multiple 1500 * mounts using a given dentry in a different namespace. This function 1501 * checks if the passed in path is a mountpoint rather than the dentry 1502 * alone. 1503 */ 1504 bool path_is_mountpoint(const struct path *path) 1505 { 1506 unsigned seq; 1507 bool res; 1508 1509 if (!d_mountpoint(path->dentry)) 1510 return false; 1511 1512 rcu_read_lock(); 1513 do { 1514 seq = read_seqbegin(&mount_lock); 1515 res = __path_is_mountpoint(path); 1516 } while (read_seqretry(&mount_lock, seq)); 1517 rcu_read_unlock(); 1518 1519 return res; 1520 } 1521 EXPORT_SYMBOL(path_is_mountpoint); 1522 1523 struct vfsmount *mnt_clone_internal(const struct path *path) 1524 { 1525 struct mount *p; 1526 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1527 if (IS_ERR(p)) 1528 return ERR_CAST(p); 1529 p->mnt.mnt_flags |= MNT_INTERNAL; 1530 return &p->mnt; 1531 } 1532 1533 /* 1534 * Returns the mount which either has the specified mnt_id, or has the next 1535 * smallest id afer the specified one. 1536 */ 1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1538 { 1539 struct rb_node *node = ns->mounts.rb_node; 1540 struct mount *ret = NULL; 1541 1542 while (node) { 1543 struct mount *m = node_to_mount(node); 1544 1545 if (mnt_id <= m->mnt_id_unique) { 1546 ret = node_to_mount(node); 1547 if (mnt_id == m->mnt_id_unique) 1548 break; 1549 node = node->rb_left; 1550 } else { 1551 node = node->rb_right; 1552 } 1553 } 1554 return ret; 1555 } 1556 1557 /* 1558 * Returns the mount which either has the specified mnt_id, or has the next 1559 * greater id before the specified one. 1560 */ 1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1562 { 1563 struct rb_node *node = ns->mounts.rb_node; 1564 struct mount *ret = NULL; 1565 1566 while (node) { 1567 struct mount *m = node_to_mount(node); 1568 1569 if (mnt_id >= m->mnt_id_unique) { 1570 ret = node_to_mount(node); 1571 if (mnt_id == m->mnt_id_unique) 1572 break; 1573 node = node->rb_right; 1574 } else { 1575 node = node->rb_left; 1576 } 1577 } 1578 return ret; 1579 } 1580 1581 #ifdef CONFIG_PROC_FS 1582 1583 /* iterator; we want it to have access to namespace_sem, thus here... */ 1584 static void *m_start(struct seq_file *m, loff_t *pos) 1585 { 1586 struct proc_mounts *p = m->private; 1587 1588 down_read(&namespace_sem); 1589 1590 return mnt_find_id_at(p->ns, *pos); 1591 } 1592 1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1594 { 1595 struct mount *next = NULL, *mnt = v; 1596 struct rb_node *node = rb_next(&mnt->mnt_node); 1597 1598 ++*pos; 1599 if (node) { 1600 next = node_to_mount(node); 1601 *pos = next->mnt_id_unique; 1602 } 1603 return next; 1604 } 1605 1606 static void m_stop(struct seq_file *m, void *v) 1607 { 1608 up_read(&namespace_sem); 1609 } 1610 1611 static int m_show(struct seq_file *m, void *v) 1612 { 1613 struct proc_mounts *p = m->private; 1614 struct mount *r = v; 1615 return p->show(m, &r->mnt); 1616 } 1617 1618 const struct seq_operations mounts_op = { 1619 .start = m_start, 1620 .next = m_next, 1621 .stop = m_stop, 1622 .show = m_show, 1623 }; 1624 1625 #endif /* CONFIG_PROC_FS */ 1626 1627 /** 1628 * may_umount_tree - check if a mount tree is busy 1629 * @m: root of mount tree 1630 * 1631 * This is called to check if a tree of mounts has any 1632 * open files, pwds, chroots or sub mounts that are 1633 * busy. 1634 */ 1635 int may_umount_tree(struct vfsmount *m) 1636 { 1637 struct mount *mnt = real_mount(m); 1638 int actual_refs = 0; 1639 int minimum_refs = 0; 1640 struct mount *p; 1641 BUG_ON(!m); 1642 1643 /* write lock needed for mnt_get_count */ 1644 lock_mount_hash(); 1645 for (p = mnt; p; p = next_mnt(p, mnt)) { 1646 actual_refs += mnt_get_count(p); 1647 minimum_refs += 2; 1648 } 1649 unlock_mount_hash(); 1650 1651 if (actual_refs > minimum_refs) 1652 return 0; 1653 1654 return 1; 1655 } 1656 1657 EXPORT_SYMBOL(may_umount_tree); 1658 1659 /** 1660 * may_umount - check if a mount point is busy 1661 * @mnt: root of mount 1662 * 1663 * This is called to check if a mount point has any 1664 * open files, pwds, chroots or sub mounts. If the 1665 * mount has sub mounts this will return busy 1666 * regardless of whether the sub mounts are busy. 1667 * 1668 * Doesn't take quota and stuff into account. IOW, in some cases it will 1669 * give false negatives. The main reason why it's here is that we need 1670 * a non-destructive way to look for easily umountable filesystems. 1671 */ 1672 int may_umount(struct vfsmount *mnt) 1673 { 1674 int ret = 1; 1675 down_read(&namespace_sem); 1676 lock_mount_hash(); 1677 if (propagate_mount_busy(real_mount(mnt), 2)) 1678 ret = 0; 1679 unlock_mount_hash(); 1680 up_read(&namespace_sem); 1681 return ret; 1682 } 1683 1684 EXPORT_SYMBOL(may_umount); 1685 1686 static void namespace_unlock(void) 1687 { 1688 struct hlist_head head; 1689 struct hlist_node *p; 1690 struct mount *m; 1691 LIST_HEAD(list); 1692 1693 hlist_move_list(&unmounted, &head); 1694 list_splice_init(&ex_mountpoints, &list); 1695 1696 up_write(&namespace_sem); 1697 1698 shrink_dentry_list(&list); 1699 1700 if (likely(hlist_empty(&head))) 1701 return; 1702 1703 synchronize_rcu_expedited(); 1704 1705 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1706 hlist_del(&m->mnt_umount); 1707 mntput(&m->mnt); 1708 } 1709 } 1710 1711 static inline void namespace_lock(void) 1712 { 1713 down_write(&namespace_sem); 1714 } 1715 1716 enum umount_tree_flags { 1717 UMOUNT_SYNC = 1, 1718 UMOUNT_PROPAGATE = 2, 1719 UMOUNT_CONNECTED = 4, 1720 }; 1721 1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1723 { 1724 /* Leaving mounts connected is only valid for lazy umounts */ 1725 if (how & UMOUNT_SYNC) 1726 return true; 1727 1728 /* A mount without a parent has nothing to be connected to */ 1729 if (!mnt_has_parent(mnt)) 1730 return true; 1731 1732 /* Because the reference counting rules change when mounts are 1733 * unmounted and connected, umounted mounts may not be 1734 * connected to mounted mounts. 1735 */ 1736 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1737 return true; 1738 1739 /* Has it been requested that the mount remain connected? */ 1740 if (how & UMOUNT_CONNECTED) 1741 return false; 1742 1743 /* Is the mount locked such that it needs to remain connected? */ 1744 if (IS_MNT_LOCKED(mnt)) 1745 return false; 1746 1747 /* By default disconnect the mount */ 1748 return true; 1749 } 1750 1751 /* 1752 * mount_lock must be held 1753 * namespace_sem must be held for write 1754 */ 1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1756 { 1757 LIST_HEAD(tmp_list); 1758 struct mount *p; 1759 1760 if (how & UMOUNT_PROPAGATE) 1761 propagate_mount_unlock(mnt); 1762 1763 /* Gather the mounts to umount */ 1764 for (p = mnt; p; p = next_mnt(p, mnt)) { 1765 p->mnt.mnt_flags |= MNT_UMOUNT; 1766 if (p->mnt.mnt_flags & MNT_ONRB) 1767 move_from_ns(p, &tmp_list); 1768 else 1769 list_move(&p->mnt_list, &tmp_list); 1770 } 1771 1772 /* Hide the mounts from mnt_mounts */ 1773 list_for_each_entry(p, &tmp_list, mnt_list) { 1774 list_del_init(&p->mnt_child); 1775 } 1776 1777 /* Add propogated mounts to the tmp_list */ 1778 if (how & UMOUNT_PROPAGATE) 1779 propagate_umount(&tmp_list); 1780 1781 while (!list_empty(&tmp_list)) { 1782 struct mnt_namespace *ns; 1783 bool disconnect; 1784 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1785 list_del_init(&p->mnt_expire); 1786 list_del_init(&p->mnt_list); 1787 ns = p->mnt_ns; 1788 if (ns) { 1789 ns->nr_mounts--; 1790 __touch_mnt_namespace(ns); 1791 } 1792 p->mnt_ns = NULL; 1793 if (how & UMOUNT_SYNC) 1794 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1795 1796 disconnect = disconnect_mount(p, how); 1797 if (mnt_has_parent(p)) { 1798 mnt_add_count(p->mnt_parent, -1); 1799 if (!disconnect) { 1800 /* Don't forget about p */ 1801 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1802 } else { 1803 umount_mnt(p); 1804 } 1805 } 1806 change_mnt_propagation(p, MS_PRIVATE); 1807 if (disconnect) 1808 hlist_add_head(&p->mnt_umount, &unmounted); 1809 } 1810 } 1811 1812 static void shrink_submounts(struct mount *mnt); 1813 1814 static int do_umount_root(struct super_block *sb) 1815 { 1816 int ret = 0; 1817 1818 down_write(&sb->s_umount); 1819 if (!sb_rdonly(sb)) { 1820 struct fs_context *fc; 1821 1822 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1823 SB_RDONLY); 1824 if (IS_ERR(fc)) { 1825 ret = PTR_ERR(fc); 1826 } else { 1827 ret = parse_monolithic_mount_data(fc, NULL); 1828 if (!ret) 1829 ret = reconfigure_super(fc); 1830 put_fs_context(fc); 1831 } 1832 } 1833 up_write(&sb->s_umount); 1834 return ret; 1835 } 1836 1837 static int do_umount(struct mount *mnt, int flags) 1838 { 1839 struct super_block *sb = mnt->mnt.mnt_sb; 1840 int retval; 1841 1842 retval = security_sb_umount(&mnt->mnt, flags); 1843 if (retval) 1844 return retval; 1845 1846 /* 1847 * Allow userspace to request a mountpoint be expired rather than 1848 * unmounting unconditionally. Unmount only happens if: 1849 * (1) the mark is already set (the mark is cleared by mntput()) 1850 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1851 */ 1852 if (flags & MNT_EXPIRE) { 1853 if (&mnt->mnt == current->fs->root.mnt || 1854 flags & (MNT_FORCE | MNT_DETACH)) 1855 return -EINVAL; 1856 1857 /* 1858 * probably don't strictly need the lock here if we examined 1859 * all race cases, but it's a slowpath. 1860 */ 1861 lock_mount_hash(); 1862 if (mnt_get_count(mnt) != 2) { 1863 unlock_mount_hash(); 1864 return -EBUSY; 1865 } 1866 unlock_mount_hash(); 1867 1868 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1869 return -EAGAIN; 1870 } 1871 1872 /* 1873 * If we may have to abort operations to get out of this 1874 * mount, and they will themselves hold resources we must 1875 * allow the fs to do things. In the Unix tradition of 1876 * 'Gee thats tricky lets do it in userspace' the umount_begin 1877 * might fail to complete on the first run through as other tasks 1878 * must return, and the like. Thats for the mount program to worry 1879 * about for the moment. 1880 */ 1881 1882 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1883 sb->s_op->umount_begin(sb); 1884 } 1885 1886 /* 1887 * No sense to grab the lock for this test, but test itself looks 1888 * somewhat bogus. Suggestions for better replacement? 1889 * Ho-hum... In principle, we might treat that as umount + switch 1890 * to rootfs. GC would eventually take care of the old vfsmount. 1891 * Actually it makes sense, especially if rootfs would contain a 1892 * /reboot - static binary that would close all descriptors and 1893 * call reboot(9). Then init(8) could umount root and exec /reboot. 1894 */ 1895 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1896 /* 1897 * Special case for "unmounting" root ... 1898 * we just try to remount it readonly. 1899 */ 1900 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1901 return -EPERM; 1902 return do_umount_root(sb); 1903 } 1904 1905 namespace_lock(); 1906 lock_mount_hash(); 1907 1908 /* Recheck MNT_LOCKED with the locks held */ 1909 retval = -EINVAL; 1910 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1911 goto out; 1912 1913 event++; 1914 if (flags & MNT_DETACH) { 1915 if (mnt->mnt.mnt_flags & MNT_ONRB || 1916 !list_empty(&mnt->mnt_list)) 1917 umount_tree(mnt, UMOUNT_PROPAGATE); 1918 retval = 0; 1919 } else { 1920 shrink_submounts(mnt); 1921 retval = -EBUSY; 1922 if (!propagate_mount_busy(mnt, 2)) { 1923 if (mnt->mnt.mnt_flags & MNT_ONRB || 1924 !list_empty(&mnt->mnt_list)) 1925 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1926 retval = 0; 1927 } 1928 } 1929 out: 1930 unlock_mount_hash(); 1931 namespace_unlock(); 1932 return retval; 1933 } 1934 1935 /* 1936 * __detach_mounts - lazily unmount all mounts on the specified dentry 1937 * 1938 * During unlink, rmdir, and d_drop it is possible to loose the path 1939 * to an existing mountpoint, and wind up leaking the mount. 1940 * detach_mounts allows lazily unmounting those mounts instead of 1941 * leaking them. 1942 * 1943 * The caller may hold dentry->d_inode->i_mutex. 1944 */ 1945 void __detach_mounts(struct dentry *dentry) 1946 { 1947 struct mountpoint *mp; 1948 struct mount *mnt; 1949 1950 namespace_lock(); 1951 lock_mount_hash(); 1952 mp = lookup_mountpoint(dentry); 1953 if (!mp) 1954 goto out_unlock; 1955 1956 event++; 1957 while (!hlist_empty(&mp->m_list)) { 1958 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1959 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1960 umount_mnt(mnt); 1961 hlist_add_head(&mnt->mnt_umount, &unmounted); 1962 } 1963 else umount_tree(mnt, UMOUNT_CONNECTED); 1964 } 1965 put_mountpoint(mp); 1966 out_unlock: 1967 unlock_mount_hash(); 1968 namespace_unlock(); 1969 } 1970 1971 /* 1972 * Is the caller allowed to modify his namespace? 1973 */ 1974 bool may_mount(void) 1975 { 1976 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1977 } 1978 1979 static void warn_mandlock(void) 1980 { 1981 pr_warn_once("=======================================================\n" 1982 "WARNING: The mand mount option has been deprecated and\n" 1983 " and is ignored by this kernel. Remove the mand\n" 1984 " option from the mount to silence this warning.\n" 1985 "=======================================================\n"); 1986 } 1987 1988 static int can_umount(const struct path *path, int flags) 1989 { 1990 struct mount *mnt = real_mount(path->mnt); 1991 1992 if (!may_mount()) 1993 return -EPERM; 1994 if (!path_mounted(path)) 1995 return -EINVAL; 1996 if (!check_mnt(mnt)) 1997 return -EINVAL; 1998 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1999 return -EINVAL; 2000 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 2001 return -EPERM; 2002 return 0; 2003 } 2004 2005 // caller is responsible for flags being sane 2006 int path_umount(struct path *path, int flags) 2007 { 2008 struct mount *mnt = real_mount(path->mnt); 2009 int ret; 2010 2011 ret = can_umount(path, flags); 2012 if (!ret) 2013 ret = do_umount(mnt, flags); 2014 2015 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2016 dput(path->dentry); 2017 mntput_no_expire(mnt); 2018 return ret; 2019 } 2020 2021 static int ksys_umount(char __user *name, int flags) 2022 { 2023 int lookup_flags = LOOKUP_MOUNTPOINT; 2024 struct path path; 2025 int ret; 2026 2027 // basic validity checks done first 2028 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2029 return -EINVAL; 2030 2031 if (!(flags & UMOUNT_NOFOLLOW)) 2032 lookup_flags |= LOOKUP_FOLLOW; 2033 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2034 if (ret) 2035 return ret; 2036 return path_umount(&path, flags); 2037 } 2038 2039 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2040 { 2041 return ksys_umount(name, flags); 2042 } 2043 2044 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2045 2046 /* 2047 * The 2.0 compatible umount. No flags. 