xref: /linux/fs/namespace.c (revision 85c8700cb6e67cac228bfb313fa8e33d1750410f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
83 
84 #ifdef CONFIG_FSNOTIFY
85 LIST_HEAD(notify_list); /* protected by namespace_sem */
86 #endif
87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
89 
90 struct mount_kattr {
91 	unsigned int attr_set;
92 	unsigned int attr_clr;
93 	unsigned int propagation;
94 	unsigned int lookup_flags;
95 	bool recurse;
96 	struct user_namespace *mnt_userns;
97 	struct mnt_idmap *mnt_idmap;
98 };
99 
100 /* /sys/fs */
101 struct kobject *fs_kobj __ro_after_init;
102 EXPORT_SYMBOL_GPL(fs_kobj);
103 
104 /*
105  * vfsmount lock may be taken for read to prevent changes to the
106  * vfsmount hash, ie. during mountpoint lookups or walking back
107  * up the tree.
108  *
109  * It should be taken for write in all cases where the vfsmount
110  * tree or hash is modified or when a vfsmount structure is modified.
111  */
112 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
113 
114 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
115 {
116 	if (!node)
117 		return NULL;
118 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
119 }
120 
121 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
122 {
123 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
124 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
125 	u64 seq_a = ns_a->seq;
126 	u64 seq_b = ns_b->seq;
127 
128 	if (seq_a < seq_b)
129 		return -1;
130 	if (seq_a > seq_b)
131 		return 1;
132 	return 0;
133 }
134 
135 static inline void mnt_ns_tree_write_lock(void)
136 {
137 	write_seqlock(&mnt_ns_tree_lock);
138 }
139 
140 static inline void mnt_ns_tree_write_unlock(void)
141 {
142 	write_sequnlock(&mnt_ns_tree_lock);
143 }
144 
145 static void mnt_ns_tree_add(struct mnt_namespace *ns)
146 {
147 	struct rb_node *node, *prev;
148 
149 	mnt_ns_tree_write_lock();
150 	node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
151 	/*
152 	 * If there's no previous entry simply add it after the
153 	 * head and if there is add it after the previous entry.
154 	 */
155 	prev = rb_prev(&ns->mnt_ns_tree_node);
156 	if (!prev)
157 		list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
158 	else
159 		list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
160 	mnt_ns_tree_write_unlock();
161 
162 	WARN_ON_ONCE(node);
163 }
164 
165 static void mnt_ns_release(struct mnt_namespace *ns)
166 {
167 	/* keep alive for {list,stat}mount() */
168 	if (refcount_dec_and_test(&ns->passive)) {
169 		fsnotify_mntns_delete(ns);
170 		put_user_ns(ns->user_ns);
171 		kfree(ns);
172 	}
173 }
174 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
175 
176 static void mnt_ns_release_rcu(struct rcu_head *rcu)
177 {
178 	mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
179 }
180 
181 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
182 {
183 	/* remove from global mount namespace list */
184 	if (!is_anon_ns(ns)) {
185 		mnt_ns_tree_write_lock();
186 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
187 		list_bidir_del_rcu(&ns->mnt_ns_list);
188 		mnt_ns_tree_write_unlock();
189 	}
190 
191 	call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
192 }
193 
194 static int mnt_ns_find(const void *key, const struct rb_node *node)
195 {
196 	const u64 mnt_ns_id = *(u64 *)key;
197 	const struct mnt_namespace *ns = node_to_mnt_ns(node);
198 
199 	if (mnt_ns_id < ns->seq)
200 		return -1;
201 	if (mnt_ns_id > ns->seq)
202 		return 1;
203 	return 0;
204 }
205 
206 /*
207  * Lookup a mount namespace by id and take a passive reference count. Taking a
208  * passive reference means the mount namespace can be emptied if e.g., the last
209  * task holding an active reference exits. To access the mounts of the
210  * namespace the @namespace_sem must first be acquired. If the namespace has
211  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
212  * see that the mount rbtree of the namespace is empty.
213  *
214  * Note the lookup is lockless protected by a sequence counter. We only
215  * need to guard against false negatives as false positives aren't
216  * possible. So if we didn't find a mount namespace and the sequence
217  * counter has changed we need to retry. If the sequence counter is
218  * still the same we know the search actually failed.
219  */
220 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
221 {
222 	struct mnt_namespace *ns;
223 	struct rb_node *node;
224 	unsigned int seq;
225 
226 	guard(rcu)();
227 	do {
228 		seq = read_seqbegin(&mnt_ns_tree_lock);
229 		node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
230 		if (node)
231 			break;
232 	} while (read_seqretry(&mnt_ns_tree_lock, seq));
233 
234 	if (!node)
235 		return NULL;
236 
237 	/*
238 	 * The last reference count is put with RCU delay so we can
239 	 * unconditonally acquire a reference here.
240 	 */
241 	ns = node_to_mnt_ns(node);
242 	refcount_inc(&ns->passive);
243 	return ns;
244 }
245 
246 static inline void lock_mount_hash(void)
247 {
248 	write_seqlock(&mount_lock);
249 }
250 
251 static inline void unlock_mount_hash(void)
252 {
253 	write_sequnlock(&mount_lock);
254 }
255 
256 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
257 {
258 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
259 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
260 	tmp = tmp + (tmp >> m_hash_shift);
261 	return &mount_hashtable[tmp & m_hash_mask];
262 }
263 
264 static inline struct hlist_head *mp_hash(struct dentry *dentry)
265 {
266 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
267 	tmp = tmp + (tmp >> mp_hash_shift);
268 	return &mountpoint_hashtable[tmp & mp_hash_mask];
269 }
270 
271 static int mnt_alloc_id(struct mount *mnt)
272 {
273 	int res;
274 
275 	xa_lock(&mnt_id_xa);
276 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
277 	if (!res)
278 		mnt->mnt_id_unique = ++mnt_id_ctr;
279 	xa_unlock(&mnt_id_xa);
280 	return res;
281 }
282 
283 static void mnt_free_id(struct mount *mnt)
284 {
285 	xa_erase(&mnt_id_xa, mnt->mnt_id);
286 }
287 
288 /*
289  * Allocate a new peer group ID
290  */
291 static int mnt_alloc_group_id(struct mount *mnt)
292 {
293 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
294 
295 	if (res < 0)
296 		return res;
297 	mnt->mnt_group_id = res;
298 	return 0;
299 }
300 
301 /*
302  * Release a peer group ID
303  */
304 void mnt_release_group_id(struct mount *mnt)
305 {
306 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
307 	mnt->mnt_group_id = 0;
308 }
309 
310 /*
311  * vfsmount lock must be held for read
312  */
313 static inline void mnt_add_count(struct mount *mnt, int n)
314 {
315 #ifdef CONFIG_SMP
316 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
317 #else
318 	preempt_disable();
319 	mnt->mnt_count += n;
320 	preempt_enable();
321 #endif
322 }
323 
324 /*
325  * vfsmount lock must be held for write
326  */
327 int mnt_get_count(struct mount *mnt)
328 {
329 #ifdef CONFIG_SMP
330 	int count = 0;
331 	int cpu;
332 
333 	for_each_possible_cpu(cpu) {
334 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
335 	}
336 
337 	return count;
338 #else
339 	return mnt->mnt_count;
340 #endif
341 }
342 
343 static struct mount *alloc_vfsmnt(const char *name)
344 {
345 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
346 	if (mnt) {
347 		int err;
348 
349 		err = mnt_alloc_id(mnt);
350 		if (err)
351 			goto out_free_cache;
352 
353 		if (name) {
354 			mnt->mnt_devname = kstrdup_const(name,
355 							 GFP_KERNEL_ACCOUNT);
356 			if (!mnt->mnt_devname)
357 				goto out_free_id;
358 		}
359 
360 #ifdef CONFIG_SMP
361 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
362 		if (!mnt->mnt_pcp)
363 			goto out_free_devname;
364 
365 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
366 #else
367 		mnt->mnt_count = 1;
368 		mnt->mnt_writers = 0;
369 #endif
370 
371 		INIT_HLIST_NODE(&mnt->mnt_hash);
372 		INIT_LIST_HEAD(&mnt->mnt_child);
373 		INIT_LIST_HEAD(&mnt->mnt_mounts);
374 		INIT_LIST_HEAD(&mnt->mnt_list);
375 		INIT_LIST_HEAD(&mnt->mnt_expire);
376 		INIT_LIST_HEAD(&mnt->mnt_share);
377 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
378 		INIT_LIST_HEAD(&mnt->mnt_slave);
379 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
380 		INIT_LIST_HEAD(&mnt->mnt_umounting);
381 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
382 		RB_CLEAR_NODE(&mnt->mnt_node);
383 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
384 	}
385 	return mnt;
386 
387 #ifdef CONFIG_SMP
388 out_free_devname:
389 	kfree_const(mnt->mnt_devname);
390 #endif
391 out_free_id:
392 	mnt_free_id(mnt);
393 out_free_cache:
394 	kmem_cache_free(mnt_cache, mnt);
395 	return NULL;
396 }
397 
398 /*
399  * Most r/o checks on a fs are for operations that take
400  * discrete amounts of time, like a write() or unlink().
401  * We must keep track of when those operations start
402  * (for permission checks) and when they end, so that
403  * we can determine when writes are able to occur to
404  * a filesystem.
405  */
406 /*
407  * __mnt_is_readonly: check whether a mount is read-only
408  * @mnt: the mount to check for its write status
409  *
410  * This shouldn't be used directly ouside of the VFS.
411  * It does not guarantee that the filesystem will stay
412  * r/w, just that it is right *now*.  This can not and
413  * should not be used in place of IS_RDONLY(inode).
414  * mnt_want/drop_write() will _keep_ the filesystem
415  * r/w.
416  */
417 bool __mnt_is_readonly(struct vfsmount *mnt)
418 {
419 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
420 }
421 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
422 
423 static inline void mnt_inc_writers(struct mount *mnt)
424 {
425 #ifdef CONFIG_SMP
426 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
427 #else
428 	mnt->mnt_writers++;
429 #endif
430 }
431 
432 static inline void mnt_dec_writers(struct mount *mnt)
433 {
434 #ifdef CONFIG_SMP
435 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
436 #else
437 	mnt->mnt_writers--;
438 #endif
439 }
440 
441 static unsigned int mnt_get_writers(struct mount *mnt)
442 {
443 #ifdef CONFIG_SMP
444 	unsigned int count = 0;
445 	int cpu;
446 
447 	for_each_possible_cpu(cpu) {
448 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
449 	}
450 
451 	return count;
452 #else
453 	return mnt->mnt_writers;
454 #endif
455 }
456 
457 static int mnt_is_readonly(struct vfsmount *mnt)
458 {
459 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
460 		return 1;
461 	/*
462 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
463 	 * making sure if we don't see s_readonly_remount set yet, we also will
464 	 * not see any superblock / mount flag changes done by remount.
465 	 * It also pairs with the barrier in sb_end_ro_state_change()
466 	 * assuring that if we see s_readonly_remount already cleared, we will
467 	 * see the values of superblock / mount flags updated by remount.
468 	 */
469 	smp_rmb();
470 	return __mnt_is_readonly(mnt);
471 }
472 
473 /*
474  * Most r/o & frozen checks on a fs are for operations that take discrete
475  * amounts of time, like a write() or unlink().  We must keep track of when
476  * those operations start (for permission checks) and when they end, so that we
477  * can determine when writes are able to occur to a filesystem.
478  */
479 /**
480  * mnt_get_write_access - get write access to a mount without freeze protection
481  * @m: the mount on which to take a write
482  *
483  * This tells the low-level filesystem that a write is about to be performed to
484  * it, and makes sure that writes are allowed (mnt it read-write) before
485  * returning success. This operation does not protect against filesystem being
486  * frozen. When the write operation is finished, mnt_put_write_access() must be
487  * called. This is effectively a refcount.
488  */
489 int mnt_get_write_access(struct vfsmount *m)
490 {
491 	struct mount *mnt = real_mount(m);
492 	int ret = 0;
493 
494 	preempt_disable();
495 	mnt_inc_writers(mnt);
496 	/*
497 	 * The store to mnt_inc_writers must be visible before we pass
498 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
499 	 * incremented count after it has set MNT_WRITE_HOLD.
500 	 */
501 	smp_mb();
502 	might_lock(&mount_lock.lock);
503 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
504 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
505 			cpu_relax();
506 		} else {
507 			/*
508 			 * This prevents priority inversion, if the task
509 			 * setting MNT_WRITE_HOLD got preempted on a remote
510 			 * CPU, and it prevents life lock if the task setting
511 			 * MNT_WRITE_HOLD has a lower priority and is bound to
512 			 * the same CPU as the task that is spinning here.
513 			 */
514 			preempt_enable();
515 			lock_mount_hash();
516 			unlock_mount_hash();
517 			preempt_disable();
518 		}
519 	}
520 	/*
521 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
522 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
523 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
524 	 * mnt_is_readonly() and bail in case we are racing with remount
525 	 * read-only.
526 	 */
527 	smp_rmb();
528 	if (mnt_is_readonly(m)) {
529 		mnt_dec_writers(mnt);
530 		ret = -EROFS;
531 	}
532 	preempt_enable();
533 
534 	return ret;
535 }
536 EXPORT_SYMBOL_GPL(mnt_get_write_access);
537 
538 /**
539  * mnt_want_write - get write access to a mount
540  * @m: the mount on which to take a write
541  *
542  * This tells the low-level filesystem that a write is about to be performed to
543  * it, and makes sure that writes are allowed (mount is read-write, filesystem
544  * is not frozen) before returning success.  When the write operation is
545  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
546  */
547 int mnt_want_write(struct vfsmount *m)
548 {
549 	int ret;
550 
551 	sb_start_write(m->mnt_sb);
552 	ret = mnt_get_write_access(m);
553 	if (ret)
554 		sb_end_write(m->mnt_sb);
555 	return ret;
556 }
557 EXPORT_SYMBOL_GPL(mnt_want_write);
558 
559 /**
560  * mnt_get_write_access_file - get write access to a file's mount
561  * @file: the file who's mount on which to take a write
562  *
563  * This is like mnt_get_write_access, but if @file is already open for write it
564  * skips incrementing mnt_writers (since the open file already has a reference)
565  * and instead only does the check for emergency r/o remounts.  This must be
566  * paired with mnt_put_write_access_file.
567  */
568 int mnt_get_write_access_file(struct file *file)
569 {
570 	if (file->f_mode & FMODE_WRITER) {
571 		/*
572 		 * Superblock may have become readonly while there are still
573 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
574 		 */
575 		if (__mnt_is_readonly(file->f_path.mnt))
576 			return -EROFS;
577 		return 0;
578 	}
579 	return mnt_get_write_access(file->f_path.mnt);
580 }
581 
582 /**
583  * mnt_want_write_file - get write access to a file's mount
584  * @file: the file who's mount on which to take a write
585  *
586  * This is like mnt_want_write, but if the file is already open for writing it
587  * skips incrementing mnt_writers (since the open file already has a reference)
588  * and instead only does the freeze protection and the check for emergency r/o
589  * remounts.  This must be paired with mnt_drop_write_file.
590  */
591 int mnt_want_write_file(struct file *file)
592 {
593 	int ret;
594 
595 	sb_start_write(file_inode(file)->i_sb);
596 	ret = mnt_get_write_access_file(file);
597 	if (ret)
598 		sb_end_write(file_inode(file)->i_sb);
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(mnt_want_write_file);
602 
603 /**
604  * mnt_put_write_access - give up write access to a mount
605  * @mnt: the mount on which to give up write access
606  *
607  * Tells the low-level filesystem that we are done
608  * performing writes to it.  Must be matched with
609  * mnt_get_write_access() call above.
610  */
611 void mnt_put_write_access(struct vfsmount *mnt)
612 {
613 	preempt_disable();
614 	mnt_dec_writers(real_mount(mnt));
615 	preempt_enable();
616 }
617 EXPORT_SYMBOL_GPL(mnt_put_write_access);
618 
619 /**
620  * mnt_drop_write - give up write access to a mount
621  * @mnt: the mount on which to give up write access
622  *
623  * Tells the low-level filesystem that we are done performing writes to it and
624  * also allows filesystem to be frozen again.  Must be matched with
625  * mnt_want_write() call above.
626  */
627 void mnt_drop_write(struct vfsmount *mnt)
628 {
629 	mnt_put_write_access(mnt);
630 	sb_end_write(mnt->mnt_sb);
631 }
632 EXPORT_SYMBOL_GPL(mnt_drop_write);
633 
634 void mnt_put_write_access_file(struct file *file)
635 {
636 	if (!(file->f_mode & FMODE_WRITER))
637 		mnt_put_write_access(file->f_path.mnt);
638 }
639 
640 void mnt_drop_write_file(struct file *file)
641 {
642 	mnt_put_write_access_file(file);
643 	sb_end_write(file_inode(file)->i_sb);
644 }
645 EXPORT_SYMBOL(mnt_drop_write_file);
646 
647 /**
648  * mnt_hold_writers - prevent write access to the given mount
649  * @mnt: mnt to prevent write access to
650  *
651  * Prevents write access to @mnt if there are no active writers for @mnt.
652  * This function needs to be called and return successfully before changing
653  * properties of @mnt that need to remain stable for callers with write access
654  * to @mnt.
655  *
656  * After this functions has been called successfully callers must pair it with
657  * a call to mnt_unhold_writers() in order to stop preventing write access to
658  * @mnt.
659  *
660  * Context: This function expects lock_mount_hash() to be held serializing
661  *          setting MNT_WRITE_HOLD.
662  * Return: On success 0 is returned.
663  *	   On error, -EBUSY is returned.
664  */
665 static inline int mnt_hold_writers(struct mount *mnt)
666 {
667 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
668 	/*
669 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
670 	 * should be visible before we do.
671 	 */
672 	smp_mb();
673 
674 	/*
675 	 * With writers on hold, if this value is zero, then there are
676 	 * definitely no active writers (although held writers may subsequently
677 	 * increment the count, they'll have to wait, and decrement it after
678 	 * seeing MNT_READONLY).
679 	 *
680 	 * It is OK to have counter incremented on one CPU and decremented on
681 	 * another: the sum will add up correctly. The danger would be when we
682 	 * sum up each counter, if we read a counter before it is incremented,
683 	 * but then read another CPU's count which it has been subsequently
684 	 * decremented from -- we would see more decrements than we should.
685 	 * MNT_WRITE_HOLD protects against this scenario, because
686 	 * mnt_want_write first increments count, then smp_mb, then spins on
687 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
688 	 * we're counting up here.
689 	 */
690 	if (mnt_get_writers(mnt) > 0)
691 		return -EBUSY;
692 
693 	return 0;
694 }
695 
696 /**
697  * mnt_unhold_writers - stop preventing write access to the given mount
698  * @mnt: mnt to stop preventing write access to
699  *
700  * Stop preventing write access to @mnt allowing callers to gain write access
701  * to @mnt again.
702  *
703  * This function can only be called after a successful call to
704  * mnt_hold_writers().
705  *
706  * Context: This function expects lock_mount_hash() to be held.
707  */
708 static inline void mnt_unhold_writers(struct mount *mnt)
709 {
710 	/*
711 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
712 	 * that become unheld will see MNT_READONLY.
713 	 */
714 	smp_wmb();
715 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
716 }
717 
718 static int mnt_make_readonly(struct mount *mnt)
719 {
720 	int ret;
721 
722 	ret = mnt_hold_writers(mnt);
723 	if (!ret)
724 		mnt->mnt.mnt_flags |= MNT_READONLY;
725 	mnt_unhold_writers(mnt);
726 	return ret;
727 }
728 
729 int sb_prepare_remount_readonly(struct super_block *sb)
730 {
731 	struct mount *mnt;
732 	int err = 0;
733 
734 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
735 	if (atomic_long_read(&sb->s_remove_count))
736 		return -EBUSY;
737 
738 	lock_mount_hash();
739 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
740 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
741 			err = mnt_hold_writers(mnt);
742 			if (err)
743 				break;
744 		}
745 	}
746 	if (!err && atomic_long_read(&sb->s_remove_count))
747 		err = -EBUSY;
748 
749 	if (!err)
750 		sb_start_ro_state_change(sb);
751 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
752 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
753 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
754 	}
755 	unlock_mount_hash();
756 
757 	return err;
758 }
759 
760 static void free_vfsmnt(struct mount *mnt)
761 {
762 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
763 	kfree_const(mnt->mnt_devname);
764 #ifdef CONFIG_SMP
765 	free_percpu(mnt->mnt_pcp);
766 #endif
767 	kmem_cache_free(mnt_cache, mnt);
768 }
769 
770 static void delayed_free_vfsmnt(struct rcu_head *head)
771 {
772 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
773 }
774 
775 /* call under rcu_read_lock */
776 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
777 {
778 	struct mount *mnt;
779 	if (read_seqretry(&mount_lock, seq))
780 		return 1;
781 	if (bastard == NULL)
782 		return 0;
783 	mnt = real_mount(bastard);
784 	mnt_add_count(mnt, 1);
785 	smp_mb();			// see mntput_no_expire()
786 	if (likely(!read_seqretry(&mount_lock, seq)))
787 		return 0;
788 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
789 		mnt_add_count(mnt, -1);
790 		return 1;
791 	}
792 	lock_mount_hash();
793 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
794 		mnt_add_count(mnt, -1);
795 		unlock_mount_hash();
796 		return 1;
797 	}
798 	unlock_mount_hash();
799 	/* caller will mntput() */
800 	return -1;
801 }
802 
803 /* call under rcu_read_lock */
804 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
805 {
806 	int res = __legitimize_mnt(bastard, seq);
807 	if (likely(!res))
808 		return true;
809 	if (unlikely(res < 0)) {
810 		rcu_read_unlock();
811 		mntput(bastard);
812 		rcu_read_lock();
813 	}
814 	return false;
815 }
816 
817 /**
818  * __lookup_mnt - find first child mount
819  * @mnt:	parent mount
820  * @dentry:	mountpoint
821  *
822  * If @mnt has a child mount @c mounted @dentry find and return it.
823  *
824  * Note that the child mount @c need not be unique. There are cases
825  * where shadow mounts are created. For example, during mount
826  * propagation when a source mount @mnt whose root got overmounted by a
827  * mount @o after path lookup but before @namespace_sem could be
828  * acquired gets copied and propagated. So @mnt gets copied including
829  * @o. When @mnt is propagated to a destination mount @d that already
830  * has another mount @n mounted at the same mountpoint then the source
831  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
832  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
833  * on @dentry.
834  *
835  * Return: The first child of @mnt mounted @dentry or NULL.
