1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 35 #include "pnode.h" 36 #include "internal.h" 37 38 /* Maximum number of mounts in a mount namespace */ 39 unsigned int sysctl_mount_max __read_mostly = 100000; 40 41 static unsigned int m_hash_mask __read_mostly; 42 static unsigned int m_hash_shift __read_mostly; 43 static unsigned int mp_hash_mask __read_mostly; 44 static unsigned int mp_hash_shift __read_mostly; 45 46 static __initdata unsigned long mhash_entries; 47 static int __init set_mhash_entries(char *str) 48 { 49 if (!str) 50 return 0; 51 mhash_entries = simple_strtoul(str, &str, 0); 52 return 1; 53 } 54 __setup("mhash_entries=", set_mhash_entries); 55 56 static __initdata unsigned long mphash_entries; 57 static int __init set_mphash_entries(char *str) 58 { 59 if (!str) 60 return 0; 61 mphash_entries = simple_strtoul(str, &str, 0); 62 return 1; 63 } 64 __setup("mphash_entries=", set_mphash_entries); 65 66 static u64 event; 67 static DEFINE_IDA(mnt_id_ida); 68 static DEFINE_IDA(mnt_group_ida); 69 70 static struct hlist_head *mount_hashtable __read_mostly; 71 static struct hlist_head *mountpoint_hashtable __read_mostly; 72 static struct kmem_cache *mnt_cache __read_mostly; 73 static DECLARE_RWSEM(namespace_sem); 74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 76 77 struct mount_kattr { 78 unsigned int attr_set; 79 unsigned int attr_clr; 80 unsigned int propagation; 81 unsigned int lookup_flags; 82 bool recurse; 83 struct user_namespace *mnt_userns; 84 }; 85 86 /* /sys/fs */ 87 struct kobject *fs_kobj; 88 EXPORT_SYMBOL_GPL(fs_kobj); 89 90 /* 91 * vfsmount lock may be taken for read to prevent changes to the 92 * vfsmount hash, ie. during mountpoint lookups or walking back 93 * up the tree. 94 * 95 * It should be taken for write in all cases where the vfsmount 96 * tree or hash is modified or when a vfsmount structure is modified. 97 */ 98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 99 100 static inline void lock_mount_hash(void) 101 { 102 write_seqlock(&mount_lock); 103 } 104 105 static inline void unlock_mount_hash(void) 106 { 107 write_sequnlock(&mount_lock); 108 } 109 110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 111 { 112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 114 tmp = tmp + (tmp >> m_hash_shift); 115 return &mount_hashtable[tmp & m_hash_mask]; 116 } 117 118 static inline struct hlist_head *mp_hash(struct dentry *dentry) 119 { 120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 121 tmp = tmp + (tmp >> mp_hash_shift); 122 return &mountpoint_hashtable[tmp & mp_hash_mask]; 123 } 124 125 static int mnt_alloc_id(struct mount *mnt) 126 { 127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 128 129 if (res < 0) 130 return res; 131 mnt->mnt_id = res; 132 return 0; 133 } 134 135 static void mnt_free_id(struct mount *mnt) 136 { 137 ida_free(&mnt_id_ida, mnt->mnt_id); 138 } 139 140 /* 141 * Allocate a new peer group ID 142 */ 143 static int mnt_alloc_group_id(struct mount *mnt) 144 { 145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_group_id = res; 150 return 0; 151 } 152 153 /* 154 * Release a peer group ID 155 */ 156 void mnt_release_group_id(struct mount *mnt) 157 { 158 ida_free(&mnt_group_ida, mnt->mnt_group_id); 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static struct mount *alloc_vfsmnt(const char *name) 196 { 197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 198 if (mnt) { 199 int err; 200 201 err = mnt_alloc_id(mnt); 202 if (err) 203 goto out_free_cache; 204 205 if (name) { 206 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 207 if (!mnt->mnt_devname) 208 goto out_free_id; 209 } 210 211 #ifdef CONFIG_SMP 212 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 213 if (!mnt->mnt_pcp) 214 goto out_free_devname; 215 216 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 217 #else 218 mnt->mnt_count = 1; 219 mnt->mnt_writers = 0; 220 #endif 221 222 INIT_HLIST_NODE(&mnt->mnt_hash); 223 INIT_LIST_HEAD(&mnt->mnt_child); 224 INIT_LIST_HEAD(&mnt->mnt_mounts); 225 INIT_LIST_HEAD(&mnt->mnt_list); 226 INIT_LIST_HEAD(&mnt->mnt_expire); 227 INIT_LIST_HEAD(&mnt->mnt_share); 228 INIT_LIST_HEAD(&mnt->mnt_slave_list); 229 INIT_LIST_HEAD(&mnt->mnt_slave); 230 INIT_HLIST_NODE(&mnt->mnt_mp_list); 231 INIT_LIST_HEAD(&mnt->mnt_umounting); 232 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 233 mnt->mnt.mnt_userns = &init_user_ns; 234 } 235 return mnt; 236 237 #ifdef CONFIG_SMP 238 out_free_devname: 239 kfree_const(mnt->mnt_devname); 240 #endif 241 out_free_id: 242 mnt_free_id(mnt); 243 out_free_cache: 244 kmem_cache_free(mnt_cache, mnt); 245 return NULL; 246 } 247 248 /* 249 * Most r/o checks on a fs are for operations that take 250 * discrete amounts of time, like a write() or unlink(). 251 * We must keep track of when those operations start 252 * (for permission checks) and when they end, so that 253 * we can determine when writes are able to occur to 254 * a filesystem. 255 */ 256 /* 257 * __mnt_is_readonly: check whether a mount is read-only 258 * @mnt: the mount to check for its write status 259 * 260 * This shouldn't be used directly ouside of the VFS. 261 * It does not guarantee that the filesystem will stay 262 * r/w, just that it is right *now*. This can not and 263 * should not be used in place of IS_RDONLY(inode). 264 * mnt_want/drop_write() will _keep_ the filesystem 265 * r/w. 266 */ 267 bool __mnt_is_readonly(struct vfsmount *mnt) 268 { 269 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 270 } 271 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 272 273 static inline void mnt_inc_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 277 #else 278 mnt->mnt_writers++; 279 #endif 280 } 281 282 static inline void mnt_dec_writers(struct mount *mnt) 283 { 284 #ifdef CONFIG_SMP 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 286 #else 287 mnt->mnt_writers--; 288 #endif 289 } 290 291 static unsigned int mnt_get_writers(struct mount *mnt) 292 { 293 #ifdef CONFIG_SMP 294 unsigned int count = 0; 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 299 } 300 301 return count; 302 #else 303 return mnt->mnt_writers; 304 #endif 305 } 306 307 static int mnt_is_readonly(struct vfsmount *mnt) 308 { 309 if (mnt->mnt_sb->s_readonly_remount) 310 return 1; 311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 312 smp_rmb(); 313 return __mnt_is_readonly(mnt); 314 } 315 316 /* 317 * Most r/o & frozen checks on a fs are for operations that take discrete 318 * amounts of time, like a write() or unlink(). We must keep track of when 319 * those operations start (for permission checks) and when they end, so that we 320 * can determine when writes are able to occur to a filesystem. 321 */ 322 /** 323 * __mnt_want_write - get write access to a mount without freeze protection 324 * @m: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is about to be performed to 327 * it, and makes sure that writes are allowed (mnt it read-write) before 328 * returning success. This operation does not protect against filesystem being 329 * frozen. When the write operation is finished, __mnt_drop_write() must be 330 * called. This is effectively a refcount. 331 */ 332 int __mnt_want_write(struct vfsmount *m) 333 { 334 struct mount *mnt = real_mount(m); 335 int ret = 0; 336 337 preempt_disable(); 338 mnt_inc_writers(mnt); 339 /* 340 * The store to mnt_inc_writers must be visible before we pass 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 342 * incremented count after it has set MNT_WRITE_HOLD. 343 */ 344 smp_mb(); 345 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 346 cpu_relax(); 347 /* 348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 349 * be set to match its requirements. So we must not load that until 350 * MNT_WRITE_HOLD is cleared. 351 */ 352 smp_rmb(); 353 if (mnt_is_readonly(m)) { 354 mnt_dec_writers(mnt); 355 ret = -EROFS; 356 } 357 preempt_enable(); 358 359 return ret; 360 } 361 362 /** 363 * mnt_want_write - get write access to a mount 364 * @m: the mount on which to take a write 365 * 366 * This tells the low-level filesystem that a write is about to be performed to 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem 368 * is not frozen) before returning success. When the write operation is 369 * finished, mnt_drop_write() must be called. This is effectively a refcount. 370 */ 371 int mnt_want_write(struct vfsmount *m) 372 { 373 int ret; 374 375 sb_start_write(m->mnt_sb); 376 ret = __mnt_want_write(m); 377 if (ret) 378 sb_end_write(m->mnt_sb); 379 return ret; 380 } 381 EXPORT_SYMBOL_GPL(mnt_want_write); 382 383 /** 384 * mnt_clone_write - get write access to a mount 385 * @mnt: the mount on which to take a write 386 * 387 * This is effectively like mnt_want_write, except 388 * it must only be used to take an extra write reference 389 * on a mountpoint that we already know has a write reference 390 * on it. This allows some optimisation. 391 * 392 * After finished, mnt_drop_write must be called as usual to 393 * drop the reference. 394 */ 395 int mnt_clone_write(struct vfsmount *mnt) 396 { 397 /* superblock may be r/o */ 398 if (__mnt_is_readonly(mnt)) 399 return -EROFS; 400 preempt_disable(); 401 mnt_inc_writers(real_mount(mnt)); 402 preempt_enable(); 403 return 0; 404 } 405 EXPORT_SYMBOL_GPL(mnt_clone_write); 406 407 /** 408 * __mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like __mnt_want_write, but it takes a file and can 412 * do some optimisations if the file is open for write already 413 */ 414 int __mnt_want_write_file(struct file *file) 415 { 416 if (!(file->f_mode & FMODE_WRITER)) 417 return __mnt_want_write(file->f_path.mnt); 418 else 419 return mnt_clone_write(file->f_path.mnt); 420 } 421 422 /** 423 * mnt_want_write_file - get write access to a file's mount 424 * @file: the file who's mount on which to take a write 425 * 426 * This is like mnt_want_write, but it takes a file and can 427 * do some optimisations if the file is open for write already 428 */ 429 int mnt_want_write_file(struct file *file) 430 { 431 int ret; 432 433 sb_start_write(file_inode(file)->i_sb); 434 ret = __mnt_want_write_file(file); 435 if (ret) 436 sb_end_write(file_inode(file)->i_sb); 437 return ret; 438 } 439 EXPORT_SYMBOL_GPL(mnt_want_write_file); 440 441 /** 442 * __mnt_drop_write - give up write access to a mount 443 * @mnt: the mount on which to give up write access 444 * 445 * Tells the low-level filesystem that we are done 446 * performing writes to it. Must be matched with 447 * __mnt_want_write() call above. 448 */ 449 void __mnt_drop_write(struct vfsmount *mnt) 450 { 451 preempt_disable(); 452 mnt_dec_writers(real_mount(mnt)); 453 preempt_enable(); 454 } 455 456 /** 457 * mnt_drop_write - give up write access to a mount 458 * @mnt: the mount on which to give up write access 459 * 460 * Tells the low-level filesystem that we are done performing writes to it and 461 * also allows filesystem to be frozen again. Must be matched with 462 * mnt_want_write() call above. 463 */ 464 void mnt_drop_write(struct vfsmount *mnt) 465 { 466 __mnt_drop_write(mnt); 467 sb_end_write(mnt->mnt_sb); 468 } 469 EXPORT_SYMBOL_GPL(mnt_drop_write); 470 471 void __mnt_drop_write_file(struct file *file) 472 { 473 __mnt_drop_write(file->f_path.mnt); 474 } 475 476 void mnt_drop_write_file(struct file *file) 477 { 478 __mnt_drop_write_file(file); 479 sb_end_write(file_inode(file)->i_sb); 480 } 481 EXPORT_SYMBOL(mnt_drop_write_file); 482 483 static inline int mnt_hold_writers(struct mount *mnt) 484 { 485 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 486 /* 487 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 488 * should be visible before we do. 489 */ 490 smp_mb(); 491 492 /* 493 * With writers on hold, if this value is zero, then there are 494 * definitely no active writers (although held writers may subsequently 495 * increment the count, they'll have to wait, and decrement it after 496 * seeing MNT_READONLY). 497 * 498 * It is OK to have counter incremented on one CPU and decremented on 499 * another: the sum will add up correctly. The danger would be when we 500 * sum up each counter, if we read a counter before it is incremented, 501 * but then read another CPU's count which it has been subsequently 502 * decremented from -- we would see more decrements than we should. 503 * MNT_WRITE_HOLD protects against this scenario, because 504 * mnt_want_write first increments count, then smp_mb, then spins on 505 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 506 * we're counting up here. 507 */ 508 if (mnt_get_writers(mnt) > 0) 509 return -EBUSY; 510 511 return 0; 512 } 513 514 static inline void mnt_unhold_writers(struct mount *mnt) 515 { 516 /* 517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 518 * that become unheld will see MNT_READONLY. 519 */ 520 smp_wmb(); 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 522 } 523 524 static int mnt_make_readonly(struct mount *mnt) 525 { 526 int ret; 527 528 ret = mnt_hold_writers(mnt); 529 if (!ret) 530 mnt->mnt.mnt_flags |= MNT_READONLY; 531 mnt_unhold_writers(mnt); 532 return ret; 533 } 534 535 int sb_prepare_remount_readonly(struct super_block *sb) 536 { 537 struct mount *mnt; 538 int err = 0; 539 540 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 541 if (atomic_long_read(&sb->s_remove_count)) 542 return -EBUSY; 543 544 lock_mount_hash(); 545 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 546 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 547 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 548 smp_mb(); 549 if (mnt_get_writers(mnt) > 0) { 550 err = -EBUSY; 551 break; 552 } 553 } 554 } 555 if (!err && atomic_long_read(&sb->s_remove_count)) 556 err = -EBUSY; 557 558 if (!err) { 559 sb->s_readonly_remount = 1; 560 smp_wmb(); 561 } 562 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 563 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 564 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 565 } 566 unlock_mount_hash(); 567 568 return err; 569 } 570 571 static void free_vfsmnt(struct mount *mnt) 572 { 573 struct user_namespace *mnt_userns; 574 575 mnt_userns = mnt_user_ns(&mnt->mnt); 576 if (mnt_userns != &init_user_ns) 577 put_user_ns(mnt_userns); 578 kfree_const(mnt->mnt_devname); 579 #ifdef CONFIG_SMP 580 free_percpu(mnt->mnt_pcp); 581 #endif 582 kmem_cache_free(mnt_cache, mnt); 583 } 584 585 static void delayed_free_vfsmnt(struct rcu_head *head) 586 { 587 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 588 } 589 590 /* call under rcu_read_lock */ 591 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 struct mount *mnt; 594 if (read_seqretry(&mount_lock, seq)) 595 return 1; 596 if (bastard == NULL) 597 return 0; 598 mnt = real_mount(bastard); 599 mnt_add_count(mnt, 1); 600 smp_mb(); // see mntput_no_expire() 601 if (likely(!read_seqretry(&mount_lock, seq))) 602 return 0; 603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 604 mnt_add_count(mnt, -1); 605 return 1; 606 } 607 lock_mount_hash(); 608 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 609 mnt_add_count(mnt, -1); 610 unlock_mount_hash(); 611 return 1; 612 } 613 unlock_mount_hash(); 614 /* caller will mntput() */ 615 return -1; 616 } 617 618 /* call under rcu_read_lock */ 619 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 620 { 621 int res = __legitimize_mnt(bastard, seq); 622 if (likely(!res)) 623 return true; 624 if (unlikely(res < 0)) { 625 rcu_read_unlock(); 626 mntput(bastard); 627 rcu_read_lock(); 628 } 629 return false; 630 } 631 632 /* 633 * find the first mount at @dentry on vfsmount @mnt. 634 * call under rcu_read_lock() 635 */ 636 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 637 { 638 struct hlist_head *head = m_hash(mnt, dentry); 639 struct mount *p; 640 641 hlist_for_each_entry_rcu(p, head, mnt_hash) 642 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 643 return p; 644 return NULL; 645 } 646 647 /* 648 * lookup_mnt - Return the first child mount mounted at path 649 * 650 * "First" means first mounted chronologically. If you create the 651 * following mounts: 652 * 653 * mount /dev/sda1 /mnt 654 * mount /dev/sda2 /mnt 655 * mount /dev/sda3 /mnt 656 * 657 * Then lookup_mnt() on the base /mnt dentry in the root mount will 658 * return successively the root dentry and vfsmount of /dev/sda1, then 659 * /dev/sda2, then /dev/sda3, then NULL. 660 * 661 * lookup_mnt takes a reference to the found vfsmount. 