1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static DEFINE_SEQLOCK(mnt_ns_tree_lock); 83 84 #ifdef CONFIG_FSNOTIFY 85 LIST_HEAD(notify_list); /* protected by namespace_sem */ 86 #endif 87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */ 89 90 enum mount_kattr_flags_t { 91 MOUNT_KATTR_RECURSE = (1 << 0), 92 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 93 }; 94 95 struct mount_kattr { 96 unsigned int attr_set; 97 unsigned int attr_clr; 98 unsigned int propagation; 99 unsigned int lookup_flags; 100 enum mount_kattr_flags_t kflags; 101 struct user_namespace *mnt_userns; 102 struct mnt_idmap *mnt_idmap; 103 }; 104 105 /* /sys/fs */ 106 struct kobject *fs_kobj __ro_after_init; 107 EXPORT_SYMBOL_GPL(fs_kobj); 108 109 /* 110 * vfsmount lock may be taken for read to prevent changes to the 111 * vfsmount hash, ie. during mountpoint lookups or walking back 112 * up the tree. 113 * 114 * It should be taken for write in all cases where the vfsmount 115 * tree or hash is modified or when a vfsmount structure is modified. 116 */ 117 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 118 119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 120 { 121 if (!node) 122 return NULL; 123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 124 } 125 126 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b) 127 { 128 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 129 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 130 u64 seq_a = ns_a->seq; 131 u64 seq_b = ns_b->seq; 132 133 if (seq_a < seq_b) 134 return -1; 135 if (seq_a > seq_b) 136 return 1; 137 return 0; 138 } 139 140 static inline void mnt_ns_tree_write_lock(void) 141 { 142 write_seqlock(&mnt_ns_tree_lock); 143 } 144 145 static inline void mnt_ns_tree_write_unlock(void) 146 { 147 write_sequnlock(&mnt_ns_tree_lock); 148 } 149 150 static void mnt_ns_tree_add(struct mnt_namespace *ns) 151 { 152 struct rb_node *node, *prev; 153 154 mnt_ns_tree_write_lock(); 155 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp); 156 /* 157 * If there's no previous entry simply add it after the 158 * head and if there is add it after the previous entry. 159 */ 160 prev = rb_prev(&ns->mnt_ns_tree_node); 161 if (!prev) 162 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list); 163 else 164 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list); 165 mnt_ns_tree_write_unlock(); 166 167 WARN_ON_ONCE(node); 168 } 169 170 static void mnt_ns_release(struct mnt_namespace *ns) 171 { 172 /* keep alive for {list,stat}mount() */ 173 if (refcount_dec_and_test(&ns->passive)) { 174 fsnotify_mntns_delete(ns); 175 put_user_ns(ns->user_ns); 176 kfree(ns); 177 } 178 } 179 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 180 181 static void mnt_ns_release_rcu(struct rcu_head *rcu) 182 { 183 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu)); 184 } 185 186 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 187 { 188 /* remove from global mount namespace list */ 189 if (!is_anon_ns(ns)) { 190 mnt_ns_tree_write_lock(); 191 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 192 list_bidir_del_rcu(&ns->mnt_ns_list); 193 mnt_ns_tree_write_unlock(); 194 } 195 196 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu); 197 } 198 199 static int mnt_ns_find(const void *key, const struct rb_node *node) 200 { 201 const u64 mnt_ns_id = *(u64 *)key; 202 const struct mnt_namespace *ns = node_to_mnt_ns(node); 203 204 if (mnt_ns_id < ns->seq) 205 return -1; 206 if (mnt_ns_id > ns->seq) 207 return 1; 208 return 0; 209 } 210 211 /* 212 * Lookup a mount namespace by id and take a passive reference count. Taking a 213 * passive reference means the mount namespace can be emptied if e.g., the last 214 * task holding an active reference exits. To access the mounts of the 215 * namespace the @namespace_sem must first be acquired. If the namespace has 216 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 217 * see that the mount rbtree of the namespace is empty. 218 * 219 * Note the lookup is lockless protected by a sequence counter. We only 220 * need to guard against false negatives as false positives aren't 221 * possible. So if we didn't find a mount namespace and the sequence 222 * counter has changed we need to retry. If the sequence counter is 223 * still the same we know the search actually failed. 224 */ 225 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 226 { 227 struct mnt_namespace *ns; 228 struct rb_node *node; 229 unsigned int seq; 230 231 guard(rcu)(); 232 do { 233 seq = read_seqbegin(&mnt_ns_tree_lock); 234 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find); 235 if (node) 236 break; 237 } while (read_seqretry(&mnt_ns_tree_lock, seq)); 238 239 if (!node) 240 return NULL; 241 242 /* 243 * The last reference count is put with RCU delay so we can 244 * unconditonally acquire a reference here. 245 */ 246 ns = node_to_mnt_ns(node); 247 refcount_inc(&ns->passive); 248 return ns; 249 } 250 251 static inline void lock_mount_hash(void) 252 { 253 write_seqlock(&mount_lock); 254 } 255 256 static inline void unlock_mount_hash(void) 257 { 258 write_sequnlock(&mount_lock); 259 } 260 261 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 262 { 263 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 264 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 265 tmp = tmp + (tmp >> m_hash_shift); 266 return &mount_hashtable[tmp & m_hash_mask]; 267 } 268 269 static inline struct hlist_head *mp_hash(struct dentry *dentry) 270 { 271 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 272 tmp = tmp + (tmp >> mp_hash_shift); 273 return &mountpoint_hashtable[tmp & mp_hash_mask]; 274 } 275 276 static int mnt_alloc_id(struct mount *mnt) 277 { 278 int res; 279 280 xa_lock(&mnt_id_xa); 281 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 282 if (!res) 283 mnt->mnt_id_unique = ++mnt_id_ctr; 284 xa_unlock(&mnt_id_xa); 285 return res; 286 } 287 288 static void mnt_free_id(struct mount *mnt) 289 { 290 xa_erase(&mnt_id_xa, mnt->mnt_id); 291 } 292 293 /* 294 * Allocate a new peer group ID 295 */ 296 static int mnt_alloc_group_id(struct mount *mnt) 297 { 298 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 299 300 if (res < 0) 301 return res; 302 mnt->mnt_group_id = res; 303 return 0; 304 } 305 306 /* 307 * Release a peer group ID 308 */ 309 void mnt_release_group_id(struct mount *mnt) 310 { 311 ida_free(&mnt_group_ida, mnt->mnt_group_id); 312 mnt->mnt_group_id = 0; 313 } 314 315 /* 316 * vfsmount lock must be held for read 317 */ 318 static inline void mnt_add_count(struct mount *mnt, int n) 319 { 320 #ifdef CONFIG_SMP 321 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 322 #else 323 preempt_disable(); 324 mnt->mnt_count += n; 325 preempt_enable(); 326 #endif 327 } 328 329 /* 330 * vfsmount lock must be held for write 331 */ 332 int mnt_get_count(struct mount *mnt) 333 { 334 #ifdef CONFIG_SMP 335 int count = 0; 336 int cpu; 337 338 for_each_possible_cpu(cpu) { 339 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 340 } 341 342 return count; 343 #else 344 return mnt->mnt_count; 345 #endif 346 } 347 348 static struct mount *alloc_vfsmnt(const char *name) 349 { 350 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 351 if (mnt) { 352 int err; 353 354 err = mnt_alloc_id(mnt); 355 if (err) 356 goto out_free_cache; 357 358 if (name) { 359 mnt->mnt_devname = kstrdup_const(name, 360 GFP_KERNEL_ACCOUNT); 361 if (!mnt->mnt_devname) 362 goto out_free_id; 363 } 364 365 #ifdef CONFIG_SMP 366 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 367 if (!mnt->mnt_pcp) 368 goto out_free_devname; 369 370 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 371 #else 372 mnt->mnt_count = 1; 373 mnt->mnt_writers = 0; 374 #endif 375 376 INIT_HLIST_NODE(&mnt->mnt_hash); 377 INIT_LIST_HEAD(&mnt->mnt_child); 378 INIT_LIST_HEAD(&mnt->mnt_mounts); 379 INIT_LIST_HEAD(&mnt->mnt_list); 380 INIT_LIST_HEAD(&mnt->mnt_expire); 381 INIT_LIST_HEAD(&mnt->mnt_share); 382 INIT_LIST_HEAD(&mnt->mnt_slave_list); 383 INIT_LIST_HEAD(&mnt->mnt_slave); 384 INIT_HLIST_NODE(&mnt->mnt_mp_list); 385 INIT_LIST_HEAD(&mnt->mnt_umounting); 386 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 387 RB_CLEAR_NODE(&mnt->mnt_node); 388 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 389 } 390 return mnt; 391 392 #ifdef CONFIG_SMP 393 out_free_devname: 394 kfree_const(mnt->mnt_devname); 395 #endif 396 out_free_id: 397 mnt_free_id(mnt); 398 out_free_cache: 399 kmem_cache_free(mnt_cache, mnt); 400 return NULL; 401 } 402 403 /* 404 * Most r/o checks on a fs are for operations that take 405 * discrete amounts of time, like a write() or unlink(). 406 * We must keep track of when those operations start 407 * (for permission checks) and when they end, so that 408 * we can determine when writes are able to occur to 409 * a filesystem. 410 */ 411 /* 412 * __mnt_is_readonly: check whether a mount is read-only 413 * @mnt: the mount to check for its write status 414 * 415 * This shouldn't be used directly ouside of the VFS. 416 * It does not guarantee that the filesystem will stay 417 * r/w, just that it is right *now*. This can not and 418 * should not be used in place of IS_RDONLY(inode). 419 * mnt_want/drop_write() will _keep_ the filesystem 420 * r/w. 421 */ 422 bool __mnt_is_readonly(struct vfsmount *mnt) 423 { 424 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 425 } 426 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 427 428 static inline void mnt_inc_writers(struct mount *mnt) 429 { 430 #ifdef CONFIG_SMP 431 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 432 #else 433 mnt->mnt_writers++; 434 #endif 435 } 436 437 static inline void mnt_dec_writers(struct mount *mnt) 438 { 439 #ifdef CONFIG_SMP 440 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 441 #else 442 mnt->mnt_writers--; 443 #endif 444 } 445 446 static unsigned int mnt_get_writers(struct mount *mnt) 447 { 448 #ifdef CONFIG_SMP 449 unsigned int count = 0; 450 int cpu; 451 452 for_each_possible_cpu(cpu) { 453 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 454 } 455 456 return count; 457 #else 458 return mnt->mnt_writers; 459 #endif 460 } 461 462 static int mnt_is_readonly(struct vfsmount *mnt) 463 { 464 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 465 return 1; 466 /* 467 * The barrier pairs with the barrier in sb_start_ro_state_change() 468 * making sure if we don't see s_readonly_remount set yet, we also will 469 * not see any superblock / mount flag changes done by remount. 470 * It also pairs with the barrier in sb_end_ro_state_change() 471 * assuring that if we see s_readonly_remount already cleared, we will 472 * see the values of superblock / mount flags updated by remount. 473 */ 474 smp_rmb(); 475 return __mnt_is_readonly(mnt); 476 } 477 478 /* 479 * Most r/o & frozen checks on a fs are for operations that take discrete 480 * amounts of time, like a write() or unlink(). We must keep track of when 481 * those operations start (for permission checks) and when they end, so that we 482 * can determine when writes are able to occur to a filesystem. 483 */ 484 /** 485 * mnt_get_write_access - get write access to a mount without freeze protection 486 * @m: the mount on which to take a write 487 * 488 * This tells the low-level filesystem that a write is about to be performed to 489 * it, and makes sure that writes are allowed (mnt it read-write) before 490 * returning success. This operation does not protect against filesystem being 491 * frozen. When the write operation is finished, mnt_put_write_access() must be 492 * called. This is effectively a refcount. 493 */ 494 int mnt_get_write_access(struct vfsmount *m) 495 { 496 struct mount *mnt = real_mount(m); 497 int ret = 0; 498 499 preempt_disable(); 500 mnt_inc_writers(mnt); 501 /* 502 * The store to mnt_inc_writers must be visible before we pass 503 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 504 * incremented count after it has set MNT_WRITE_HOLD. 505 */ 506 smp_mb(); 507 might_lock(&mount_lock.lock); 508 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 509 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 510 cpu_relax(); 511 } else { 512 /* 513 * This prevents priority inversion, if the task 514 * setting MNT_WRITE_HOLD got preempted on a remote 515 * CPU, and it prevents life lock if the task setting 516 * MNT_WRITE_HOLD has a lower priority and is bound to 517 * the same CPU as the task that is spinning here. 518 */ 519 preempt_enable(); 520 lock_mount_hash(); 521 unlock_mount_hash(); 522 preempt_disable(); 523 } 524 } 525 /* 526 * The barrier pairs with the barrier sb_start_ro_state_change() making 527 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 528 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 529 * mnt_is_readonly() and bail in case we are racing with remount 530 * read-only. 531 */ 532 smp_rmb(); 533 if (mnt_is_readonly(m)) { 534 mnt_dec_writers(mnt); 535 ret = -EROFS; 536 } 537 preempt_enable(); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(mnt_get_write_access); 542 543 /** 544 * mnt_want_write - get write access to a mount 545 * @m: the mount on which to take a write 546 * 547 * This tells the low-level filesystem that a write is about to be performed to 548 * it, and makes sure that writes are allowed (mount is read-write, filesystem 549 * is not frozen) before returning success. When the write operation is 550 * finished, mnt_drop_write() must be called. This is effectively a refcount. 