2048 */ 2049 SYSCALL_DEFINE1(oldumount, char __user *, name) 2050 { 2051 return ksys_umount(name, 0); 2052 } 2053 2054 #endif 2055 2056 static bool is_mnt_ns_file(struct dentry *dentry) 2057 { 2058 /* Is this a proxy for a mount namespace? */ 2059 return dentry->d_op == &ns_dentry_operations && 2060 dentry->d_fsdata == &mntns_operations; 2061 } 2062 2063 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 2064 { 2065 return container_of(ns, struct mnt_namespace, ns); 2066 } 2067 2068 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2069 { 2070 return &mnt->ns; 2071 } 2072 2073 static bool mnt_ns_loop(struct dentry *dentry) 2074 { 2075 /* Could bind mounting the mount namespace inode cause a 2076 * mount namespace loop? 2077 */ 2078 struct mnt_namespace *mnt_ns; 2079 if (!is_mnt_ns_file(dentry)) 2080 return false; 2081 2082 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 2083 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2084 } 2085 2086 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2087 int flag) 2088 { 2089 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2090 *dst_parent, *dst_mnt; 2091 2092 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2093 return ERR_PTR(-EINVAL); 2094 2095 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2096 return ERR_PTR(-EINVAL); 2097 2098 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2099 if (IS_ERR(dst_mnt)) 2100 return dst_mnt; 2101 2102 src_parent = src_root; 2103 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; 2104 2105 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2106 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2107 continue; 2108 2109 for (src_mnt = src_root_child; src_mnt; 2110 src_mnt = next_mnt(src_mnt, src_root_child)) { 2111 if (!(flag & CL_COPY_UNBINDABLE) && 2112 IS_MNT_UNBINDABLE(src_mnt)) { 2113 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2114 /* Both unbindable and locked. */ 2115 dst_mnt = ERR_PTR(-EPERM); 2116 goto out; 2117 } else { 2118 src_mnt = skip_mnt_tree(src_mnt); 2119 continue; 2120 } 2121 } 2122 if (!(flag & CL_COPY_MNT_NS_FILE) && 2123 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2124 src_mnt = skip_mnt_tree(src_mnt); 2125 continue; 2126 } 2127 while (src_parent != src_mnt->mnt_parent) { 2128 src_parent = src_parent->mnt_parent; 2129 dst_mnt = dst_mnt->mnt_parent; 2130 } 2131 2132 src_parent = src_mnt; 2133 dst_parent = dst_mnt; 2134 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2135 if (IS_ERR(dst_mnt)) 2136 goto out; 2137 lock_mount_hash(); 2138 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); 2139 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); 2140 unlock_mount_hash(); 2141 } 2142 } 2143 return res; 2144 2145 out: 2146 if (res) { 2147 lock_mount_hash(); 2148 umount_tree(res, UMOUNT_SYNC); 2149 unlock_mount_hash(); 2150 } 2151 return dst_mnt; 2152 } 2153 2154 /* Caller should check returned pointer for errors */ 2155 2156 struct vfsmount *collect_mounts(const struct path *path) 2157 { 2158 struct mount *tree; 2159 namespace_lock(); 2160 if (!check_mnt(real_mount(path->mnt))) 2161 tree = ERR_PTR(-EINVAL); 2162 else 2163 tree = copy_tree(real_mount(path->mnt), path->dentry, 2164 CL_COPY_ALL | CL_PRIVATE); 2165 namespace_unlock(); 2166 if (IS_ERR(tree)) 2167 return ERR_CAST(tree); 2168 return &tree->mnt; 2169 } 2170 2171 static void free_mnt_ns(struct mnt_namespace *); 2172 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2173 2174 void dissolve_on_fput(struct vfsmount *mnt) 2175 { 2176 struct mnt_namespace *ns; 2177 namespace_lock(); 2178 lock_mount_hash(); 2179 ns = real_mount(mnt)->mnt_ns; 2180 if (ns) { 2181 if (is_anon_ns(ns)) 2182 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2183 else 2184 ns = NULL; 2185 } 2186 unlock_mount_hash(); 2187 namespace_unlock(); 2188 if (ns) 2189 free_mnt_ns(ns); 2190 } 2191 2192 void drop_collected_mounts(struct vfsmount *mnt) 2193 { 2194 namespace_lock(); 2195 lock_mount_hash(); 2196 umount_tree(real_mount(mnt), 0); 2197 unlock_mount_hash(); 2198 namespace_unlock(); 2199 } 2200 2201 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2202 { 2203 struct mount *child; 2204 2205 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2206 if (!is_subdir(child->mnt_mountpoint, dentry)) 2207 continue; 2208 2209 if (child->mnt.mnt_flags & MNT_LOCKED) 2210 return true; 2211 } 2212 return false; 2213 } 2214 2215 /** 2216 * clone_private_mount - create a private clone of a path 2217 * @path: path to clone 2218 * 2219 * This creates a new vfsmount, which will be the clone of @path. The new mount 2220 * will not be attached anywhere in the namespace and will be private (i.e. 2221 * changes to the originating mount won't be propagated into this). 2222 * 2223 * Release with mntput(). 2224 */ 2225 struct vfsmount *clone_private_mount(const struct path *path) 2226 { 2227 struct mount *old_mnt = real_mount(path->mnt); 2228 struct mount *new_mnt; 2229 2230 down_read(&namespace_sem); 2231 if (IS_MNT_UNBINDABLE(old_mnt)) 2232 goto invalid; 2233 2234 if (!check_mnt(old_mnt)) 2235 goto invalid; 2236 2237 if (has_locked_children(old_mnt, path->dentry)) 2238 goto invalid; 2239 2240 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2241 up_read(&namespace_sem); 2242 2243 if (IS_ERR(new_mnt)) 2244 return ERR_CAST(new_mnt); 2245 2246 /* Longterm mount to be removed by kern_unmount*() */ 2247 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2248 2249 return &new_mnt->mnt; 2250 2251 invalid: 2252 up_read(&namespace_sem); 2253 return ERR_PTR(-EINVAL); 2254 } 2255 EXPORT_SYMBOL_GPL(clone_private_mount); 2256 2257 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2258 struct vfsmount *root) 2259 { 2260 struct mount *mnt; 2261 int res = f(root, arg); 2262 if (res) 2263 return res; 2264 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2265 res = f(&mnt->mnt, arg); 2266 if (res) 2267 return res; 2268 } 2269 return 0; 2270 } 2271 2272 static void lock_mnt_tree(struct mount *mnt) 2273 { 2274 struct mount *p; 2275 2276 for (p = mnt; p; p = next_mnt(p, mnt)) { 2277 int flags = p->mnt.mnt_flags; 2278 /* Don't allow unprivileged users to change mount flags */ 2279 flags |= MNT_LOCK_ATIME; 2280 2281 if (flags & MNT_READONLY) 2282 flags |= MNT_LOCK_READONLY; 2283 2284 if (flags & MNT_NODEV) 2285 flags |= MNT_LOCK_NODEV; 2286 2287 if (flags & MNT_NOSUID) 2288 flags |= MNT_LOCK_NOSUID; 2289 2290 if (flags & MNT_NOEXEC) 2291 flags |= MNT_LOCK_NOEXEC; 2292 /* Don't allow unprivileged users to reveal what is under a mount */ 2293 if (list_empty(&p->mnt_expire)) 2294 flags |= MNT_LOCKED; 2295 p->mnt.mnt_flags = flags; 2296 } 2297 } 2298 2299 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2300 { 2301 struct mount *p; 2302 2303 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2304 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2305 mnt_release_group_id(p); 2306 } 2307 } 2308 2309 static int invent_group_ids(struct mount *mnt, bool recurse) 2310 { 2311 struct mount *p; 2312 2313 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2314 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2315 int err = mnt_alloc_group_id(p); 2316 if (err) { 2317 cleanup_group_ids(mnt, p); 2318 return err; 2319 } 2320 } 2321 } 2322 2323 return 0; 2324 } 2325 2326 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2327 { 2328 unsigned int max = READ_ONCE(sysctl_mount_max); 2329 unsigned int mounts = 0; 2330 struct mount *p; 2331 2332 if (ns->nr_mounts >= max) 2333 return -ENOSPC; 2334 max -= ns->nr_mounts; 2335 if (ns->pending_mounts >= max) 2336 return -ENOSPC; 2337 max -= ns->pending_mounts; 2338 2339 for (p = mnt; p; p = next_mnt(p, mnt)) 2340 mounts++; 2341 2342 if (mounts > max) 2343 return -ENOSPC; 2344 2345 ns->pending_mounts += mounts; 2346 return 0; 2347 } 2348 2349 enum mnt_tree_flags_t { 2350 MNT_TREE_MOVE = BIT(0), 2351 MNT_TREE_BENEATH = BIT(1), 2352 }; 2353 2354 /** 2355 * attach_recursive_mnt - attach a source mount tree 2356 * @source_mnt: mount tree to be attached 2357 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2358 * @dest_mp: the mountpoint @source_mnt will be mounted at 2359 * @flags: modify how @source_mnt is supposed to be attached 2360 * 2361 * NOTE: in the table below explains the semantics when a source mount 2362 * of a given type is attached to a destination mount of a given type. 2363 * --------------------------------------------------------------------------- 2364 * | BIND MOUNT OPERATION | 2365 * |************************************************************************** 2366 * | source-->| shared | private | slave | unbindable | 2367 * | dest | | | | | 2368 * | | | | | | | 2369 * | v | | | | | 2370 * |************************************************************************** 2371 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2372 * | | | | | | 2373 * |non-shared| shared (+) | private | slave (*) | invalid | 2374 * *************************************************************************** 2375 * A bind operation clones the source mount and mounts the clone on the 2376 * destination mount. 2377 * 2378 * (++) the cloned mount is propagated to all the mounts in the propagation 2379 * tree of the destination mount and the cloned mount is added to 2380 * the peer group of the source mount. 2381 * (+) the cloned mount is created under the destination mount and is marked 2382 * as shared. The cloned mount is added to the peer group of the source 2383 * mount. 2384 * (+++) the mount is propagated to all the mounts in the propagation tree 2385 * of the destination mount and the cloned mount is made slave 2386 * of the same master as that of the source mount. The cloned mount 2387 * is marked as 'shared and slave'. 2388 * (*) the cloned mount is made a slave of the same master as that of the 2389 * source mount. 2390 * 2391 * --------------------------------------------------------------------------- 2392 * | MOVE MOUNT OPERATION | 2393 * |************************************************************************** 2394 * | source-->| shared | private | slave | unbindable | 2395 * | dest | | | | | 2396 * | | | | | | | 2397 * | v | | | | | 2398 * |************************************************************************** 2399 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2400 * | | | | | | 2401 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2402 * *************************************************************************** 2403 * 2404 * (+) the mount is moved to the destination. And is then propagated to 2405 * all the mounts in the propagation tree of the destination mount. 2406 * (+*) the mount is moved to the destination. 2407 * (+++) the mount is moved to the destination and is then propagated to 2408 * all the mounts belonging to the destination mount's propagation tree. 2409 * the mount is marked as 'shared and slave'. 2410 * (*) the mount continues to be a slave at the new location. 2411 * 2412 * if the source mount is a tree, the operations explained above is 2413 * applied to each mount in the tree. 2414 * Must be called without spinlocks held, since this function can sleep 2415 * in allocations. 2416 * 2417 * Context: The function expects namespace_lock() to be held. 2418 * Return: If @source_mnt was successfully attached 0 is returned. 2419 * Otherwise a negative error code is returned. 2420 */ 2421 static int attach_recursive_mnt(struct mount *source_mnt, 2422 struct mount *top_mnt, 2423 struct mountpoint *dest_mp, 2424 enum mnt_tree_flags_t flags) 2425 { 2426 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2427 HLIST_HEAD(tree_list); 2428 struct mnt_namespace *ns = top_mnt->mnt_ns; 2429 struct mountpoint *smp; 2430 struct mount *child, *dest_mnt, *p; 2431 struct hlist_node *n; 2432 int err = 0; 2433 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2434 2435 /* 2436 * Preallocate a mountpoint in case the new mounts need to be 2437 * mounted beneath mounts on the same mountpoint. 2438 */ 2439 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2440 if (IS_ERR(smp)) 2441 return PTR_ERR(smp); 2442 2443 /* Is there space to add these mounts to the mount namespace? */ 2444 if (!moving) { 2445 err = count_mounts(ns, source_mnt); 2446 if (err) 2447 goto out; 2448 } 2449 2450 if (beneath) 2451 dest_mnt = top_mnt->mnt_parent; 2452 else 2453 dest_mnt = top_mnt; 2454 2455 if (IS_MNT_SHARED(dest_mnt)) { 2456 err = invent_group_ids(source_mnt, true); 2457 if (err) 2458 goto out; 2459 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2460 } 2461 lock_mount_hash(); 2462 if (err) 2463 goto out_cleanup_ids; 2464 2465 if (IS_MNT_SHARED(dest_mnt)) { 2466 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2467 set_mnt_shared(p); 2468 } 2469 2470 if (moving) { 2471 if (beneath) 2472 dest_mp = smp; 2473 unhash_mnt(source_mnt); 2474 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2475 touch_mnt_namespace(source_mnt->mnt_ns); 2476 } else { 2477 if (source_mnt->mnt_ns) { 2478 LIST_HEAD(head); 2479 2480 /* move from anon - the caller will destroy */ 2481 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2482 move_from_ns(p, &head); 2483 list_del_init(&head); 2484 } 2485 if (beneath) 2486 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2487 else 2488 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2489 commit_tree(source_mnt); 2490 } 2491 2492 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2493 struct mount *q; 2494 hlist_del_init(&child->mnt_hash); 2495 q = __lookup_mnt(&child->mnt_parent->mnt, 2496 child->mnt_mountpoint); 2497 if (q) 2498 mnt_change_mountpoint(child, smp, q); 2499 /* Notice when we are propagating across user namespaces */ 2500 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2501 lock_mnt_tree(child); 2502 child->mnt.mnt_flags &= ~MNT_LOCKED; 2503 commit_tree(child); 2504 } 2505 put_mountpoint(smp); 2506 unlock_mount_hash(); 2507 2508 return 0; 2509 2510 out_cleanup_ids: 2511 while (!hlist_empty(&tree_list)) { 2512 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2513 child->mnt_parent->mnt_ns->pending_mounts = 0; 2514 umount_tree(child, UMOUNT_SYNC); 2515 } 2516 unlock_mount_hash(); 2517 cleanup_group_ids(source_mnt, NULL); 2518 out: 2519 ns->pending_mounts = 0; 2520 2521 read_seqlock_excl(&mount_lock); 2522 put_mountpoint(smp); 2523 read_sequnlock_excl(&mount_lock); 2524 2525 return err; 2526 } 2527 2528 /** 2529 * do_lock_mount - lock mount and mountpoint 2530 * @path: target path 2531 * @beneath: whether the intention is to mount beneath @path 2532 * 2533 * Follow the mount stack on @path until the top mount @mnt is found. If 2534 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2535 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2536 * until nothing is stacked on top of it anymore. 