662 */ 663 struct vfsmount *lookup_mnt(const struct path *path) 664 { 665 struct mount *child_mnt; 666 struct vfsmount *m; 667 unsigned seq; 668 669 rcu_read_lock(); 670 do { 671 seq = read_seqbegin(&mount_lock); 672 child_mnt = __lookup_mnt(path->mnt, path->dentry); 673 m = child_mnt ? &child_mnt->mnt : NULL; 674 } while (!legitimize_mnt(m, seq)); 675 rcu_read_unlock(); 676 return m; 677 } 678 679 static inline void lock_ns_list(struct mnt_namespace *ns) 680 { 681 spin_lock(&ns->ns_lock); 682 } 683 684 static inline void unlock_ns_list(struct mnt_namespace *ns) 685 { 686 spin_unlock(&ns->ns_lock); 687 } 688 689 static inline bool mnt_is_cursor(struct mount *mnt) 690 { 691 return mnt->mnt.mnt_flags & MNT_CURSOR; 692 } 693 694 /* 695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 696 * current mount namespace. 697 * 698 * The common case is dentries are not mountpoints at all and that 699 * test is handled inline. For the slow case when we are actually 700 * dealing with a mountpoint of some kind, walk through all of the 701 * mounts in the current mount namespace and test to see if the dentry 702 * is a mountpoint. 703 * 704 * The mount_hashtable is not usable in the context because we 705 * need to identify all mounts that may be in the current mount 706 * namespace not just a mount that happens to have some specified 707 * parent mount. 708 */ 709 bool __is_local_mountpoint(struct dentry *dentry) 710 { 711 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 712 struct mount *mnt; 713 bool is_covered = false; 714 715 down_read(&namespace_sem); 716 lock_ns_list(ns); 717 list_for_each_entry(mnt, &ns->list, mnt_list) { 718 if (mnt_is_cursor(mnt)) 719 continue; 720 is_covered = (mnt->mnt_mountpoint == dentry); 721 if (is_covered) 722 break; 723 } 724 unlock_ns_list(ns); 725 up_read(&namespace_sem); 726 727 return is_covered; 728 } 729 730 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 731 { 732 struct hlist_head *chain = mp_hash(dentry); 733 struct mountpoint *mp; 734 735 hlist_for_each_entry(mp, chain, m_hash) { 736 if (mp->m_dentry == dentry) { 737 mp->m_count++; 738 return mp; 739 } 740 } 741 return NULL; 742 } 743 744 static struct mountpoint *get_mountpoint(struct dentry *dentry) 745 { 746 struct mountpoint *mp, *new = NULL; 747 int ret; 748 749 if (d_mountpoint(dentry)) { 750 /* might be worth a WARN_ON() */ 751 if (d_unlinked(dentry)) 752 return ERR_PTR(-ENOENT); 753 mountpoint: 754 read_seqlock_excl(&mount_lock); 755 mp = lookup_mountpoint(dentry); 756 read_sequnlock_excl(&mount_lock); 757 if (mp) 758 goto done; 759 } 760 761 if (!new) 762 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 763 if (!new) 764 return ERR_PTR(-ENOMEM); 765 766 767 /* Exactly one processes may set d_mounted */ 768 ret = d_set_mounted(dentry); 769 770 /* Someone else set d_mounted? */ 771 if (ret == -EBUSY) 772 goto mountpoint; 773 774 /* The dentry is not available as a mountpoint? */ 775 mp = ERR_PTR(ret); 776 if (ret) 777 goto done; 778 779 /* Add the new mountpoint to the hash table */ 780 read_seqlock_excl(&mount_lock); 781 new->m_dentry = dget(dentry); 782 new->m_count = 1; 783 hlist_add_head(&new->m_hash, mp_hash(dentry)); 784 INIT_HLIST_HEAD(&new->m_list); 785 read_sequnlock_excl(&mount_lock); 786 787 mp = new; 788 new = NULL; 789 done: 790 kfree(new); 791 return mp; 792 } 793 794 /* 795 * vfsmount lock must be held. Additionally, the caller is responsible 796 * for serializing calls for given disposal list. 797 */ 798 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 799 { 800 if (!--mp->m_count) { 801 struct dentry *dentry = mp->m_dentry; 802 BUG_ON(!hlist_empty(&mp->m_list)); 803 spin_lock(&dentry->d_lock); 804 dentry->d_flags &= ~DCACHE_MOUNTED; 805 spin_unlock(&dentry->d_lock); 806 dput_to_list(dentry, list); 807 hlist_del(&mp->m_hash); 808 kfree(mp); 809 } 810 } 811 812 /* called with namespace_lock and vfsmount lock */ 813 static void put_mountpoint(struct mountpoint *mp) 814 { 815 __put_mountpoint(mp, &ex_mountpoints); 816 } 817 818 static inline int check_mnt(struct mount *mnt) 819 { 820 return mnt->mnt_ns == current->nsproxy->mnt_ns; 821 } 822 823 /* 824 * vfsmount lock must be held for write 825 */ 826 static void touch_mnt_namespace(struct mnt_namespace *ns) 827 { 828 if (ns) { 829 ns->event = ++event; 830 wake_up_interruptible(&ns->poll); 831 } 832 } 833 834 /* 835 * vfsmount lock must be held for write 836 */ 837 static void __touch_mnt_namespace(struct mnt_namespace *ns) 838 { 839 if (ns && ns->event != event) { 840 ns->event = event; 841 wake_up_interruptible(&ns->poll); 842 } 843 } 844 845 /* 846 * vfsmount lock must be held for write 847 */ 848 static struct mountpoint *unhash_mnt(struct mount *mnt) 849 { 850 struct mountpoint *mp; 851 mnt->mnt_parent = mnt; 852 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 853 list_del_init(&mnt->mnt_child); 854 hlist_del_init_rcu(&mnt->mnt_hash); 855 hlist_del_init(&mnt->mnt_mp_list); 856 mp = mnt->mnt_mp; 857 mnt->mnt_mp = NULL; 858 return mp; 859 } 860 861 /* 862 * vfsmount lock must be held for write 863 */ 864 static void umount_mnt(struct mount *mnt) 865 { 866 put_mountpoint(unhash_mnt(mnt)); 867 } 868 869 /* 870 * vfsmount lock must be held for write 871 */ 872 void mnt_set_mountpoint(struct mount *mnt, 873 struct mountpoint *mp, 874 struct mount *child_mnt) 875 { 876 mp->m_count++; 877 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 878 child_mnt->mnt_mountpoint = mp->m_dentry; 879 child_mnt->mnt_parent = mnt; 880 child_mnt->mnt_mp = mp; 881 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 882 } 883 884 static void __attach_mnt(struct mount *mnt, struct mount *parent) 885 { 886 hlist_add_head_rcu(&mnt->mnt_hash, 887 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 888 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 889 } 890 891 /* 892 * vfsmount lock must be held for write 893 */ 894 static void attach_mnt(struct mount *mnt, 895 struct mount *parent, 896 struct mountpoint *mp) 897 { 898 mnt_set_mountpoint(parent, mp, mnt); 899 __attach_mnt(mnt, parent); 900 } 901 902 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 903 { 904 struct mountpoint *old_mp = mnt->mnt_mp; 905 struct mount *old_parent = mnt->mnt_parent; 906 907 list_del_init(&mnt->mnt_child); 908 hlist_del_init(&mnt->mnt_mp_list); 909 hlist_del_init_rcu(&mnt->mnt_hash); 910 911 attach_mnt(mnt, parent, mp); 912 913 put_mountpoint(old_mp); 914 mnt_add_count(old_parent, -1); 915 } 916 917 /* 918 * vfsmount lock must be held for write 919 */ 920 static void commit_tree(struct mount *mnt) 921 { 922 struct mount *parent = mnt->mnt_parent; 923 struct mount *m; 924 LIST_HEAD(head); 925 struct mnt_namespace *n = parent->mnt_ns; 926 927 BUG_ON(parent == mnt); 928 929 list_add_tail(&head, &mnt->mnt_list); 930 list_for_each_entry(m, &head, mnt_list) 931 m->mnt_ns = n; 932 933 list_splice(&head, n->list.prev); 934 935 n->mounts += n->pending_mounts; 936 n->pending_mounts = 0; 937 938 __attach_mnt(mnt, parent); 939 touch_mnt_namespace(n); 940 } 941 942 static struct mount *next_mnt(struct mount *p, struct mount *root) 943 { 944 struct list_head *next = p->mnt_mounts.next; 945 if (next == &p->mnt_mounts) { 946 while (1) { 947 if (p == root) 948 return NULL; 949 next = p->mnt_child.next; 950 if (next != &p->mnt_parent->mnt_mounts) 951 break; 952 p = p->mnt_parent; 953 } 954 } 955 return list_entry(next, struct mount, mnt_child); 956 } 957 958 static struct mount *skip_mnt_tree(struct mount *p) 959 { 960 struct list_head *prev = p->mnt_mounts.prev; 961 while (prev != &p->mnt_mounts) { 962 p = list_entry(prev, struct mount, mnt_child); 963 prev = p->mnt_mounts.prev; 964 } 965 return p; 966 } 967 968 /** 969 * vfs_create_mount - Create a mount for a configured superblock 970 * @fc: The configuration context with the superblock attached 971 * 972 * Create a mount to an already configured superblock. If necessary, the 973 * caller should invoke vfs_get_tree() before calling this. 974 * 975 * Note that this does not attach the mount to anything. 976 */ 977 struct vfsmount *vfs_create_mount(struct fs_context *fc) 978 { 979 struct mount *mnt; 980 981 if (!fc->root) 982 return ERR_PTR(-EINVAL); 983 984 mnt = alloc_vfsmnt(fc->source ?: "none"); 985 if (!mnt) 986 return ERR_PTR(-ENOMEM); 987 988 if (fc->sb_flags & SB_KERNMOUNT) 989 mnt->mnt.mnt_flags = MNT_INTERNAL; 990 991 atomic_inc(&fc->root->d_sb->s_active); 992 mnt->mnt.mnt_sb = fc->root->d_sb; 993 mnt->mnt.mnt_root = dget(fc->root); 994 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 995 mnt->mnt_parent = mnt; 996 997 lock_mount_hash(); 998 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 999 unlock_mount_hash(); 1000 return &mnt->mnt; 1001 } 1002 EXPORT_SYMBOL(vfs_create_mount); 1003 1004 struct vfsmount *fc_mount(struct fs_context *fc) 1005 { 1006 int err = vfs_get_tree(fc); 1007 if (!err) { 1008 up_write(&fc->root->d_sb->s_umount); 1009 return vfs_create_mount(fc); 1010 } 1011 return ERR_PTR(err); 1012 } 1013 EXPORT_SYMBOL(fc_mount); 1014 1015 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1016 int flags, const char *name, 1017 void *data) 1018 { 1019 struct fs_context *fc; 1020 struct vfsmount *mnt; 1021 int ret = 0; 1022 1023 if (!type) 1024 return ERR_PTR(-EINVAL); 1025 1026 fc = fs_context_for_mount(type, flags); 1027 if (IS_ERR(fc)) 1028 return ERR_CAST(fc); 1029 1030 if (name) 1031 ret = vfs_parse_fs_string(fc, "source", 1032 name, strlen(name)); 1033 if (!ret) 1034 ret = parse_monolithic_mount_data(fc, data); 1035 if (!ret) 1036 mnt = fc_mount(fc); 1037 else 1038 mnt = ERR_PTR(ret); 1039 1040 put_fs_context(fc); 1041 return mnt; 1042 } 1043 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1044 1045 struct vfsmount * 1046 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1047 const char *name, void *data) 1048 { 1049 /* Until it is worked out how to pass the user namespace 1050 * through from the parent mount to the submount don't support 1051 * unprivileged mounts with submounts. 1052 */ 1053 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1054 return ERR_PTR(-EPERM); 1055 1056 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1057 } 1058 EXPORT_SYMBOL_GPL(vfs_submount); 1059 1060 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1061 int flag) 1062 { 1063 struct super_block *sb = old->mnt.mnt_sb; 1064 struct mount *mnt; 1065 int err; 1066 1067 mnt = alloc_vfsmnt(old->mnt_devname); 1068 if (!mnt) 1069 return ERR_PTR(-ENOMEM); 1070 1071 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1072 mnt->mnt_group_id = 0; /* not a peer of original */ 1073 else 1074 mnt->mnt_group_id = old->mnt_group_id; 1075 1076 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1077 err = mnt_alloc_group_id(mnt); 1078 if (err) 1079 goto out_free; 1080 } 1081 1082 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1083 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1084 1085 atomic_inc(&sb->s_active); 1086 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1087 if (mnt->mnt.mnt_userns != &init_user_ns) 1088 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1089 mnt->mnt.mnt_sb = sb; 1090 mnt->mnt.mnt_root = dget(root); 1091 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1092 mnt->mnt_parent = mnt; 1093 lock_mount_hash(); 1094 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1095 unlock_mount_hash(); 1096 1097 if ((flag & CL_SLAVE) || 1098 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1099 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1100 mnt->mnt_master = old; 1101 CLEAR_MNT_SHARED(mnt); 1102 } else if (!(flag & CL_PRIVATE)) { 1103 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1104 list_add(&mnt->mnt_share, &old->mnt_share); 1105 if (IS_MNT_SLAVE(old)) 1106 list_add(&mnt->mnt_slave, &old->mnt_slave); 1107 mnt->mnt_master = old->mnt_master; 1108 } else { 1109 CLEAR_MNT_SHARED(mnt); 1110 } 1111 if (flag & CL_MAKE_SHARED) 1112 set_mnt_shared(mnt); 1113 1114 /* stick the duplicate mount on the same expiry list 1115 * as the original if that was on one */ 1116 if (flag & CL_EXPIRE) { 1117 if (!list_empty(&old->mnt_expire)) 1118 list_add(&mnt->mnt_expire, &old->mnt_expire); 1119 } 1120 1121 return mnt; 1122 1123 out_free: 1124 mnt_free_id(mnt); 1125 free_vfsmnt(mnt); 1126 return ERR_PTR(err); 1127 } 1128 1129 static void cleanup_mnt(struct mount *mnt) 1130 { 1131 struct hlist_node *p; 1132 struct mount *m; 1133 /* 1134 * The warning here probably indicates that somebody messed 1135 * up a mnt_want/drop_write() pair. If this happens, the 1136 * filesystem was probably unable to make r/w->r/o transitions. 1137 * The locking used to deal with mnt_count decrement provides barriers, 1138 * so mnt_get_writers() below is safe. 1139 */ 1140 WARN_ON(mnt_get_writers(mnt)); 1141 if (unlikely(mnt->mnt_pins.first)) 1142 mnt_pin_kill(mnt); 1143 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1144 hlist_del(&m->mnt_umount); 1145 mntput(&m->mnt); 1146 } 1147 fsnotify_vfsmount_delete(&mnt->mnt); 1148 dput(mnt->mnt.mnt_root); 1149 deactivate_super(mnt->mnt.mnt_sb); 1150 mnt_free_id(mnt); 1151 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1152 } 1153 1154 static void __cleanup_mnt(struct rcu_head *head) 1155 { 1156 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1157 } 1158 1159 static LLIST_HEAD(delayed_mntput_list); 1160 static void delayed_mntput(struct work_struct *unused) 1161 { 1162 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1163 struct mount *m, *t; 1164 1165 llist_for_each_entry_safe(m, t, node, mnt_llist) 1166 cleanup_mnt(m); 1167 } 1168 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1169 1170 static void mntput_no_expire(struct mount *mnt) 1171 { 1172 LIST_HEAD(list); 1173 int count; 1174 1175 rcu_read_lock(); 1176 if (likely(READ_ONCE(mnt->mnt_ns))) { 1177 /* 1178 * Since we don't do lock_mount_hash() here, 1179 * ->mnt_ns can change under us. However, if it's 1180 * non-NULL, then there's a reference that won't 1181 * be dropped until after an RCU delay done after 1182 * turning ->mnt_ns NULL. So if we observe it 1183 * non-NULL under rcu_read_lock(), the reference 1184 * we are dropping is not the final one. 1185 */ 1186 mnt_add_count(mnt, -1); 1187 rcu_read_unlock(); 1188 return; 1189 } 1190 lock_mount_hash(); 1191 /* 1192 * make sure that if __legitimize_mnt() has not seen us grab 1193 * mount_lock, we'll see their refcount increment here. 1194 */ 1195 smp_mb(); 1196 mnt_add_count(mnt, -1); 1197 count = mnt_get_count(mnt); 1198 if (count != 0) { 1199 WARN_ON(count < 0); 1200 rcu_read_unlock(); 1201 unlock_mount_hash(); 1202 return; 1203 } 1204 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1205 rcu_read_unlock(); 1206 unlock_mount_hash(); 1207 return; 1208 } 1209 mnt->mnt.mnt_flags |= MNT_DOOMED; 1210 rcu_read_unlock(); 1211 1212 list_del(&mnt->mnt_instance); 1213 1214 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1215 struct mount *p, *tmp; 1216 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1217 __put_mountpoint(unhash_mnt(p), &list); 1218 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1219 } 1220 } 1221 unlock_mount_hash(); 1222 shrink_dentry_list(&list); 1223 1224 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1225 struct task_struct *task = current; 1226 if (likely(!