xref: /linux/fs/namespace.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 
35 #include "pnode.h"
36 #include "internal.h"
37 
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40 
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45 
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 	if (!str)
50 		return 0;
51 	mhash_entries = simple_strtoul(str, &str, 0);
52 	return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	if (!str)
60 		return 0;
61 	mphash_entries = simple_strtoul(str, &str, 0);
62 	return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65 
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69 
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76 
77 struct mount_kattr {
78 	unsigned int attr_set;
79 	unsigned int attr_clr;
80 	unsigned int propagation;
81 	unsigned int lookup_flags;
82 	bool recurse;
83 	struct user_namespace *mnt_userns;
84 };
85 
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89 
90 /*
91  * vfsmount lock may be taken for read to prevent changes to the
92  * vfsmount hash, ie. during mountpoint lookups or walking back
93  * up the tree.
94  *
95  * It should be taken for write in all cases where the vfsmount
96  * tree or hash is modified or when a vfsmount structure is modified.
97  */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99 
100 static inline void lock_mount_hash(void)
101 {
102 	write_seqlock(&mount_lock);
103 }
104 
105 static inline void unlock_mount_hash(void)
106 {
107 	write_sequnlock(&mount_lock);
108 }
109 
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 	tmp = tmp + (tmp >> m_hash_shift);
115 	return &mount_hashtable[tmp & m_hash_mask];
116 }
117 
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 	tmp = tmp + (tmp >> mp_hash_shift);
122 	return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124 
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128 
129 	if (res < 0)
130 		return res;
131 	mnt->mnt_id = res;
132 	return 0;
133 }
134 
135 static void mnt_free_id(struct mount *mnt)
136 {
137 	ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139 
140 /*
141  * Allocate a new peer group ID
142  */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_group_id = res;
150 	return 0;
151 }
152 
153 /*
154  * Release a peer group ID
155  */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 	if (mnt) {
199 		int err;
200 
201 		err = mnt_alloc_id(mnt);
202 		if (err)
203 			goto out_free_cache;
204 
205 		if (name) {
206 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
207 			if (!mnt->mnt_devname)
208 				goto out_free_id;
209 		}
210 
211 #ifdef CONFIG_SMP
212 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
213 		if (!mnt->mnt_pcp)
214 			goto out_free_devname;
215 
216 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
217 #else
218 		mnt->mnt_count = 1;
219 		mnt->mnt_writers = 0;
220 #endif
221 
222 		INIT_HLIST_NODE(&mnt->mnt_hash);
223 		INIT_LIST_HEAD(&mnt->mnt_child);
224 		INIT_LIST_HEAD(&mnt->mnt_mounts);
225 		INIT_LIST_HEAD(&mnt->mnt_list);
226 		INIT_LIST_HEAD(&mnt->mnt_expire);
227 		INIT_LIST_HEAD(&mnt->mnt_share);
228 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
229 		INIT_LIST_HEAD(&mnt->mnt_slave);
230 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
231 		INIT_LIST_HEAD(&mnt->mnt_umounting);
232 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
233 		mnt->mnt.mnt_userns = &init_user_ns;
234 	}
235 	return mnt;
236 
237 #ifdef CONFIG_SMP
238 out_free_devname:
239 	kfree_const(mnt->mnt_devname);
240 #endif
241 out_free_id:
242 	mnt_free_id(mnt);
243 out_free_cache:
244 	kmem_cache_free(mnt_cache, mnt);
245 	return NULL;
246 }
247 
248 /*
249  * Most r/o checks on a fs are for operations that take
250  * discrete amounts of time, like a write() or unlink().
251  * We must keep track of when those operations start
252  * (for permission checks) and when they end, so that
253  * we can determine when writes are able to occur to
254  * a filesystem.
255  */
256 /*
257  * __mnt_is_readonly: check whether a mount is read-only
258  * @mnt: the mount to check for its write status
259  *
260  * This shouldn't be used directly ouside of the VFS.
261  * It does not guarantee that the filesystem will stay
262  * r/w, just that it is right *now*.  This can not and
263  * should not be used in place of IS_RDONLY(inode).
264  * mnt_want/drop_write() will _keep_ the filesystem
265  * r/w.
266  */
267 bool __mnt_is_readonly(struct vfsmount *mnt)
268 {
269 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272 
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 	mnt->mnt_writers++;
279 #endif
280 }
281 
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 	mnt->mnt_writers--;
288 #endif
289 }
290 
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 	unsigned int count = 0;
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 	}
300 
301 	return count;
302 #else
303 	return mnt->mnt_writers;
304 #endif
305 }
306 
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 	if (mnt->mnt_sb->s_readonly_remount)
310 		return 1;
311 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 	smp_rmb();
313 	return __mnt_is_readonly(mnt);
314 }
315 
316 /*
317  * Most r/o & frozen checks on a fs are for operations that take discrete
318  * amounts of time, like a write() or unlink().  We must keep track of when
319  * those operations start (for permission checks) and when they end, so that we
320  * can determine when writes are able to occur to a filesystem.
321  */
322 /**
323  * __mnt_want_write - get write access to a mount without freeze protection
324  * @m: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is about to be performed to
327  * it, and makes sure that writes are allowed (mnt it read-write) before
328  * returning success. This operation does not protect against filesystem being
329  * frozen. When the write operation is finished, __mnt_drop_write() must be
330  * called. This is effectively a refcount.
331  */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 	struct mount *mnt = real_mount(m);
335 	int ret = 0;
336 
337 	preempt_disable();
338 	mnt_inc_writers(mnt);
339 	/*
340 	 * The store to mnt_inc_writers must be visible before we pass
341 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 	 * incremented count after it has set MNT_WRITE_HOLD.
343 	 */
344 	smp_mb();
345 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 		cpu_relax();
347 	/*
348 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 	 * be set to match its requirements. So we must not load that until
350 	 * MNT_WRITE_HOLD is cleared.
351 	 */
352 	smp_rmb();
353 	if (mnt_is_readonly(m)) {
354 		mnt_dec_writers(mnt);
355 		ret = -EROFS;
356 	}
357 	preempt_enable();
358 
359 	return ret;
360 }
361 
362 /**
363  * mnt_want_write - get write access to a mount
364  * @m: the mount on which to take a write
365  *
366  * This tells the low-level filesystem that a write is about to be performed to
367  * it, and makes sure that writes are allowed (mount is read-write, filesystem
368  * is not frozen) before returning success.  When the write operation is
369  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
370  */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 	int ret;
374 
375 	sb_start_write(m->mnt_sb);
376 	ret = __mnt_want_write(m);
377 	if (ret)
378 		sb_end_write(m->mnt_sb);
379 	return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382 
383 /**
384  * mnt_clone_write - get write access to a mount
385  * @mnt: the mount on which to take a write
386  *
387  * This is effectively like mnt_want_write, except
388  * it must only be used to take an extra write reference
389  * on a mountpoint that we already know has a write reference
390  * on it. This allows some optimisation.
391  *
392  * After finished, mnt_drop_write must be called as usual to
393  * drop the reference.
394  */
395 int mnt_clone_write(struct vfsmount *mnt)
396 {
397 	/* superblock may be r/o */
398 	if (__mnt_is_readonly(mnt))
399 		return -EROFS;
400 	preempt_disable();
401 	mnt_inc_writers(real_mount(mnt));
402 	preempt_enable();
403 	return 0;
404 }
405 EXPORT_SYMBOL_GPL(mnt_clone_write);
406 
407 /**
408  * __mnt_want_write_file - get write access to a file's mount
409  * @file: the file who's mount on which to take a write
410  *
411  * This is like __mnt_want_write, but it takes a file and can
412  * do some optimisations if the file is open for write already
413  */
414 int __mnt_want_write_file(struct file *file)
415 {
416 	if (!(file->f_mode & FMODE_WRITER))
417 		return __mnt_want_write(file->f_path.mnt);
418 	else
419 		return mnt_clone_write(file->f_path.mnt);
420 }
421 
422 /**
423  * mnt_want_write_file - get write access to a file's mount
424  * @file: the file who's mount on which to take a write
425  *
426  * This is like mnt_want_write, but it takes a file and can
427  * do some optimisations if the file is open for write already
428  */
429 int mnt_want_write_file(struct file *file)
430 {
431 	int ret;
432 
433 	sb_start_write(file_inode(file)->i_sb);
434 	ret = __mnt_want_write_file(file);
435 	if (ret)
436 		sb_end_write(file_inode(file)->i_sb);
437 	return ret;
438 }
439 EXPORT_SYMBOL_GPL(mnt_want_write_file);
440 
441 /**
442  * __mnt_drop_write - give up write access to a mount
443  * @mnt: the mount on which to give up write access
444  *
445  * Tells the low-level filesystem that we are done
446  * performing writes to it.  Must be matched with
447  * __mnt_want_write() call above.
448  */
449 void __mnt_drop_write(struct vfsmount *mnt)
450 {
451 	preempt_disable();
452 	mnt_dec_writers(real_mount(mnt));
453 	preempt_enable();
454 }
455 
456 /**
457  * mnt_drop_write - give up write access to a mount
458  * @mnt: the mount on which to give up write access
459  *
460  * Tells the low-level filesystem that we are done performing writes to it and
461  * also allows filesystem to be frozen again.  Must be matched with
462  * mnt_want_write() call above.
463  */
464 void mnt_drop_write(struct vfsmount *mnt)
465 {
466 	__mnt_drop_write(mnt);
467 	sb_end_write(mnt->mnt_sb);
468 }
469 EXPORT_SYMBOL_GPL(mnt_drop_write);
470 
471 void __mnt_drop_write_file(struct file *file)
472 {
473 	__mnt_drop_write(file->f_path.mnt);
474 }
475 
476 void mnt_drop_write_file(struct file *file)
477 {
478 	__mnt_drop_write_file(file);
479 	sb_end_write(file_inode(file)->i_sb);
480 }
481 EXPORT_SYMBOL(mnt_drop_write_file);
482 
483 static inline int mnt_hold_writers(struct mount *mnt)
484 {
485 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
486 	/*
487 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
488 	 * should be visible before we do.
489 	 */
490 	smp_mb();
491 
492 	/*
493 	 * With writers on hold, if this value is zero, then there are
494 	 * definitely no active writers (although held writers may subsequently
495 	 * increment the count, they'll have to wait, and decrement it after
496 	 * seeing MNT_READONLY).
497 	 *
498 	 * It is OK to have counter incremented on one CPU and decremented on
499 	 * another: the sum will add up correctly. The danger would be when we
500 	 * sum up each counter, if we read a counter before it is incremented,
501 	 * but then read another CPU's count which it has been subsequently
502 	 * decremented from -- we would see more decrements than we should.
503 	 * MNT_WRITE_HOLD protects against this scenario, because
504 	 * mnt_want_write first increments count, then smp_mb, then spins on
505 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
506 	 * we're counting up here.
507 	 */
508 	if (mnt_get_writers(mnt) > 0)
509 		return -EBUSY;
510 
511 	return 0;
512 }
513 
514 static inline void mnt_unhold_writers(struct mount *mnt)
515 {
516 	/*
517 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 	 * that become unheld will see MNT_READONLY.
519 	 */
520 	smp_wmb();
521 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 }
523 
524 static int mnt_make_readonly(struct mount *mnt)
525 {
526 	int ret;
527 
528 	ret = mnt_hold_writers(mnt);
529 	if (!ret)
530 		mnt->mnt.mnt_flags |= MNT_READONLY;
531 	mnt_unhold_writers(mnt);
532 	return ret;
533 }
534 
535 int sb_prepare_remount_readonly(struct super_block *sb)
536 {
537 	struct mount *mnt;
538 	int err = 0;
539 
540 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
541 	if (atomic_long_read(&sb->s_remove_count))
542 		return -EBUSY;
543 
544 	lock_mount_hash();
545 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
546 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
547 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
548 			smp_mb();
549 			if (mnt_get_writers(mnt) > 0) {
550 				err = -EBUSY;
551 				break;
552 			}
553 		}
554 	}
555 	if (!err && atomic_long_read(&sb->s_remove_count))
556 		err = -EBUSY;
557 
558 	if (!err) {
559 		sb->s_readonly_remount = 1;
560 		smp_wmb();
561 	}
562 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
563 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
564 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
565 	}
566 	unlock_mount_hash();
567 
568 	return err;
569 }
570 
571 static void free_vfsmnt(struct mount *mnt)
572 {
573 	struct user_namespace *mnt_userns;
574 
575 	mnt_userns = mnt_user_ns(&mnt->mnt);
576 	if (mnt_userns != &init_user_ns)
577 		put_user_ns(mnt_userns);
578 	kfree_const(mnt->mnt_devname);
579 #ifdef CONFIG_SMP
580 	free_percpu(mnt->mnt_pcp);
581 #endif
582 	kmem_cache_free(mnt_cache, mnt);
583 }
584 
585 static void delayed_free_vfsmnt(struct rcu_head *head)
586 {
587 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
588 }
589 
590 /* call under rcu_read_lock */
591 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 	struct mount *mnt;
594 	if (read_seqretry(&mount_lock, seq))
595 		return 1;
596 	if (bastard == NULL)
597 		return 0;
598 	mnt = real_mount(bastard);
599 	mnt_add_count(mnt, 1);
600 	smp_mb();			// see mntput_no_expire()
601 	if (likely(!read_seqretry(&mount_lock, seq)))
602 		return 0;
603 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 		mnt_add_count(mnt, -1);
605 		return 1;
606 	}
607 	lock_mount_hash();
608 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
609 		mnt_add_count(mnt, -1);
610 		unlock_mount_hash();
611 		return 1;
612 	}
613 	unlock_mount_hash();
614 	/* caller will mntput() */
615 	return -1;
616 }
617 
618 /* call under rcu_read_lock */
619 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
620 {
621 	int res = __legitimize_mnt(bastard, seq);
622 	if (likely(!res))
623 		return true;
624 	if (unlikely(res < 0)) {
625 		rcu_read_unlock();
626 		mntput(bastard);
627 		rcu_read_lock();
628 	}
629 	return false;
630 }
631 
632 /*
633  * find the first mount at @dentry on vfsmount @mnt.
634  * call under rcu_read_lock()
635  */
636 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
637 {
638 	struct hlist_head *head = m_hash(mnt, dentry);
639 	struct mount *p;
640 
641 	hlist_for_each_entry_rcu(p, head, mnt_hash)
642 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
643 			return p;
644 	return NULL;
645 }
646 
647 /*
648  * lookup_mnt - Return the first child mount mounted at path
649  *
650  * "First" means first mounted chronologically.  If you create the
651  * following mounts:
652  *
653  * mount /dev/sda1 /mnt
654  * mount /dev/sda2 /mnt
655  * mount /dev/sda3 /mnt
656  *
657  * Then lookup_mnt() on the base /mnt dentry in the root mount will
658  * return successively the root dentry and vfsmount of /dev/sda1, then
659  * /dev/sda2, then /dev/sda3, then NULL.
660  *
661  * lookup_mnt takes a reference to the found vfsmount.
662  */
663 struct vfsmount *lookup_mnt(const struct path *path)
664 {
665 	struct mount *child_mnt;
666 	struct vfsmount *m;
667 	unsigned seq;
668 
669 	rcu_read_lock();
670 	do {
671 		seq = read_seqbegin(&mount_lock);
672 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
673 		m = child_mnt ? &child_mnt->mnt : NULL;
674 	} while (!legitimize_mnt(m, seq));
675 	rcu_read_unlock();
676 	return m;
677 }
678 
679 static inline void lock_ns_list(struct mnt_namespace *ns)
680 {
681 	spin_lock(&ns->ns_lock);
682 }
683 
684 static inline void unlock_ns_list(struct mnt_namespace *ns)
685 {
686 	spin_unlock(&ns->ns_lock);
687 }
688 
689 static inline bool mnt_is_cursor(struct mount *mnt)
690 {
691 	return mnt->mnt.mnt_flags & MNT_CURSOR;
692 }
693 
694 /*
695  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696  *                         current mount namespace.
697  *
698  * The common case is dentries are not mountpoints at all and that
699  * test is handled inline.  For the slow case when we are actually
700  * dealing with a mountpoint of some kind, walk through all of the
701  * mounts in the current mount namespace and test to see if the dentry
702  * is a mountpoint.
703  *
704  * The mount_hashtable is not usable in the context because we
705  * need to identify all mounts that may be in the current mount
706  * namespace not just a mount that happens to have some specified
707  * parent mount.