551 */ 552 int mnt_want_write(struct vfsmount *m) 553 { 554 int ret; 555 556 sb_start_write(m->mnt_sb); 557 ret = mnt_get_write_access(m); 558 if (ret) 559 sb_end_write(m->mnt_sb); 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(mnt_want_write); 563 564 /** 565 * mnt_get_write_access_file - get write access to a file's mount 566 * @file: the file who's mount on which to take a write 567 * 568 * This is like mnt_get_write_access, but if @file is already open for write it 569 * skips incrementing mnt_writers (since the open file already has a reference) 570 * and instead only does the check for emergency r/o remounts. This must be 571 * paired with mnt_put_write_access_file. 572 */ 573 int mnt_get_write_access_file(struct file *file) 574 { 575 if (file->f_mode & FMODE_WRITER) { 576 /* 577 * Superblock may have become readonly while there are still 578 * writable fd's, e.g. due to a fs error with errors=remount-ro 579 */ 580 if (__mnt_is_readonly(file->f_path.mnt)) 581 return -EROFS; 582 return 0; 583 } 584 return mnt_get_write_access(file->f_path.mnt); 585 } 586 587 /** 588 * mnt_want_write_file - get write access to a file's mount 589 * @file: the file who's mount on which to take a write 590 * 591 * This is like mnt_want_write, but if the file is already open for writing it 592 * skips incrementing mnt_writers (since the open file already has a reference) 593 * and instead only does the freeze protection and the check for emergency r/o 594 * remounts. This must be paired with mnt_drop_write_file. 595 */ 596 int mnt_want_write_file(struct file *file) 597 { 598 int ret; 599 600 sb_start_write(file_inode(file)->i_sb); 601 ret = mnt_get_write_access_file(file); 602 if (ret) 603 sb_end_write(file_inode(file)->i_sb); 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(mnt_want_write_file); 607 608 /** 609 * mnt_put_write_access - give up write access to a mount 610 * @mnt: the mount on which to give up write access 611 * 612 * Tells the low-level filesystem that we are done 613 * performing writes to it. Must be matched with 614 * mnt_get_write_access() call above. 615 */ 616 void mnt_put_write_access(struct vfsmount *mnt) 617 { 618 preempt_disable(); 619 mnt_dec_writers(real_mount(mnt)); 620 preempt_enable(); 621 } 622 EXPORT_SYMBOL_GPL(mnt_put_write_access); 623 624 /** 625 * mnt_drop_write - give up write access to a mount 626 * @mnt: the mount on which to give up write access 627 * 628 * Tells the low-level filesystem that we are done performing writes to it and 629 * also allows filesystem to be frozen again. Must be matched with 630 * mnt_want_write() call above. 631 */ 632 void mnt_drop_write(struct vfsmount *mnt) 633 { 634 mnt_put_write_access(mnt); 635 sb_end_write(mnt->mnt_sb); 636 } 637 EXPORT_SYMBOL_GPL(mnt_drop_write); 638 639 void mnt_put_write_access_file(struct file *file) 640 { 641 if (!(file->f_mode & FMODE_WRITER)) 642 mnt_put_write_access(file->f_path.mnt); 643 } 644 645 void mnt_drop_write_file(struct file *file) 646 { 647 mnt_put_write_access_file(file); 648 sb_end_write(file_inode(file)->i_sb); 649 } 650 EXPORT_SYMBOL(mnt_drop_write_file); 651 652 /** 653 * mnt_hold_writers - prevent write access to the given mount 654 * @mnt: mnt to prevent write access to 655 * 656 * Prevents write access to @mnt if there are no active writers for @mnt. 657 * This function needs to be called and return successfully before changing 658 * properties of @mnt that need to remain stable for callers with write access 659 * to @mnt. 660 * 661 * After this functions has been called successfully callers must pair it with 662 * a call to mnt_unhold_writers() in order to stop preventing write access to 663 * @mnt. 664 * 665 * Context: This function expects lock_mount_hash() to be held serializing 666 * setting MNT_WRITE_HOLD. 667 * Return: On success 0 is returned. 668 * On error, -EBUSY is returned. 669 */ 670 static inline int mnt_hold_writers(struct mount *mnt) 671 { 672 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 673 /* 674 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 675 * should be visible before we do. 676 */ 677 smp_mb(); 678 679 /* 680 * With writers on hold, if this value is zero, then there are 681 * definitely no active writers (although held writers may subsequently 682 * increment the count, they'll have to wait, and decrement it after 683 * seeing MNT_READONLY). 684 * 685 * It is OK to have counter incremented on one CPU and decremented on 686 * another: the sum will add up correctly. The danger would be when we 687 * sum up each counter, if we read a counter before it is incremented, 688 * but then read another CPU's count which it has been subsequently 689 * decremented from -- we would see more decrements than we should. 690 * MNT_WRITE_HOLD protects against this scenario, because 691 * mnt_want_write first increments count, then smp_mb, then spins on 692 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 693 * we're counting up here. 694 */ 695 if (mnt_get_writers(mnt) > 0) 696 return -EBUSY; 697 698 return 0; 699 } 700 701 /** 702 * mnt_unhold_writers - stop preventing write access to the given mount 703 * @mnt: mnt to stop preventing write access to 704 * 705 * Stop preventing write access to @mnt allowing callers to gain write access 706 * to @mnt again. 707 * 708 * This function can only be called after a successful call to 709 * mnt_hold_writers(). 710 * 711 * Context: This function expects lock_mount_hash() to be held. 712 */ 713 static inline void mnt_unhold_writers(struct mount *mnt) 714 { 715 /* 716 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 717 * that become unheld will see MNT_READONLY. 718 */ 719 smp_wmb(); 720 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 721 } 722 723 static int mnt_make_readonly(struct mount *mnt) 724 { 725 int ret; 726 727 ret = mnt_hold_writers(mnt); 728 if (!ret) 729 mnt->mnt.mnt_flags |= MNT_READONLY; 730 mnt_unhold_writers(mnt); 731 return ret; 732 } 733 734 int sb_prepare_remount_readonly(struct super_block *sb) 735 { 736 struct mount *mnt; 737 int err = 0; 738 739 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 740 if (atomic_long_read(&sb->s_remove_count)) 741 return -EBUSY; 742 743 lock_mount_hash(); 744 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 745 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 746 err = mnt_hold_writers(mnt); 747 if (err) 748 break; 749 } 750 } 751 if (!err && atomic_long_read(&sb->s_remove_count)) 752 err = -EBUSY; 753 754 if (!err) 755 sb_start_ro_state_change(sb); 756 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 757 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 758 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 759 } 760 unlock_mount_hash(); 761 762 return err; 763 } 764 765 static void free_vfsmnt(struct mount *mnt) 766 { 767 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 768 kfree_const(mnt->mnt_devname); 769 #ifdef CONFIG_SMP 770 free_percpu(mnt->mnt_pcp); 771 #endif 772 kmem_cache_free(mnt_cache, mnt); 773 } 774 775 static void delayed_free_vfsmnt(struct rcu_head *head) 776 { 777 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 778 } 779 780 /* call under rcu_read_lock */ 781 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 782 { 783 struct mount *mnt; 784 if (read_seqretry(&mount_lock, seq)) 785 return 1; 786 if (bastard == NULL) 787 return 0; 788 mnt = real_mount(bastard); 789 mnt_add_count(mnt, 1); 790 smp_mb(); // see mntput_no_expire() 791 if (likely(!read_seqretry(&mount_lock, seq))) 792 return 0; 793 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 794 mnt_add_count(mnt, -1); 795 return 1; 796 } 797 lock_mount_hash(); 798 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 799 mnt_add_count(mnt, -1); 800 unlock_mount_hash(); 801 return 1; 802 } 803 unlock_mount_hash(); 804 /* caller will mntput() */ 805 return -1; 806 } 807 808 /* call under rcu_read_lock */ 809 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 810 { 811 int res = __legitimize_mnt(bastard, seq); 812 if (likely(!res)) 813 return true; 814 if (unlikely(res < 0)) { 815 rcu_read_unlock(); 816 mntput(bastard); 817 rcu_read_lock(); 818 } 819 return false; 820 } 821 822 /** 823 * __lookup_mnt - find first child mount 824 * @mnt: parent mount 825 * @dentry: mountpoint 826 * 827 * If @mnt has a child mount @c mounted @dentry find and return it. 828 * 829 * Note that the child mount @c need not be unique. There are cases 830 * where shadow mounts are created. For example, during mount 831 * propagation when a source mount @mnt whose root got overmounted by a 832 * mount @o after path lookup but before @namespace_sem could be 833 * acquired gets copied and propagated. So @mnt gets copied including 834 * @o. When @mnt is propagated to a destination mount @d that already 835 * has another mount @n mounted at the same mountpoint then the source 836 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 837 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 838 * on @dentry. 839 * 840 * Return: The first child of @mnt mounted @dentry or NULL. 841 */ 842 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 843 { 844 struct hlist_head *head = m_hash(mnt, dentry); 845 struct mount *p; 846 847 hlist_for_each_entry_rcu(p, head, mnt_hash) 848 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 849 return p; 850 return NULL; 851 } 852 853 /* 854 * lookup_mnt - Return the first child mount mounted at path 855 * 856 * "First" means first mounted chronologically. If you create the 857 * following mounts: 858 * 859 * mount /dev/sda1 /mnt 860 * mount /dev/sda2 /mnt 861 * mount /dev/sda3 /mnt 862 * 863 * Then lookup_mnt() on the base /mnt dentry in the root mount will 864 * return successively the root dentry and vfsmount of /dev/sda1, then 865 * /dev/sda2, then /dev/sda3, then NULL. 866 * 867 * lookup_mnt takes a reference to the found vfsmount. 868 */ 869 struct vfsmount *lookup_mnt(const struct path *path) 870 { 871 struct mount *child_mnt; 872 struct vfsmount *m; 873 unsigned seq; 874 875 rcu_read_lock(); 876 do { 877 seq = read_seqbegin(&mount_lock); 878 child_mnt = __lookup_mnt(path->mnt, path->dentry); 879 m = child_mnt ? &child_mnt->mnt : NULL; 880 } while (!legitimize_mnt(m, seq)); 881 rcu_read_unlock(); 882 return m; 883 } 884 885 /* 886 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 887 * current mount namespace. 888 * 889 * The common case is dentries are not mountpoints at all and that 890 * test is handled inline. For the slow case when we are actually 891 * dealing with a mountpoint of some kind, walk through all of the 892 * mounts in the current mount namespace and test to see if the dentry 893 * is a mountpoint. 894 * 895 * The mount_hashtable is not usable in the context because we 896 * need to identify all mounts that may be in the current mount 897 * namespace not just a mount that happens to have some specified 898 * parent mount. 899 */ 900 bool __is_local_mountpoint(struct dentry *dentry) 901 { 902 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 903 struct mount *mnt, *n; 904 bool is_covered = false; 905 906 down_read(&namespace_sem); 907 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 908 is_covered = (mnt->mnt_mountpoint == dentry); 909 if (is_covered) 910 break; 911 } 912 up_read(&namespace_sem); 913 914 return is_covered; 915 } 916 917 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 918 { 919 struct hlist_head *chain = mp_hash(dentry); 920 struct mountpoint *mp; 921 922 hlist_for_each_entry(mp, chain, m_hash) { 923 if (mp->m_dentry == dentry) { 924 mp->m_count++; 925 return mp; 926 } 927 } 928 return NULL; 929 } 930 931 static struct mountpoint *get_mountpoint(struct dentry *dentry) 932 { 933 struct mountpoint *mp, *new = NULL; 934 int ret; 935 936 if (d_mountpoint(dentry)) { 937 /* might be worth a WARN_ON() */ 938 if (d_unlinked(dentry)) 939 return ERR_PTR(-ENOENT); 940 mountpoint: 941 read_seqlock_excl(&mount_lock); 942 mp = lookup_mountpoint(dentry); 943 read_sequnlock_excl(&mount_lock); 944 if (mp) 945 goto done; 946 } 947 948 if (!new) 949 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 950 if (!new) 951 return ERR_PTR(-ENOMEM); 952 953 954 /* Exactly one processes may set d_mounted */ 955 ret = d_set_mounted(dentry); 956 957 /* Someone else set d_mounted? */ 958 if (ret == -EBUSY) 959 goto mountpoint; 960 961 /* The dentry is not available as a mountpoint? */ 962 mp = ERR_PTR(ret); 963 if (ret) 964 goto done; 965 966 /* Add the new mountpoint to the hash table */ 967 read_seqlock_excl(&mount_lock); 968 new->m_dentry = dget(dentry); 969 new->m_count = 1; 970 hlist_add_head(&new->m_hash, mp_hash(dentry)); 971 INIT_HLIST_HEAD(&new->m_list); 972 read_sequnlock_excl(&mount_lock); 973 974 mp = new; 975 new = NULL; 976 done: 977 kfree(new); 978 return mp; 979 } 980 981 /* 982 * vfsmount lock must be held. Additionally, the caller is responsible 983 * for serializing calls for given disposal list. 984 */ 985 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 986 { 987 if (!--mp->m_count) { 988 struct dentry *dentry = mp->m_dentry; 989 BUG_ON(!hlist_empty(&mp->m_list)); 990 spin_lock(&dentry->d_lock); 991 dentry->d_flags &= ~DCACHE_MOUNTED; 992 spin_unlock(&dentry->d_lock); 993 dput_to_list(dentry, list); 994 hlist_del(&mp->m_hash); 995 kfree(mp); 996 } 997 } 998 999 /* called with namespace_lock and vfsmount lock */ 1000 static void put_mountpoint(struct mountpoint *mp) 1001 { 1002 __put_mountpoint(mp, &ex_mountpoints); 1003 } 1004 1005 static inline int check_mnt(struct mount *mnt) 1006 { 1007 return mnt->mnt_ns == current->nsproxy->mnt_ns; 1008 } 1009 1010 /* 1011 * vfsmount lock must be held for write 1012 */ 1013 static void touch_mnt_namespace(struct mnt_namespace *ns) 1014 { 1015 if (ns) { 1016 ns->event = ++event; 1017 wake_up_interruptible(&ns->poll); 1018 } 1019 } 1020 1021 /* 1022 * vfsmount lock must be held for write 1023 */ 1024 static void __touch_mnt_namespace(struct mnt_namespace *ns) 1025 { 1026 if (ns && ns->event != event) { 1027 ns->event = event; 1028 wake_up_interruptible(&ns->poll); 1029 } 1030 } 1031 1032 /* 1033 * vfsmount lock must be held for write 1034 */ 1035 static struct mountpoint *unhash_mnt(struct mount *mnt) 1036 { 1037 struct mountpoint *mp; 1038 mnt->mnt_parent = mnt; 1039 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1040 list_del_init(&mnt->mnt_child); 1041 hlist_del_init_rcu(&mnt->mnt_hash); 1042 hlist_del_init(&mnt->mnt_mp_list); 1043 mp = mnt->mnt_mp; 1044 mnt->mnt_mp = NULL; 1045 return mp; 1046 } 1047 1048 /* 1049 * vfsmount lock must be held for write 1050 */ 1051 static void umount_mnt(struct mount *mnt) 1052 { 1053 put_mountpoint(unhash_mnt(mnt)); 1054 } 1055 1056 /* 1057 * vfsmount lock must be held for write 1058 */ 1059 void mnt_set_mountpoint(struct mount *mnt, 1060 struct mountpoint *mp, 1061 struct mount *child_mnt) 1062 { 1063 mp->m_count++; 1064 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1065 child_mnt->mnt_mountpoint = mp->m_dentry; 1066 child_mnt->mnt_parent = mnt; 1067 child_mnt->mnt_mp = mp; 1068 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1069 } 1070 1071 /** 1072 * mnt_set_mountpoint_beneath - mount a mount beneath another one 1073 * 1074 * @new_parent: the source mount 1075 * @top_mnt: the mount beneath which @new_parent is mounted 1076 * @new_mp: the new mountpoint of @top_mnt on @new_parent 1077 * 1078 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 1079 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 1080 * @new_mp. And mount @new_parent on the old parent and old 1081 * mountpoint of @top_mnt. 1082 * 1083 * Context: This function expects namespace_lock() and lock_mount_hash() 1084 * to have been acquired in that order. 