(task->flags & PF_KTHREAD))) { 1227 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1228 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1229 return; 1230 } 1231 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1232 schedule_delayed_work(&delayed_mntput_work, 1); 1233 return; 1234 } 1235 cleanup_mnt(mnt); 1236 } 1237 1238 void mntput(struct vfsmount *mnt) 1239 { 1240 if (mnt) { 1241 struct mount *m = real_mount(mnt); 1242 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1243 if (unlikely(m->mnt_expiry_mark)) 1244 m->mnt_expiry_mark = 0; 1245 mntput_no_expire(m); 1246 } 1247 } 1248 EXPORT_SYMBOL(mntput); 1249 1250 struct vfsmount *mntget(struct vfsmount *mnt) 1251 { 1252 if (mnt) 1253 mnt_add_count(real_mount(mnt), 1); 1254 return mnt; 1255 } 1256 EXPORT_SYMBOL(mntget); 1257 1258 /* path_is_mountpoint() - Check if path is a mount in the current 1259 * namespace. 1260 * 1261 * d_mountpoint() can only be used reliably to establish if a dentry is 1262 * not mounted in any namespace and that common case is handled inline. 1263 * d_mountpoint() isn't aware of the possibility there may be multiple 1264 * mounts using a given dentry in a different namespace. This function 1265 * checks if the passed in path is a mountpoint rather than the dentry 1266 * alone. 1267 */ 1268 bool path_is_mountpoint(const struct path *path) 1269 { 1270 unsigned seq; 1271 bool res; 1272 1273 if (!d_mountpoint(path->dentry)) 1274 return false; 1275 1276 rcu_read_lock(); 1277 do { 1278 seq = read_seqbegin(&mount_lock); 1279 res = __path_is_mountpoint(path); 1280 } while (read_seqretry(&mount_lock, seq)); 1281 rcu_read_unlock(); 1282 1283 return res; 1284 } 1285 EXPORT_SYMBOL(path_is_mountpoint); 1286 1287 struct vfsmount *mnt_clone_internal(const struct path *path) 1288 { 1289 struct mount *p; 1290 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1291 if (IS_ERR(p)) 1292 return ERR_CAST(p); 1293 p->mnt.mnt_flags |= MNT_INTERNAL; 1294 return &p->mnt; 1295 } 1296 1297 #ifdef CONFIG_PROC_FS 1298 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1299 struct list_head *p) 1300 { 1301 struct mount *mnt, *ret = NULL; 1302 1303 lock_ns_list(ns); 1304 list_for_each_continue(p, &ns->list) { 1305 mnt = list_entry(p, typeof(*mnt), mnt_list); 1306 if (!mnt_is_cursor(mnt)) { 1307 ret = mnt; 1308 break; 1309 } 1310 } 1311 unlock_ns_list(ns); 1312 1313 return ret; 1314 } 1315 1316 /* iterator; we want it to have access to namespace_sem, thus here... */ 1317 static void *m_start(struct seq_file *m, loff_t *pos) 1318 { 1319 struct proc_mounts *p = m->private; 1320 struct list_head *prev; 1321 1322 down_read(&namespace_sem); 1323 if (!*pos) { 1324 prev = &p->ns->list; 1325 } else { 1326 prev = &p->cursor.mnt_list; 1327 1328 /* Read after we'd reached the end? */ 1329 if (list_empty(prev)) 1330 return NULL; 1331 } 1332 1333 return mnt_list_next(p->ns, prev); 1334 } 1335 1336 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1337 { 1338 struct proc_mounts *p = m->private; 1339 struct mount *mnt = v; 1340 1341 ++*pos; 1342 return mnt_list_next(p->ns, &mnt->mnt_list); 1343 } 1344 1345 static void m_stop(struct seq_file *m, void *v) 1346 { 1347 struct proc_mounts *p = m->private; 1348 struct mount *mnt = v; 1349 1350 lock_ns_list(p->ns); 1351 if (mnt) 1352 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1353 else 1354 list_del_init(&p->cursor.mnt_list); 1355 unlock_ns_list(p->ns); 1356 up_read(&namespace_sem); 1357 } 1358 1359 static int m_show(struct seq_file *m, void *v) 1360 { 1361 struct proc_mounts *p = m->private; 1362 struct mount *r = v; 1363 return p->show(m, &r->mnt); 1364 } 1365 1366 const struct seq_operations mounts_op = { 1367 .start = m_start, 1368 .next = m_next, 1369 .stop = m_stop, 1370 .show = m_show, 1371 }; 1372 1373 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1374 { 1375 down_read(&namespace_sem); 1376 lock_ns_list(ns); 1377 list_del(&cursor->mnt_list); 1378 unlock_ns_list(ns); 1379 up_read(&namespace_sem); 1380 } 1381 #endif /* CONFIG_PROC_FS */ 1382 1383 /** 1384 * may_umount_tree - check if a mount tree is busy 1385 * @mnt: root of mount tree 1386 * 1387 * This is called to check if a tree of mounts has any 1388 * open files, pwds, chroots or sub mounts that are 1389 * busy. 1390 */ 1391 int may_umount_tree(struct vfsmount *m) 1392 { 1393 struct mount *mnt = real_mount(m); 1394 int actual_refs = 0; 1395 int minimum_refs = 0; 1396 struct mount *p; 1397 BUG_ON(!m); 1398 1399 /* write lock needed for mnt_get_count */ 1400 lock_mount_hash(); 1401 for (p = mnt; p; p = next_mnt(p, mnt)) { 1402 actual_refs += mnt_get_count(p); 1403 minimum_refs += 2; 1404 } 1405 unlock_mount_hash(); 1406 1407 if (actual_refs > minimum_refs) 1408 return 0; 1409 1410 return 1; 1411 } 1412 1413 EXPORT_SYMBOL(may_umount_tree); 1414 1415 /** 1416 * may_umount - check if a mount point is busy 1417 * @mnt: root of mount 1418 * 1419 * This is called to check if a mount point has any 1420 * open files, pwds, chroots or sub mounts. If the 1421 * mount has sub mounts this will return busy 1422 * regardless of whether the sub mounts are busy. 1423 * 1424 * Doesn't take quota and stuff into account. IOW, in some cases it will 1425 * give false negatives. The main reason why it's here is that we need 1426 * a non-destructive way to look for easily umountable filesystems. 1427 */ 1428 int may_umount(struct vfsmount *mnt) 1429 { 1430 int ret = 1; 1431 down_read(&namespace_sem); 1432 lock_mount_hash(); 1433 if (propagate_mount_busy(real_mount(mnt), 2)) 1434 ret = 0; 1435 unlock_mount_hash(); 1436 up_read(&namespace_sem); 1437 return ret; 1438 } 1439 1440 EXPORT_SYMBOL(may_umount); 1441 1442 static void namespace_unlock(void) 1443 { 1444 struct hlist_head head; 1445 struct hlist_node *p; 1446 struct mount *m; 1447 LIST_HEAD(list); 1448 1449 hlist_move_list(&unmounted, &head); 1450 list_splice_init(&ex_mountpoints, &list); 1451 1452 up_write(&namespace_sem); 1453 1454 shrink_dentry_list(&list); 1455 1456 if (likely(hlist_empty(&head))) 1457 return; 1458 1459 synchronize_rcu_expedited(); 1460 1461 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1462 hlist_del(&m->mnt_umount); 1463 mntput(&m->mnt); 1464 } 1465 } 1466 1467 static inline void namespace_lock(void) 1468 { 1469 down_write(&namespace_sem); 1470 } 1471 1472 enum umount_tree_flags { 1473 UMOUNT_SYNC = 1, 1474 UMOUNT_PROPAGATE = 2, 1475 UMOUNT_CONNECTED = 4, 1476 }; 1477 1478 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1479 { 1480 /* Leaving mounts connected is only valid for lazy umounts */ 1481 if (how & UMOUNT_SYNC) 1482 return true; 1483 1484 /* A mount without a parent has nothing to be connected to */ 1485 if (!mnt_has_parent(mnt)) 1486 return true; 1487 1488 /* Because the reference counting rules change when mounts are 1489 * unmounted and connected, umounted mounts may not be 1490 * connected to mounted mounts. 1491 */ 1492 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1493 return true; 1494 1495 /* Has it been requested that the mount remain connected? */ 1496 if (how & UMOUNT_CONNECTED) 1497 return false; 1498 1499 /* Is the mount locked such that it needs to remain connected? */ 1500 if (IS_MNT_LOCKED(mnt)) 1501 return false; 1502 1503 /* By default disconnect the mount */ 1504 return true; 1505 } 1506 1507 /* 1508 * mount_lock must be held 1509 * namespace_sem must be held for write 1510 */ 1511 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1512 { 1513 LIST_HEAD(tmp_list); 1514 struct mount *p; 1515 1516 if (how & UMOUNT_PROPAGATE) 1517 propagate_mount_unlock(mnt); 1518 1519 /* Gather the mounts to umount */ 1520 for (p = mnt; p; p = next_mnt(p, mnt)) { 1521 p->mnt.mnt_flags |= MNT_UMOUNT; 1522 list_move(&p->mnt_list, &tmp_list); 1523 } 1524 1525 /* Hide the mounts from mnt_mounts */ 1526 list_for_each_entry(p, &tmp_list, mnt_list) { 1527 list_del_init(&p->mnt_child); 1528 } 1529 1530 /* Add propogated mounts to the tmp_list */ 1531 if (how & UMOUNT_PROPAGATE) 1532 propagate_umount(&tmp_list); 1533 1534 while (!list_empty(&tmp_list)) { 1535 struct mnt_namespace *ns; 1536 bool disconnect; 1537 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1538 list_del_init(&p->mnt_expire); 1539 list_del_init(&p->mnt_list); 1540 ns = p->mnt_ns; 1541 if (ns) { 1542 ns->mounts--; 1543 __touch_mnt_namespace(ns); 1544 } 1545 p->mnt_ns = NULL; 1546 if (how & UMOUNT_SYNC) 1547 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1548 1549 disconnect = disconnect_mount(p, how); 1550 if (mnt_has_parent(p)) { 1551 mnt_add_count(p->mnt_parent, -1); 1552 if (!disconnect) { 1553 /* Don't forget about p */ 1554 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1555 } else { 1556 umount_mnt(p); 1557 } 1558 } 1559 change_mnt_propagation(p, MS_PRIVATE); 1560 if (disconnect) 1561 hlist_add_head(&p->mnt_umount, &unmounted); 1562 } 1563 } 1564 1565 static void shrink_submounts(struct mount *mnt); 1566 1567 static int do_umount_root(struct super_block *sb) 1568 { 1569 int ret = 0; 1570 1571 down_write(&sb->s_umount); 1572 if (!sb_rdonly(sb)) { 1573 struct fs_context *fc; 1574 1575 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1576 SB_RDONLY); 1577 if (IS_ERR(fc)) { 1578 ret = PTR_ERR(fc); 1579 } else { 1580 ret = parse_monolithic_mount_data(fc, NULL); 1581 if (!ret) 1582 ret = reconfigure_super(fc); 1583 put_fs_context(fc); 1584 } 1585 } 1586 up_write(&sb->s_umount); 1587 return ret; 1588 } 1589 1590 static int do_umount(struct mount *mnt, int flags) 1591 { 1592 struct super_block *sb = mnt->mnt.mnt_sb; 1593 int retval; 1594 1595 retval = security_sb_umount(&mnt->mnt, flags); 1596 if (retval) 1597 return retval; 1598 1599 /* 1600 * Allow userspace to request a mountpoint be expired rather than 1601 * unmounting unconditionally. Unmount only happens if: 1602 * (1) the mark is already set (the mark is cleared by mntput()) 1603 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1604 */ 1605 if (flags & MNT_EXPIRE) { 1606 if (&mnt->mnt == current->fs->root.mnt || 1607 flags & (MNT_FORCE | MNT_DETACH)) 1608 return -EINVAL; 1609 1610 /* 1611 * probably don't strictly need the lock here if we examined 1612 * all race cases, but it's a slowpath. 1613 */ 1614 lock_mount_hash(); 1615 if (mnt_get_count(mnt) != 2) { 1616 unlock_mount_hash(); 1617 return -EBUSY; 1618 } 1619 unlock_mount_hash(); 1620 1621 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1622 return -EAGAIN; 1623 } 1624 1625 /* 1626 * If we may have to abort operations to get out of this 1627 * mount, and they will themselves hold resources we must 1628 * allow the fs to do things. In the Unix tradition of 1629 * 'Gee thats tricky lets do it in userspace' the umount_begin 1630 * might fail to complete on the first run through as other tasks 1631 * must return, and the like. Thats for the mount program to worry 1632 * about for the moment. 1633 */ 1634 1635 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1636 sb->s_op->umount_begin(sb); 1637 } 1638 1639 /* 1640 * No sense to grab the lock for this test, but test itself looks 1641 * somewhat bogus. Suggestions for better replacement? 1642 * Ho-hum... In principle, we might treat that as umount + switch 1643 * to rootfs. GC would eventually take care of the old vfsmount. 1644 * Actually it makes sense, especially if rootfs would contain a 1645 * /reboot - static binary that would close all descriptors and 1646 * call reboot(9). Then init(8) could umount root and exec /reboot. 1647 */ 1648 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1649 /* 1650 * Special case for "unmounting" root ... 1651 * we just try to remount it readonly. 1652 */ 1653 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1654 return -EPERM; 1655 return do_umount_root(sb); 1656 } 1657 1658 namespace_lock(); 1659 lock_mount_hash(); 1660 1661 /* Recheck MNT_LOCKED with the locks held */ 1662 retval = -EINVAL; 1663 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1664 goto out; 1665 1666 event++; 1667 if (flags & MNT_DETACH) { 1668 if (!list_empty(&mnt->mnt_list)) 1669 umount_tree(mnt, UMOUNT_PROPAGATE); 1670 retval = 0; 1671 } else { 1672 shrink_submounts(mnt); 1673 retval = -EBUSY; 1674 if (!propagate_mount_busy(mnt, 2)) { 1675 if (!list_empty(&mnt->mnt_list)) 1676 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1677 retval = 0; 1678 } 1679 } 1680 out: 1681 unlock_mount_hash(); 1682 namespace_unlock(); 1683 return retval; 1684 } 1685 1686 /* 1687 * __detach_mounts - lazily unmount all mounts on the specified dentry 1688 * 1689 * During unlink, rmdir, and d_drop it is possible to loose the path 1690 * to an existing mountpoint, and wind up leaking the mount. 1691 * detach_mounts allows lazily unmounting those mounts instead of 1692 * leaking them. 1693 * 1694 * The caller may hold dentry->d_inode->i_mutex. 1695 */ 1696 void __detach_mounts(struct dentry *dentry) 1697 { 1698 struct mountpoint *mp; 1699 struct mount *mnt; 1700 1701 namespace_lock(); 1702 lock_mount_hash(); 1703 mp = lookup_mountpoint(dentry); 1704 if (!mp) 1705 goto out_unlock; 1706 1707 event++; 1708 while (!hlist_empty(&mp->m_list)) { 1709 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1710 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1711 umount_mnt(mnt); 1712 hlist_add_head(&mnt->mnt_umount, &unmounted); 1713 } 1714 else umount_tree(mnt, UMOUNT_CONNECTED); 1715 } 1716 put_mountpoint(mp); 1717 out_unlock: 1718 unlock_mount_hash(); 1719 namespace_unlock(); 1720 } 1721 1722 /* 1723 * Is the caller allowed to modify his namespace? 