836  */
837 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
838 {
839 	struct hlist_head *head = m_hash(mnt, dentry);
840 	struct mount *p;
841 
842 	hlist_for_each_entry_rcu(p, head, mnt_hash)
843 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
844 			return p;
845 	return NULL;
846 }
847 
848 /*
849  * lookup_mnt - Return the first child mount mounted at path
850  *
851  * "First" means first mounted chronologically.  If you create the
852  * following mounts:
853  *
854  * mount /dev/sda1 /mnt
855  * mount /dev/sda2 /mnt
856  * mount /dev/sda3 /mnt
857  *
858  * Then lookup_mnt() on the base /mnt dentry in the root mount will
859  * return successively the root dentry and vfsmount of /dev/sda1, then
860  * /dev/sda2, then /dev/sda3, then NULL.
861  *
862  * lookup_mnt takes a reference to the found vfsmount.
863  */
864 struct vfsmount *lookup_mnt(const struct path *path)
865 {
866 	struct mount *child_mnt;
867 	struct vfsmount *m;
868 	unsigned seq;
869 
870 	rcu_read_lock();
871 	do {
872 		seq = read_seqbegin(&mount_lock);
873 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
874 		m = child_mnt ? &child_mnt->mnt : NULL;
875 	} while (!legitimize_mnt(m, seq));
876 	rcu_read_unlock();
877 	return m;
878 }
879 
880 /*
881  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
882  *                         current mount namespace.
883  *
884  * The common case is dentries are not mountpoints at all and that
885  * test is handled inline.  For the slow case when we are actually
886  * dealing with a mountpoint of some kind, walk through all of the
887  * mounts in the current mount namespace and test to see if the dentry
888  * is a mountpoint.
889  *
890  * The mount_hashtable is not usable in the context because we
891  * need to identify all mounts that may be in the current mount
892  * namespace not just a mount that happens to have some specified
893  * parent mount.
894  */
895 bool __is_local_mountpoint(struct dentry *dentry)
896 {
897 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
898 	struct mount *mnt, *n;
899 	bool is_covered = false;
900 
901 	down_read(&namespace_sem);
902 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
903 		is_covered = (mnt->mnt_mountpoint == dentry);
904 		if (is_covered)
905 			break;
906 	}
907 	up_read(&namespace_sem);
908 
909 	return is_covered;
910 }
911 
912 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
913 {
914 	struct hlist_head *chain = mp_hash(dentry);
915 	struct mountpoint *mp;
916 
917 	hlist_for_each_entry(mp, chain, m_hash) {
918 		if (mp->m_dentry == dentry) {
919 			mp->m_count++;
920 			return mp;
921 		}
922 	}
923 	return NULL;
924 }
925 
926 static struct mountpoint *get_mountpoint(struct dentry *dentry)
927 {
928 	struct mountpoint *mp, *new = NULL;
929 	int ret;
930 
931 	if (d_mountpoint(dentry)) {
932 		/* might be worth a WARN_ON() */
933 		if (d_unlinked(dentry))
934 			return ERR_PTR(-ENOENT);
935 mountpoint:
936 		read_seqlock_excl(&mount_lock);
937 		mp = lookup_mountpoint(dentry);
938 		read_sequnlock_excl(&mount_lock);
939 		if (mp)
940 			goto done;
941 	}
942 
943 	if (!new)
944 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
945 	if (!new)
946 		return ERR_PTR(-ENOMEM);
947 
948 
949 	/* Exactly one processes may set d_mounted */
950 	ret = d_set_mounted(dentry);
951 
952 	/* Someone else set d_mounted? */
953 	if (ret == -EBUSY)
954 		goto mountpoint;
955 
956 	/* The dentry is not available as a mountpoint? */
957 	mp = ERR_PTR(ret);
958 	if (ret)
959 		goto done;
960 
961 	/* Add the new mountpoint to the hash table */
962 	read_seqlock_excl(&mount_lock);
963 	new->m_dentry = dget(dentry);
964 	new->m_count = 1;
965 	hlist_add_head(&new->m_hash, mp_hash(dentry));
966 	INIT_HLIST_HEAD(&new->m_list);
967 	read_sequnlock_excl(&mount_lock);
968 
969 	mp = new;
970 	new = NULL;
971 done:
972 	kfree(new);
973 	return mp;
974 }
975 
976 /*
977  * vfsmount lock must be held.  Additionally, the caller is responsible
978  * for serializing calls for given disposal list.
979  */
980 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
981 {
982 	if (!--mp->m_count) {
983 		struct dentry *dentry = mp->m_dentry;
984 		BUG_ON(!hlist_empty(&mp->m_list));
985 		spin_lock(&dentry->d_lock);
986 		dentry->d_flags &= ~DCACHE_MOUNTED;
987 		spin_unlock(&dentry->d_lock);
988 		dput_to_list(dentry, list);
989 		hlist_del(&mp->m_hash);
990 		kfree(mp);
991 	}
992 }
993 
994 /* called with namespace_lock and vfsmount lock */
995 static void put_mountpoint(struct mountpoint *mp)
996 {
997 	__put_mountpoint(mp, &ex_mountpoints);
998 }
999 
1000 static inline int check_mnt(struct mount *mnt)
1001 {
1002 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
1003 }
1004 
1005 /*
1006  * vfsmount lock must be held for write
1007  */
1008 static void touch_mnt_namespace(struct mnt_namespace *ns)
1009 {
1010 	if (ns) {
1011 		ns->event = ++event;
1012 		wake_up_interruptible(&ns->poll);
1013 	}
1014 }
1015 
1016 /*
1017  * vfsmount lock must be held for write
1018  */
1019 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1020 {
1021 	if (ns && ns->event != event) {
1022 		ns->event = event;
1023 		wake_up_interruptible(&ns->poll);
1024 	}
1025 }
1026 
1027 /*
1028  * vfsmount lock must be held for write
1029  */
1030 static struct mountpoint *unhash_mnt(struct mount *mnt)
1031 {
1032 	struct mountpoint *mp;
1033 	mnt->mnt_parent = mnt;
1034 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1035 	list_del_init(&mnt->mnt_child);
1036 	hlist_del_init_rcu(&mnt->mnt_hash);
1037 	hlist_del_init(&mnt->mnt_mp_list);
1038 	mp = mnt->mnt_mp;
1039 	mnt->mnt_mp = NULL;
1040 	return mp;
1041 }
1042 
1043 /*
1044  * vfsmount lock must be held for write
1045  */
1046 static void umount_mnt(struct mount *mnt)
1047 {
1048 	put_mountpoint(unhash_mnt(mnt));
1049 }
1050 
1051 /*
1052  * vfsmount lock must be held for write
1053  */
1054 void mnt_set_mountpoint(struct mount *mnt,
1055 			struct mountpoint *mp,
1056 			struct mount *child_mnt)
1057 {
1058 	mp->m_count++;
1059 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1060 	child_mnt->mnt_mountpoint = mp->m_dentry;
1061 	child_mnt->mnt_parent = mnt;
1062 	child_mnt->mnt_mp = mp;
1063 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1064 }
1065 
1066 /**
1067  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1068  *
1069  * @new_parent: the source mount
1070  * @top_mnt:    the mount beneath which @new_parent is mounted
1071  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1072  *
1073  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1074  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1075  * @new_mp. And mount @new_parent on the old parent and old
1076  * mountpoint of @top_mnt.
1077  *
1078  * Context: This function expects namespace_lock() and lock_mount_hash()
1079  *          to have been acquired in that order.
1080  */
1081 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1082 				       struct mount *top_mnt,
1083 				       struct mountpoint *new_mp)
1084 {
1085 	struct mount *old_top_parent = top_mnt->mnt_parent;
1086 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1087 
1088 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1089 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1090 }
1091 
1092 
1093 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1094 {
1095 	hlist_add_head_rcu(&mnt->mnt_hash,
1096 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1097 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1098 }
1099 
1100 /**
1101  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1102  *              list of child mounts
1103  * @parent:  the parent
1104  * @mnt:     the new mount
1105  * @mp:      the new mountpoint
1106  * @beneath: whether to mount @mnt beneath or on top of @parent
1107  *
1108  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1109  * to @parent's child mount list and to @mount_hashtable.
1110  *
1111  * If @beneath is true, remove @mnt from its current parent and
1112  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1113  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1114  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1115  *
1116  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1117  * to the correct parent.
1118  *
1119  * Context: This function expects namespace_lock() and lock_mount_hash()
1120  *          to have been acquired in that order.
1121  */
1122 static void attach_mnt(struct mount *mnt, struct mount *parent,
1123 		       struct mountpoint *mp, bool beneath)
1124 {
1125 	if (beneath)
1126 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1127 	else
1128 		mnt_set_mountpoint(parent, mp, mnt);
1129 	/*
1130 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1131 	 * beneath @parent then @mnt will need to be attached to
1132 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1133 	 * isn't the same mount as @parent.
1134 	 */
1135 	__attach_mnt(mnt, mnt->mnt_parent);
1136 }
1137 
1138 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1139 {
1140 	struct mountpoint *old_mp = mnt->mnt_mp;
1141 	struct mount *old_parent = mnt->mnt_parent;
1142 
1143 	list_del_init(&mnt->mnt_child);
1144 	hlist_del_init(&mnt->mnt_mp_list);
1145 	hlist_del_init_rcu(&mnt->mnt_hash);
1146 
1147 	attach_mnt(mnt, parent, mp, false);
1148 
1149 	put_mountpoint(old_mp);
1150 	mnt_add_count(old_parent, -1);
1151 }
1152 
1153 static inline struct mount *node_to_mount(struct rb_node *node)
1154 {
1155 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1156 }
1157 
1158 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1159 {
1160 	struct rb_node **link = &ns->mounts.rb_node;
1161 	struct rb_node *parent = NULL;
1162 	bool mnt_first_node = true, mnt_last_node = true;
1163 
1164 	WARN_ON(mnt_ns_attached(mnt));
1165 	mnt->mnt_ns = ns;
1166 	while (*link) {
1167 		parent = *link;
1168 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1169 			link = &parent->rb_left;
1170 			mnt_last_node = false;
1171 		} else {
1172 			link = &parent->rb_right;
1173 			mnt_first_node = false;
1174 		}
1175 	}
1176 
1177 	if (mnt_last_node)
1178 		ns->mnt_last_node = &mnt->mnt_node;
1179 	if (mnt_first_node)
1180 		ns->mnt_first_node = &mnt->mnt_node;
1181 	rb_link_node(&mnt->mnt_node, parent, link);
1182 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1183 
1184 	mnt_notify_add(mnt);
1185 }
1186 
1187 /*
1188  * vfsmount lock must be held for write
1189  */
1190 static void commit_tree(struct mount *mnt)
1191 {
1192 	struct mount *parent = mnt->mnt_parent;
1193 	struct mount *m;
1194 	LIST_HEAD(head);
1195 	struct mnt_namespace *n = parent->mnt_ns;
1196 
1197 	BUG_ON(parent == mnt);
1198 
1199 	list_add_tail(&head, &mnt->mnt_list);
1200 	while (!list_empty(&head)) {
1201 		m = list_first_entry(&head, typeof(*m), mnt_list);
1202 		list_del(&m->mnt_list);
1203 
1204 		mnt_add_to_ns(n, m);
1205 	}
1206 	n->nr_mounts += n->pending_mounts;
1207 	n->pending_mounts = 0;
1208 
1209 	__attach_mnt(mnt, parent);
1210 	touch_mnt_namespace(n);
1211 }
1212 
1213 static struct mount *next_mnt(struct mount *p, struct mount *root)
1214 {
1215 	struct list_head *next = p->mnt_mounts.next;
1216 	if (next == &p->mnt_mounts) {
1217 		while (1) {
1218 			if (p == root)
1219 				return NULL;
1220 			next = p->mnt_child.next;
1221 			if (next != &p->mnt_parent->mnt_mounts)
1222 				break;
1223 			p = p->mnt_parent;
1224 		}
1225 	}
1226 	return list_entry(next, struct mount, mnt_child);
1227 }
1228 
1229 static struct mount *skip_mnt_tree(struct mount *p)
1230 {
1231 	struct list_head *prev = p->mnt_mounts.prev;
1232 	while (prev != &p->mnt_mounts) {
1233 		p = list_entry(prev, struct mount, mnt_child);
1234 		prev = p->mnt_mounts.prev;
1235 	}
1236 	return p;
1237 }
1238 
1239 /**
1240  * vfs_create_mount - Create a mount for a configured superblock
1241  * @fc: The configuration context with the superblock attached
1242  *
1243  * Create a mount to an already configured superblock.  If necessary, the
1244  * caller should invoke vfs_get_tree() before calling this.
1245  *
1246  * Note that this does not attach the mount to anything.
1247  */
1248 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1249 {
1250 	struct mount *mnt;
1251 
1252 	if (!fc->root)
1253 		return ERR_PTR(-EINVAL);
1254 
1255 	mnt = alloc_vfsmnt(fc->source ?: "none");
1256 	if (!mnt)
1257 		return ERR_PTR(-ENOMEM);
1258 
1259 	if (fc->sb_flags & SB_KERNMOUNT)
1260 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1261 
1262 	atomic_inc(&fc->root->d_sb->s_active);
1263 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1264 	mnt->mnt.mnt_root	= dget(fc->root);
1265 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1266 	mnt->mnt_parent		= mnt;
1267 
1268 	lock_mount_hash();
1269 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1270 	unlock_mount_hash();
1271 	return &mnt->mnt;
1272 }
1273 EXPORT_SYMBOL(vfs_create_mount);
1274 
1275 struct vfsmount *fc_mount(struct fs_context *fc)
1276 {
1277 	int err = vfs_get_tree(fc);
1278 	if (!err) {
1279 		up_write(&fc->root->d_sb->s_umount);
1280 		return vfs_create_mount(fc);
1281 	}
1282 	return ERR_PTR(err);
1283 }
1284 EXPORT_SYMBOL(fc_mount);
1285 
1286 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1287 				int flags, const char *name,
1288 				void *data)
1289 {
1290 	struct fs_context *fc;
1291 	struct vfsmount *mnt;
1292 	int ret = 0;
1293 
1294 	if (!type)
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	fc = fs_context_for_mount(type, flags);
1298 	if (IS_ERR(fc))
1299 		return ERR_CAST(fc);
1300 
1301 	if (name)
1302 		ret = vfs_parse_fs_string(fc, "source",
1303 					  name, strlen(name));
1304 	if (!ret)
1305 		ret = parse_monolithic_mount_data(fc, data);
1306 	if (!ret)
1307 		mnt = fc_mount(fc);
1308 	else
1309 		mnt = ERR_PTR(ret);
1310 
1311 	put_fs_context(fc);
1312 	return mnt;
1313 }
1314 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1315 
1316 struct vfsmount *
1317 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1318 	     const char *name, void *data)
1319 {
1320 	/* Until it is worked out how to pass the user namespace
1321 	 * through from the parent mount to the submount don't support
1322 	 * unprivileged mounts with submounts.
1323 	 */
1324 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1325 		return ERR_PTR(-EPERM);
1326 
1327 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1328 }
1329 EXPORT_SYMBOL_GPL(vfs_submount);
1330 
1331 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1332 					int flag)
1333 {
1334 	struct super_block *sb = old->mnt.mnt_sb;
1335 	struct mount *mnt;
1336 	int err;
1337 
1338 	mnt = alloc_vfsmnt(old->mnt_devname);
1339 	if (!mnt)
1340 		return ERR_PTR(-ENOMEM);
1341 
1342 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1343 		mnt->mnt_group_id = 0; /* not a peer of original */
1344 	else
1345 		mnt->mnt_group_id = old->mnt_group_id;
1346 
1347 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1348 		err = mnt_alloc_group_id(mnt);
1349 		if (err)
1350 			goto out_free;
1351 	}
1352 
1353 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1354 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1355 
1356 	atomic_inc(&sb->s_active);
1357 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1358 
1359 	mnt->mnt.mnt_sb = sb;
1360 	mnt->mnt.mnt_root = dget(root);
1361 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1362 	mnt->mnt_parent = mnt;
1363 	lock_mount_hash();
1364 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1365 	unlock_mount_hash();
1366 
1367 	if ((flag & CL_SLAVE) ||
1368 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1369 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1370 		mnt->mnt_master = old;
1371 		CLEAR_MNT_SHARED(mnt);
1372 	} else if (!(flag & CL_PRIVATE)) {
1373 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1374 			list_add(&mnt->mnt_share, &old->mnt_share);
1375 		if (IS_MNT_SLAVE(old))
1376 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1377 		mnt->mnt_master = old->mnt_master;
1378 	} else {
1379 		CLEAR_MNT_SHARED(mnt);
1380 	}
1381 	if (flag & CL_MAKE_SHARED)
1382 		set_mnt_shared(mnt);
1383 
1384 	/* stick the duplicate mount on the same expiry list
1385 	 * as the original if that was on one */
1386 	if (flag & CL_EXPIRE) {
1387 		if (!list_empty(&old->mnt_expire))
1388 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1389 	}
1390 
1391 	return mnt;
1392 
1393  out_free:
1394 	mnt_free_id(mnt);
1395 	free_vfsmnt(mnt);
1396 	return ERR_PTR(err);
1397 }
1398 
1399 static void cleanup_mnt(struct mount *mnt)
1400 {
1401 	struct hlist_node *p;
1402 	struct mount *m;
1403 	/*
1404 	 * The warning here probably indicates that somebody messed
1405 	 * up a mnt_want/drop_write() pair.  If this happens, the
1406 	 * filesystem was probably unable to make r/w->r/o transitions.
1407 	 * The locking used to deal with mnt_count decrement provides barriers,
1408 	 * so mnt_get_writers() below is safe.
1409 	 */
1410 	WARN_ON(mnt_get_writers(mnt));
1411 	if (unlikely(mnt->mnt_pins.first))
1412 		mnt_pin_kill(mnt);
1413 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1414 		hlist_del(&m->mnt_umount);
1415 		mntput(&m->mnt);
1416 	}
1417 	fsnotify_vfsmount_delete(&mnt->mnt);
1418 	dput(mnt->mnt.mnt_root);
1419 	deactivate_super(mnt->mnt.mnt_sb);
1420 	mnt_free_id(mnt);
1421 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1422 }
1423 
1424 static void __cleanup_mnt(struct rcu_head *head)
1425 {
1426 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1427 }
1428 
1429 static LLIST_HEAD(delayed_mntput_list);
1430 static void delayed_mntput(struct work_struct *unused)
1431 {
1432 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1433 	struct mount *m, *t;
1434 
1435 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1436 		cleanup_mnt(m);
1437 }
1438 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1439 
1440 static void mntput_no_expire(struct mount *mnt)
1441 {
1442 	LIST_HEAD(list);
1443 	int count;
1444 
1445 	rcu_read_lock();
1446 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1447 		/*
1448 		 * Since we don't do lock_mount_hash() here,
1449 		 * ->mnt_ns can change under us.  However, if it's
1450 		 * non-NULL, then there's a reference that won't
1451 		 * be dropped until after an RCU delay done after
1452 		 * turning ->mnt_ns NULL.  So if we observe it
1453 		 * non-NULL under rcu_read_lock(), the reference
1454 		 * we are dropping is not the final one.
1455 		 */
1456 		mnt_add_count(mnt, -1);
1457 		rcu_read_unlock();
1458 		return;
1459 	}
1460 	lock_mount_hash();
1461 	/*
1462 	 * make sure that if __legitimize_mnt() has not seen us grab
1463 	 * mount_lock, we'll see their refcount increment here.
1464 	 */
1465 	smp_mb();
1466 	mnt_add_count(mnt, -1);
1467 	count = mnt_get_count(mnt);
1468 	if (count != 0) {
1469 		WARN_ON(count < 0);
1470 		rcu_read_unlock();
1471 		unlock_mount_hash();
1472 		return;
1473 	}
1474 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1475 		rcu_read_unlock();
1476 		unlock_mount_hash();
1477 		return;
1478 	}
1479 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1480 	rcu_read_unlock();
1481 
1482 	list_del(&mnt->mnt_instance);
1483 
1484 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1485 		struct mount *p, *tmp;
1486 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1487 			__put_mountpoint(unhash_mnt(p), &list);
1488 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1489 		}
1490 	}
1491 	unlock_mount_hash();
1492 	shrink_dentry_list(&list);
1493 
1494 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1495 		struct task_struct *task = current;
1496 		if (likely(!(task->flags & PF_KTHREAD))) {
1497 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1498 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1499 				return;
1500 		}
1501 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1502 			schedule_delayed_work(&delayed_mntput_work, 1);
1503 		return;
1504 	}
1505 	cleanup_mnt(mnt);
1506 }
1507 
1508 void mntput(struct vfsmount *mnt)
1509 {
1510 	if (mnt) {
1511 		struct mount *m = real_mount(mnt);
1512 		/* avoid cacheline pingpong */
1513 		if (unlikely(m->mnt_expiry_mark))
1514 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1515 		mntput_no_expire(m);
1516 	}
1517 }
1518 EXPORT_SYMBOL(mntput);
1519 
1520 struct vfsmount *mntget(struct vfsmount *mnt)
1521 {
1522 	if (mnt)
1523 		mnt_add_count(real_mount(mnt), 1);
1524 	return mnt;
1525 }
1526 EXPORT_SYMBOL(mntget);
1527 
1528 /*
1529  * Make a mount point inaccessible to new lookups.
1530  * Because there may still be current users, the caller MUST WAIT
1531  * for an RCU grace period before destroying the mount point.
1532  */
1533 void mnt_make_shortterm(struct vfsmount *mnt)
1534 {
1535 	if (mnt)
1536 		real_mount(mnt)->mnt_ns = NULL;
1537 }
1538 
1539 /**
1540  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1541  * @path: path to check
1542  *
1543  *  d_mountpoint() can only be used reliably to establish if a dentry is
1544  *  not mounted in any namespace and that common case is handled inline.
1545  *  d_mountpoint() isn't aware of the possibility there may be multiple
1546  *  mounts using a given dentry in a different namespace. This function
1547  *  checks if the passed in path is a mountpoint rather than the dentry
1548  *  alone.
1549  */
1550 bool path_is_mountpoint(const struct path *path)
1551 {
1552 	unsigned seq;
1553 	bool res;
1554 
1555 	if (!d_mountpoint(path->dentry))
1556 		return false;
1557 
1558 	rcu_read_lock();
1559 	do {
1560 		seq = read_seqbegin(&mount_lock);
1561 		res = __path_is_mountpoint(path);
1562 	} while (read_seqretry(&mount_lock, seq));
1563 	rcu_read_unlock();
1564 
1565 	return res;
1566 }
1567 EXPORT_SYMBOL(path_is_mountpoint);
1568 
1569 struct vfsmount *mnt_clone_internal(const struct path *path)
1570 {
1571 	struct mount *p;
1572 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1573 	if (IS_ERR(p))
1574 		return ERR_CAST(p);
1575 	p->mnt.mnt_flags |= MNT_INTERNAL;
1576 	return &p->mnt;
1577 }
1578 
1579 /*
1580  * Returns the mount which either has the specified mnt_id, or has the next
1581  * smallest id afer the specified one.