708  */
709 bool __is_local_mountpoint(struct dentry *dentry)
710 {
711 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 	struct mount *mnt;
713 	bool is_covered = false;
714 
715 	down_read(&namespace_sem);
716 	lock_ns_list(ns);
717 	list_for_each_entry(mnt, &ns->list, mnt_list) {
718 		if (mnt_is_cursor(mnt))
719 			continue;
720 		is_covered = (mnt->mnt_mountpoint == dentry);
721 		if (is_covered)
722 			break;
723 	}
724 	unlock_ns_list(ns);
725 	up_read(&namespace_sem);
726 
727 	return is_covered;
728 }
729 
730 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
731 {
732 	struct hlist_head *chain = mp_hash(dentry);
733 	struct mountpoint *mp;
734 
735 	hlist_for_each_entry(mp, chain, m_hash) {
736 		if (mp->m_dentry == dentry) {
737 			mp->m_count++;
738 			return mp;
739 		}
740 	}
741 	return NULL;
742 }
743 
744 static struct mountpoint *get_mountpoint(struct dentry *dentry)
745 {
746 	struct mountpoint *mp, *new = NULL;
747 	int ret;
748 
749 	if (d_mountpoint(dentry)) {
750 		/* might be worth a WARN_ON() */
751 		if (d_unlinked(dentry))
752 			return ERR_PTR(-ENOENT);
753 mountpoint:
754 		read_seqlock_excl(&mount_lock);
755 		mp = lookup_mountpoint(dentry);
756 		read_sequnlock_excl(&mount_lock);
757 		if (mp)
758 			goto done;
759 	}
760 
761 	if (!new)
762 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
763 	if (!new)
764 		return ERR_PTR(-ENOMEM);
765 
766 
767 	/* Exactly one processes may set d_mounted */
768 	ret = d_set_mounted(dentry);
769 
770 	/* Someone else set d_mounted? */
771 	if (ret == -EBUSY)
772 		goto mountpoint;
773 
774 	/* The dentry is not available as a mountpoint? */
775 	mp = ERR_PTR(ret);
776 	if (ret)
777 		goto done;
778 
779 	/* Add the new mountpoint to the hash table */
780 	read_seqlock_excl(&mount_lock);
781 	new->m_dentry = dget(dentry);
782 	new->m_count = 1;
783 	hlist_add_head(&new->m_hash, mp_hash(dentry));
784 	INIT_HLIST_HEAD(&new->m_list);
785 	read_sequnlock_excl(&mount_lock);
786 
787 	mp = new;
788 	new = NULL;
789 done:
790 	kfree(new);
791 	return mp;
792 }
793 
794 /*
795  * vfsmount lock must be held.  Additionally, the caller is responsible
796  * for serializing calls for given disposal list.
797  */
798 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
799 {
800 	if (!--mp->m_count) {
801 		struct dentry *dentry = mp->m_dentry;
802 		BUG_ON(!hlist_empty(&mp->m_list));
803 		spin_lock(&dentry->d_lock);
804 		dentry->d_flags &= ~DCACHE_MOUNTED;
805 		spin_unlock(&dentry->d_lock);
806 		dput_to_list(dentry, list);
807 		hlist_del(&mp->m_hash);
808 		kfree(mp);
809 	}
810 }
811 
812 /* called with namespace_lock and vfsmount lock */
813 static void put_mountpoint(struct mountpoint *mp)
814 {
815 	__put_mountpoint(mp, &ex_mountpoints);
816 }
817 
818 static inline int check_mnt(struct mount *mnt)
819 {
820 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
821 }
822 
823 /*
824  * vfsmount lock must be held for write
825  */
826 static void touch_mnt_namespace(struct mnt_namespace *ns)
827 {
828 	if (ns) {
829 		ns->event = ++event;
830 		wake_up_interruptible(&ns->poll);
831 	}
832 }
833 
834 /*
835  * vfsmount lock must be held for write
836  */
837 static void __touch_mnt_namespace(struct mnt_namespace *ns)
838 {
839 	if (ns && ns->event != event) {
840 		ns->event = event;
841 		wake_up_interruptible(&ns->poll);
842 	}
843 }
844 
845 /*
846  * vfsmount lock must be held for write
847  */
848 static struct mountpoint *unhash_mnt(struct mount *mnt)
849 {
850 	struct mountpoint *mp;
851 	mnt->mnt_parent = mnt;
852 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
853 	list_del_init(&mnt->mnt_child);
854 	hlist_del_init_rcu(&mnt->mnt_hash);
855 	hlist_del_init(&mnt->mnt_mp_list);
856 	mp = mnt->mnt_mp;
857 	mnt->mnt_mp = NULL;
858 	return mp;
859 }
860 
861 /*
862  * vfsmount lock must be held for write
863  */
864 static void umount_mnt(struct mount *mnt)
865 {
866 	put_mountpoint(unhash_mnt(mnt));
867 }
868 
869 /*
870  * vfsmount lock must be held for write
871  */
872 void mnt_set_mountpoint(struct mount *mnt,
873 			struct mountpoint *mp,
874 			struct mount *child_mnt)
875 {
876 	mp->m_count++;
877 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
878 	child_mnt->mnt_mountpoint = mp->m_dentry;
879 	child_mnt->mnt_parent = mnt;
880 	child_mnt->mnt_mp = mp;
881 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
882 }
883 
884 static void __attach_mnt(struct mount *mnt, struct mount *parent)
885 {
886 	hlist_add_head_rcu(&mnt->mnt_hash,
887 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
888 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
889 }
890 
891 /*
892  * vfsmount lock must be held for write
893  */
894 static void attach_mnt(struct mount *mnt,
895 			struct mount *parent,
896 			struct mountpoint *mp)
897 {
898 	mnt_set_mountpoint(parent, mp, mnt);
899 	__attach_mnt(mnt, parent);
900 }
901 
902 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
903 {
904 	struct mountpoint *old_mp = mnt->mnt_mp;
905 	struct mount *old_parent = mnt->mnt_parent;
906 
907 	list_del_init(&mnt->mnt_child);
908 	hlist_del_init(&mnt->mnt_mp_list);
909 	hlist_del_init_rcu(&mnt->mnt_hash);
910 
911 	attach_mnt(mnt, parent, mp);
912 
913 	put_mountpoint(old_mp);
914 	mnt_add_count(old_parent, -1);
915 }
916 
917 /*
918  * vfsmount lock must be held for write
919  */
920 static void commit_tree(struct mount *mnt)
921 {
922 	struct mount *parent = mnt->mnt_parent;
923 	struct mount *m;
924 	LIST_HEAD(head);
925 	struct mnt_namespace *n = parent->mnt_ns;
926 
927 	BUG_ON(parent == mnt);
928 
929 	list_add_tail(&head, &mnt->mnt_list);
930 	list_for_each_entry(m, &head, mnt_list)
931 		m->mnt_ns = n;
932 
933 	list_splice(&head, n->list.prev);
934 
935 	n->mounts += n->pending_mounts;
936 	n->pending_mounts = 0;
937 
938 	__attach_mnt(mnt, parent);
939 	touch_mnt_namespace(n);
940 }
941 
942 static struct mount *next_mnt(struct mount *p, struct mount *root)
943 {
944 	struct list_head *next = p->mnt_mounts.next;
945 	if (next == &p->mnt_mounts) {
946 		while (1) {
947 			if (p == root)
948 				return NULL;
949 			next = p->mnt_child.next;
950 			if (next != &p->mnt_parent->mnt_mounts)
951 				break;
952 			p = p->mnt_parent;
953 		}
954 	}
955 	return list_entry(next, struct mount, mnt_child);
956 }
957 
958 static struct mount *skip_mnt_tree(struct mount *p)
959 {
960 	struct list_head *prev = p->mnt_mounts.prev;
961 	while (prev != &p->mnt_mounts) {
962 		p = list_entry(prev, struct mount, mnt_child);
963 		prev = p->mnt_mounts.prev;
964 	}
965 	return p;
966 }
967 
968 /**
969  * vfs_create_mount - Create a mount for a configured superblock
970  * @fc: The configuration context with the superblock attached
971  *
972  * Create a mount to an already configured superblock.  If necessary, the
973  * caller should invoke vfs_get_tree() before calling this.
974  *
975  * Note that this does not attach the mount to anything.
976  */
977 struct vfsmount *vfs_create_mount(struct fs_context *fc)
978 {
979 	struct mount *mnt;
980 
981 	if (!fc->root)
982 		return ERR_PTR(-EINVAL);
983 
984 	mnt = alloc_vfsmnt(fc->source ?: "none");
985 	if (!mnt)
986 		return ERR_PTR(-ENOMEM);
987 
988 	if (fc->sb_flags & SB_KERNMOUNT)
989 		mnt->mnt.mnt_flags = MNT_INTERNAL;
990 
991 	atomic_inc(&fc->root->d_sb->s_active);
992 	mnt->mnt.mnt_sb		= fc->root->d_sb;
993 	mnt->mnt.mnt_root	= dget(fc->root);
994 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
995 	mnt->mnt_parent		= mnt;
996 
997 	lock_mount_hash();
998 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
999 	unlock_mount_hash();
1000 	return &mnt->mnt;
1001 }
1002 EXPORT_SYMBOL(vfs_create_mount);
1003 
1004 struct vfsmount *fc_mount(struct fs_context *fc)
1005 {
1006 	int err = vfs_get_tree(fc);
1007 	if (!err) {
1008 		up_write(&fc->root->d_sb->s_umount);
1009 		return vfs_create_mount(fc);
1010 	}
1011 	return ERR_PTR(err);
1012 }
1013 EXPORT_SYMBOL(fc_mount);
1014 
1015 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1016 				int flags, const char *name,
1017 				void *data)
1018 {
1019 	struct fs_context *fc;
1020 	struct vfsmount *mnt;
1021 	int ret = 0;
1022 
1023 	if (!type)
1024 		return ERR_PTR(-EINVAL);
1025 
1026 	fc = fs_context_for_mount(type, flags);
1027 	if (IS_ERR(fc))
1028 		return ERR_CAST(fc);
1029 
1030 	if (name)
1031 		ret = vfs_parse_fs_string(fc, "source",
1032 					  name, strlen(name));
1033 	if (!ret)
1034 		ret = parse_monolithic_mount_data(fc, data);
1035 	if (!ret)
1036 		mnt = fc_mount(fc);
1037 	else
1038 		mnt = ERR_PTR(ret);
1039 
1040 	put_fs_context(fc);
1041 	return mnt;
1042 }
1043 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1044 
1045 struct vfsmount *
1046 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1047 	     const char *name, void *data)
1048 {
1049 	/* Until it is worked out how to pass the user namespace
1050 	 * through from the parent mount to the submount don't support
1051 	 * unprivileged mounts with submounts.
1052 	 */
1053 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1054 		return ERR_PTR(-EPERM);
1055 
1056 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1057 }
1058 EXPORT_SYMBOL_GPL(vfs_submount);
1059 
1060 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1061 					int flag)
1062 {
1063 	struct super_block *sb = old->mnt.mnt_sb;
1064 	struct mount *mnt;
1065 	int err;
1066 
1067 	mnt = alloc_vfsmnt(old->mnt_devname);
1068 	if (!mnt)
1069 		return ERR_PTR(-ENOMEM);
1070 
1071 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1072 		mnt->mnt_group_id = 0; /* not a peer of original */
1073 	else
1074 		mnt->mnt_group_id = old->mnt_group_id;
1075 
1076 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1077 		err = mnt_alloc_group_id(mnt);
1078 		if (err)
1079 			goto out_free;
1080 	}
1081 
1082 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1083 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1084 
1085 	atomic_inc(&sb->s_active);
1086 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1087 	if (mnt->mnt.mnt_userns != &init_user_ns)
1088 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1089 	mnt->mnt.mnt_sb = sb;
1090 	mnt->mnt.mnt_root = dget(root);
1091 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1092 	mnt->mnt_parent = mnt;
1093 	lock_mount_hash();
1094 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1095 	unlock_mount_hash();
1096 
1097 	if ((flag & CL_SLAVE) ||
1098 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1099 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1100 		mnt->mnt_master = old;
1101 		CLEAR_MNT_SHARED(mnt);
1102 	} else if (!(flag & CL_PRIVATE)) {
1103 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1104 			list_add(&mnt->mnt_share, &old->mnt_share);
1105 		if (IS_MNT_SLAVE(old))
1106 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1107 		mnt->mnt_master = old->mnt_master;
1108 	} else {
1109 		CLEAR_MNT_SHARED(mnt);
1110 	}
1111 	if (flag & CL_MAKE_SHARED)
1112 		set_mnt_shared(mnt);
1113 
1114 	/* stick the duplicate mount on the same expiry list
1115 	 * as the original if that was on one */
1116 	if (flag & CL_EXPIRE) {
1117 		if (!list_empty(&old->mnt_expire))
1118 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1119 	}
1120 
1121 	return mnt;
1122 
1123  out_free:
1124 	mnt_free_id(mnt);
1125 	free_vfsmnt(mnt);
1126 	return ERR_PTR(err);
1127 }
1128 
1129 static void cleanup_mnt(struct mount *mnt)
1130 {
1131 	struct hlist_node *p;
1132 	struct mount *m;
1133 	/*
1134 	 * The warning here probably indicates that somebody messed
1135 	 * up a mnt_want/drop_write() pair.  If this happens, the
1136 	 * filesystem was probably unable to make r/w->r/o transitions.
1137 	 * The locking used to deal with mnt_count decrement provides barriers,
1138 	 * so mnt_get_writers() below is safe.
1139 	 */
1140 	WARN_ON(mnt_get_writers(mnt));
1141 	if (unlikely(mnt->mnt_pins.first))
1142 		mnt_pin_kill(mnt);
1143 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1144 		hlist_del(&m->mnt_umount);
1145 		mntput(&m->mnt);
1146 	}
1147 	fsnotify_vfsmount_delete(&mnt->mnt);
1148 	dput(mnt->mnt.mnt_root);
1149 	deactivate_super(mnt->mnt.mnt_sb);
1150 	mnt_free_id(mnt);
1151 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1152 }
1153 
1154 static void __cleanup_mnt(struct rcu_head *head)
1155 {
1156 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1157 }
1158 
1159 static LLIST_HEAD(delayed_mntput_list);
1160 static void delayed_mntput(struct work_struct *unused)
1161 {
1162 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1163 	struct mount *m, *t;
1164 
1165 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1166 		cleanup_mnt(m);
1167 }
1168 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1169 
1170 static void mntput_no_expire(struct mount *mnt)
1171 {
1172 	LIST_HEAD(list);
1173 	int count;
1174 
1175 	rcu_read_lock();
1176 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1177 		/*
1178 		 * Since we don't do lock_mount_hash() here,
1179 		 * ->mnt_ns can change under us.  However, if it's
1180 		 * non-NULL, then there's a reference that won't
1181 		 * be dropped until after an RCU delay done after
1182 		 * turning ->mnt_ns NULL.  So if we observe it
1183 		 * non-NULL under rcu_read_lock(), the reference
1184 		 * we are dropping is not the final one.
1185 		 */
1186 		mnt_add_count(mnt, -1);
1187 		rcu_read_unlock();
1188 		return;
1189 	}
1190 	lock_mount_hash();
1191 	/*
1192 	 * make sure that if __legitimize_mnt() has not seen us grab
1193 	 * mount_lock, we'll see their refcount increment here.
1194 	 */
1195 	smp_mb();
1196 	mnt_add_count(mnt, -1);
1197 	count = mnt_get_count(mnt);
1198 	if (count != 0) {
1199 		WARN_ON(count < 0);
1200 		rcu_read_unlock();
1201 		unlock_mount_hash();
1202 		return;
1203 	}
1204 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1205 		rcu_read_unlock();
1206 		unlock_mount_hash();
1207 		return;
1208 	}
1209 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1210 	rcu_read_unlock();
1211 
1212 	list_del(&mnt->mnt_instance);
1213 
1214 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1215 		struct mount *p, *tmp;
1216 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1217 			__put_mountpoint(unhash_mnt(p), &list);
1218 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1219 		}
1220 	}
1221 	unlock_mount_hash();
1222 	shrink_dentry_list(&list);
1223 
1224 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1225 		struct task_struct *task = current;
1226 		if (likely(!(task->flags & PF_KTHREAD))) {
1227 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1228 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1229 				return;
1230 		}
1231 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1232 			schedule_delayed_work(&delayed_mntput_work, 1);
1233 		return;
1234 	}
1235 	cleanup_mnt(mnt);
1236 }
1237 
1238 void mntput(struct vfsmount *mnt)
1239 {
1240 	if (mnt) {
1241 		struct mount *m = real_mount(mnt);
1242 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1243 		if (unlikely(m->mnt_expiry_mark))
1244 			m->mnt_expiry_mark = 0;
1245 		mntput_no_expire(m);
1246 	}
1247 }
1248 EXPORT_SYMBOL(mntput);
1249 
1250 struct vfsmount *mntget(struct vfsmount *mnt)
1251 {
1252 	if (mnt)
1253 		mnt_add_count(real_mount(mnt), 1);
1254 	return mnt;
1255 }
1256 EXPORT_SYMBOL(mntget);
1257 
1258 /* path_is_mountpoint() - Check if path is a mount in the current
1259  *                          namespace.