1085 */ 1086 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 1087 struct mount *top_mnt, 1088 struct mountpoint *new_mp) 1089 { 1090 struct mount *old_top_parent = top_mnt->mnt_parent; 1091 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 1092 1093 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 1094 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 1095 } 1096 1097 1098 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1099 { 1100 hlist_add_head_rcu(&mnt->mnt_hash, 1101 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1102 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1103 } 1104 1105 /** 1106 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1107 * list of child mounts 1108 * @parent: the parent 1109 * @mnt: the new mount 1110 * @mp: the new mountpoint 1111 * @beneath: whether to mount @mnt beneath or on top of @parent 1112 * 1113 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 1114 * to @parent's child mount list and to @mount_hashtable. 1115 * 1116 * If @beneath is true, remove @mnt from its current parent and 1117 * mountpoint and mount it on @mp on @parent, and mount @parent on the 1118 * old parent and old mountpoint of @mnt. Finally, attach @parent to 1119 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 1120 * 1121 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 1122 * to the correct parent. 1123 * 1124 * Context: This function expects namespace_lock() and lock_mount_hash() 1125 * to have been acquired in that order. 1126 */ 1127 static void attach_mnt(struct mount *mnt, struct mount *parent, 1128 struct mountpoint *mp, bool beneath) 1129 { 1130 if (beneath) 1131 mnt_set_mountpoint_beneath(mnt, parent, mp); 1132 else 1133 mnt_set_mountpoint(parent, mp, mnt); 1134 /* 1135 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1136 * beneath @parent then @mnt will need to be attached to 1137 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1138 * isn't the same mount as @parent. 1139 */ 1140 __attach_mnt(mnt, mnt->mnt_parent); 1141 } 1142 1143 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1144 { 1145 struct mountpoint *old_mp = mnt->mnt_mp; 1146 struct mount *old_parent = mnt->mnt_parent; 1147 1148 list_del_init(&mnt->mnt_child); 1149 hlist_del_init(&mnt->mnt_mp_list); 1150 hlist_del_init_rcu(&mnt->mnt_hash); 1151 1152 attach_mnt(mnt, parent, mp, false); 1153 1154 put_mountpoint(old_mp); 1155 mnt_add_count(old_parent, -1); 1156 } 1157 1158 static inline struct mount *node_to_mount(struct rb_node *node) 1159 { 1160 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1161 } 1162 1163 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1164 { 1165 struct rb_node **link = &ns->mounts.rb_node; 1166 struct rb_node *parent = NULL; 1167 bool mnt_first_node = true, mnt_last_node = true; 1168 1169 WARN_ON(mnt_ns_attached(mnt)); 1170 mnt->mnt_ns = ns; 1171 while (*link) { 1172 parent = *link; 1173 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1174 link = &parent->rb_left; 1175 mnt_last_node = false; 1176 } else { 1177 link = &parent->rb_right; 1178 mnt_first_node = false; 1179 } 1180 } 1181 1182 if (mnt_last_node) 1183 ns->mnt_last_node = &mnt->mnt_node; 1184 if (mnt_first_node) 1185 ns->mnt_first_node = &mnt->mnt_node; 1186 rb_link_node(&mnt->mnt_node, parent, link); 1187 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1188 1189 mnt_notify_add(mnt); 1190 } 1191 1192 /* 1193 * vfsmount lock must be held for write 1194 */ 1195 static void commit_tree(struct mount *mnt) 1196 { 1197 struct mount *parent = mnt->mnt_parent; 1198 struct mount *m; 1199 LIST_HEAD(head); 1200 struct mnt_namespace *n = parent->mnt_ns; 1201 1202 BUG_ON(parent == mnt); 1203 1204 list_add_tail(&head, &mnt->mnt_list); 1205 while (!list_empty(&head)) { 1206 m = list_first_entry(&head, typeof(*m), mnt_list); 1207 list_del(&m->mnt_list); 1208 1209 mnt_add_to_ns(n, m); 1210 } 1211 n->nr_mounts += n->pending_mounts; 1212 n->pending_mounts = 0; 1213 1214 __attach_mnt(mnt, parent); 1215 touch_mnt_namespace(n); 1216 } 1217 1218 static struct mount *next_mnt(struct mount *p, struct mount *root) 1219 { 1220 struct list_head *next = p->mnt_mounts.next; 1221 if (next == &p->mnt_mounts) { 1222 while (1) { 1223 if (p == root) 1224 return NULL; 1225 next = p->mnt_child.next; 1226 if (next != &p->mnt_parent->mnt_mounts) 1227 break; 1228 p = p->mnt_parent; 1229 } 1230 } 1231 return list_entry(next, struct mount, mnt_child); 1232 } 1233 1234 static struct mount *skip_mnt_tree(struct mount *p) 1235 { 1236 struct list_head *prev = p->mnt_mounts.prev; 1237 while (prev != &p->mnt_mounts) { 1238 p = list_entry(prev, struct mount, mnt_child); 1239 prev = p->mnt_mounts.prev; 1240 } 1241 return p; 1242 } 1243 1244 /** 1245 * vfs_create_mount - Create a mount for a configured superblock 1246 * @fc: The configuration context with the superblock attached 1247 * 1248 * Create a mount to an already configured superblock. If necessary, the 1249 * caller should invoke vfs_get_tree() before calling this. 1250 * 1251 * Note that this does not attach the mount to anything. 1252 */ 1253 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1254 { 1255 struct mount *mnt; 1256 1257 if (!fc->root) 1258 return ERR_PTR(-EINVAL); 1259 1260 mnt = alloc_vfsmnt(fc->source ?: "none"); 1261 if (!mnt) 1262 return ERR_PTR(-ENOMEM); 1263 1264 if (fc->sb_flags & SB_KERNMOUNT) 1265 mnt->mnt.mnt_flags = MNT_INTERNAL; 1266 1267 atomic_inc(&fc->root->d_sb->s_active); 1268 mnt->mnt.mnt_sb = fc->root->d_sb; 1269 mnt->mnt.mnt_root = dget(fc->root); 1270 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1271 mnt->mnt_parent = mnt; 1272 1273 lock_mount_hash(); 1274 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1275 unlock_mount_hash(); 1276 return &mnt->mnt; 1277 } 1278 EXPORT_SYMBOL(vfs_create_mount); 1279 1280 struct vfsmount *fc_mount(struct fs_context *fc) 1281 { 1282 int err = vfs_get_tree(fc); 1283 if (!err) { 1284 up_write(&fc->root->d_sb->s_umount); 1285 return vfs_create_mount(fc); 1286 } 1287 return ERR_PTR(err); 1288 } 1289 EXPORT_SYMBOL(fc_mount); 1290 1291 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1292 int flags, const char *name, 1293 void *data) 1294 { 1295 struct fs_context *fc; 1296 struct vfsmount *mnt; 1297 int ret = 0; 1298 1299 if (!type) 1300 return ERR_PTR(-EINVAL); 1301 1302 fc = fs_context_for_mount(type, flags); 1303 if (IS_ERR(fc)) 1304 return ERR_CAST(fc); 1305 1306 if (name) 1307 ret = vfs_parse_fs_string(fc, "source", 1308 name, strlen(name)); 1309 if (!ret) 1310 ret = parse_monolithic_mount_data(fc, data); 1311 if (!ret) 1312 mnt = fc_mount(fc); 1313 else 1314 mnt = ERR_PTR(ret); 1315 1316 put_fs_context(fc); 1317 return mnt; 1318 } 1319 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1320 1321 struct vfsmount * 1322 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1323 const char *name, void *data) 1324 { 1325 /* Until it is worked out how to pass the user namespace 1326 * through from the parent mount to the submount don't support 1327 * unprivileged mounts with submounts. 1328 */ 1329 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1330 return ERR_PTR(-EPERM); 1331 1332 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1333 } 1334 EXPORT_SYMBOL_GPL(vfs_submount); 1335 1336 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1337 int flag) 1338 { 1339 struct super_block *sb = old->mnt.mnt_sb; 1340 struct mount *mnt; 1341 int err; 1342 1343 mnt = alloc_vfsmnt(old->mnt_devname); 1344 if (!mnt) 1345 return ERR_PTR(-ENOMEM); 1346 1347 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1348 mnt->mnt_group_id = 0; /* not a peer of original */ 1349 else 1350 mnt->mnt_group_id = old->mnt_group_id; 1351 1352 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1353 err = mnt_alloc_group_id(mnt); 1354 if (err) 1355 goto out_free; 1356 } 1357 1358 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1359 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1360 1361 atomic_inc(&sb->s_active); 1362 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1363 1364 mnt->mnt.mnt_sb = sb; 1365 mnt->mnt.mnt_root = dget(root); 1366 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1367 mnt->mnt_parent = mnt; 1368 lock_mount_hash(); 1369 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1370 unlock_mount_hash(); 1371 1372 if ((flag & CL_SLAVE) || 1373 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1374 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1375 mnt->mnt_master = old; 1376 CLEAR_MNT_SHARED(mnt); 1377 } else if (!(flag & CL_PRIVATE)) { 1378 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1379 list_add(&mnt->mnt_share, &old->mnt_share); 1380 if (IS_MNT_SLAVE(old)) 1381 list_add(&mnt->mnt_slave, &old->mnt_slave); 1382 mnt->mnt_master = old->mnt_master; 1383 } else { 1384 CLEAR_MNT_SHARED(mnt); 1385 } 1386 if (flag & CL_MAKE_SHARED) 1387 set_mnt_shared(mnt); 1388 1389 /* stick the duplicate mount on the same expiry list 1390 * as the original if that was on one */ 1391 if (flag & CL_EXPIRE) { 1392 if (!list_empty(&old->mnt_expire)) 1393 list_add(&mnt->mnt_expire, &old->mnt_expire); 1394 } 1395 1396 return mnt; 1397 1398 out_free: 1399 mnt_free_id(mnt); 1400 free_vfsmnt(mnt); 1401 return ERR_PTR(err); 1402 } 1403 1404 static void cleanup_mnt(struct mount *mnt) 1405 { 1406 struct hlist_node *p; 1407 struct mount *m; 1408 /* 1409 * The warning here probably indicates that somebody messed 1410 * up a mnt_want/drop_write() pair. If this happens, the 1411 * filesystem was probably unable to make r/w->r/o transitions. 1412 * The locking used to deal with mnt_count decrement provides barriers, 1413 * so mnt_get_writers() below is safe. 1414 */ 1415 WARN_ON(mnt_get_writers(mnt)); 1416 if (unlikely(mnt->mnt_pins.first)) 1417 mnt_pin_kill(mnt); 1418 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1419 hlist_del(&m->mnt_umount); 1420 mntput(&m->mnt); 1421 } 1422 fsnotify_vfsmount_delete(&mnt->mnt); 1423 dput(mnt->mnt.mnt_root); 1424 deactivate_super(mnt->mnt.mnt_sb); 1425 mnt_free_id(mnt); 1426 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1427 } 1428 1429 static void __cleanup_mnt(struct rcu_head *head) 1430 { 1431 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1432 } 1433 1434 static LLIST_HEAD(delayed_mntput_list); 1435 static void delayed_mntput(struct work_struct *unused) 1436 { 1437 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1438 struct mount *m, *t; 1439 1440 llist_for_each_entry_safe(m, t, node, mnt_llist) 1441 cleanup_mnt(m); 1442 } 1443 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1444 1445 static void mntput_no_expire(struct mount *mnt) 1446 { 1447 LIST_HEAD(list); 1448 int count; 1449 1450 rcu_read_lock(); 1451 if (likely(READ_ONCE(mnt->mnt_ns))) { 1452 /* 1453 * Since we don't do lock_mount_hash() here, 1454 * ->mnt_ns can change under us. However, if it's 1455 * non-NULL, then there's a reference that won't 1456 * be dropped until after an RCU delay done after 1457 * turning ->mnt_ns NULL. So if we observe it 1458 * non-NULL under rcu_read_lock(), the reference 1459 * we are dropping is not the final one. 1460 */ 1461 mnt_add_count(mnt, -1); 1462 rcu_read_unlock(); 1463 return; 1464 } 1465 lock_mount_hash(); 1466 /* 1467 * make sure that if __legitimize_mnt() has not seen us grab 1468 * mount_lock, we'll see their refcount increment here. 1469 */ 1470 smp_mb(); 1471 mnt_add_count(mnt, -1); 1472 count = mnt_get_count(mnt); 1473 if (count != 0) { 1474 WARN_ON(count < 0); 1475 rcu_read_unlock(); 1476 unlock_mount_hash(); 1477 return; 1478 } 1479 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1480 rcu_read_unlock(); 1481 unlock_mount_hash(); 1482 return; 1483 } 1484 mnt->mnt.mnt_flags |= MNT_DOOMED; 1485 rcu_read_unlock(); 1486 1487 list_del(&mnt->mnt_instance); 1488 1489 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1490 struct mount *p, *tmp; 1491 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1492 __put_mountpoint(unhash_mnt(p), &list); 1493 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1494 } 1495 } 1496 unlock_mount_hash(); 1497 shrink_dentry_list(&list); 1498 1499 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1500 struct task_struct *task = current; 1501 if (likely(!(task->flags & PF_KTHREAD))) { 1502 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1503 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1504 return; 1505 } 1506 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1507 schedule_delayed_work(&delayed_mntput_work, 1); 1508 return; 1509 } 1510 cleanup_mnt(mnt); 1511 } 1512 1513 void mntput(struct vfsmount *mnt) 1514 { 1515 if (mnt) { 1516 struct mount *m = real_mount(mnt); 1517 /* avoid cacheline pingpong */ 1518 if (unlikely(m->mnt_expiry_mark)) 1519 WRITE_ONCE(m->mnt_expiry_mark, 0); 1520 mntput_no_expire(m); 1521 } 1522 } 1523 EXPORT_SYMBOL(mntput); 1524 1525 struct vfsmount *mntget(struct vfsmount *mnt) 1526 { 1527 if (mnt) 1528 mnt_add_count(real_mount(mnt), 1); 1529 return mnt; 1530 } 1531 EXPORT_SYMBOL(mntget); 1532 1533 /* 1534 * Make a mount point inaccessible to new lookups. 