2537 * 2538 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2539 * against concurrent removal of the new mountpoint from another mount 2540 * namespace. 2541 * 2542 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2543 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2544 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2545 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2546 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2547 * on top of it for @beneath. 2548 * 2549 * In addition, @beneath needs to make sure that @mnt hasn't been 2550 * unmounted or moved from its current mountpoint in between dropping 2551 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2552 * being unmounted would be detected later by e.g., calling 2553 * check_mnt(mnt) in the function it's called from. For the @beneath 2554 * case however, it's useful to detect it directly in do_lock_mount(). 2555 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2556 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2557 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2558 * 2559 * Return: Either the target mountpoint on the top mount or the top 2560 * mount's mountpoint. 2561 */ 2562 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2563 { 2564 struct vfsmount *mnt = path->mnt; 2565 struct dentry *dentry; 2566 struct mountpoint *mp = ERR_PTR(-ENOENT); 2567 2568 for (;;) { 2569 struct mount *m; 2570 2571 if (beneath) { 2572 m = real_mount(mnt); 2573 read_seqlock_excl(&mount_lock); 2574 dentry = dget(m->mnt_mountpoint); 2575 read_sequnlock_excl(&mount_lock); 2576 } else { 2577 dentry = path->dentry; 2578 } 2579 2580 inode_lock(dentry->d_inode); 2581 if (unlikely(cant_mount(dentry))) { 2582 inode_unlock(dentry->d_inode); 2583 goto out; 2584 } 2585 2586 namespace_lock(); 2587 2588 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2589 namespace_unlock(); 2590 inode_unlock(dentry->d_inode); 2591 goto out; 2592 } 2593 2594 mnt = lookup_mnt(path); 2595 if (likely(!mnt)) 2596 break; 2597 2598 namespace_unlock(); 2599 inode_unlock(dentry->d_inode); 2600 if (beneath) 2601 dput(dentry); 2602 path_put(path); 2603 path->mnt = mnt; 2604 path->dentry = dget(mnt->mnt_root); 2605 } 2606 2607 mp = get_mountpoint(dentry); 2608 if (IS_ERR(mp)) { 2609 namespace_unlock(); 2610 inode_unlock(dentry->d_inode); 2611 } 2612 2613 out: 2614 if (beneath) 2615 dput(dentry); 2616 2617 return mp; 2618 } 2619 2620 static inline struct mountpoint *lock_mount(struct path *path) 2621 { 2622 return do_lock_mount(path, false); 2623 } 2624 2625 static void unlock_mount(struct mountpoint *where) 2626 { 2627 struct dentry *dentry = where->m_dentry; 2628 2629 read_seqlock_excl(&mount_lock); 2630 put_mountpoint(where); 2631 read_sequnlock_excl(&mount_lock); 2632 2633 namespace_unlock(); 2634 inode_unlock(dentry->d_inode); 2635 } 2636 2637 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2638 { 2639 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2640 return -EINVAL; 2641 2642 if (d_is_dir(mp->m_dentry) != 2643 d_is_dir(mnt->mnt.mnt_root)) 2644 return -ENOTDIR; 2645 2646 return attach_recursive_mnt(mnt, p, mp, 0); 2647 } 2648 2649 /* 2650 * Sanity check the flags to change_mnt_propagation. 2651 */ 2652 2653 static int flags_to_propagation_type(int ms_flags) 2654 { 2655 int type = ms_flags & ~(MS_REC | MS_SILENT); 2656 2657 /* Fail if any non-propagation flags are set */ 2658 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2659 return 0; 2660 /* Only one propagation flag should be set */ 2661 if (!is_power_of_2(type)) 2662 return 0; 2663 return type; 2664 } 2665 2666 /* 2667 * recursively change the type of the mountpoint. 2668 */ 2669 static int do_change_type(struct path *path, int ms_flags) 2670 { 2671 struct mount *m; 2672 struct mount *mnt = real_mount(path->mnt); 2673 int recurse = ms_flags & MS_REC; 2674 int type; 2675 int err = 0; 2676 2677 if (!path_mounted(path)) 2678 return -EINVAL; 2679 2680 type = flags_to_propagation_type(ms_flags); 2681 if (!type) 2682 return -EINVAL; 2683 2684 namespace_lock(); 2685 if (type == MS_SHARED) { 2686 err = invent_group_ids(mnt, recurse); 2687 if (err) 2688 goto out_unlock; 2689 } 2690 2691 lock_mount_hash(); 2692 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2693 change_mnt_propagation(m, type); 2694 unlock_mount_hash(); 2695 2696 out_unlock: 2697 namespace_unlock(); 2698 return err; 2699 } 2700 2701 static struct mount *__do_loopback(struct path *old_path, int recurse) 2702 { 2703 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2704 2705 if (IS_MNT_UNBINDABLE(old)) 2706 return mnt; 2707 2708 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2709 return mnt; 2710 2711 if (!recurse && has_locked_children(old, old_path->dentry)) 2712 return mnt; 2713 2714 if (recurse) 2715 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2716 else 2717 mnt = clone_mnt(old, old_path->dentry, 0); 2718 2719 if (!IS_ERR(mnt)) 2720 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2721 2722 return mnt; 2723 } 2724 2725 /* 2726 * do loopback mount. 2727 */ 2728 static int do_loopback(struct path *path, const char *old_name, 2729 int recurse) 2730 { 2731 struct path old_path; 2732 struct mount *mnt = NULL, *parent; 2733 struct mountpoint *mp; 2734 int err; 2735 if (!old_name || !*old_name) 2736 return -EINVAL; 2737 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2738 if (err) 2739 return err; 2740 2741 err = -EINVAL; 2742 if (mnt_ns_loop(old_path.dentry)) 2743 goto out; 2744 2745 mp = lock_mount(path); 2746 if (IS_ERR(mp)) { 2747 err = PTR_ERR(mp); 2748 goto out; 2749 } 2750 2751 parent = real_mount(path->mnt); 2752 if (!check_mnt(parent)) 2753 goto out2; 2754 2755 mnt = __do_loopback(&old_path, recurse); 2756 if (IS_ERR(mnt)) { 2757 err = PTR_ERR(mnt); 2758 goto out2; 2759 } 2760 2761 err = graft_tree(mnt, parent, mp); 2762 if (err) { 2763 lock_mount_hash(); 2764 umount_tree(mnt, UMOUNT_SYNC); 2765 unlock_mount_hash(); 2766 } 2767 out2: 2768 unlock_mount(mp); 2769 out: 2770 path_put(&old_path); 2771 return err; 2772 } 2773 2774 static struct file *open_detached_copy(struct path *path, bool recursive) 2775 { 2776 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2777 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2778 struct mount *mnt, *p; 2779 struct file *file; 2780 2781 if (IS_ERR(ns)) 2782 return ERR_CAST(ns); 2783 2784 namespace_lock(); 2785 mnt = __do_loopback(path, recursive); 2786 if (IS_ERR(mnt)) { 2787 namespace_unlock(); 2788 free_mnt_ns(ns); 2789 return ERR_CAST(mnt); 2790 } 2791 2792 lock_mount_hash(); 2793 for (p = mnt; p; p = next_mnt(p, mnt)) { 2794 mnt_add_to_ns(ns, p); 2795 ns->nr_mounts++; 2796 } 2797 ns->root = mnt; 2798 mntget(&mnt->mnt); 2799 unlock_mount_hash(); 2800 namespace_unlock(); 2801 2802 mntput(path->mnt); 2803 path->mnt = &mnt->mnt; 2804 file = dentry_open(path, O_PATH, current_cred()); 2805 if (IS_ERR(file)) 2806 dissolve_on_fput(path->mnt); 2807 else 2808 file->f_mode |= FMODE_NEED_UNMOUNT; 2809 return file; 2810 } 2811 2812 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2813 { 2814 struct file *file; 2815 struct path path; 2816 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2817 bool detached = flags & OPEN_TREE_CLONE; 2818 int error; 2819 int fd; 2820 2821 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2822 2823 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2824 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2825 OPEN_TREE_CLOEXEC)) 2826 return -EINVAL; 2827 2828 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2829 return -EINVAL; 2830 2831 if (flags & AT_NO_AUTOMOUNT) 2832 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2833 if (flags & AT_SYMLINK_NOFOLLOW) 2834 lookup_flags &= ~LOOKUP_FOLLOW; 2835 if (flags & AT_EMPTY_PATH) 2836 lookup_flags |= LOOKUP_EMPTY; 2837 2838 if (detached && !may_mount()) 2839 return -EPERM; 2840 2841 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2842 if (fd < 0) 2843 return fd; 2844 2845 error = user_path_at(dfd, filename, lookup_flags, &path); 2846 if (unlikely(error)) { 2847 file = ERR_PTR(error); 2848 } else { 2849 if (detached) 2850 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2851 else 2852 file = dentry_open(&path, O_PATH, current_cred()); 2853 path_put(&path); 2854 } 2855 if (IS_ERR(file)) { 2856 put_unused_fd(fd); 2857 return PTR_ERR(file); 2858 } 2859 fd_install(fd, file); 2860 return fd; 2861 } 2862 2863 /* 2864 * Don't allow locked mount flags to be cleared. 2865 * 2866 * No locks need to be held here while testing the various MNT_LOCK 2867 * flags because those flags can never be cleared once they are set. 2868 */ 2869 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2870 { 2871 unsigned int fl = mnt->mnt.mnt_flags; 2872 2873 if ((fl & MNT_LOCK_READONLY) && 2874 !(mnt_flags & MNT_READONLY)) 2875 return false; 2876 2877 if ((fl & MNT_LOCK_NODEV) && 2878 !(mnt_flags & MNT_NODEV)) 2879 return false; 2880 2881 if ((fl & MNT_LOCK_NOSUID) && 2882 !(mnt_flags & MNT_NOSUID)) 2883 return false; 2884 2885 if ((fl & MNT_LOCK_NOEXEC) && 2886 !(mnt_flags & MNT_NOEXEC)) 2887 return false; 2888 2889 if ((fl & MNT_LOCK_ATIME) && 2890 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2891 return false; 2892 2893 return true; 2894 } 2895 2896 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2897 { 2898 bool readonly_request = (mnt_flags & MNT_READONLY); 2899 2900 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2901 return 0; 2902 2903 if (readonly_request) 2904 return mnt_make_readonly(mnt); 2905 2906 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2907 return 0; 2908 } 2909 2910 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2911 { 2912 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2913 mnt->mnt.mnt_flags = mnt_flags; 2914 touch_mnt_namespace(mnt->mnt_ns); 2915 } 2916 2917 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2918 { 2919 struct super_block *sb = mnt->mnt_sb; 2920 2921 if (!__mnt_is_readonly(mnt) && 2922 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2923 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2924 char *buf = (char *)__get_free_page(GFP_KERNEL); 2925 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2926 2927 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2928 sb->s_type->name, 2929 is_mounted(mnt) ? "remounted" : "mounted", 2930 mntpath, &sb->s_time_max, 2931 (unsigned long long)sb->s_time_max); 2932 2933 free_page((unsigned long)buf); 2934 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2935 } 2936 } 2937 2938 /* 2939 * Handle reconfiguration of the mountpoint only without alteration of the 2940 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2941 * to mount(2). 2942 */ 2943 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2944 { 2945 struct super_block *sb = path->mnt->mnt_sb; 2946 struct mount *mnt = real_mount(path->mnt); 2947 int ret; 2948 2949 if (!check_mnt(mnt)) 2950 return -EINVAL; 2951 2952 if (!path_mounted(path)) 2953 return -EINVAL; 2954 2955 if (!can_change_locked_flags(mnt, mnt_flags)) 2956 return -EPERM; 2957 2958 /* 2959 * We're only checking whether the superblock is read-only not 2960 * changing it, so only take down_read(&sb->s_umount). 2961 */ 2962 down_read(&sb->s_umount); 2963 lock_mount_hash(); 2964 ret = change_mount_ro_state(mnt, mnt_flags); 2965 if (ret == 0) 2966 set_mount_attributes(mnt, mnt_flags); 2967 unlock_mount_hash(); 2968 up_read(&sb->s_umount); 2969 2970 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2971 2972 return ret; 2973 } 2974 2975 /* 2976 * change filesystem flags. dir should be a physical root of filesystem. 2977 * If you've mounted a non-root directory somewhere and want to do remount 2978 * on it - tough luck. 2979 */ 2980 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2981 int mnt_flags, void *data) 2982 { 2983 int err; 2984 struct super_block *sb = path->mnt->mnt_sb; 2985 struct mount *mnt = real_mount(path->mnt); 2986 struct fs_context *fc; 2987 2988 if (!check_mnt(mnt)) 2989 return -EINVAL; 2990 2991 if (!path_mounted(path)) 2992 return -EINVAL; 2993 2994 if (!can_change_locked_flags(mnt, mnt_flags)) 2995 return -EPERM; 2996 2997 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2998 if (IS_ERR(fc)) 2999 return PTR_ERR(fc); 3000 3001 /* 3002 * Indicate to the filesystem that the remount request is coming 3003 * from the legacy mount system call. 3004 */ 3005 fc->oldapi = true; 3006 3007 err = parse_monolithic_mount_data(fc, data); 3008 if (!err) { 3009 down_write(&sb->s_umount); 3010 err = -EPERM; 3011 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3012 err = reconfigure_super(fc); 3013 if (!err) { 3014 lock_mount_hash(); 3015 set_mount_attributes(mnt, mnt_flags); 3016 unlock_mount_hash(); 3017 } 3018 } 3019 up_write(&sb->s_umount); 3020 } 3021 3022 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3023 3024 put_fs_context(fc); 3025 return err; 3026 } 3027 3028 static inline int tree_contains_unbindable(struct mount *mnt) 3029 { 3030 struct mount *p; 3031 for (p = mnt; p; p = next_mnt(p, mnt)) { 3032 if (IS_MNT_UNBINDABLE(p)) 3033 return 1; 3034 } 3035 return 0; 3036 } 3037 3038 /* 3039 * Check that there aren't references to earlier/same mount namespaces in the 3040 * specified subtree. Such references can act as pins for mount namespaces 3041 * that aren't checked by the mount-cycle checking code, thereby allowing 3042 * cycles to be made. 3043 */ 3044 static bool check_for_nsfs_mounts(struct mount *subtree) 3045 { 3046 struct mount *p; 3047 bool ret = false; 3048 3049 lock_mount_hash(); 3050 for (p = subtree; p; p = next_mnt(p, subtree)) 3051 if (mnt_ns_loop(p->mnt.mnt_root)) 3052 goto out; 3053 3054 ret = true; 3055 out: 3056 unlock_mount_hash(); 3057 return ret; 3058 } 3059 3060 static int do_set_group(struct path *from_path, struct path *to_path) 3061 { 3062 struct mount *from, *to; 3063 int err; 3064 3065 from = real_mount(from_path->mnt); 3066 to = real_mount(to_path->mnt); 3067 3068 namespace_lock(); 3069 3070 err = -EINVAL; 3071 /* To and From must be mounted */ 3072 if (!is_mounted(&from->mnt)) 3073 goto out; 3074 if (!is_mounted(&to->mnt)) 3075 goto out; 3076 3077 err = -EPERM; 3078 /* We should be allowed to modify mount namespaces of both mounts */ 3079 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3080 goto out; 3081 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3082 goto out; 3083 3084 err = -EINVAL; 3085 /* To and From paths should be mount roots */ 3086 if (!path_mounted(from_path)) 3087 goto out; 3088 if (!path_mounted(to_path)) 3089 goto out; 3090 3091 /* Setting sharing groups is only allowed across same superblock */ 3092 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3093 goto out; 3094 3095 /* From mount root should be wider than To mount root */ 3096 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3097 goto out; 3098 3099 /* From mount should not have locked children in place of To's root */ 3100 if (has_locked_children(from, to->mnt.mnt_root)) 3101 goto out; 3102 3103 /* Setting sharing groups is only allowed on private mounts */ 3104 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3105 goto out; 3106 3107 /* From should not be private */ 3108 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3109 goto out; 3110 3111 if (IS_MNT_SLAVE(from)) { 3112 struct mount *m = from->mnt_master; 3113 3114 list_add(&to->mnt_slave, &m->mnt_slave_list); 3115 to->mnt_master = m; 3116 } 3117 3118 if (IS_MNT_SHARED(from)) { 3119 to->mnt_group_id = from->mnt_group_id; 3120 list_add(&to->mnt_share, &from->mnt_share); 3121 lock_mount_hash(); 3122 set_mnt_shared(to); 3123 unlock_mount_hash(); 3124 } 3125 3126 err = 0; 3127 out: 3128 namespace_unlock(); 3129 return err; 3130 } 3131 3132 /** 3133 * path_overmounted - check if path is overmounted 3134 * @path: path to check 3135 * 3136 * Check if path is overmounted, i.e., if there's a mount on top of 3137 * @path->mnt with @path->dentry as mountpoint. 