1260  *
1261  *  d_mountpoint() can only be used reliably to establish if a dentry is
1262  *  not mounted in any namespace and that common case is handled inline.
1263  *  d_mountpoint() isn't aware of the possibility there may be multiple
1264  *  mounts using a given dentry in a different namespace. This function
1265  *  checks if the passed in path is a mountpoint rather than the dentry
1266  *  alone.
1267  */
1268 bool path_is_mountpoint(const struct path *path)
1269 {
1270 	unsigned seq;
1271 	bool res;
1272 
1273 	if (!d_mountpoint(path->dentry))
1274 		return false;
1275 
1276 	rcu_read_lock();
1277 	do {
1278 		seq = read_seqbegin(&mount_lock);
1279 		res = __path_is_mountpoint(path);
1280 	} while (read_seqretry(&mount_lock, seq));
1281 	rcu_read_unlock();
1282 
1283 	return res;
1284 }
1285 EXPORT_SYMBOL(path_is_mountpoint);
1286 
1287 struct vfsmount *mnt_clone_internal(const struct path *path)
1288 {
1289 	struct mount *p;
1290 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1291 	if (IS_ERR(p))
1292 		return ERR_CAST(p);
1293 	p->mnt.mnt_flags |= MNT_INTERNAL;
1294 	return &p->mnt;
1295 }
1296 
1297 #ifdef CONFIG_PROC_FS
1298 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1299 				   struct list_head *p)
1300 {
1301 	struct mount *mnt, *ret = NULL;
1302 
1303 	lock_ns_list(ns);
1304 	list_for_each_continue(p, &ns->list) {
1305 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1306 		if (!mnt_is_cursor(mnt)) {
1307 			ret = mnt;
1308 			break;
1309 		}
1310 	}
1311 	unlock_ns_list(ns);
1312 
1313 	return ret;
1314 }
1315 
1316 /* iterator; we want it to have access to namespace_sem, thus here... */
1317 static void *m_start(struct seq_file *m, loff_t *pos)
1318 {
1319 	struct proc_mounts *p = m->private;
1320 	struct list_head *prev;
1321 
1322 	down_read(&namespace_sem);
1323 	if (!*pos) {
1324 		prev = &p->ns->list;
1325 	} else {
1326 		prev = &p->cursor.mnt_list;
1327 
1328 		/* Read after we'd reached the end? */
1329 		if (list_empty(prev))
1330 			return NULL;
1331 	}
1332 
1333 	return mnt_list_next(p->ns, prev);
1334 }
1335 
1336 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1337 {
1338 	struct proc_mounts *p = m->private;
1339 	struct mount *mnt = v;
1340 
1341 	++*pos;
1342 	return mnt_list_next(p->ns, &mnt->mnt_list);
1343 }
1344 
1345 static void m_stop(struct seq_file *m, void *v)
1346 {
1347 	struct proc_mounts *p = m->private;
1348 	struct mount *mnt = v;
1349 
1350 	lock_ns_list(p->ns);
1351 	if (mnt)
1352 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1353 	else
1354 		list_del_init(&p->cursor.mnt_list);
1355 	unlock_ns_list(p->ns);
1356 	up_read(&namespace_sem);
1357 }
1358 
1359 static int m_show(struct seq_file *m, void *v)
1360 {
1361 	struct proc_mounts *p = m->private;
1362 	struct mount *r = v;
1363 	return p->show(m, &r->mnt);
1364 }
1365 
1366 const struct seq_operations mounts_op = {
1367 	.start	= m_start,
1368 	.next	= m_next,
1369 	.stop	= m_stop,
1370 	.show	= m_show,
1371 };
1372 
1373 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1374 {
1375 	down_read(&namespace_sem);
1376 	lock_ns_list(ns);
1377 	list_del(&cursor->mnt_list);
1378 	unlock_ns_list(ns);
1379 	up_read(&namespace_sem);
1380 }
1381 #endif  /* CONFIG_PROC_FS */
1382 
1383 /**
1384  * may_umount_tree - check if a mount tree is busy
1385  * @mnt: root of mount tree
1386  *
1387  * This is called to check if a tree of mounts has any
1388  * open files, pwds, chroots or sub mounts that are
1389  * busy.
1390  */
1391 int may_umount_tree(struct vfsmount *m)
1392 {
1393 	struct mount *mnt = real_mount(m);
1394 	int actual_refs = 0;
1395 	int minimum_refs = 0;
1396 	struct mount *p;
1397 	BUG_ON(!m);
1398 
1399 	/* write lock needed for mnt_get_count */
1400 	lock_mount_hash();
1401 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1402 		actual_refs += mnt_get_count(p);
1403 		minimum_refs += 2;
1404 	}
1405 	unlock_mount_hash();
1406 
1407 	if (actual_refs > minimum_refs)
1408 		return 0;
1409 
1410 	return 1;
1411 }
1412 
1413 EXPORT_SYMBOL(may_umount_tree);
1414 
1415 /**
1416  * may_umount - check if a mount point is busy
1417  * @mnt: root of mount
1418  *
1419  * This is called to check if a mount point has any
1420  * open files, pwds, chroots or sub mounts. If the
1421  * mount has sub mounts this will return busy
1422  * regardless of whether the sub mounts are busy.
1423  *
1424  * Doesn't take quota and stuff into account. IOW, in some cases it will
1425  * give false negatives. The main reason why it's here is that we need
1426  * a non-destructive way to look for easily umountable filesystems.
1427  */
1428 int may_umount(struct vfsmount *mnt)
1429 {
1430 	int ret = 1;
1431 	down_read(&namespace_sem);
1432 	lock_mount_hash();
1433 	if (propagate_mount_busy(real_mount(mnt), 2))
1434 		ret = 0;
1435 	unlock_mount_hash();
1436 	up_read(&namespace_sem);
1437 	return ret;
1438 }
1439 
1440 EXPORT_SYMBOL(may_umount);
1441 
1442 static void namespace_unlock(void)
1443 {
1444 	struct hlist_head head;
1445 	struct hlist_node *p;
1446 	struct mount *m;
1447 	LIST_HEAD(list);
1448 
1449 	hlist_move_list(&unmounted, &head);
1450 	list_splice_init(&ex_mountpoints, &list);
1451 
1452 	up_write(&namespace_sem);
1453 
1454 	shrink_dentry_list(&list);
1455 
1456 	if (likely(hlist_empty(&head)))
1457 		return;
1458 
1459 	synchronize_rcu_expedited();
1460 
1461 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1462 		hlist_del(&m->mnt_umount);
1463 		mntput(&m->mnt);
1464 	}
1465 }
1466 
1467 static inline void namespace_lock(void)
1468 {
1469 	down_write(&namespace_sem);
1470 }
1471 
1472 enum umount_tree_flags {
1473 	UMOUNT_SYNC = 1,
1474 	UMOUNT_PROPAGATE = 2,
1475 	UMOUNT_CONNECTED = 4,
1476 };
1477 
1478 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1479 {
1480 	/* Leaving mounts connected is only valid for lazy umounts */
1481 	if (how & UMOUNT_SYNC)
1482 		return true;
1483 
1484 	/* A mount without a parent has nothing to be connected to */
1485 	if (!mnt_has_parent(mnt))
1486 		return true;
1487 
1488 	/* Because the reference counting rules change when mounts are
1489 	 * unmounted and connected, umounted mounts may not be
1490 	 * connected to mounted mounts.
1491 	 */
1492 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1493 		return true;
1494 
1495 	/* Has it been requested that the mount remain connected? */
1496 	if (how & UMOUNT_CONNECTED)
1497 		return false;
1498 
1499 	/* Is the mount locked such that it needs to remain connected? */
1500 	if (IS_MNT_LOCKED(mnt))
1501 		return false;
1502 
1503 	/* By default disconnect the mount */
1504 	return true;
1505 }
1506 
1507 /*
1508  * mount_lock must be held
1509  * namespace_sem must be held for write
1510  */
1511 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1512 {
1513 	LIST_HEAD(tmp_list);
1514 	struct mount *p;
1515 
1516 	if (how & UMOUNT_PROPAGATE)
1517 		propagate_mount_unlock(mnt);
1518 
1519 	/* Gather the mounts to umount */
1520 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1521 		p->mnt.mnt_flags |= MNT_UMOUNT;
1522 		list_move(&p->mnt_list, &tmp_list);
1523 	}
1524 
1525 	/* Hide the mounts from mnt_mounts */
1526 	list_for_each_entry(p, &tmp_list, mnt_list) {
1527 		list_del_init(&p->mnt_child);
1528 	}
1529 
1530 	/* Add propogated mounts to the tmp_list */
1531 	if (how & UMOUNT_PROPAGATE)
1532 		propagate_umount(&tmp_list);
1533 
1534 	while (!list_empty(&tmp_list)) {
1535 		struct mnt_namespace *ns;
1536 		bool disconnect;
1537 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1538 		list_del_init(&p->mnt_expire);
1539 		list_del_init(&p->mnt_list);
1540 		ns = p->mnt_ns;
1541 		if (ns) {
1542 			ns->mounts--;
1543 			__touch_mnt_namespace(ns);
1544 		}
1545 		p->mnt_ns = NULL;
1546 		if (how & UMOUNT_SYNC)
1547 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1548 
1549 		disconnect = disconnect_mount(p, how);
1550 		if (mnt_has_parent(p)) {
1551 			mnt_add_count(p->mnt_parent, -1);
1552 			if (!disconnect) {
1553 				/* Don't forget about p */
1554 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1555 			} else {
1556 				umount_mnt(p);
1557 			}
1558 		}
1559 		change_mnt_propagation(p, MS_PRIVATE);
1560 		if (disconnect)
1561 			hlist_add_head(&p->mnt_umount, &unmounted);
1562 	}
1563 }
1564 
1565 static void shrink_submounts(struct mount *mnt);
1566 
1567 static int do_umount_root(struct super_block *sb)
1568 {
1569 	int ret = 0;
1570 
1571 	down_write(&sb->s_umount);
1572 	if (!sb_rdonly(sb)) {
1573 		struct fs_context *fc;
1574 
1575 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1576 						SB_RDONLY);
1577 		if (IS_ERR(fc)) {
1578 			ret = PTR_ERR(fc);
1579 		} else {
1580 			ret = parse_monolithic_mount_data(fc, NULL);
1581 			if (!ret)
1582 				ret = reconfigure_super(fc);
1583 			put_fs_context(fc);
1584 		}
1585 	}
1586 	up_write(&sb->s_umount);
1587 	return ret;
1588 }
1589 
1590 static int do_umount(struct mount *mnt, int flags)
1591 {
1592 	struct super_block *sb = mnt->mnt.mnt_sb;
1593 	int retval;
1594 
1595 	retval = security_sb_umount(&mnt->mnt, flags);
1596 	if (retval)
1597 		return retval;
1598 
1599 	/*
1600 	 * Allow userspace to request a mountpoint be expired rather than
1601 	 * unmounting unconditionally. Unmount only happens if:
1602 	 *  (1) the mark is already set (the mark is cleared by mntput())
1603 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1604 	 */
1605 	if (flags & MNT_EXPIRE) {
1606 		if (&mnt->mnt == current->fs->root.mnt ||
1607 		    flags & (MNT_FORCE | MNT_DETACH))
1608 			return -EINVAL;
1609 
1610 		/*
1611 		 * probably don't strictly need the lock here if we examined
1612 		 * all race cases, but it's a slowpath.
1613 		 */
1614 		lock_mount_hash();
1615 		if (mnt_get_count(mnt) != 2) {
1616 			unlock_mount_hash();
1617 			return -EBUSY;
1618 		}
1619 		unlock_mount_hash();
1620 
1621 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1622 			return -EAGAIN;
1623 	}
1624 
1625 	/*
1626 	 * If we may have to abort operations to get out of this
1627 	 * mount, and they will themselves hold resources we must
1628 	 * allow the fs to do things. In the Unix tradition of
1629 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1630 	 * might fail to complete on the first run through as other tasks
1631 	 * must return, and the like. Thats for the mount program to worry
1632 	 * about for the moment.
1633 	 */
1634 
1635 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1636 		sb->s_op->umount_begin(sb);
1637 	}
1638 
1639 	/*
1640 	 * No sense to grab the lock for this test, but test itself looks
1641 	 * somewhat bogus. Suggestions for better replacement?
1642 	 * Ho-hum... In principle, we might treat that as umount + switch
1643 	 * to rootfs. GC would eventually take care of the old vfsmount.
1644 	 * Actually it makes sense, especially if rootfs would contain a
1645 	 * /reboot - static binary that would close all descriptors and
1646 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1647 	 */
1648 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1649 		/*
1650 		 * Special case for "unmounting" root ...
1651 		 * we just try to remount it readonly.
1652 		 */
1653 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1654 			return -EPERM;
1655 		return do_umount_root(sb);
1656 	}
1657 
1658 	namespace_lock();
1659 	lock_mount_hash();
1660 
1661 	/* Recheck MNT_LOCKED with the locks held */
1662 	retval = -EINVAL;
1663 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1664 		goto out;
1665 
1666 	event++;
1667 	if (flags & MNT_DETACH) {
1668 		if (!list_empty(&mnt->mnt_list))
1669 			umount_tree(mnt, UMOUNT_PROPAGATE);
1670 		retval = 0;
1671 	} else {
1672 		shrink_submounts(mnt);
1673 		retval = -EBUSY;
1674 		if (!propagate_mount_busy(mnt, 2)) {
1675 			if (!list_empty(&mnt->mnt_list))
1676 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1677 			retval = 0;
1678 		}
1679 	}
1680 out:
1681 	unlock_mount_hash();
1682 	namespace_unlock();
1683 	return retval;
1684 }
1685 
1686 /*
1687  * __detach_mounts - lazily unmount all mounts on the specified dentry
1688  *
1689  * During unlink, rmdir, and d_drop it is possible to loose the path
1690  * to an existing mountpoint, and wind up leaking the mount.
1691  * detach_mounts allows lazily unmounting those mounts instead of
1692  * leaking them.
1693  *
1694  * The caller may hold dentry->d_inode->i_mutex.
1695  */
1696 void __detach_mounts(struct dentry *dentry)
1697 {
1698 	struct mountpoint *mp;
1699 	struct mount *mnt;
1700 
1701 	namespace_lock();
1702 	lock_mount_hash();
1703 	mp = lookup_mountpoint(dentry);
1704 	if (!mp)
1705 		goto out_unlock;
1706 
1707 	event++;
1708 	while (!hlist_empty(&mp->m_list)) {
1709 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1710 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1711 			umount_mnt(mnt);
1712 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1713 		}
1714 		else umount_tree(mnt, UMOUNT_CONNECTED);
1715 	}
1716 	put_mountpoint(mp);
1717 out_unlock:
1718 	unlock_mount_hash();
1719 	namespace_unlock();
1720 }
1721 
1722 /*
1723  * Is the caller allowed to modify his namespace?
1724  */
1725 static inline bool may_mount(void)
1726 {
1727 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1728 }
1729 
1730 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1731 static inline bool may_mandlock(void)
1732 {
1733 	return capable(CAP_SYS_ADMIN);
1734 }
1735 #else
1736 static inline bool may_mandlock(void)
1737 {
1738 	pr_warn("VFS: \"mand\" mount option not supported");
1739 	return false;
1740 }
1741 #endif
1742 
1743 static int can_umount(const struct path *path, int flags)
1744 {
1745 	struct mount *mnt = real_mount(path->mnt);
1746 
1747 	if (!may_mount())
1748 		return -EPERM;
1749 	if (path->dentry != path->mnt->mnt_root)
1750 		return -EINVAL;
1751 	if (!check_mnt(mnt))
1752 		return -EINVAL;
1753 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1754 		return -EINVAL;
1755 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1756 		return -EPERM;
1757 	return 0;
1758 }
1759 
1760 // caller is responsible for flags being sane
1761 int path_umount(struct path *path, int flags)
1762 {
1763 	struct mount *mnt = real_mount(path->mnt);
1764 	int ret;
1765 
1766 	ret = can_umount(path, flags);
1767 	if (!ret)
1768 		ret = do_umount(mnt, flags);
1769 
1770 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1771 	dput(path->dentry);
1772 	mntput_no_expire(mnt);
1773 	return ret;
1774 }
1775 
1776 static int ksys_umount(char __user *name, int flags)
1777 {
1778 	int lookup_flags = LOOKUP_MOUNTPOINT;
1779 	struct path path;
1780 	int ret;
1781 
1782 	// basic validity checks done first
1783 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1784 		return -EINVAL;
1785 
1786 	if (!(flags & UMOUNT_NOFOLLOW))
1787 		lookup_flags |= LOOKUP_FOLLOW;
1788 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1789 	if (ret)
1790 		return ret;
1791 	return path_umount(&path, flags);
1792 }
1793 
1794 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1795 {
1796 	return ksys_umount(name, flags);
1797 }
1798 
1799 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1800 
1801 /*
1802  *	The 2.0 compatible umount. No flags.