1535 * Because there may still be current users, the caller MUST WAIT 1536 * for an RCU grace period before destroying the mount point. 1537 */ 1538 void mnt_make_shortterm(struct vfsmount *mnt) 1539 { 1540 if (mnt) 1541 real_mount(mnt)->mnt_ns = NULL; 1542 } 1543 1544 /** 1545 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1546 * @path: path to check 1547 * 1548 * d_mountpoint() can only be used reliably to establish if a dentry is 1549 * not mounted in any namespace and that common case is handled inline. 1550 * d_mountpoint() isn't aware of the possibility there may be multiple 1551 * mounts using a given dentry in a different namespace. This function 1552 * checks if the passed in path is a mountpoint rather than the dentry 1553 * alone. 1554 */ 1555 bool path_is_mountpoint(const struct path *path) 1556 { 1557 unsigned seq; 1558 bool res; 1559 1560 if (!d_mountpoint(path->dentry)) 1561 return false; 1562 1563 rcu_read_lock(); 1564 do { 1565 seq = read_seqbegin(&mount_lock); 1566 res = __path_is_mountpoint(path); 1567 } while (read_seqretry(&mount_lock, seq)); 1568 rcu_read_unlock(); 1569 1570 return res; 1571 } 1572 EXPORT_SYMBOL(path_is_mountpoint); 1573 1574 struct vfsmount *mnt_clone_internal(const struct path *path) 1575 { 1576 struct mount *p; 1577 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1578 if (IS_ERR(p)) 1579 return ERR_CAST(p); 1580 p->mnt.mnt_flags |= MNT_INTERNAL; 1581 return &p->mnt; 1582 } 1583 1584 /* 1585 * Returns the mount which either has the specified mnt_id, or has the next 1586 * smallest id afer the specified one. 1587 */ 1588 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1589 { 1590 struct rb_node *node = ns->mounts.rb_node; 1591 struct mount *ret = NULL; 1592 1593 while (node) { 1594 struct mount *m = node_to_mount(node); 1595 1596 if (mnt_id <= m->mnt_id_unique) { 1597 ret = node_to_mount(node); 1598 if (mnt_id == m->mnt_id_unique) 1599 break; 1600 node = node->rb_left; 1601 } else { 1602 node = node->rb_right; 1603 } 1604 } 1605 return ret; 1606 } 1607 1608 /* 1609 * Returns the mount which either has the specified mnt_id, or has the next 1610 * greater id before the specified one. 1611 */ 1612 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1613 { 1614 struct rb_node *node = ns->mounts.rb_node; 1615 struct mount *ret = NULL; 1616 1617 while (node) { 1618 struct mount *m = node_to_mount(node); 1619 1620 if (mnt_id >= m->mnt_id_unique) { 1621 ret = node_to_mount(node); 1622 if (mnt_id == m->mnt_id_unique) 1623 break; 1624 node = node->rb_right; 1625 } else { 1626 node = node->rb_left; 1627 } 1628 } 1629 return ret; 1630 } 1631 1632 #ifdef CONFIG_PROC_FS 1633 1634 /* iterator; we want it to have access to namespace_sem, thus here... */ 1635 static void *m_start(struct seq_file *m, loff_t *pos) 1636 { 1637 struct proc_mounts *p = m->private; 1638 1639 down_read(&namespace_sem); 1640 1641 return mnt_find_id_at(p->ns, *pos); 1642 } 1643 1644 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1645 { 1646 struct mount *next = NULL, *mnt = v; 1647 struct rb_node *node = rb_next(&mnt->mnt_node); 1648 1649 ++*pos; 1650 if (node) { 1651 next = node_to_mount(node); 1652 *pos = next->mnt_id_unique; 1653 } 1654 return next; 1655 } 1656 1657 static void m_stop(struct seq_file *m, void *v) 1658 { 1659 up_read(&namespace_sem); 1660 } 1661 1662 static int m_show(struct seq_file *m, void *v) 1663 { 1664 struct proc_mounts *p = m->private; 1665 struct mount *r = v; 1666 return p->show(m, &r->mnt); 1667 } 1668 1669 const struct seq_operations mounts_op = { 1670 .start = m_start, 1671 .next = m_next, 1672 .stop = m_stop, 1673 .show = m_show, 1674 }; 1675 1676 #endif /* CONFIG_PROC_FS */ 1677 1678 /** 1679 * may_umount_tree - check if a mount tree is busy 1680 * @m: root of mount tree 1681 * 1682 * This is called to check if a tree of mounts has any 1683 * open files, pwds, chroots or sub mounts that are 1684 * busy. 1685 */ 1686 int may_umount_tree(struct vfsmount *m) 1687 { 1688 struct mount *mnt = real_mount(m); 1689 int actual_refs = 0; 1690 int minimum_refs = 0; 1691 struct mount *p; 1692 BUG_ON(!m); 1693 1694 /* write lock needed for mnt_get_count */ 1695 lock_mount_hash(); 1696 for (p = mnt; p; p = next_mnt(p, mnt)) { 1697 actual_refs += mnt_get_count(p); 1698 minimum_refs += 2; 1699 } 1700 unlock_mount_hash(); 1701 1702 if (actual_refs > minimum_refs) 1703 return 0; 1704 1705 return 1; 1706 } 1707 1708 EXPORT_SYMBOL(may_umount_tree); 1709 1710 /** 1711 * may_umount - check if a mount point is busy 1712 * @mnt: root of mount 1713 * 1714 * This is called to check if a mount point has any 1715 * open files, pwds, chroots or sub mounts. If the 1716 * mount has sub mounts this will return busy 1717 * regardless of whether the sub mounts are busy. 1718 * 1719 * Doesn't take quota and stuff into account. IOW, in some cases it will 1720 * give false negatives. The main reason why it's here is that we need 1721 * a non-destructive way to look for easily umountable filesystems. 1722 */ 1723 int may_umount(struct vfsmount *mnt) 1724 { 1725 int ret = 1; 1726 down_read(&namespace_sem); 1727 lock_mount_hash(); 1728 if (propagate_mount_busy(real_mount(mnt), 2)) 1729 ret = 0; 1730 unlock_mount_hash(); 1731 up_read(&namespace_sem); 1732 return ret; 1733 } 1734 1735 EXPORT_SYMBOL(may_umount); 1736 1737 #ifdef CONFIG_FSNOTIFY 1738 static void mnt_notify(struct mount *p) 1739 { 1740 if (!p->prev_ns && p->mnt_ns) { 1741 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1742 } else if (p->prev_ns && !p->mnt_ns) { 1743 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1744 } else if (p->prev_ns == p->mnt_ns) { 1745 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1746 } else { 1747 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1748 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1749 } 1750 p->prev_ns = p->mnt_ns; 1751 } 1752 1753 static void notify_mnt_list(void) 1754 { 1755 struct mount *m, *tmp; 1756 /* 1757 * Notify about mounts that were added/reparented/detached/remain 1758 * connected after unmount. 1759 */ 1760 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1761 mnt_notify(m); 1762 list_del_init(&m->to_notify); 1763 } 1764 } 1765 1766 static bool need_notify_mnt_list(void) 1767 { 1768 return !list_empty(¬ify_list); 1769 } 1770 #else 1771 static void notify_mnt_list(void) 1772 { 1773 } 1774 1775 static bool need_notify_mnt_list(void) 1776 { 1777 return false; 1778 } 1779 #endif 1780 1781 static void namespace_unlock(void) 1782 { 1783 struct hlist_head head; 1784 struct hlist_node *p; 1785 struct mount *m; 1786 LIST_HEAD(list); 1787 1788 hlist_move_list(&unmounted, &head); 1789 list_splice_init(&ex_mountpoints, &list); 1790 1791 if (need_notify_mnt_list()) { 1792 /* 1793 * No point blocking out concurrent readers while notifications 1794 * are sent. This will also allow statmount()/listmount() to run 1795 * concurrently. 1796 */ 1797 downgrade_write(&namespace_sem); 1798 notify_mnt_list(); 1799 up_read(&namespace_sem); 1800 } else { 1801 up_write(&namespace_sem); 1802 } 1803 1804 shrink_dentry_list(&list); 1805 1806 if (likely(hlist_empty(&head))) 1807 return; 1808 1809 synchronize_rcu_expedited(); 1810 1811 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1812 hlist_del(&m->mnt_umount); 1813 mntput(&m->mnt); 1814 } 1815 } 1816 1817 static inline void namespace_lock(void) 1818 { 1819 down_write(&namespace_sem); 1820 } 1821 1822 enum umount_tree_flags { 1823 UMOUNT_SYNC = 1, 1824 UMOUNT_PROPAGATE = 2, 1825 UMOUNT_CONNECTED = 4, 1826 }; 1827 1828 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1829 { 1830 /* Leaving mounts connected is only valid for lazy umounts */ 1831 if (how & UMOUNT_SYNC) 1832 return true; 1833 1834 /* A mount without a parent has nothing to be connected to */ 1835 if (!mnt_has_parent(mnt)) 1836 return true; 1837 1838 /* Because the reference counting rules change when mounts are 1839 * unmounted and connected, umounted mounts may not be 1840 * connected to mounted mounts. 1841 */ 1842 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1843 return true; 1844 1845 /* Has it been requested that the mount remain connected? */ 1846 if (how & UMOUNT_CONNECTED) 1847 return false; 1848 1849 /* Is the mount locked such that it needs to remain connected? */ 1850 if (IS_MNT_LOCKED(mnt)) 1851 return false; 1852 1853 /* By default disconnect the mount */ 1854 return true; 1855 } 1856 1857 /* 1858 * mount_lock must be held 1859 * namespace_sem must be held for write 1860 */ 1861 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1862 { 1863 LIST_HEAD(tmp_list); 1864 struct mount *p; 1865 1866 if (how & UMOUNT_PROPAGATE) 1867 propagate_mount_unlock(mnt); 1868 1869 /* Gather the mounts to umount */ 1870 for (p = mnt; p; p = next_mnt(p, mnt)) { 1871 p->mnt.mnt_flags |= MNT_UMOUNT; 1872 if (mnt_ns_attached(p)) 1873 move_from_ns(p, &tmp_list); 1874 else 1875 list_move(&p->mnt_list, &tmp_list); 1876 } 1877 1878 /* Hide the mounts from mnt_mounts */ 1879 list_for_each_entry(p, &tmp_list, mnt_list) { 1880 list_del_init(&p->mnt_child); 1881 } 1882 1883 /* Add propagated mounts to the tmp_list */ 1884 if (how & UMOUNT_PROPAGATE) 1885 propagate_umount(&tmp_list); 1886 1887 while (!list_empty(&tmp_list)) { 1888 struct mnt_namespace *ns; 1889 bool disconnect; 1890 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1891 list_del_init(&p->mnt_expire); 1892 list_del_init(&p->mnt_list); 1893 ns = p->mnt_ns; 1894 if (ns) { 1895 ns->nr_mounts--; 1896 __touch_mnt_namespace(ns); 1897 } 1898 p->mnt_ns = NULL; 1899 if (how & UMOUNT_SYNC) 1900 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1901 1902 disconnect = disconnect_mount(p, how); 1903 if (mnt_has_parent(p)) { 1904 mnt_add_count(p->mnt_parent, -1); 1905 if (!disconnect) { 1906 /* Don't forget about p */ 1907 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1908 } else { 1909 umount_mnt(p); 1910 } 1911 } 1912 change_mnt_propagation(p, MS_PRIVATE); 1913 if (disconnect) 1914 hlist_add_head(&p->mnt_umount, &unmounted); 1915 1916 /* 1917 * At this point p->mnt_ns is NULL, notification will be queued 1918 * only if 1919 * 1920 * - p->prev_ns is non-NULL *and* 1921 * - p->prev_ns->n_fsnotify_marks is non-NULL 1922 * 1923 * This will preclude queuing the mount if this is a cleanup 1924 * after a failed copy_tree() or destruction of an anonymous 1925 * namespace, etc. 1926 */ 1927 mnt_notify_add(p); 1928 } 1929 } 1930 1931 static void shrink_submounts(struct mount *mnt); 1932 1933 static int do_umount_root(struct super_block *sb) 1934 { 1935 int ret = 0; 1936 1937 down_write(&sb->s_umount); 1938 if (!sb_rdonly(sb)) { 1939 struct fs_context *fc; 1940 1941 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1942 SB_RDONLY); 1943 if (IS_ERR(fc)) { 1944 ret = PTR_ERR(fc); 1945 } else { 1946 ret = parse_monolithic_mount_data(fc, NULL); 1947 if (!ret) 1948 ret = reconfigure_super(fc); 1949 put_fs_context(fc); 1950 } 1951 } 1952 up_write(&sb->s_umount); 1953 return ret; 1954 } 1955 1956 static int do_umount(struct mount *mnt, int flags) 1957 { 1958 struct super_block *sb = mnt->mnt.mnt_sb; 1959 int retval; 1960 1961 retval = security_sb_umount(&mnt->mnt, flags); 1962 if (retval) 1963 return retval; 1964 1965 /* 1966 * Allow userspace to request a mountpoint be expired rather than 1967 * unmounting unconditionally. Unmount only happens if: 1968 * (1) the mark is already set (the mark is cleared by mntput()) 1969 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1970 */ 1971 if (flags & MNT_EXPIRE) { 1972 if (&mnt->mnt == current->fs->root.mnt || 1973 flags & (MNT_FORCE | MNT_DETACH)) 1974 return -EINVAL; 1975 1976 /* 1977 * probably don't strictly need the lock here if we examined 1978 * all race cases, but it's a slowpath. 1979 */ 1980 lock_mount_hash(); 1981 if (mnt_get_count(mnt) != 2) { 1982 unlock_mount_hash(); 1983 return -EBUSY; 1984 } 1985 unlock_mount_hash(); 1986 1987 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1988 return -EAGAIN; 1989 } 1990 1991 /* 1992 * If we may have to abort operations to get out of this 1993 * mount, and they will themselves hold resources we must 1994 * allow the fs to do things. In the Unix tradition of 1995 * 'Gee thats tricky lets do it in userspace' the umount_begin 1996 * might fail to complete on the first run through as other tasks 1997 * must return, and the like. Thats for the mount program to worry 1998 * about for the moment. 1999 */ 2000 2001 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 2002 sb->s_op->umount_begin(sb); 2003 } 2004 2005 /* 2006 * No sense to grab the lock for this test, but test itself looks 2007 * somewhat bogus. Suggestions for better replacement? 2008 * Ho-hum... In principle, we might treat that as umount + switch 2009 * to rootfs. GC would eventually take care of the old vfsmount. 2010 * Actually it makes sense, especially if rootfs would contain a 2011 * /reboot - static binary that would close all descriptors and 2012 * call reboot(9). Then init(8) could umount root and exec /reboot. 2013 */ 2014 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 2015 /* 2016 * Special case for "unmounting" root ... 2017 * we just try to remount it readonly. 2018 */ 2019 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2020 return -EPERM; 2021 return do_umount_root(sb); 2022 } 2023 2024 namespace_lock(); 2025 lock_mount_hash(); 2026 2027 /* Recheck MNT_LOCKED with the locks held */ 2028 retval = -EINVAL; 2029 if (mnt->mnt.mnt_flags & MNT_LOCKED) 2030 goto out; 2031 2032 event++; 2033 if (flags & MNT_DETACH) { 2034 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2035 umount_tree(mnt, UMOUNT_PROPAGATE); 2036 retval = 0; 2037 } else { 2038 shrink_submounts(mnt); 2039 retval = -EBUSY; 2040 if (!propagate_mount_busy(mnt, 2)) { 2041 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) 2042 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2043 retval = 0; 2044 } 2045 } 2046 out: 2047 unlock_mount_hash(); 2048 namespace_unlock(); 2049 return retval; 2050 } 2051 2052 /* 2053 * __detach_mounts - lazily unmount all mounts on the specified dentry 2054 * 2055 * During unlink, rmdir, and d_drop it is possible to loose the path 2056 * to an existing mountpoint, and wind up leaking the mount. 