3138 * 3139 * Context: This function expects namespace_lock() to be held. 3140 * Return: If path is overmounted true is returned, false if not. 3141 */ 3142 static inline bool path_overmounted(const struct path *path) 3143 { 3144 rcu_read_lock(); 3145 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3146 rcu_read_unlock(); 3147 return true; 3148 } 3149 rcu_read_unlock(); 3150 return false; 3151 } 3152 3153 /** 3154 * can_move_mount_beneath - check that we can mount beneath the top mount 3155 * @from: mount to mount beneath 3156 * @to: mount under which to mount 3157 * @mp: mountpoint of @to 3158 * 3159 * - Make sure that @to->dentry is actually the root of a mount under 3160 * which we can mount another mount. 3161 * - Make sure that nothing can be mounted beneath the caller's current 3162 * root or the rootfs of the namespace. 3163 * - Make sure that the caller can unmount the topmost mount ensuring 3164 * that the caller could reveal the underlying mountpoint. 3165 * - Ensure that nothing has been mounted on top of @from before we 3166 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3167 * - Prevent mounting beneath a mount if the propagation relationship 3168 * between the source mount, parent mount, and top mount would lead to 3169 * nonsensical mount trees. 3170 * 3171 * Context: This function expects namespace_lock() to be held. 3172 * Return: On success 0, and on error a negative error code is returned. 3173 */ 3174 static int can_move_mount_beneath(const struct path *from, 3175 const struct path *to, 3176 const struct mountpoint *mp) 3177 { 3178 struct mount *mnt_from = real_mount(from->mnt), 3179 *mnt_to = real_mount(to->mnt), 3180 *parent_mnt_to = mnt_to->mnt_parent; 3181 3182 if (!mnt_has_parent(mnt_to)) 3183 return -EINVAL; 3184 3185 if (!path_mounted(to)) 3186 return -EINVAL; 3187 3188 if (IS_MNT_LOCKED(mnt_to)) 3189 return -EINVAL; 3190 3191 /* Avoid creating shadow mounts during mount propagation. */ 3192 if (path_overmounted(from)) 3193 return -EINVAL; 3194 3195 /* 3196 * Mounting beneath the rootfs only makes sense when the 3197 * semantics of pivot_root(".", ".") are used. 3198 */ 3199 if (&mnt_to->mnt == current->fs->root.mnt) 3200 return -EINVAL; 3201 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3202 return -EINVAL; 3203 3204 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3205 if (p == mnt_to) 3206 return -EINVAL; 3207 3208 /* 3209 * If the parent mount propagates to the child mount this would 3210 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3211 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3212 * defeats the whole purpose of mounting beneath another mount. 3213 */ 3214 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3215 return -EINVAL; 3216 3217 /* 3218 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3219 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3220 * Afterwards @mnt_from would be mounted on top of 3221 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3222 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3223 * already mounted on @mnt_from, @mnt_to would ultimately be 3224 * remounted on top of @c. Afterwards, @mnt_from would be 3225 * covered by a copy @c of @mnt_from and @c would be covered by 3226 * @mnt_from itself. This defeats the whole purpose of mounting 3227 * @mnt_from beneath @mnt_to. 3228 */ 3229 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3230 return -EINVAL; 3231 3232 return 0; 3233 } 3234 3235 static int do_move_mount(struct path *old_path, struct path *new_path, 3236 bool beneath) 3237 { 3238 struct mnt_namespace *ns; 3239 struct mount *p; 3240 struct mount *old; 3241 struct mount *parent; 3242 struct mountpoint *mp, *old_mp; 3243 int err; 3244 bool attached; 3245 enum mnt_tree_flags_t flags = 0; 3246 3247 mp = do_lock_mount(new_path, beneath); 3248 if (IS_ERR(mp)) 3249 return PTR_ERR(mp); 3250 3251 old = real_mount(old_path->mnt); 3252 p = real_mount(new_path->mnt); 3253 parent = old->mnt_parent; 3254 attached = mnt_has_parent(old); 3255 if (attached) 3256 flags |= MNT_TREE_MOVE; 3257 old_mp = old->mnt_mp; 3258 ns = old->mnt_ns; 3259 3260 err = -EINVAL; 3261 /* The mountpoint must be in our namespace. */ 3262 if (!check_mnt(p)) 3263 goto out; 3264 3265 /* The thing moved must be mounted... */ 3266 if (!is_mounted(&old->mnt)) 3267 goto out; 3268 3269 /* ... and either ours or the root of anon namespace */ 3270 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3271 goto out; 3272 3273 if (old->mnt.mnt_flags & MNT_LOCKED) 3274 goto out; 3275 3276 if (!path_mounted(old_path)) 3277 goto out; 3278 3279 if (d_is_dir(new_path->dentry) != 3280 d_is_dir(old_path->dentry)) 3281 goto out; 3282 /* 3283 * Don't move a mount residing in a shared parent. 3284 */ 3285 if (attached && IS_MNT_SHARED(parent)) 3286 goto out; 3287 3288 if (beneath) { 3289 err = can_move_mount_beneath(old_path, new_path, mp); 3290 if (err) 3291 goto out; 3292 3293 err = -EINVAL; 3294 p = p->mnt_parent; 3295 flags |= MNT_TREE_BENEATH; 3296 } 3297 3298 /* 3299 * Don't move a mount tree containing unbindable mounts to a destination 3300 * mount which is shared. 3301 */ 3302 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3303 goto out; 3304 err = -ELOOP; 3305 if (!check_for_nsfs_mounts(old)) 3306 goto out; 3307 for (; mnt_has_parent(p); p = p->mnt_parent) 3308 if (p == old) 3309 goto out; 3310 3311 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3312 if (err) 3313 goto out; 3314 3315 /* if the mount is moved, it should no longer be expire 3316 * automatically */ 3317 list_del_init(&old->mnt_expire); 3318 if (attached) 3319 put_mountpoint(old_mp); 3320 out: 3321 unlock_mount(mp); 3322 if (!err) { 3323 if (attached) 3324 mntput_no_expire(parent); 3325 else 3326 free_mnt_ns(ns); 3327 } 3328 return err; 3329 } 3330 3331 static int do_move_mount_old(struct path *path, const char *old_name) 3332 { 3333 struct path old_path; 3334 int err; 3335 3336 if (!old_name || !*old_name) 3337 return -EINVAL; 3338 3339 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3340 if (err) 3341 return err; 3342 3343 err = do_move_mount(&old_path, path, false); 3344 path_put(&old_path); 3345 return err; 3346 } 3347 3348 /* 3349 * add a mount into a namespace's mount tree 3350 */ 3351 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3352 const struct path *path, int mnt_flags) 3353 { 3354 struct mount *parent = real_mount(path->mnt); 3355 3356 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3357 3358 if (unlikely(!check_mnt(parent))) { 3359 /* that's acceptable only for automounts done in private ns */ 3360 if (!(mnt_flags & MNT_SHRINKABLE)) 3361 return -EINVAL; 3362 /* ... and for those we'd better have mountpoint still alive */ 3363 if (!parent->mnt_ns) 3364 return -EINVAL; 3365 } 3366 3367 /* Refuse the same filesystem on the same mount point */ 3368 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3369 return -EBUSY; 3370 3371 if (d_is_symlink(newmnt->mnt.mnt_root)) 3372 return -EINVAL; 3373 3374 newmnt->mnt.mnt_flags = mnt_flags; 3375 return graft_tree(newmnt, parent, mp); 3376 } 3377 3378 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3379 3380 /* 3381 * Create a new mount using a superblock configuration and request it 3382 * be added to the namespace tree. 3383 */ 3384 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3385 unsigned int mnt_flags) 3386 { 3387 struct vfsmount *mnt; 3388 struct mountpoint *mp; 3389 struct super_block *sb = fc->root->d_sb; 3390 int error; 3391 3392 error = security_sb_kern_mount(sb); 3393 if (!error && mount_too_revealing(sb, &mnt_flags)) 3394 error = -EPERM; 3395 3396 if (unlikely(error)) { 3397 fc_drop_locked(fc); 3398 return error; 3399 } 3400 3401 up_write(&sb->s_umount); 3402 3403 mnt = vfs_create_mount(fc); 3404 if (IS_ERR(mnt)) 3405 return PTR_ERR(mnt); 3406 3407 mnt_warn_timestamp_expiry(mountpoint, mnt); 3408 3409 mp = lock_mount(mountpoint); 3410 if (IS_ERR(mp)) { 3411 mntput(mnt); 3412 return PTR_ERR(mp); 3413 } 3414 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3415 unlock_mount(mp); 3416 if (error < 0) 3417 mntput(mnt); 3418 return error; 3419 } 3420 3421 /* 3422 * create a new mount for userspace and request it to be added into the 3423 * namespace's tree 3424 */ 3425 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3426 int mnt_flags, const char *name, void *data) 3427 { 3428 struct file_system_type *type; 3429 struct fs_context *fc; 3430 const char *subtype = NULL; 3431 int err = 0; 3432 3433 if (!fstype) 3434 return -EINVAL; 3435 3436 type = get_fs_type(fstype); 3437 if (!type) 3438 return -ENODEV; 3439 3440 if (type->fs_flags & FS_HAS_SUBTYPE) { 3441 subtype = strchr(fstype, '.'); 3442 if (subtype) { 3443 subtype++; 3444 if (!*subtype) { 3445 put_filesystem(type); 3446 return -EINVAL; 3447 } 3448 } 3449 } 3450 3451 fc = fs_context_for_mount(type, sb_flags); 3452 put_filesystem(type); 3453 if (IS_ERR(fc)) 3454 return PTR_ERR(fc); 3455 3456 /* 3457 * Indicate to the filesystem that the mount request is coming 3458 * from the legacy mount system call. 3459 */ 3460 fc->oldapi = true; 3461 3462 if (subtype) 3463 err = vfs_parse_fs_string(fc, "subtype", 3464 subtype, strlen(subtype)); 3465 if (!err && name) 3466 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3467 if (!err) 3468 err = parse_monolithic_mount_data(fc, data); 3469 if (!err && !mount_capable(fc)) 3470 err = -EPERM; 3471 if (!err) 3472 err = vfs_get_tree(fc); 3473 if (!err) 3474 err = do_new_mount_fc(fc, path, mnt_flags); 3475 3476 put_fs_context(fc); 3477 return err; 3478 } 3479 3480 int finish_automount(struct vfsmount *m, const struct path *path) 3481 { 3482 struct dentry *dentry = path->dentry; 3483 struct mountpoint *mp; 3484 struct mount *mnt; 3485 int err; 3486 3487 if (!m) 3488 return 0; 3489 if (IS_ERR(m)) 3490 return PTR_ERR(m); 3491 3492 mnt = real_mount(m); 3493 /* The new mount record should have at least 2 refs to prevent it being 3494 * expired before we get a chance to add it 3495 */ 3496 BUG_ON(mnt_get_count(mnt) < 2); 3497 3498 if (m->mnt_sb == path->mnt->mnt_sb && 3499 m->mnt_root == dentry) { 3500 err = -ELOOP; 3501 goto discard; 3502 } 3503 3504 /* 3505 * we don't want to use lock_mount() - in this case finding something 3506 * that overmounts our mountpoint to be means "quitely drop what we've 3507 * got", not "try to mount it on top". 3508 */ 3509 inode_lock(dentry->d_inode); 3510 namespace_lock(); 3511 if (unlikely(cant_mount(dentry))) { 3512 err = -ENOENT; 3513 goto discard_locked; 3514 } 3515 if (path_overmounted(path)) { 3516 err = 0; 3517 goto discard_locked; 3518 } 3519 mp = get_mountpoint(dentry); 3520 if (IS_ERR(mp)) { 3521 err = PTR_ERR(mp); 3522 goto discard_locked; 3523 } 3524 3525 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3526 unlock_mount(mp); 3527 if (unlikely(err)) 3528 goto discard; 3529 mntput(m); 3530 return 0; 3531 3532 discard_locked: 3533 namespace_unlock(); 3534 inode_unlock(dentry->d_inode); 3535 discard: 3536 /* remove m from any expiration list it may be on */ 3537 if (!list_empty(&mnt->mnt_expire)) { 3538 namespace_lock(); 3539 list_del_init(&mnt->mnt_expire); 3540 namespace_unlock(); 3541 } 3542 mntput(m); 3543 mntput(m); 3544 return err; 3545 } 3546 3547 /** 3548 * mnt_set_expiry - Put a mount on an expiration list 3549 * @mnt: The mount to list. 3550 * @expiry_list: The list to add the mount to. 3551 */ 3552 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3553 { 3554 namespace_lock(); 3555 3556 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3557 3558 namespace_unlock(); 3559 } 3560 EXPORT_SYMBOL(mnt_set_expiry); 3561 3562 /* 3563 * process a list of expirable mountpoints with the intent of discarding any 3564 * mountpoints that aren't in use and haven't been touched since last we came 3565 * here 3566 */ 3567 void mark_mounts_for_expiry(struct list_head *mounts) 3568 { 3569 struct mount *mnt, *next; 3570 LIST_HEAD(graveyard); 3571 3572 if (list_empty(mounts)) 3573 return; 3574 3575 namespace_lock(); 3576 lock_mount_hash(); 3577 3578 /* extract from the expiration list every vfsmount that matches the 3579 * following criteria: 3580 * - only referenced by its parent vfsmount 3581 * - still marked for expiry (marked on the last call here; marks are 3582 * cleared by mntput()) 3583 */ 3584 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3585 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3586 propagate_mount_busy(mnt, 1)) 3587 continue; 3588 list_move(&mnt->mnt_expire, &graveyard); 3589 } 3590 while (!list_empty(&graveyard)) { 3591 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3592 touch_mnt_namespace(mnt->mnt_ns); 3593 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3594 } 3595 unlock_mount_hash(); 3596 namespace_unlock(); 3597 } 3598 3599 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3600 3601 /* 3602 * Ripoff of 'select_parent()' 3603 * 3604 * search the list of submounts for a given mountpoint, and move any 3605 * shrinkable submounts to the 'graveyard' list. 3606 */ 3607 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3608 { 3609 struct mount *this_parent = parent; 3610 struct list_head *next; 3611 int found = 0; 3612 3613 repeat: 3614 next = this_parent->mnt_mounts.next; 3615 resume: 3616 while (next != &this_parent->mnt_mounts) { 3617 struct list_head *tmp = next; 3618 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3619 3620 next = tmp->next; 3621 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3622 continue; 3623 /* 3624 * Descend a level if the d_mounts list is non-empty. 