1803  */
1804 SYSCALL_DEFINE1(oldumount, char __user *, name)
1805 {
1806 	return ksys_umount(name, 0);
1807 }
1808 
1809 #endif
1810 
1811 static bool is_mnt_ns_file(struct dentry *dentry)
1812 {
1813 	/* Is this a proxy for a mount namespace? */
1814 	return dentry->d_op == &ns_dentry_operations &&
1815 	       dentry->d_fsdata == &mntns_operations;
1816 }
1817 
1818 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1819 {
1820 	return container_of(ns, struct mnt_namespace, ns);
1821 }
1822 
1823 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1824 {
1825 	return &mnt->ns;
1826 }
1827 
1828 static bool mnt_ns_loop(struct dentry *dentry)
1829 {
1830 	/* Could bind mounting the mount namespace inode cause a
1831 	 * mount namespace loop?
1832 	 */
1833 	struct mnt_namespace *mnt_ns;
1834 	if (!is_mnt_ns_file(dentry))
1835 		return false;
1836 
1837 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1838 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1839 }
1840 
1841 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1842 					int flag)
1843 {
1844 	struct mount *res, *p, *q, *r, *parent;
1845 
1846 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1847 		return ERR_PTR(-EINVAL);
1848 
1849 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1850 		return ERR_PTR(-EINVAL);
1851 
1852 	res = q = clone_mnt(mnt, dentry, flag);
1853 	if (IS_ERR(q))
1854 		return q;
1855 
1856 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1857 
1858 	p = mnt;
1859 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1860 		struct mount *s;
1861 		if (!is_subdir(r->mnt_mountpoint, dentry))
1862 			continue;
1863 
1864 		for (s = r; s; s = next_mnt(s, r)) {
1865 			if (!(flag & CL_COPY_UNBINDABLE) &&
1866 			    IS_MNT_UNBINDABLE(s)) {
1867 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1868 					/* Both unbindable and locked. */
1869 					q = ERR_PTR(-EPERM);
1870 					goto out;
1871 				} else {
1872 					s = skip_mnt_tree(s);
1873 					continue;
1874 				}
1875 			}
1876 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1877 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1878 				s = skip_mnt_tree(s);
1879 				continue;
1880 			}
1881 			while (p != s->mnt_parent) {
1882 				p = p->mnt_parent;
1883 				q = q->mnt_parent;
1884 			}
1885 			p = s;
1886 			parent = q;
1887 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1888 			if (IS_ERR(q))
1889 				goto out;
1890 			lock_mount_hash();
1891 			list_add_tail(&q->mnt_list, &res->mnt_list);
1892 			attach_mnt(q, parent, p->mnt_mp);
1893 			unlock_mount_hash();
1894 		}
1895 	}
1896 	return res;
1897 out:
1898 	if (res) {
1899 		lock_mount_hash();
1900 		umount_tree(res, UMOUNT_SYNC);
1901 		unlock_mount_hash();
1902 	}
1903 	return q;
1904 }
1905 
1906 /* Caller should check returned pointer for errors */
1907 
1908 struct vfsmount *collect_mounts(const struct path *path)
1909 {
1910 	struct mount *tree;
1911 	namespace_lock();
1912 	if (!check_mnt(real_mount(path->mnt)))
1913 		tree = ERR_PTR(-EINVAL);
1914 	else
1915 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1916 				 CL_COPY_ALL | CL_PRIVATE);
1917 	namespace_unlock();
1918 	if (IS_ERR(tree))
1919 		return ERR_CAST(tree);
1920 	return &tree->mnt;
1921 }
1922 
1923 static void free_mnt_ns(struct mnt_namespace *);
1924 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1925 
1926 void dissolve_on_fput(struct vfsmount *mnt)
1927 {
1928 	struct mnt_namespace *ns;
1929 	namespace_lock();
1930 	lock_mount_hash();
1931 	ns = real_mount(mnt)->mnt_ns;
1932 	if (ns) {
1933 		if (is_anon_ns(ns))
1934 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1935 		else
1936 			ns = NULL;
1937 	}
1938 	unlock_mount_hash();
1939 	namespace_unlock();
1940 	if (ns)
1941 		free_mnt_ns(ns);
1942 }
1943 
1944 void drop_collected_mounts(struct vfsmount *mnt)
1945 {
1946 	namespace_lock();
1947 	lock_mount_hash();
1948 	umount_tree(real_mount(mnt), 0);
1949 	unlock_mount_hash();
1950 	namespace_unlock();
1951 }
1952 
1953 /**
1954  * clone_private_mount - create a private clone of a path
1955  *
1956  * This creates a new vfsmount, which will be the clone of @path.  The new will
1957  * not be attached anywhere in the namespace and will be private (i.e. changes
1958  * to the originating mount won't be propagated into this).
1959  *
1960  * Release with mntput().
1961  */
1962 struct vfsmount *clone_private_mount(const struct path *path)
1963 {
1964 	struct mount *old_mnt = real_mount(path->mnt);
1965 	struct mount *new_mnt;
1966 
1967 	if (IS_MNT_UNBINDABLE(old_mnt))
1968 		return ERR_PTR(-EINVAL);
1969 
1970 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1971 	if (IS_ERR(new_mnt))
1972 		return ERR_CAST(new_mnt);
1973 
1974 	/* Longterm mount to be removed by kern_unmount*() */
1975 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1976 
1977 	return &new_mnt->mnt;
1978 }
1979 EXPORT_SYMBOL_GPL(clone_private_mount);
1980 
1981 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1982 		   struct vfsmount *root)
1983 {
1984 	struct mount *mnt;
1985 	int res = f(root, arg);
1986 	if (res)
1987 		return res;
1988 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1989 		res = f(&mnt->mnt, arg);
1990 		if (res)
1991 			return res;
1992 	}
1993 	return 0;
1994 }
1995 
1996 static void lock_mnt_tree(struct mount *mnt)
1997 {
1998 	struct mount *p;
1999 
2000 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2001 		int flags = p->mnt.mnt_flags;
2002 		/* Don't allow unprivileged users to change mount flags */
2003 		flags |= MNT_LOCK_ATIME;
2004 
2005 		if (flags & MNT_READONLY)
2006 			flags |= MNT_LOCK_READONLY;
2007 
2008 		if (flags & MNT_NODEV)
2009 			flags |= MNT_LOCK_NODEV;
2010 
2011 		if (flags & MNT_NOSUID)
2012 			flags |= MNT_LOCK_NOSUID;
2013 
2014 		if (flags & MNT_NOEXEC)
2015 			flags |= MNT_LOCK_NOEXEC;
2016 		/* Don't allow unprivileged users to reveal what is under a mount */
2017 		if (list_empty(&p->mnt_expire))
2018 			flags |= MNT_LOCKED;
2019 		p->mnt.mnt_flags = flags;
2020 	}
2021 }
2022 
2023 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2024 {
2025 	struct mount *p;
2026 
2027 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2028 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2029 			mnt_release_group_id(p);
2030 	}
2031 }
2032 
2033 static int invent_group_ids(struct mount *mnt, bool recurse)
2034 {
2035 	struct mount *p;
2036 
2037 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2038 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2039 			int err = mnt_alloc_group_id(p);
2040 			if (err) {
2041 				cleanup_group_ids(mnt, p);
2042 				return err;
2043 			}
2044 		}
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2051 {
2052 	unsigned int max = READ_ONCE(sysctl_mount_max);
2053 	unsigned int mounts = 0, old, pending, sum;
2054 	struct mount *p;
2055 
2056 	for (p = mnt; p; p = next_mnt(p, mnt))
2057 		mounts++;
2058 
2059 	old = ns->mounts;
2060 	pending = ns->pending_mounts;
2061 	sum = old + pending;
2062 	if ((old > sum) ||
2063 	    (pending > sum) ||
2064 	    (max < sum) ||
2065 	    (mounts > (max - sum)))
2066 		return -ENOSPC;
2067 
2068 	ns->pending_mounts = pending + mounts;
2069 	return 0;
2070 }
2071 
2072 /*
2073  *  @source_mnt : mount tree to be attached
2074  *  @nd         : place the mount tree @source_mnt is attached
2075  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2076  *  		   store the parent mount and mountpoint dentry.
2077  *  		   (done when source_mnt is moved)
2078  *
2079  *  NOTE: in the table below explains the semantics when a source mount
2080  *  of a given type is attached to a destination mount of a given type.
2081  * ---------------------------------------------------------------------------
2082  * |         BIND MOUNT OPERATION                                            |
2083  * |**************************************************************************
2084  * | source-->| shared        |       private  |       slave    | unbindable |
2085  * | dest     |               |                |                |            |
2086  * |   |      |               |                |                |            |
2087  * |   v      |               |                |                |            |
2088  * |**************************************************************************
2089  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2090  * |          |               |                |                |            |
2091  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2092  * ***************************************************************************
2093  * A bind operation clones the source mount and mounts the clone on the
2094  * destination mount.
2095  *
2096  * (++)  the cloned mount is propagated to all the mounts in the propagation
2097  * 	 tree of the destination mount and the cloned mount is added to
2098  * 	 the peer group of the source mount.
2099  * (+)   the cloned mount is created under the destination mount and is marked
2100  *       as shared. The cloned mount is added to the peer group of the source
2101  *       mount.
2102  * (+++) the mount is propagated to all the mounts in the propagation tree
2103  *       of the destination mount and the cloned mount is made slave
2104  *       of the same master as that of the source mount. The cloned mount
2105  *       is marked as 'shared and slave'.
2106  * (*)   the cloned mount is made a slave of the same master as that of the
2107  * 	 source mount.
2108  *
2109  * ---------------------------------------------------------------------------
2110  * |         		MOVE MOUNT OPERATION                                 |
2111  * |**************************************************************************
2112  * | source-->| shared        |       private  |       slave    | unbindable |
2113  * | dest     |               |                |                |            |
2114  * |   |      |               |                |                |            |
2115  * |   v      |               |                |                |            |
2116  * |**************************************************************************
2117  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2118  * |          |               |                |                |            |
2119  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2120  * ***************************************************************************
2121  *
2122  * (+)  the mount is moved to the destination. And is then propagated to
2123  * 	all the mounts in the propagation tree of the destination mount.
2124  * (+*)  the mount is moved to the destination.
2125  * (+++)  the mount is moved to the destination and is then propagated to
2126  * 	all the mounts belonging to the destination mount's propagation tree.
2127  * 	the mount is marked as 'shared and slave'.
2128  * (*)	the mount continues to be a slave at the new location.
2129  *
2130  * if the source mount is a tree, the operations explained above is
2131  * applied to each mount in the tree.
2132  * Must be called without spinlocks held, since this function can sleep
2133  * in allocations.
2134  */
2135 static int attach_recursive_mnt(struct mount *source_mnt,
2136 			struct mount *dest_mnt,
2137 			struct mountpoint *dest_mp,
2138 			bool moving)
2139 {
2140 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2141 	HLIST_HEAD(tree_list);
2142 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2143 	struct mountpoint *smp;
2144 	struct mount *child, *p;
2145 	struct hlist_node *n;
2146 	int err;
2147 
2148 	/* Preallocate a mountpoint in case the new mounts need
2149 	 * to be tucked under other mounts.
2150 	 */
2151 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2152 	if (IS_ERR(smp))
2153 		return PTR_ERR(smp);
2154 
2155 	/* Is there space to add these mounts to the mount namespace? */
2156 	if (!moving) {
2157 		err = count_mounts(ns, source_mnt);
2158 		if (err)
2159 			goto out;
2160 	}
2161 
2162 	if (IS_MNT_SHARED(dest_mnt)) {
2163 		err = invent_group_ids(source_mnt, true);
2164 		if (err)
2165 			goto out;
2166 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2167 		lock_mount_hash();
2168 		if (err)
2169 			goto out_cleanup_ids;
2170 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2171 			set_mnt_shared(p);
2172 	} else {
2173 		lock_mount_hash();
2174 	}
2175 	if (moving) {
2176 		unhash_mnt(source_mnt);
2177 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2178 		touch_mnt_namespace(source_mnt->mnt_ns);
2179 	} else {
2180 		if (source_mnt->mnt_ns) {
2181 			/* move from anon - the caller will destroy */
2182 			list_del_init(&source_mnt->mnt_ns->list);
2183 		}
2184 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2185 		commit_tree(source_mnt);
2186 	}
2187 
2188 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2189 		struct mount *q;
2190 		hlist_del_init(&child->mnt_hash);
2191 		q = __lookup_mnt(&child->mnt_parent->mnt,
2192 				 child->mnt_mountpoint);
2193 		if (q)
2194 			mnt_change_mountpoint(child, smp, q);
2195 		/* Notice when we are propagating across user namespaces */
2196 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2197 			lock_mnt_tree(child);
2198 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2199 		commit_tree(child);
2200 	}
2201 	put_mountpoint(smp);
2202 	unlock_mount_hash();
2203 
2204 	return 0;
2205 
2206  out_cleanup_ids:
2207 	while (!hlist_empty(&tree_list)) {
2208 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2209 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2210 		umount_tree(child, UMOUNT_SYNC);
2211 	}
2212 	unlock_mount_hash();
2213 	cleanup_group_ids(source_mnt, NULL);
2214  out:
2215 	ns->pending_mounts = 0;
2216 
2217 	read_seqlock_excl(&mount_lock);
2218 	put_mountpoint(smp);
2219 	read_sequnlock_excl(&mount_lock);
2220 
2221 	return err;
2222 }
2223 
2224 static struct mountpoint *lock_mount(struct path *path)
2225 {
2226 	struct vfsmount *mnt;
2227 	struct dentry *dentry = path->dentry;
2228 retry:
2229 	inode_lock(dentry->d_inode);
2230 	if (unlikely(cant_mount(dentry))) {
2231 		inode_unlock(dentry->d_inode);
2232 		return ERR_PTR(-ENOENT);
2233 	}
2234 	namespace_lock();
2235 	mnt = lookup_mnt(path);
2236 	if (likely(!mnt)) {
2237 		struct mountpoint *mp = get_mountpoint(dentry);
2238 		if (IS_ERR(mp)) {
2239 			namespace_unlock();
2240 			inode_unlock(dentry->d_inode);
2241 			return mp;
2242 		}
2243 		return mp;
2244 	}
2245 	namespace_unlock();
2246 	inode_unlock(path->dentry->d_inode);
2247 	path_put(path);
2248 	path->mnt = mnt;
2249 	dentry = path->dentry = dget(mnt->mnt_root);
2250 	goto retry;
2251 }
2252 
2253 static void unlock_mount(struct mountpoint *where)
2254 {
2255 	struct dentry *dentry = where->m_dentry;
2256 
2257 	read_seqlock_excl(&mount_lock);
2258 	put_mountpoint(where);
2259 	read_sequnlock_excl(&mount_lock);
2260 
2261 	namespace_unlock();
2262 	inode_unlock(dentry->d_inode);
2263 }
2264 
2265 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2266 {
2267 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2268 		return -EINVAL;
2269 
2270 	if (d_is_dir(mp->m_dentry) !=
2271 	      d_is_dir(mnt->mnt.mnt_root))
2272 		return -ENOTDIR;
2273 
2274 	return attach_recursive_mnt(mnt, p, mp, false);
2275 }
2276 
2277 /*
2278  * Sanity check the flags to change_mnt_propagation.
2279  */
2280 
2281 static int flags_to_propagation_type(int ms_flags)
2282 {
2283 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2284 
2285 	/* Fail if any non-propagation flags are set */
2286 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2287 		return 0;
2288 	/* Only one propagation flag should be set */
2289 	if (!is_power_of_2(type))
2290 		return 0;
2291 	return type;
2292 }
2293 
2294 /*
2295  * recursively change the type of the mountpoint.