1582  */
1583 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1584 {
1585 	struct rb_node *node = ns->mounts.rb_node;
1586 	struct mount *ret = NULL;
1587 
1588 	while (node) {
1589 		struct mount *m = node_to_mount(node);
1590 
1591 		if (mnt_id <= m->mnt_id_unique) {
1592 			ret = node_to_mount(node);
1593 			if (mnt_id == m->mnt_id_unique)
1594 				break;
1595 			node = node->rb_left;
1596 		} else {
1597 			node = node->rb_right;
1598 		}
1599 	}
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Returns the mount which either has the specified mnt_id, or has the next
1605  * greater id before the specified one.
1606  */
1607 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1608 {
1609 	struct rb_node *node = ns->mounts.rb_node;
1610 	struct mount *ret = NULL;
1611 
1612 	while (node) {
1613 		struct mount *m = node_to_mount(node);
1614 
1615 		if (mnt_id >= m->mnt_id_unique) {
1616 			ret = node_to_mount(node);
1617 			if (mnt_id == m->mnt_id_unique)
1618 				break;
1619 			node = node->rb_right;
1620 		} else {
1621 			node = node->rb_left;
1622 		}
1623 	}
1624 	return ret;
1625 }
1626 
1627 #ifdef CONFIG_PROC_FS
1628 
1629 /* iterator; we want it to have access to namespace_sem, thus here... */
1630 static void *m_start(struct seq_file *m, loff_t *pos)
1631 {
1632 	struct proc_mounts *p = m->private;
1633 
1634 	down_read(&namespace_sem);
1635 
1636 	return mnt_find_id_at(p->ns, *pos);
1637 }
1638 
1639 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1640 {
1641 	struct mount *next = NULL, *mnt = v;
1642 	struct rb_node *node = rb_next(&mnt->mnt_node);
1643 
1644 	++*pos;
1645 	if (node) {
1646 		next = node_to_mount(node);
1647 		*pos = next->mnt_id_unique;
1648 	}
1649 	return next;
1650 }
1651 
1652 static void m_stop(struct seq_file *m, void *v)
1653 {
1654 	up_read(&namespace_sem);
1655 }
1656 
1657 static int m_show(struct seq_file *m, void *v)
1658 {
1659 	struct proc_mounts *p = m->private;
1660 	struct mount *r = v;
1661 	return p->show(m, &r->mnt);
1662 }
1663 
1664 const struct seq_operations mounts_op = {
1665 	.start	= m_start,
1666 	.next	= m_next,
1667 	.stop	= m_stop,
1668 	.show	= m_show,
1669 };
1670 
1671 #endif  /* CONFIG_PROC_FS */
1672 
1673 /**
1674  * may_umount_tree - check if a mount tree is busy
1675  * @m: root of mount tree
1676  *
1677  * This is called to check if a tree of mounts has any
1678  * open files, pwds, chroots or sub mounts that are
1679  * busy.
1680  */
1681 int may_umount_tree(struct vfsmount *m)
1682 {
1683 	struct mount *mnt = real_mount(m);
1684 	int actual_refs = 0;
1685 	int minimum_refs = 0;
1686 	struct mount *p;
1687 	BUG_ON(!m);
1688 
1689 	/* write lock needed for mnt_get_count */
1690 	lock_mount_hash();
1691 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1692 		actual_refs += mnt_get_count(p);
1693 		minimum_refs += 2;
1694 	}
1695 	unlock_mount_hash();
1696 
1697 	if (actual_refs > minimum_refs)
1698 		return 0;
1699 
1700 	return 1;
1701 }
1702 
1703 EXPORT_SYMBOL(may_umount_tree);
1704 
1705 /**
1706  * may_umount - check if a mount point is busy
1707  * @mnt: root of mount
1708  *
1709  * This is called to check if a mount point has any
1710  * open files, pwds, chroots or sub mounts. If the
1711  * mount has sub mounts this will return busy
1712  * regardless of whether the sub mounts are busy.
1713  *
1714  * Doesn't take quota and stuff into account. IOW, in some cases it will
1715  * give false negatives. The main reason why it's here is that we need
1716  * a non-destructive way to look for easily umountable filesystems.
1717  */
1718 int may_umount(struct vfsmount *mnt)
1719 {
1720 	int ret = 1;
1721 	down_read(&namespace_sem);
1722 	lock_mount_hash();
1723 	if (propagate_mount_busy(real_mount(mnt), 2))
1724 		ret = 0;
1725 	unlock_mount_hash();
1726 	up_read(&namespace_sem);
1727 	return ret;
1728 }
1729 
1730 EXPORT_SYMBOL(may_umount);
1731 
1732 #ifdef CONFIG_FSNOTIFY
1733 static void mnt_notify(struct mount *p)
1734 {
1735 	if (!p->prev_ns && p->mnt_ns) {
1736 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1737 	} else if (p->prev_ns && !p->mnt_ns) {
1738 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1739 	} else if (p->prev_ns == p->mnt_ns) {
1740 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1741 	} else {
1742 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1743 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1744 	}
1745 	p->prev_ns = p->mnt_ns;
1746 }
1747 
1748 static void notify_mnt_list(void)
1749 {
1750 	struct mount *m, *tmp;
1751 	/*
1752 	 * Notify about mounts that were added/reparented/detached/remain
1753 	 * connected after unmount.
1754 	 */
1755 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1756 		mnt_notify(m);
1757 		list_del_init(&m->to_notify);
1758 	}
1759 }
1760 
1761 static bool need_notify_mnt_list(void)
1762 {
1763 	return !list_empty(&notify_list);
1764 }
1765 #else
1766 static void notify_mnt_list(void)
1767 {
1768 }
1769 
1770 static bool need_notify_mnt_list(void)
1771 {
1772 	return false;
1773 }
1774 #endif
1775 
1776 static void namespace_unlock(void)
1777 {
1778 	struct hlist_head head;
1779 	struct hlist_node *p;
1780 	struct mount *m;
1781 	LIST_HEAD(list);
1782 
1783 	hlist_move_list(&unmounted, &head);
1784 	list_splice_init(&ex_mountpoints, &list);
1785 
1786 	if (need_notify_mnt_list()) {
1787 		/*
1788 		 * No point blocking out concurrent readers while notifications
1789 		 * are sent. This will also allow statmount()/listmount() to run
1790 		 * concurrently.
1791 		 */
1792 		downgrade_write(&namespace_sem);
1793 		notify_mnt_list();
1794 		up_read(&namespace_sem);
1795 	} else {
1796 		up_write(&namespace_sem);
1797 	}
1798 
1799 	shrink_dentry_list(&list);
1800 
1801 	if (likely(hlist_empty(&head)))
1802 		return;
1803 
1804 	synchronize_rcu_expedited();
1805 
1806 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1807 		hlist_del(&m->mnt_umount);
1808 		mntput(&m->mnt);
1809 	}
1810 }
1811 
1812 static inline void namespace_lock(void)
1813 {
1814 	down_write(&namespace_sem);
1815 }
1816 
1817 enum umount_tree_flags {
1818 	UMOUNT_SYNC = 1,
1819 	UMOUNT_PROPAGATE = 2,
1820 	UMOUNT_CONNECTED = 4,
1821 };
1822 
1823 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1824 {
1825 	/* Leaving mounts connected is only valid for lazy umounts */
1826 	if (how & UMOUNT_SYNC)
1827 		return true;
1828 
1829 	/* A mount without a parent has nothing to be connected to */
1830 	if (!mnt_has_parent(mnt))
1831 		return true;
1832 
1833 	/* Because the reference counting rules change when mounts are
1834 	 * unmounted and connected, umounted mounts may not be
1835 	 * connected to mounted mounts.
1836 	 */
1837 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1838 		return true;
1839 
1840 	/* Has it been requested that the mount remain connected? */
1841 	if (how & UMOUNT_CONNECTED)
1842 		return false;
1843 
1844 	/* Is the mount locked such that it needs to remain connected? */
1845 	if (IS_MNT_LOCKED(mnt))
1846 		return false;
1847 
1848 	/* By default disconnect the mount */
1849 	return true;
1850 }
1851 
1852 /*
1853  * mount_lock must be held
1854  * namespace_sem must be held for write
1855  */
1856 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1857 {
1858 	LIST_HEAD(tmp_list);
1859 	struct mount *p;
1860 
1861 	if (how & UMOUNT_PROPAGATE)
1862 		propagate_mount_unlock(mnt);
1863 
1864 	/* Gather the mounts to umount */
1865 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1866 		p->mnt.mnt_flags |= MNT_UMOUNT;
1867 		if (mnt_ns_attached(p))
1868 			move_from_ns(p, &tmp_list);
1869 		else
1870 			list_move(&p->mnt_list, &tmp_list);
1871 	}
1872 
1873 	/* Hide the mounts from mnt_mounts */
1874 	list_for_each_entry(p, &tmp_list, mnt_list) {
1875 		list_del_init(&p->mnt_child);
1876 	}
1877 
1878 	/* Add propagated mounts to the tmp_list */
1879 	if (how & UMOUNT_PROPAGATE)
1880 		propagate_umount(&tmp_list);
1881 
1882 	while (!list_empty(&tmp_list)) {
1883 		struct mnt_namespace *ns;
1884 		bool disconnect;
1885 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1886 		list_del_init(&p->mnt_expire);
1887 		list_del_init(&p->mnt_list);
1888 		ns = p->mnt_ns;
1889 		if (ns) {
1890 			ns->nr_mounts--;
1891 			__touch_mnt_namespace(ns);
1892 		}
1893 		p->mnt_ns = NULL;
1894 		if (how & UMOUNT_SYNC)
1895 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1896 
1897 		disconnect = disconnect_mount(p, how);
1898 		if (mnt_has_parent(p)) {
1899 			mnt_add_count(p->mnt_parent, -1);
1900 			if (!disconnect) {
1901 				/* Don't forget about p */
1902 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1903 			} else {
1904 				umount_mnt(p);
1905 			}
1906 		}
1907 		change_mnt_propagation(p, MS_PRIVATE);
1908 		if (disconnect)
1909 			hlist_add_head(&p->mnt_umount, &unmounted);
1910 
1911 		/*
1912 		 * At this point p->mnt_ns is NULL, notification will be queued
1913 		 * only if
1914 		 *
1915 		 *  - p->prev_ns is non-NULL *and*
1916 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1917 		 *
1918 		 * This will preclude queuing the mount if this is a cleanup
1919 		 * after a failed copy_tree() or destruction of an anonymous
1920 		 * namespace, etc.
1921 		 */
1922 		mnt_notify_add(p);
1923 	}
1924 }
1925 
1926 static void shrink_submounts(struct mount *mnt);
1927 
1928 static int do_umount_root(struct super_block *sb)
1929 {
1930 	int ret = 0;
1931 
1932 	down_write(&sb->s_umount);
1933 	if (!sb_rdonly(sb)) {
1934 		struct fs_context *fc;
1935 
1936 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1937 						SB_RDONLY);
1938 		if (IS_ERR(fc)) {
1939 			ret = PTR_ERR(fc);
1940 		} else {
1941 			ret = parse_monolithic_mount_data(fc, NULL);
1942 			if (!ret)
1943 				ret = reconfigure_super(fc);
1944 			put_fs_context(fc);
1945 		}
1946 	}
1947 	up_write(&sb->s_umount);
1948 	return ret;
1949 }
1950 
1951 static int do_umount(struct mount *mnt, int flags)
1952 {
1953 	struct super_block *sb = mnt->mnt.mnt_sb;
1954 	int retval;
1955 
1956 	retval = security_sb_umount(&mnt->mnt, flags);
1957 	if (retval)
1958 		return retval;
1959 
1960 	/*
1961 	 * Allow userspace to request a mountpoint be expired rather than
1962 	 * unmounting unconditionally. Unmount only happens if:
1963 	 *  (1) the mark is already set (the mark is cleared by mntput())
1964 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1965 	 */
1966 	if (flags & MNT_EXPIRE) {
1967 		if (&mnt->mnt == current->fs->root.mnt ||
1968 		    flags & (MNT_FORCE | MNT_DETACH))
1969 			return -EINVAL;
1970 
1971 		/*
1972 		 * probably don't strictly need the lock here if we examined
1973 		 * all race cases, but it's a slowpath.
1974 		 */
1975 		lock_mount_hash();
1976 		if (mnt_get_count(mnt) != 2) {
1977 			unlock_mount_hash();
1978 			return -EBUSY;
1979 		}
1980 		unlock_mount_hash();
1981 
1982 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1983 			return -EAGAIN;
1984 	}
1985 
1986 	/*
1987 	 * If we may have to abort operations to get out of this
1988 	 * mount, and they will themselves hold resources we must
1989 	 * allow the fs to do things. In the Unix tradition of
1990 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1991 	 * might fail to complete on the first run through as other tasks
1992 	 * must return, and the like. Thats for the mount program to worry
1993 	 * about for the moment.
1994 	 */
1995 
1996 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1997 		sb->s_op->umount_begin(sb);
1998 	}
1999 
2000 	/*
2001 	 * No sense to grab the lock for this test, but test itself looks
2002 	 * somewhat bogus. Suggestions for better replacement?
2003 	 * Ho-hum... In principle, we might treat that as umount + switch
2004 	 * to rootfs. GC would eventually take care of the old vfsmount.
2005 	 * Actually it makes sense, especially if rootfs would contain a
2006 	 * /reboot - static binary that would close all descriptors and
2007 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
2008 	 */
2009 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
2010 		/*
2011 		 * Special case for "unmounting" root ...
2012 		 * we just try to remount it readonly.
2013 		 */
2014 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2015 			return -EPERM;
2016 		return do_umount_root(sb);
2017 	}
2018 
2019 	namespace_lock();
2020 	lock_mount_hash();
2021 
2022 	/* Recheck MNT_LOCKED with the locks held */
2023 	retval = -EINVAL;
2024 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
2025 		goto out;
2026 
2027 	event++;
2028 	if (flags & MNT_DETACH) {
2029 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2030 			umount_tree(mnt, UMOUNT_PROPAGATE);
2031 		retval = 0;
2032 	} else {
2033 		shrink_submounts(mnt);
2034 		retval = -EBUSY;
2035 		if (!propagate_mount_busy(mnt, 2)) {
2036 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2037 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2038 			retval = 0;
2039 		}
2040 	}
2041 out:
2042 	unlock_mount_hash();
2043 	namespace_unlock();
2044 	return retval;
2045 }
2046 
2047 /*
2048  * __detach_mounts - lazily unmount all mounts on the specified dentry
2049  *
2050  * During unlink, rmdir, and d_drop it is possible to loose the path
2051  * to an existing mountpoint, and wind up leaking the mount.
2052  * detach_mounts allows lazily unmounting those mounts instead of
2053  * leaking them.
2054  *
2055  * The caller may hold dentry->d_inode->i_mutex.
2056  */
2057 void __detach_mounts(struct dentry *dentry)
2058 {
2059 	struct mountpoint *mp;
2060 	struct mount *mnt;
2061 
2062 	namespace_lock();
2063 	lock_mount_hash();
2064 	mp = lookup_mountpoint(dentry);
2065 	if (!mp)
2066 		goto out_unlock;
2067 
2068 	event++;
2069 	while (!hlist_empty(&mp->m_list)) {
2070 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
2071 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2072 			umount_mnt(mnt);
2073 			hlist_add_head(&mnt->mnt_umount, &unmounted);
2074 		}
2075 		else umount_tree(mnt, UMOUNT_CONNECTED);
2076 	}
2077 	put_mountpoint(mp);
2078 out_unlock:
2079 	unlock_mount_hash();
2080 	namespace_unlock();
2081 }
2082 
2083 /*
2084  * Is the caller allowed to modify his namespace?
2085  */
2086 bool may_mount(void)
2087 {
2088 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2089 }
2090 
2091 static void warn_mandlock(void)
2092 {
2093 	pr_warn_once("=======================================================\n"
2094 		     "WARNING: The mand mount option has been deprecated and\n"
2095 		     "         and is ignored by this kernel. Remove the mand\n"
2096 		     "         option from the mount to silence this warning.\n"
2097 		     "=======================================================\n");
2098 }
2099 
2100 static int can_umount(const struct path *path, int flags)
2101 {
2102 	struct mount *mnt = real_mount(path->mnt);
2103 
2104 	if (!may_mount())
2105 		return -EPERM;
2106 	if (!path_mounted(path))
2107 		return -EINVAL;
2108 	if (!check_mnt(mnt))
2109 		return -EINVAL;
2110 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2111 		return -EINVAL;
2112 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2113 		return -EPERM;
2114 	return 0;
2115 }
2116 
2117 // caller is responsible for flags being sane
2118 int path_umount(struct path *path, int flags)
2119 {
2120 	struct mount *mnt = real_mount(path->mnt);
2121 	int ret;
2122 
2123 	ret = can_umount(path, flags);
2124 	if (!ret)
2125 		ret = do_umount(mnt, flags);
2126 
2127 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2128 	dput(path->dentry);
2129 	mntput_no_expire(mnt);
2130 	return ret;
2131 }
2132 
2133 static int ksys_umount(char __user *name, int flags)
2134 {
2135 	int lookup_flags = LOOKUP_MOUNTPOINT;
2136 	struct path path;
2137 	int ret;
2138 
2139 	// basic validity checks done first
2140 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2141 		return -EINVAL;
2142 
2143 	if (!(flags & UMOUNT_NOFOLLOW))
2144 		lookup_flags |= LOOKUP_FOLLOW;
2145 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2146 	if (ret)
2147 		return ret;
2148 	return path_umount(&path, flags);
2149 }
2150 
2151 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2152 {
2153 	return ksys_umount(name, flags);
2154 }
2155 
2156 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2157 
2158 /*
2159  *	The 2.0 compatible umount. No flags.
2160  */
2161 SYSCALL_DEFINE1(oldumount, char __user *, name)
2162 {
2163 	return ksys_umount(name, 0);
2164 }
2165 
2166 #endif
2167 
2168 static bool is_mnt_ns_file(struct dentry *dentry)
2169 {
2170 	struct ns_common *ns;
2171 
2172 	/* Is this a proxy for a mount namespace? */
2173 	if (dentry->d_op != &ns_dentry_operations)
2174 		return false;
2175 
2176 	ns = d_inode(dentry)->i_private;
2177 
2178 	return ns->ops == &mntns_operations;
2179 }
2180 
2181 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2182 {
2183 	return &mnt->ns;
2184 }
2185 
2186 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2187 {
2188 	guard(rcu)();
2189 
2190 	for (;;) {
2191 		struct list_head *list;
2192 
2193 		if (previous)
2194 			list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2195 		else
2196 			list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2197 		if (list_is_head(list, &mnt_ns_list))
2198 			return ERR_PTR(-ENOENT);
2199 
2200 		mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2201 
2202 		/*
2203 		 * The last passive reference count is put with RCU
2204 		 * delay so accessing the mount namespace is not just
2205 		 * safe but all relevant members are still valid.
2206 		 */
2207 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2208 			continue;
2209 
2210 		/*
2211 		 * We need an active reference count as we're persisting
2212 		 * the mount namespace and it might already be on its
2213 		 * deathbed.
2214 		 */
2215 		if (!refcount_inc_not_zero(&mntns->ns.count))
2216 			continue;
2217 
2218 		return mntns;
2219 	}
2220 }
2221 
2222 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2223 {
2224 	if (!is_mnt_ns_file(dentry))
2225 		return NULL;
2226 
2227 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2228 }
2229 
2230 static bool mnt_ns_loop(struct dentry *dentry)
2231 {
2232 	/* Could bind mounting the mount namespace inode cause a
2233 	 * mount namespace loop?
2234 	 */
2235 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2236 
2237 	if (!mnt_ns)
2238 		return false;
2239 
2240 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2241 }
2242 
2243 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2244 					int flag)
2245 {
2246 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2247 		*dst_parent, *dst_mnt;
2248 
2249 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2250 		return ERR_PTR(-EINVAL);
2251 
2252 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2253 		return ERR_PTR(-EINVAL);
2254 
2255 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2256 	if (IS_ERR(dst_mnt))
2257 		return dst_mnt;
2258 
2259 	src_parent = src_root;
2260 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2261 
2262 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2263 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2264 			continue;
2265 
2266 		for (src_mnt = src_root_child; src_mnt;
2267 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2268 			if (!(flag & CL_COPY_UNBINDABLE) &&
2269 			    IS_MNT_UNBINDABLE(src_mnt)) {
2270 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2271 					/* Both unbindable and locked. */
2272 					dst_mnt = ERR_PTR(-EPERM);
2273 					goto out;
2274 				} else {
2275 					src_mnt = skip_mnt_tree(src_mnt);
2276 					continue;
2277 				}
2278 			}
2279 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2280 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2281 				src_mnt = skip_mnt_tree(src_mnt);
2282 				continue;
2283 			}
2284 			while (src_parent != src_mnt->mnt_parent) {
2285 				src_parent = src_parent->mnt_parent;
2286 				dst_mnt = dst_mnt->mnt_parent;
2287 			}
2288 
2289 			src_parent = src_mnt;
2290 			dst_parent = dst_mnt;
2291 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2292 			if (IS_ERR(dst_mnt))
2293 				goto out;
2294 			lock_mount_hash();
2295 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2296 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2297 			unlock_mount_hash();
2298 		}
2299 	}
2300 	return res;
2301 
2302 out:
2303 	if (res) {
2304 		lock_mount_hash();
2305 		umount_tree(res, UMOUNT_SYNC);
2306 		unlock_mount_hash();
2307 	}
2308 	return dst_mnt;
2309 }
2310 
2311 /* Caller should check returned pointer for errors */
2312 
2313 struct vfsmount *collect_mounts(const struct path *path)
2314 {
2315 	struct mount *tree;
2316 	namespace_lock();
2317 	if (!check_mnt(real_mount(path->mnt)))
2318 		tree = ERR_PTR(-EINVAL);
2319 	else
2320 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2321 				 CL_COPY_ALL | CL_PRIVATE);
2322 	namespace_unlock();
2323 	if (IS_ERR(tree))
2324 		return ERR_CAST(tree);
2325 	return &tree->mnt;
2326 }
2327 
2328 static void free_mnt_ns(struct mnt_namespace *);
2329 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2330 
2331 void dissolve_on_fput(struct vfsmount *mnt)
2332 {
2333 	struct mnt_namespace *ns;
2334 	namespace_lock();
2335 	lock_mount_hash();
2336 	ns = real_mount(mnt)->mnt_ns;
2337 	if (ns) {
2338 		if (is_anon_ns(ns))
2339 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2340 		else
2341 			ns = NULL;
2342 	}
2343 	unlock_mount_hash();
2344 	namespace_unlock();
2345 	if (ns)
2346 		free_mnt_ns(ns);
2347 }
2348 
2349 void drop_collected_mounts(struct vfsmount *mnt)
2350 {
2351 	namespace_lock();
2352 	lock_mount_hash();
2353 	umount_tree(real_mount(mnt), 0);
2354 	unlock_mount_hash();
2355 	namespace_unlock();
2356 }
2357 
2358 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2359 {
2360 	struct mount *child;
2361 
2362 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2363 		if (!is_subdir(child->mnt_mountpoint, dentry))
2364 			continue;
2365 
2366 		if (child->mnt.mnt_flags & MNT_LOCKED)
2367 			return true;
2368 	}
2369 	return false;
2370 }
2371 
2372 /**
2373  * clone_private_mount - create a private clone of a path
2374  * @path: path to clone
2375  *
2376  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2377  * will not be attached anywhere in the namespace and will be private (i.e.