1724 */ 1725 static inline bool may_mount(void) 1726 { 1727 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1728 } 1729 1730 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1731 static inline bool may_mandlock(void) 1732 { 1733 return capable(CAP_SYS_ADMIN); 1734 } 1735 #else 1736 static inline bool may_mandlock(void) 1737 { 1738 pr_warn("VFS: \"mand\" mount option not supported"); 1739 return false; 1740 } 1741 #endif 1742 1743 static int can_umount(const struct path *path, int flags) 1744 { 1745 struct mount *mnt = real_mount(path->mnt); 1746 1747 if (!may_mount()) 1748 return -EPERM; 1749 if (path->dentry != path->mnt->mnt_root) 1750 return -EINVAL; 1751 if (!check_mnt(mnt)) 1752 return -EINVAL; 1753 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1754 return -EINVAL; 1755 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1756 return -EPERM; 1757 return 0; 1758 } 1759 1760 // caller is responsible for flags being sane 1761 int path_umount(struct path *path, int flags) 1762 { 1763 struct mount *mnt = real_mount(path->mnt); 1764 int ret; 1765 1766 ret = can_umount(path, flags); 1767 if (!ret) 1768 ret = do_umount(mnt, flags); 1769 1770 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1771 dput(path->dentry); 1772 mntput_no_expire(mnt); 1773 return ret; 1774 } 1775 1776 static int ksys_umount(char __user *name, int flags) 1777 { 1778 int lookup_flags = LOOKUP_MOUNTPOINT; 1779 struct path path; 1780 int ret; 1781 1782 // basic validity checks done first 1783 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1784 return -EINVAL; 1785 1786 if (!(flags & UMOUNT_NOFOLLOW)) 1787 lookup_flags |= LOOKUP_FOLLOW; 1788 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1789 if (ret) 1790 return ret; 1791 return path_umount(&path, flags); 1792 } 1793 1794 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1795 { 1796 return ksys_umount(name, flags); 1797 } 1798 1799 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1800 1801 /* 1802 * The 2.0 compatible umount. No flags. 1803 */ 1804 SYSCALL_DEFINE1(oldumount, char __user *, name) 1805 { 1806 return ksys_umount(name, 0); 1807 } 1808 1809 #endif 1810 1811 static bool is_mnt_ns_file(struct dentry *dentry) 1812 { 1813 /* Is this a proxy for a mount namespace? */ 1814 return dentry->d_op == &ns_dentry_operations && 1815 dentry->d_fsdata == &mntns_operations; 1816 } 1817 1818 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1819 { 1820 return container_of(ns, struct mnt_namespace, ns); 1821 } 1822 1823 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1824 { 1825 return &mnt->ns; 1826 } 1827 1828 static bool mnt_ns_loop(struct dentry *dentry) 1829 { 1830 /* Could bind mounting the mount namespace inode cause a 1831 * mount namespace loop? 1832 */ 1833 struct mnt_namespace *mnt_ns; 1834 if (!is_mnt_ns_file(dentry)) 1835 return false; 1836 1837 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1838 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1839 } 1840 1841 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1842 int flag) 1843 { 1844 struct mount *res, *p, *q, *r, *parent; 1845 1846 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1847 return ERR_PTR(-EINVAL); 1848 1849 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1850 return ERR_PTR(-EINVAL); 1851 1852 res = q = clone_mnt(mnt, dentry, flag); 1853 if (IS_ERR(q)) 1854 return q; 1855 1856 q->mnt_mountpoint = mnt->mnt_mountpoint; 1857 1858 p = mnt; 1859 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1860 struct mount *s; 1861 if (!is_subdir(r->mnt_mountpoint, dentry)) 1862 continue; 1863 1864 for (s = r; s; s = next_mnt(s, r)) { 1865 if (!(flag & CL_COPY_UNBINDABLE) && 1866 IS_MNT_UNBINDABLE(s)) { 1867 if (s->mnt.mnt_flags & MNT_LOCKED) { 1868 /* Both unbindable and locked. */ 1869 q = ERR_PTR(-EPERM); 1870 goto out; 1871 } else { 1872 s = skip_mnt_tree(s); 1873 continue; 1874 } 1875 } 1876 if (!(flag & CL_COPY_MNT_NS_FILE) && 1877 is_mnt_ns_file(s->mnt.mnt_root)) { 1878 s = skip_mnt_tree(s); 1879 continue; 1880 } 1881 while (p != s->mnt_parent) { 1882 p = p->mnt_parent; 1883 q = q->mnt_parent; 1884 } 1885 p = s; 1886 parent = q; 1887 q = clone_mnt(p, p->mnt.mnt_root, flag); 1888 if (IS_ERR(q)) 1889 goto out; 1890 lock_mount_hash(); 1891 list_add_tail(&q->mnt_list, &res->mnt_list); 1892 attach_mnt(q, parent, p->mnt_mp); 1893 unlock_mount_hash(); 1894 } 1895 } 1896 return res; 1897 out: 1898 if (res) { 1899 lock_mount_hash(); 1900 umount_tree(res, UMOUNT_SYNC); 1901 unlock_mount_hash(); 1902 } 1903 return q; 1904 } 1905 1906 /* Caller should check returned pointer for errors */ 1907 1908 struct vfsmount *collect_mounts(const struct path *path) 1909 { 1910 struct mount *tree; 1911 namespace_lock(); 1912 if (!check_mnt(real_mount(path->mnt))) 1913 tree = ERR_PTR(-EINVAL); 1914 else 1915 tree = copy_tree(real_mount(path->mnt), path->dentry, 1916 CL_COPY_ALL | CL_PRIVATE); 1917 namespace_unlock(); 1918 if (IS_ERR(tree)) 1919 return ERR_CAST(tree); 1920 return &tree->mnt; 1921 } 1922 1923 static void free_mnt_ns(struct mnt_namespace *); 1924 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1925 1926 void dissolve_on_fput(struct vfsmount *mnt) 1927 { 1928 struct mnt_namespace *ns; 1929 namespace_lock(); 1930 lock_mount_hash(); 1931 ns = real_mount(mnt)->mnt_ns; 1932 if (ns) { 1933 if (is_anon_ns(ns)) 1934 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1935 else 1936 ns = NULL; 1937 } 1938 unlock_mount_hash(); 1939 namespace_unlock(); 1940 if (ns) 1941 free_mnt_ns(ns); 1942 } 1943 1944 void drop_collected_mounts(struct vfsmount *mnt) 1945 { 1946 namespace_lock(); 1947 lock_mount_hash(); 1948 umount_tree(real_mount(mnt), 0); 1949 unlock_mount_hash(); 1950 namespace_unlock(); 1951 } 1952 1953 /** 1954 * clone_private_mount - create a private clone of a path 1955 * 1956 * This creates a new vfsmount, which will be the clone of @path. The new will 1957 * not be attached anywhere in the namespace and will be private (i.e. changes 1958 * to the originating mount won't be propagated into this). 1959 * 1960 * Release with mntput(). 1961 */ 1962 struct vfsmount *clone_private_mount(const struct path *path) 1963 { 1964 struct mount *old_mnt = real_mount(path->mnt); 1965 struct mount *new_mnt; 1966 1967 if (IS_MNT_UNBINDABLE(old_mnt)) 1968 return ERR_PTR(-EINVAL); 1969 1970 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1971 if (IS_ERR(new_mnt)) 1972 return ERR_CAST(new_mnt); 1973 1974 /* Longterm mount to be removed by kern_unmount*() */ 1975 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1976 1977 return &new_mnt->mnt; 1978 } 1979 EXPORT_SYMBOL_GPL(clone_private_mount); 1980 1981 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1982 struct vfsmount *root) 1983 { 1984 struct mount *mnt; 1985 int res = f(root, arg); 1986 if (res) 1987 return res; 1988 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1989 res = f(&mnt->mnt, arg); 1990 if (res) 1991 return res; 1992 } 1993 return 0; 1994 } 1995 1996 static void lock_mnt_tree(struct mount *mnt) 1997 { 1998 struct mount *p; 1999 2000 for (p = mnt; p; p = next_mnt(p, mnt)) { 2001 int flags = p->mnt.mnt_flags; 2002 /* Don't allow unprivileged users to change mount flags */ 2003 flags |= MNT_LOCK_ATIME; 2004 2005 if (flags & MNT_READONLY) 2006 flags |= MNT_LOCK_READONLY; 2007 2008 if (flags & MNT_NODEV) 2009 flags |= MNT_LOCK_NODEV; 2010 2011 if (flags & MNT_NOSUID) 2012 flags |= MNT_LOCK_NOSUID; 2013 2014 if (flags & MNT_NOEXEC) 2015 flags |= MNT_LOCK_NOEXEC; 2016 /* Don't allow unprivileged users to reveal what is under a mount */ 2017 if (list_empty(&p->mnt_expire)) 2018 flags |= MNT_LOCKED; 2019 p->mnt.mnt_flags = flags; 2020 } 2021 } 2022 2023 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2024 { 2025 struct mount *p; 2026 2027 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2028 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2029 mnt_release_group_id(p); 2030 } 2031 } 2032 2033 static int invent_group_ids(struct mount *mnt, bool recurse) 2034 { 2035 struct mount *p; 2036 2037 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2038 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2039 int err = mnt_alloc_group_id(p); 2040 if (err) { 2041 cleanup_group_ids(mnt, p); 2042 return err; 2043 } 2044 } 2045 } 2046 2047 return 0; 2048 } 2049 2050 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2051 { 2052 unsigned int max = READ_ONCE(sysctl_mount_max); 2053 unsigned int mounts = 0, old, pending, sum; 2054 struct mount *p; 2055 2056 for (p = mnt; p; p = next_mnt(p, mnt)) 2057 mounts++; 2058 2059 old = ns->mounts; 2060 pending = ns->pending_mounts; 2061 sum = old + pending; 2062 if ((old > sum) || 2063 (pending > sum) || 2064 (max < sum) || 2065 (mounts > (max - sum))) 2066 return -ENOSPC; 2067 2068 ns->pending_mounts = pending + mounts; 2069 return 0; 2070 } 2071 2072 /* 2073 * @source_mnt : mount tree to be attached 2074 * @nd : place the mount tree @source_mnt is attached 2075 * @parent_nd : if non-null, detach the source_mnt from its parent and 2076 * store the parent mount and mountpoint dentry. 2077 * (done when source_mnt is moved) 2078 * 2079 * NOTE: in the table below explains the semantics when a source mount 2080 * of a given type is attached to a destination mount of a given type. 2081 * --------------------------------------------------------------------------- 2082 * | BIND MOUNT OPERATION | 2083 * |************************************************************************** 2084 * | source-->| shared | private | slave | unbindable | 2085 * | dest | | | | | 2086 * | | | | | | | 2087 * | v | | | | | 2088 * |************************************************************************** 2089 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2090 * | | | | | | 2091 * |non-shared| shared (+) | private | slave (*) | invalid | 2092 * *************************************************************************** 2093 * A bind operation clones the source mount and mounts the clone on the 2094 * destination mount. 2095 * 2096 * (++) the cloned mount is propagated to all the mounts in the propagation 2097 * tree of the destination mount and the cloned mount is added to 2098 * the peer group of the source mount. 2099 * (+) the cloned mount is created under the destination mount and is marked 2100 * as shared. The cloned mount is added to the peer group of the source 2101 * mount. 2102 * (+++) the mount is propagated to all the mounts in the propagation tree 2103 * of the destination mount and the cloned mount is made slave 2104 * of the same master as that of the source mount. The cloned mount 2105 * is marked as 'shared and slave'. 2106 * (*) the cloned mount is made a slave of the same master as that of the 2107 * source mount. 2108 * 2109 * --------------------------------------------------------------------------- 2110 * | MOVE MOUNT OPERATION | 2111 * |************************************************************************** 2112 * | source-->| shared | private | slave | unbindable | 2113 * | dest | | | | | 2114 * | | | | | | | 2115 * | v | | | | | 2116 * |************************************************************************** 2117 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2118 * | | | | | | 2119 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2120 * *************************************************************************** 2121 * 2122 * (+) the mount is moved to the destination. And is then propagated to 2123 * all the mounts in the propagation tree of the destination mount. 2124 * (+*) the mount is moved to the destination. 2125 * (+++) the mount is moved to the destination and is then propagated to 2126 * all the mounts belonging to the destination mount's propagation tree. 2127 * the mount is marked as 'shared and slave'. 2128 * (*) the mount continues to be a slave at the new location. 2129 * 2130 * if the source mount is a tree, the operations explained above is 2131 * applied to each mount in the tree. 2132 * Must be called without spinlocks held, since this function can sleep 2133 * in allocations. 2134 */ 2135 static int attach_recursive_mnt(struct mount *source_mnt, 2136 struct mount *dest_mnt, 2137 struct mountpoint *dest_mp, 2138 bool moving) 2139 { 2140 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2141 HLIST_HEAD(tree_list); 2142 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2143 struct mountpoint *smp; 2144 struct mount *child, *p; 2145 struct hlist_node *n; 2146 int err; 2147 2148 /* Preallocate a mountpoint in case the new mounts need 2149 * to be tucked under other mounts. 2150 */ 2151 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2152 if (IS_ERR(smp)) 2153 return PTR_ERR(smp); 2154 2155 /* Is there space to add these mounts to the mount namespace? */ 2156 if (!moving) { 2157 err = count_mounts(ns, source_mnt); 2158 if (err) 2159 goto out; 2160 } 2161 2162 if (IS_MNT_SHARED(dest_mnt)) { 2163 err = invent_group_ids(source_mnt, true); 2164 if (err) 2165 goto out; 2166 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2167 lock_mount_hash(); 2168 if (err) 2169 goto out_cleanup_ids; 2170 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2171 set_mnt_shared(p); 2172 } else { 2173 lock_mount_hash(); 2174 } 2175 if (moving) { 2176 unhash_mnt(source_mnt); 2177 attach_mnt(source_mnt, dest_mnt, dest_mp); 2178 touch_mnt_namespace(source_mnt->mnt_ns); 2179 } else { 2180 if (source_mnt->mnt_ns) { 2181 /* move from anon - the caller will destroy */ 2182 list_del_init(&source_mnt->mnt_ns->list); 2183 } 2184 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2185 commit_tree(source_mnt); 2186 } 2187 2188 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2189 struct mount *q; 2190 hlist_del_init(&child->mnt_hash); 2191 q = __lookup_mnt(&child->mnt_parent->mnt, 2192 child->mnt_mountpoint); 2193 if (q) 2194 mnt_change_mountpoint(child, smp, q); 2195 /* Notice when we are propagating across user namespaces */ 2196 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2197 lock_mnt_tree(child); 2198 child->mnt.mnt_flags &= ~MNT_LOCKED; 2199 commit_tree(child); 2200 } 2201 put_mountpoint(smp); 2202 unlock_mount_hash(); 2203 2204 return 0; 2205 2206 out_cleanup_ids: 2207 while (!hlist_empty(&tree_list)) { 2208 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2209 child->mnt_parent->mnt_ns->pending_mounts = 0; 2210 umount_tree(child, UMOUNT_SYNC); 2211 } 2212 unlock_mount_hash(); 2213 cleanup_group_ids(source_mnt, NULL); 2214 out: 2215 ns->pending_mounts = 0; 2216 2217 read_seqlock_excl(&mount_lock); 2218 put_mountpoint(smp); 2219 read_sequnlock_excl(&mount_lock); 2220 2221 return err; 2222 } 2223 2224 static struct mountpoint *lock_mount(struct path *path) 2225 { 2226 struct vfsmount *mnt; 2227 struct dentry *dentry = path->dentry; 2228 retry: 2229 inode_lock(dentry->d_inode); 2230 if (unlikely(cant_mount(dentry))) { 2231 inode_unlock(dentry->d_inode); 2232 return ERR_PTR(-ENOENT); 2233 } 2234 namespace_lock(); 2235 mnt = lookup_mnt(path); 2236 if (likely(!mnt)) { 2237 struct mountpoint *mp = get_mountpoint(dentry); 2238 if (IS_ERR(mp)) { 2239 namespace_unlock(); 2240 inode_unlock(dentry->d_inode); 2241 return mp; 2242 } 2243 return mp; 2244 } 2245 namespace_unlock(); 2246 inode_unlock(path->dentry->d_inode); 2247 path_put(path); 2248 path->mnt = mnt; 2249 dentry = path->dentry = dget(mnt->mnt_root); 2250 goto retry; 2251 } 2252 2253 static void unlock_mount(struct mountpoint *where) 2254 { 2255 struct dentry *dentry = where->m_dentry; 2256 2257 read_seqlock_excl(&mount_lock); 2258 put_mountpoint(where); 2259 read_sequnlock_excl(&mount_lock); 2260 2261 namespace_unlock(); 2262 inode_unlock(dentry->d_inode); 2263 } 2264 2265 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2266 { 2267 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2268 return -EINVAL; 2269 2270 if (d_is_dir(mp->m_dentry) != 2271 d_is_dir(mnt->mnt.mnt_root)) 2272 return -ENOTDIR; 2273 2274 return attach_recursive_mnt(mnt, p, mp, false); 2275 } 2276 2277 /* 2278 * Sanity check the flags to change_mnt_propagation. 