2296  */
2297 static int do_change_type(struct path *path, int ms_flags)
2298 {
2299 	struct mount *m;
2300 	struct mount *mnt = real_mount(path->mnt);
2301 	int recurse = ms_flags & MS_REC;
2302 	int type;
2303 	int err = 0;
2304 
2305 	if (path->dentry != path->mnt->mnt_root)
2306 		return -EINVAL;
2307 
2308 	type = flags_to_propagation_type(ms_flags);
2309 	if (!type)
2310 		return -EINVAL;
2311 
2312 	namespace_lock();
2313 	if (type == MS_SHARED) {
2314 		err = invent_group_ids(mnt, recurse);
2315 		if (err)
2316 			goto out_unlock;
2317 	}
2318 
2319 	lock_mount_hash();
2320 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2321 		change_mnt_propagation(m, type);
2322 	unlock_mount_hash();
2323 
2324  out_unlock:
2325 	namespace_unlock();
2326 	return err;
2327 }
2328 
2329 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2330 {
2331 	struct mount *child;
2332 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2333 		if (!is_subdir(child->mnt_mountpoint, dentry))
2334 			continue;
2335 
2336 		if (child->mnt.mnt_flags & MNT_LOCKED)
2337 			return true;
2338 	}
2339 	return false;
2340 }
2341 
2342 static struct mount *__do_loopback(struct path *old_path, int recurse)
2343 {
2344 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2345 
2346 	if (IS_MNT_UNBINDABLE(old))
2347 		return mnt;
2348 
2349 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2350 		return mnt;
2351 
2352 	if (!recurse && has_locked_children(old, old_path->dentry))
2353 		return mnt;
2354 
2355 	if (recurse)
2356 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2357 	else
2358 		mnt = clone_mnt(old, old_path->dentry, 0);
2359 
2360 	if (!IS_ERR(mnt))
2361 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2362 
2363 	return mnt;
2364 }
2365 
2366 /*
2367  * do loopback mount.
2368  */
2369 static int do_loopback(struct path *path, const char *old_name,
2370 				int recurse)
2371 {
2372 	struct path old_path;
2373 	struct mount *mnt = NULL, *parent;
2374 	struct mountpoint *mp;
2375 	int err;
2376 	if (!old_name || !*old_name)
2377 		return -EINVAL;
2378 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2379 	if (err)
2380 		return err;
2381 
2382 	err = -EINVAL;
2383 	if (mnt_ns_loop(old_path.dentry))
2384 		goto out;
2385 
2386 	mp = lock_mount(path);
2387 	if (IS_ERR(mp)) {
2388 		err = PTR_ERR(mp);
2389 		goto out;
2390 	}
2391 
2392 	parent = real_mount(path->mnt);
2393 	if (!check_mnt(parent))
2394 		goto out2;
2395 
2396 	mnt = __do_loopback(&old_path, recurse);
2397 	if (IS_ERR(mnt)) {
2398 		err = PTR_ERR(mnt);
2399 		goto out2;
2400 	}
2401 
2402 	err = graft_tree(mnt, parent, mp);
2403 	if (err) {
2404 		lock_mount_hash();
2405 		umount_tree(mnt, UMOUNT_SYNC);
2406 		unlock_mount_hash();
2407 	}
2408 out2:
2409 	unlock_mount(mp);
2410 out:
2411 	path_put(&old_path);
2412 	return err;
2413 }
2414 
2415 static struct file *open_detached_copy(struct path *path, bool recursive)
2416 {
2417 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2418 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2419 	struct mount *mnt, *p;
2420 	struct file *file;
2421 
2422 	if (IS_ERR(ns))
2423 		return ERR_CAST(ns);
2424 
2425 	namespace_lock();
2426 	mnt = __do_loopback(path, recursive);
2427 	if (IS_ERR(mnt)) {
2428 		namespace_unlock();
2429 		free_mnt_ns(ns);
2430 		return ERR_CAST(mnt);
2431 	}
2432 
2433 	lock_mount_hash();
2434 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2435 		p->mnt_ns = ns;
2436 		ns->mounts++;
2437 	}
2438 	ns->root = mnt;
2439 	list_add_tail(&ns->list, &mnt->mnt_list);
2440 	mntget(&mnt->mnt);
2441 	unlock_mount_hash();
2442 	namespace_unlock();
2443 
2444 	mntput(path->mnt);
2445 	path->mnt = &mnt->mnt;
2446 	file = dentry_open(path, O_PATH, current_cred());
2447 	if (IS_ERR(file))
2448 		dissolve_on_fput(path->mnt);
2449 	else
2450 		file->f_mode |= FMODE_NEED_UNMOUNT;
2451 	return file;
2452 }
2453 
2454 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2455 {
2456 	struct file *file;
2457 	struct path path;
2458 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2459 	bool detached = flags & OPEN_TREE_CLONE;
2460 	int error;
2461 	int fd;
2462 
2463 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2464 
2465 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2466 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2467 		      OPEN_TREE_CLOEXEC))
2468 		return -EINVAL;
2469 
2470 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2471 		return -EINVAL;
2472 
2473 	if (flags & AT_NO_AUTOMOUNT)
2474 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2475 	if (flags & AT_SYMLINK_NOFOLLOW)
2476 		lookup_flags &= ~LOOKUP_FOLLOW;
2477 	if (flags & AT_EMPTY_PATH)
2478 		lookup_flags |= LOOKUP_EMPTY;
2479 
2480 	if (detached && !may_mount())
2481 		return -EPERM;
2482 
2483 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2484 	if (fd < 0)
2485 		return fd;
2486 
2487 	error = user_path_at(dfd, filename, lookup_flags, &path);
2488 	if (unlikely(error)) {
2489 		file = ERR_PTR(error);
2490 	} else {
2491 		if (detached)
2492 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2493 		else
2494 			file = dentry_open(&path, O_PATH, current_cred());
2495 		path_put(&path);
2496 	}
2497 	if (IS_ERR(file)) {
2498 		put_unused_fd(fd);
2499 		return PTR_ERR(file);
2500 	}
2501 	fd_install(fd, file);
2502 	return fd;
2503 }
2504 
2505 /*
2506  * Don't allow locked mount flags to be cleared.
2507  *
2508  * No locks need to be held here while testing the various MNT_LOCK
2509  * flags because those flags can never be cleared once they are set.
2510  */
2511 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2512 {
2513 	unsigned int fl = mnt->mnt.mnt_flags;
2514 
2515 	if ((fl & MNT_LOCK_READONLY) &&
2516 	    !(mnt_flags & MNT_READONLY))
2517 		return false;
2518 
2519 	if ((fl & MNT_LOCK_NODEV) &&
2520 	    !(mnt_flags & MNT_NODEV))
2521 		return false;
2522 
2523 	if ((fl & MNT_LOCK_NOSUID) &&
2524 	    !(mnt_flags & MNT_NOSUID))
2525 		return false;
2526 
2527 	if ((fl & MNT_LOCK_NOEXEC) &&
2528 	    !(mnt_flags & MNT_NOEXEC))
2529 		return false;
2530 
2531 	if ((fl & MNT_LOCK_ATIME) &&
2532 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2533 		return false;
2534 
2535 	return true;
2536 }
2537 
2538 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2539 {
2540 	bool readonly_request = (mnt_flags & MNT_READONLY);
2541 
2542 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2543 		return 0;
2544 
2545 	if (readonly_request)
2546 		return mnt_make_readonly(mnt);
2547 
2548 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2549 	return 0;
2550 }
2551 
2552 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2553 {
2554 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2555 	mnt->mnt.mnt_flags = mnt_flags;
2556 	touch_mnt_namespace(mnt->mnt_ns);
2557 }
2558 
2559 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2560 {
2561 	struct super_block *sb = mnt->mnt_sb;
2562 
2563 	if (!__mnt_is_readonly(mnt) &&
2564 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2565 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2566 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2567 		struct tm tm;
2568 
2569 		time64_to_tm(sb->s_time_max, 0, &tm);
2570 
2571 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2572 			sb->s_type->name,
2573 			is_mounted(mnt) ? "remounted" : "mounted",
2574 			mntpath,
2575 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2576 
2577 		free_page((unsigned long)buf);
2578 	}
2579 }
2580 
2581 /*
2582  * Handle reconfiguration of the mountpoint only without alteration of the
2583  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2584  * to mount(2).
2585  */
2586 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2587 {
2588 	struct super_block *sb = path->mnt->mnt_sb;
2589 	struct mount *mnt = real_mount(path->mnt);
2590 	int ret;
2591 
2592 	if (!check_mnt(mnt))
2593 		return -EINVAL;
2594 
2595 	if (path->dentry != mnt->mnt.mnt_root)
2596 		return -EINVAL;
2597 
2598 	if (!can_change_locked_flags(mnt, mnt_flags))
2599 		return -EPERM;
2600 
2601 	/*
2602 	 * We're only checking whether the superblock is read-only not
2603 	 * changing it, so only take down_read(&sb->s_umount).
2604 	 */
2605 	down_read(&sb->s_umount);
2606 	lock_mount_hash();
2607 	ret = change_mount_ro_state(mnt, mnt_flags);
2608 	if (ret == 0)
2609 		set_mount_attributes(mnt, mnt_flags);
2610 	unlock_mount_hash();
2611 	up_read(&sb->s_umount);
2612 
2613 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2614 
2615 	return ret;
2616 }
2617 
2618 /*
2619  * change filesystem flags. dir should be a physical root of filesystem.
2620  * If you've mounted a non-root directory somewhere and want to do remount
2621  * on it - tough luck.
2622  */
2623 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2624 		      int mnt_flags, void *data)
2625 {
2626 	int err;
2627 	struct super_block *sb = path->mnt->mnt_sb;
2628 	struct mount *mnt = real_mount(path->mnt);
2629 	struct fs_context *fc;
2630 
2631 	if (!check_mnt(mnt))
2632 		return -EINVAL;
2633 
2634 	if (path->dentry != path->mnt->mnt_root)
2635 		return -EINVAL;
2636 
2637 	if (!can_change_locked_flags(mnt, mnt_flags))
2638 		return -EPERM;
2639 
2640 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2641 	if (IS_ERR(fc))
2642 		return PTR_ERR(fc);
2643 
2644 	fc->oldapi = true;
2645 	err = parse_monolithic_mount_data(fc, data);
2646 	if (!err) {
2647 		down_write(&sb->s_umount);
2648 		err = -EPERM;
2649 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2650 			err = reconfigure_super(fc);
2651 			if (!err) {
2652 				lock_mount_hash();
2653 				set_mount_attributes(mnt, mnt_flags);
2654 				unlock_mount_hash();
2655 			}
2656 		}
2657 		up_write(&sb->s_umount);
2658 	}
2659 
2660 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2661 
2662 	put_fs_context(fc);
2663 	return err;
2664 }
2665 
2666 static inline int tree_contains_unbindable(struct mount *mnt)
2667 {
2668 	struct mount *p;
2669 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2670 		if (IS_MNT_UNBINDABLE(p))
2671 			return 1;
2672 	}
2673 	return 0;
2674 }
2675 
2676 /*
2677  * Check that there aren't references to earlier/same mount namespaces in the
2678  * specified subtree.  Such references can act as pins for mount namespaces
2679  * that aren't checked by the mount-cycle checking code, thereby allowing
2680  * cycles to be made.
2681  */
2682 static bool check_for_nsfs_mounts(struct mount *subtree)
2683 {
2684 	struct mount *p;
2685 	bool ret = false;
2686 
2687 	lock_mount_hash();
2688 	for (p = subtree; p; p = next_mnt(p, subtree))
2689 		if (mnt_ns_loop(p->mnt.mnt_root))
2690 			goto out;
2691 
2692 	ret = true;
2693 out:
2694 	unlock_mount_hash();
2695 	return ret;
2696 }
2697 
2698 static int do_move_mount(struct path *old_path, struct path *new_path)
2699 {
2700 	struct mnt_namespace *ns;
2701 	struct mount *p;
2702 	struct mount *old;
2703 	struct mount *parent;
2704 	struct mountpoint *mp, *old_mp;
2705 	int err;
2706 	bool attached;
2707 
2708 	mp = lock_mount(new_path);
2709 	if (IS_ERR(mp))
2710 		return PTR_ERR(mp);
2711 
2712 	old = real_mount(old_path->mnt);
2713 	p = real_mount(new_path->mnt);
2714 	parent = old->mnt_parent;
2715 	attached = mnt_has_parent(old);
2716 	old_mp = old->mnt_mp;
2717 	ns = old->mnt_ns;
2718 
2719 	err = -EINVAL;
2720 	/* The mountpoint must be in our namespace. */
2721 	if (!check_mnt(p))
2722 		goto out;
2723 
2724 	/* The thing moved must be mounted... */
2725 	if (!is_mounted(&old->mnt))
2726 		goto out;
2727 
2728 	/* ... and either ours or the root of anon namespace */
2729 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2730 		goto out;
2731 
2732 	if (old->mnt.mnt_flags & MNT_LOCKED)
2733 		goto out;
2734 
2735 	if (old_path->dentry != old_path->mnt->mnt_root)
2736 		goto out;
2737 
2738 	if (d_is_dir(new_path->dentry) !=
2739 	    d_is_dir(old_path->dentry))
2740 		goto out;
2741 	/*
2742 	 * Don't move a mount residing in a shared parent.
2743 	 */
2744 	if (attached && IS_MNT_SHARED(parent))
2745 		goto out;
2746 	/*
2747 	 * Don't move a mount tree containing unbindable mounts to a destination
2748 	 * mount which is shared.
2749 	 */
2750 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2751 		goto out;
2752 	err = -ELOOP;
2753 	if (!check_for_nsfs_mounts(old))
2754 		goto out;
2755 	for (; mnt_has_parent(p); p = p->mnt_parent)
2756 		if (p == old)
2757 			goto out;
2758 
2759 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2760 				   attached);
2761 	if (err)
2762 		goto out;
2763 
2764 	/* if the mount is moved, it should no longer be expire
2765 	 * automatically */
2766 	list_del_init(&old->mnt_expire);
2767 	if (attached)
2768 		put_mountpoint(old_mp);
2769 out:
2770 	unlock_mount(mp);
2771 	if (!err) {
2772 		if (attached)
2773 			mntput_no_expire(parent);
2774 		else
2775 			free_mnt_ns(ns);
2776 	}
2777 	return err;
2778 }
2779 
2780 static int do_move_mount_old(struct path *path, const char *old_name)
2781 {
2782 	struct path old_path;
2783 	int err;
2784 
2785 	if (!old_name || !*old_name)
2786 		return -EINVAL;
2787 
2788 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2789 	if (err)
2790 		return err;
2791 
2792 	err = do_move_mount(&old_path, path);
2793 	path_put(&old_path);
2794 	return err;
2795 }
2796 
2797 /*
2798  * add a mount into a namespace's mount tree
2799  */
2800 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2801 			struct path *path, int mnt_flags)
2802 {
2803 	struct mount *parent = real_mount(path->mnt);
2804 
2805 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2806 
2807 	if (unlikely(!check_mnt(parent))) {
2808 		/* that's acceptable only for automounts done in private ns */
2809 		if (!(mnt_flags & MNT_SHRINKABLE))
2810 			return -EINVAL;
2811 		/* ... and for those we'd better have mountpoint still alive */
2812 		if (!parent->mnt_ns)
2813 			return -EINVAL;
2814 	}
2815 
2816 	/* Refuse the same filesystem on the same mount point */
2817 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2818 	    path->mnt->mnt_root == path->dentry)
2819 		return -EBUSY;
2820 
2821 	if (d_is_symlink(newmnt->mnt.mnt_root))
2822 		return -EINVAL;
2823 
2824 	newmnt->mnt.mnt_flags = mnt_flags;
2825 	return graft_tree(newmnt, parent, mp);
2826 }
2827 
2828 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2829 
2830 /*
2831  * Create a new mount using a superblock configuration and request it
2832  * be added to the namespace tree.