3625 */ 3626 if (!list_empty(&mnt->mnt_mounts)) { 3627 this_parent = mnt; 3628 goto repeat; 3629 } 3630 3631 if (!propagate_mount_busy(mnt, 1)) { 3632 list_move_tail(&mnt->mnt_expire, graveyard); 3633 found++; 3634 } 3635 } 3636 /* 3637 * All done at this level ... ascend and resume the search 3638 */ 3639 if (this_parent != parent) { 3640 next = this_parent->mnt_child.next; 3641 this_parent = this_parent->mnt_parent; 3642 goto resume; 3643 } 3644 return found; 3645 } 3646 3647 /* 3648 * process a list of expirable mountpoints with the intent of discarding any 3649 * submounts of a specific parent mountpoint 3650 * 3651 * mount_lock must be held for write 3652 */ 3653 static void shrink_submounts(struct mount *mnt) 3654 { 3655 LIST_HEAD(graveyard); 3656 struct mount *m; 3657 3658 /* extract submounts of 'mountpoint' from the expiration list */ 3659 while (select_submounts(mnt, &graveyard)) { 3660 while (!list_empty(&graveyard)) { 3661 m = list_first_entry(&graveyard, struct mount, 3662 mnt_expire); 3663 touch_mnt_namespace(m->mnt_ns); 3664 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3665 } 3666 } 3667 } 3668 3669 static void *copy_mount_options(const void __user * data) 3670 { 3671 char *copy; 3672 unsigned left, offset; 3673 3674 if (!data) 3675 return NULL; 3676 3677 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3678 if (!copy) 3679 return ERR_PTR(-ENOMEM); 3680 3681 left = copy_from_user(copy, data, PAGE_SIZE); 3682 3683 /* 3684 * Not all architectures have an exact copy_from_user(). Resort to 3685 * byte at a time. 3686 */ 3687 offset = PAGE_SIZE - left; 3688 while (left) { 3689 char c; 3690 if (get_user(c, (const char __user *)data + offset)) 3691 break; 3692 copy[offset] = c; 3693 left--; 3694 offset++; 3695 } 3696 3697 if (left == PAGE_SIZE) { 3698 kfree(copy); 3699 return ERR_PTR(-EFAULT); 3700 } 3701 3702 return copy; 3703 } 3704 3705 static char *copy_mount_string(const void __user *data) 3706 { 3707 return data ? strndup_user(data, PATH_MAX) : NULL; 3708 } 3709 3710 /* 3711 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3712 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3713 * 3714 * data is a (void *) that can point to any structure up to 3715 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3716 * information (or be NULL). 3717 * 3718 * Pre-0.97 versions of mount() didn't have a flags word. 3719 * When the flags word was introduced its top half was required 3720 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3721 * Therefore, if this magic number is present, it carries no information 3722 * and must be discarded. 3723 */ 3724 int path_mount(const char *dev_name, struct path *path, 3725 const char *type_page, unsigned long flags, void *data_page) 3726 { 3727 unsigned int mnt_flags = 0, sb_flags; 3728 int ret; 3729 3730 /* Discard magic */ 3731 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3732 flags &= ~MS_MGC_MSK; 3733 3734 /* Basic sanity checks */ 3735 if (data_page) 3736 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3737 3738 if (flags & MS_NOUSER) 3739 return -EINVAL; 3740 3741 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3742 if (ret) 3743 return ret; 3744 if (!may_mount()) 3745 return -EPERM; 3746 if (flags & SB_MANDLOCK) 3747 warn_mandlock(); 3748 3749 /* Default to relatime unless overriden */ 3750 if (!(flags & MS_NOATIME)) 3751 mnt_flags |= MNT_RELATIME; 3752 3753 /* Separate the per-mountpoint flags */ 3754 if (flags & MS_NOSUID) 3755 mnt_flags |= MNT_NOSUID; 3756 if (flags & MS_NODEV) 3757 mnt_flags |= MNT_NODEV; 3758 if (flags & MS_NOEXEC) 3759 mnt_flags |= MNT_NOEXEC; 3760 if (flags & MS_NOATIME) 3761 mnt_flags |= MNT_NOATIME; 3762 if (flags & MS_NODIRATIME) 3763 mnt_flags |= MNT_NODIRATIME; 3764 if (flags & MS_STRICTATIME) 3765 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3766 if (flags & MS_RDONLY) 3767 mnt_flags |= MNT_READONLY; 3768 if (flags & MS_NOSYMFOLLOW) 3769 mnt_flags |= MNT_NOSYMFOLLOW; 3770 3771 /* The default atime for remount is preservation */ 3772 if ((flags & MS_REMOUNT) && 3773 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3774 MS_STRICTATIME)) == 0)) { 3775 mnt_flags &= ~MNT_ATIME_MASK; 3776 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3777 } 3778 3779 sb_flags = flags & (SB_RDONLY | 3780 SB_SYNCHRONOUS | 3781 SB_MANDLOCK | 3782 SB_DIRSYNC | 3783 SB_SILENT | 3784 SB_POSIXACL | 3785 SB_LAZYTIME | 3786 SB_I_VERSION); 3787 3788 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3789 return do_reconfigure_mnt(path, mnt_flags); 3790 if (flags & MS_REMOUNT) 3791 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3792 if (flags & MS_BIND) 3793 return do_loopback(path, dev_name, flags & MS_REC); 3794 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3795 return do_change_type(path, flags); 3796 if (flags & MS_MOVE) 3797 return do_move_mount_old(path, dev_name); 3798 3799 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3800 data_page); 3801 } 3802 3803 long do_mount(const char *dev_name, const char __user *dir_name, 3804 const char *type_page, unsigned long flags, void *data_page) 3805 { 3806 struct path path; 3807 int ret; 3808 3809 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3810 if (ret) 3811 return ret; 3812 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3813 path_put(&path); 3814 return ret; 3815 } 3816 3817 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3818 { 3819 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3820 } 3821 3822 static void dec_mnt_namespaces(struct ucounts *ucounts) 3823 { 3824 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3825 } 3826 3827 static void free_mnt_ns(struct mnt_namespace *ns) 3828 { 3829 if (!is_anon_ns(ns)) 3830 ns_free_inum(&ns->ns); 3831 dec_mnt_namespaces(ns->ucounts); 3832 mnt_ns_tree_remove(ns); 3833 } 3834 3835 /* 3836 * Assign a sequence number so we can detect when we attempt to bind 3837 * mount a reference to an older mount namespace into the current 3838 * mount namespace, preventing reference counting loops. A 64bit 3839 * number incrementing at 10Ghz will take 12,427 years to wrap which 3840 * is effectively never, so we can ignore the possibility. 3841 */ 3842 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3843 3844 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3845 { 3846 struct mnt_namespace *new_ns; 3847 struct ucounts *ucounts; 3848 int ret; 3849 3850 ucounts = inc_mnt_namespaces(user_ns); 3851 if (!ucounts) 3852 return ERR_PTR(-ENOSPC); 3853 3854 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3855 if (!new_ns) { 3856 dec_mnt_namespaces(ucounts); 3857 return ERR_PTR(-ENOMEM); 3858 } 3859 if (!anon) { 3860 ret = ns_alloc_inum(&new_ns->ns); 3861 if (ret) { 3862 kfree(new_ns); 3863 dec_mnt_namespaces(ucounts); 3864 return ERR_PTR(ret); 3865 } 3866 } 3867 new_ns->ns.ops = &mntns_operations; 3868 if (!anon) 3869 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3870 refcount_set(&new_ns->ns.count, 1); 3871 refcount_set(&new_ns->passive, 1); 3872 new_ns->mounts = RB_ROOT; 3873 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 3874 init_waitqueue_head(&new_ns->poll); 3875 new_ns->user_ns = get_user_ns(user_ns); 3876 new_ns->ucounts = ucounts; 3877 return new_ns; 3878 } 3879 3880 __latent_entropy 3881 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3882 struct user_namespace *user_ns, struct fs_struct *new_fs) 3883 { 3884 struct mnt_namespace *new_ns; 3885 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3886 struct mount *p, *q; 3887 struct mount *old; 3888 struct mount *new; 3889 int copy_flags; 3890 3891 BUG_ON(!ns); 3892 3893 if (likely(!(flags & CLONE_NEWNS))) { 3894 get_mnt_ns(ns); 3895 return ns; 3896 } 3897 3898 old = ns->root; 3899 3900 new_ns = alloc_mnt_ns(user_ns, false); 3901 if (IS_ERR(new_ns)) 3902 return new_ns; 3903 3904 namespace_lock(); 3905 /* First pass: copy the tree topology */ 3906 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3907 if (user_ns != ns->user_ns) 3908 copy_flags |= CL_SHARED_TO_SLAVE; 3909 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3910 if (IS_ERR(new)) { 3911 namespace_unlock(); 3912 free_mnt_ns(new_ns); 3913 return ERR_CAST(new); 3914 } 3915 if (user_ns != ns->user_ns) { 3916 lock_mount_hash(); 3917 lock_mnt_tree(new); 3918 unlock_mount_hash(); 3919 } 3920 new_ns->root = new; 3921 3922 /* 3923 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3924 * as belonging to new namespace. We have already acquired a private 3925 * fs_struct, so tsk->fs->lock is not needed. 3926 */ 3927 p = old; 3928 q = new; 3929 while (p) { 3930 mnt_add_to_ns(new_ns, q); 3931 new_ns->nr_mounts++; 3932 if (new_fs) { 3933 if (&p->mnt == new_fs->root.mnt) { 3934 new_fs->root.mnt = mntget(&q->mnt); 3935 rootmnt = &p->mnt; 3936 } 3937 if (&p->mnt == new_fs->pwd.mnt) { 3938 new_fs->pwd.mnt = mntget(&q->mnt); 3939 pwdmnt = &p->mnt; 3940 } 3941 } 3942 p = next_mnt(p, old); 3943 q = next_mnt(q, new); 3944 if (!q) 3945 break; 3946 // an mntns binding we'd skipped? 3947 while (p->mnt.mnt_root != q->mnt.mnt_root) 3948 p = next_mnt(skip_mnt_tree(p), old); 3949 } 3950 mnt_ns_tree_add(new_ns); 3951 namespace_unlock(); 3952 3953 if (rootmnt) 3954 mntput(rootmnt); 3955 if (pwdmnt) 3956 mntput(pwdmnt); 3957 3958 return new_ns; 3959 } 3960 3961 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3962 { 3963 struct mount *mnt = real_mount(m); 3964 struct mnt_namespace *ns; 3965 struct super_block *s; 3966 struct path path; 3967 int err; 3968 3969 ns = alloc_mnt_ns(&init_user_ns, true); 3970 if (IS_ERR(ns)) { 3971 mntput(m); 3972 return ERR_CAST(ns); 3973 } 3974 ns->root = mnt; 3975 ns->nr_mounts++; 3976 mnt_add_to_ns(ns, mnt); 3977 3978 err = vfs_path_lookup(m->mnt_root, m, 3979 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3980 3981 put_mnt_ns(ns); 3982 3983 if (err) 3984 return ERR_PTR(err); 3985 3986 /* trade a vfsmount reference for active sb one */ 3987 s = path.mnt->mnt_sb; 3988 atomic_inc(&s->s_active); 3989 mntput(path.mnt); 3990 /* lock the sucker */ 3991 down_write(&s->s_umount); 3992 /* ... and return the root of (sub)tree on it */ 3993 return path.dentry; 3994 } 3995 EXPORT_SYMBOL(mount_subtree); 3996 3997 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3998 char __user *, type, unsigned long, flags, void __user *, data) 3999 { 4000 int ret; 4001 char *kernel_type; 4002 char *kernel_dev; 4003 void *options; 4004 4005 kernel_type = copy_mount_string(type); 4006 ret = PTR_ERR(kernel_type); 4007 if (IS_ERR(kernel_type)) 4008 goto out_type; 4009 4010 kernel_dev = copy_mount_string(dev_name); 4011 ret = PTR_ERR(kernel_dev); 4012 if (IS_ERR(kernel_dev)) 4013 goto out_dev; 4014 4015 options = copy_mount_options(data); 4016 ret = PTR_ERR(options); 4017 if (IS_ERR(options)) 4018 goto out_data; 4019 4020 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4021 4022 kfree(options); 4023 out_data: 4024 kfree(kernel_dev); 4025 out_dev: 4026 kfree(kernel_type); 4027 out_type: 4028 return ret; 4029 } 4030 4031 #define FSMOUNT_VALID_FLAGS \ 4032 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4033 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4034 MOUNT_ATTR_NOSYMFOLLOW) 4035 4036 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4037 4038 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4039 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4040 4041 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4042 { 4043 unsigned int mnt_flags = 0; 4044 4045 if (attr_flags & MOUNT_ATTR_RDONLY) 4046 mnt_flags |= MNT_READONLY; 4047 if (attr_flags & MOUNT_ATTR_NOSUID) 4048 mnt_flags |= MNT_NOSUID; 4049 if (attr_flags & MOUNT_ATTR_NODEV) 4050 mnt_flags |= MNT_NODEV; 4051 if (attr_flags & MOUNT_ATTR_NOEXEC) 4052 mnt_flags |= MNT_NOEXEC; 4053 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4054 mnt_flags |= MNT_NODIRATIME; 4055 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4056 mnt_flags |= MNT_NOSYMFOLLOW; 4057 4058 return mnt_flags; 4059 } 4060 4061 /* 4062 * Create a kernel mount representation for a new, prepared superblock 4063 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4064 */ 4065 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4066 unsigned int, attr_flags) 4067 { 4068 struct mnt_namespace *ns; 4069 struct fs_context *fc; 4070 struct file *file; 4071 struct path newmount; 4072 struct mount *mnt; 4073 struct fd f; 4074 unsigned int mnt_flags = 0; 4075 long ret; 4076 4077 if (!may_mount()) 4078 return -EPERM; 4079 4080 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4081 return -EINVAL; 4082 4083 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4084 return -EINVAL; 4085 4086 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4087 4088 switch (attr_flags & MOUNT_ATTR__ATIME) { 4089 case MOUNT_ATTR_STRICTATIME: 4090 break; 4091 case MOUNT_ATTR_NOATIME: 4092 mnt_flags |= MNT_NOATIME; 4093 break; 4094 case MOUNT_ATTR_RELATIME: 4095 mnt_flags |= MNT_RELATIME; 4096 break; 4097 default: 4098 return -EINVAL; 4099 } 4100 4101 f = fdget(fs_fd); 4102 if (!f.file) 4103 return -EBADF; 4104 4105 ret = -EINVAL; 4106 if (f.file->f_op != &fscontext_fops) 4107 goto err_fsfd; 4108 4109 fc = f.file->private_data; 4110 4111 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4112 if (ret < 0) 4113 goto err_fsfd; 4114 4115 /* There must be a valid superblock or we can't mount it */ 4116 ret = -EINVAL; 4117 if (!fc->root) 4118 goto err_unlock; 4119 4120 ret = -EPERM; 4121 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4122 pr_warn("VFS: Mount too revealing\n"); 4123 goto err_unlock; 4124 } 4125 4126 ret = -EBUSY; 4127 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4128 goto err_unlock; 4129 4130 if (fc->sb_flags & SB_MANDLOCK) 4131 warn_mandlock(); 4132 4133 newmount.mnt = vfs_create_mount(fc); 4134 if (IS_ERR(newmount.mnt)) { 4135 ret = PTR_ERR(newmount.mnt); 4136 goto err_unlock; 4137 } 4138 newmount.dentry = dget(fc->root); 4139 newmount.mnt->mnt_flags = mnt_flags; 4140 4141 /* We've done the mount bit - now move the file context into more or 4142 * less the same state as if we'd done an fspick(). We don't want to 4143 * do any memory allocation or anything like that at this point as we 4144 * don't want to have to handle any errors incurred. 