2279 */ 2280 2281 static int flags_to_propagation_type(int ms_flags) 2282 { 2283 int type = ms_flags & ~(MS_REC | MS_SILENT); 2284 2285 /* Fail if any non-propagation flags are set */ 2286 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2287 return 0; 2288 /* Only one propagation flag should be set */ 2289 if (!is_power_of_2(type)) 2290 return 0; 2291 return type; 2292 } 2293 2294 /* 2295 * recursively change the type of the mountpoint. 2296 */ 2297 static int do_change_type(struct path *path, int ms_flags) 2298 { 2299 struct mount *m; 2300 struct mount *mnt = real_mount(path->mnt); 2301 int recurse = ms_flags & MS_REC; 2302 int type; 2303 int err = 0; 2304 2305 if (path->dentry != path->mnt->mnt_root) 2306 return -EINVAL; 2307 2308 type = flags_to_propagation_type(ms_flags); 2309 if (!type) 2310 return -EINVAL; 2311 2312 namespace_lock(); 2313 if (type == MS_SHARED) { 2314 err = invent_group_ids(mnt, recurse); 2315 if (err) 2316 goto out_unlock; 2317 } 2318 2319 lock_mount_hash(); 2320 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2321 change_mnt_propagation(m, type); 2322 unlock_mount_hash(); 2323 2324 out_unlock: 2325 namespace_unlock(); 2326 return err; 2327 } 2328 2329 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2330 { 2331 struct mount *child; 2332 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2333 if (!is_subdir(child->mnt_mountpoint, dentry)) 2334 continue; 2335 2336 if (child->mnt.mnt_flags & MNT_LOCKED) 2337 return true; 2338 } 2339 return false; 2340 } 2341 2342 static struct mount *__do_loopback(struct path *old_path, int recurse) 2343 { 2344 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2345 2346 if (IS_MNT_UNBINDABLE(old)) 2347 return mnt; 2348 2349 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2350 return mnt; 2351 2352 if (!recurse && has_locked_children(old, old_path->dentry)) 2353 return mnt; 2354 2355 if (recurse) 2356 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2357 else 2358 mnt = clone_mnt(old, old_path->dentry, 0); 2359 2360 if (!IS_ERR(mnt)) 2361 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2362 2363 return mnt; 2364 } 2365 2366 /* 2367 * do loopback mount. 2368 */ 2369 static int do_loopback(struct path *path, const char *old_name, 2370 int recurse) 2371 { 2372 struct path old_path; 2373 struct mount *mnt = NULL, *parent; 2374 struct mountpoint *mp; 2375 int err; 2376 if (!old_name || !*old_name) 2377 return -EINVAL; 2378 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2379 if (err) 2380 return err; 2381 2382 err = -EINVAL; 2383 if (mnt_ns_loop(old_path.dentry)) 2384 goto out; 2385 2386 mp = lock_mount(path); 2387 if (IS_ERR(mp)) { 2388 err = PTR_ERR(mp); 2389 goto out; 2390 } 2391 2392 parent = real_mount(path->mnt); 2393 if (!check_mnt(parent)) 2394 goto out2; 2395 2396 mnt = __do_loopback(&old_path, recurse); 2397 if (IS_ERR(mnt)) { 2398 err = PTR_ERR(mnt); 2399 goto out2; 2400 } 2401 2402 err = graft_tree(mnt, parent, mp); 2403 if (err) { 2404 lock_mount_hash(); 2405 umount_tree(mnt, UMOUNT_SYNC); 2406 unlock_mount_hash(); 2407 } 2408 out2: 2409 unlock_mount(mp); 2410 out: 2411 path_put(&old_path); 2412 return err; 2413 } 2414 2415 static struct file *open_detached_copy(struct path *path, bool recursive) 2416 { 2417 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2418 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2419 struct mount *mnt, *p; 2420 struct file *file; 2421 2422 if (IS_ERR(ns)) 2423 return ERR_CAST(ns); 2424 2425 namespace_lock(); 2426 mnt = __do_loopback(path, recursive); 2427 if (IS_ERR(mnt)) { 2428 namespace_unlock(); 2429 free_mnt_ns(ns); 2430 return ERR_CAST(mnt); 2431 } 2432 2433 lock_mount_hash(); 2434 for (p = mnt; p; p = next_mnt(p, mnt)) { 2435 p->mnt_ns = ns; 2436 ns->mounts++; 2437 } 2438 ns->root = mnt; 2439 list_add_tail(&ns->list, &mnt->mnt_list); 2440 mntget(&mnt->mnt); 2441 unlock_mount_hash(); 2442 namespace_unlock(); 2443 2444 mntput(path->mnt); 2445 path->mnt = &mnt->mnt; 2446 file = dentry_open(path, O_PATH, current_cred()); 2447 if (IS_ERR(file)) 2448 dissolve_on_fput(path->mnt); 2449 else 2450 file->f_mode |= FMODE_NEED_UNMOUNT; 2451 return file; 2452 } 2453 2454 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2455 { 2456 struct file *file; 2457 struct path path; 2458 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2459 bool detached = flags & OPEN_TREE_CLONE; 2460 int error; 2461 int fd; 2462 2463 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2464 2465 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2466 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2467 OPEN_TREE_CLOEXEC)) 2468 return -EINVAL; 2469 2470 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2471 return -EINVAL; 2472 2473 if (flags & AT_NO_AUTOMOUNT) 2474 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2475 if (flags & AT_SYMLINK_NOFOLLOW) 2476 lookup_flags &= ~LOOKUP_FOLLOW; 2477 if (flags & AT_EMPTY_PATH) 2478 lookup_flags |= LOOKUP_EMPTY; 2479 2480 if (detached && !may_mount()) 2481 return -EPERM; 2482 2483 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2484 if (fd < 0) 2485 return fd; 2486 2487 error = user_path_at(dfd, filename, lookup_flags, &path); 2488 if (unlikely(error)) { 2489 file = ERR_PTR(error); 2490 } else { 2491 if (detached) 2492 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2493 else 2494 file = dentry_open(&path, O_PATH, current_cred()); 2495 path_put(&path); 2496 } 2497 if (IS_ERR(file)) { 2498 put_unused_fd(fd); 2499 return PTR_ERR(file); 2500 } 2501 fd_install(fd, file); 2502 return fd; 2503 } 2504 2505 /* 2506 * Don't allow locked mount flags to be cleared. 2507 * 2508 * No locks need to be held here while testing the various MNT_LOCK 2509 * flags because those flags can never be cleared once they are set. 2510 */ 2511 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2512 { 2513 unsigned int fl = mnt->mnt.mnt_flags; 2514 2515 if ((fl & MNT_LOCK_READONLY) && 2516 !(mnt_flags & MNT_READONLY)) 2517 return false; 2518 2519 if ((fl & MNT_LOCK_NODEV) && 2520 !(mnt_flags & MNT_NODEV)) 2521 return false; 2522 2523 if ((fl & MNT_LOCK_NOSUID) && 2524 !(mnt_flags & MNT_NOSUID)) 2525 return false; 2526 2527 if ((fl & MNT_LOCK_NOEXEC) && 2528 !(mnt_flags & MNT_NOEXEC)) 2529 return false; 2530 2531 if ((fl & MNT_LOCK_ATIME) && 2532 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2533 return false; 2534 2535 return true; 2536 } 2537 2538 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2539 { 2540 bool readonly_request = (mnt_flags & MNT_READONLY); 2541 2542 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2543 return 0; 2544 2545 if (readonly_request) 2546 return mnt_make_readonly(mnt); 2547 2548 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2549 return 0; 2550 } 2551 2552 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2553 { 2554 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2555 mnt->mnt.mnt_flags = mnt_flags; 2556 touch_mnt_namespace(mnt->mnt_ns); 2557 } 2558 2559 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2560 { 2561 struct super_block *sb = mnt->mnt_sb; 2562 2563 if (!__mnt_is_readonly(mnt) && 2564 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2565 char *buf = (char *)__get_free_page(GFP_KERNEL); 2566 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2567 struct tm tm; 2568 2569 time64_to_tm(sb->s_time_max, 0, &tm); 2570 2571 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2572 sb->s_type->name, 2573 is_mounted(mnt) ? "remounted" : "mounted", 2574 mntpath, 2575 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2576 2577 free_page((unsigned long)buf); 2578 } 2579 } 2580 2581 /* 2582 * Handle reconfiguration of the mountpoint only without alteration of the 2583 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2584 * to mount(2). 2585 */ 2586 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2587 { 2588 struct super_block *sb = path->mnt->mnt_sb; 2589 struct mount *mnt = real_mount(path->mnt); 2590 int ret; 2591 2592 if (!check_mnt(mnt)) 2593 return -EINVAL; 2594 2595 if (path->dentry != mnt->mnt.mnt_root) 2596 return -EINVAL; 2597 2598 if (!can_change_locked_flags(mnt, mnt_flags)) 2599 return -EPERM; 2600 2601 /* 2602 * We're only checking whether the superblock is read-only not 2603 * changing it, so only take down_read(&sb->s_umount). 2604 */ 2605 down_read(&sb->s_umount); 2606 lock_mount_hash(); 2607 ret = change_mount_ro_state(mnt, mnt_flags); 2608 if (ret == 0) 2609 set_mount_attributes(mnt, mnt_flags); 2610 unlock_mount_hash(); 2611 up_read(&sb->s_umount); 2612 2613 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2614 2615 return ret; 2616 } 2617 2618 /* 2619 * change filesystem flags. dir should be a physical root of filesystem. 2620 * If you've mounted a non-root directory somewhere and want to do remount 2621 * on it - tough luck. 2622 */ 2623 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2624 int mnt_flags, void *data) 2625 { 2626 int err; 2627 struct super_block *sb = path->mnt->mnt_sb; 2628 struct mount *mnt = real_mount(path->mnt); 2629 struct fs_context *fc; 2630 2631 if (!check_mnt(mnt)) 2632 return -EINVAL; 2633 2634 if (path->dentry != path->mnt->mnt_root) 2635 return -EINVAL; 2636 2637 if (!can_change_locked_flags(mnt, mnt_flags)) 2638 return -EPERM; 2639 2640 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2641 if (IS_ERR(fc)) 2642 return PTR_ERR(fc); 2643 2644 fc->oldapi = true; 2645 err = parse_monolithic_mount_data(fc, data); 2646 if (!err) { 2647 down_write(&sb->s_umount); 2648 err = -EPERM; 2649 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2650 err = reconfigure_super(fc); 2651 if (!err) { 2652 lock_mount_hash(); 2653 set_mount_attributes(mnt, mnt_flags); 2654 unlock_mount_hash(); 2655 } 2656 } 2657 up_write(&sb->s_umount); 2658 } 2659 2660 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2661 2662 put_fs_context(fc); 2663 return err; 2664 } 2665 2666 static inline int tree_contains_unbindable(struct mount *mnt) 2667 { 2668 struct mount *p; 2669 for (p = mnt; p; p = next_mnt(p, mnt)) { 2670 if (IS_MNT_UNBINDABLE(p)) 2671 return 1; 2672 } 2673 return 0; 2674 } 2675 2676 /* 2677 * Check that there aren't references to earlier/same mount namespaces in the 2678 * specified subtree. Such references can act as pins for mount namespaces 2679 * that aren't checked by the mount-cycle checking code, thereby allowing 2680 * cycles to be made. 2681 */ 2682 static bool check_for_nsfs_mounts(struct mount *subtree) 2683 { 2684 struct mount *p; 2685 bool ret = false; 2686 2687 lock_mount_hash(); 2688 for (p = subtree; p; p = next_mnt(p, subtree)) 2689 if (mnt_ns_loop(p->mnt.mnt_root)) 2690 goto out; 2691 2692 ret = true; 2693 out: 2694 unlock_mount_hash(); 2695 return ret; 2696 } 2697 2698 static int do_move_mount(struct path *old_path, struct path *new_path) 2699 { 2700 struct mnt_namespace *ns; 2701 struct mount *p; 2702 struct mount *old; 2703 struct mount *parent; 2704 struct mountpoint *mp, *old_mp; 2705 int err; 2706 bool attached; 2707 2708 mp = lock_mount(new_path); 2709 if (IS_ERR(mp)) 2710 return PTR_ERR(mp); 2711 2712 old = real_mount(old_path->mnt); 2713 p = real_mount(new_path->mnt); 2714 parent = old->mnt_parent; 2715 attached = mnt_has_parent(old); 2716 old_mp = old->mnt_mp; 2717 ns = old->mnt_ns; 2718 2719 err = -EINVAL; 2720 /* The mountpoint must be in our namespace. */ 2721 if (!check_mnt(p)) 2722 goto out; 2723 2724 /* The thing moved must be mounted... */ 2725 if (!is_mounted(&old->mnt)) 2726 goto out; 2727 2728 /* ... and either ours or the root of anon namespace */ 2729 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2730 goto out; 2731 2732 if (old->mnt.mnt_flags & MNT_LOCKED) 2733 goto out; 2734 2735 if (old_path->dentry != old_path->mnt->mnt_root) 2736 goto out; 2737 2738 if (d_is_dir(new_path->dentry) != 2739 d_is_dir(old_path->dentry)) 2740 goto out; 2741 /* 2742 * Don't move a mount residing in a shared parent. 2743 */ 2744 if (attached && IS_MNT_SHARED(parent)) 2745 goto out; 2746 /* 2747 * Don't move a mount tree containing unbindable mounts to a destination 2748 * mount which is shared. 2749 */ 2750 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2751 goto out; 2752 err = -ELOOP; 2753 if (!check_for_nsfs_mounts(old)) 2754 goto out; 2755 for (; mnt_has_parent(p); p = p->mnt_parent) 2756 if (p == old) 2757 goto out; 2758 2759 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2760 attached); 2761 if (err) 2762 goto out; 2763 2764 /* if the mount is moved, it should no longer be expire 2765 * automatically */ 2766 list_del_init(&old->mnt_expire); 2767 if (attached) 2768 put_mountpoint(old_mp); 2769 out: 2770 unlock_mount(mp); 2771 if (!err) { 2772 if (attached) 2773 mntput_no_expire(parent); 2774 else 2775 free_mnt_ns(ns); 2776 } 2777 return err; 2778 } 2779 2780 static int do_move_mount_old(struct path *path, const char *old_name) 2781 { 2782 struct path old_path; 2783 int err; 2784 2785 if (!old_name || !*old_name) 2786 return -EINVAL; 2787 2788 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2789 if (err) 2790 return err; 2791 2792 err = do_move_mount(&old_path, path); 2793 path_put(&old_path); 2794 return err; 2795 } 2796 2797 /* 2798 * add a mount into a namespace's mount tree 2799 */ 2800 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2801 struct path *path, int mnt_flags) 2802 { 2803 struct mount *parent = real_mount(path->mnt); 2804 2805 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2806 2807 if (unlikely(!check_mnt(parent))) { 2808 /* that's acceptable only for automounts done in private ns */ 2809 if (!(mnt_flags & MNT_SHRINKABLE)) 2810 return -EINVAL; 2811 /* ... and for those we'd better have mountpoint still alive */ 2812 if (!parent->mnt_ns) 2813 return -EINVAL; 2814 } 2815 2816 /* Refuse the same filesystem on the same mount point */ 2817 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2818 path->mnt->mnt_root == path->dentry) 2819 return -EBUSY; 2820 2821 if (d_is_symlink(newmnt->mnt.mnt_root)) 2822 return -EINVAL; 2823 2824 newmnt->mnt.mnt_flags = mnt_flags; 2825 return graft_tree(newmnt, parent, mp); 2826 } 2827 2828 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2829 2830 /* 2831 * Create a new mount using a superblock configuration and request it 2832 * be added to the namespace tree. 2833 */ 2834 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2835 unsigned int mnt_flags) 2836 { 2837 struct vfsmount *mnt; 2838 struct mountpoint *mp; 2839 struct super_block *sb = fc->root->d_sb; 2840 int error; 2841 2842 error = security_sb_kern_mount(sb); 2843 if (!error && mount_too_revealing(sb, &mnt_flags)) 2844 error = -EPERM; 2845 2846 if (unlikely(error)) { 2847 fc_drop_locked(fc); 2848 return error; 2849 } 2850 2851 up_write(&sb->s_umount); 2852 2853 mnt = vfs_create_mount(fc); 2854 if (IS_ERR(mnt)) 2855 return PTR_ERR(mnt); 2856 2857 mnt_warn_timestamp_expiry(mountpoint, mnt); 2858 2859 mp = lock_mount(mountpoint); 2860 if (IS_ERR(mp)) { 2861 mntput(mnt); 2862 return PTR_ERR(mp); 2863 } 2864 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2865 unlock_mount(mp); 2866 if (error < 0) 2867 mntput(mnt); 2868 return error; 2869 } 2870 2871 /* 2872 * create a new mount for userspace and request it to be added into the 2873 * namespace's tree 2874 */ 2875 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2876 int mnt_flags, const char *name, void *data) 2877 { 2878 struct file_system_type *type; 2879 struct fs_context *fc; 2880 const char *subtype = NULL; 2881 int err = 0; 2882 2883 if (!fstype) 2884 return -EINVAL; 2885 2886 type = get_fs_type(fstype); 2887 if (!type) 2888 return -ENODEV; 2889 2890 if (type->fs_flags & FS_HAS_SUBTYPE) { 2891 subtype = strchr(fstype, '.'); 2892 if (subtype) { 2893 subtype++; 2894 if (!