2833  */
2834 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2835 			   unsigned int mnt_flags)
2836 {
2837 	struct vfsmount *mnt;
2838 	struct mountpoint *mp;
2839 	struct super_block *sb = fc->root->d_sb;
2840 	int error;
2841 
2842 	error = security_sb_kern_mount(sb);
2843 	if (!error && mount_too_revealing(sb, &mnt_flags))
2844 		error = -EPERM;
2845 
2846 	if (unlikely(error)) {
2847 		fc_drop_locked(fc);
2848 		return error;
2849 	}
2850 
2851 	up_write(&sb->s_umount);
2852 
2853 	mnt = vfs_create_mount(fc);
2854 	if (IS_ERR(mnt))
2855 		return PTR_ERR(mnt);
2856 
2857 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2858 
2859 	mp = lock_mount(mountpoint);
2860 	if (IS_ERR(mp)) {
2861 		mntput(mnt);
2862 		return PTR_ERR(mp);
2863 	}
2864 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2865 	unlock_mount(mp);
2866 	if (error < 0)
2867 		mntput(mnt);
2868 	return error;
2869 }
2870 
2871 /*
2872  * create a new mount for userspace and request it to be added into the
2873  * namespace's tree
2874  */
2875 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2876 			int mnt_flags, const char *name, void *data)
2877 {
2878 	struct file_system_type *type;
2879 	struct fs_context *fc;
2880 	const char *subtype = NULL;
2881 	int err = 0;
2882 
2883 	if (!fstype)
2884 		return -EINVAL;
2885 
2886 	type = get_fs_type(fstype);
2887 	if (!type)
2888 		return -ENODEV;
2889 
2890 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2891 		subtype = strchr(fstype, '.');
2892 		if (subtype) {
2893 			subtype++;
2894 			if (!*subtype) {
2895 				put_filesystem(type);
2896 				return -EINVAL;
2897 			}
2898 		}
2899 	}
2900 
2901 	fc = fs_context_for_mount(type, sb_flags);
2902 	put_filesystem(type);
2903 	if (IS_ERR(fc))
2904 		return PTR_ERR(fc);
2905 
2906 	if (subtype)
2907 		err = vfs_parse_fs_string(fc, "subtype",
2908 					  subtype, strlen(subtype));
2909 	if (!err && name)
2910 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2911 	if (!err)
2912 		err = parse_monolithic_mount_data(fc, data);
2913 	if (!err && !mount_capable(fc))
2914 		err = -EPERM;
2915 	if (!err)
2916 		err = vfs_get_tree(fc);
2917 	if (!err)
2918 		err = do_new_mount_fc(fc, path, mnt_flags);
2919 
2920 	put_fs_context(fc);
2921 	return err;
2922 }
2923 
2924 int finish_automount(struct vfsmount *m, struct path *path)
2925 {
2926 	struct dentry *dentry = path->dentry;
2927 	struct mountpoint *mp;
2928 	struct mount *mnt;
2929 	int err;
2930 
2931 	if (!m)
2932 		return 0;
2933 	if (IS_ERR(m))
2934 		return PTR_ERR(m);
2935 
2936 	mnt = real_mount(m);
2937 	/* The new mount record should have at least 2 refs to prevent it being
2938 	 * expired before we get a chance to add it
2939 	 */
2940 	BUG_ON(mnt_get_count(mnt) < 2);
2941 
2942 	if (m->mnt_sb == path->mnt->mnt_sb &&
2943 	    m->mnt_root == dentry) {
2944 		err = -ELOOP;
2945 		goto discard;
2946 	}
2947 
2948 	/*
2949 	 * we don't want to use lock_mount() - in this case finding something
2950 	 * that overmounts our mountpoint to be means "quitely drop what we've
2951 	 * got", not "try to mount it on top".
2952 	 */
2953 	inode_lock(dentry->d_inode);
2954 	namespace_lock();
2955 	if (unlikely(cant_mount(dentry))) {
2956 		err = -ENOENT;
2957 		goto discard_locked;
2958 	}
2959 	rcu_read_lock();
2960 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2961 		rcu_read_unlock();
2962 		err = 0;
2963 		goto discard_locked;
2964 	}
2965 	rcu_read_unlock();
2966 	mp = get_mountpoint(dentry);
2967 	if (IS_ERR(mp)) {
2968 		err = PTR_ERR(mp);
2969 		goto discard_locked;
2970 	}
2971 
2972 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2973 	unlock_mount(mp);
2974 	if (unlikely(err))
2975 		goto discard;
2976 	mntput(m);
2977 	return 0;
2978 
2979 discard_locked:
2980 	namespace_unlock();
2981 	inode_unlock(dentry->d_inode);
2982 discard:
2983 	/* remove m from any expiration list it may be on */
2984 	if (!list_empty(&mnt->mnt_expire)) {
2985 		namespace_lock();
2986 		list_del_init(&mnt->mnt_expire);
2987 		namespace_unlock();
2988 	}
2989 	mntput(m);
2990 	mntput(m);
2991 	return err;
2992 }
2993 
2994 /**
2995  * mnt_set_expiry - Put a mount on an expiration list
2996  * @mnt: The mount to list.
2997  * @expiry_list: The list to add the mount to.
2998  */
2999 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3000 {
3001 	namespace_lock();
3002 
3003 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3004 
3005 	namespace_unlock();
3006 }
3007 EXPORT_SYMBOL(mnt_set_expiry);
3008 
3009 /*
3010  * process a list of expirable mountpoints with the intent of discarding any
3011  * mountpoints that aren't in use and haven't been touched since last we came
3012  * here
3013  */
3014 void mark_mounts_for_expiry(struct list_head *mounts)
3015 {
3016 	struct mount *mnt, *next;
3017 	LIST_HEAD(graveyard);
3018 
3019 	if (list_empty(mounts))
3020 		return;
3021 
3022 	namespace_lock();
3023 	lock_mount_hash();
3024 
3025 	/* extract from the expiration list every vfsmount that matches the
3026 	 * following criteria:
3027 	 * - only referenced by its parent vfsmount
3028 	 * - still marked for expiry (marked on the last call here; marks are
3029 	 *   cleared by mntput())
3030 	 */
3031 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3032 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3033 			propagate_mount_busy(mnt, 1))
3034 			continue;
3035 		list_move(&mnt->mnt_expire, &graveyard);
3036 	}
3037 	while (!list_empty(&graveyard)) {
3038 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3039 		touch_mnt_namespace(mnt->mnt_ns);
3040 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3041 	}
3042 	unlock_mount_hash();
3043 	namespace_unlock();
3044 }
3045 
3046 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3047 
3048 /*
3049  * Ripoff of 'select_parent()'
3050  *
3051  * search the list of submounts for a given mountpoint, and move any
3052  * shrinkable submounts to the 'graveyard' list.
3053  */
3054 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3055 {
3056 	struct mount *this_parent = parent;
3057 	struct list_head *next;
3058 	int found = 0;
3059 
3060 repeat:
3061 	next = this_parent->mnt_mounts.next;
3062 resume:
3063 	while (next != &this_parent->mnt_mounts) {
3064 		struct list_head *tmp = next;
3065 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3066 
3067 		next = tmp->next;
3068 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3069 			continue;
3070 		/*
3071 		 * Descend a level if the d_mounts list is non-empty.
3072 		 */
3073 		if (!list_empty(&mnt->mnt_mounts)) {
3074 			this_parent = mnt;
3075 			goto repeat;
3076 		}
3077 
3078 		if (!propagate_mount_busy(mnt, 1)) {
3079 			list_move_tail(&mnt->mnt_expire, graveyard);
3080 			found++;
3081 		}
3082 	}
3083 	/*
3084 	 * All done at this level ... ascend and resume the search
3085 	 */
3086 	if (this_parent != parent) {
3087 		next = this_parent->mnt_child.next;
3088 		this_parent = this_parent->mnt_parent;
3089 		goto resume;
3090 	}
3091 	return found;
3092 }
3093 
3094 /*
3095  * process a list of expirable mountpoints with the intent of discarding any
3096  * submounts of a specific parent mountpoint
3097  *
3098  * mount_lock must be held for write
3099  */
3100 static void shrink_submounts(struct mount *mnt)
3101 {
3102 	LIST_HEAD(graveyard);
3103 	struct mount *m;
3104 
3105 	/* extract submounts of 'mountpoint' from the expiration list */
3106 	while (select_submounts(mnt, &graveyard)) {
3107 		while (!list_empty(&graveyard)) {
3108 			m = list_first_entry(&graveyard, struct mount,
3109 						mnt_expire);
3110 			touch_mnt_namespace(m->mnt_ns);
3111 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3112 		}
3113 	}
3114 }
3115 
3116 static void *copy_mount_options(const void __user * data)
3117 {
3118 	char *copy;
3119 	unsigned left, offset;
3120 
3121 	if (!data)
3122 		return NULL;
3123 
3124 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3125 	if (!copy)
3126 		return ERR_PTR(-ENOMEM);
3127 
3128 	left = copy_from_user(copy, data, PAGE_SIZE);
3129 
3130 	/*
3131 	 * Not all architectures have an exact copy_from_user(). Resort to
3132 	 * byte at a time.
3133 	 */
3134 	offset = PAGE_SIZE - left;
3135 	while (left) {
3136 		char c;
3137 		if (get_user(c, (const char __user *)data + offset))
3138 			break;
3139 		copy[offset] = c;
3140 		left--;
3141 		offset++;
3142 	}
3143 
3144 	if (left == PAGE_SIZE) {
3145 		kfree(copy);
3146 		return ERR_PTR(-EFAULT);
3147 	}
3148 
3149 	return copy;
3150 }
3151 
3152 static char *copy_mount_string(const void __user *data)
3153 {
3154 	return data ? strndup_user(data, PATH_MAX) : NULL;
3155 }
3156 
3157 /*
3158  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3159  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3160  *
3161  * data is a (void *) that can point to any structure up to
3162  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3163  * information (or be NULL).
3164  *
3165  * Pre-0.97 versions of mount() didn't have a flags word.
3166  * When the flags word was introduced its top half was required
3167  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3168  * Therefore, if this magic number is present, it carries no information
3169  * and must be discarded.
3170  */
3171 int path_mount(const char *dev_name, struct path *path,
3172 		const char *type_page, unsigned long flags, void *data_page)
3173 {
3174 	unsigned int mnt_flags = 0, sb_flags;
3175 	int ret;
3176 
3177 	/* Discard magic */
3178 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3179 		flags &= ~MS_MGC_MSK;
3180 
3181 	/* Basic sanity checks */
3182 	if (data_page)
3183 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3184 
3185 	if (flags & MS_NOUSER)
3186 		return -EINVAL;
3187 
3188 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3189 	if (ret)
3190 		return ret;
3191 	if (!may_mount())
3192 		return -EPERM;
3193 	if ((flags & SB_MANDLOCK) && !may_mandlock())
3194 		return -EPERM;
3195 
3196 	/* Default to relatime unless overriden */
3197 	if (!(flags & MS_NOATIME))
3198 		mnt_flags |= MNT_RELATIME;
3199 
3200 	/* Separate the per-mountpoint flags */
3201 	if (flags & MS_NOSUID)
3202 		mnt_flags |= MNT_NOSUID;
3203 	if (flags & MS_NODEV)
3204 		mnt_flags |= MNT_NODEV;
3205 	if (flags & MS_NOEXEC)
3206 		mnt_flags |= MNT_NOEXEC;
3207 	if (flags & MS_NOATIME)
3208 		mnt_flags |= MNT_NOATIME;
3209 	if (flags & MS_NODIRATIME)
3210 		mnt_flags |= MNT_NODIRATIME;
3211 	if (flags & MS_STRICTATIME)
3212 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3213 	if (flags & MS_RDONLY)
3214 		mnt_flags |= MNT_READONLY;
3215 	if (flags & MS_NOSYMFOLLOW)
3216 		mnt_flags |= MNT_NOSYMFOLLOW;
3217 
3218 	/* The default atime for remount is preservation */
3219 	if ((flags & MS_REMOUNT) &&
3220 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3221 		       MS_STRICTATIME)) == 0)) {
3222 		mnt_flags &= ~MNT_ATIME_MASK;
3223 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3224 	}
3225 
3226 	sb_flags = flags & (SB_RDONLY |
3227 			    SB_SYNCHRONOUS |
3228 			    SB_MANDLOCK |
3229 			    SB_DIRSYNC |
3230 			    SB_SILENT |
3231 			    SB_POSIXACL |
3232 			    SB_LAZYTIME |
3233 			    SB_I_VERSION);
3234 
3235 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3236 		return do_reconfigure_mnt(path, mnt_flags);
3237 	if (flags & MS_REMOUNT)
3238 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3239 	if (flags & MS_BIND)
3240 		return do_loopback(path, dev_name, flags & MS_REC);
3241 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3242 		return do_change_type(path, flags);
3243 	if (flags & MS_MOVE)
3244 		return do_move_mount_old(path, dev_name);
3245 
3246 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3247 			    data_page);
3248 }
3249 
3250 long do_mount(const char *dev_name, const char __user *dir_name,
3251 		const char *type_page, unsigned long flags, void *data_page)
3252 {
3253 	struct path path;
3254 	int ret;
3255 
3256 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3257 	if (ret)
3258 		return ret;
3259 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3260 	path_put(&path);
3261 	return ret;
3262 }
3263 
3264 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3265 {
3266 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3267 }
3268 
3269 static void dec_mnt_namespaces(struct ucounts *ucounts)
3270 {
3271 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3272 }
3273 
3274 static void free_mnt_ns(struct mnt_namespace *ns)
3275 {
3276 	if (!is_anon_ns(ns))
3277 		ns_free_inum(&ns->ns);
3278 	dec_mnt_namespaces(ns->ucounts);
3279 	put_user_ns(ns->user_ns);
3280 	kfree(ns);
3281 }
3282 
3283 /*
3284  * Assign a sequence number so we can detect when we attempt to bind
3285  * mount a reference to an older mount namespace into the current
3286  * mount namespace, preventing reference counting loops.  A 64bit
3287  * number incrementing at 10Ghz will take 12,427 years to wrap which
3288  * is effectively never, so we can ignore the possibility.
3289  */
3290 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3291 
3292 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3293 {
3294 	struct mnt_namespace *new_ns;
3295 	struct ucounts *ucounts;
3296 	int ret;
3297 
3298 	ucounts = inc_mnt_namespaces(user_ns);
3299 	if (!ucounts)
3300 		return ERR_PTR(-ENOSPC);
3301 
3302 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3303 	if (!new_ns) {
3304 		dec_mnt_namespaces(ucounts);
3305 		return ERR_PTR(-ENOMEM);
3306 	}
3307 	if (!anon) {
3308 		ret = ns_alloc_inum(&new_ns->ns);
3309 		if (ret) {
3310 			kfree(new_ns);
3311 			dec_mnt_namespaces(ucounts);
3312 			return ERR_PTR(ret);
3313 		}
3314 	}
3315 	new_ns->ns.ops = &mntns_operations;
3316 	if (!anon)
3317 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3318 	refcount_set(&new_ns->ns.count, 1);
3319 	INIT_LIST_HEAD(&new_ns->list);
3320 	init_waitqueue_head(&new_ns->poll);
3321 	spin_lock_init(&new_ns->ns_lock);
3322 	new_ns->user_ns = get_user_ns(user_ns);
3323 	new_ns->ucounts = ucounts;
3324 	return new_ns;
3325 }
3326 
3327 __latent_entropy
3328 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3329 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3330 {
3331 	struct mnt_namespace *new_ns;
3332 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3333 	struct mount *p, *q;
3334 	struct mount *old;
3335 	struct mount *new;
3336 	int copy_flags;
3337 
3338 	BUG_ON(!ns);
3339 
3340 	if (likely(!(flags & CLONE_NEWNS))) {
3341 		get_mnt_ns(ns);
3342 		return ns;
3343 	}
3344 
3345 	old = ns->root;
3346 
3347 	new_ns = alloc_mnt_ns(user_ns, false);
3348 	if (IS_ERR(new_ns))
3349 		return new_ns;
3350 
3351 	namespace_lock();
3352 	/* First pass: copy the tree topology */
3353 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3354 	if (user_ns != ns->user_ns)
3355 		copy_flags |= CL_SHARED_TO_SLAVE;
3356 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3357 	if (IS_ERR(new)) {
3358 		namespace_unlock();
3359 		free_mnt_ns(new_ns);
3360 		return ERR_CAST(new);
3361 	}
3362 	if (user_ns != ns->user_ns) {
3363 		lock_mount_hash();
3364 		lock_mnt_tree(new);
3365 		unlock_mount_hash();
3366 	}
3367 	new_ns->root = new;
3368 	list_add_tail(&new_ns->list, &new->mnt_list);
3369 
3370 	/*
3371 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3372 	 * as belonging to new namespace.  We have already acquired a private
3373 	 * fs_struct, so tsk->fs->lock is not needed.