2378  * changes to the originating mount won't be propagated into this).
2379  *
2380  * Release with mntput().
2381  */
2382 struct vfsmount *clone_private_mount(const struct path *path)
2383 {
2384 	struct mount *old_mnt = real_mount(path->mnt);
2385 	struct mount *new_mnt;
2386 
2387 	down_read(&namespace_sem);
2388 	if (IS_MNT_UNBINDABLE(old_mnt))
2389 		goto invalid;
2390 
2391 	if (!check_mnt(old_mnt))
2392 		goto invalid;
2393 
2394 	if (has_locked_children(old_mnt, path->dentry))
2395 		goto invalid;
2396 
2397 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2398 	up_read(&namespace_sem);
2399 
2400 	if (IS_ERR(new_mnt))
2401 		return ERR_CAST(new_mnt);
2402 
2403 	/* Longterm mount to be removed by kern_unmount*() */
2404 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2405 
2406 	return &new_mnt->mnt;
2407 
2408 invalid:
2409 	up_read(&namespace_sem);
2410 	return ERR_PTR(-EINVAL);
2411 }
2412 EXPORT_SYMBOL_GPL(clone_private_mount);
2413 
2414 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2415 		   struct vfsmount *root)
2416 {
2417 	struct mount *mnt;
2418 	int res = f(root, arg);
2419 	if (res)
2420 		return res;
2421 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2422 		res = f(&mnt->mnt, arg);
2423 		if (res)
2424 			return res;
2425 	}
2426 	return 0;
2427 }
2428 
2429 static void lock_mnt_tree(struct mount *mnt)
2430 {
2431 	struct mount *p;
2432 
2433 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2434 		int flags = p->mnt.mnt_flags;
2435 		/* Don't allow unprivileged users to change mount flags */
2436 		flags |= MNT_LOCK_ATIME;
2437 
2438 		if (flags & MNT_READONLY)
2439 			flags |= MNT_LOCK_READONLY;
2440 
2441 		if (flags & MNT_NODEV)
2442 			flags |= MNT_LOCK_NODEV;
2443 
2444 		if (flags & MNT_NOSUID)
2445 			flags |= MNT_LOCK_NOSUID;
2446 
2447 		if (flags & MNT_NOEXEC)
2448 			flags |= MNT_LOCK_NOEXEC;
2449 		/* Don't allow unprivileged users to reveal what is under a mount */
2450 		if (list_empty(&p->mnt_expire))
2451 			flags |= MNT_LOCKED;
2452 		p->mnt.mnt_flags = flags;
2453 	}
2454 }
2455 
2456 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2457 {
2458 	struct mount *p;
2459 
2460 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2461 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2462 			mnt_release_group_id(p);
2463 	}
2464 }
2465 
2466 static int invent_group_ids(struct mount *mnt, bool recurse)
2467 {
2468 	struct mount *p;
2469 
2470 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2471 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2472 			int err = mnt_alloc_group_id(p);
2473 			if (err) {
2474 				cleanup_group_ids(mnt, p);
2475 				return err;
2476 			}
2477 		}
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2484 {
2485 	unsigned int max = READ_ONCE(sysctl_mount_max);
2486 	unsigned int mounts = 0;
2487 	struct mount *p;
2488 
2489 	if (ns->nr_mounts >= max)
2490 		return -ENOSPC;
2491 	max -= ns->nr_mounts;
2492 	if (ns->pending_mounts >= max)
2493 		return -ENOSPC;
2494 	max -= ns->pending_mounts;
2495 
2496 	for (p = mnt; p; p = next_mnt(p, mnt))
2497 		mounts++;
2498 
2499 	if (mounts > max)
2500 		return -ENOSPC;
2501 
2502 	ns->pending_mounts += mounts;
2503 	return 0;
2504 }
2505 
2506 enum mnt_tree_flags_t {
2507 	MNT_TREE_MOVE = BIT(0),
2508 	MNT_TREE_BENEATH = BIT(1),
2509 };
2510 
2511 /**
2512  * attach_recursive_mnt - attach a source mount tree
2513  * @source_mnt: mount tree to be attached
2514  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2515  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2516  * @flags:      modify how @source_mnt is supposed to be attached
2517  *
2518  *  NOTE: in the table below explains the semantics when a source mount
2519  *  of a given type is attached to a destination mount of a given type.
2520  * ---------------------------------------------------------------------------
2521  * |         BIND MOUNT OPERATION                                            |
2522  * |**************************************************************************
2523  * | source-->| shared        |       private  |       slave    | unbindable |
2524  * | dest     |               |                |                |            |
2525  * |   |      |               |                |                |            |
2526  * |   v      |               |                |                |            |
2527  * |**************************************************************************
2528  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2529  * |          |               |                |                |            |
2530  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2531  * ***************************************************************************
2532  * A bind operation clones the source mount and mounts the clone on the
2533  * destination mount.
2534  *
2535  * (++)  the cloned mount is propagated to all the mounts in the propagation
2536  * 	 tree of the destination mount and the cloned mount is added to
2537  * 	 the peer group of the source mount.
2538  * (+)   the cloned mount is created under the destination mount and is marked
2539  *       as shared. The cloned mount is added to the peer group of the source
2540  *       mount.
2541  * (+++) the mount is propagated to all the mounts in the propagation tree
2542  *       of the destination mount and the cloned mount is made slave
2543  *       of the same master as that of the source mount. The cloned mount
2544  *       is marked as 'shared and slave'.
2545  * (*)   the cloned mount is made a slave of the same master as that of the
2546  * 	 source mount.
2547  *
2548  * ---------------------------------------------------------------------------
2549  * |         		MOVE MOUNT OPERATION                                 |
2550  * |**************************************************************************
2551  * | source-->| shared        |       private  |       slave    | unbindable |
2552  * | dest     |               |                |                |            |
2553  * |   |      |               |                |                |            |
2554  * |   v      |               |                |                |            |
2555  * |**************************************************************************
2556  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2557  * |          |               |                |                |            |
2558  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2559  * ***************************************************************************
2560  *
2561  * (+)  the mount is moved to the destination. And is then propagated to
2562  * 	all the mounts in the propagation tree of the destination mount.
2563  * (+*)  the mount is moved to the destination.
2564  * (+++)  the mount is moved to the destination and is then propagated to
2565  * 	all the mounts belonging to the destination mount's propagation tree.
2566  * 	the mount is marked as 'shared and slave'.
2567  * (*)	the mount continues to be a slave at the new location.
2568  *
2569  * if the source mount is a tree, the operations explained above is
2570  * applied to each mount in the tree.
2571  * Must be called without spinlocks held, since this function can sleep
2572  * in allocations.
2573  *
2574  * Context: The function expects namespace_lock() to be held.
2575  * Return: If @source_mnt was successfully attached 0 is returned.
2576  *         Otherwise a negative error code is returned.
2577  */
2578 static int attach_recursive_mnt(struct mount *source_mnt,
2579 				struct mount *top_mnt,
2580 				struct mountpoint *dest_mp,
2581 				enum mnt_tree_flags_t flags)
2582 {
2583 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2584 	HLIST_HEAD(tree_list);
2585 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2586 	struct mountpoint *smp;
2587 	struct mount *child, *dest_mnt, *p;
2588 	struct hlist_node *n;
2589 	int err = 0;
2590 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2591 
2592 	/*
2593 	 * Preallocate a mountpoint in case the new mounts need to be
2594 	 * mounted beneath mounts on the same mountpoint.
2595 	 */
2596 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2597 	if (IS_ERR(smp))
2598 		return PTR_ERR(smp);
2599 
2600 	/* Is there space to add these mounts to the mount namespace? */
2601 	if (!moving) {
2602 		err = count_mounts(ns, source_mnt);
2603 		if (err)
2604 			goto out;
2605 	}
2606 
2607 	if (beneath)
2608 		dest_mnt = top_mnt->mnt_parent;
2609 	else
2610 		dest_mnt = top_mnt;
2611 
2612 	if (IS_MNT_SHARED(dest_mnt)) {
2613 		err = invent_group_ids(source_mnt, true);
2614 		if (err)
2615 			goto out;
2616 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2617 	}
2618 	lock_mount_hash();
2619 	if (err)
2620 		goto out_cleanup_ids;
2621 
2622 	if (IS_MNT_SHARED(dest_mnt)) {
2623 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2624 			set_mnt_shared(p);
2625 	}
2626 
2627 	if (moving) {
2628 		if (beneath)
2629 			dest_mp = smp;
2630 		unhash_mnt(source_mnt);
2631 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2632 		mnt_notify_add(source_mnt);
2633 		touch_mnt_namespace(source_mnt->mnt_ns);
2634 	} else {
2635 		if (source_mnt->mnt_ns) {
2636 			LIST_HEAD(head);
2637 
2638 			/* move from anon - the caller will destroy */
2639 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2640 				move_from_ns(p, &head);
2641 			list_del_init(&head);
2642 		}
2643 		if (beneath)
2644 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2645 		else
2646 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2647 		commit_tree(source_mnt);
2648 	}
2649 
2650 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2651 		struct mount *q;
2652 		hlist_del_init(&child->mnt_hash);
2653 		q = __lookup_mnt(&child->mnt_parent->mnt,
2654 				 child->mnt_mountpoint);
2655 		if (q)
2656 			mnt_change_mountpoint(child, smp, q);
2657 		/* Notice when we are propagating across user namespaces */
2658 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2659 			lock_mnt_tree(child);
2660 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2661 		commit_tree(child);
2662 	}
2663 	put_mountpoint(smp);
2664 	unlock_mount_hash();
2665 
2666 	return 0;
2667 
2668  out_cleanup_ids:
2669 	while (!hlist_empty(&tree_list)) {
2670 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2671 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2672 		umount_tree(child, UMOUNT_SYNC);
2673 	}
2674 	unlock_mount_hash();
2675 	cleanup_group_ids(source_mnt, NULL);
2676  out:
2677 	ns->pending_mounts = 0;
2678 
2679 	read_seqlock_excl(&mount_lock);
2680 	put_mountpoint(smp);
2681 	read_sequnlock_excl(&mount_lock);
2682 
2683 	return err;
2684 }
2685 
2686 /**
2687  * do_lock_mount - lock mount and mountpoint
2688  * @path:    target path
2689  * @beneath: whether the intention is to mount beneath @path
2690  *
2691  * Follow the mount stack on @path until the top mount @mnt is found. If
2692  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2693  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2694  * until nothing is stacked on top of it anymore.
2695  *
2696  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2697  * against concurrent removal of the new mountpoint from another mount
2698  * namespace.
2699  *
2700  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2701  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2702  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2703  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2704  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2705  * on top of it for @beneath.
2706  *
2707  * In addition, @beneath needs to make sure that @mnt hasn't been
2708  * unmounted or moved from its current mountpoint in between dropping
2709  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2710  * being unmounted would be detected later by e.g., calling
2711  * check_mnt(mnt) in the function it's called from. For the @beneath
2712  * case however, it's useful to detect it directly in do_lock_mount().
2713  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2714  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2715  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2716  *
2717  * Return: Either the target mountpoint on the top mount or the top
2718  *         mount's mountpoint.
2719  */
2720 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2721 {
2722 	struct vfsmount *mnt = path->mnt;
2723 	struct dentry *dentry;
2724 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2725 
2726 	for (;;) {
2727 		struct mount *m;
2728 
2729 		if (beneath) {
2730 			m = real_mount(mnt);
2731 			read_seqlock_excl(&mount_lock);
2732 			dentry = dget(m->mnt_mountpoint);
2733 			read_sequnlock_excl(&mount_lock);
2734 		} else {
2735 			dentry = path->dentry;
2736 		}
2737 
2738 		inode_lock(dentry->d_inode);
2739 		if (unlikely(cant_mount(dentry))) {
2740 			inode_unlock(dentry->d_inode);
2741 			goto out;
2742 		}
2743 
2744 		namespace_lock();
2745 
2746 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2747 			namespace_unlock();
2748 			inode_unlock(dentry->d_inode);
2749 			goto out;
2750 		}
2751 
2752 		mnt = lookup_mnt(path);
2753 		if (likely(!mnt))
2754 			break;
2755 
2756 		namespace_unlock();
2757 		inode_unlock(dentry->d_inode);
2758 		if (beneath)
2759 			dput(dentry);
2760 		path_put(path);
2761 		path->mnt = mnt;
2762 		path->dentry = dget(mnt->mnt_root);
2763 	}
2764 
2765 	mp = get_mountpoint(dentry);
2766 	if (IS_ERR(mp)) {
2767 		namespace_unlock();
2768 		inode_unlock(dentry->d_inode);
2769 	}
2770 
2771 out:
2772 	if (beneath)
2773 		dput(dentry);
2774 
2775 	return mp;
2776 }
2777 
2778 static inline struct mountpoint *lock_mount(struct path *path)
2779 {
2780 	return do_lock_mount(path, false);
2781 }
2782 
2783 static void unlock_mount(struct mountpoint *where)
2784 {
2785 	struct dentry *dentry = where->m_dentry;
2786 
2787 	read_seqlock_excl(&mount_lock);
2788 	put_mountpoint(where);
2789 	read_sequnlock_excl(&mount_lock);
2790 
2791 	namespace_unlock();
2792 	inode_unlock(dentry->d_inode);
2793 }
2794 
2795 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2796 {
2797 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2798 		return -EINVAL;
2799 
2800 	if (d_is_dir(mp->m_dentry) !=
2801 	      d_is_dir(mnt->mnt.mnt_root))
2802 		return -ENOTDIR;
2803 
2804 	return attach_recursive_mnt(mnt, p, mp, 0);
2805 }
2806 
2807 /*
2808  * Sanity check the flags to change_mnt_propagation.
2809  */
2810 
2811 static int flags_to_propagation_type(int ms_flags)
2812 {
2813 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2814 
2815 	/* Fail if any non-propagation flags are set */
2816 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2817 		return 0;
2818 	/* Only one propagation flag should be set */
2819 	if (!is_power_of_2(type))
2820 		return 0;
2821 	return type;
2822 }
2823 
2824 /*
2825  * recursively change the type of the mountpoint.
2826  */
2827 static int do_change_type(struct path *path, int ms_flags)
2828 {
2829 	struct mount *m;
2830 	struct mount *mnt = real_mount(path->mnt);
2831 	int recurse = ms_flags & MS_REC;
2832 	int type;
2833 	int err = 0;
2834 
2835 	if (!path_mounted(path))
2836 		return -EINVAL;
2837 
2838 	type = flags_to_propagation_type(ms_flags);
2839 	if (!type)
2840 		return -EINVAL;
2841 
2842 	namespace_lock();
2843 	if (type == MS_SHARED) {
2844 		err = invent_group_ids(mnt, recurse);
2845 		if (err)
2846 			goto out_unlock;
2847 	}
2848 
2849 	lock_mount_hash();
2850 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2851 		change_mnt_propagation(m, type);
2852 	unlock_mount_hash();
2853 
2854  out_unlock:
2855 	namespace_unlock();
2856 	return err;
2857 }
2858 
2859 static struct mount *__do_loopback(struct path *old_path, int recurse)
2860 {
2861 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2862 
2863 	if (IS_MNT_UNBINDABLE(old))
2864 		return mnt;
2865 
2866 	if (!check_mnt(old)) {
2867 		const struct dentry_operations *d_op = old_path->dentry->d_op;
2868 
2869 		if (d_op != &ns_dentry_operations &&
2870 		    d_op != &pidfs_dentry_operations)
2871 			return mnt;
2872 	}
2873 
2874 	if (!recurse && has_locked_children(old, old_path->dentry))
2875 		return mnt;
2876 
2877 	if (recurse)
2878 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2879 	else
2880 		mnt = clone_mnt(old, old_path->dentry, 0);
2881 
2882 	if (!IS_ERR(mnt))
2883 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2884 
2885 	return mnt;
2886 }
2887 
2888 /*
2889  * do loopback mount.
2890  */
2891 static int do_loopback(struct path *path, const char *old_name,
2892 				int recurse)
2893 {
2894 	struct path old_path;
2895 	struct mount *mnt = NULL, *parent;
2896 	struct mountpoint *mp;
2897 	int err;
2898 	if (!old_name || !*old_name)
2899 		return -EINVAL;
2900 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2901 	if (err)
2902 		return err;
2903 
2904 	err = -EINVAL;
2905 	if (mnt_ns_loop(old_path.dentry))
2906 		goto out;
2907 
2908 	mp = lock_mount(path);
2909 	if (IS_ERR(mp)) {
2910 		err = PTR_ERR(mp);
2911 		goto out;
2912 	}
2913 
2914 	parent = real_mount(path->mnt);
2915 	if (!check_mnt(parent))
2916 		goto out2;
2917 
2918 	mnt = __do_loopback(&old_path, recurse);
2919 	if (IS_ERR(mnt)) {
2920 		err = PTR_ERR(mnt);
2921 		goto out2;
2922 	}
2923 
2924 	err = graft_tree(mnt, parent, mp);
2925 	if (err) {
2926 		lock_mount_hash();
2927 		umount_tree(mnt, UMOUNT_SYNC);
2928 		unlock_mount_hash();
2929 	}
2930 out2:
2931 	unlock_mount(mp);
2932 out:
2933 	path_put(&old_path);
2934 	return err;
2935 }
2936 
2937 static struct file *open_detached_copy(struct path *path, bool recursive)
2938 {
2939 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2940 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2941 	struct mount *mnt, *p;
2942 	struct file *file;
2943 
2944 	if (IS_ERR(ns))
2945 		return ERR_CAST(ns);
2946 
2947 	namespace_lock();
2948 	mnt = __do_loopback(path, recursive);
2949 	if (IS_ERR(mnt)) {
2950 		namespace_unlock();
2951 		free_mnt_ns(ns);
2952 		return ERR_CAST(mnt);
2953 	}
2954 
2955 	lock_mount_hash();
2956 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2957 		mnt_add_to_ns(ns, p);
2958 		ns->nr_mounts++;
2959 	}
2960 	ns->root = mnt;
2961 	mntget(&mnt->mnt);
2962 	unlock_mount_hash();
2963 	namespace_unlock();
2964 
2965 	mntput(path->mnt);
2966 	path->mnt = &mnt->mnt;
2967 	file = dentry_open(path, O_PATH, current_cred());
2968 	if (IS_ERR(file))
2969 		dissolve_on_fput(path->mnt);
2970 	else
2971 		file->f_mode |= FMODE_NEED_UNMOUNT;
2972 	return file;
2973 }
2974 
2975 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2976 {
2977 	struct file *file;
2978 	struct path path;
2979 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2980 	bool detached = flags & OPEN_TREE_CLONE;
2981 	int error;
2982 	int fd;
2983 
2984 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2985 
2986 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2987 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2988 		      OPEN_TREE_CLOEXEC))
2989 		return -EINVAL;
2990 
2991 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2992 		return -EINVAL;
2993 
2994 	if (flags & AT_NO_AUTOMOUNT)
2995 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2996 	if (flags & AT_SYMLINK_NOFOLLOW)
2997 		lookup_flags &= ~LOOKUP_FOLLOW;
2998 	if (flags & AT_EMPTY_PATH)
2999 		lookup_flags |= LOOKUP_EMPTY;
3000 
3001 	if (detached && !may_mount())
3002 		return -EPERM;
3003 
3004 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3005 	if (fd < 0)
3006 		return fd;
3007 
3008 	error = user_path_at(dfd, filename, lookup_flags, &path);
3009 	if (unlikely(error)) {
3010 		file = ERR_PTR(error);
3011 	} else {
3012 		if (detached)
3013 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
3014 		else
3015 			file = dentry_open(&path, O_PATH, current_cred());
3016 		path_put(&path);
3017 	}
3018 	if (IS_ERR(file)) {
3019 		put_unused_fd(fd);
3020 		return PTR_ERR(file);
3021 	}
3022 	fd_install(fd, file);
3023 	return fd;
3024 }
3025 
3026 /*
3027  * Don't allow locked mount flags to be cleared.
3028  *
3029  * No locks need to be held here while testing the various MNT_LOCK
3030  * flags because those flags can never be cleared once they are set.