4145 */ 4146 vfs_clean_context(fc); 4147 4148 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4149 if (IS_ERR(ns)) { 4150 ret = PTR_ERR(ns); 4151 goto err_path; 4152 } 4153 mnt = real_mount(newmount.mnt); 4154 ns->root = mnt; 4155 ns->nr_mounts = 1; 4156 mnt_add_to_ns(ns, mnt); 4157 mntget(newmount.mnt); 4158 4159 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4160 * it, not just simply put it. 4161 */ 4162 file = dentry_open(&newmount, O_PATH, fc->cred); 4163 if (IS_ERR(file)) { 4164 dissolve_on_fput(newmount.mnt); 4165 ret = PTR_ERR(file); 4166 goto err_path; 4167 } 4168 file->f_mode |= FMODE_NEED_UNMOUNT; 4169 4170 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4171 if (ret >= 0) 4172 fd_install(ret, file); 4173 else 4174 fput(file); 4175 4176 err_path: 4177 path_put(&newmount); 4178 err_unlock: 4179 mutex_unlock(&fc->uapi_mutex); 4180 err_fsfd: 4181 fdput(f); 4182 return ret; 4183 } 4184 4185 /* 4186 * Move a mount from one place to another. In combination with 4187 * fsopen()/fsmount() this is used to install a new mount and in combination 4188 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4189 * a mount subtree. 4190 * 4191 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4192 */ 4193 SYSCALL_DEFINE5(move_mount, 4194 int, from_dfd, const char __user *, from_pathname, 4195 int, to_dfd, const char __user *, to_pathname, 4196 unsigned int, flags) 4197 { 4198 struct path from_path, to_path; 4199 unsigned int lflags; 4200 int ret = 0; 4201 4202 if (!may_mount()) 4203 return -EPERM; 4204 4205 if (flags & ~MOVE_MOUNT__MASK) 4206 return -EINVAL; 4207 4208 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4209 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4210 return -EINVAL; 4211 4212 /* If someone gives a pathname, they aren't permitted to move 4213 * from an fd that requires unmount as we can't get at the flag 4214 * to clear it afterwards. 4215 */ 4216 lflags = 0; 4217 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4218 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4219 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4220 4221 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4222 if (ret < 0) 4223 return ret; 4224 4225 lflags = 0; 4226 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4227 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4228 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4229 4230 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4231 if (ret < 0) 4232 goto out_from; 4233 4234 ret = security_move_mount(&from_path, &to_path); 4235 if (ret < 0) 4236 goto out_to; 4237 4238 if (flags & MOVE_MOUNT_SET_GROUP) 4239 ret = do_set_group(&from_path, &to_path); 4240 else 4241 ret = do_move_mount(&from_path, &to_path, 4242 (flags & MOVE_MOUNT_BENEATH)); 4243 4244 out_to: 4245 path_put(&to_path); 4246 out_from: 4247 path_put(&from_path); 4248 return ret; 4249 } 4250 4251 /* 4252 * Return true if path is reachable from root 4253 * 4254 * namespace_sem or mount_lock is held 4255 */ 4256 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4257 const struct path *root) 4258 { 4259 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4260 dentry = mnt->mnt_mountpoint; 4261 mnt = mnt->mnt_parent; 4262 } 4263 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4264 } 4265 4266 bool path_is_under(const struct path *path1, const struct path *path2) 4267 { 4268 bool res; 4269 read_seqlock_excl(&mount_lock); 4270 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4271 read_sequnlock_excl(&mount_lock); 4272 return res; 4273 } 4274 EXPORT_SYMBOL(path_is_under); 4275 4276 /* 4277 * pivot_root Semantics: 4278 * Moves the root file system of the current process to the directory put_old, 4279 * makes new_root as the new root file system of the current process, and sets 4280 * root/cwd of all processes which had them on the current root to new_root. 4281 * 4282 * Restrictions: 4283 * The new_root and put_old must be directories, and must not be on the 4284 * same file system as the current process root. The put_old must be 4285 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4286 * pointed to by put_old must yield the same directory as new_root. No other 4287 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4288 * 4289 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4290 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4291 * in this situation. 4292 * 4293 * Notes: 4294 * - we don't move root/cwd if they are not at the root (reason: if something 4295 * cared enough to change them, it's probably wrong to force them elsewhere) 4296 * - it's okay to pick a root that isn't the root of a file system, e.g. 4297 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4298 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4299 * first. 4300 */ 4301 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4302 const char __user *, put_old) 4303 { 4304 struct path new, old, root; 4305 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4306 struct mountpoint *old_mp, *root_mp; 4307 int error; 4308 4309 if (!may_mount()) 4310 return -EPERM; 4311 4312 error = user_path_at(AT_FDCWD, new_root, 4313 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4314 if (error) 4315 goto out0; 4316 4317 error = user_path_at(AT_FDCWD, put_old, 4318 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4319 if (error) 4320 goto out1; 4321 4322 error = security_sb_pivotroot(&old, &new); 4323 if (error) 4324 goto out2; 4325 4326 get_fs_root(current->fs, &root); 4327 old_mp = lock_mount(&old); 4328 error = PTR_ERR(old_mp); 4329 if (IS_ERR(old_mp)) 4330 goto out3; 4331 4332 error = -EINVAL; 4333 new_mnt = real_mount(new.mnt); 4334 root_mnt = real_mount(root.mnt); 4335 old_mnt = real_mount(old.mnt); 4336 ex_parent = new_mnt->mnt_parent; 4337 root_parent = root_mnt->mnt_parent; 4338 if (IS_MNT_SHARED(old_mnt) || 4339 IS_MNT_SHARED(ex_parent) || 4340 IS_MNT_SHARED(root_parent)) 4341 goto out4; 4342 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4343 goto out4; 4344 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4345 goto out4; 4346 error = -ENOENT; 4347 if (d_unlinked(new.dentry)) 4348 goto out4; 4349 error = -EBUSY; 4350 if (new_mnt == root_mnt || old_mnt == root_mnt) 4351 goto out4; /* loop, on the same file system */ 4352 error = -EINVAL; 4353 if (!path_mounted(&root)) 4354 goto out4; /* not a mountpoint */ 4355 if (!mnt_has_parent(root_mnt)) 4356 goto out4; /* not attached */ 4357 if (!path_mounted(&new)) 4358 goto out4; /* not a mountpoint */ 4359 if (!mnt_has_parent(new_mnt)) 4360 goto out4; /* not attached */ 4361 /* make sure we can reach put_old from new_root */ 4362 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4363 goto out4; 4364 /* make certain new is below the root */ 4365 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4366 goto out4; 4367 lock_mount_hash(); 4368 umount_mnt(new_mnt); 4369 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4370 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4371 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4372 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4373 } 4374 /* mount old root on put_old */ 4375 attach_mnt(root_mnt, old_mnt, old_mp, false); 4376 /* mount new_root on / */ 4377 attach_mnt(new_mnt, root_parent, root_mp, false); 4378 mnt_add_count(root_parent, -1); 4379 touch_mnt_namespace(current->nsproxy->mnt_ns); 4380 /* A moved mount should not expire automatically */ 4381 list_del_init(&new_mnt->mnt_expire); 4382 put_mountpoint(root_mp); 4383 unlock_mount_hash(); 4384 chroot_fs_refs(&root, &new); 4385 error = 0; 4386 out4: 4387 unlock_mount(old_mp); 4388 if (!error) 4389 mntput_no_expire(ex_parent); 4390 out3: 4391 path_put(&root); 4392 out2: 4393 path_put(&old); 4394 out1: 4395 path_put(&new); 4396 out0: 4397 return error; 4398 } 4399 4400 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4401 { 4402 unsigned int flags = mnt->mnt.mnt_flags; 4403 4404 /* flags to clear */ 4405 flags &= ~kattr->attr_clr; 4406 /* flags to raise */ 4407 flags |= kattr->attr_set; 4408 4409 return flags; 4410 } 4411 4412 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4413 { 4414 struct vfsmount *m = &mnt->mnt; 4415 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4416 4417 if (!kattr->mnt_idmap) 4418 return 0; 4419 4420 /* 4421 * Creating an idmapped mount with the filesystem wide idmapping 4422 * doesn't make sense so block that. We don't allow mushy semantics. 4423 */ 4424 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4425 return -EINVAL; 4426 4427 /* 4428 * Once a mount has been idmapped we don't allow it to change its 4429 * mapping. It makes things simpler and callers can just create 4430 * another bind-mount they can idmap if they want to. 4431 */ 4432 if (is_idmapped_mnt(m)) 4433 return -EPERM; 4434 4435 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4436 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4437 return -EINVAL; 4438 4439 /* We're not controlling the superblock. */ 4440 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4441 return -EPERM; 4442 4443 /* Mount has already been visible in the filesystem hierarchy. */ 4444 if (!is_anon_ns(mnt->mnt_ns)) 4445 return -EINVAL; 4446 4447 return 0; 4448 } 4449 4450 /** 4451 * mnt_allow_writers() - check whether the attribute change allows writers 4452 * @kattr: the new mount attributes 4453 * @mnt: the mount to which @kattr will be applied 4454 * 4455 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4456 * 4457 * Return: true if writers need to be held, false if not 4458 */ 4459 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4460 const struct mount *mnt) 4461 { 4462 return (!(kattr->attr_set & MNT_READONLY) || 4463 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4464 !kattr->mnt_idmap; 4465 } 4466 4467 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4468 { 4469 struct mount *m; 4470 int err; 4471 4472 for (m = mnt; m; m = next_mnt(m, mnt)) { 4473 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4474 err = -EPERM; 4475 break; 4476 } 4477 4478 err = can_idmap_mount(kattr, m); 4479 if (err) 4480 break; 4481 4482 if (!mnt_allow_writers(kattr, m)) { 4483 err = mnt_hold_writers(m); 4484 if (err) 4485 break; 4486 } 4487 4488 if (!kattr->recurse) 4489 return 0; 4490 } 4491 4492 if (err) { 4493 struct mount *p; 4494 4495 /* 4496 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4497 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4498 * mounts and needs to take care to include the first mount. 4499 */ 4500 for (p = mnt; p; p = next_mnt(p, mnt)) { 4501 /* If we had to hold writers unblock them. */ 4502 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4503 mnt_unhold_writers(p); 4504 4505 /* 4506 * We're done once the first mount we changed got 4507 * MNT_WRITE_HOLD unset. 4508 */ 4509 if (p == m) 4510 break; 4511 } 4512 } 4513 return err; 4514 } 4515 4516 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4517 { 4518 if (!kattr->mnt_idmap) 4519 return; 4520 4521 /* 4522 * Pairs with smp_load_acquire() in mnt_idmap(). 4523 * 4524 * Since we only allow a mount to change the idmapping once and 4525 * verified this in can_idmap_mount() we know that the mount has 4526 * @nop_mnt_idmap attached to it. So there's no need to drop any 4527 * references. 4528 */ 4529 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4530 } 4531 4532 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4533 { 4534 struct mount *m; 4535 4536 for (m = mnt; m; m = next_mnt(m, mnt)) { 4537 unsigned int flags; 4538 4539 do_idmap_mount(kattr, m); 4540 flags = recalc_flags(kattr, m); 4541 WRITE_ONCE(m->mnt.mnt_flags, flags); 4542 4543 /* If we had to hold writers unblock them. */ 4544 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4545 mnt_unhold_writers(m); 4546 4547 if (kattr->propagation) 4548 change_mnt_propagation(m, kattr->propagation); 4549 if (!kattr->recurse) 4550 break; 4551 } 4552 touch_mnt_namespace(mnt->mnt_ns); 4553 } 4554 4555 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4556 { 4557 struct mount *mnt = real_mount(path->mnt); 4558 int err = 0; 4559 4560 if (!path_mounted(path)) 4561 return -EINVAL; 4562 4563 if (kattr->mnt_userns) { 4564 struct mnt_idmap *mnt_idmap; 4565 4566 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4567 if (IS_ERR(mnt_idmap)) 4568 return PTR_ERR(mnt_idmap); 4569 kattr->mnt_idmap = mnt_idmap; 4570 } 4571 4572 if (kattr->propagation) { 4573 /* 4574 * Only take namespace_lock() if we're actually changing 4575 * propagation. 4576 */ 4577 namespace_lock(); 4578 if (kattr->propagation == MS_SHARED) { 4579 err = invent_group_ids(mnt, kattr->recurse); 4580 if (err) { 4581 namespace_unlock(); 4582 return err; 4583 } 4584 } 4585 } 4586 4587 err = -EINVAL; 4588 lock_mount_hash(); 4589 4590 /* Ensure that this isn't anything purely vfs internal. */ 4591 if (!is_mounted(&mnt->mnt)) 4592 goto out; 4593 4594 /* 4595 * If this is an attached mount make sure it's located in the callers 4596 * mount namespace. If it's not don't let the caller interact with it. 4597 * 4598 * If this mount doesn't have a parent it's most often simply a 4599 * detached mount with an anonymous mount namespace. IOW, something 4600 * that's simply not attached yet. But there are apparently also users 4601 * that do change mount properties on the rootfs itself. That obviously 4602 * neither has a parent nor is it a detached mount so we cannot 4603 * unconditionally check for detached mounts. 4604 */ 4605 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4606 goto out; 4607 4608 /* 4609 * First, we get the mount tree in a shape where we can change mount 4610 * properties without failure. If we succeeded to do so we commit all 4611 * changes and if we failed we clean up. 4612 */ 4613 err = mount_setattr_prepare(kattr, mnt); 4614 if (!err) 4615 mount_setattr_commit(kattr, mnt); 4616 4617 out: 4618 unlock_mount_hash(); 4619 4620 if (kattr->propagation) { 4621 if (err) 4622 cleanup_group_ids(mnt, NULL); 4623 namespace_unlock(); 4624 } 4625 4626 return err; 4627 } 4628 4629 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4630 struct mount_kattr *kattr, unsigned int flags) 4631 { 4632 int err = 0; 4633 struct ns_common *ns; 4634 struct user_namespace *mnt_userns; 4635 struct fd f; 4636 4637 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4638 return 0; 4639 4640 /* 4641 * We currently do not support clearing an idmapped mount. If this ever 4642 * is a use-case we can revisit this but for now let's keep it simple 4643 * and not allow it. 4644 */ 4645 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4646 return -EINVAL; 4647 4648 if (attr->userns_fd > INT_MAX) 4649 return -EINVAL; 4650 4651 f = fdget(attr->userns_fd); 4652 if (!f.file) 4653 return -EBADF; 4654 4655 if (!proc_ns_file(f.file)) { 4656 err = -EINVAL; 4657 goto out_fput; 4658 } 4659 4660 ns = get_proc_ns(file_inode(f.file)); 4661 if (ns->ops->type != CLONE_NEWUSER) { 4662 err = -EINVAL; 4663 goto out_fput; 4664 } 4665 4666 /* 4667 * The initial idmapping cannot be used to create an idmapped 4668 * mount. We use the initial idmapping as an indicator of a mount 4669 * that is not idmapped. It can simply be passed into helpers that 4670 * are aware of idmapped mounts as a convenient shortcut. A user 4671 * can just create a dedicated identity mapping to achieve the same 4672 * result. 