3374 	 */
3375 	p = old;
3376 	q = new;
3377 	while (p) {
3378 		q->mnt_ns = new_ns;
3379 		new_ns->mounts++;
3380 		if (new_fs) {
3381 			if (&p->mnt == new_fs->root.mnt) {
3382 				new_fs->root.mnt = mntget(&q->mnt);
3383 				rootmnt = &p->mnt;
3384 			}
3385 			if (&p->mnt == new_fs->pwd.mnt) {
3386 				new_fs->pwd.mnt = mntget(&q->mnt);
3387 				pwdmnt = &p->mnt;
3388 			}
3389 		}
3390 		p = next_mnt(p, old);
3391 		q = next_mnt(q, new);
3392 		if (!q)
3393 			break;
3394 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3395 			p = next_mnt(p, old);
3396 	}
3397 	namespace_unlock();
3398 
3399 	if (rootmnt)
3400 		mntput(rootmnt);
3401 	if (pwdmnt)
3402 		mntput(pwdmnt);
3403 
3404 	return new_ns;
3405 }
3406 
3407 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3408 {
3409 	struct mount *mnt = real_mount(m);
3410 	struct mnt_namespace *ns;
3411 	struct super_block *s;
3412 	struct path path;
3413 	int err;
3414 
3415 	ns = alloc_mnt_ns(&init_user_ns, true);
3416 	if (IS_ERR(ns)) {
3417 		mntput(m);
3418 		return ERR_CAST(ns);
3419 	}
3420 	mnt->mnt_ns = ns;
3421 	ns->root = mnt;
3422 	ns->mounts++;
3423 	list_add(&mnt->mnt_list, &ns->list);
3424 
3425 	err = vfs_path_lookup(m->mnt_root, m,
3426 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3427 
3428 	put_mnt_ns(ns);
3429 
3430 	if (err)
3431 		return ERR_PTR(err);
3432 
3433 	/* trade a vfsmount reference for active sb one */
3434 	s = path.mnt->mnt_sb;
3435 	atomic_inc(&s->s_active);
3436 	mntput(path.mnt);
3437 	/* lock the sucker */
3438 	down_write(&s->s_umount);
3439 	/* ... and return the root of (sub)tree on it */
3440 	return path.dentry;
3441 }
3442 EXPORT_SYMBOL(mount_subtree);
3443 
3444 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3445 		char __user *, type, unsigned long, flags, void __user *, data)
3446 {
3447 	int ret;
3448 	char *kernel_type;
3449 	char *kernel_dev;
3450 	void *options;
3451 
3452 	kernel_type = copy_mount_string(type);
3453 	ret = PTR_ERR(kernel_type);
3454 	if (IS_ERR(kernel_type))
3455 		goto out_type;
3456 
3457 	kernel_dev = copy_mount_string(dev_name);
3458 	ret = PTR_ERR(kernel_dev);
3459 	if (IS_ERR(kernel_dev))
3460 		goto out_dev;
3461 
3462 	options = copy_mount_options(data);
3463 	ret = PTR_ERR(options);
3464 	if (IS_ERR(options))
3465 		goto out_data;
3466 
3467 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3468 
3469 	kfree(options);
3470 out_data:
3471 	kfree(kernel_dev);
3472 out_dev:
3473 	kfree(kernel_type);
3474 out_type:
3475 	return ret;
3476 }
3477 
3478 #define FSMOUNT_VALID_FLAGS \
3479 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3480 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)
3481 
3482 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3483 
3484 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3485 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3486 
3487 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3488 {
3489 	unsigned int mnt_flags = 0;
3490 
3491 	if (attr_flags & MOUNT_ATTR_RDONLY)
3492 		mnt_flags |= MNT_READONLY;
3493 	if (attr_flags & MOUNT_ATTR_NOSUID)
3494 		mnt_flags |= MNT_NOSUID;
3495 	if (attr_flags & MOUNT_ATTR_NODEV)
3496 		mnt_flags |= MNT_NODEV;
3497 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3498 		mnt_flags |= MNT_NOEXEC;
3499 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3500 		mnt_flags |= MNT_NODIRATIME;
3501 
3502 	return mnt_flags;
3503 }
3504 
3505 /*
3506  * Create a kernel mount representation for a new, prepared superblock
3507  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3508  */
3509 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3510 		unsigned int, attr_flags)
3511 {
3512 	struct mnt_namespace *ns;
3513 	struct fs_context *fc;
3514 	struct file *file;
3515 	struct path newmount;
3516 	struct mount *mnt;
3517 	struct fd f;
3518 	unsigned int mnt_flags = 0;
3519 	long ret;
3520 
3521 	if (!may_mount())
3522 		return -EPERM;
3523 
3524 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3525 		return -EINVAL;
3526 
3527 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3528 		return -EINVAL;
3529 
3530 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3531 
3532 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3533 	case MOUNT_ATTR_STRICTATIME:
3534 		break;
3535 	case MOUNT_ATTR_NOATIME:
3536 		mnt_flags |= MNT_NOATIME;
3537 		break;
3538 	case MOUNT_ATTR_RELATIME:
3539 		mnt_flags |= MNT_RELATIME;
3540 		break;
3541 	default:
3542 		return -EINVAL;
3543 	}
3544 
3545 	f = fdget(fs_fd);
3546 	if (!f.file)
3547 		return -EBADF;
3548 
3549 	ret = -EINVAL;
3550 	if (f.file->f_op != &fscontext_fops)
3551 		goto err_fsfd;
3552 
3553 	fc = f.file->private_data;
3554 
3555 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3556 	if (ret < 0)
3557 		goto err_fsfd;
3558 
3559 	/* There must be a valid superblock or we can't mount it */
3560 	ret = -EINVAL;
3561 	if (!fc->root)
3562 		goto err_unlock;
3563 
3564 	ret = -EPERM;
3565 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3566 		pr_warn("VFS: Mount too revealing\n");
3567 		goto err_unlock;
3568 	}
3569 
3570 	ret = -EBUSY;
3571 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3572 		goto err_unlock;
3573 
3574 	ret = -EPERM;
3575 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3576 		goto err_unlock;
3577 
3578 	newmount.mnt = vfs_create_mount(fc);
3579 	if (IS_ERR(newmount.mnt)) {
3580 		ret = PTR_ERR(newmount.mnt);
3581 		goto err_unlock;
3582 	}
3583 	newmount.dentry = dget(fc->root);
3584 	newmount.mnt->mnt_flags = mnt_flags;
3585 
3586 	/* We've done the mount bit - now move the file context into more or
3587 	 * less the same state as if we'd done an fspick().  We don't want to
3588 	 * do any memory allocation or anything like that at this point as we
3589 	 * don't want to have to handle any errors incurred.
3590 	 */
3591 	vfs_clean_context(fc);
3592 
3593 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3594 	if (IS_ERR(ns)) {
3595 		ret = PTR_ERR(ns);
3596 		goto err_path;
3597 	}
3598 	mnt = real_mount(newmount.mnt);
3599 	mnt->mnt_ns = ns;
3600 	ns->root = mnt;
3601 	ns->mounts = 1;
3602 	list_add(&mnt->mnt_list, &ns->list);
3603 	mntget(newmount.mnt);
3604 
3605 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3606 	 * it, not just simply put it.
3607 	 */
3608 	file = dentry_open(&newmount, O_PATH, fc->cred);
3609 	if (IS_ERR(file)) {
3610 		dissolve_on_fput(newmount.mnt);
3611 		ret = PTR_ERR(file);
3612 		goto err_path;
3613 	}
3614 	file->f_mode |= FMODE_NEED_UNMOUNT;
3615 
3616 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3617 	if (ret >= 0)
3618 		fd_install(ret, file);
3619 	else
3620 		fput(file);
3621 
3622 err_path:
3623 	path_put(&newmount);
3624 err_unlock:
3625 	mutex_unlock(&fc->uapi_mutex);
3626 err_fsfd:
3627 	fdput(f);
3628 	return ret;
3629 }
3630 
3631 /*
3632  * Move a mount from one place to another.  In combination with
3633  * fsopen()/fsmount() this is used to install a new mount and in combination
3634  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3635  * a mount subtree.
3636  *
3637  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3638  */
3639 SYSCALL_DEFINE5(move_mount,
3640 		int, from_dfd, const char __user *, from_pathname,
3641 		int, to_dfd, const char __user *, to_pathname,
3642 		unsigned int, flags)
3643 {
3644 	struct path from_path, to_path;
3645 	unsigned int lflags;
3646 	int ret = 0;
3647 
3648 	if (!may_mount())
3649 		return -EPERM;
3650 
3651 	if (flags & ~MOVE_MOUNT__MASK)
3652 		return -EINVAL;
3653 
3654 	/* If someone gives a pathname, they aren't permitted to move
3655 	 * from an fd that requires unmount as we can't get at the flag
3656 	 * to clear it afterwards.
3657 	 */
3658 	lflags = 0;
3659 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3660 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3661 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3662 
3663 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3664 	if (ret < 0)
3665 		return ret;
3666 
3667 	lflags = 0;
3668 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3669 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3670 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3671 
3672 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3673 	if (ret < 0)
3674 		goto out_from;
3675 
3676 	ret = security_move_mount(&from_path, &to_path);
3677 	if (ret < 0)
3678 		goto out_to;
3679 
3680 	ret = do_move_mount(&from_path, &to_path);
3681 
3682 out_to:
3683 	path_put(&to_path);
3684 out_from:
3685 	path_put(&from_path);
3686 	return ret;
3687 }
3688 
3689 /*
3690  * Return true if path is reachable from root
3691  *
3692  * namespace_sem or mount_lock is held
3693  */
3694 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3695 			 const struct path *root)
3696 {
3697 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3698 		dentry = mnt->mnt_mountpoint;
3699 		mnt = mnt->mnt_parent;
3700 	}
3701 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3702 }
3703 
3704 bool path_is_under(const struct path *path1, const struct path *path2)
3705 {
3706 	bool res;
3707 	read_seqlock_excl(&mount_lock);
3708 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3709 	read_sequnlock_excl(&mount_lock);
3710 	return res;
3711 }
3712 EXPORT_SYMBOL(path_is_under);
3713 
3714 /*
3715  * pivot_root Semantics:
3716  * Moves the root file system of the current process to the directory put_old,
3717  * makes new_root as the new root file system of the current process, and sets
3718  * root/cwd of all processes which had them on the current root to new_root.
3719  *
3720  * Restrictions:
3721  * The new_root and put_old must be directories, and  must not be on the
3722  * same file  system as the current process root. The put_old  must  be
3723  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3724  * pointed to by put_old must yield the same directory as new_root. No other
3725  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3726  *
3727  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3728  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3729  * in this situation.
3730  *
3731  * Notes:
3732  *  - we don't move root/cwd if they are not at the root (reason: if something
3733  *    cared enough to change them, it's probably wrong to force them elsewhere)
3734  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3735  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3736  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3737  *    first.
3738  */
3739 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3740 		const char __user *, put_old)
3741 {
3742 	struct path new, old, root;
3743 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3744 	struct mountpoint *old_mp, *root_mp;
3745 	int error;
3746 
3747 	if (!may_mount())
3748 		return -EPERM;
3749 
3750 	error = user_path_at(AT_FDCWD, new_root,
3751 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3752 	if (error)
3753 		goto out0;
3754 
3755 	error = user_path_at(AT_FDCWD, put_old,
3756 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3757 	if (error)
3758 		goto out1;
3759 
3760 	error = security_sb_pivotroot(&old, &new);
3761 	if (error)
3762 		goto out2;
3763 
3764 	get_fs_root(current->fs, &root);
3765 	old_mp = lock_mount(&old);
3766 	error = PTR_ERR(old_mp);
3767 	if (IS_ERR(old_mp))
3768 		goto out3;
3769 
3770 	error = -EINVAL;
3771 	new_mnt = real_mount(new.mnt);
3772 	root_mnt = real_mount(root.mnt);
3773 	old_mnt = real_mount(old.mnt);
3774 	ex_parent = new_mnt->mnt_parent;
3775 	root_parent = root_mnt->mnt_parent;
3776 	if (IS_MNT_SHARED(old_mnt) ||
3777 		IS_MNT_SHARED(ex_parent) ||
3778 		IS_MNT_SHARED(root_parent))
3779 		goto out4;
3780 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3781 		goto out4;
3782 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3783 		goto out4;
3784 	error = -ENOENT;
3785 	if (d_unlinked(new.dentry))
3786 		goto out4;
3787 	error = -EBUSY;
3788 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3789 		goto out4; /* loop, on the same file system  */
3790 	error = -EINVAL;
3791 	if (root.mnt->mnt_root != root.dentry)
3792 		goto out4; /* not a mountpoint */
3793 	if (!mnt_has_parent(root_mnt))
3794 		goto out4; /* not attached */
3795 	if (new.mnt->mnt_root != new.dentry)
3796 		goto out4; /* not a mountpoint */
3797 	if (!mnt_has_parent(new_mnt))
3798 		goto out4; /* not attached */
3799 	/* make sure we can reach put_old from new_root */
3800 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3801 		goto out4;
3802 	/* make certain new is below the root */
3803 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3804 		goto out4;
3805 	lock_mount_hash();
3806 	umount_mnt(new_mnt);
3807 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3808 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3809 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3810 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3811 	}
3812 	/* mount old root on put_old */
3813 	attach_mnt(root_mnt, old_mnt, old_mp);
3814 	/* mount new_root on / */
3815 	attach_mnt(new_mnt, root_parent, root_mp);
3816 	mnt_add_count(root_parent, -1);
3817 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3818 	/* A moved mount should not expire automatically */
3819 	list_del_init(&new_mnt->mnt_expire);
3820 	put_mountpoint(root_mp);
3821 	unlock_mount_hash();
3822 	chroot_fs_refs(&root, &new);
3823 	error = 0;
3824 out4:
3825 	unlock_mount(old_mp);
3826 	if (!error)
3827 		mntput_no_expire(ex_parent);
3828 out3:
3829 	path_put(&root);
3830 out2:
3831 	path_put(&old);
3832 out1:
3833 	path_put(&new);
3834 out0:
3835 	return error;
3836 }
3837 
3838 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3839 {
3840 	unsigned int flags = mnt->mnt.mnt_flags;
3841 
3842 	/*  flags to clear */
3843 	flags &= ~kattr->attr_clr;
3844 	/* flags to raise */
3845 	flags |= kattr->attr_set;
3846 
3847 	return flags;
3848 }
3849 
3850 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3851 {
3852 	struct vfsmount *m = &mnt->mnt;
3853 
3854 	if (!kattr->mnt_userns)
3855 		return 0;
3856 
3857 	/*
3858 	 * Once a mount has been idmapped we don't allow it to change its
3859 	 * mapping. It makes things simpler and callers can just create
3860 	 * another bind-mount they can idmap if they want to.
3861 	 */
3862 	if (mnt_user_ns(m) != &init_user_ns)
3863 		return -EPERM;
3864 
3865 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3866 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3867 		return -EINVAL;
3868 
3869 	/* We're not controlling the superblock. */
3870 	if (!ns_capable(m->mnt_sb->s_user_ns, CAP_SYS_ADMIN))
3871 		return -EPERM;
3872 
3873 	/* Mount has already been visible in the filesystem hierarchy. */
3874 	if (!is_anon_ns(mnt->mnt_ns))
3875 		return -EINVAL;
3876 
3877 	return 0;
3878 }
3879 
3880 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3881 					   struct mount *mnt, int *err)
3882 {
3883 	struct mount *m = mnt, *last = NULL;
3884 
3885 	if (!is_mounted(&m->mnt)) {
3886 		*err = -EINVAL;
3887 		goto out;
3888 	}
3889 
3890 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3891 		*err = -EINVAL;
3892 		goto out;
3893 	}
3894 
3895 	do {
3896 		unsigned int flags;
3897 
3898 		flags = recalc_flags(kattr, m);
3899 		if (!can_change_locked_flags(m, flags)) {
3900 			*err = -EPERM;
3901 			goto out;
3902 		}
3903 
3904 		*err = can_idmap_mount(kattr, m);
3905 		if (*err)
3906 			goto out;
3907 
3908 		last = m;
3909 
3910 		if ((kattr->attr_set & MNT_READONLY) &&
3911 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3912 			*err = mnt_hold_writers(m);
3913 			if (*err)
3914 				goto out;
3915 		}
3916 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3917 
3918 out:
3919 	return last;
3920 }
3921 
3922 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3923 {
3924 	struct user_namespace *mnt_userns;
3925 
3926 	if (!kattr->mnt_userns)
3927 		return;
3928 
3929 	mnt_userns = get_user_ns(kattr->mnt_userns);
3930 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
3931 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3932 }
3933 
3934 static void mount_setattr_commit(struct mount_kattr *kattr,
3935 				 struct mount *mnt, struct mount *last,
3936 				 int err)
3937 {
3938 	struct mount *m = mnt;
3939 
3940 	do {
3941 		if (!err) {
3942 			unsigned int flags;
3943 
3944 			do_idmap_mount(kattr, m);
3945 			flags = recalc_flags(kattr, m);
3946 			WRITE_ONCE(m->mnt.mnt_flags, flags);
3947 		}
3948 
3949 		/*
3950 		 * We either set MNT_READONLY above so make it visible
3951 		 * before ~MNT_WRITE_HOLD or we failed to recursively
3952 		 * apply mount options.
3953 		 */
3954 		if ((kattr->attr_set & MNT_READONLY) &&
3955 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3956 			mnt_unhold_writers(m);
3957 
3958 		if (!err && kattr->propagation)
3959 			change_mnt_propagation(m, kattr->propagation);
3960 
3961 		/*
3962 		 * On failure, only cleanup until we found the first mount
3963 		 * we failed to handle.