3031  */
3032 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3033 {
3034 	unsigned int fl = mnt->mnt.mnt_flags;
3035 
3036 	if ((fl & MNT_LOCK_READONLY) &&
3037 	    !(mnt_flags & MNT_READONLY))
3038 		return false;
3039 
3040 	if ((fl & MNT_LOCK_NODEV) &&
3041 	    !(mnt_flags & MNT_NODEV))
3042 		return false;
3043 
3044 	if ((fl & MNT_LOCK_NOSUID) &&
3045 	    !(mnt_flags & MNT_NOSUID))
3046 		return false;
3047 
3048 	if ((fl & MNT_LOCK_NOEXEC) &&
3049 	    !(mnt_flags & MNT_NOEXEC))
3050 		return false;
3051 
3052 	if ((fl & MNT_LOCK_ATIME) &&
3053 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3054 		return false;
3055 
3056 	return true;
3057 }
3058 
3059 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3060 {
3061 	bool readonly_request = (mnt_flags & MNT_READONLY);
3062 
3063 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3064 		return 0;
3065 
3066 	if (readonly_request)
3067 		return mnt_make_readonly(mnt);
3068 
3069 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3070 	return 0;
3071 }
3072 
3073 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3074 {
3075 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3076 	mnt->mnt.mnt_flags = mnt_flags;
3077 	touch_mnt_namespace(mnt->mnt_ns);
3078 }
3079 
3080 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3081 {
3082 	struct super_block *sb = mnt->mnt_sb;
3083 
3084 	if (!__mnt_is_readonly(mnt) &&
3085 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3086 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3087 		char *buf, *mntpath;
3088 
3089 		buf = (char *)__get_free_page(GFP_KERNEL);
3090 		if (buf)
3091 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3092 		else
3093 			mntpath = ERR_PTR(-ENOMEM);
3094 		if (IS_ERR(mntpath))
3095 			mntpath = "(unknown)";
3096 
3097 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3098 			sb->s_type->name,
3099 			is_mounted(mnt) ? "remounted" : "mounted",
3100 			mntpath, &sb->s_time_max,
3101 			(unsigned long long)sb->s_time_max);
3102 
3103 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3104 		if (buf)
3105 			free_page((unsigned long)buf);
3106 	}
3107 }
3108 
3109 /*
3110  * Handle reconfiguration of the mountpoint only without alteration of the
3111  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3112  * to mount(2).
3113  */
3114 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3115 {
3116 	struct super_block *sb = path->mnt->mnt_sb;
3117 	struct mount *mnt = real_mount(path->mnt);
3118 	int ret;
3119 
3120 	if (!check_mnt(mnt))
3121 		return -EINVAL;
3122 
3123 	if (!path_mounted(path))
3124 		return -EINVAL;
3125 
3126 	if (!can_change_locked_flags(mnt, mnt_flags))
3127 		return -EPERM;
3128 
3129 	/*
3130 	 * We're only checking whether the superblock is read-only not
3131 	 * changing it, so only take down_read(&sb->s_umount).
3132 	 */
3133 	down_read(&sb->s_umount);
3134 	lock_mount_hash();
3135 	ret = change_mount_ro_state(mnt, mnt_flags);
3136 	if (ret == 0)
3137 		set_mount_attributes(mnt, mnt_flags);
3138 	unlock_mount_hash();
3139 	up_read(&sb->s_umount);
3140 
3141 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3142 
3143 	return ret;
3144 }
3145 
3146 /*
3147  * change filesystem flags. dir should be a physical root of filesystem.
3148  * If you've mounted a non-root directory somewhere and want to do remount
3149  * on it - tough luck.
3150  */
3151 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3152 		      int mnt_flags, void *data)
3153 {
3154 	int err;
3155 	struct super_block *sb = path->mnt->mnt_sb;
3156 	struct mount *mnt = real_mount(path->mnt);
3157 	struct fs_context *fc;
3158 
3159 	if (!check_mnt(mnt))
3160 		return -EINVAL;
3161 
3162 	if (!path_mounted(path))
3163 		return -EINVAL;
3164 
3165 	if (!can_change_locked_flags(mnt, mnt_flags))
3166 		return -EPERM;
3167 
3168 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3169 	if (IS_ERR(fc))
3170 		return PTR_ERR(fc);
3171 
3172 	/*
3173 	 * Indicate to the filesystem that the remount request is coming
3174 	 * from the legacy mount system call.
3175 	 */
3176 	fc->oldapi = true;
3177 
3178 	err = parse_monolithic_mount_data(fc, data);
3179 	if (!err) {
3180 		down_write(&sb->s_umount);
3181 		err = -EPERM;
3182 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3183 			err = reconfigure_super(fc);
3184 			if (!err) {
3185 				lock_mount_hash();
3186 				set_mount_attributes(mnt, mnt_flags);
3187 				unlock_mount_hash();
3188 			}
3189 		}
3190 		up_write(&sb->s_umount);
3191 	}
3192 
3193 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3194 
3195 	put_fs_context(fc);
3196 	return err;
3197 }
3198 
3199 static inline int tree_contains_unbindable(struct mount *mnt)
3200 {
3201 	struct mount *p;
3202 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3203 		if (IS_MNT_UNBINDABLE(p))
3204 			return 1;
3205 	}
3206 	return 0;
3207 }
3208 
3209 /*
3210  * Check that there aren't references to earlier/same mount namespaces in the
3211  * specified subtree.  Such references can act as pins for mount namespaces
3212  * that aren't checked by the mount-cycle checking code, thereby allowing
3213  * cycles to be made.
3214  */
3215 static bool check_for_nsfs_mounts(struct mount *subtree)
3216 {
3217 	struct mount *p;
3218 	bool ret = false;
3219 
3220 	lock_mount_hash();
3221 	for (p = subtree; p; p = next_mnt(p, subtree))
3222 		if (mnt_ns_loop(p->mnt.mnt_root))
3223 			goto out;
3224 
3225 	ret = true;
3226 out:
3227 	unlock_mount_hash();
3228 	return ret;
3229 }
3230 
3231 static int do_set_group(struct path *from_path, struct path *to_path)
3232 {
3233 	struct mount *from, *to;
3234 	int err;
3235 
3236 	from = real_mount(from_path->mnt);
3237 	to = real_mount(to_path->mnt);
3238 
3239 	namespace_lock();
3240 
3241 	err = -EINVAL;
3242 	/* To and From must be mounted */
3243 	if (!is_mounted(&from->mnt))
3244 		goto out;
3245 	if (!is_mounted(&to->mnt))
3246 		goto out;
3247 
3248 	err = -EPERM;
3249 	/* We should be allowed to modify mount namespaces of both mounts */
3250 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3251 		goto out;
3252 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3253 		goto out;
3254 
3255 	err = -EINVAL;
3256 	/* To and From paths should be mount roots */
3257 	if (!path_mounted(from_path))
3258 		goto out;
3259 	if (!path_mounted(to_path))
3260 		goto out;
3261 
3262 	/* Setting sharing groups is only allowed across same superblock */
3263 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3264 		goto out;
3265 
3266 	/* From mount root should be wider than To mount root */
3267 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3268 		goto out;
3269 
3270 	/* From mount should not have locked children in place of To's root */
3271 	if (has_locked_children(from, to->mnt.mnt_root))
3272 		goto out;
3273 
3274 	/* Setting sharing groups is only allowed on private mounts */
3275 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3276 		goto out;
3277 
3278 	/* From should not be private */
3279 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3280 		goto out;
3281 
3282 	if (IS_MNT_SLAVE(from)) {
3283 		struct mount *m = from->mnt_master;
3284 
3285 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3286 		to->mnt_master = m;
3287 	}
3288 
3289 	if (IS_MNT_SHARED(from)) {
3290 		to->mnt_group_id = from->mnt_group_id;
3291 		list_add(&to->mnt_share, &from->mnt_share);
3292 		lock_mount_hash();
3293 		set_mnt_shared(to);
3294 		unlock_mount_hash();
3295 	}
3296 
3297 	err = 0;
3298 out:
3299 	namespace_unlock();
3300 	return err;
3301 }
3302 
3303 /**
3304  * path_overmounted - check if path is overmounted
3305  * @path: path to check
3306  *
3307  * Check if path is overmounted, i.e., if there's a mount on top of
3308  * @path->mnt with @path->dentry as mountpoint.
3309  *
3310  * Context: This function expects namespace_lock() to be held.
3311  * Return: If path is overmounted true is returned, false if not.
3312  */
3313 static inline bool path_overmounted(const struct path *path)
3314 {
3315 	rcu_read_lock();
3316 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3317 		rcu_read_unlock();
3318 		return true;
3319 	}
3320 	rcu_read_unlock();
3321 	return false;
3322 }
3323 
3324 /**
3325  * can_move_mount_beneath - check that we can mount beneath the top mount
3326  * @from: mount to mount beneath
3327  * @to:   mount under which to mount
3328  * @mp:   mountpoint of @to
3329  *
3330  * - Make sure that @to->dentry is actually the root of a mount under
3331  *   which we can mount another mount.
3332  * - Make sure that nothing can be mounted beneath the caller's current
3333  *   root or the rootfs of the namespace.
3334  * - Make sure that the caller can unmount the topmost mount ensuring
3335  *   that the caller could reveal the underlying mountpoint.
3336  * - Ensure that nothing has been mounted on top of @from before we
3337  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3338  * - Prevent mounting beneath a mount if the propagation relationship
3339  *   between the source mount, parent mount, and top mount would lead to
3340  *   nonsensical mount trees.
3341  *
3342  * Context: This function expects namespace_lock() to be held.
3343  * Return: On success 0, and on error a negative error code is returned.
3344  */
3345 static int can_move_mount_beneath(const struct path *from,
3346 				  const struct path *to,
3347 				  const struct mountpoint *mp)
3348 {
3349 	struct mount *mnt_from = real_mount(from->mnt),
3350 		     *mnt_to = real_mount(to->mnt),
3351 		     *parent_mnt_to = mnt_to->mnt_parent;
3352 
3353 	if (!mnt_has_parent(mnt_to))
3354 		return -EINVAL;
3355 
3356 	if (!path_mounted(to))
3357 		return -EINVAL;
3358 
3359 	if (IS_MNT_LOCKED(mnt_to))
3360 		return -EINVAL;
3361 
3362 	/* Avoid creating shadow mounts during mount propagation. */
3363 	if (path_overmounted(from))
3364 		return -EINVAL;
3365 
3366 	/*
3367 	 * Mounting beneath the rootfs only makes sense when the
3368 	 * semantics of pivot_root(".", ".") are used.
3369 	 */
3370 	if (&mnt_to->mnt == current->fs->root.mnt)
3371 		return -EINVAL;
3372 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3373 		return -EINVAL;
3374 
3375 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3376 		if (p == mnt_to)
3377 			return -EINVAL;
3378 
3379 	/*
3380 	 * If the parent mount propagates to the child mount this would
3381 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3382 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3383 	 * defeats the whole purpose of mounting beneath another mount.
3384 	 */
3385 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3386 		return -EINVAL;
3387 
3388 	/*
3389 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3390 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3391 	 * Afterwards @mnt_from would be mounted on top of
3392 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3393 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3394 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3395 	 * remounted on top of @c. Afterwards, @mnt_from would be
3396 	 * covered by a copy @c of @mnt_from and @c would be covered by
3397 	 * @mnt_from itself. This defeats the whole purpose of mounting
3398 	 * @mnt_from beneath @mnt_to.
3399 	 */
3400 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3401 		return -EINVAL;
3402 
3403 	return 0;
3404 }
3405 
3406 static int do_move_mount(struct path *old_path, struct path *new_path,
3407 			 bool beneath)
3408 {
3409 	struct mnt_namespace *ns;
3410 	struct mount *p;
3411 	struct mount *old;
3412 	struct mount *parent;
3413 	struct mountpoint *mp, *old_mp;
3414 	int err;
3415 	bool attached;
3416 	enum mnt_tree_flags_t flags = 0;
3417 
3418 	mp = do_lock_mount(new_path, beneath);
3419 	if (IS_ERR(mp))
3420 		return PTR_ERR(mp);
3421 
3422 	old = real_mount(old_path->mnt);
3423 	p = real_mount(new_path->mnt);
3424 	parent = old->mnt_parent;
3425 	attached = mnt_has_parent(old);
3426 	if (attached)
3427 		flags |= MNT_TREE_MOVE;
3428 	old_mp = old->mnt_mp;
3429 	ns = old->mnt_ns;
3430 
3431 	err = -EINVAL;
3432 	/* The mountpoint must be in our namespace. */
3433 	if (!check_mnt(p))
3434 		goto out;
3435 
3436 	/* The thing moved must be mounted... */
3437 	if (!is_mounted(&old->mnt))
3438 		goto out;
3439 
3440 	/* ... and either ours or the root of anon namespace */
3441 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3442 		goto out;
3443 
3444 	if (old->mnt.mnt_flags & MNT_LOCKED)
3445 		goto out;
3446 
3447 	if (!path_mounted(old_path))
3448 		goto out;
3449 
3450 	if (d_is_dir(new_path->dentry) !=
3451 	    d_is_dir(old_path->dentry))
3452 		goto out;
3453 	/*
3454 	 * Don't move a mount residing in a shared parent.
3455 	 */
3456 	if (attached && IS_MNT_SHARED(parent))
3457 		goto out;
3458 
3459 	if (beneath) {
3460 		err = can_move_mount_beneath(old_path, new_path, mp);
3461 		if (err)
3462 			goto out;
3463 
3464 		err = -EINVAL;
3465 		p = p->mnt_parent;
3466 		flags |= MNT_TREE_BENEATH;
3467 	}
3468 
3469 	/*
3470 	 * Don't move a mount tree containing unbindable mounts to a destination
3471 	 * mount which is shared.
3472 	 */
3473 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3474 		goto out;
3475 	err = -ELOOP;
3476 	if (!check_for_nsfs_mounts(old))
3477 		goto out;
3478 	for (; mnt_has_parent(p); p = p->mnt_parent)
3479 		if (p == old)
3480 			goto out;
3481 
3482 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3483 	if (err)
3484 		goto out;
3485 
3486 	/* if the mount is moved, it should no longer be expire
3487 	 * automatically */
3488 	list_del_init(&old->mnt_expire);
3489 	if (attached)
3490 		put_mountpoint(old_mp);
3491 out:
3492 	unlock_mount(mp);
3493 	if (!err) {
3494 		if (attached)
3495 			mntput_no_expire(parent);
3496 		else
3497 			free_mnt_ns(ns);
3498 	}
3499 	return err;
3500 }
3501 
3502 static int do_move_mount_old(struct path *path, const char *old_name)
3503 {
3504 	struct path old_path;
3505 	int err;
3506 
3507 	if (!old_name || !*old_name)
3508 		return -EINVAL;
3509 
3510 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3511 	if (err)
3512 		return err;
3513 
3514 	err = do_move_mount(&old_path, path, false);
3515 	path_put(&old_path);
3516 	return err;
3517 }
3518 
3519 /*
3520  * add a mount into a namespace's mount tree
3521  */
3522 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3523 			const struct path *path, int mnt_flags)
3524 {
3525 	struct mount *parent = real_mount(path->mnt);
3526 
3527 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3528 
3529 	if (unlikely(!check_mnt(parent))) {
3530 		/* that's acceptable only for automounts done in private ns */
3531 		if (!(mnt_flags & MNT_SHRINKABLE))
3532 			return -EINVAL;
3533 		/* ... and for those we'd better have mountpoint still alive */
3534 		if (!parent->mnt_ns)
3535 			return -EINVAL;
3536 	}
3537 
3538 	/* Refuse the same filesystem on the same mount point */
3539 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3540 		return -EBUSY;
3541 
3542 	if (d_is_symlink(newmnt->mnt.mnt_root))
3543 		return -EINVAL;
3544 
3545 	newmnt->mnt.mnt_flags = mnt_flags;
3546 	return graft_tree(newmnt, parent, mp);
3547 }
3548 
3549 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3550 
3551 /*
3552  * Create a new mount using a superblock configuration and request it
3553  * be added to the namespace tree.
3554  */
3555 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3556 			   unsigned int mnt_flags)
3557 {
3558 	struct vfsmount *mnt;
3559 	struct mountpoint *mp;
3560 	struct super_block *sb = fc->root->d_sb;
3561 	int error;
3562 
3563 	error = security_sb_kern_mount(sb);
3564 	if (!error && mount_too_revealing(sb, &mnt_flags))
3565 		error = -EPERM;
3566 
3567 	if (unlikely(error)) {
3568 		fc_drop_locked(fc);
3569 		return error;
3570 	}
3571 
3572 	up_write(&sb->s_umount);
3573 
3574 	mnt = vfs_create_mount(fc);
3575 	if (IS_ERR(mnt))
3576 		return PTR_ERR(mnt);
3577 
3578 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3579 
3580 	mp = lock_mount(mountpoint);
3581 	if (IS_ERR(mp)) {
3582 		mntput(mnt);
3583 		return PTR_ERR(mp);
3584 	}
3585 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3586 	unlock_mount(mp);
3587 	if (error < 0)
3588 		mntput(mnt);
3589 	return error;
3590 }
3591 
3592 /*
3593  * create a new mount for userspace and request it to be added into the
3594  * namespace's tree
3595  */
3596 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3597 			int mnt_flags, const char *name, void *data)
3598 {
3599 	struct file_system_type *type;
3600 	struct fs_context *fc;
3601 	const char *subtype = NULL;
3602 	int err = 0;
3603 
3604 	if (!fstype)
3605 		return -EINVAL;
3606 
3607 	type = get_fs_type(fstype);
3608 	if (!type)
3609 		return -ENODEV;
3610 
3611 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3612 		subtype = strchr(fstype, '.');
3613 		if (subtype) {
3614 			subtype++;
3615 			if (!*subtype) {
3616 				put_filesystem(type);
3617 				return -EINVAL;
3618 			}
3619 		}
3620 	}
3621 
3622 	fc = fs_context_for_mount(type, sb_flags);
3623 	put_filesystem(type);
3624 	if (IS_ERR(fc))
3625 		return PTR_ERR(fc);
3626 
3627 	/*
3628 	 * Indicate to the filesystem that the mount request is coming
3629 	 * from the legacy mount system call.
3630 	 */
3631 	fc->oldapi = true;
3632 
3633 	if (subtype)
3634 		err = vfs_parse_fs_string(fc, "subtype",
3635 					  subtype, strlen(subtype));
3636 	if (!err && name)
3637 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3638 	if (!err)
3639 		err = parse_monolithic_mount_data(fc, data);
3640 	if (!err && !mount_capable(fc))
3641 		err = -EPERM;
3642 	if (!err)
3643 		err = vfs_get_tree(fc);
3644 	if (!err)
3645 		err = do_new_mount_fc(fc, path, mnt_flags);
3646 
3647 	put_fs_context(fc);
3648 	return err;
3649 }
3650 
3651 int finish_automount(struct vfsmount *m, const struct path *path)
3652 {
3653 	struct dentry *dentry = path->dentry;
3654 	struct mountpoint *mp;
3655 	struct mount *mnt;
3656 	int err;
3657 
3658 	if (!m)
3659 		return 0;
3660 	if (IS_ERR(m))
3661 		return PTR_ERR(m);
3662 
3663 	mnt = real_mount(m);
3664 	/* The new mount record should have at least 2 refs to prevent it being
3665 	 * expired before we get a chance to add it
3666 	 */
3667 	BUG_ON(mnt_get_count(mnt) < 2);
3668 
3669 	if (m->mnt_sb == path->mnt->mnt_sb &&
3670 	    m->mnt_root == dentry) {
3671 		err = -ELOOP;
3672 		goto discard;
3673 	}
3674 
3675 	/*
3676 	 * we don't want to use lock_mount() - in this case finding something
3677 	 * that overmounts our mountpoint to be means "quitely drop what we've
3678 	 * got", not "try to mount it on top".
3679 	 */
3680 	inode_lock(dentry->d_inode);
3681 	namespace_lock();
3682 	if (unlikely(cant_mount(dentry))) {
3683 		err = -ENOENT;
3684 		goto discard_locked;
3685 	}
3686 	if (path_overmounted(path)) {
3687 		err = 0;
3688 		goto discard_locked;
3689 	}
3690 	mp = get_mountpoint(dentry);
3691 	if (IS_ERR(mp)) {
3692 		err = PTR_ERR(mp);
3693 		goto discard_locked;
3694 	}
3695 
3696 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3697 	unlock_mount(mp);
3698 	if (unlikely(err))
3699 		goto discard;
3700 	mntput(m);
3701 	return 0;
3702 
3703 discard_locked:
3704 	namespace_unlock();
3705 	inode_unlock(dentry->d_inode);
3706 discard:
3707 	/* remove m from any expiration list it may be on */
3708 	if (!list_empty(&mnt->mnt_expire)) {
3709 		namespace_lock();
3710 		list_del_init(&mnt->mnt_expire);
3711 		namespace_unlock();
3712 	}
3713 	mntput(m);
3714 	mntput(m);
3715 	return err;
3716 }
3717 
3718 /**
3719  * mnt_set_expiry - Put a mount on an expiration list
3720  * @mnt: The mount to list.
3721  * @expiry_list: The list to add the mount to.
3722  */
3723 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3724 {
3725 	namespace_lock();
3726 
3727 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3728 
3729 	namespace_unlock();
3730 }
3731 EXPORT_SYMBOL(mnt_set_expiry);
3732 
3733 /*
3734  * process a list of expirable mountpoints with the intent of discarding any
3735  * mountpoints that aren't in use and haven't been touched since last we came
3736  * here
3737  */
3738 void mark_mounts_for_expiry(struct list_head *mounts)
3739 {
3740 	struct mount *mnt, *next;
3741 	LIST_HEAD(graveyard);
3742 
3743 	if (list_empty(mounts))
3744 		return;
3745 
3746 	namespace_lock();
3747 	lock_mount_hash();
3748 
3749 	/* extract from the expiration list every vfsmount that matches the
3750 	 * following criteria:
3751 	 * - only referenced by its parent vfsmount
3752 	 * - still marked for expiry (marked on the last call here; marks are
3753 	 *   cleared by mntput())
3754 	 */
3755 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3756 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3757 			propagate_mount_busy(mnt, 1))
3758 			continue;
3759 		list_move(&mnt->mnt_expire, &graveyard);
3760 	}
3761 	while (!list_empty(&graveyard)) {
3762 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3763 		touch_mnt_namespace(mnt->mnt_ns);
3764 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3765 	}
3766 	unlock_mount_hash();
3767 	namespace_unlock();
3768 }
3769 
3770 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3771 
3772 /*
3773  * Ripoff of 'select_parent()'
3774  *
3775  * search the list of submounts for a given mountpoint, and move any
3776  * shrinkable submounts to the 'graveyard' list.
3777  */
3778 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3779 {
3780 	struct mount *this_parent = parent;
3781 	struct list_head *next;
3782 	int found = 0;
3783 
3784 repeat:
3785 	next = this_parent->mnt_mounts.next;
3786 resume:
3787 	while (next != &this_parent->mnt_mounts) {
3788 		struct list_head *tmp = next;
3789 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3790 
3791 		next = tmp->next;
3792 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3793 			continue;
3794 		/*
3795 		 * Descend a level if the d_mounts list is non-empty.