*subtype) { 2895 put_filesystem(type); 2896 return -EINVAL; 2897 } 2898 } 2899 } 2900 2901 fc = fs_context_for_mount(type, sb_flags); 2902 put_filesystem(type); 2903 if (IS_ERR(fc)) 2904 return PTR_ERR(fc); 2905 2906 if (subtype) 2907 err = vfs_parse_fs_string(fc, "subtype", 2908 subtype, strlen(subtype)); 2909 if (!err && name) 2910 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2911 if (!err) 2912 err = parse_monolithic_mount_data(fc, data); 2913 if (!err && !mount_capable(fc)) 2914 err = -EPERM; 2915 if (!err) 2916 err = vfs_get_tree(fc); 2917 if (!err) 2918 err = do_new_mount_fc(fc, path, mnt_flags); 2919 2920 put_fs_context(fc); 2921 return err; 2922 } 2923 2924 int finish_automount(struct vfsmount *m, struct path *path) 2925 { 2926 struct dentry *dentry = path->dentry; 2927 struct mountpoint *mp; 2928 struct mount *mnt; 2929 int err; 2930 2931 if (!m) 2932 return 0; 2933 if (IS_ERR(m)) 2934 return PTR_ERR(m); 2935 2936 mnt = real_mount(m); 2937 /* The new mount record should have at least 2 refs to prevent it being 2938 * expired before we get a chance to add it 2939 */ 2940 BUG_ON(mnt_get_count(mnt) < 2); 2941 2942 if (m->mnt_sb == path->mnt->mnt_sb && 2943 m->mnt_root == dentry) { 2944 err = -ELOOP; 2945 goto discard; 2946 } 2947 2948 /* 2949 * we don't want to use lock_mount() - in this case finding something 2950 * that overmounts our mountpoint to be means "quitely drop what we've 2951 * got", not "try to mount it on top". 2952 */ 2953 inode_lock(dentry->d_inode); 2954 namespace_lock(); 2955 if (unlikely(cant_mount(dentry))) { 2956 err = -ENOENT; 2957 goto discard_locked; 2958 } 2959 rcu_read_lock(); 2960 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2961 rcu_read_unlock(); 2962 err = 0; 2963 goto discard_locked; 2964 } 2965 rcu_read_unlock(); 2966 mp = get_mountpoint(dentry); 2967 if (IS_ERR(mp)) { 2968 err = PTR_ERR(mp); 2969 goto discard_locked; 2970 } 2971 2972 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2973 unlock_mount(mp); 2974 if (unlikely(err)) 2975 goto discard; 2976 mntput(m); 2977 return 0; 2978 2979 discard_locked: 2980 namespace_unlock(); 2981 inode_unlock(dentry->d_inode); 2982 discard: 2983 /* remove m from any expiration list it may be on */ 2984 if (!list_empty(&mnt->mnt_expire)) { 2985 namespace_lock(); 2986 list_del_init(&mnt->mnt_expire); 2987 namespace_unlock(); 2988 } 2989 mntput(m); 2990 mntput(m); 2991 return err; 2992 } 2993 2994 /** 2995 * mnt_set_expiry - Put a mount on an expiration list 2996 * @mnt: The mount to list. 2997 * @expiry_list: The list to add the mount to. 2998 */ 2999 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3000 { 3001 namespace_lock(); 3002 3003 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3004 3005 namespace_unlock(); 3006 } 3007 EXPORT_SYMBOL(mnt_set_expiry); 3008 3009 /* 3010 * process a list of expirable mountpoints with the intent of discarding any 3011 * mountpoints that aren't in use and haven't been touched since last we came 3012 * here 3013 */ 3014 void mark_mounts_for_expiry(struct list_head *mounts) 3015 { 3016 struct mount *mnt, *next; 3017 LIST_HEAD(graveyard); 3018 3019 if (list_empty(mounts)) 3020 return; 3021 3022 namespace_lock(); 3023 lock_mount_hash(); 3024 3025 /* extract from the expiration list every vfsmount that matches the 3026 * following criteria: 3027 * - only referenced by its parent vfsmount 3028 * - still marked for expiry (marked on the last call here; marks are 3029 * cleared by mntput()) 3030 */ 3031 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3032 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3033 propagate_mount_busy(mnt, 1)) 3034 continue; 3035 list_move(&mnt->mnt_expire, &graveyard); 3036 } 3037 while (!list_empty(&graveyard)) { 3038 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3039 touch_mnt_namespace(mnt->mnt_ns); 3040 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3041 } 3042 unlock_mount_hash(); 3043 namespace_unlock(); 3044 } 3045 3046 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3047 3048 /* 3049 * Ripoff of 'select_parent()' 3050 * 3051 * search the list of submounts for a given mountpoint, and move any 3052 * shrinkable submounts to the 'graveyard' list. 3053 */ 3054 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3055 { 3056 struct mount *this_parent = parent; 3057 struct list_head *next; 3058 int found = 0; 3059 3060 repeat: 3061 next = this_parent->mnt_mounts.next; 3062 resume: 3063 while (next != &this_parent->mnt_mounts) { 3064 struct list_head *tmp = next; 3065 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3066 3067 next = tmp->next; 3068 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3069 continue; 3070 /* 3071 * Descend a level if the d_mounts list is non-empty. 3072 */ 3073 if (!list_empty(&mnt->mnt_mounts)) { 3074 this_parent = mnt; 3075 goto repeat; 3076 } 3077 3078 if (!propagate_mount_busy(mnt, 1)) { 3079 list_move_tail(&mnt->mnt_expire, graveyard); 3080 found++; 3081 } 3082 } 3083 /* 3084 * All done at this level ... ascend and resume the search 3085 */ 3086 if (this_parent != parent) { 3087 next = this_parent->mnt_child.next; 3088 this_parent = this_parent->mnt_parent; 3089 goto resume; 3090 } 3091 return found; 3092 } 3093 3094 /* 3095 * process a list of expirable mountpoints with the intent of discarding any 3096 * submounts of a specific parent mountpoint 3097 * 3098 * mount_lock must be held for write 3099 */ 3100 static void shrink_submounts(struct mount *mnt) 3101 { 3102 LIST_HEAD(graveyard); 3103 struct mount *m; 3104 3105 /* extract submounts of 'mountpoint' from the expiration list */ 3106 while (select_submounts(mnt, &graveyard)) { 3107 while (!list_empty(&graveyard)) { 3108 m = list_first_entry(&graveyard, struct mount, 3109 mnt_expire); 3110 touch_mnt_namespace(m->mnt_ns); 3111 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3112 } 3113 } 3114 } 3115 3116 static void *copy_mount_options(const void __user * data) 3117 { 3118 char *copy; 3119 unsigned left, offset; 3120 3121 if (!data) 3122 return NULL; 3123 3124 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3125 if (!copy) 3126 return ERR_PTR(-ENOMEM); 3127 3128 left = copy_from_user(copy, data, PAGE_SIZE); 3129 3130 /* 3131 * Not all architectures have an exact copy_from_user(). Resort to 3132 * byte at a time. 3133 */ 3134 offset = PAGE_SIZE - left; 3135 while (left) { 3136 char c; 3137 if (get_user(c, (const char __user *)data + offset)) 3138 break; 3139 copy[offset] = c; 3140 left--; 3141 offset++; 3142 } 3143 3144 if (left == PAGE_SIZE) { 3145 kfree(copy); 3146 return ERR_PTR(-EFAULT); 3147 } 3148 3149 return copy; 3150 } 3151 3152 static char *copy_mount_string(const void __user *data) 3153 { 3154 return data ? strndup_user(data, PATH_MAX) : NULL; 3155 } 3156 3157 /* 3158 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3159 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3160 * 3161 * data is a (void *) that can point to any structure up to 3162 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3163 * information (or be NULL). 3164 * 3165 * Pre-0.97 versions of mount() didn't have a flags word. 3166 * When the flags word was introduced its top half was required 3167 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3168 * Therefore, if this magic number is present, it carries no information 3169 * and must be discarded. 3170 */ 3171 int path_mount(const char *dev_name, struct path *path, 3172 const char *type_page, unsigned long flags, void *data_page) 3173 { 3174 unsigned int mnt_flags = 0, sb_flags; 3175 int ret; 3176 3177 /* Discard magic */ 3178 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3179 flags &= ~MS_MGC_MSK; 3180 3181 /* Basic sanity checks */ 3182 if (data_page) 3183 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3184 3185 if (flags & MS_NOUSER) 3186 return -EINVAL; 3187 3188 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3189 if (ret) 3190 return ret; 3191 if (!may_mount()) 3192 return -EPERM; 3193 if ((flags & SB_MANDLOCK) && !may_mandlock()) 3194 return -EPERM; 3195 3196 /* Default to relatime unless overriden */ 3197 if (!(flags & MS_NOATIME)) 3198 mnt_flags |= MNT_RELATIME; 3199 3200 /* Separate the per-mountpoint flags */ 3201 if (flags & MS_NOSUID) 3202 mnt_flags |= MNT_NOSUID; 3203 if (flags & MS_NODEV) 3204 mnt_flags |= MNT_NODEV; 3205 if (flags & MS_NOEXEC) 3206 mnt_flags |= MNT_NOEXEC; 3207 if (flags & MS_NOATIME) 3208 mnt_flags |= MNT_NOATIME; 3209 if (flags & MS_NODIRATIME) 3210 mnt_flags |= MNT_NODIRATIME; 3211 if (flags & MS_STRICTATIME) 3212 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3213 if (flags & MS_RDONLY) 3214 mnt_flags |= MNT_READONLY; 3215 if (flags & MS_NOSYMFOLLOW) 3216 mnt_flags |= MNT_NOSYMFOLLOW; 3217 3218 /* The default atime for remount is preservation */ 3219 if ((flags & MS_REMOUNT) && 3220 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3221 MS_STRICTATIME)) == 0)) { 3222 mnt_flags &= ~MNT_ATIME_MASK; 3223 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3224 } 3225 3226 sb_flags = flags & (SB_RDONLY | 3227 SB_SYNCHRONOUS | 3228 SB_MANDLOCK | 3229 SB_DIRSYNC | 3230 SB_SILENT | 3231 SB_POSIXACL | 3232 SB_LAZYTIME | 3233 SB_I_VERSION); 3234 3235 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3236 return do_reconfigure_mnt(path, mnt_flags); 3237 if (flags & MS_REMOUNT) 3238 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3239 if (flags & MS_BIND) 3240 return do_loopback(path, dev_name, flags & MS_REC); 3241 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3242 return do_change_type(path, flags); 3243 if (flags & MS_MOVE) 3244 return do_move_mount_old(path, dev_name); 3245 3246 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3247 data_page); 3248 } 3249 3250 long do_mount(const char *dev_name, const char __user *dir_name, 3251 const char *type_page, unsigned long flags, void *data_page) 3252 { 3253 struct path path; 3254 int ret; 3255 3256 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3257 if (ret) 3258 return ret; 3259 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3260 path_put(&path); 3261 return ret; 3262 } 3263 3264 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3265 { 3266 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3267 } 3268 3269 static void dec_mnt_namespaces(struct ucounts *ucounts) 3270 { 3271 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3272 } 3273 3274 static void free_mnt_ns(struct mnt_namespace *ns) 3275 { 3276 if (!is_anon_ns(ns)) 3277 ns_free_inum(&ns->ns); 3278 dec_mnt_namespaces(ns->ucounts); 3279 put_user_ns(ns->user_ns); 3280 kfree(ns); 3281 } 3282 3283 /* 3284 * Assign a sequence number so we can detect when we attempt to bind 3285 * mount a reference to an older mount namespace into the current 3286 * mount namespace, preventing reference counting loops. A 64bit 3287 * number incrementing at 10Ghz will take 12,427 years to wrap which 3288 * is effectively never, so we can ignore the possibility. 3289 */ 3290 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3291 3292 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3293 { 3294 struct mnt_namespace *new_ns; 3295 struct ucounts *ucounts; 3296 int ret; 3297 3298 ucounts = inc_mnt_namespaces(user_ns); 3299 if (!ucounts) 3300 return ERR_PTR(-ENOSPC); 3301 3302 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3303 if (!new_ns) { 3304 dec_mnt_namespaces(ucounts); 3305 return ERR_PTR(-ENOMEM); 3306 } 3307 if (!anon) { 3308 ret = ns_alloc_inum(&new_ns->ns); 3309 if (ret) { 3310 kfree(new_ns); 3311 dec_mnt_namespaces(ucounts); 3312 return ERR_PTR(ret); 3313 } 3314 } 3315 new_ns->ns.ops = &mntns_operations; 3316 if (!anon) 3317 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3318 refcount_set(&new_ns->ns.count, 1); 3319 INIT_LIST_HEAD(&new_ns->list); 3320 init_waitqueue_head(&new_ns->poll); 3321 spin_lock_init(&new_ns->ns_lock); 3322 new_ns->user_ns = get_user_ns(user_ns); 3323 new_ns->ucounts = ucounts; 3324 return new_ns; 3325 } 3326 3327 __latent_entropy 3328 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3329 struct user_namespace *user_ns, struct fs_struct *new_fs) 3330 { 3331 struct mnt_namespace *new_ns; 3332 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3333 struct mount *p, *q; 3334 struct mount *old; 3335 struct mount *new; 3336 int copy_flags; 3337 3338 BUG_ON(!ns); 3339 3340 if (likely(!(flags & CLONE_NEWNS))) { 3341 get_mnt_ns(ns); 3342 return ns; 3343 } 3344 3345 old = ns->root; 3346 3347 new_ns = alloc_mnt_ns(user_ns, false); 3348 if (IS_ERR(new_ns)) 3349 return new_ns; 3350 3351 namespace_lock(); 3352 /* First pass: copy the tree topology */ 3353 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3354 if (user_ns != ns->user_ns) 3355 copy_flags |= CL_SHARED_TO_SLAVE; 3356 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3357 if (IS_ERR(new)) { 3358 namespace_unlock(); 3359 free_mnt_ns(new_ns); 3360 return ERR_CAST(new); 3361 } 3362 if (user_ns != ns->user_ns) { 3363 lock_mount_hash(); 3364 lock_mnt_tree(new); 3365 unlock_mount_hash(); 3366 } 3367 new_ns->root = new; 3368 list_add_tail(&new_ns->list, &new->mnt_list); 3369 3370 /* 3371 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3372 * as belonging to new namespace. We have already acquired a private 3373 * fs_struct, so tsk->fs->lock is not needed. 