2057 * detach_mounts allows lazily unmounting those mounts instead of 2058 * leaking them. 2059 * 2060 * The caller may hold dentry->d_inode->i_mutex. 2061 */ 2062 void __detach_mounts(struct dentry *dentry) 2063 { 2064 struct mountpoint *mp; 2065 struct mount *mnt; 2066 2067 namespace_lock(); 2068 lock_mount_hash(); 2069 mp = lookup_mountpoint(dentry); 2070 if (!mp) 2071 goto out_unlock; 2072 2073 event++; 2074 while (!hlist_empty(&mp->m_list)) { 2075 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 2076 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 2077 umount_mnt(mnt); 2078 hlist_add_head(&mnt->mnt_umount, &unmounted); 2079 } 2080 else umount_tree(mnt, UMOUNT_CONNECTED); 2081 } 2082 put_mountpoint(mp); 2083 out_unlock: 2084 unlock_mount_hash(); 2085 namespace_unlock(); 2086 } 2087 2088 /* 2089 * Is the caller allowed to modify his namespace? 2090 */ 2091 bool may_mount(void) 2092 { 2093 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 2094 } 2095 2096 static void warn_mandlock(void) 2097 { 2098 pr_warn_once("=======================================================\n" 2099 "WARNING: The mand mount option has been deprecated and\n" 2100 " and is ignored by this kernel. Remove the mand\n" 2101 " option from the mount to silence this warning.\n" 2102 "=======================================================\n"); 2103 } 2104 2105 static int can_umount(const struct path *path, int flags) 2106 { 2107 struct mount *mnt = real_mount(path->mnt); 2108 struct super_block *sb = path->dentry->d_sb; 2109 2110 if (!may_mount()) 2111 return -EPERM; 2112 if (!path_mounted(path)) 2113 return -EINVAL; 2114 if (!check_mnt(mnt)) 2115 return -EINVAL; 2116 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2117 return -EINVAL; 2118 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2119 return -EPERM; 2120 return 0; 2121 } 2122 2123 // caller is responsible for flags being sane 2124 int path_umount(struct path *path, int flags) 2125 { 2126 struct mount *mnt = real_mount(path->mnt); 2127 int ret; 2128 2129 ret = can_umount(path, flags); 2130 if (!ret) 2131 ret = do_umount(mnt, flags); 2132 2133 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2134 dput(path->dentry); 2135 mntput_no_expire(mnt); 2136 return ret; 2137 } 2138 2139 static int ksys_umount(char __user *name, int flags) 2140 { 2141 int lookup_flags = LOOKUP_MOUNTPOINT; 2142 struct path path; 2143 int ret; 2144 2145 // basic validity checks done first 2146 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2147 return -EINVAL; 2148 2149 if (!(flags & UMOUNT_NOFOLLOW)) 2150 lookup_flags |= LOOKUP_FOLLOW; 2151 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2152 if (ret) 2153 return ret; 2154 return path_umount(&path, flags); 2155 } 2156 2157 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2158 { 2159 return ksys_umount(name, flags); 2160 } 2161 2162 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2163 2164 /* 2165 * The 2.0 compatible umount. No flags. 2166 */ 2167 SYSCALL_DEFINE1(oldumount, char __user *, name) 2168 { 2169 return ksys_umount(name, 0); 2170 } 2171 2172 #endif 2173 2174 static bool is_mnt_ns_file(struct dentry *dentry) 2175 { 2176 struct ns_common *ns; 2177 2178 /* Is this a proxy for a mount namespace? */ 2179 if (dentry->d_op != &ns_dentry_operations) 2180 return false; 2181 2182 ns = d_inode(dentry)->i_private; 2183 2184 return ns->ops == &mntns_operations; 2185 } 2186 2187 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2188 { 2189 return &mnt->ns; 2190 } 2191 2192 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2193 { 2194 guard(rcu)(); 2195 2196 for (;;) { 2197 struct list_head *list; 2198 2199 if (previous) 2200 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list)); 2201 else 2202 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list)); 2203 if (list_is_head(list, &mnt_ns_list)) 2204 return ERR_PTR(-ENOENT); 2205 2206 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list); 2207 2208 /* 2209 * The last passive reference count is put with RCU 2210 * delay so accessing the mount namespace is not just 2211 * safe but all relevant members are still valid. 2212 */ 2213 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2214 continue; 2215 2216 /* 2217 * We need an active reference count as we're persisting 2218 * the mount namespace and it might already be on its 2219 * deathbed. 2220 */ 2221 if (!refcount_inc_not_zero(&mntns->ns.count)) 2222 continue; 2223 2224 return mntns; 2225 } 2226 } 2227 2228 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2229 { 2230 if (!is_mnt_ns_file(dentry)) 2231 return NULL; 2232 2233 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2234 } 2235 2236 static bool mnt_ns_loop(struct dentry *dentry) 2237 { 2238 /* Could bind mounting the mount namespace inode cause a 2239 * mount namespace loop? 2240 */ 2241 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2242 2243 if (!mnt_ns) 2244 return false; 2245 2246 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2247 } 2248 2249 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2250 int flag) 2251 { 2252 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2253 *dst_parent, *dst_mnt; 2254 2255 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2256 return ERR_PTR(-EINVAL); 2257 2258 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2259 return ERR_PTR(-EINVAL); 2260 2261 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2262 if (IS_ERR(dst_mnt)) 2263 return dst_mnt; 2264 2265 src_parent = src_root; 2266 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; 2267 2268 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2269 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2270 continue; 2271 2272 for (src_mnt = src_root_child; src_mnt; 2273 src_mnt = next_mnt(src_mnt, src_root_child)) { 2274 if (!(flag & CL_COPY_UNBINDABLE) && 2275 IS_MNT_UNBINDABLE(src_mnt)) { 2276 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2277 /* Both unbindable and locked. */ 2278 dst_mnt = ERR_PTR(-EPERM); 2279 goto out; 2280 } else { 2281 src_mnt = skip_mnt_tree(src_mnt); 2282 continue; 2283 } 2284 } 2285 if (!(flag & CL_COPY_MNT_NS_FILE) && 2286 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2287 src_mnt = skip_mnt_tree(src_mnt); 2288 continue; 2289 } 2290 while (src_parent != src_mnt->mnt_parent) { 2291 src_parent = src_parent->mnt_parent; 2292 dst_mnt = dst_mnt->mnt_parent; 2293 } 2294 2295 src_parent = src_mnt; 2296 dst_parent = dst_mnt; 2297 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2298 if (IS_ERR(dst_mnt)) 2299 goto out; 2300 lock_mount_hash(); 2301 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); 2302 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); 2303 unlock_mount_hash(); 2304 } 2305 } 2306 return res; 2307 2308 out: 2309 if (res) { 2310 lock_mount_hash(); 2311 umount_tree(res, UMOUNT_SYNC); 2312 unlock_mount_hash(); 2313 } 2314 return dst_mnt; 2315 } 2316 2317 /* Caller should check returned pointer for errors */ 2318 2319 struct vfsmount *collect_mounts(const struct path *path) 2320 { 2321 struct mount *tree; 2322 namespace_lock(); 2323 if (!check_mnt(real_mount(path->mnt))) 2324 tree = ERR_PTR(-EINVAL); 2325 else 2326 tree = copy_tree(real_mount(path->mnt), path->dentry, 2327 CL_COPY_ALL | CL_PRIVATE); 2328 namespace_unlock(); 2329 if (IS_ERR(tree)) 2330 return ERR_CAST(tree); 2331 return &tree->mnt; 2332 } 2333 2334 static void free_mnt_ns(struct mnt_namespace *); 2335 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2336 2337 void dissolve_on_fput(struct vfsmount *mnt) 2338 { 2339 struct mnt_namespace *ns; 2340 namespace_lock(); 2341 lock_mount_hash(); 2342 ns = real_mount(mnt)->mnt_ns; 2343 if (ns) { 2344 if (is_anon_ns(ns)) 2345 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2346 else 2347 ns = NULL; 2348 } 2349 unlock_mount_hash(); 2350 namespace_unlock(); 2351 if (ns) 2352 free_mnt_ns(ns); 2353 } 2354 2355 void drop_collected_mounts(struct vfsmount *mnt) 2356 { 2357 namespace_lock(); 2358 lock_mount_hash(); 2359 umount_tree(real_mount(mnt), 0); 2360 unlock_mount_hash(); 2361 namespace_unlock(); 2362 } 2363 2364 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2365 { 2366 struct mount *child; 2367 2368 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2369 if (!is_subdir(child->mnt_mountpoint, dentry)) 2370 continue; 2371 2372 if (child->mnt.mnt_flags & MNT_LOCKED) 2373 return true; 2374 } 2375 return false; 2376 } 2377 2378 /* 2379 * Check that there aren't references to earlier/same mount namespaces in the 2380 * specified subtree. Such references can act as pins for mount namespaces 2381 * that aren't checked by the mount-cycle checking code, thereby allowing 2382 * cycles to be made. 2383 */ 2384 static bool check_for_nsfs_mounts(struct mount *subtree) 2385 { 2386 struct mount *p; 2387 bool ret = false; 2388 2389 lock_mount_hash(); 2390 for (p = subtree; p; p = next_mnt(p, subtree)) 2391 if (mnt_ns_loop(p->mnt.mnt_root)) 2392 goto out; 2393 2394 ret = true; 2395 out: 2396 unlock_mount_hash(); 2397 return ret; 2398 } 2399 2400 /** 2401 * clone_private_mount - create a private clone of a path 2402 * @path: path to clone 2403 * 2404 * This creates a new vfsmount, which will be the clone of @path. The new mount 2405 * will not be attached anywhere in the namespace and will be private (i.e. 2406 * changes to the originating mount won't be propagated into this). 2407 * 2408 * This assumes caller has called or done the equivalent of may_mount(). 2409 * 2410 * Release with mntput(). 2411 */ 2412 struct vfsmount *clone_private_mount(const struct path *path) 2413 { 2414 struct mount *old_mnt = real_mount(path->mnt); 2415 struct mount *new_mnt; 2416 2417 scoped_guard(rwsem_read, &namespace_sem) 2418 if (IS_MNT_UNBINDABLE(old_mnt)) 2419 return ERR_PTR(-EINVAL); 2420 2421 if (mnt_has_parent(old_mnt)) { 2422 if (!check_mnt(old_mnt)) 2423 return ERR_PTR(-EINVAL); 2424 } else { 2425 if (!is_mounted(&old_mnt->mnt)) 2426 return ERR_PTR(-EINVAL); 2427 2428 /* Make sure this isn't something purely kernel internal. */ 2429 if (!is_anon_ns(old_mnt->mnt_ns)) 2430 return ERR_PTR(-EINVAL); 2431 2432 /* Make sure we don't create mount namespace loops. */ 2433 if (!check_for_nsfs_mounts(old_mnt)) 2434 return ERR_PTR(-EINVAL); 2435 } 2436 2437 if (has_locked_children(old_mnt, path->dentry)) 2438 return ERR_PTR(-EINVAL); 2439 2440 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2441 if (IS_ERR(new_mnt)) 2442 return ERR_PTR(-EINVAL); 2443 2444 /* Longterm mount to be removed by kern_unmount*() */ 2445 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2446 return &new_mnt->mnt; 2447 } 2448 EXPORT_SYMBOL_GPL(clone_private_mount); 2449 2450 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2451 struct vfsmount *root) 2452 { 2453 struct mount *mnt; 2454 int res = f(root, arg); 2455 if (res) 2456 return res; 2457 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2458 res = f(&mnt->mnt, arg); 2459 if (res) 2460 return res; 2461 } 2462 return 0; 2463 } 2464 2465 static void lock_mnt_tree(struct mount *mnt) 2466 { 2467 struct mount *p; 2468 2469 for (p = mnt; p; p = next_mnt(p, mnt)) { 2470 int flags = p->mnt.mnt_flags; 2471 /* Don't allow unprivileged users to change mount flags */ 2472 flags |= MNT_LOCK_ATIME; 2473 2474 if (flags & MNT_READONLY) 2475 flags |= MNT_LOCK_READONLY; 2476 2477 if (flags & MNT_NODEV) 2478 flags |= MNT_LOCK_NODEV; 2479 2480 if (flags & MNT_NOSUID) 2481 flags |= MNT_LOCK_NOSUID; 2482 2483 if (flags & MNT_NOEXEC) 2484 flags |= MNT_LOCK_NOEXEC; 2485 /* Don't allow unprivileged users to reveal what is under a mount */ 2486 if (list_empty(&p->mnt_expire)) 2487 flags |= MNT_LOCKED; 2488 p->mnt.mnt_flags = flags; 2489 } 2490 } 2491 2492 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2493 { 2494 struct mount *p; 2495 2496 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2497 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2498 mnt_release_group_id(p); 2499 } 2500 } 2501 2502 static int invent_group_ids(struct mount *mnt, bool recurse) 2503 { 2504 struct mount *p; 2505 2506 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2507 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2508 int err = mnt_alloc_group_id(p); 2509 if (err) { 2510 cleanup_group_ids(mnt, p); 2511 return err; 2512 } 2513 } 2514 } 2515 2516 return 0; 2517 } 2518 2519 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2520 { 2521 unsigned int max = READ_ONCE(sysctl_mount_max); 2522 unsigned int mounts = 0; 2523 struct mount *p; 2524 2525 if (ns->nr_mounts >= max) 2526 return -ENOSPC; 2527 max -= ns->nr_mounts; 2528 if (ns->pending_mounts >= max) 2529 return -ENOSPC; 2530 max -= ns->pending_mounts; 2531 2532 for (p = mnt; p; p = next_mnt(p, mnt)) 2533 mounts++; 2534 2535 if (mounts > max) 2536 return -ENOSPC; 2537 2538 ns->pending_mounts += mounts; 2539 return 0; 2540 } 2541 2542 enum mnt_tree_flags_t { 2543 MNT_TREE_MOVE = BIT(0), 2544 MNT_TREE_BENEATH = BIT(1), 2545 }; 2546 2547 /** 2548 * attach_recursive_mnt - attach a source mount tree 2549 * @source_mnt: mount tree to be attached 2550 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2551 * @dest_mp: the mountpoint @source_mnt will be mounted at 2552 * @flags: modify how @source_mnt is supposed to be attached 2553 * 2554 * NOTE: in the table below explains the semantics when a source mount 2555 * of a given type is attached to a destination mount of a given type. 2556 * --------------------------------------------------------------------------- 2557 * | BIND MOUNT OPERATION | 2558 * |************************************************************************** 2559 * | source-->| shared | private | slave | unbindable | 2560 * | dest | | | | | 2561 * | | | | | | | 2562 * | v | | | | | 2563 * |************************************************************************** 2564 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2565 * | | | | | | 2566 * |non-shared| shared (+) | private | slave (*) | invalid | 2567 * *************************************************************************** 2568 * A bind operation clones the source mount and mounts the clone on the 2569 * destination mount. 