4673 */ 4674 mnt_userns = container_of(ns, struct user_namespace, ns); 4675 if (mnt_userns == &init_user_ns) { 4676 err = -EPERM; 4677 goto out_fput; 4678 } 4679 4680 /* We're not controlling the target namespace. */ 4681 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4682 err = -EPERM; 4683 goto out_fput; 4684 } 4685 4686 kattr->mnt_userns = get_user_ns(mnt_userns); 4687 4688 out_fput: 4689 fdput(f); 4690 return err; 4691 } 4692 4693 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4694 struct mount_kattr *kattr, unsigned int flags) 4695 { 4696 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4697 4698 if (flags & AT_NO_AUTOMOUNT) 4699 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4700 if (flags & AT_SYMLINK_NOFOLLOW) 4701 lookup_flags &= ~LOOKUP_FOLLOW; 4702 if (flags & AT_EMPTY_PATH) 4703 lookup_flags |= LOOKUP_EMPTY; 4704 4705 *kattr = (struct mount_kattr) { 4706 .lookup_flags = lookup_flags, 4707 .recurse = !!(flags & AT_RECURSIVE), 4708 }; 4709 4710 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4711 return -EINVAL; 4712 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4713 return -EINVAL; 4714 kattr->propagation = attr->propagation; 4715 4716 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4717 return -EINVAL; 4718 4719 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4720 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4721 4722 /* 4723 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4724 * users wanting to transition to a different atime setting cannot 4725 * simply specify the atime setting in @attr_set, but must also 4726 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4727 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4728 * @attr_clr and that @attr_set can't have any atime bits set if 4729 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4730 */ 4731 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4732 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4733 return -EINVAL; 4734 4735 /* 4736 * Clear all previous time settings as they are mutually 4737 * exclusive. 4738 */ 4739 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4740 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4741 case MOUNT_ATTR_RELATIME: 4742 kattr->attr_set |= MNT_RELATIME; 4743 break; 4744 case MOUNT_ATTR_NOATIME: 4745 kattr->attr_set |= MNT_NOATIME; 4746 break; 4747 case MOUNT_ATTR_STRICTATIME: 4748 break; 4749 default: 4750 return -EINVAL; 4751 } 4752 } else { 4753 if (attr->attr_set & MOUNT_ATTR__ATIME) 4754 return -EINVAL; 4755 } 4756 4757 return build_mount_idmapped(attr, usize, kattr, flags); 4758 } 4759 4760 static void finish_mount_kattr(struct mount_kattr *kattr) 4761 { 4762 put_user_ns(kattr->mnt_userns); 4763 kattr->mnt_userns = NULL; 4764 4765 if (kattr->mnt_idmap) 4766 mnt_idmap_put(kattr->mnt_idmap); 4767 } 4768 4769 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4770 unsigned int, flags, struct mount_attr __user *, uattr, 4771 size_t, usize) 4772 { 4773 int err; 4774 struct path target; 4775 struct mount_attr attr; 4776 struct mount_kattr kattr; 4777 4778 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4779 4780 if (flags & ~(AT_EMPTY_PATH | 4781 AT_RECURSIVE | 4782 AT_SYMLINK_NOFOLLOW | 4783 AT_NO_AUTOMOUNT)) 4784 return -EINVAL; 4785 4786 if (unlikely(usize > PAGE_SIZE)) 4787 return -E2BIG; 4788 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4789 return -EINVAL; 4790 4791 if (!may_mount()) 4792 return -EPERM; 4793 4794 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4795 if (err) 4796 return err; 4797 4798 /* Don't bother walking through the mounts if this is a nop. */ 4799 if (attr.attr_set == 0 && 4800 attr.attr_clr == 0 && 4801 attr.propagation == 0) 4802 return 0; 4803 4804 err = build_mount_kattr(&attr, usize, &kattr, flags); 4805 if (err) 4806 return err; 4807 4808 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4809 if (!err) { 4810 err = do_mount_setattr(&target, &kattr); 4811 path_put(&target); 4812 } 4813 finish_mount_kattr(&kattr); 4814 return err; 4815 } 4816 4817 int show_path(struct seq_file *m, struct dentry *root) 4818 { 4819 if (root->d_sb->s_op->show_path) 4820 return root->d_sb->s_op->show_path(m, root); 4821 4822 seq_dentry(m, root, " \t\n\\"); 4823 return 0; 4824 } 4825 4826 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 4827 { 4828 struct mount *mnt = mnt_find_id_at(ns, id); 4829 4830 if (!mnt || mnt->mnt_id_unique != id) 4831 return NULL; 4832 4833 return &mnt->mnt; 4834 } 4835 4836 struct kstatmount { 4837 struct statmount __user *buf; 4838 size_t bufsize; 4839 struct vfsmount *mnt; 4840 u64 mask; 4841 struct path root; 4842 struct statmount sm; 4843 struct seq_file seq; 4844 }; 4845 4846 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 4847 { 4848 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 4849 u64 attr_flags = 0; 4850 4851 if (mnt_flags & MNT_READONLY) 4852 attr_flags |= MOUNT_ATTR_RDONLY; 4853 if (mnt_flags & MNT_NOSUID) 4854 attr_flags |= MOUNT_ATTR_NOSUID; 4855 if (mnt_flags & MNT_NODEV) 4856 attr_flags |= MOUNT_ATTR_NODEV; 4857 if (mnt_flags & MNT_NOEXEC) 4858 attr_flags |= MOUNT_ATTR_NOEXEC; 4859 if (mnt_flags & MNT_NODIRATIME) 4860 attr_flags |= MOUNT_ATTR_NODIRATIME; 4861 if (mnt_flags & MNT_NOSYMFOLLOW) 4862 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 4863 4864 if (mnt_flags & MNT_NOATIME) 4865 attr_flags |= MOUNT_ATTR_NOATIME; 4866 else if (mnt_flags & MNT_RELATIME) 4867 attr_flags |= MOUNT_ATTR_RELATIME; 4868 else 4869 attr_flags |= MOUNT_ATTR_STRICTATIME; 4870 4871 if (is_idmapped_mnt(mnt)) 4872 attr_flags |= MOUNT_ATTR_IDMAP; 4873 4874 return attr_flags; 4875 } 4876 4877 static u64 mnt_to_propagation_flags(struct mount *m) 4878 { 4879 u64 propagation = 0; 4880 4881 if (IS_MNT_SHARED(m)) 4882 propagation |= MS_SHARED; 4883 if (IS_MNT_SLAVE(m)) 4884 propagation |= MS_SLAVE; 4885 if (IS_MNT_UNBINDABLE(m)) 4886 propagation |= MS_UNBINDABLE; 4887 if (!propagation) 4888 propagation |= MS_PRIVATE; 4889 4890 return propagation; 4891 } 4892 4893 static void statmount_sb_basic(struct kstatmount *s) 4894 { 4895 struct super_block *sb = s->mnt->mnt_sb; 4896 4897 s->sm.mask |= STATMOUNT_SB_BASIC; 4898 s->sm.sb_dev_major = MAJOR(sb->s_dev); 4899 s->sm.sb_dev_minor = MINOR(sb->s_dev); 4900 s->sm.sb_magic = sb->s_magic; 4901 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 4902 } 4903 4904 static void statmount_mnt_basic(struct kstatmount *s) 4905 { 4906 struct mount *m = real_mount(s->mnt); 4907 4908 s->sm.mask |= STATMOUNT_MNT_BASIC; 4909 s->sm.mnt_id = m->mnt_id_unique; 4910 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 4911 s->sm.mnt_id_old = m->mnt_id; 4912 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 4913 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 4914 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 4915 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 4916 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 4917 } 4918 4919 static void statmount_propagate_from(struct kstatmount *s) 4920 { 4921 struct mount *m = real_mount(s->mnt); 4922 4923 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 4924 if (IS_MNT_SLAVE(m)) 4925 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 4926 } 4927 4928 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 4929 { 4930 int ret; 4931 size_t start = seq->count; 4932 4933 ret = show_path(seq, s->mnt->mnt_root); 4934 if (ret) 4935 return ret; 4936 4937 if (unlikely(seq_has_overflowed(seq))) 4938 return -EAGAIN; 4939 4940 /* 4941 * Unescape the result. It would be better if supplied string was not 4942 * escaped in the first place, but that's a pretty invasive change. 4943 */ 4944 seq->buf[seq->count] = '\0'; 4945 seq->count = start; 4946 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 4947 return 0; 4948 } 4949 4950 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 4951 { 4952 struct vfsmount *mnt = s->mnt; 4953 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 4954 int err; 4955 4956 err = seq_path_root(seq, &mnt_path, &s->root, ""); 4957 return err == SEQ_SKIP ? 0 : err; 4958 } 4959 4960 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 4961 { 4962 struct super_block *sb = s->mnt->mnt_sb; 4963 4964 seq_puts(seq, sb->s_type->name); 4965 return 0; 4966 } 4967 4968 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 4969 { 4970 s->sm.mask |= STATMOUNT_MNT_NS_ID; 4971 s->sm.mnt_ns_id = ns->seq; 4972 } 4973 4974 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 4975 { 4976 struct vfsmount *mnt = s->mnt; 4977 struct super_block *sb = mnt->mnt_sb; 4978 int err; 4979 4980 if (sb->s_op->show_options) { 4981 size_t start = seq->count; 4982 4983 err = sb->s_op->show_options(seq, mnt->mnt_root); 4984 if (err) 4985 return err; 4986 4987 if (unlikely(seq_has_overflowed(seq))) 4988 return -EAGAIN; 4989 4990 if (seq->count == start) 4991 return 0; 4992 4993 /* skip leading comma */ 4994 memmove(seq->buf + start, seq->buf + start + 1, 4995 seq->count - start - 1); 4996 seq->count--; 4997 } 4998 4999 return 0; 5000 } 5001 5002 static int statmount_string(struct kstatmount *s, u64 flag) 5003 { 5004 int ret; 5005 size_t kbufsize; 5006 struct seq_file *seq = &s->seq; 5007 struct statmount *sm = &s->sm; 5008 5009 switch (flag) { 5010 case STATMOUNT_FS_TYPE: 5011 sm->fs_type = seq->count; 5012 ret = statmount_fs_type(s, seq); 5013 break; 5014 case STATMOUNT_MNT_ROOT: 5015 sm->mnt_root = seq->count; 5016 ret = statmount_mnt_root(s, seq); 5017 break; 5018 case STATMOUNT_MNT_POINT: 5019 sm->mnt_point = seq->count; 5020 ret = statmount_mnt_point(s, seq); 5021 break; 5022 case STATMOUNT_MNT_OPTS: 5023 sm->mnt_opts = seq->count; 5024 ret = statmount_mnt_opts(s, seq); 5025 break; 5026 default: 5027 WARN_ON_ONCE(true); 5028 return -EINVAL; 5029 } 5030 5031 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5032 return -EOVERFLOW; 5033 if (kbufsize >= s->bufsize) 5034 return -EOVERFLOW; 5035 5036 /* signal a retry */ 5037 if (unlikely(seq_has_overflowed(seq))) 5038 return -EAGAIN; 5039 5040 if (ret) 5041 return ret; 5042 5043 seq->buf[seq->count++] = '\0'; 5044 sm->mask |= flag; 5045 return 0; 5046 } 5047 5048 static int copy_statmount_to_user(struct kstatmount *s) 5049 { 5050 struct statmount *sm = &s->sm; 5051 struct seq_file *seq = &s->seq; 5052 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5053 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5054 5055 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5056 return -EFAULT; 5057 5058 /* Return the number of bytes copied to the buffer */ 5059 sm->size = copysize + seq->count; 5060 if (copy_to_user(s->buf, sm, copysize)) 5061 return -EFAULT; 5062 5063 return 0; 5064 } 5065 5066 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5067 { 5068 struct rb_node *node; 5069 5070 if (reverse) 5071 node = rb_prev(&curr->mnt_node); 5072 else 5073 node = rb_next(&curr->mnt_node); 5074 5075 return node_to_mount(node); 5076 } 5077 5078 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5079 { 5080 struct mount *first, *child; 5081 5082 rwsem_assert_held(&namespace_sem); 5083 5084 /* We're looking at our own ns, just use get_fs_root. */ 5085 if (ns == current->nsproxy->mnt_ns) { 5086 get_fs_root(current->fs, root); 5087 return 0; 5088 } 5089 5090 /* 5091 * We have to find the first mount in our ns and use that, however it 5092 * may not exist, so handle that properly. 5093 */ 5094 if (RB_EMPTY_ROOT(&ns->mounts)) 5095 return -ENOENT; 5096 5097 first = child = ns->root; 5098 for (;;) { 5099 child = listmnt_next(child, false); 5100 if (!child) 5101 return -ENOENT; 5102 if (child->mnt_parent == first) 5103 break; 5104 } 5105 5106 root->mnt = mntget(&child->mnt); 5107 root->dentry = dget(root->mnt->mnt_root); 5108 return 0; 5109 } 5110 5111 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5112 struct mnt_namespace *ns) 5113 { 5114 struct path root __free(path_put) = {}; 5115 struct mount *m; 5116 int err; 5117 5118 /* Has the namespace already been emptied? */ 5119 if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts)) 5120 return -ENOENT; 5121 5122 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5123 if (!s->mnt) 5124 return -ENOENT; 5125 5126 err = grab_requested_root(ns, &root); 5127 if (err) 5128 return err; 5129 5130 /* 5131 * Don't trigger audit denials. We just want to determine what 5132 * mounts to show users. 5133 */ 5134 m = real_mount(s->mnt); 5135 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5136 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5137 return -EPERM; 5138 5139 err = security_sb_statfs(s->mnt->mnt_root); 5140 if (err) 5141 return err; 5142 5143 s->root = root; 5144 if (s->mask & STATMOUNT_SB_BASIC) 5145 statmount_sb_basic(s); 5146 5147 if (s->mask & STATMOUNT_MNT_BASIC) 5148 statmount_mnt_basic(s); 5149 5150 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5151 statmount_propagate_from(s); 5152 5153 if (s->mask & STATMOUNT_FS_TYPE) 5154 err = statmount_string(s, STATMOUNT_FS_TYPE); 5155 5156 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5157 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5158 5159 if (!err && s->mask & STATMOUNT_MNT_POINT) 5160 err = statmount_string(s, STATMOUNT_MNT_POINT); 5161 5162 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5163 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5164 5165 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5166 statmount_mnt_ns_id(s, ns); 5167 5168 if (err) 5169 return err; 5170 5171 return 0; 5172 } 5173 5174 static inline bool retry_statmount(const long ret, size_t *seq_size) 5175 { 5176 if (likely(ret != -EAGAIN)) 5177 return false; 5178 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5179 return false; 5180 if (unlikely(*seq_size > MAX_RW_COUNT)) 5181 return false; 5182 return true; 5183 } 5184 5185 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5186 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS) 5187 5188 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5189 struct statmount __user *buf, size_t bufsize, 5190 size_t seq_size) 5191 { 5192 if (!access_ok(buf, bufsize)) 5193 return -EFAULT; 5194 5195 memset(ks, 0, sizeof(*ks)); 5196 ks->mask = kreq->param; 5197 ks->buf = buf; 5198 ks->bufsize = bufsize; 5199 5200 if (ks->mask & STATMOUNT_STRING_REQ) { 5201 if (bufsize == sizeof(ks->sm)) 5202 return -EOVERFLOW; 5203 5204 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5205 if (!ks->seq.buf) 5206 return -ENOMEM; 5207 5208 ks->seq.size = seq_size; 5209 } 5210 5211 return 0; 5212 } 5213 5214 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5215 struct mnt_id_req *kreq) 5216 { 