3964 		 */
3965 		if (err && m == last)
3966 			break;
3967 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3968 
3969 	if (!err)
3970 		touch_mnt_namespace(mnt->mnt_ns);
3971 }
3972 
3973 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3974 {
3975 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
3976 	int err = 0;
3977 
3978 	if (path->dentry != mnt->mnt.mnt_root)
3979 		return -EINVAL;
3980 
3981 	if (kattr->propagation) {
3982 		/*
3983 		 * Only take namespace_lock() if we're actually changing
3984 		 * propagation.
3985 		 */
3986 		namespace_lock();
3987 		if (kattr->propagation == MS_SHARED) {
3988 			err = invent_group_ids(mnt, kattr->recurse);
3989 			if (err) {
3990 				namespace_unlock();
3991 				return err;
3992 			}
3993 		}
3994 	}
3995 
3996 	lock_mount_hash();
3997 
3998 	/*
3999 	 * Get the mount tree in a shape where we can change mount
4000 	 * properties without failure.
4001 	 */
4002 	last = mount_setattr_prepare(kattr, mnt, &err);
4003 	if (last) /* Commit all changes or revert to the old state. */
4004 		mount_setattr_commit(kattr, mnt, last, err);
4005 
4006 	unlock_mount_hash();
4007 
4008 	if (kattr->propagation) {
4009 		namespace_unlock();
4010 		if (err)
4011 			cleanup_group_ids(mnt, NULL);
4012 	}
4013 
4014 	return err;
4015 }
4016 
4017 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4018 				struct mount_kattr *kattr, unsigned int flags)
4019 {
4020 	int err = 0;
4021 	struct ns_common *ns;
4022 	struct user_namespace *mnt_userns;
4023 	struct file *file;
4024 
4025 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4026 		return 0;
4027 
4028 	/*
4029 	 * We currently do not support clearing an idmapped mount. If this ever
4030 	 * is a use-case we can revisit this but for now let's keep it simple
4031 	 * and not allow it.
4032 	 */
4033 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4034 		return -EINVAL;
4035 
4036 	if (attr->userns_fd > INT_MAX)
4037 		return -EINVAL;
4038 
4039 	file = fget(attr->userns_fd);
4040 	if (!file)
4041 		return -EBADF;
4042 
4043 	if (!proc_ns_file(file)) {
4044 		err = -EINVAL;
4045 		goto out_fput;
4046 	}
4047 
4048 	ns = get_proc_ns(file_inode(file));
4049 	if (ns->ops->type != CLONE_NEWUSER) {
4050 		err = -EINVAL;
4051 		goto out_fput;
4052 	}
4053 
4054 	/*
4055 	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4056 	 * This is simpler than just having to treat NULL as unmapped. Users
4057 	 * wanting to idmap a mount to init_user_ns can just use a namespace
4058 	 * with an identity mapping.
4059 	 */
4060 	mnt_userns = container_of(ns, struct user_namespace, ns);
4061 	if (mnt_userns == &init_user_ns) {
4062 		err = -EPERM;
4063 		goto out_fput;
4064 	}
4065 	kattr->mnt_userns = get_user_ns(mnt_userns);
4066 
4067 out_fput:
4068 	fput(file);
4069 	return err;
4070 }
4071 
4072 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4073 			     struct mount_kattr *kattr, unsigned int flags)
4074 {
4075 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4076 
4077 	if (flags & AT_NO_AUTOMOUNT)
4078 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4079 	if (flags & AT_SYMLINK_NOFOLLOW)
4080 		lookup_flags &= ~LOOKUP_FOLLOW;
4081 	if (flags & AT_EMPTY_PATH)
4082 		lookup_flags |= LOOKUP_EMPTY;
4083 
4084 	*kattr = (struct mount_kattr) {
4085 		.lookup_flags	= lookup_flags,
4086 		.recurse	= !!(flags & AT_RECURSIVE),
4087 	};
4088 
4089 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4090 		return -EINVAL;
4091 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4092 		return -EINVAL;
4093 	kattr->propagation = attr->propagation;
4094 
4095 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4096 		return -EINVAL;
4097 
4098 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4099 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4100 
4101 	/*
4102 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4103 	 * users wanting to transition to a different atime setting cannot
4104 	 * simply specify the atime setting in @attr_set, but must also
4105 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4106 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4107 	 * @attr_clr and that @attr_set can't have any atime bits set if
4108 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4109 	 */
4110 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4111 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4112 			return -EINVAL;
4113 
4114 		/*
4115 		 * Clear all previous time settings as they are mutually
4116 		 * exclusive.
4117 		 */
4118 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4119 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4120 		case MOUNT_ATTR_RELATIME:
4121 			kattr->attr_set |= MNT_RELATIME;
4122 			break;
4123 		case MOUNT_ATTR_NOATIME:
4124 			kattr->attr_set |= MNT_NOATIME;
4125 			break;
4126 		case MOUNT_ATTR_STRICTATIME:
4127 			break;
4128 		default:
4129 			return -EINVAL;
4130 		}
4131 	} else {
4132 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4133 			return -EINVAL;
4134 	}
4135 
4136 	return build_mount_idmapped(attr, usize, kattr, flags);
4137 }
4138 
4139 static void finish_mount_kattr(struct mount_kattr *kattr)
4140 {
4141 	put_user_ns(kattr->mnt_userns);
4142 	kattr->mnt_userns = NULL;
4143 }
4144 
4145 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4146 		unsigned int, flags, struct mount_attr __user *, uattr,
4147 		size_t, usize)
4148 {
4149 	int err;
4150 	struct path target;
4151 	struct mount_attr attr;
4152 	struct mount_kattr kattr;
4153 
4154 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4155 
4156 	if (flags & ~(AT_EMPTY_PATH |
4157 		      AT_RECURSIVE |
4158 		      AT_SYMLINK_NOFOLLOW |
4159 		      AT_NO_AUTOMOUNT))
4160 		return -EINVAL;
4161 
4162 	if (unlikely(usize > PAGE_SIZE))
4163 		return -E2BIG;
4164 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4165 		return -EINVAL;
4166 
4167 	if (!may_mount())
4168 		return -EPERM;
4169 
4170 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4171 	if (err)
4172 		return err;
4173 
4174 	/* Don't bother walking through the mounts if this is a nop. */
4175 	if (attr.attr_set == 0 &&
4176 	    attr.attr_clr == 0 &&
4177 	    attr.propagation == 0)
4178 		return 0;
4179 
4180 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4181 	if (err)
4182 		return err;
4183 
4184 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4185 	if (err)
4186 		return err;
4187 
4188 	err = do_mount_setattr(&target, &kattr);
4189 	finish_mount_kattr(&kattr);
4190 	path_put(&target);
4191 	return err;
4192 }
4193 
4194 static void __init init_mount_tree(void)
4195 {
4196 	struct vfsmount *mnt;
4197 	struct mount *m;
4198 	struct mnt_namespace *ns;
4199 	struct path root;
4200 
4201 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4202 	if (IS_ERR(mnt))
4203 		panic("Can't create rootfs");
4204 
4205 	ns = alloc_mnt_ns(&init_user_ns, false);
4206 	if (IS_ERR(ns))
4207 		panic("Can't allocate initial namespace");
4208 	m = real_mount(mnt);
4209 	m->mnt_ns = ns;
4210 	ns->root = m;
4211 	ns->mounts = 1;
4212 	list_add(&m->mnt_list, &ns->list);
4213 	init_task.nsproxy->mnt_ns = ns;
4214 	get_mnt_ns(ns);
4215 
4216 	root.mnt = mnt;
4217 	root.dentry = mnt->mnt_root;
4218 	mnt->mnt_flags |= MNT_LOCKED;
4219 
4220 	set_fs_pwd(current->fs, &root);
4221 	set_fs_root(current->fs, &root);
4222 }
4223 
4224 void __init mnt_init(void)
4225 {
4226 	int err;
4227 
4228 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4229 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4230 
4231 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4232 				sizeof(struct hlist_head),
4233 				mhash_entries, 19,
4234 				HASH_ZERO,
4235 				&m_hash_shift, &m_hash_mask, 0, 0);
4236 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4237 				sizeof(struct hlist_head),
4238 				mphash_entries, 19,
4239 				HASH_ZERO,
4240 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4241 
4242 	if (!mount_hashtable || !mountpoint_hashtable)
4243 		panic("Failed to allocate mount hash table\n");
4244 
4245 	kernfs_init();
4246 
4247 	err = sysfs_init();
4248 	if (err)
4249 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4250 			__func__, err);
4251 	fs_kobj = kobject_create_and_add("fs", NULL);
4252 	if (!fs_kobj)
4253 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4254 	shmem_init();
4255 	init_rootfs();
4256 	init_mount_tree();
4257 }
4258 
4259 void put_mnt_ns(struct mnt_namespace *ns)
4260 {
4261 	if (!refcount_dec_and_test(&ns->ns.count))
4262 		return;
4263 	drop_collected_mounts(&ns->root->mnt);
4264 	free_mnt_ns(ns);
4265 }
4266 
4267 struct vfsmount *kern_mount(struct file_system_type *type)
4268 {
4269 	struct vfsmount *mnt;
4270 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4271 	if (!IS_ERR(mnt)) {
4272 		/*
4273 		 * it is a longterm mount, don't release mnt until
4274 		 * we unmount before file sys is unregistered
4275 		*/
4276 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4277 	}
4278 	return mnt;
4279 }
4280 EXPORT_SYMBOL_GPL(kern_mount);
4281 
4282 void kern_unmount(struct vfsmount *mnt)
4283 {
4284 	/* release long term mount so mount point can be released */
4285 	if (!IS_ERR_OR_NULL(mnt)) {
4286 		real_mount(mnt)->mnt_ns = NULL;
4287 		synchronize_rcu();	/* yecchhh... */
4288 		mntput(mnt);
4289 	}
4290 }
4291 EXPORT_SYMBOL(kern_unmount);
4292 
4293 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4294 {
4295 	unsigned int i;
4296 
4297 	for (i = 0; i < num; i++)
4298 		if (mnt[i])
4299 			real_mount(mnt[i])->mnt_ns = NULL;
4300 	synchronize_rcu_expedited();
4301 	for (i = 0; i < num; i++)
4302 		mntput(mnt[i]);
4303 }
4304 EXPORT_SYMBOL(kern_unmount_array);
4305 
4306 bool our_mnt(struct vfsmount *mnt)
4307 {
4308 	return check_mnt(real_mount(mnt));
4309 }
4310 
4311 bool current_chrooted(void)
4312 {
4313 	/* Does the current process have a non-standard root */
4314 	struct path ns_root;
4315 	struct path fs_root;
4316 	bool chrooted;
4317 
4318 	/* Find the namespace root */
4319 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4320 	ns_root.dentry = ns_root.mnt->mnt_root;
4321 	path_get(&ns_root);
4322 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4323 		;
4324 
4325 	get_fs_root(current->fs, &fs_root);
4326 
4327 	chrooted = !path_equal(&fs_root, &ns_root);
4328 
4329 	path_put(&fs_root);
4330 	path_put(&ns_root);
4331 
4332 	return chrooted;
4333 }
4334 
4335 static bool mnt_already_visible(struct mnt_namespace *ns,
4336 				const struct super_block *sb,
4337 				int *new_mnt_flags)
4338 {
4339 	int new_flags = *new_mnt_flags;
4340 	struct mount *mnt;
4341 	bool visible = false;
4342 
4343 	down_read(&namespace_sem);
4344 	lock_ns_list(ns);
4345 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4346 		struct mount *child;
4347 		int mnt_flags;
4348 
4349 		if (mnt_is_cursor(mnt))
4350 			continue;
4351 
4352 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4353 			continue;
4354 
4355 		/* This mount is not fully visible if it's root directory
4356 		 * is not the root directory of the filesystem.
4357 		 */
4358 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4359 			continue;
4360 
4361 		/* A local view of the mount flags */
4362 		mnt_flags = mnt->mnt.mnt_flags;
4363 
4364 		/* Don't miss readonly hidden in the superblock flags */
4365 		if (sb_rdonly(mnt->mnt.mnt_sb))
4366 			mnt_flags |= MNT_LOCK_READONLY;
4367 
4368 		/* Verify the mount flags are equal to or more permissive
4369 		 * than the proposed new mount.
4370 		 */
4371 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4372 		    !(new_flags & MNT_READONLY))
4373 			continue;
4374 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4375 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4376 			continue;
4377 
4378 		/* This mount is not fully visible if there are any
4379 		 * locked child mounts that cover anything except for
4380 		 * empty directories.
4381 		 */
4382 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4383 			struct inode *inode = child->mnt_mountpoint->d_inode;
4384 			/* Only worry about locked mounts */
4385 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4386 				continue;
4387 			/* Is the directory permanetly empty? */
4388 			if (!is_empty_dir_inode(inode))
4389 				goto next;
4390 		}
4391 		/* Preserve the locked attributes */
4392 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4393 					       MNT_LOCK_ATIME);
4394 		visible = true;
4395 		goto found;
4396 	next:	;
4397 	}
4398 found:
4399 	unlock_ns_list(ns);
4400 	up_read(&namespace_sem);
4401 	return visible;
4402 }
4403 
4404 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4405 {
4406 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4407 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4408 	unsigned long s_iflags;
4409 
4410 	if (ns->user_ns == &init_user_ns)
4411 		return false;
4412 
4413 	/* Can this filesystem be too revealing? */
4414 	s_iflags = sb->s_iflags;
4415 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4416 		return false;
4417 
4418 	if ((s_iflags & required_iflags) != required_iflags) {
4419 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4420 			  required_iflags);
4421 		return true;
4422 	}
4423 
4424 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4425 }
4426 
4427 bool mnt_may_suid(struct vfsmount *mnt)
4428 {
4429 	/*
4430 	 * Foreign mounts (accessed via fchdir or through /proc
4431 	 * symlinks) are always treated as if they are nosuid.  This
4432 	 * prevents namespaces from trusting potentially unsafe
4433 	 * suid/sgid bits, file caps, or security labels that originate
4434 	 * in other namespaces.
4435 	 */
4436 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4437 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4438 }
4439 
4440 static struct ns_common *mntns_get(struct task_struct *task)
4441 {
4442 	struct ns_common *ns = NULL;
4443 	struct nsproxy *nsproxy;
4444 
4445 	task_lock(task);
4446 	nsproxy = task->nsproxy;
4447 	if (nsproxy) {
4448 		ns = &nsproxy->mnt_ns->ns;
4449 		get_mnt_ns(to_mnt_ns(ns));
4450 	}
4451 	task_unlock(task);
4452 
4453 	return ns;
4454 }
4455 
4456 static void mntns_put(struct ns_common *ns)
4457 {
4458 	put_mnt_ns(to_mnt_ns(ns));
4459 }
4460 
4461 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4462 {
4463 	struct nsproxy *nsproxy = nsset->nsproxy;
4464 	struct fs_struct *fs = nsset->fs;
4465 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4466 	struct user_namespace *user_ns = nsset->cred->user_ns;
4467 	struct path root;
4468 	int err;
4469 
4470 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4471 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4472 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4473 		return -EPERM;
4474 
4475 	if (is_anon_ns(mnt_ns))
4476 		return -EINVAL;
4477 
4478 	if (fs->users != 1)
4479 		return -EINVAL;
4480 
4481 	get_mnt_ns(mnt_ns);
4482 	old_mnt_ns = nsproxy->mnt_ns;
4483 	nsproxy->mnt_ns = mnt_ns;
4484 
4485 	/* Find the root */
4486 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4487 				"/", LOOKUP_DOWN, &root);
4488 	if (err) {
4489 		/* revert to old namespace */
4490 		nsproxy->mnt_ns = old_mnt_ns;
4491 		put_mnt_ns(mnt_ns);
4492 		return err;
4493 	}
4494 
4495 	put_mnt_ns(old_mnt_ns);
4496 
4497 	/* Update the pwd and root */
4498 	set_fs_pwd(fs, &root);
4499 	set_fs_root(fs, &root);
4500 
4501 	path_put(&root);
4502 	return 0;
4503 }
4504 
4505 static struct user_namespace *mntns_owner(struct ns_common *ns)
4506 {
4507 	return to_mnt_ns(ns)->user_ns;
4508 }
4509 
4510 const struct proc_ns_operations mntns_operations = {
4511 	.name		= "mnt",
4512 	.type		= CLONE_NEWNS,
4513 	.get		= mntns_get,
4514 	.put		= mntns_put,
4515 	.install	= mntns_install,
4516 	.owner		= mntns_owner,
4517 };
4518