2570 * 2571 * (++) the cloned mount is propagated to all the mounts in the propagation 2572 * tree of the destination mount and the cloned mount is added to 2573 * the peer group of the source mount. 2574 * (+) the cloned mount is created under the destination mount and is marked 2575 * as shared. The cloned mount is added to the peer group of the source 2576 * mount. 2577 * (+++) the mount is propagated to all the mounts in the propagation tree 2578 * of the destination mount and the cloned mount is made slave 2579 * of the same master as that of the source mount. The cloned mount 2580 * is marked as 'shared and slave'. 2581 * (*) the cloned mount is made a slave of the same master as that of the 2582 * source mount. 2583 * 2584 * --------------------------------------------------------------------------- 2585 * | MOVE MOUNT OPERATION | 2586 * |************************************************************************** 2587 * | source-->| shared | private | slave | unbindable | 2588 * | dest | | | | | 2589 * | | | | | | | 2590 * | v | | | | | 2591 * |************************************************************************** 2592 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2593 * | | | | | | 2594 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2595 * *************************************************************************** 2596 * 2597 * (+) the mount is moved to the destination. And is then propagated to 2598 * all the mounts in the propagation tree of the destination mount. 2599 * (+*) the mount is moved to the destination. 2600 * (+++) the mount is moved to the destination and is then propagated to 2601 * all the mounts belonging to the destination mount's propagation tree. 2602 * the mount is marked as 'shared and slave'. 2603 * (*) the mount continues to be a slave at the new location. 2604 * 2605 * if the source mount is a tree, the operations explained above is 2606 * applied to each mount in the tree. 2607 * Must be called without spinlocks held, since this function can sleep 2608 * in allocations. 2609 * 2610 * Context: The function expects namespace_lock() to be held. 2611 * Return: If @source_mnt was successfully attached 0 is returned. 2612 * Otherwise a negative error code is returned. 2613 */ 2614 static int attach_recursive_mnt(struct mount *source_mnt, 2615 struct mount *top_mnt, 2616 struct mountpoint *dest_mp, 2617 enum mnt_tree_flags_t flags) 2618 { 2619 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2620 HLIST_HEAD(tree_list); 2621 struct mnt_namespace *ns = top_mnt->mnt_ns; 2622 struct mountpoint *smp; 2623 struct mount *child, *dest_mnt, *p; 2624 struct hlist_node *n; 2625 int err = 0; 2626 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2627 2628 /* 2629 * Preallocate a mountpoint in case the new mounts need to be 2630 * mounted beneath mounts on the same mountpoint. 2631 */ 2632 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2633 if (IS_ERR(smp)) 2634 return PTR_ERR(smp); 2635 2636 /* Is there space to add these mounts to the mount namespace? */ 2637 if (!moving) { 2638 err = count_mounts(ns, source_mnt); 2639 if (err) 2640 goto out; 2641 } 2642 2643 if (beneath) 2644 dest_mnt = top_mnt->mnt_parent; 2645 else 2646 dest_mnt = top_mnt; 2647 2648 if (IS_MNT_SHARED(dest_mnt)) { 2649 err = invent_group_ids(source_mnt, true); 2650 if (err) 2651 goto out; 2652 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2653 } 2654 lock_mount_hash(); 2655 if (err) 2656 goto out_cleanup_ids; 2657 2658 if (IS_MNT_SHARED(dest_mnt)) { 2659 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2660 set_mnt_shared(p); 2661 } 2662 2663 if (moving) { 2664 if (beneath) 2665 dest_mp = smp; 2666 unhash_mnt(source_mnt); 2667 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2668 mnt_notify_add(source_mnt); 2669 touch_mnt_namespace(source_mnt->mnt_ns); 2670 } else { 2671 if (source_mnt->mnt_ns) { 2672 LIST_HEAD(head); 2673 2674 /* move from anon - the caller will destroy */ 2675 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2676 move_from_ns(p, &head); 2677 list_del_init(&head); 2678 } 2679 if (beneath) 2680 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2681 else 2682 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2683 commit_tree(source_mnt); 2684 } 2685 2686 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2687 struct mount *q; 2688 hlist_del_init(&child->mnt_hash); 2689 q = __lookup_mnt(&child->mnt_parent->mnt, 2690 child->mnt_mountpoint); 2691 if (q) 2692 mnt_change_mountpoint(child, smp, q); 2693 /* Notice when we are propagating across user namespaces */ 2694 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2695 lock_mnt_tree(child); 2696 child->mnt.mnt_flags &= ~MNT_LOCKED; 2697 commit_tree(child); 2698 } 2699 put_mountpoint(smp); 2700 unlock_mount_hash(); 2701 2702 return 0; 2703 2704 out_cleanup_ids: 2705 while (!hlist_empty(&tree_list)) { 2706 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2707 child->mnt_parent->mnt_ns->pending_mounts = 0; 2708 umount_tree(child, UMOUNT_SYNC); 2709 } 2710 unlock_mount_hash(); 2711 cleanup_group_ids(source_mnt, NULL); 2712 out: 2713 ns->pending_mounts = 0; 2714 2715 read_seqlock_excl(&mount_lock); 2716 put_mountpoint(smp); 2717 read_sequnlock_excl(&mount_lock); 2718 2719 return err; 2720 } 2721 2722 /** 2723 * do_lock_mount - lock mount and mountpoint 2724 * @path: target path 2725 * @beneath: whether the intention is to mount beneath @path 2726 * 2727 * Follow the mount stack on @path until the top mount @mnt is found. If 2728 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2729 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2730 * until nothing is stacked on top of it anymore. 2731 * 2732 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2733 * against concurrent removal of the new mountpoint from another mount 2734 * namespace. 2735 * 2736 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2737 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2738 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2739 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2740 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2741 * on top of it for @beneath. 2742 * 2743 * In addition, @beneath needs to make sure that @mnt hasn't been 2744 * unmounted or moved from its current mountpoint in between dropping 2745 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2746 * being unmounted would be detected later by e.g., calling 2747 * check_mnt(mnt) in the function it's called from. For the @beneath 2748 * case however, it's useful to detect it directly in do_lock_mount(). 2749 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2750 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2751 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2752 * 2753 * Return: Either the target mountpoint on the top mount or the top 2754 * mount's mountpoint. 2755 */ 2756 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2757 { 2758 struct vfsmount *mnt = path->mnt; 2759 struct dentry *dentry; 2760 struct mountpoint *mp = ERR_PTR(-ENOENT); 2761 2762 for (;;) { 2763 struct mount *m; 2764 2765 if (beneath) { 2766 m = real_mount(mnt); 2767 read_seqlock_excl(&mount_lock); 2768 dentry = dget(m->mnt_mountpoint); 2769 read_sequnlock_excl(&mount_lock); 2770 } else { 2771 dentry = path->dentry; 2772 } 2773 2774 inode_lock(dentry->d_inode); 2775 if (unlikely(cant_mount(dentry))) { 2776 inode_unlock(dentry->d_inode); 2777 goto out; 2778 } 2779 2780 namespace_lock(); 2781 2782 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2783 namespace_unlock(); 2784 inode_unlock(dentry->d_inode); 2785 goto out; 2786 } 2787 2788 mnt = lookup_mnt(path); 2789 if (likely(!mnt)) 2790 break; 2791 2792 namespace_unlock(); 2793 inode_unlock(dentry->d_inode); 2794 if (beneath) 2795 dput(dentry); 2796 path_put(path); 2797 path->mnt = mnt; 2798 path->dentry = dget(mnt->mnt_root); 2799 } 2800 2801 mp = get_mountpoint(dentry); 2802 if (IS_ERR(mp)) { 2803 namespace_unlock(); 2804 inode_unlock(dentry->d_inode); 2805 } 2806 2807 out: 2808 if (beneath) 2809 dput(dentry); 2810 2811 return mp; 2812 } 2813 2814 static inline struct mountpoint *lock_mount(struct path *path) 2815 { 2816 return do_lock_mount(path, false); 2817 } 2818 2819 static void unlock_mount(struct mountpoint *where) 2820 { 2821 struct dentry *dentry = where->m_dentry; 2822 2823 read_seqlock_excl(&mount_lock); 2824 put_mountpoint(where); 2825 read_sequnlock_excl(&mount_lock); 2826 2827 namespace_unlock(); 2828 inode_unlock(dentry->d_inode); 2829 } 2830 2831 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2832 { 2833 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2834 return -EINVAL; 2835 2836 if (d_is_dir(mp->m_dentry) != 2837 d_is_dir(mnt->mnt.mnt_root)) 2838 return -ENOTDIR; 2839 2840 return attach_recursive_mnt(mnt, p, mp, 0); 2841 } 2842 2843 /* 2844 * Sanity check the flags to change_mnt_propagation. 2845 */ 2846 2847 static int flags_to_propagation_type(int ms_flags) 2848 { 2849 int type = ms_flags & ~(MS_REC | MS_SILENT); 2850 2851 /* Fail if any non-propagation flags are set */ 2852 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2853 return 0; 2854 /* Only one propagation flag should be set */ 2855 if (!is_power_of_2(type)) 2856 return 0; 2857 return type; 2858 } 2859 2860 /* 2861 * recursively change the type of the mountpoint. 2862 */ 2863 static int do_change_type(struct path *path, int ms_flags) 2864 { 2865 struct mount *m; 2866 struct mount *mnt = real_mount(path->mnt); 2867 int recurse = ms_flags & MS_REC; 2868 int type; 2869 int err = 0; 2870 2871 if (!path_mounted(path)) 2872 return -EINVAL; 2873 2874 type = flags_to_propagation_type(ms_flags); 2875 if (!type) 2876 return -EINVAL; 2877 2878 namespace_lock(); 2879 if (type == MS_SHARED) { 2880 err = invent_group_ids(mnt, recurse); 2881 if (err) 2882 goto out_unlock; 2883 } 2884 2885 lock_mount_hash(); 2886 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2887 change_mnt_propagation(m, type); 2888 unlock_mount_hash(); 2889 2890 out_unlock: 2891 namespace_unlock(); 2892 return err; 2893 } 2894 2895 static struct mount *__do_loopback(struct path *old_path, int recurse) 2896 { 2897 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2898 2899 if (IS_MNT_UNBINDABLE(old)) 2900 return mnt; 2901 2902 if (!check_mnt(old)) { 2903 const struct dentry_operations *d_op = old_path->dentry->d_op; 2904 2905 if (d_op != &ns_dentry_operations && 2906 d_op != &pidfs_dentry_operations) 2907 return mnt; 2908 } 2909 2910 if (!recurse && has_locked_children(old, old_path->dentry)) 2911 return mnt; 2912 2913 if (recurse) 2914 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2915 else 2916 mnt = clone_mnt(old, old_path->dentry, 0); 2917 2918 if (!IS_ERR(mnt)) 2919 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2920 2921 return mnt; 2922 } 2923 2924 /* 2925 * do loopback mount. 2926 */ 2927 static int do_loopback(struct path *path, const char *old_name, 2928 int recurse) 2929 { 2930 struct path old_path; 2931 struct mount *mnt = NULL, *parent; 2932 struct mountpoint *mp; 2933 int err; 2934 if (!old_name || !*old_name) 2935 return -EINVAL; 2936 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2937 if (err) 2938 return err; 2939 2940 err = -EINVAL; 2941 if (mnt_ns_loop(old_path.dentry)) 2942 goto out; 2943 2944 mp = lock_mount(path); 2945 if (IS_ERR(mp)) { 2946 err = PTR_ERR(mp); 2947 goto out; 2948 } 2949 2950 parent = real_mount(path->mnt); 2951 if (!check_mnt(parent)) 2952 goto out2; 2953 2954 mnt = __do_loopback(&old_path, recurse); 2955 if (IS_ERR(mnt)) { 2956 err = PTR_ERR(mnt); 2957 goto out2; 2958 } 2959 2960 err = graft_tree(mnt, parent, mp); 2961 if (err) { 2962 lock_mount_hash(); 2963 umount_tree(mnt, UMOUNT_SYNC); 2964 unlock_mount_hash(); 2965 } 2966 out2: 2967 unlock_mount(mp); 2968 out: 2969 path_put(&old_path); 2970 return err; 2971 } 2972 2973 static struct file *open_detached_copy(struct path *path, bool recursive) 2974 { 2975 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2976 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2977 struct mount *mnt, *p; 2978 struct file *file; 2979 2980 if (IS_ERR(ns)) 2981 return ERR_CAST(ns); 2982 2983 namespace_lock(); 2984 mnt = __do_loopback(path, recursive); 2985 if (IS_ERR(mnt)) { 2986 namespace_unlock(); 2987 free_mnt_ns(ns); 2988 return ERR_CAST(mnt); 2989 } 2990 2991 lock_mount_hash(); 2992 for (p = mnt; p; p = next_mnt(p, mnt)) { 2993 mnt_add_to_ns(ns, p); 2994 ns->nr_mounts++; 2995 } 2996 ns->root = mnt; 2997 mntget(&mnt->mnt); 2998 unlock_mount_hash(); 2999 namespace_unlock(); 3000 3001 mntput(path->mnt); 3002 path->mnt = &mnt->mnt; 3003 file = dentry_open(path, O_PATH, current_cred()); 3004 if (IS_ERR(file)) 3005 dissolve_on_fput(path->mnt); 3006 else 3007 file->f_mode |= FMODE_NEED_UNMOUNT; 3008 return file; 3009 } 3010 3011 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3012 { 3013 int ret; 3014 struct path path __free(path_put) = {}; 3015 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3016 bool detached = flags & OPEN_TREE_CLONE; 3017 3018 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3019 3020 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3021 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3022 OPEN_TREE_CLOEXEC)) 3023 return ERR_PTR(-EINVAL); 3024 3025 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3026 return ERR_PTR(-EINVAL); 3027 3028 if (flags & AT_NO_AUTOMOUNT) 3029 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3030 if (flags & AT_SYMLINK_NOFOLLOW) 3031 lookup_flags &= ~LOOKUP_FOLLOW; 3032 if (flags & AT_EMPTY_PATH) 3033 lookup_flags |= LOOKUP_EMPTY; 3034 3035 if (detached && !may_mount()) 3036 return ERR_PTR(-EPERM); 3037 3038 ret = user_path_at(dfd, filename, lookup_flags, &path); 3039 if (unlikely(ret)) 3040 return ERR_PTR(ret); 3041 3042 if (detached) 3043 return open_detached_copy(&path, flags & AT_RECURSIVE); 3044 3045 return dentry_open(&path, O_PATH, current_cred()); 3046 } 3047 3048 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3049 { 3050 int fd; 3051 struct file *file __free(fput) = NULL; 3052 3053 file = vfs_open_tree(dfd, filename, flags); 3054 if (IS_ERR(file)) 3055 return PTR_ERR(file); 3056 3057 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3058 if (fd < 0) 3059 return fd; 3060 3061 fd_install(fd, no_free_ptr(file)); 3062 return fd; 3063 } 3064 3065 /* 3066 * Don't allow locked mount flags to be cleared. 