3374 */ 3375 p = old; 3376 q = new; 3377 while (p) { 3378 q->mnt_ns = new_ns; 3379 new_ns->mounts++; 3380 if (new_fs) { 3381 if (&p->mnt == new_fs->root.mnt) { 3382 new_fs->root.mnt = mntget(&q->mnt); 3383 rootmnt = &p->mnt; 3384 } 3385 if (&p->mnt == new_fs->pwd.mnt) { 3386 new_fs->pwd.mnt = mntget(&q->mnt); 3387 pwdmnt = &p->mnt; 3388 } 3389 } 3390 p = next_mnt(p, old); 3391 q = next_mnt(q, new); 3392 if (!q) 3393 break; 3394 while (p->mnt.mnt_root != q->mnt.mnt_root) 3395 p = next_mnt(p, old); 3396 } 3397 namespace_unlock(); 3398 3399 if (rootmnt) 3400 mntput(rootmnt); 3401 if (pwdmnt) 3402 mntput(pwdmnt); 3403 3404 return new_ns; 3405 } 3406 3407 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3408 { 3409 struct mount *mnt = real_mount(m); 3410 struct mnt_namespace *ns; 3411 struct super_block *s; 3412 struct path path; 3413 int err; 3414 3415 ns = alloc_mnt_ns(&init_user_ns, true); 3416 if (IS_ERR(ns)) { 3417 mntput(m); 3418 return ERR_CAST(ns); 3419 } 3420 mnt->mnt_ns = ns; 3421 ns->root = mnt; 3422 ns->mounts++; 3423 list_add(&mnt->mnt_list, &ns->list); 3424 3425 err = vfs_path_lookup(m->mnt_root, m, 3426 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3427 3428 put_mnt_ns(ns); 3429 3430 if (err) 3431 return ERR_PTR(err); 3432 3433 /* trade a vfsmount reference for active sb one */ 3434 s = path.mnt->mnt_sb; 3435 atomic_inc(&s->s_active); 3436 mntput(path.mnt); 3437 /* lock the sucker */ 3438 down_write(&s->s_umount); 3439 /* ... and return the root of (sub)tree on it */ 3440 return path.dentry; 3441 } 3442 EXPORT_SYMBOL(mount_subtree); 3443 3444 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3445 char __user *, type, unsigned long, flags, void __user *, data) 3446 { 3447 int ret; 3448 char *kernel_type; 3449 char *kernel_dev; 3450 void *options; 3451 3452 kernel_type = copy_mount_string(type); 3453 ret = PTR_ERR(kernel_type); 3454 if (IS_ERR(kernel_type)) 3455 goto out_type; 3456 3457 kernel_dev = copy_mount_string(dev_name); 3458 ret = PTR_ERR(kernel_dev); 3459 if (IS_ERR(kernel_dev)) 3460 goto out_dev; 3461 3462 options = copy_mount_options(data); 3463 ret = PTR_ERR(options); 3464 if (IS_ERR(options)) 3465 goto out_data; 3466 3467 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3468 3469 kfree(options); 3470 out_data: 3471 kfree(kernel_dev); 3472 out_dev: 3473 kfree(kernel_type); 3474 out_type: 3475 return ret; 3476 } 3477 3478 #define FSMOUNT_VALID_FLAGS \ 3479 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3480 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME) 3481 3482 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3483 3484 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3485 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3486 3487 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3488 { 3489 unsigned int mnt_flags = 0; 3490 3491 if (attr_flags & MOUNT_ATTR_RDONLY) 3492 mnt_flags |= MNT_READONLY; 3493 if (attr_flags & MOUNT_ATTR_NOSUID) 3494 mnt_flags |= MNT_NOSUID; 3495 if (attr_flags & MOUNT_ATTR_NODEV) 3496 mnt_flags |= MNT_NODEV; 3497 if (attr_flags & MOUNT_ATTR_NOEXEC) 3498 mnt_flags |= MNT_NOEXEC; 3499 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3500 mnt_flags |= MNT_NODIRATIME; 3501 3502 return mnt_flags; 3503 } 3504 3505 /* 3506 * Create a kernel mount representation for a new, prepared superblock 3507 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3508 */ 3509 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3510 unsigned int, attr_flags) 3511 { 3512 struct mnt_namespace *ns; 3513 struct fs_context *fc; 3514 struct file *file; 3515 struct path newmount; 3516 struct mount *mnt; 3517 struct fd f; 3518 unsigned int mnt_flags = 0; 3519 long ret; 3520 3521 if (!may_mount()) 3522 return -EPERM; 3523 3524 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3525 return -EINVAL; 3526 3527 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3528 return -EINVAL; 3529 3530 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3531 3532 switch (attr_flags & MOUNT_ATTR__ATIME) { 3533 case MOUNT_ATTR_STRICTATIME: 3534 break; 3535 case MOUNT_ATTR_NOATIME: 3536 mnt_flags |= MNT_NOATIME; 3537 break; 3538 case MOUNT_ATTR_RELATIME: 3539 mnt_flags |= MNT_RELATIME; 3540 break; 3541 default: 3542 return -EINVAL; 3543 } 3544 3545 f = fdget(fs_fd); 3546 if (!f.file) 3547 return -EBADF; 3548 3549 ret = -EINVAL; 3550 if (f.file->f_op != &fscontext_fops) 3551 goto err_fsfd; 3552 3553 fc = f.file->private_data; 3554 3555 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3556 if (ret < 0) 3557 goto err_fsfd; 3558 3559 /* There must be a valid superblock or we can't mount it */ 3560 ret = -EINVAL; 3561 if (!fc->root) 3562 goto err_unlock; 3563 3564 ret = -EPERM; 3565 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3566 pr_warn("VFS: Mount too revealing\n"); 3567 goto err_unlock; 3568 } 3569 3570 ret = -EBUSY; 3571 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3572 goto err_unlock; 3573 3574 ret = -EPERM; 3575 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3576 goto err_unlock; 3577 3578 newmount.mnt = vfs_create_mount(fc); 3579 if (IS_ERR(newmount.mnt)) { 3580 ret = PTR_ERR(newmount.mnt); 3581 goto err_unlock; 3582 } 3583 newmount.dentry = dget(fc->root); 3584 newmount.mnt->mnt_flags = mnt_flags; 3585 3586 /* We've done the mount bit - now move the file context into more or 3587 * less the same state as if we'd done an fspick(). We don't want to 3588 * do any memory allocation or anything like that at this point as we 3589 * don't want to have to handle any errors incurred. 3590 */ 3591 vfs_clean_context(fc); 3592 3593 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3594 if (IS_ERR(ns)) { 3595 ret = PTR_ERR(ns); 3596 goto err_path; 3597 } 3598 mnt = real_mount(newmount.mnt); 3599 mnt->mnt_ns = ns; 3600 ns->root = mnt; 3601 ns->mounts = 1; 3602 list_add(&mnt->mnt_list, &ns->list); 3603 mntget(newmount.mnt); 3604 3605 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3606 * it, not just simply put it. 3607 */ 3608 file = dentry_open(&newmount, O_PATH, fc->cred); 3609 if (IS_ERR(file)) { 3610 dissolve_on_fput(newmount.mnt); 3611 ret = PTR_ERR(file); 3612 goto err_path; 3613 } 3614 file->f_mode |= FMODE_NEED_UNMOUNT; 3615 3616 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3617 if (ret >= 0) 3618 fd_install(ret, file); 3619 else 3620 fput(file); 3621 3622 err_path: 3623 path_put(&newmount); 3624 err_unlock: 3625 mutex_unlock(&fc->uapi_mutex); 3626 err_fsfd: 3627 fdput(f); 3628 return ret; 3629 } 3630 3631 /* 3632 * Move a mount from one place to another. In combination with 3633 * fsopen()/fsmount() this is used to install a new mount and in combination 3634 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3635 * a mount subtree. 3636 * 3637 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3638 */ 3639 SYSCALL_DEFINE5(move_mount, 3640 int, from_dfd, const char __user *, from_pathname, 3641 int, to_dfd, const char __user *, to_pathname, 3642 unsigned int, flags) 3643 { 3644 struct path from_path, to_path; 3645 unsigned int lflags; 3646 int ret = 0; 3647 3648 if (!may_mount()) 3649 return -EPERM; 3650 3651 if (flags & ~MOVE_MOUNT__MASK) 3652 return -EINVAL; 3653 3654 /* If someone gives a pathname, they aren't permitted to move 3655 * from an fd that requires unmount as we can't get at the flag 3656 * to clear it afterwards. 3657 */ 3658 lflags = 0; 3659 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3660 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3661 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3662 3663 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3664 if (ret < 0) 3665 return ret; 3666 3667 lflags = 0; 3668 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3669 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3670 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3671 3672 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3673 if (ret < 0) 3674 goto out_from; 3675 3676 ret = security_move_mount(&from_path, &to_path); 3677 if (ret < 0) 3678 goto out_to; 3679 3680 ret = do_move_mount(&from_path, &to_path); 3681 3682 out_to: 3683 path_put(&to_path); 3684 out_from: 3685 path_put(&from_path); 3686 return ret; 3687 } 3688 3689 /* 3690 * Return true if path is reachable from root 3691 * 3692 * namespace_sem or mount_lock is held 3693 */ 3694 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3695 const struct path *root) 3696 { 3697 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3698 dentry = mnt->mnt_mountpoint; 3699 mnt = mnt->mnt_parent; 3700 } 3701 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3702 } 3703 3704 bool path_is_under(const struct path *path1, const struct path *path2) 3705 { 3706 bool res; 3707 read_seqlock_excl(&mount_lock); 3708 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3709 read_sequnlock_excl(&mount_lock); 3710 return res; 3711 } 3712 EXPORT_SYMBOL(path_is_under); 3713 3714 /* 3715 * pivot_root Semantics: 3716 * Moves the root file system of the current process to the directory put_old, 3717 * makes new_root as the new root file system of the current process, and sets 3718 * root/cwd of all processes which had them on the current root to new_root. 3719 * 3720 * Restrictions: 3721 * The new_root and put_old must be directories, and must not be on the 3722 * same file system as the current process root. The put_old must be 3723 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3724 * pointed to by put_old must yield the same directory as new_root. No other 3725 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3726 * 3727 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3728 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3729 * in this situation. 3730 * 3731 * Notes: 3732 * - we don't move root/cwd if they are not at the root (reason: if something 3733 * cared enough to change them, it's probably wrong to force them elsewhere) 3734 * - it's okay to pick a root that isn't the root of a file system, e.g. 3735 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3736 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3737 * first. 3738 */ 3739 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3740 const char __user *, put_old) 3741 { 3742 struct path new, old, root; 3743 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3744 struct mountpoint *old_mp, *root_mp; 3745 int error; 3746 3747 if (!may_mount()) 3748 return -EPERM; 3749 3750 error = user_path_at(AT_FDCWD, new_root, 3751 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3752 if (error) 3753 goto out0; 3754 3755 error = user_path_at(AT_FDCWD, put_old, 3756 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3757 if (error) 3758 goto out1; 3759 3760 error = security_sb_pivotroot(&old, &new); 3761 if (error) 3762 goto out2; 3763 3764 get_fs_root(current->fs, &root); 3765 old_mp = lock_mount(&old); 3766 error = PTR_ERR(old_mp); 3767 if (IS_ERR(old_mp)) 3768 goto out3; 3769 3770 error = -EINVAL; 3771 new_mnt = real_mount(new.mnt); 3772 root_mnt = real_mount(root.mnt); 3773 old_mnt = real_mount(old.mnt); 3774 ex_parent = new_mnt->mnt_parent; 3775 root_parent = root_mnt->mnt_parent; 3776 if (IS_MNT_SHARED(old_mnt) || 3777 IS_MNT_SHARED(ex_parent) || 3778 IS_MNT_SHARED(root_parent)) 3779 goto out4; 3780 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3781 goto out4; 3782 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3783 goto out4; 3784 error = -ENOENT; 3785 if (d_unlinked(new.dentry)) 3786 goto out4; 3787 error = -EBUSY; 3788 if (new_mnt == root_mnt || old_mnt == root_mnt) 3789 goto out4; /* loop, on the same file system */ 3790 error = -EINVAL; 3791 if (root.mnt->mnt_root != root.dentry) 3792 goto out4; /* not a mountpoint */ 3793 if (!mnt_has_parent(root_mnt)) 3794 goto out4; /* not attached */ 3795 if (new.mnt->mnt_root != new.dentry) 3796 goto out4; /* not a mountpoint */ 3797 if (!mnt_has_parent(new_mnt)) 3798 goto out4; /* not attached */ 3799 /* make sure we can reach put_old from new_root */ 3800 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3801 goto out4; 3802 /* make certain new is below the root */ 3803 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3804 goto out4; 3805 lock_mount_hash(); 3806 umount_mnt(new_mnt); 3807 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3808 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3809 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3810 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3811 } 3812 /* mount old root on put_old */ 3813 attach_mnt(root_mnt, old_mnt, old_mp); 3814 /* mount new_root on / */ 3815 attach_mnt(new_mnt, root_parent, root_mp); 3816 mnt_add_count(root_parent, -1); 3817 touch_mnt_namespace(current->nsproxy->mnt_ns); 3818 /* A moved mount should not expire automatically */ 3819 list_del_init(&new_mnt->mnt_expire); 3820 put_mountpoint(root_mp); 3821 unlock_mount_hash(); 3822 chroot_fs_refs(&root, &new); 3823 error = 0; 3824 out4: 3825 unlock_mount(old_mp); 3826 if (!error) 3827 mntput_no_expire(ex_parent); 3828 out3: 3829 path_put(&root); 3830 out2: 3831 path_put(&old); 3832 out1: 3833 path_put(&new); 3834 out0: 3835 return error; 3836 } 3837 3838 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3839 { 3840 unsigned int flags = mnt->mnt.mnt_flags; 3841 3842 /* flags to clear */ 3843 flags &= ~kattr->attr_clr; 3844 /* flags to raise */ 3845 flags |= kattr->attr_set; 3846 3847 return flags; 3848 } 3849 3850 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3851 { 3852 struct vfsmount *m = &mnt->mnt; 3853 3854 if (!kattr->mnt_userns) 3855 return 0; 3856 3857 /* 3858 * Once a mount has been idmapped we don't allow it to change its 3859 * mapping. It makes things simpler and callers can just create 3860 * another bind-mount they can idmap if they want to. 3861 */ 3862 if (mnt_user_ns(m) != &init_user_ns) 3863 return -EPERM; 3864 3865 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3866 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3867 return -EINVAL; 3868 3869 /* We're not controlling the superblock. */ 3870 if (!ns_capable(m->mnt_sb->s_user_ns, CAP_SYS_ADMIN)) 3871 return -EPERM; 3872 3873 /* Mount has already been visible in the filesystem hierarchy. */ 3874 if (!is_anon_ns(mnt->mnt_ns)) 3875 return -EINVAL; 3876 3877 return 0; 3878 } 3879 3880 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3881 struct mount *mnt, int *err) 3882 { 3883 struct mount *m = mnt, *last = NULL; 3884 3885 if (!is_mounted(&m->mnt)) { 3886 *err = -EINVAL; 3887 goto out; 3888 } 3889 3890 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3891 *err = -EINVAL; 3892 goto out; 3893 } 3894 3895 do { 3896 unsigned int flags; 3897 3898 flags = recalc_flags(kattr, m); 3899 if (!can_change_locked_flags(m, flags)) { 3900 *err = -EPERM; 3901 goto out; 3902 } 3903 3904 *err = can_idmap_mount(kattr, m); 3905 if (*err) 3906 goto out; 3907 3908 last = m; 3909 3910 if ((kattr->attr_set & MNT_READONLY) && 3911 !(m->mnt.mnt_flags & MNT_READONLY)) { 3912 *err = mnt_hold_writers(m); 3913 if (*err) 3914 goto out; 3915 } 3916 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3917 3918 out: 3919 return last; 3920 } 3921 3922 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3923 { 3924 struct user_namespace *mnt_userns; 3925 3926 if (!kattr->mnt_userns) 3927 return; 3928 3929 mnt_userns = get_user_ns(kattr->mnt_userns); 3930 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 3931 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 3932 } 3933 3934 static void mount_setattr_commit(struct mount_kattr *kattr, 3935 struct mount *mnt, struct mount *last, 3936 int err) 3937 { 3938 struct mount *m = mnt; 3939 3940 do { 3941 if (!err) { 3942 unsigned int flags; 3943 3944 do_idmap_mount(kattr, m); 3945 flags = recalc_flags(kattr, m); 3946 WRITE_ONCE(m->mnt.mnt_flags, flags); 3947 } 3948 3949 /* 3950 * We either set MNT_READONLY above so make it visible 3951 * before ~MNT_WRITE_HOLD or we failed to recursively 3952 * apply mount options. 3953 */ 3954 if ((kattr->attr_set & MNT_READONLY) && 3955 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 3956 mnt_unhold_writers(m); 3957 3958 if (!err && kattr->propagation) 3959 change_mnt_propagation(m, kattr->propagation); 3960 3961 /* 3962 * On failure, only cleanup until we found the first mount 3963 * we failed to handle. 