3796 		 */
3797 		if (!list_empty(&mnt->mnt_mounts)) {
3798 			this_parent = mnt;
3799 			goto repeat;
3800 		}
3801 
3802 		if (!propagate_mount_busy(mnt, 1)) {
3803 			list_move_tail(&mnt->mnt_expire, graveyard);
3804 			found++;
3805 		}
3806 	}
3807 	/*
3808 	 * All done at this level ... ascend and resume the search
3809 	 */
3810 	if (this_parent != parent) {
3811 		next = this_parent->mnt_child.next;
3812 		this_parent = this_parent->mnt_parent;
3813 		goto resume;
3814 	}
3815 	return found;
3816 }
3817 
3818 /*
3819  * process a list of expirable mountpoints with the intent of discarding any
3820  * submounts of a specific parent mountpoint
3821  *
3822  * mount_lock must be held for write
3823  */
3824 static void shrink_submounts(struct mount *mnt)
3825 {
3826 	LIST_HEAD(graveyard);
3827 	struct mount *m;
3828 
3829 	/* extract submounts of 'mountpoint' from the expiration list */
3830 	while (select_submounts(mnt, &graveyard)) {
3831 		while (!list_empty(&graveyard)) {
3832 			m = list_first_entry(&graveyard, struct mount,
3833 						mnt_expire);
3834 			touch_mnt_namespace(m->mnt_ns);
3835 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3836 		}
3837 	}
3838 }
3839 
3840 static void *copy_mount_options(const void __user * data)
3841 {
3842 	char *copy;
3843 	unsigned left, offset;
3844 
3845 	if (!data)
3846 		return NULL;
3847 
3848 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3849 	if (!copy)
3850 		return ERR_PTR(-ENOMEM);
3851 
3852 	left = copy_from_user(copy, data, PAGE_SIZE);
3853 
3854 	/*
3855 	 * Not all architectures have an exact copy_from_user(). Resort to
3856 	 * byte at a time.
3857 	 */
3858 	offset = PAGE_SIZE - left;
3859 	while (left) {
3860 		char c;
3861 		if (get_user(c, (const char __user *)data + offset))
3862 			break;
3863 		copy[offset] = c;
3864 		left--;
3865 		offset++;
3866 	}
3867 
3868 	if (left == PAGE_SIZE) {
3869 		kfree(copy);
3870 		return ERR_PTR(-EFAULT);
3871 	}
3872 
3873 	return copy;
3874 }
3875 
3876 static char *copy_mount_string(const void __user *data)
3877 {
3878 	return data ? strndup_user(data, PATH_MAX) : NULL;
3879 }
3880 
3881 /*
3882  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3883  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3884  *
3885  * data is a (void *) that can point to any structure up to
3886  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3887  * information (or be NULL).
3888  *
3889  * Pre-0.97 versions of mount() didn't have a flags word.
3890  * When the flags word was introduced its top half was required
3891  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3892  * Therefore, if this magic number is present, it carries no information
3893  * and must be discarded.
3894  */
3895 int path_mount(const char *dev_name, struct path *path,
3896 		const char *type_page, unsigned long flags, void *data_page)
3897 {
3898 	unsigned int mnt_flags = 0, sb_flags;
3899 	int ret;
3900 
3901 	/* Discard magic */
3902 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3903 		flags &= ~MS_MGC_MSK;
3904 
3905 	/* Basic sanity checks */
3906 	if (data_page)
3907 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3908 
3909 	if (flags & MS_NOUSER)
3910 		return -EINVAL;
3911 
3912 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3913 	if (ret)
3914 		return ret;
3915 	if (!may_mount())
3916 		return -EPERM;
3917 	if (flags & SB_MANDLOCK)
3918 		warn_mandlock();
3919 
3920 	/* Default to relatime unless overriden */
3921 	if (!(flags & MS_NOATIME))
3922 		mnt_flags |= MNT_RELATIME;
3923 
3924 	/* Separate the per-mountpoint flags */
3925 	if (flags & MS_NOSUID)
3926 		mnt_flags |= MNT_NOSUID;
3927 	if (flags & MS_NODEV)
3928 		mnt_flags |= MNT_NODEV;
3929 	if (flags & MS_NOEXEC)
3930 		mnt_flags |= MNT_NOEXEC;
3931 	if (flags & MS_NOATIME)
3932 		mnt_flags |= MNT_NOATIME;
3933 	if (flags & MS_NODIRATIME)
3934 		mnt_flags |= MNT_NODIRATIME;
3935 	if (flags & MS_STRICTATIME)
3936 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3937 	if (flags & MS_RDONLY)
3938 		mnt_flags |= MNT_READONLY;
3939 	if (flags & MS_NOSYMFOLLOW)
3940 		mnt_flags |= MNT_NOSYMFOLLOW;
3941 
3942 	/* The default atime for remount is preservation */
3943 	if ((flags & MS_REMOUNT) &&
3944 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3945 		       MS_STRICTATIME)) == 0)) {
3946 		mnt_flags &= ~MNT_ATIME_MASK;
3947 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3948 	}
3949 
3950 	sb_flags = flags & (SB_RDONLY |
3951 			    SB_SYNCHRONOUS |
3952 			    SB_MANDLOCK |
3953 			    SB_DIRSYNC |
3954 			    SB_SILENT |
3955 			    SB_POSIXACL |
3956 			    SB_LAZYTIME |
3957 			    SB_I_VERSION);
3958 
3959 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3960 		return do_reconfigure_mnt(path, mnt_flags);
3961 	if (flags & MS_REMOUNT)
3962 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3963 	if (flags & MS_BIND)
3964 		return do_loopback(path, dev_name, flags & MS_REC);
3965 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3966 		return do_change_type(path, flags);
3967 	if (flags & MS_MOVE)
3968 		return do_move_mount_old(path, dev_name);
3969 
3970 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3971 			    data_page);
3972 }
3973 
3974 int do_mount(const char *dev_name, const char __user *dir_name,
3975 		const char *type_page, unsigned long flags, void *data_page)
3976 {
3977 	struct path path;
3978 	int ret;
3979 
3980 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3981 	if (ret)
3982 		return ret;
3983 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3984 	path_put(&path);
3985 	return ret;
3986 }
3987 
3988 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3989 {
3990 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3991 }
3992 
3993 static void dec_mnt_namespaces(struct ucounts *ucounts)
3994 {
3995 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3996 }
3997 
3998 static void free_mnt_ns(struct mnt_namespace *ns)
3999 {
4000 	if (!is_anon_ns(ns))
4001 		ns_free_inum(&ns->ns);
4002 	dec_mnt_namespaces(ns->ucounts);
4003 	mnt_ns_tree_remove(ns);
4004 }
4005 
4006 /*
4007  * Assign a sequence number so we can detect when we attempt to bind
4008  * mount a reference to an older mount namespace into the current
4009  * mount namespace, preventing reference counting loops.  A 64bit
4010  * number incrementing at 10Ghz will take 12,427 years to wrap which
4011  * is effectively never, so we can ignore the possibility.
4012  */
4013 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4014 
4015 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4016 {
4017 	struct mnt_namespace *new_ns;
4018 	struct ucounts *ucounts;
4019 	int ret;
4020 
4021 	ucounts = inc_mnt_namespaces(user_ns);
4022 	if (!ucounts)
4023 		return ERR_PTR(-ENOSPC);
4024 
4025 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4026 	if (!new_ns) {
4027 		dec_mnt_namespaces(ucounts);
4028 		return ERR_PTR(-ENOMEM);
4029 	}
4030 	if (!anon) {
4031 		ret = ns_alloc_inum(&new_ns->ns);
4032 		if (ret) {
4033 			kfree(new_ns);
4034 			dec_mnt_namespaces(ucounts);
4035 			return ERR_PTR(ret);
4036 		}
4037 	}
4038 	new_ns->ns.ops = &mntns_operations;
4039 	if (!anon)
4040 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4041 	refcount_set(&new_ns->ns.count, 1);
4042 	refcount_set(&new_ns->passive, 1);
4043 	new_ns->mounts = RB_ROOT;
4044 	INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4045 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4046 	init_waitqueue_head(&new_ns->poll);
4047 	new_ns->user_ns = get_user_ns(user_ns);
4048 	new_ns->ucounts = ucounts;
4049 	return new_ns;
4050 }
4051 
4052 __latent_entropy
4053 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4054 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4055 {
4056 	struct mnt_namespace *new_ns;
4057 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4058 	struct mount *p, *q;
4059 	struct mount *old;
4060 	struct mount *new;
4061 	int copy_flags;
4062 
4063 	BUG_ON(!ns);
4064 
4065 	if (likely(!(flags & CLONE_NEWNS))) {
4066 		get_mnt_ns(ns);
4067 		return ns;
4068 	}
4069 
4070 	old = ns->root;
4071 
4072 	new_ns = alloc_mnt_ns(user_ns, false);
4073 	if (IS_ERR(new_ns))
4074 		return new_ns;
4075 
4076 	namespace_lock();
4077 	/* First pass: copy the tree topology */
4078 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4079 	if (user_ns != ns->user_ns)
4080 		copy_flags |= CL_SHARED_TO_SLAVE;
4081 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4082 	if (IS_ERR(new)) {
4083 		namespace_unlock();
4084 		ns_free_inum(&new_ns->ns);
4085 		dec_mnt_namespaces(new_ns->ucounts);
4086 		mnt_ns_release(new_ns);
4087 		return ERR_CAST(new);
4088 	}
4089 	if (user_ns != ns->user_ns) {
4090 		lock_mount_hash();
4091 		lock_mnt_tree(new);
4092 		unlock_mount_hash();
4093 	}
4094 	new_ns->root = new;
4095 
4096 	/*
4097 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4098 	 * as belonging to new namespace.  We have already acquired a private
4099 	 * fs_struct, so tsk->fs->lock is not needed.
4100 	 */
4101 	p = old;
4102 	q = new;
4103 	while (p) {
4104 		mnt_add_to_ns(new_ns, q);
4105 		new_ns->nr_mounts++;
4106 		if (new_fs) {
4107 			if (&p->mnt == new_fs->root.mnt) {
4108 				new_fs->root.mnt = mntget(&q->mnt);
4109 				rootmnt = &p->mnt;
4110 			}
4111 			if (&p->mnt == new_fs->pwd.mnt) {
4112 				new_fs->pwd.mnt = mntget(&q->mnt);
4113 				pwdmnt = &p->mnt;
4114 			}
4115 		}
4116 		p = next_mnt(p, old);
4117 		q = next_mnt(q, new);
4118 		if (!q)
4119 			break;
4120 		// an mntns binding we'd skipped?
4121 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4122 			p = next_mnt(skip_mnt_tree(p), old);
4123 	}
4124 	namespace_unlock();
4125 
4126 	if (rootmnt)
4127 		mntput(rootmnt);
4128 	if (pwdmnt)
4129 		mntput(pwdmnt);
4130 
4131 	mnt_ns_tree_add(new_ns);
4132 	return new_ns;
4133 }
4134 
4135 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4136 {
4137 	struct mount *mnt = real_mount(m);
4138 	struct mnt_namespace *ns;
4139 	struct super_block *s;
4140 	struct path path;
4141 	int err;
4142 
4143 	ns = alloc_mnt_ns(&init_user_ns, true);
4144 	if (IS_ERR(ns)) {
4145 		mntput(m);
4146 		return ERR_CAST(ns);
4147 	}
4148 	ns->root = mnt;
4149 	ns->nr_mounts++;
4150 	mnt_add_to_ns(ns, mnt);
4151 
4152 	err = vfs_path_lookup(m->mnt_root, m,
4153 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4154 
4155 	put_mnt_ns(ns);
4156 
4157 	if (err)
4158 		return ERR_PTR(err);
4159 
4160 	/* trade a vfsmount reference for active sb one */
4161 	s = path.mnt->mnt_sb;
4162 	atomic_inc(&s->s_active);
4163 	mntput(path.mnt);
4164 	/* lock the sucker */
4165 	down_write(&s->s_umount);
4166 	/* ... and return the root of (sub)tree on it */
4167 	return path.dentry;
4168 }
4169 EXPORT_SYMBOL(mount_subtree);
4170 
4171 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4172 		char __user *, type, unsigned long, flags, void __user *, data)
4173 {
4174 	int ret;
4175 	char *kernel_type;
4176 	char *kernel_dev;
4177 	void *options;
4178 
4179 	kernel_type = copy_mount_string(type);
4180 	ret = PTR_ERR(kernel_type);
4181 	if (IS_ERR(kernel_type))
4182 		goto out_type;
4183 
4184 	kernel_dev = copy_mount_string(dev_name);
4185 	ret = PTR_ERR(kernel_dev);
4186 	if (IS_ERR(kernel_dev))
4187 		goto out_dev;
4188 
4189 	options = copy_mount_options(data);
4190 	ret = PTR_ERR(options);
4191 	if (IS_ERR(options))
4192 		goto out_data;
4193 
4194 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4195 
4196 	kfree(options);
4197 out_data:
4198 	kfree(kernel_dev);
4199 out_dev:
4200 	kfree(kernel_type);
4201 out_type:
4202 	return ret;
4203 }
4204 
4205 #define FSMOUNT_VALID_FLAGS                                                    \
4206 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4207 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4208 	 MOUNT_ATTR_NOSYMFOLLOW)
4209 
4210 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4211 
4212 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4213 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4214 
4215 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4216 {
4217 	unsigned int mnt_flags = 0;
4218 
4219 	if (attr_flags & MOUNT_ATTR_RDONLY)
4220 		mnt_flags |= MNT_READONLY;
4221 	if (attr_flags & MOUNT_ATTR_NOSUID)
4222 		mnt_flags |= MNT_NOSUID;
4223 	if (attr_flags & MOUNT_ATTR_NODEV)
4224 		mnt_flags |= MNT_NODEV;
4225 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4226 		mnt_flags |= MNT_NOEXEC;
4227 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4228 		mnt_flags |= MNT_NODIRATIME;
4229 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4230 		mnt_flags |= MNT_NOSYMFOLLOW;
4231 
4232 	return mnt_flags;
4233 }
4234 
4235 /*
4236  * Create a kernel mount representation for a new, prepared superblock
4237  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4238  */
4239 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4240 		unsigned int, attr_flags)
4241 {
4242 	struct mnt_namespace *ns;
4243 	struct fs_context *fc;
4244 	struct file *file;
4245 	struct path newmount;
4246 	struct mount *mnt;
4247 	unsigned int mnt_flags = 0;
4248 	long ret;
4249 
4250 	if (!may_mount())
4251 		return -EPERM;
4252 
4253 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4254 		return -EINVAL;
4255 
4256 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4257 		return -EINVAL;
4258 
4259 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4260 
4261 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4262 	case MOUNT_ATTR_STRICTATIME:
4263 		break;
4264 	case MOUNT_ATTR_NOATIME:
4265 		mnt_flags |= MNT_NOATIME;
4266 		break;
4267 	case MOUNT_ATTR_RELATIME:
4268 		mnt_flags |= MNT_RELATIME;
4269 		break;
4270 	default:
4271 		return -EINVAL;
4272 	}
4273 
4274 	CLASS(fd, f)(fs_fd);
4275 	if (fd_empty(f))
4276 		return -EBADF;
4277 
4278 	if (fd_file(f)->f_op != &fscontext_fops)
4279 		return -EINVAL;
4280 
4281 	fc = fd_file(f)->private_data;
4282 
4283 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4284 	if (ret < 0)
4285 		return ret;
4286 
4287 	/* There must be a valid superblock or we can't mount it */
4288 	ret = -EINVAL;
4289 	if (!fc->root)
4290 		goto err_unlock;
4291 
4292 	ret = -EPERM;
4293 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4294 		pr_warn("VFS: Mount too revealing\n");
4295 		goto err_unlock;
4296 	}
4297 
4298 	ret = -EBUSY;
4299 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4300 		goto err_unlock;
4301 
4302 	if (fc->sb_flags & SB_MANDLOCK)
4303 		warn_mandlock();
4304 
4305 	newmount.mnt = vfs_create_mount(fc);
4306 	if (IS_ERR(newmount.mnt)) {
4307 		ret = PTR_ERR(newmount.mnt);
4308 		goto err_unlock;
4309 	}
4310 	newmount.dentry = dget(fc->root);
4311 	newmount.mnt->mnt_flags = mnt_flags;
4312 
4313 	/* We've done the mount bit - now move the file context into more or
4314 	 * less the same state as if we'd done an fspick().  We don't want to
4315 	 * do any memory allocation or anything like that at this point as we
4316 	 * don't want to have to handle any errors incurred.
4317 	 */
4318 	vfs_clean_context(fc);
4319 
4320 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4321 	if (IS_ERR(ns)) {
4322 		ret = PTR_ERR(ns);
4323 		goto err_path;
4324 	}
4325 	mnt = real_mount(newmount.mnt);
4326 	ns->root = mnt;
4327 	ns->nr_mounts = 1;
4328 	mnt_add_to_ns(ns, mnt);
4329 	mntget(newmount.mnt);
4330 
4331 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4332 	 * it, not just simply put it.
4333 	 */
4334 	file = dentry_open(&newmount, O_PATH, fc->cred);
4335 	if (IS_ERR(file)) {
4336 		dissolve_on_fput(newmount.mnt);
4337 		ret = PTR_ERR(file);
4338 		goto err_path;
4339 	}
4340 	file->f_mode |= FMODE_NEED_UNMOUNT;
4341 
4342 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4343 	if (ret >= 0)
4344 		fd_install(ret, file);
4345 	else
4346 		fput(file);
4347 
4348 err_path:
4349 	path_put(&newmount);
4350 err_unlock:
4351 	mutex_unlock(&fc->uapi_mutex);
4352 	return ret;
4353 }
4354 
4355 /*
4356  * Move a mount from one place to another.  In combination with
4357  * fsopen()/fsmount() this is used to install a new mount and in combination
4358  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4359  * a mount subtree.
4360  *
4361  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4362  */
4363 SYSCALL_DEFINE5(move_mount,
4364 		int, from_dfd, const char __user *, from_pathname,
4365 		int, to_dfd, const char __user *, to_pathname,
4366 		unsigned int, flags)
4367 {
4368 	struct path from_path, to_path;
4369 	unsigned int lflags;
4370 	int ret = 0;
4371 
4372 	if (!may_mount())
4373 		return -EPERM;
4374 
4375 	if (flags & ~MOVE_MOUNT__MASK)
4376 		return -EINVAL;
4377 
4378 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4379 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4380 		return -EINVAL;
4381 
4382 	/* If someone gives a pathname, they aren't permitted to move
4383 	 * from an fd that requires unmount as we can't get at the flag
4384 	 * to clear it afterwards.
4385 	 */
4386 	lflags = 0;
4387 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4388 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4389 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4390 
4391 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4392 	if (ret < 0)
4393 		return ret;
4394 
4395 	lflags = 0;
4396 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4397 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4398 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4399 
4400 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4401 	if (ret < 0)
4402 		goto out_from;
4403 
4404 	ret = security_move_mount(&from_path, &to_path);
4405 	if (ret < 0)
4406 		goto out_to;
4407 
4408 	if (flags & MOVE_MOUNT_SET_GROUP)
4409 		ret = do_set_group(&from_path, &to_path);
4410 	else
4411 		ret = do_move_mount(&from_path, &to_path,
4412 				    (flags & MOVE_MOUNT_BENEATH));
4413 
4414 out_to:
4415 	path_put(&to_path);
4416 out_from:
4417 	path_put(&from_path);
4418 	return ret;
4419 }
4420 
4421 /*
4422  * Return true if path is reachable from root
4423  *
4424  * namespace_sem or mount_lock is held
4425  */
4426 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4427 			 const struct path *root)
4428 {
4429 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4430 		dentry = mnt->mnt_mountpoint;
4431 		mnt = mnt->mnt_parent;
4432 	}
4433 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4434 }
4435 
4436 bool path_is_under(const struct path *path1, const struct path *path2)
4437 {
4438 	bool res;
4439 	read_seqlock_excl(&mount_lock);
4440 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4441 	read_sequnlock_excl(&mount_lock);
4442 	return res;
4443 }
4444 EXPORT_SYMBOL(path_is_under);
4445 
4446 /*
4447  * pivot_root Semantics:
4448  * Moves the root file system of the current process to the directory put_old,
4449  * makes new_root as the new root file system of the current process, and sets
4450  * root/cwd of all processes which had them on the current root to new_root.
4451  *
4452  * Restrictions:
4453  * The new_root and put_old must be directories, and  must not be on the
4454  * same file  system as the current process root. The put_old  must  be
4455  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4456  * pointed to by put_old must yield the same directory as new_root. No other
4457  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4458  *
4459  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4460  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4461  * in this situation.
4462  *
4463  * Notes:
4464  *  - we don't move root/cwd if they are not at the root (reason: if something
4465  *    cared enough to change them, it's probably wrong to force them elsewhere)
4466  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4467  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4468  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4469  *    first.
4470  */
4471 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4472 		const char __user *, put_old)
4473 {
4474 	struct path new, old, root;
4475 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4476 	struct mountpoint *old_mp, *root_mp;
4477 	int error;
4478 
4479 	if (!may_mount())
4480 		return -EPERM;
4481 
4482 	error = user_path_at(AT_FDCWD, new_root,
4483 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4484 	if (error)
4485 		goto out0;
4486 
4487 	error = user_path_at(AT_FDCWD, put_old,
4488 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4489 	if (error)
4490 		goto out1;
4491 
4492 	error = security_sb_pivotroot(&old, &new);
4493 	if (error)
4494 		goto out2;
4495 
4496 	get_fs_root(current->fs, &root);
4497 	old_mp = lock_mount(&old);
4498 	error = PTR_ERR(old_mp);
4499 	if (IS_ERR(old_mp))
4500 		goto out3;
4501 
4502 	error = -EINVAL;
4503 	new_mnt = real_mount(new.mnt);
4504 	root_mnt = real_mount(root.mnt);
4505 	old_mnt = real_mount(old.mnt);
4506 	ex_parent = new_mnt->mnt_parent;
4507 	root_parent = root_mnt->mnt_parent;
4508 	if (IS_MNT_SHARED(old_mnt) ||
4509 		IS_MNT_SHARED(ex_parent) ||
4510 		IS_MNT_SHARED(root_parent))
4511 		goto out4;
4512 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4513 		goto out4;
4514 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4515 		goto out4;
4516 	error = -ENOENT;
4517 	if (d_unlinked(new.dentry))
4518 		goto out4;
4519 	error = -EBUSY;
4520 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4521 		goto out4; /* loop, on the same file system  */
4522 	error = -EINVAL;
4523 	if (!path_mounted(&root))
4524 		goto out4; /* not a mountpoint */
4525 	if (!mnt_has_parent(root_mnt))
4526 		goto out4; /* not attached */
4527 	if (!path_mounted(&new))
4528 		goto out4; /* not a mountpoint */
4529 	if (!mnt_has_parent(new_mnt))
4530 		goto out4; /* not attached */
4531 	/* make sure we can reach put_old from new_root */
4532 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4533 		goto out4;
4534 	/* make certain new is below the root */
4535 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4536 		goto out4;
4537 	lock_mount_hash();
4538 	umount_mnt(new_mnt);
4539 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4540 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4541 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4542 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4543 	}
4544 	/* mount old root on put_old */
4545 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4546 	/* mount new_root on / */
4547 	attach_mnt(new_mnt, root_parent, root_mp, false);
4548 	mnt_add_count(root_parent, -1);
4549 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4550 	/* A moved mount should not expire automatically */
4551 	list_del_init(&new_mnt->mnt_expire);
4552 	put_mountpoint(root_mp);
4553 	unlock_mount_hash();
4554 	mnt_notify_add(root_mnt);
4555 	mnt_notify_add(new_mnt);
4556 	chroot_fs_refs(&root, &new);
4557 	error = 0;
4558 out4:
4559 	unlock_mount(old_mp);
4560 	if (!error)
4561 		mntput_no_expire(ex_parent);
4562 out3:
4563 	path_put(&root);
4564 out2:
4565 	path_put(&old);
4566 out1:
4567 	path_put(&new);
4568 out0:
4569 	return error;
4570 }
4571 
4572 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4573 {
4574 	unsigned int flags = mnt->mnt.mnt_flags;
4575 
4576 	/*  flags to clear */
4577 	flags &= ~kattr->attr_clr;
4578 	/* flags to raise */
4579 	flags |= kattr->attr_set;
4580 
4581 	return flags;
4582 }
4583 
4584 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4585 {
4586 	struct vfsmount *m = &mnt->mnt;
4587 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4588 
4589 	if (!kattr->mnt_idmap)
4590 		return 0;
4591 
4592 	/*
4593 	 * Creating an idmapped mount with the filesystem wide idmapping
4594 	 * doesn't make sense so block that. We don't allow mushy semantics.