3067 * 3068 * No locks need to be held here while testing the various MNT_LOCK 3069 * flags because those flags can never be cleared once they are set. 3070 */ 3071 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3072 { 3073 unsigned int fl = mnt->mnt.mnt_flags; 3074 3075 if ((fl & MNT_LOCK_READONLY) && 3076 !(mnt_flags & MNT_READONLY)) 3077 return false; 3078 3079 if ((fl & MNT_LOCK_NODEV) && 3080 !(mnt_flags & MNT_NODEV)) 3081 return false; 3082 3083 if ((fl & MNT_LOCK_NOSUID) && 3084 !(mnt_flags & MNT_NOSUID)) 3085 return false; 3086 3087 if ((fl & MNT_LOCK_NOEXEC) && 3088 !(mnt_flags & MNT_NOEXEC)) 3089 return false; 3090 3091 if ((fl & MNT_LOCK_ATIME) && 3092 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3093 return false; 3094 3095 return true; 3096 } 3097 3098 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3099 { 3100 bool readonly_request = (mnt_flags & MNT_READONLY); 3101 3102 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3103 return 0; 3104 3105 if (readonly_request) 3106 return mnt_make_readonly(mnt); 3107 3108 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3109 return 0; 3110 } 3111 3112 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3113 { 3114 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3115 mnt->mnt.mnt_flags = mnt_flags; 3116 touch_mnt_namespace(mnt->mnt_ns); 3117 } 3118 3119 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 3120 { 3121 struct super_block *sb = mnt->mnt_sb; 3122 3123 if (!__mnt_is_readonly(mnt) && 3124 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3125 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3126 char *buf, *mntpath; 3127 3128 buf = (char *)__get_free_page(GFP_KERNEL); 3129 if (buf) 3130 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3131 else 3132 mntpath = ERR_PTR(-ENOMEM); 3133 if (IS_ERR(mntpath)) 3134 mntpath = "(unknown)"; 3135 3136 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3137 sb->s_type->name, 3138 is_mounted(mnt) ? "remounted" : "mounted", 3139 mntpath, &sb->s_time_max, 3140 (unsigned long long)sb->s_time_max); 3141 3142 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3143 if (buf) 3144 free_page((unsigned long)buf); 3145 } 3146 } 3147 3148 /* 3149 * Handle reconfiguration of the mountpoint only without alteration of the 3150 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3151 * to mount(2). 3152 */ 3153 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 3154 { 3155 struct super_block *sb = path->mnt->mnt_sb; 3156 struct mount *mnt = real_mount(path->mnt); 3157 int ret; 3158 3159 if (!check_mnt(mnt)) 3160 return -EINVAL; 3161 3162 if (!path_mounted(path)) 3163 return -EINVAL; 3164 3165 if (!can_change_locked_flags(mnt, mnt_flags)) 3166 return -EPERM; 3167 3168 /* 3169 * We're only checking whether the superblock is read-only not 3170 * changing it, so only take down_read(&sb->s_umount). 3171 */ 3172 down_read(&sb->s_umount); 3173 lock_mount_hash(); 3174 ret = change_mount_ro_state(mnt, mnt_flags); 3175 if (ret == 0) 3176 set_mount_attributes(mnt, mnt_flags); 3177 unlock_mount_hash(); 3178 up_read(&sb->s_umount); 3179 3180 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3181 3182 return ret; 3183 } 3184 3185 /* 3186 * change filesystem flags. dir should be a physical root of filesystem. 3187 * If you've mounted a non-root directory somewhere and want to do remount 3188 * on it - tough luck. 3189 */ 3190 static int do_remount(struct path *path, int ms_flags, int sb_flags, 3191 int mnt_flags, void *data) 3192 { 3193 int err; 3194 struct super_block *sb = path->mnt->mnt_sb; 3195 struct mount *mnt = real_mount(path->mnt); 3196 struct fs_context *fc; 3197 3198 if (!check_mnt(mnt)) 3199 return -EINVAL; 3200 3201 if (!path_mounted(path)) 3202 return -EINVAL; 3203 3204 if (!can_change_locked_flags(mnt, mnt_flags)) 3205 return -EPERM; 3206 3207 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3208 if (IS_ERR(fc)) 3209 return PTR_ERR(fc); 3210 3211 /* 3212 * Indicate to the filesystem that the remount request is coming 3213 * from the legacy mount system call. 3214 */ 3215 fc->oldapi = true; 3216 3217 err = parse_monolithic_mount_data(fc, data); 3218 if (!err) { 3219 down_write(&sb->s_umount); 3220 err = -EPERM; 3221 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3222 err = reconfigure_super(fc); 3223 if (!err) { 3224 lock_mount_hash(); 3225 set_mount_attributes(mnt, mnt_flags); 3226 unlock_mount_hash(); 3227 } 3228 } 3229 up_write(&sb->s_umount); 3230 } 3231 3232 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3233 3234 put_fs_context(fc); 3235 return err; 3236 } 3237 3238 static inline int tree_contains_unbindable(struct mount *mnt) 3239 { 3240 struct mount *p; 3241 for (p = mnt; p; p = next_mnt(p, mnt)) { 3242 if (IS_MNT_UNBINDABLE(p)) 3243 return 1; 3244 } 3245 return 0; 3246 } 3247 3248 static int do_set_group(struct path *from_path, struct path *to_path) 3249 { 3250 struct mount *from, *to; 3251 int err; 3252 3253 from = real_mount(from_path->mnt); 3254 to = real_mount(to_path->mnt); 3255 3256 namespace_lock(); 3257 3258 err = -EINVAL; 3259 /* To and From must be mounted */ 3260 if (!is_mounted(&from->mnt)) 3261 goto out; 3262 if (!is_mounted(&to->mnt)) 3263 goto out; 3264 3265 err = -EPERM; 3266 /* We should be allowed to modify mount namespaces of both mounts */ 3267 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3268 goto out; 3269 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3270 goto out; 3271 3272 err = -EINVAL; 3273 /* To and From paths should be mount roots */ 3274 if (!path_mounted(from_path)) 3275 goto out; 3276 if (!path_mounted(to_path)) 3277 goto out; 3278 3279 /* Setting sharing groups is only allowed across same superblock */ 3280 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3281 goto out; 3282 3283 /* From mount root should be wider than To mount root */ 3284 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3285 goto out; 3286 3287 /* From mount should not have locked children in place of To's root */ 3288 if (has_locked_children(from, to->mnt.mnt_root)) 3289 goto out; 3290 3291 /* Setting sharing groups is only allowed on private mounts */ 3292 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3293 goto out; 3294 3295 /* From should not be private */ 3296 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3297 goto out; 3298 3299 if (IS_MNT_SLAVE(from)) { 3300 struct mount *m = from->mnt_master; 3301 3302 list_add(&to->mnt_slave, &m->mnt_slave_list); 3303 to->mnt_master = m; 3304 } 3305 3306 if (IS_MNT_SHARED(from)) { 3307 to->mnt_group_id = from->mnt_group_id; 3308 list_add(&to->mnt_share, &from->mnt_share); 3309 lock_mount_hash(); 3310 set_mnt_shared(to); 3311 unlock_mount_hash(); 3312 } 3313 3314 err = 0; 3315 out: 3316 namespace_unlock(); 3317 return err; 3318 } 3319 3320 /** 3321 * path_overmounted - check if path is overmounted 3322 * @path: path to check 3323 * 3324 * Check if path is overmounted, i.e., if there's a mount on top of 3325 * @path->mnt with @path->dentry as mountpoint. 3326 * 3327 * Context: This function expects namespace_lock() to be held. 3328 * Return: If path is overmounted true is returned, false if not. 3329 */ 3330 static inline bool path_overmounted(const struct path *path) 3331 { 3332 rcu_read_lock(); 3333 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3334 rcu_read_unlock(); 3335 return true; 3336 } 3337 rcu_read_unlock(); 3338 return false; 3339 } 3340 3341 /** 3342 * can_move_mount_beneath - check that we can mount beneath the top mount 3343 * @from: mount to mount beneath 3344 * @to: mount under which to mount 3345 * @mp: mountpoint of @to 3346 * 3347 * - Make sure that @to->dentry is actually the root of a mount under 3348 * which we can mount another mount. 3349 * - Make sure that nothing can be mounted beneath the caller's current 3350 * root or the rootfs of the namespace. 3351 * - Make sure that the caller can unmount the topmost mount ensuring 3352 * that the caller could reveal the underlying mountpoint. 3353 * - Ensure that nothing has been mounted on top of @from before we 3354 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3355 * - Prevent mounting beneath a mount if the propagation relationship 3356 * between the source mount, parent mount, and top mount would lead to 3357 * nonsensical mount trees. 3358 * 3359 * Context: This function expects namespace_lock() to be held. 3360 * Return: On success 0, and on error a negative error code is returned. 3361 */ 3362 static int can_move_mount_beneath(const struct path *from, 3363 const struct path *to, 3364 const struct mountpoint *mp) 3365 { 3366 struct mount *mnt_from = real_mount(from->mnt), 3367 *mnt_to = real_mount(to->mnt), 3368 *parent_mnt_to = mnt_to->mnt_parent; 3369 3370 if (!mnt_has_parent(mnt_to)) 3371 return -EINVAL; 3372 3373 if (!path_mounted(to)) 3374 return -EINVAL; 3375 3376 if (IS_MNT_LOCKED(mnt_to)) 3377 return -EINVAL; 3378 3379 /* Avoid creating shadow mounts during mount propagation. */ 3380 if (path_overmounted(from)) 3381 return -EINVAL; 3382 3383 /* 3384 * Mounting beneath the rootfs only makes sense when the 3385 * semantics of pivot_root(".", ".") are used. 3386 */ 3387 if (&mnt_to->mnt == current->fs->root.mnt) 3388 return -EINVAL; 3389 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3390 return -EINVAL; 3391 3392 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3393 if (p == mnt_to) 3394 return -EINVAL; 3395 3396 /* 3397 * If the parent mount propagates to the child mount this would 3398 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3399 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3400 * defeats the whole purpose of mounting beneath another mount. 3401 */ 3402 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3403 return -EINVAL; 3404 3405 /* 3406 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3407 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3408 * Afterwards @mnt_from would be mounted on top of 3409 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3410 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3411 * already mounted on @mnt_from, @mnt_to would ultimately be 3412 * remounted on top of @c. Afterwards, @mnt_from would be 3413 * covered by a copy @c of @mnt_from and @c would be covered by 3414 * @mnt_from itself. This defeats the whole purpose of mounting 3415 * @mnt_from beneath @mnt_to. 3416 */ 3417 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3418 return -EINVAL; 3419 3420 return 0; 3421 } 3422 3423 static int do_move_mount(struct path *old_path, struct path *new_path, 3424 bool beneath) 3425 { 3426 struct mnt_namespace *ns; 3427 struct mount *p; 3428 struct mount *old; 3429 struct mount *parent; 3430 struct mountpoint *mp, *old_mp; 3431 int err; 3432 bool attached; 3433 enum mnt_tree_flags_t flags = 0; 3434 3435 mp = do_lock_mount(new_path, beneath); 3436 if (IS_ERR(mp)) 3437 return PTR_ERR(mp); 3438 3439 old = real_mount(old_path->mnt); 3440 p = real_mount(new_path->mnt); 3441 parent = old->mnt_parent; 3442 attached = mnt_has_parent(old); 3443 if (attached) 3444 flags |= MNT_TREE_MOVE; 3445 old_mp = old->mnt_mp; 3446 ns = old->mnt_ns; 3447 3448 err = -EINVAL; 3449 /* The mountpoint must be in our namespace. */ 3450 if (!check_mnt(p)) 3451 goto out; 3452 3453 /* The thing moved must be mounted... */ 3454 if (!is_mounted(&old->mnt)) 3455 goto out; 3456 3457 /* ... and either ours or the root of anon namespace */ 3458 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3459 goto out; 3460 3461 if (old->mnt.mnt_flags & MNT_LOCKED) 3462 goto out; 3463 3464 if (!path_mounted(old_path)) 3465 goto out; 3466 3467 if (d_is_dir(new_path->dentry) != 3468 d_is_dir(old_path->dentry)) 3469 goto out; 3470 /* 3471 * Don't move a mount residing in a shared parent. 3472 */ 3473 if (attached && IS_MNT_SHARED(parent)) 3474 goto out; 3475 3476 if (beneath) { 3477 err = can_move_mount_beneath(old_path, new_path, mp); 3478 if (err) 3479 goto out; 3480 3481 err = -EINVAL; 3482 p = p->mnt_parent; 3483 flags |= MNT_TREE_BENEATH; 3484 } 3485 3486 /* 3487 * Don't move a mount tree containing unbindable mounts to a destination 3488 * mount which is shared. 3489 */ 3490 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3491 goto out; 3492 err = -ELOOP; 3493 if (!check_for_nsfs_mounts(old)) 3494 goto out; 3495 for (; mnt_has_parent(p); p = p->mnt_parent) 3496 if (p == old) 3497 goto out; 3498 3499 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3500 if (err) 3501 goto out; 3502 3503 /* if the mount is moved, it should no longer be expire 3504 * automatically */ 3505 list_del_init(&old->mnt_expire); 3506 if (attached) 3507 put_mountpoint(old_mp); 3508 out: 3509 unlock_mount(mp); 3510 if (!err) { 3511 if (attached) 3512 mntput_no_expire(parent); 3513 else 3514 free_mnt_ns(ns); 3515 } 3516 return err; 3517 } 3518 3519 static int do_move_mount_old(struct path *path, const char *old_name) 3520 { 3521 struct path old_path; 3522 int err; 3523 3524 if (!old_name || !*old_name) 3525 return -EINVAL; 3526 3527 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3528 if (err) 3529 return err; 3530 3531 err = do_move_mount(&old_path, path, false); 3532 path_put(&old_path); 3533 return err; 3534 } 3535 3536 /* 3537 * add a mount into a namespace's mount tree 3538 */ 3539 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3540 const struct path *path, int mnt_flags) 3541 { 3542 struct mount *parent = real_mount(path->mnt); 3543 3544 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3545 3546 if (unlikely(!check_mnt(parent))) { 3547 /* that's acceptable only for automounts done in private ns */ 3548 if (!