5217 int ret; 5218 size_t usize; 5219 5220 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5221 5222 ret = get_user(usize, &req->size); 5223 if (ret) 5224 return -EFAULT; 5225 if (unlikely(usize > PAGE_SIZE)) 5226 return -E2BIG; 5227 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5228 return -EINVAL; 5229 memset(kreq, 0, sizeof(*kreq)); 5230 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5231 if (ret) 5232 return ret; 5233 if (kreq->spare != 0) 5234 return -EINVAL; 5235 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5236 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5237 return -EINVAL; 5238 return 0; 5239 } 5240 5241 /* 5242 * If the user requested a specific mount namespace id, look that up and return 5243 * that, or if not simply grab a passive reference on our mount namespace and 5244 * return that. 5245 */ 5246 static struct mnt_namespace *grab_requested_mnt_ns(u64 mnt_ns_id) 5247 { 5248 if (mnt_ns_id) 5249 return lookup_mnt_ns(mnt_ns_id); 5250 refcount_inc(¤t->nsproxy->mnt_ns->passive); 5251 return current->nsproxy->mnt_ns; 5252 } 5253 5254 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5255 struct statmount __user *, buf, size_t, bufsize, 5256 unsigned int, flags) 5257 { 5258 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5259 struct kstatmount *ks __free(kfree) = NULL; 5260 struct mnt_id_req kreq; 5261 /* We currently support retrieval of 3 strings. */ 5262 size_t seq_size = 3 * PATH_MAX; 5263 int ret; 5264 5265 if (flags) 5266 return -EINVAL; 5267 5268 ret = copy_mnt_id_req(req, &kreq); 5269 if (ret) 5270 return ret; 5271 5272 ns = grab_requested_mnt_ns(kreq.mnt_ns_id); 5273 if (!ns) 5274 return -ENOENT; 5275 5276 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5277 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5278 return -ENOENT; 5279 5280 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 5281 if (!ks) 5282 return -ENOMEM; 5283 5284 retry: 5285 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 5286 if (ret) 5287 return ret; 5288 5289 scoped_guard(rwsem_read, &namespace_sem) 5290 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 5291 5292 if (!ret) 5293 ret = copy_statmount_to_user(ks); 5294 kvfree(ks->seq.buf); 5295 if (retry_statmount(ret, &seq_size)) 5296 goto retry; 5297 return ret; 5298 } 5299 5300 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 5301 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 5302 bool reverse) 5303 { 5304 struct path root __free(path_put) = {}; 5305 struct path orig; 5306 struct mount *r, *first; 5307 ssize_t ret; 5308 5309 rwsem_assert_held(&namespace_sem); 5310 5311 ret = grab_requested_root(ns, &root); 5312 if (ret) 5313 return ret; 5314 5315 if (mnt_parent_id == LSMT_ROOT) { 5316 orig = root; 5317 } else { 5318 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5319 if (!orig.mnt) 5320 return -ENOENT; 5321 orig.dentry = orig.mnt->mnt_root; 5322 } 5323 5324 /* 5325 * Don't trigger audit denials. We just want to determine what 5326 * mounts to show users. 5327 */ 5328 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 5329 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5330 return -EPERM; 5331 5332 ret = security_sb_statfs(orig.dentry); 5333 if (ret) 5334 return ret; 5335 5336 if (!last_mnt_id) { 5337 if (reverse) 5338 first = node_to_mount(rb_last(&ns->mounts)); 5339 else 5340 first = node_to_mount(rb_first(&ns->mounts)); 5341 } else { 5342 if (reverse) 5343 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 5344 else 5345 first = mnt_find_id_at(ns, last_mnt_id + 1); 5346 } 5347 5348 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 5349 if (r->mnt_id_unique == mnt_parent_id) 5350 continue; 5351 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 5352 continue; 5353 *mnt_ids = r->mnt_id_unique; 5354 mnt_ids++; 5355 nr_mnt_ids--; 5356 ret++; 5357 } 5358 return ret; 5359 } 5360 5361 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 5362 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 5363 { 5364 u64 *kmnt_ids __free(kvfree) = NULL; 5365 const size_t maxcount = 1000000; 5366 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5367 struct mnt_id_req kreq; 5368 u64 last_mnt_id; 5369 ssize_t ret; 5370 5371 if (flags & ~LISTMOUNT_REVERSE) 5372 return -EINVAL; 5373 5374 /* 5375 * If the mount namespace really has more than 1 million mounts the 5376 * caller must iterate over the mount namespace (and reconsider their 5377 * system design...). 5378 */ 5379 if (unlikely(nr_mnt_ids > maxcount)) 5380 return -EOVERFLOW; 5381 5382 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 5383 return -EFAULT; 5384 5385 ret = copy_mnt_id_req(req, &kreq); 5386 if (ret) 5387 return ret; 5388 5389 last_mnt_id = kreq.param; 5390 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5391 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 5392 return -EINVAL; 5393 5394 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 5395 GFP_KERNEL_ACCOUNT); 5396 if (!kmnt_ids) 5397 return -ENOMEM; 5398 5399 ns = grab_requested_mnt_ns(kreq.mnt_ns_id); 5400 if (!ns) 5401 return -ENOENT; 5402 5403 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5404 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5405 return -ENOENT; 5406 5407 scoped_guard(rwsem_read, &namespace_sem) 5408 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 5409 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 5410 if (ret <= 0) 5411 return ret; 5412 5413 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 5414 return -EFAULT; 5415 5416 return ret; 5417 } 5418 5419 static void __init init_mount_tree(void) 5420 { 5421 struct vfsmount *mnt; 5422 struct mount *m; 5423 struct mnt_namespace *ns; 5424 struct path root; 5425 5426 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 5427 if (IS_ERR(mnt)) 5428 panic("Can't create rootfs"); 5429 5430 ns = alloc_mnt_ns(&init_user_ns, false); 5431 if (IS_ERR(ns)) 5432 panic("Can't allocate initial namespace"); 5433 m = real_mount(mnt); 5434 ns->root = m; 5435 ns->nr_mounts = 1; 5436 mnt_add_to_ns(ns, m); 5437 init_task.nsproxy->mnt_ns = ns; 5438 get_mnt_ns(ns); 5439 5440 root.mnt = mnt; 5441 root.dentry = mnt->mnt_root; 5442 mnt->mnt_flags |= MNT_LOCKED; 5443 5444 set_fs_pwd(current->fs, &root); 5445 set_fs_root(current->fs, &root); 5446 5447 mnt_ns_tree_add(ns); 5448 } 5449 5450 void __init mnt_init(void) 5451 { 5452 int err; 5453 5454 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 5455 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 5456 5457 mount_hashtable = alloc_large_system_hash("Mount-cache", 5458 sizeof(struct hlist_head), 5459 mhash_entries, 19, 5460 HASH_ZERO, 5461 &m_hash_shift, &m_hash_mask, 0, 0); 5462 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 5463 sizeof(struct hlist_head), 5464 mphash_entries, 19, 5465 HASH_ZERO, 5466 &mp_hash_shift, &mp_hash_mask, 0, 0); 5467 5468 if (!mount_hashtable || !mountpoint_hashtable) 5469 panic("Failed to allocate mount hash table\n"); 5470 5471 kernfs_init(); 5472 5473 err = sysfs_init(); 5474 if (err) 5475 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 5476 __func__, err); 5477 fs_kobj = kobject_create_and_add("fs", NULL); 5478 if (!fs_kobj) 5479 printk(KERN_WARNING "%s: kobj create error\n", __func__); 5480 shmem_init(); 5481 init_rootfs(); 5482 init_mount_tree(); 5483 } 5484 5485 void put_mnt_ns(struct mnt_namespace *ns) 5486 { 5487 if (!refcount_dec_and_test(&ns->ns.count)) 5488 return; 5489 drop_collected_mounts(&ns->root->mnt); 5490 free_mnt_ns(ns); 5491 } 5492 5493 struct vfsmount *kern_mount(struct file_system_type *type) 5494 { 5495 struct vfsmount *mnt; 5496 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 5497 if (!IS_ERR(mnt)) { 5498 /* 5499 * it is a longterm mount, don't release mnt until 5500 * we unmount before file sys is unregistered 5501 */ 5502 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 5503 } 5504 return mnt; 5505 } 5506 EXPORT_SYMBOL_GPL(kern_mount); 5507 5508 void kern_unmount(struct vfsmount *mnt) 5509 { 5510 /* release long term mount so mount point can be released */ 5511 if (!IS_ERR(mnt)) { 5512 mnt_make_shortterm(mnt); 5513 synchronize_rcu(); /* yecchhh... */ 5514 mntput(mnt); 5515 } 5516 } 5517 EXPORT_SYMBOL(kern_unmount); 5518 5519 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 5520 { 5521 unsigned int i; 5522 5523 for (i = 0; i < num; i++) 5524 mnt_make_shortterm(mnt[i]); 5525 synchronize_rcu_expedited(); 5526 for (i = 0; i < num; i++) 5527 mntput(mnt[i]); 5528 } 5529 EXPORT_SYMBOL(kern_unmount_array); 5530 5531 bool our_mnt(struct vfsmount *mnt) 5532 { 5533 return check_mnt(real_mount(mnt)); 5534 } 5535 5536 bool current_chrooted(void) 5537 { 5538 /* Does the current process have a non-standard root */ 5539 struct path ns_root; 5540 struct path fs_root; 5541 bool chrooted; 5542 5543 /* Find the namespace root */ 5544 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 5545 ns_root.dentry = ns_root.mnt->mnt_root; 5546 path_get(&ns_root); 5547 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 5548 ; 5549 5550 get_fs_root(current->fs, &fs_root); 5551 5552 chrooted = !path_equal(&fs_root, &ns_root); 5553 5554 path_put(&fs_root); 5555 path_put(&ns_root); 5556 5557 return chrooted; 5558 } 5559 5560 static bool mnt_already_visible(struct mnt_namespace *ns, 5561 const struct super_block *sb, 5562 int *new_mnt_flags) 5563 { 5564 int new_flags = *new_mnt_flags; 5565 struct mount *mnt, *n; 5566 bool visible = false; 5567 5568 down_read(&namespace_sem); 5569 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 5570 struct mount *child; 5571 int mnt_flags; 5572 5573 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 5574 continue; 5575 5576 /* This mount is not fully visible if it's root directory 5577 * is not the root directory of the filesystem. 5578 */ 5579 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 5580 continue; 5581 5582 /* A local view of the mount flags */ 5583 mnt_flags = mnt->mnt.mnt_flags; 5584 5585 /* Don't miss readonly hidden in the superblock flags */ 5586 if (sb_rdonly(mnt->mnt.mnt_sb)) 5587 mnt_flags |= MNT_LOCK_READONLY; 5588 5589 /* Verify the mount flags are equal to or more permissive 5590 * than the proposed new mount. 5591 */ 5592 if ((mnt_flags & MNT_LOCK_READONLY) && 5593 !(new_flags & MNT_READONLY)) 5594 continue; 5595 if ((mnt_flags & MNT_LOCK_ATIME) && 5596 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 5597 continue; 5598 5599 /* This mount is not fully visible if there are any 5600 * locked child mounts that cover anything except for 5601 * empty directories. 5602 */ 5603 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 5604 struct inode *inode = child->mnt_mountpoint->d_inode; 5605 /* Only worry about locked mounts */ 5606 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 5607 continue; 5608 /* Is the directory permanetly empty? */ 5609 if (!is_empty_dir_inode(inode)) 5610 goto next; 5611 } 5612 /* Preserve the locked attributes */ 5613 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 5614 MNT_LOCK_ATIME); 5615 visible = true; 5616 goto found; 5617 next: ; 5618 } 5619 found: 5620 up_read(&namespace_sem); 5621 return visible; 5622 } 5623 5624 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 5625 { 5626 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 5627 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 5628 unsigned long s_iflags; 5629 5630 if (ns->user_ns == &init_user_ns) 5631 return false; 5632 5633 /* Can this filesystem be too revealing? */ 5634 s_iflags = sb->s_iflags; 5635 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 5636 return false; 5637 5638 if ((s_iflags & required_iflags) != required_iflags) { 5639 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 5640 required_iflags); 5641 return true; 5642 } 5643 5644 return !mnt_already_visible(ns, sb, new_mnt_flags); 5645 } 5646 5647 bool mnt_may_suid(struct vfsmount *mnt) 5648 { 5649 /* 5650 * Foreign mounts (accessed via fchdir or through /proc 5651 * symlinks) are always treated as if they are nosuid. This 5652 * prevents namespaces from trusting potentially unsafe 5653 * suid/sgid bits, file caps, or security labels that originate 5654 * in other namespaces. 5655 */ 5656 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 5657 current_in_userns(mnt->mnt_sb->s_user_ns); 5658 } 5659 5660 static struct ns_common *mntns_get(struct task_struct *task) 5661 { 5662 struct ns_common *ns = NULL; 5663 struct nsproxy *nsproxy; 5664 5665 task_lock(task); 5666 nsproxy = task->nsproxy; 5667 if (nsproxy) { 5668 ns = &nsproxy->mnt_ns->ns; 5669 get_mnt_ns(to_mnt_ns(ns)); 5670 } 5671 task_unlock(task); 5672 5673 return ns; 5674 } 5675 5676 static void mntns_put(struct ns_common *ns) 5677 { 5678 put_mnt_ns(to_mnt_ns(ns)); 5679 } 5680 5681 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 5682 { 5683 struct nsproxy *nsproxy = nsset->nsproxy; 5684 struct fs_struct *fs = nsset->fs; 5685 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 5686 struct user_namespace *user_ns = nsset->cred->user_ns; 5687 struct path root; 5688 int err; 5689 5690 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 5691 !ns_capable(user_ns, CAP_SYS_CHROOT) || 5692 !ns_capable(user_ns, CAP_SYS_ADMIN)) 5693 return -EPERM; 5694 5695 if (is_anon_ns(mnt_ns)) 5696 return -EINVAL; 5697 5698 if (fs->users != 1) 5699 return -EINVAL; 5700 5701 get_mnt_ns(mnt_ns); 5702 old_mnt_ns = nsproxy->mnt_ns; 5703 nsproxy->mnt_ns = mnt_ns; 5704 5705 /* Find the root */ 5706 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 5707 "/", LOOKUP_DOWN, &root); 5708 if (err) { 5709 /* revert to old namespace */ 5710 nsproxy->mnt_ns = old_mnt_ns; 5711 put_mnt_ns(mnt_ns); 5712 return err; 5713 } 5714 5715 put_mnt_ns(old_mnt_ns); 5716 5717 /* Update the pwd and root */ 5718 set_fs_pwd(fs, &root); 5719 set_fs_root(fs, &root); 5720 5721 path_put(&root); 5722 return 0; 5723 } 5724 5725 static struct user_namespace *mntns_owner(struct ns_common *ns) 5726 { 5727 return to_mnt_ns(ns)->user_ns; 5728 } 5729 5730 const struct proc_ns_operations mntns_operations = { 5731 .name = "mnt", 5732 .type = CLONE_NEWNS, 5733 .get = mntns_get, 5734 .put = mntns_put, 5735 .install = mntns_install, 5736 .owner = mntns_owner, 5737 }; 5738 5739 #ifdef CONFIG_SYSCTL 5740 static struct ctl_table fs_namespace_sysctls[] = { 5741 { 5742 .procname = "mount-max", 5743 .data = &sysctl_mount_max, 5744 .maxlen = sizeof(unsigned int), 5745 .mode = 0644, 5746 .proc_handler = proc_dointvec_minmax, 5747 .extra1 = SYSCTL_ONE, 5748 }, 5749 }; 5750 5751 static int __init init_fs_namespace_sysctls(void) 5752 { 5753 register_sysctl_init("fs", fs_namespace_sysctls); 5754 return 0; 5755 } 5756 fs_initcall(init_fs_namespace_sysctls); 5757 5758 #endif /* CONFIG_SYSCTL */ 5759