4595 	 */
4596 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4597 		return -EINVAL;
4598 
4599 	/*
4600 	 * Once a mount has been idmapped we don't allow it to change its
4601 	 * mapping. It makes things simpler and callers can just create
4602 	 * another bind-mount they can idmap if they want to.
4603 	 */
4604 	if (is_idmapped_mnt(m))
4605 		return -EPERM;
4606 
4607 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4608 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4609 		return -EINVAL;
4610 
4611 	/* The filesystem has turned off idmapped mounts. */
4612 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4613 		return -EINVAL;
4614 
4615 	/* We're not controlling the superblock. */
4616 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4617 		return -EPERM;
4618 
4619 	/* Mount has already been visible in the filesystem hierarchy. */
4620 	if (!is_anon_ns(mnt->mnt_ns))
4621 		return -EINVAL;
4622 
4623 	return 0;
4624 }
4625 
4626 /**
4627  * mnt_allow_writers() - check whether the attribute change allows writers
4628  * @kattr: the new mount attributes
4629  * @mnt: the mount to which @kattr will be applied
4630  *
4631  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4632  *
4633  * Return: true if writers need to be held, false if not
4634  */
4635 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4636 				     const struct mount *mnt)
4637 {
4638 	return (!(kattr->attr_set & MNT_READONLY) ||
4639 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4640 	       !kattr->mnt_idmap;
4641 }
4642 
4643 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4644 {
4645 	struct mount *m;
4646 	int err;
4647 
4648 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4649 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4650 			err = -EPERM;
4651 			break;
4652 		}
4653 
4654 		err = can_idmap_mount(kattr, m);
4655 		if (err)
4656 			break;
4657 
4658 		if (!mnt_allow_writers(kattr, m)) {
4659 			err = mnt_hold_writers(m);
4660 			if (err)
4661 				break;
4662 		}
4663 
4664 		if (!kattr->recurse)
4665 			return 0;
4666 	}
4667 
4668 	if (err) {
4669 		struct mount *p;
4670 
4671 		/*
4672 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4673 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4674 		 * mounts and needs to take care to include the first mount.
4675 		 */
4676 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4677 			/* If we had to hold writers unblock them. */
4678 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4679 				mnt_unhold_writers(p);
4680 
4681 			/*
4682 			 * We're done once the first mount we changed got
4683 			 * MNT_WRITE_HOLD unset.
4684 			 */
4685 			if (p == m)
4686 				break;
4687 		}
4688 	}
4689 	return err;
4690 }
4691 
4692 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4693 {
4694 	if (!kattr->mnt_idmap)
4695 		return;
4696 
4697 	/*
4698 	 * Pairs with smp_load_acquire() in mnt_idmap().
4699 	 *
4700 	 * Since we only allow a mount to change the idmapping once and
4701 	 * verified this in can_idmap_mount() we know that the mount has
4702 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4703 	 * references.
4704 	 */
4705 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4706 }
4707 
4708 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4709 {
4710 	struct mount *m;
4711 
4712 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4713 		unsigned int flags;
4714 
4715 		do_idmap_mount(kattr, m);
4716 		flags = recalc_flags(kattr, m);
4717 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4718 
4719 		/* If we had to hold writers unblock them. */
4720 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4721 			mnt_unhold_writers(m);
4722 
4723 		if (kattr->propagation)
4724 			change_mnt_propagation(m, kattr->propagation);
4725 		if (!kattr->recurse)
4726 			break;
4727 	}
4728 	touch_mnt_namespace(mnt->mnt_ns);
4729 }
4730 
4731 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4732 {
4733 	struct mount *mnt = real_mount(path->mnt);
4734 	int err = 0;
4735 
4736 	if (!path_mounted(path))
4737 		return -EINVAL;
4738 
4739 	if (kattr->mnt_userns) {
4740 		struct mnt_idmap *mnt_idmap;
4741 
4742 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4743 		if (IS_ERR(mnt_idmap))
4744 			return PTR_ERR(mnt_idmap);
4745 		kattr->mnt_idmap = mnt_idmap;
4746 	}
4747 
4748 	if (kattr->propagation) {
4749 		/*
4750 		 * Only take namespace_lock() if we're actually changing
4751 		 * propagation.
4752 		 */
4753 		namespace_lock();
4754 		if (kattr->propagation == MS_SHARED) {
4755 			err = invent_group_ids(mnt, kattr->recurse);
4756 			if (err) {
4757 				namespace_unlock();
4758 				return err;
4759 			}
4760 		}
4761 	}
4762 
4763 	err = -EINVAL;
4764 	lock_mount_hash();
4765 
4766 	/* Ensure that this isn't anything purely vfs internal. */
4767 	if (!is_mounted(&mnt->mnt))
4768 		goto out;
4769 
4770 	/*
4771 	 * If this is an attached mount make sure it's located in the callers
4772 	 * mount namespace. If it's not don't let the caller interact with it.
4773 	 *
4774 	 * If this mount doesn't have a parent it's most often simply a
4775 	 * detached mount with an anonymous mount namespace. IOW, something
4776 	 * that's simply not attached yet. But there are apparently also users
4777 	 * that do change mount properties on the rootfs itself. That obviously
4778 	 * neither has a parent nor is it a detached mount so we cannot
4779 	 * unconditionally check for detached mounts.
4780 	 */
4781 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4782 		goto out;
4783 
4784 	/*
4785 	 * First, we get the mount tree in a shape where we can change mount
4786 	 * properties without failure. If we succeeded to do so we commit all
4787 	 * changes and if we failed we clean up.
4788 	 */
4789 	err = mount_setattr_prepare(kattr, mnt);
4790 	if (!err)
4791 		mount_setattr_commit(kattr, mnt);
4792 
4793 out:
4794 	unlock_mount_hash();
4795 
4796 	if (kattr->propagation) {
4797 		if (err)
4798 			cleanup_group_ids(mnt, NULL);
4799 		namespace_unlock();
4800 	}
4801 
4802 	return err;
4803 }
4804 
4805 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4806 				struct mount_kattr *kattr, unsigned int flags)
4807 {
4808 	struct ns_common *ns;
4809 	struct user_namespace *mnt_userns;
4810 
4811 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4812 		return 0;
4813 
4814 	/*
4815 	 * We currently do not support clearing an idmapped mount. If this ever
4816 	 * is a use-case we can revisit this but for now let's keep it simple
4817 	 * and not allow it.
4818 	 */
4819 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4820 		return -EINVAL;
4821 
4822 	if (attr->userns_fd > INT_MAX)
4823 		return -EINVAL;
4824 
4825 	CLASS(fd, f)(attr->userns_fd);
4826 	if (fd_empty(f))
4827 		return -EBADF;
4828 
4829 	if (!proc_ns_file(fd_file(f)))
4830 		return -EINVAL;
4831 
4832 	ns = get_proc_ns(file_inode(fd_file(f)));
4833 	if (ns->ops->type != CLONE_NEWUSER)
4834 		return -EINVAL;
4835 
4836 	/*
4837 	 * The initial idmapping cannot be used to create an idmapped
4838 	 * mount. We use the initial idmapping as an indicator of a mount
4839 	 * that is not idmapped. It can simply be passed into helpers that
4840 	 * are aware of idmapped mounts as a convenient shortcut. A user
4841 	 * can just create a dedicated identity mapping to achieve the same
4842 	 * result.
4843 	 */
4844 	mnt_userns = container_of(ns, struct user_namespace, ns);
4845 	if (mnt_userns == &init_user_ns)
4846 		return -EPERM;
4847 
4848 	/* We're not controlling the target namespace. */
4849 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4850 		return -EPERM;
4851 
4852 	kattr->mnt_userns = get_user_ns(mnt_userns);
4853 	return 0;
4854 }
4855 
4856 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4857 			     struct mount_kattr *kattr, unsigned int flags)
4858 {
4859 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4860 
4861 	if (flags & AT_NO_AUTOMOUNT)
4862 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4863 	if (flags & AT_SYMLINK_NOFOLLOW)
4864 		lookup_flags &= ~LOOKUP_FOLLOW;
4865 	if (flags & AT_EMPTY_PATH)
4866 		lookup_flags |= LOOKUP_EMPTY;
4867 
4868 	*kattr = (struct mount_kattr) {
4869 		.lookup_flags	= lookup_flags,
4870 		.recurse	= !!(flags & AT_RECURSIVE),
4871 	};
4872 
4873 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4874 		return -EINVAL;
4875 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4876 		return -EINVAL;
4877 	kattr->propagation = attr->propagation;
4878 
4879 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4880 		return -EINVAL;
4881 
4882 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4883 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4884 
4885 	/*
4886 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4887 	 * users wanting to transition to a different atime setting cannot
4888 	 * simply specify the atime setting in @attr_set, but must also
4889 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4890 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4891 	 * @attr_clr and that @attr_set can't have any atime bits set if
4892 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4893 	 */
4894 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4895 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4896 			return -EINVAL;
4897 
4898 		/*
4899 		 * Clear all previous time settings as they are mutually
4900 		 * exclusive.
4901 		 */
4902 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4903 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4904 		case MOUNT_ATTR_RELATIME:
4905 			kattr->attr_set |= MNT_RELATIME;
4906 			break;
4907 		case MOUNT_ATTR_NOATIME:
4908 			kattr->attr_set |= MNT_NOATIME;
4909 			break;
4910 		case MOUNT_ATTR_STRICTATIME:
4911 			break;
4912 		default:
4913 			return -EINVAL;
4914 		}
4915 	} else {
4916 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4917 			return -EINVAL;
4918 	}
4919 
4920 	return build_mount_idmapped(attr, usize, kattr, flags);
4921 }
4922 
4923 static void finish_mount_kattr(struct mount_kattr *kattr)
4924 {
4925 	put_user_ns(kattr->mnt_userns);
4926 	kattr->mnt_userns = NULL;
4927 
4928 	if (kattr->mnt_idmap)
4929 		mnt_idmap_put(kattr->mnt_idmap);
4930 }
4931 
4932 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4933 		unsigned int, flags, struct mount_attr __user *, uattr,
4934 		size_t, usize)
4935 {
4936 	int err;
4937 	struct path target;
4938 	struct mount_attr attr;
4939 	struct mount_kattr kattr;
4940 
4941 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4942 
4943 	if (flags & ~(AT_EMPTY_PATH |
4944 		      AT_RECURSIVE |
4945 		      AT_SYMLINK_NOFOLLOW |
4946 		      AT_NO_AUTOMOUNT))
4947 		return -EINVAL;
4948 
4949 	if (unlikely(usize > PAGE_SIZE))
4950 		return -E2BIG;
4951 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4952 		return -EINVAL;
4953 
4954 	if (!may_mount())
4955 		return -EPERM;
4956 
4957 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4958 	if (err)
4959 		return err;
4960 
4961 	/* Don't bother walking through the mounts if this is a nop. */
4962 	if (attr.attr_set == 0 &&
4963 	    attr.attr_clr == 0 &&
4964 	    attr.propagation == 0)
4965 		return 0;
4966 
4967 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4968 	if (err)
4969 		return err;
4970 
4971 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4972 	if (!err) {
4973 		err = do_mount_setattr(&target, &kattr);
4974 		path_put(&target);
4975 	}
4976 	finish_mount_kattr(&kattr);
4977 	return err;
4978 }
4979 
4980 int show_path(struct seq_file *m, struct dentry *root)
4981 {
4982 	if (root->d_sb->s_op->show_path)
4983 		return root->d_sb->s_op->show_path(m, root);
4984 
4985 	seq_dentry(m, root, " \t\n\\");
4986 	return 0;
4987 }
4988 
4989 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4990 {
4991 	struct mount *mnt = mnt_find_id_at(ns, id);
4992 
4993 	if (!mnt || mnt->mnt_id_unique != id)
4994 		return NULL;
4995 
4996 	return &mnt->mnt;
4997 }
4998 
4999 struct kstatmount {
5000 	struct statmount __user *buf;
5001 	size_t bufsize;
5002 	struct vfsmount *mnt;
5003 	u64 mask;
5004 	struct path root;
5005 	struct statmount sm;
5006 	struct seq_file seq;
5007 };
5008 
5009 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5010 {
5011 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5012 	u64 attr_flags = 0;
5013 
5014 	if (mnt_flags & MNT_READONLY)
5015 		attr_flags |= MOUNT_ATTR_RDONLY;
5016 	if (mnt_flags & MNT_NOSUID)
5017 		attr_flags |= MOUNT_ATTR_NOSUID;
5018 	if (mnt_flags & MNT_NODEV)
5019 		attr_flags |= MOUNT_ATTR_NODEV;
5020 	if (mnt_flags & MNT_NOEXEC)
5021 		attr_flags |= MOUNT_ATTR_NOEXEC;
5022 	if (mnt_flags & MNT_NODIRATIME)
5023 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5024 	if (mnt_flags & MNT_NOSYMFOLLOW)
5025 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5026 
5027 	if (mnt_flags & MNT_NOATIME)
5028 		attr_flags |= MOUNT_ATTR_NOATIME;
5029 	else if (mnt_flags & MNT_RELATIME)
5030 		attr_flags |= MOUNT_ATTR_RELATIME;
5031 	else
5032 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5033 
5034 	if (is_idmapped_mnt(mnt))
5035 		attr_flags |= MOUNT_ATTR_IDMAP;
5036 
5037 	return attr_flags;
5038 }
5039 
5040 static u64 mnt_to_propagation_flags(struct mount *m)
5041 {
5042 	u64 propagation = 0;
5043 
5044 	if (IS_MNT_SHARED(m))
5045 		propagation |= MS_SHARED;
5046 	if (IS_MNT_SLAVE(m))
5047 		propagation |= MS_SLAVE;
5048 	if (IS_MNT_UNBINDABLE(m))
5049 		propagation |= MS_UNBINDABLE;
5050 	if (!propagation)
5051 		propagation |= MS_PRIVATE;
5052 
5053 	return propagation;
5054 }
5055 
5056 static void statmount_sb_basic(struct kstatmount *s)
5057 {
5058 	struct super_block *sb = s->mnt->mnt_sb;
5059 
5060 	s->sm.mask |= STATMOUNT_SB_BASIC;
5061 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5062 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5063 	s->sm.sb_magic = sb->s_magic;
5064 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5065 }
5066 
5067 static void statmount_mnt_basic(struct kstatmount *s)
5068 {
5069 	struct mount *m = real_mount(s->mnt);
5070 
5071 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5072 	s->sm.mnt_id = m->mnt_id_unique;
5073 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5074 	s->sm.mnt_id_old = m->mnt_id;
5075 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5076 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5077 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5078 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
5079 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5080 }
5081 
5082 static void statmount_propagate_from(struct kstatmount *s)
5083 {
5084 	struct mount *m = real_mount(s->mnt);
5085 
5086 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5087 	if (IS_MNT_SLAVE(m))
5088 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5089 }
5090 
5091 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5092 {
5093 	int ret;
5094 	size_t start = seq->count;
5095 
5096 	ret = show_path(seq, s->mnt->mnt_root);
5097 	if (ret)
5098 		return ret;
5099 
5100 	if (unlikely(seq_has_overflowed(seq)))
5101 		return -EAGAIN;
5102 
5103 	/*
5104          * Unescape the result. It would be better if supplied string was not
5105          * escaped in the first place, but that's a pretty invasive change.
5106          */
5107 	seq->buf[seq->count] = '\0';
5108 	seq->count = start;
5109 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5110 	return 0;
5111 }
5112 
5113 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5114 {
5115 	struct vfsmount *mnt = s->mnt;
5116 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5117 	int err;
5118 
5119 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5120 	return err == SEQ_SKIP ? 0 : err;
5121 }
5122 
5123 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5124 {
5125 	struct super_block *sb = s->mnt->mnt_sb;
5126 
5127 	seq_puts(seq, sb->s_type->name);
5128 	return 0;
5129 }
5130 
5131 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5132 {
5133 	struct super_block *sb = s->mnt->mnt_sb;
5134 
5135 	if (sb->s_subtype)
5136 		seq_puts(seq, sb->s_subtype);
5137 }
5138 
5139 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5140 {
5141 	struct super_block *sb = s->mnt->mnt_sb;
5142 	struct mount *r = real_mount(s->mnt);
5143 
5144 	if (sb->s_op->show_devname) {
5145 		size_t start = seq->count;
5146 		int ret;
5147 
5148 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5149 		if (ret)
5150 			return ret;
5151 
5152 		if (unlikely(seq_has_overflowed(seq)))
5153 			return -EAGAIN;
5154 
5155 		/* Unescape the result */
5156 		seq->buf[seq->count] = '\0';
5157 		seq->count = start;
5158 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5159 	} else if (r->mnt_devname) {
5160 		seq_puts(seq, r->mnt_devname);
5161 	}
5162 	return 0;
5163 }
5164 
5165 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5166 {
5167 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5168 	s->sm.mnt_ns_id = ns->seq;
5169 }
5170 
5171 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5172 {
5173 	struct vfsmount *mnt = s->mnt;
5174 	struct super_block *sb = mnt->mnt_sb;
5175 	int err;
5176 
5177 	if (sb->s_op->show_options) {
5178 		size_t start = seq->count;
5179 
5180 		err = security_sb_show_options(seq, sb);
5181 		if (err)
5182 			return err;
5183 
5184 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5185 		if (err)
5186 			return err;
5187 
5188 		if (unlikely(seq_has_overflowed(seq)))
5189 			return -EAGAIN;
5190 
5191 		if (seq->count == start)
5192 			return 0;
5193 
5194 		/* skip leading comma */
5195 		memmove(seq->buf + start, seq->buf + start + 1,
5196 			seq->count - start - 1);
5197 		seq->count--;
5198 	}
5199 
5200 	return 0;
5201 }
5202 
5203 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5204 {
5205 	char *buf_end, *opt_end, *src, *dst;
5206 	int count = 0;
5207 
5208 	if (unlikely(seq_has_overflowed(seq)))
5209 		return -EAGAIN;
5210 
5211 	buf_end = seq->buf + seq->count;
5212 	dst = seq->buf + start;
5213 	src = dst + 1;	/* skip initial comma */
5214 
5215 	if (src >= buf_end) {
5216 		seq->count = start;
5217 		return 0;
5218 	}
5219 
5220 	*buf_end = '\0';
5221 	for (; src < buf_end; src = opt_end + 1) {
5222 		opt_end = strchrnul(src, ',');
5223 		*opt_end = '\0';
5224 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5225 		if (WARN_ON_ONCE(++count == INT_MAX))
5226 			return -EOVERFLOW;
5227 	}
5228 	seq->count = dst - 1 - seq->buf;
5229 	return count;
5230 }
5231 
5232 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5233 {
5234 	struct vfsmount *mnt = s->mnt;
5235 	struct super_block *sb = mnt->mnt_sb;
5236 	size_t start = seq->count;
5237 	int err;
5238 
5239 	if (!sb->s_op->show_options)
5240 		return 0;
5241 
5242 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5243 	if (err)
5244 		return err;
5245 
5246 	err = statmount_opt_process(seq, start);
5247 	if (err < 0)
5248 		return err;
5249 
5250 	s->sm.opt_num = err;
5251 	return 0;
5252 }
5253 
5254 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5255 {
5256 	struct vfsmount *mnt = s->mnt;
5257 	struct super_block *sb = mnt->mnt_sb;
5258 	size_t start = seq->count;
5259 	int err;
5260 
5261 	err = security_sb_show_options(seq, sb);
5262 	if (err)
5263 		return err;
5264 
5265 	err = statmount_opt_process(seq, start);
5266 	if (err < 0)
5267 		return err;
5268 
5269 	s->sm.opt_sec_num = err;
5270 	return 0;
5271 }
5272 
5273 static int statmount_string(struct kstatmount *s, u64 flag)
5274 {
5275 	int ret = 0;
5276 	size_t kbufsize;
5277 	struct seq_file *seq = &s->seq;
5278 	struct statmount *sm = &s->sm;
5279 	u32 start = seq->count;
5280 
5281 	switch (flag) {
5282 	case STATMOUNT_FS_TYPE:
5283 		sm->fs_type = start;
5284 		ret = statmount_fs_type(s, seq);
5285 		break;
5286 	case STATMOUNT_MNT_ROOT:
5287 		sm->mnt_root = start;
5288 		ret = statmount_mnt_root(s, seq);
5289 		break;
5290 	case STATMOUNT_MNT_POINT:
5291 		sm->mnt_point = start;
5292 		ret = statmount_mnt_point(s, seq);
5293 		break;
5294 	case STATMOUNT_MNT_OPTS:
5295 		sm->mnt_opts = start;
5296 		ret = statmount_mnt_opts(s, seq);
5297 		break;
5298 	case STATMOUNT_OPT_ARRAY:
5299 		sm->opt_array = start;
5300 		ret = statmount_opt_array(s, seq);
5301 		break;
5302 	case STATMOUNT_OPT_SEC_ARRAY:
5303 		sm->opt_sec_array = start;
5304 		ret = statmount_opt_sec_array(s, seq);
5305 		break;
5306 	case STATMOUNT_FS_SUBTYPE:
5307 		sm->fs_subtype = start;
5308 		statmount_fs_subtype(s, seq);
5309 		break;
5310 	case STATMOUNT_SB_SOURCE:
5311 		sm->sb_source = start;
5312 		ret = statmount_sb_source(s, seq);
5313 		break;
5314 	default:
5315 		WARN_ON_ONCE(true);
5316 		return -EINVAL;
5317 	}
5318 
5319 	/*
5320 	 * If nothing was emitted, return to avoid setting the flag
5321 	 * and terminating the buffer.