3964 */ 3965 if (err && m == last) 3966 break; 3967 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3968 3969 if (!err) 3970 touch_mnt_namespace(mnt->mnt_ns); 3971 } 3972 3973 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 3974 { 3975 struct mount *mnt = real_mount(path->mnt), *last = NULL; 3976 int err = 0; 3977 3978 if (path->dentry != mnt->mnt.mnt_root) 3979 return -EINVAL; 3980 3981 if (kattr->propagation) { 3982 /* 3983 * Only take namespace_lock() if we're actually changing 3984 * propagation. 3985 */ 3986 namespace_lock(); 3987 if (kattr->propagation == MS_SHARED) { 3988 err = invent_group_ids(mnt, kattr->recurse); 3989 if (err) { 3990 namespace_unlock(); 3991 return err; 3992 } 3993 } 3994 } 3995 3996 lock_mount_hash(); 3997 3998 /* 3999 * Get the mount tree in a shape where we can change mount 4000 * properties without failure. 4001 */ 4002 last = mount_setattr_prepare(kattr, mnt, &err); 4003 if (last) /* Commit all changes or revert to the old state. */ 4004 mount_setattr_commit(kattr, mnt, last, err); 4005 4006 unlock_mount_hash(); 4007 4008 if (kattr->propagation) { 4009 namespace_unlock(); 4010 if (err) 4011 cleanup_group_ids(mnt, NULL); 4012 } 4013 4014 return err; 4015 } 4016 4017 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4018 struct mount_kattr *kattr, unsigned int flags) 4019 { 4020 int err = 0; 4021 struct ns_common *ns; 4022 struct user_namespace *mnt_userns; 4023 struct file *file; 4024 4025 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4026 return 0; 4027 4028 /* 4029 * We currently do not support clearing an idmapped mount. If this ever 4030 * is a use-case we can revisit this but for now let's keep it simple 4031 * and not allow it. 4032 */ 4033 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4034 return -EINVAL; 4035 4036 if (attr->userns_fd > INT_MAX) 4037 return -EINVAL; 4038 4039 file = fget(attr->userns_fd); 4040 if (!file) 4041 return -EBADF; 4042 4043 if (!proc_ns_file(file)) { 4044 err = -EINVAL; 4045 goto out_fput; 4046 } 4047 4048 ns = get_proc_ns(file_inode(file)); 4049 if (ns->ops->type != CLONE_NEWUSER) { 4050 err = -EINVAL; 4051 goto out_fput; 4052 } 4053 4054 /* 4055 * The init_user_ns is used to indicate that a vfsmount is not idmapped. 4056 * This is simpler than just having to treat NULL as unmapped. Users 4057 * wanting to idmap a mount to init_user_ns can just use a namespace 4058 * with an identity mapping. 4059 */ 4060 mnt_userns = container_of(ns, struct user_namespace, ns); 4061 if (mnt_userns == &init_user_ns) { 4062 err = -EPERM; 4063 goto out_fput; 4064 } 4065 kattr->mnt_userns = get_user_ns(mnt_userns); 4066 4067 out_fput: 4068 fput(file); 4069 return err; 4070 } 4071 4072 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4073 struct mount_kattr *kattr, unsigned int flags) 4074 { 4075 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4076 4077 if (flags & AT_NO_AUTOMOUNT) 4078 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4079 if (flags & AT_SYMLINK_NOFOLLOW) 4080 lookup_flags &= ~LOOKUP_FOLLOW; 4081 if (flags & AT_EMPTY_PATH) 4082 lookup_flags |= LOOKUP_EMPTY; 4083 4084 *kattr = (struct mount_kattr) { 4085 .lookup_flags = lookup_flags, 4086 .recurse = !!(flags & AT_RECURSIVE), 4087 }; 4088 4089 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4090 return -EINVAL; 4091 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4092 return -EINVAL; 4093 kattr->propagation = attr->propagation; 4094 4095 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4096 return -EINVAL; 4097 4098 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4099 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4100 4101 /* 4102 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4103 * users wanting to transition to a different atime setting cannot 4104 * simply specify the atime setting in @attr_set, but must also 4105 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4106 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4107 * @attr_clr and that @attr_set can't have any atime bits set if 4108 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4109 */ 4110 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4111 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4112 return -EINVAL; 4113 4114 /* 4115 * Clear all previous time settings as they are mutually 4116 * exclusive. 4117 */ 4118 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4119 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4120 case MOUNT_ATTR_RELATIME: 4121 kattr->attr_set |= MNT_RELATIME; 4122 break; 4123 case MOUNT_ATTR_NOATIME: 4124 kattr->attr_set |= MNT_NOATIME; 4125 break; 4126 case MOUNT_ATTR_STRICTATIME: 4127 break; 4128 default: 4129 return -EINVAL; 4130 } 4131 } else { 4132 if (attr->attr_set & MOUNT_ATTR__ATIME) 4133 return -EINVAL; 4134 } 4135 4136 return build_mount_idmapped(attr, usize, kattr, flags); 4137 } 4138 4139 static void finish_mount_kattr(struct mount_kattr *kattr) 4140 { 4141 put_user_ns(kattr->mnt_userns); 4142 kattr->mnt_userns = NULL; 4143 } 4144 4145 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4146 unsigned int, flags, struct mount_attr __user *, uattr, 4147 size_t, usize) 4148 { 4149 int err; 4150 struct path target; 4151 struct mount_attr attr; 4152 struct mount_kattr kattr; 4153 4154 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4155 4156 if (flags & ~(AT_EMPTY_PATH | 4157 AT_RECURSIVE | 4158 AT_SYMLINK_NOFOLLOW | 4159 AT_NO_AUTOMOUNT)) 4160 return -EINVAL; 4161 4162 if (unlikely(usize > PAGE_SIZE)) 4163 return -E2BIG; 4164 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4165 return -EINVAL; 4166 4167 if (!may_mount()) 4168 return -EPERM; 4169 4170 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4171 if (err) 4172 return err; 4173 4174 /* Don't bother walking through the mounts if this is a nop. */ 4175 if (attr.attr_set == 0 && 4176 attr.attr_clr == 0 && 4177 attr.propagation == 0) 4178 return 0; 4179 4180 err = build_mount_kattr(&attr, usize, &kattr, flags); 4181 if (err) 4182 return err; 4183 4184 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4185 if (err) 4186 return err; 4187 4188 err = do_mount_setattr(&target, &kattr); 4189 finish_mount_kattr(&kattr); 4190 path_put(&target); 4191 return err; 4192 } 4193 4194 static void __init init_mount_tree(void) 4195 { 4196 struct vfsmount *mnt; 4197 struct mount *m; 4198 struct mnt_namespace *ns; 4199 struct path root; 4200 4201 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4202 if (IS_ERR(mnt)) 4203 panic("Can't create rootfs"); 4204 4205 ns = alloc_mnt_ns(&init_user_ns, false); 4206 if (IS_ERR(ns)) 4207 panic("Can't allocate initial namespace"); 4208 m = real_mount(mnt); 4209 m->mnt_ns = ns; 4210 ns->root = m; 4211 ns->mounts = 1; 4212 list_add(&m->mnt_list, &ns->list); 4213 init_task.nsproxy->mnt_ns = ns; 4214 get_mnt_ns(ns); 4215 4216 root.mnt = mnt; 4217 root.dentry = mnt->mnt_root; 4218 mnt->mnt_flags |= MNT_LOCKED; 4219 4220 set_fs_pwd(current->fs, &root); 4221 set_fs_root(current->fs, &root); 4222 } 4223 4224 void __init mnt_init(void) 4225 { 4226 int err; 4227 4228 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4229 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 4230 4231 mount_hashtable = alloc_large_system_hash("Mount-cache", 4232 sizeof(struct hlist_head), 4233 mhash_entries, 19, 4234 HASH_ZERO, 4235 &m_hash_shift, &m_hash_mask, 0, 0); 4236 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4237 sizeof(struct hlist_head), 4238 mphash_entries, 19, 4239 HASH_ZERO, 4240 &mp_hash_shift, &mp_hash_mask, 0, 0); 4241 4242 if (!mount_hashtable || !mountpoint_hashtable) 4243 panic("Failed to allocate mount hash table\n"); 4244 4245 kernfs_init(); 4246 4247 err = sysfs_init(); 4248 if (err) 4249 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4250 __func__, err); 4251 fs_kobj = kobject_create_and_add("fs", NULL); 4252 if (!fs_kobj) 4253 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4254 shmem_init(); 4255 init_rootfs(); 4256 init_mount_tree(); 4257 } 4258 4259 void put_mnt_ns(struct mnt_namespace *ns) 4260 { 4261 if (!refcount_dec_and_test(&ns->ns.count)) 4262 return; 4263 drop_collected_mounts(&ns->root->mnt); 4264 free_mnt_ns(ns); 4265 } 4266 4267 struct vfsmount *kern_mount(struct file_system_type *type) 4268 { 4269 struct vfsmount *mnt; 4270 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4271 if (!IS_ERR(mnt)) { 4272 /* 4273 * it is a longterm mount, don't release mnt until 4274 * we unmount before file sys is unregistered 4275 */ 4276 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4277 } 4278 return mnt; 4279 } 4280 EXPORT_SYMBOL_GPL(kern_mount); 4281 4282 void kern_unmount(struct vfsmount *mnt) 4283 { 4284 /* release long term mount so mount point can be released */ 4285 if (!IS_ERR_OR_NULL(mnt)) { 4286 real_mount(mnt)->mnt_ns = NULL; 4287 synchronize_rcu(); /* yecchhh... */ 4288 mntput(mnt); 4289 } 4290 } 4291 EXPORT_SYMBOL(kern_unmount); 4292 4293 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4294 { 4295 unsigned int i; 4296 4297 for (i = 0; i < num; i++) 4298 if (mnt[i]) 4299 real_mount(mnt[i])->mnt_ns = NULL; 4300 synchronize_rcu_expedited(); 4301 for (i = 0; i < num; i++) 4302 mntput(mnt[i]); 4303 } 4304 EXPORT_SYMBOL(kern_unmount_array); 4305 4306 bool our_mnt(struct vfsmount *mnt) 4307 { 4308 return check_mnt(real_mount(mnt)); 4309 } 4310 4311 bool current_chrooted(void) 4312 { 4313 /* Does the current process have a non-standard root */ 4314 struct path ns_root; 4315 struct path fs_root; 4316 bool chrooted; 4317 4318 /* Find the namespace root */ 4319 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4320 ns_root.dentry = ns_root.mnt->mnt_root; 4321 path_get(&ns_root); 4322 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4323 ; 4324 4325 get_fs_root(current->fs, &fs_root); 4326 4327 chrooted = !path_equal(&fs_root, &ns_root); 4328 4329 path_put(&fs_root); 4330 path_put(&ns_root); 4331 4332 return chrooted; 4333 } 4334 4335 static bool mnt_already_visible(struct mnt_namespace *ns, 4336 const struct super_block *sb, 4337 int *new_mnt_flags) 4338 { 4339 int new_flags = *new_mnt_flags; 4340 struct mount *mnt; 4341 bool visible = false; 4342 4343 down_read(&namespace_sem); 4344 lock_ns_list(ns); 4345 list_for_each_entry(mnt, &ns->list, mnt_list) { 4346 struct mount *child; 4347 int mnt_flags; 4348 4349 if (mnt_is_cursor(mnt)) 4350 continue; 4351 4352 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4353 continue; 4354 4355 /* This mount is not fully visible if it's root directory 4356 * is not the root directory of the filesystem. 4357 */ 4358 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4359 continue; 4360 4361 /* A local view of the mount flags */ 4362 mnt_flags = mnt->mnt.mnt_flags; 4363 4364 /* Don't miss readonly hidden in the superblock flags */ 4365 if (sb_rdonly(mnt->mnt.mnt_sb)) 4366 mnt_flags |= MNT_LOCK_READONLY; 4367 4368 /* Verify the mount flags are equal to or more permissive 4369 * than the proposed new mount. 4370 */ 4371 if ((mnt_flags & MNT_LOCK_READONLY) && 4372 !(new_flags & MNT_READONLY)) 4373 continue; 4374 if ((mnt_flags & MNT_LOCK_ATIME) && 4375 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4376 continue; 4377 4378 /* This mount is not fully visible if there are any 4379 * locked child mounts that cover anything except for 4380 * empty directories. 4381 */ 4382 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4383 struct inode *inode = child->mnt_mountpoint->d_inode; 4384 /* Only worry about locked mounts */ 4385 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4386 continue; 4387 /* Is the directory permanetly empty? */ 4388 if (!is_empty_dir_inode(inode)) 4389 goto next; 4390 } 4391 /* Preserve the locked attributes */ 4392 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4393 MNT_LOCK_ATIME); 4394 visible = true; 4395 goto found; 4396 next: ; 4397 } 4398 found: 4399 unlock_ns_list(ns); 4400 up_read(&namespace_sem); 4401 return visible; 4402 } 4403 4404 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4405 { 4406 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4407 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4408 unsigned long s_iflags; 4409 4410 if (ns->user_ns == &init_user_ns) 4411 return false; 4412 4413 /* Can this filesystem be too revealing? */ 4414 s_iflags = sb->s_iflags; 4415 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4416 return false; 4417 4418 if ((s_iflags & required_iflags) != required_iflags) { 4419 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4420 required_iflags); 4421 return true; 4422 } 4423 4424 return !mnt_already_visible(ns, sb, new_mnt_flags); 4425 } 4426 4427 bool mnt_may_suid(struct vfsmount *mnt) 4428 { 4429 /* 4430 * Foreign mounts (accessed via fchdir or through /proc 4431 * symlinks) are always treated as if they are nosuid. This 4432 * prevents namespaces from trusting potentially unsafe 4433 * suid/sgid bits, file caps, or security labels that originate 4434 * in other namespaces. 4435 */ 4436 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4437 current_in_userns(mnt->mnt_sb->s_user_ns); 4438 } 4439 4440 static struct ns_common *mntns_get(struct task_struct *task) 4441 { 4442 struct ns_common *ns = NULL; 4443 struct nsproxy *nsproxy; 4444 4445 task_lock(task); 4446 nsproxy = task->nsproxy; 4447 if (nsproxy) { 4448 ns = &nsproxy->mnt_ns->ns; 4449 get_mnt_ns(to_mnt_ns(ns)); 4450 } 4451 task_unlock(task); 4452 4453 return ns; 4454 } 4455 4456 static void mntns_put(struct ns_common *ns) 4457 { 4458 put_mnt_ns(to_mnt_ns(ns)); 4459 } 4460 4461 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4462 { 4463 struct nsproxy *nsproxy = nsset->nsproxy; 4464 struct fs_struct *fs = nsset->fs; 4465 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4466 struct user_namespace *user_ns = nsset->cred->user_ns; 4467 struct path root; 4468 int err; 4469 4470 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4471 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4472 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4473 return -EPERM; 4474 4475 if (is_anon_ns(mnt_ns)) 4476 return -EINVAL; 4477 4478 if (fs->users != 1) 4479 return -EINVAL; 4480 4481 get_mnt_ns(mnt_ns); 4482 old_mnt_ns = nsproxy->mnt_ns; 4483 nsproxy->mnt_ns = mnt_ns; 4484 4485 /* Find the root */ 4486 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4487 "/", LOOKUP_DOWN, &root); 4488 if (err) { 4489 /* revert to old namespace */ 4490 nsproxy->mnt_ns = old_mnt_ns; 4491 put_mnt_ns(mnt_ns); 4492 return err; 4493 } 4494 4495 put_mnt_ns(old_mnt_ns); 4496 4497 /* Update the pwd and root */ 4498 set_fs_pwd(fs, &root); 4499 set_fs_root(fs, &root); 4500 4501 path_put(&root); 4502 return 0; 4503 } 4504 4505 static struct user_namespace *mntns_owner(struct ns_common *ns) 4506 { 4507 return to_mnt_ns(ns)->user_ns; 4508 } 4509 4510 const struct proc_ns_operations mntns_operations = { 4511 .name = "mnt", 4512 .type = CLONE_NEWNS, 4513 .get = mntns_get, 4514 .put = mntns_put, 4515 .install = mntns_install, 4516 .owner = mntns_owner, 4517 }; 4518