5322 	 */
5323 	if (seq->count == start)
5324 		return ret;
5325 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5326 		return -EOVERFLOW;
5327 	if (kbufsize >= s->bufsize)
5328 		return -EOVERFLOW;
5329 
5330 	/* signal a retry */
5331 	if (unlikely(seq_has_overflowed(seq)))
5332 		return -EAGAIN;
5333 
5334 	if (ret)
5335 		return ret;
5336 
5337 	seq->buf[seq->count++] = '\0';
5338 	sm->mask |= flag;
5339 	return 0;
5340 }
5341 
5342 static int copy_statmount_to_user(struct kstatmount *s)
5343 {
5344 	struct statmount *sm = &s->sm;
5345 	struct seq_file *seq = &s->seq;
5346 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5347 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5348 
5349 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5350 		return -EFAULT;
5351 
5352 	/* Return the number of bytes copied to the buffer */
5353 	sm->size = copysize + seq->count;
5354 	if (copy_to_user(s->buf, sm, copysize))
5355 		return -EFAULT;
5356 
5357 	return 0;
5358 }
5359 
5360 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5361 {
5362 	struct rb_node *node;
5363 
5364 	if (reverse)
5365 		node = rb_prev(&curr->mnt_node);
5366 	else
5367 		node = rb_next(&curr->mnt_node);
5368 
5369 	return node_to_mount(node);
5370 }
5371 
5372 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5373 {
5374 	struct mount *first, *child;
5375 
5376 	rwsem_assert_held(&namespace_sem);
5377 
5378 	/* We're looking at our own ns, just use get_fs_root. */
5379 	if (ns == current->nsproxy->mnt_ns) {
5380 		get_fs_root(current->fs, root);
5381 		return 0;
5382 	}
5383 
5384 	/*
5385 	 * We have to find the first mount in our ns and use that, however it
5386 	 * may not exist, so handle that properly.
5387 	 */
5388 	if (RB_EMPTY_ROOT(&ns->mounts))
5389 		return -ENOENT;
5390 
5391 	first = child = ns->root;
5392 	for (;;) {
5393 		child = listmnt_next(child, false);
5394 		if (!child)
5395 			return -ENOENT;
5396 		if (child->mnt_parent == first)
5397 			break;
5398 	}
5399 
5400 	root->mnt = mntget(&child->mnt);
5401 	root->dentry = dget(root->mnt->mnt_root);
5402 	return 0;
5403 }
5404 
5405 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5406 			struct mnt_namespace *ns)
5407 {
5408 	struct path root __free(path_put) = {};
5409 	struct mount *m;
5410 	int err;
5411 
5412 	/* Has the namespace already been emptied? */
5413 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5414 		return -ENOENT;
5415 
5416 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5417 	if (!s->mnt)
5418 		return -ENOENT;
5419 
5420 	err = grab_requested_root(ns, &root);
5421 	if (err)
5422 		return err;
5423 
5424 	/*
5425 	 * Don't trigger audit denials. We just want to determine what
5426 	 * mounts to show users.
5427 	 */
5428 	m = real_mount(s->mnt);
5429 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5430 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5431 		return -EPERM;
5432 
5433 	err = security_sb_statfs(s->mnt->mnt_root);
5434 	if (err)
5435 		return err;
5436 
5437 	s->root = root;
5438 	if (s->mask & STATMOUNT_SB_BASIC)
5439 		statmount_sb_basic(s);
5440 
5441 	if (s->mask & STATMOUNT_MNT_BASIC)
5442 		statmount_mnt_basic(s);
5443 
5444 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5445 		statmount_propagate_from(s);
5446 
5447 	if (s->mask & STATMOUNT_FS_TYPE)
5448 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5449 
5450 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5451 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5452 
5453 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5454 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5455 
5456 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5457 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5458 
5459 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5460 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5461 
5462 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5463 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5464 
5465 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5466 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5467 
5468 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5469 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5470 
5471 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5472 		statmount_mnt_ns_id(s, ns);
5473 
5474 	if (err)
5475 		return err;
5476 
5477 	return 0;
5478 }
5479 
5480 static inline bool retry_statmount(const long ret, size_t *seq_size)
5481 {
5482 	if (likely(ret != -EAGAIN))
5483 		return false;
5484 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5485 		return false;
5486 	if (unlikely(*seq_size > MAX_RW_COUNT))
5487 		return false;
5488 	return true;
5489 }
5490 
5491 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5492 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5493 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5494 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5495 
5496 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5497 			      struct statmount __user *buf, size_t bufsize,
5498 			      size_t seq_size)
5499 {
5500 	if (!access_ok(buf, bufsize))
5501 		return -EFAULT;
5502 
5503 	memset(ks, 0, sizeof(*ks));
5504 	ks->mask = kreq->param;
5505 	ks->buf = buf;
5506 	ks->bufsize = bufsize;
5507 
5508 	if (ks->mask & STATMOUNT_STRING_REQ) {
5509 		if (bufsize == sizeof(ks->sm))
5510 			return -EOVERFLOW;
5511 
5512 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5513 		if (!ks->seq.buf)
5514 			return -ENOMEM;
5515 
5516 		ks->seq.size = seq_size;
5517 	}
5518 
5519 	return 0;
5520 }
5521 
5522 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5523 			   struct mnt_id_req *kreq)
5524 {
5525 	int ret;
5526 	size_t usize;
5527 
5528 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5529 
5530 	ret = get_user(usize, &req->size);
5531 	if (ret)
5532 		return -EFAULT;
5533 	if (unlikely(usize > PAGE_SIZE))
5534 		return -E2BIG;
5535 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5536 		return -EINVAL;
5537 	memset(kreq, 0, sizeof(*kreq));
5538 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5539 	if (ret)
5540 		return ret;
5541 	if (kreq->spare != 0)
5542 		return -EINVAL;
5543 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5544 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5545 		return -EINVAL;
5546 	return 0;
5547 }
5548 
5549 /*
5550  * If the user requested a specific mount namespace id, look that up and return
5551  * that, or if not simply grab a passive reference on our mount namespace and
5552  * return that.
5553  */
5554 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5555 {
5556 	struct mnt_namespace *mnt_ns;
5557 
5558 	if (kreq->mnt_ns_id && kreq->spare)
5559 		return ERR_PTR(-EINVAL);
5560 
5561 	if (kreq->mnt_ns_id)
5562 		return lookup_mnt_ns(kreq->mnt_ns_id);
5563 
5564 	if (kreq->spare) {
5565 		struct ns_common *ns;
5566 
5567 		CLASS(fd, f)(kreq->spare);
5568 		if (fd_empty(f))
5569 			return ERR_PTR(-EBADF);
5570 
5571 		if (!proc_ns_file(fd_file(f)))
5572 			return ERR_PTR(-EINVAL);
5573 
5574 		ns = get_proc_ns(file_inode(fd_file(f)));
5575 		if (ns->ops->type != CLONE_NEWNS)
5576 			return ERR_PTR(-EINVAL);
5577 
5578 		mnt_ns = to_mnt_ns(ns);
5579 	} else {
5580 		mnt_ns = current->nsproxy->mnt_ns;
5581 	}
5582 
5583 	refcount_inc(&mnt_ns->passive);
5584 	return mnt_ns;
5585 }
5586 
5587 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5588 		struct statmount __user *, buf, size_t, bufsize,
5589 		unsigned int, flags)
5590 {
5591 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5592 	struct kstatmount *ks __free(kfree) = NULL;
5593 	struct mnt_id_req kreq;
5594 	/* We currently support retrieval of 3 strings. */
5595 	size_t seq_size = 3 * PATH_MAX;
5596 	int ret;
5597 
5598 	if (flags)
5599 		return -EINVAL;
5600 
5601 	ret = copy_mnt_id_req(req, &kreq);
5602 	if (ret)
5603 		return ret;
5604 
5605 	ns = grab_requested_mnt_ns(&kreq);
5606 	if (!ns)
5607 		return -ENOENT;
5608 
5609 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5610 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5611 		return -ENOENT;
5612 
5613 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5614 	if (!ks)
5615 		return -ENOMEM;
5616 
5617 retry:
5618 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5619 	if (ret)
5620 		return ret;
5621 
5622 	scoped_guard(rwsem_read, &namespace_sem)
5623 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5624 
5625 	if (!ret)
5626 		ret = copy_statmount_to_user(ks);
5627 	kvfree(ks->seq.buf);
5628 	if (retry_statmount(ret, &seq_size))
5629 		goto retry;
5630 	return ret;
5631 }
5632 
5633 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5634 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5635 			    bool reverse)
5636 {
5637 	struct path root __free(path_put) = {};
5638 	struct path orig;
5639 	struct mount *r, *first;
5640 	ssize_t ret;
5641 
5642 	rwsem_assert_held(&namespace_sem);
5643 
5644 	ret = grab_requested_root(ns, &root);
5645 	if (ret)
5646 		return ret;
5647 
5648 	if (mnt_parent_id == LSMT_ROOT) {
5649 		orig = root;
5650 	} else {
5651 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5652 		if (!orig.mnt)
5653 			return -ENOENT;
5654 		orig.dentry = orig.mnt->mnt_root;
5655 	}
5656 
5657 	/*
5658 	 * Don't trigger audit denials. We just want to determine what
5659 	 * mounts to show users.
5660 	 */
5661 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5662 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5663 		return -EPERM;
5664 
5665 	ret = security_sb_statfs(orig.dentry);
5666 	if (ret)
5667 		return ret;
5668 
5669 	if (!last_mnt_id) {
5670 		if (reverse)
5671 			first = node_to_mount(ns->mnt_last_node);
5672 		else
5673 			first = node_to_mount(ns->mnt_first_node);
5674 	} else {
5675 		if (reverse)
5676 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5677 		else
5678 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5679 	}
5680 
5681 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5682 		if (r->mnt_id_unique == mnt_parent_id)
5683 			continue;
5684 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5685 			continue;
5686 		*mnt_ids = r->mnt_id_unique;
5687 		mnt_ids++;
5688 		nr_mnt_ids--;
5689 		ret++;
5690 	}
5691 	return ret;
5692 }
5693 
5694 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5695 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5696 {
5697 	u64 *kmnt_ids __free(kvfree) = NULL;
5698 	const size_t maxcount = 1000000;
5699 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5700 	struct mnt_id_req kreq;
5701 	u64 last_mnt_id;
5702 	ssize_t ret;
5703 
5704 	if (flags & ~LISTMOUNT_REVERSE)
5705 		return -EINVAL;
5706 
5707 	/*
5708 	 * If the mount namespace really has more than 1 million mounts the
5709 	 * caller must iterate over the mount namespace (and reconsider their
5710 	 * system design...).
5711 	 */
5712 	if (unlikely(nr_mnt_ids > maxcount))
5713 		return -EOVERFLOW;
5714 
5715 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5716 		return -EFAULT;
5717 
5718 	ret = copy_mnt_id_req(req, &kreq);
5719 	if (ret)
5720 		return ret;
5721 
5722 	last_mnt_id = kreq.param;
5723 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5724 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5725 		return -EINVAL;
5726 
5727 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5728 				  GFP_KERNEL_ACCOUNT);
5729 	if (!kmnt_ids)
5730 		return -ENOMEM;
5731 
5732 	ns = grab_requested_mnt_ns(&kreq);
5733 	if (!ns)
5734 		return -ENOENT;
5735 
5736 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5737 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5738 		return -ENOENT;
5739 
5740 	scoped_guard(rwsem_read, &namespace_sem)
5741 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5742 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5743 	if (ret <= 0)
5744 		return ret;
5745 
5746 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5747 		return -EFAULT;
5748 
5749 	return ret;
5750 }
5751 
5752 static void __init init_mount_tree(void)
5753 {
5754 	struct vfsmount *mnt;
5755 	struct mount *m;
5756 	struct mnt_namespace *ns;
5757 	struct path root;
5758 
5759 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5760 	if (IS_ERR(mnt))
5761 		panic("Can't create rootfs");
5762 
5763 	ns = alloc_mnt_ns(&init_user_ns, false);
5764 	if (IS_ERR(ns))
5765 		panic("Can't allocate initial namespace");
5766 	m = real_mount(mnt);
5767 	ns->root = m;
5768 	ns->nr_mounts = 1;
5769 	mnt_add_to_ns(ns, m);
5770 	init_task.nsproxy->mnt_ns = ns;
5771 	get_mnt_ns(ns);
5772 
5773 	root.mnt = mnt;
5774 	root.dentry = mnt->mnt_root;
5775 	mnt->mnt_flags |= MNT_LOCKED;
5776 
5777 	set_fs_pwd(current->fs, &root);
5778 	set_fs_root(current->fs, &root);
5779 
5780 	mnt_ns_tree_add(ns);
5781 }
5782 
5783 void __init mnt_init(void)
5784 {
5785 	int err;
5786 
5787 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5788 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5789 
5790 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5791 				sizeof(struct hlist_head),
5792 				mhash_entries, 19,
5793 				HASH_ZERO,
5794 				&m_hash_shift, &m_hash_mask, 0, 0);
5795 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5796 				sizeof(struct hlist_head),
5797 				mphash_entries, 19,
5798 				HASH_ZERO,
5799 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5800 
5801 	if (!mount_hashtable || !mountpoint_hashtable)
5802 		panic("Failed to allocate mount hash table\n");
5803 
5804 	kernfs_init();
5805 
5806 	err = sysfs_init();
5807 	if (err)
5808 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5809 			__func__, err);
5810 	fs_kobj = kobject_create_and_add("fs", NULL);
5811 	if (!fs_kobj)
5812 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5813 	shmem_init();
5814 	init_rootfs();
5815 	init_mount_tree();
5816 }
5817 
5818 void put_mnt_ns(struct mnt_namespace *ns)
5819 {
5820 	if (!refcount_dec_and_test(&ns->ns.count))
5821 		return;
5822 	drop_collected_mounts(&ns->root->mnt);
5823 	free_mnt_ns(ns);
5824 }
5825 
5826 struct vfsmount *kern_mount(struct file_system_type *type)
5827 {
5828 	struct vfsmount *mnt;
5829 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5830 	if (!IS_ERR(mnt)) {
5831 		/*
5832 		 * it is a longterm mount, don't release mnt until
5833 		 * we unmount before file sys is unregistered
5834 		*/
5835 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5836 	}
5837 	return mnt;
5838 }
5839 EXPORT_SYMBOL_GPL(kern_mount);
5840 
5841 void kern_unmount(struct vfsmount *mnt)
5842 {
5843 	/* release long term mount so mount point can be released */
5844 	if (!IS_ERR(mnt)) {
5845 		mnt_make_shortterm(mnt);
5846 		synchronize_rcu();	/* yecchhh... */
5847 		mntput(mnt);
5848 	}
5849 }
5850 EXPORT_SYMBOL(kern_unmount);
5851 
5852 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5853 {
5854 	unsigned int i;
5855 
5856 	for (i = 0; i < num; i++)
5857 		mnt_make_shortterm(mnt[i]);
5858 	synchronize_rcu_expedited();
5859 	for (i = 0; i < num; i++)
5860 		mntput(mnt[i]);
5861 }
5862 EXPORT_SYMBOL(kern_unmount_array);
5863 
5864 bool our_mnt(struct vfsmount *mnt)
5865 {
5866 	return check_mnt(real_mount(mnt));
5867 }
5868 
5869 bool current_chrooted(void)
5870 {
5871 	/* Does the current process have a non-standard root */
5872 	struct path ns_root;
5873 	struct path fs_root;
5874 	bool chrooted;
5875 
5876 	/* Find the namespace root */
5877 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5878 	ns_root.dentry = ns_root.mnt->mnt_root;
5879 	path_get(&ns_root);
5880 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5881 		;
5882 
5883 	get_fs_root(current->fs, &fs_root);
5884 
5885 	chrooted = !path_equal(&fs_root, &ns_root);
5886 
5887 	path_put(&fs_root);
5888 	path_put(&ns_root);
5889 
5890 	return chrooted;
5891 }
5892 
5893 static bool mnt_already_visible(struct mnt_namespace *ns,
5894 				const struct super_block *sb,
5895 				int *new_mnt_flags)
5896 {
5897 	int new_flags = *new_mnt_flags;
5898 	struct mount *mnt, *n;
5899 	bool visible = false;
5900 
5901 	down_read(&namespace_sem);
5902 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5903 		struct mount *child;
5904 		int mnt_flags;
5905 
5906 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5907 			continue;
5908 
5909 		/* This mount is not fully visible if it's root directory
5910 		 * is not the root directory of the filesystem.
5911 		 */
5912 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5913 			continue;
5914 
5915 		/* A local view of the mount flags */
5916 		mnt_flags = mnt->mnt.mnt_flags;
5917 
5918 		/* Don't miss readonly hidden in the superblock flags */
5919 		if (sb_rdonly(mnt->mnt.mnt_sb))
5920 			mnt_flags |= MNT_LOCK_READONLY;
5921 
5922 		/* Verify the mount flags are equal to or more permissive
5923 		 * than the proposed new mount.
5924 		 */
5925 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5926 		    !(new_flags & MNT_READONLY))
5927 			continue;
5928 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5929 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5930 			continue;
5931 
5932 		/* This mount is not fully visible if there are any
5933 		 * locked child mounts that cover anything except for
5934 		 * empty directories.
5935 		 */
5936 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5937 			struct inode *inode = child->mnt_mountpoint->d_inode;
5938 			/* Only worry about locked mounts */
5939 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5940 				continue;
5941 			/* Is the directory permanently empty? */
5942 			if (!is_empty_dir_inode(inode))
5943 				goto next;
5944 		}
5945 		/* Preserve the locked attributes */
5946 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5947 					       MNT_LOCK_ATIME);
5948 		visible = true;
5949 		goto found;
5950 	next:	;
5951 	}
5952 found:
5953 	up_read(&namespace_sem);
5954 	return visible;
5955 }
5956 
5957 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5958 {
5959 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5960 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5961 	unsigned long s_iflags;
5962 
5963 	if (ns->user_ns == &init_user_ns)
5964 		return false;
5965 
5966 	/* Can this filesystem be too revealing? */
5967 	s_iflags = sb->s_iflags;
5968 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5969 		return false;
5970 
5971 	if ((s_iflags & required_iflags) != required_iflags) {
5972 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5973 			  required_iflags);
5974 		return true;
5975 	}
5976 
5977 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5978 }
5979 
5980 bool mnt_may_suid(struct vfsmount *mnt)
5981 {
5982 	/*
5983 	 * Foreign mounts (accessed via fchdir or through /proc
5984 	 * symlinks) are always treated as if they are nosuid.  This
5985 	 * prevents namespaces from trusting potentially unsafe
5986 	 * suid/sgid bits, file caps, or security labels that originate
5987 	 * in other namespaces.
5988 	 */
5989 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5990 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5991 }
5992 
5993 static struct ns_common *mntns_get(struct task_struct *task)
5994 {
5995 	struct ns_common *ns = NULL;
5996 	struct nsproxy *nsproxy;
5997 
5998 	task_lock(task);
5999 	nsproxy = task->nsproxy;
6000 	if (nsproxy) {
6001 		ns = &nsproxy->mnt_ns->ns;
6002 		get_mnt_ns(to_mnt_ns(ns));
6003 	}
6004 	task_unlock(task);
6005 
6006 	return ns;
6007 }
6008 
6009 static void mntns_put(struct ns_common *ns)
6010 {
6011 	put_mnt_ns(to_mnt_ns(ns));
6012 }
6013 
6014 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6015 {
6016 	struct nsproxy *nsproxy = nsset->nsproxy;
6017 	struct fs_struct *fs = nsset->fs;
6018 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6019 	struct user_namespace *user_ns = nsset->cred->user_ns;
6020 	struct path root;
6021 	int err;
6022 
6023 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6024 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6025 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6026 		return -EPERM;
6027 
6028 	if (is_anon_ns(mnt_ns))
6029 		return -EINVAL;
6030 
6031 	if (fs->users != 1)
6032 		return -EINVAL;
6033 
6034 	get_mnt_ns(mnt_ns);
6035 	old_mnt_ns = nsproxy->mnt_ns;
6036 	nsproxy->mnt_ns = mnt_ns;
6037 
6038 	/* Find the root */
6039 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6040 				"/", LOOKUP_DOWN, &root);
6041 	if (err) {
6042 		/* revert to old namespace */
6043 		nsproxy->mnt_ns = old_mnt_ns;
6044 		put_mnt_ns(mnt_ns);
6045 		return err;
6046 	}
6047 
6048 	put_mnt_ns(old_mnt_ns);
6049 
6050 	/* Update the pwd and root */
6051 	set_fs_pwd(fs, &root);
6052 	set_fs_root(fs, &root);
6053 
6054 	path_put(&root);
6055 	return 0;
6056 }
6057 
6058 static struct user_namespace *mntns_owner(struct ns_common *ns)
6059 {
6060 	return to_mnt_ns(ns)->user_ns;
6061 }
6062 
6063 const struct proc_ns_operations mntns_operations = {
6064 	.name		= "mnt",
6065 	.type		= CLONE_NEWNS,
6066 	.get		= mntns_get,
6067 	.put		= mntns_put,
6068 	.install	= mntns_install,
6069 	.owner		= mntns_owner,
6070 };
6071 
6072 #ifdef CONFIG_SYSCTL
6073 static const struct ctl_table fs_namespace_sysctls[] = {
6074 	{
6075 		.procname	= "mount-max",
6076 		.data		= &sysctl_mount_max,
6077 		.maxlen		= sizeof(unsigned int),
6078 		.mode		= 0644,
6079 		.proc_handler	= proc_dointvec_minmax,
6080 		.extra1		= SYSCTL_ONE,
6081 	},
6082 };
6083 
6084 static int __init init_fs_namespace_sysctls(void)
6085 {
6086 	register_sysctl_init("fs", fs_namespace_sysctls);
6087 	return 0;
6088 }
6089 fs_initcall(init_fs_namespace_sysctls);
6090 
6091 #endif /* CONFIG_SYSCTL */
6092