(mnt_flags & MNT_SHRINKABLE)) 3549 return -EINVAL; 3550 /* ... and for those we'd better have mountpoint still alive */ 3551 if (!parent->mnt_ns) 3552 return -EINVAL; 3553 } 3554 3555 /* Refuse the same filesystem on the same mount point */ 3556 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3557 return -EBUSY; 3558 3559 if (d_is_symlink(newmnt->mnt.mnt_root)) 3560 return -EINVAL; 3561 3562 newmnt->mnt.mnt_flags = mnt_flags; 3563 return graft_tree(newmnt, parent, mp); 3564 } 3565 3566 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3567 3568 /* 3569 * Create a new mount using a superblock configuration and request it 3570 * be added to the namespace tree. 3571 */ 3572 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3573 unsigned int mnt_flags) 3574 { 3575 struct vfsmount *mnt; 3576 struct mountpoint *mp; 3577 struct super_block *sb = fc->root->d_sb; 3578 int error; 3579 3580 error = security_sb_kern_mount(sb); 3581 if (!error && mount_too_revealing(sb, &mnt_flags)) 3582 error = -EPERM; 3583 3584 if (unlikely(error)) { 3585 fc_drop_locked(fc); 3586 return error; 3587 } 3588 3589 up_write(&sb->s_umount); 3590 3591 mnt = vfs_create_mount(fc); 3592 if (IS_ERR(mnt)) 3593 return PTR_ERR(mnt); 3594 3595 mnt_warn_timestamp_expiry(mountpoint, mnt); 3596 3597 mp = lock_mount(mountpoint); 3598 if (IS_ERR(mp)) { 3599 mntput(mnt); 3600 return PTR_ERR(mp); 3601 } 3602 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3603 unlock_mount(mp); 3604 if (error < 0) 3605 mntput(mnt); 3606 return error; 3607 } 3608 3609 /* 3610 * create a new mount for userspace and request it to be added into the 3611 * namespace's tree 3612 */ 3613 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3614 int mnt_flags, const char *name, void *data) 3615 { 3616 struct file_system_type *type; 3617 struct fs_context *fc; 3618 const char *subtype = NULL; 3619 int err = 0; 3620 3621 if (!fstype) 3622 return -EINVAL; 3623 3624 type = get_fs_type(fstype); 3625 if (!type) 3626 return -ENODEV; 3627 3628 if (type->fs_flags & FS_HAS_SUBTYPE) { 3629 subtype = strchr(fstype, '.'); 3630 if (subtype) { 3631 subtype++; 3632 if (!*subtype) { 3633 put_filesystem(type); 3634 return -EINVAL; 3635 } 3636 } 3637 } 3638 3639 fc = fs_context_for_mount(type, sb_flags); 3640 put_filesystem(type); 3641 if (IS_ERR(fc)) 3642 return PTR_ERR(fc); 3643 3644 /* 3645 * Indicate to the filesystem that the mount request is coming 3646 * from the legacy mount system call. 3647 */ 3648 fc->oldapi = true; 3649 3650 if (subtype) 3651 err = vfs_parse_fs_string(fc, "subtype", 3652 subtype, strlen(subtype)); 3653 if (!err && name) 3654 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3655 if (!err) 3656 err = parse_monolithic_mount_data(fc, data); 3657 if (!err && !mount_capable(fc)) 3658 err = -EPERM; 3659 if (!err) 3660 err = vfs_get_tree(fc); 3661 if (!err) 3662 err = do_new_mount_fc(fc, path, mnt_flags); 3663 3664 put_fs_context(fc); 3665 return err; 3666 } 3667 3668 int finish_automount(struct vfsmount *m, const struct path *path) 3669 { 3670 struct dentry *dentry = path->dentry; 3671 struct mountpoint *mp; 3672 struct mount *mnt; 3673 int err; 3674 3675 if (!m) 3676 return 0; 3677 if (IS_ERR(m)) 3678 return PTR_ERR(m); 3679 3680 mnt = real_mount(m); 3681 /* The new mount record should have at least 2 refs to prevent it being 3682 * expired before we get a chance to add it 3683 */ 3684 BUG_ON(mnt_get_count(mnt) < 2); 3685 3686 if (m->mnt_sb == path->mnt->mnt_sb && 3687 m->mnt_root == dentry) { 3688 err = -ELOOP; 3689 goto discard; 3690 } 3691 3692 /* 3693 * we don't want to use lock_mount() - in this case finding something 3694 * that overmounts our mountpoint to be means "quitely drop what we've 3695 * got", not "try to mount it on top". 3696 */ 3697 inode_lock(dentry->d_inode); 3698 namespace_lock(); 3699 if (unlikely(cant_mount(dentry))) { 3700 err = -ENOENT; 3701 goto discard_locked; 3702 } 3703 if (path_overmounted(path)) { 3704 err = 0; 3705 goto discard_locked; 3706 } 3707 mp = get_mountpoint(dentry); 3708 if (IS_ERR(mp)) { 3709 err = PTR_ERR(mp); 3710 goto discard_locked; 3711 } 3712 3713 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3714 unlock_mount(mp); 3715 if (unlikely(err)) 3716 goto discard; 3717 mntput(m); 3718 return 0; 3719 3720 discard_locked: 3721 namespace_unlock(); 3722 inode_unlock(dentry->d_inode); 3723 discard: 3724 /* remove m from any expiration list it may be on */ 3725 if (!list_empty(&mnt->mnt_expire)) { 3726 namespace_lock(); 3727 list_del_init(&mnt->mnt_expire); 3728 namespace_unlock(); 3729 } 3730 mntput(m); 3731 mntput(m); 3732 return err; 3733 } 3734 3735 /** 3736 * mnt_set_expiry - Put a mount on an expiration list 3737 * @mnt: The mount to list. 3738 * @expiry_list: The list to add the mount to. 3739 */ 3740 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3741 { 3742 namespace_lock(); 3743 3744 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3745 3746 namespace_unlock(); 3747 } 3748 EXPORT_SYMBOL(mnt_set_expiry); 3749 3750 /* 3751 * process a list of expirable mountpoints with the intent of discarding any 3752 * mountpoints that aren't in use and haven't been touched since last we came 3753 * here 3754 */ 3755 void mark_mounts_for_expiry(struct list_head *mounts) 3756 { 3757 struct mount *mnt, *next; 3758 LIST_HEAD(graveyard); 3759 3760 if (list_empty(mounts)) 3761 return; 3762 3763 namespace_lock(); 3764 lock_mount_hash(); 3765 3766 /* extract from the expiration list every vfsmount that matches the 3767 * following criteria: 3768 * - only referenced by its parent vfsmount 3769 * - still marked for expiry (marked on the last call here; marks are 3770 * cleared by mntput()) 3771 */ 3772 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3773 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3774 propagate_mount_busy(mnt, 1)) 3775 continue; 3776 list_move(&mnt->mnt_expire, &graveyard); 3777 } 3778 while (!list_empty(&graveyard)) { 3779 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3780 touch_mnt_namespace(mnt->mnt_ns); 3781 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3782 } 3783 unlock_mount_hash(); 3784 namespace_unlock(); 3785 } 3786 3787 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3788 3789 /* 3790 * Ripoff of 'select_parent()' 3791 * 3792 * search the list of submounts for a given mountpoint, and move any 3793 * shrinkable submounts to the 'graveyard' list. 3794 */ 3795 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3796 { 3797 struct mount *this_parent = parent; 3798 struct list_head *next; 3799 int found = 0; 3800 3801 repeat: 3802 next = this_parent->mnt_mounts.next; 3803 resume: 3804 while (next != &this_parent->mnt_mounts) { 3805 struct list_head *tmp = next; 3806 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3807 3808 next = tmp->next; 3809 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3810 continue; 3811 /* 3812 * Descend a level if the d_mounts list is non-empty. 3813 */ 3814 if (!list_empty(&mnt->mnt_mounts)) { 3815 this_parent = mnt; 3816 goto repeat; 3817 } 3818 3819 if (!propagate_mount_busy(mnt, 1)) { 3820 list_move_tail(&mnt->mnt_expire, graveyard); 3821 found++; 3822 } 3823 } 3824 /* 3825 * All done at this level ... ascend and resume the search 3826 */ 3827 if (this_parent != parent) { 3828 next = this_parent->mnt_child.next; 3829 this_parent = this_parent->mnt_parent; 3830 goto resume; 3831 } 3832 return found; 3833 } 3834 3835 /* 3836 * process a list of expirable mountpoints with the intent of discarding any 3837 * submounts of a specific parent mountpoint 3838 * 3839 * mount_lock must be held for write 3840 */ 3841 static void shrink_submounts(struct mount *mnt) 3842 { 3843 LIST_HEAD(graveyard); 3844 struct mount *m; 3845 3846 /* extract submounts of 'mountpoint' from the expiration list */ 3847 while (select_submounts(mnt, &graveyard)) { 3848 while (!list_empty(&graveyard)) { 3849 m = list_first_entry(&graveyard, struct mount, 3850 mnt_expire); 3851 touch_mnt_namespace(m->mnt_ns); 3852 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3853 } 3854 } 3855 } 3856 3857 static void *copy_mount_options(const void __user * data) 3858 { 3859 char *copy; 3860 unsigned left, offset; 3861 3862 if (!data) 3863 return NULL; 3864 3865 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3866 if (!copy) 3867 return ERR_PTR(-ENOMEM); 3868 3869 left = copy_from_user(copy, data, PAGE_SIZE); 3870 3871 /* 3872 * Not all architectures have an exact copy_from_user(). Resort to 3873 * byte at a time. 3874 */ 3875 offset = PAGE_SIZE - left; 3876 while (left) { 3877 char c; 3878 if (get_user(c, (const char __user *)data + offset)) 3879 break; 3880 copy[offset] = c; 3881 left--; 3882 offset++; 3883 } 3884 3885 if (left == PAGE_SIZE) { 3886 kfree(copy); 3887 return ERR_PTR(-EFAULT); 3888 } 3889 3890 return copy; 3891 } 3892 3893 static char *copy_mount_string(const void __user *data) 3894 { 3895 return data ? strndup_user(data, PATH_MAX) : NULL; 3896 } 3897 3898 /* 3899 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3900 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3901 * 3902 * data is a (void *) that can point to any structure up to 3903 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3904 * information (or be NULL). 3905 * 3906 * Pre-0.97 versions of mount() didn't have a flags word. 3907 * When the flags word was introduced its top half was required 3908 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3909 * Therefore, if this magic number is present, it carries no information 3910 * and must be discarded. 3911 */ 3912 int path_mount(const char *dev_name, struct path *path, 3913 const char *type_page, unsigned long flags, void *data_page) 3914 { 3915 unsigned int mnt_flags = 0, sb_flags; 3916 int ret; 3917 3918 /* Discard magic */ 3919 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3920 flags &= ~MS_MGC_MSK; 3921 3922 /* Basic sanity checks */ 3923 if (data_page) 3924 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3925 3926 if (flags & MS_NOUSER) 3927 return -EINVAL; 3928 3929 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3930 if (ret) 3931 return ret; 3932 if (!may_mount()) 3933 return -EPERM; 3934 if (flags & SB_MANDLOCK) 3935 warn_mandlock(); 3936 3937 /* Default to relatime unless overriden */ 3938 if (!(flags & MS_NOATIME)) 3939 mnt_flags |= MNT_RELATIME; 3940 3941 /* Separate the per-mountpoint flags */ 3942 if (flags & MS_NOSUID) 3943 mnt_flags |= MNT_NOSUID; 3944 if (flags & MS_NODEV) 3945 mnt_flags |= MNT_NODEV; 3946 if (flags & MS_NOEXEC) 3947 mnt_flags |= MNT_NOEXEC; 3948 if (flags & MS_NOATIME) 3949 mnt_flags |= MNT_NOATIME; 3950 if (flags & MS_NODIRATIME) 3951 mnt_flags |= MNT_NODIRATIME; 3952 if (flags & MS_STRICTATIME) 3953 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3954 if (flags & MS_RDONLY) 3955 mnt_flags |= MNT_READONLY; 3956 if (flags & MS_NOSYMFOLLOW) 3957 mnt_flags |= MNT_NOSYMFOLLOW; 3958 3959 /* The default atime for remount is preservation */ 3960 if ((flags & MS_REMOUNT) && 3961 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3962 MS_STRICTATIME)) == 0)) { 3963 mnt_flags &= ~MNT_ATIME_MASK; 3964 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3965 } 3966 3967 sb_flags = flags & (SB_RDONLY | 3968 SB_SYNCHRONOUS | 3969 SB_MANDLOCK | 3970 SB_DIRSYNC | 3971 SB_SILENT | 3972 SB_POSIXACL | 3973 SB_LAZYTIME | 3974 SB_I_VERSION); 3975 3976 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3977 return do_reconfigure_mnt(path, mnt_flags); 3978 if (flags & MS_REMOUNT) 3979 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3980 if (flags & MS_BIND) 3981 return do_loopback(path, dev_name, flags & MS_REC); 3982 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3983 return do_change_type(path, flags); 3984 if (flags & MS_MOVE) 3985 return do_move_mount_old(path, dev_name); 3986 3987 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3988 data_page); 3989 } 3990 3991 int do_mount(const char *dev_name, const char __user *dir_name, 3992 const char *type_page, unsigned long flags, void *data_page) 3993 { 3994 struct path path; 3995 int ret; 3996 3997 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3998 if (ret) 3999 return ret; 4000 ret = path_mount(dev_name, &path, type_page, flags, data_page); 4001 path_put(&path); 4002 return ret; 4003 } 4004 4005 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4006 { 4007 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4008 } 4009 4010 static void dec_mnt_namespaces(struct ucounts *ucounts) 4011 { 4012 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4013 } 4014 4015 static void free_mnt_ns(struct mnt_namespace *ns) 4016 { 4017 if (!is_anon_ns(ns)) 4018 ns_free_inum(&ns->ns); 4019 dec_mnt_namespaces(ns->ucounts); 4020 mnt_ns_tree_remove(ns); 4021 } 4022 4023 /* 4024 * Assign a sequence number so we can detect when we attempt to bind 4025 * mount a reference to an older mount namespace into the current 4026 * mount namespace, preventing reference counting loops. A 64bit 4027 * number incrementing at 10Ghz will take 12,427 years to wrap which 4028 * is effectively never, so we can ignore the possibility. 4029 */ 4030 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 4031 4032 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4033 { 4034 struct mnt_namespace *new_ns; 4035 struct ucounts *ucounts; 4036 int ret; 4037 4038 ucounts = inc_mnt_namespaces(user_ns); 4039 if (!ucounts) 4040 return ERR_PTR(-ENOSPC); 4041 4042 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4043 if (!new_ns) { 4044 dec_mnt_namespaces(ucounts); 4045 return ERR_PTR(-ENOMEM); 4046 } 4047 if (!anon) { 4048 ret = ns_alloc_inum(&new_ns->ns); 4049 if (ret) { 4050 kfree(new_ns); 4051 dec_mnt_namespaces(ucounts); 4052 return ERR_PTR(ret); 4053 } 4054 } 4055 new_ns->ns.ops = &mntns_operations; 4056 if (!anon) 4057 new_ns->seq = atomic64_inc_return(&mnt_ns_seq); 4058 refcount_set(&new_ns->ns.count, 1); 4059 refcount_set(&new_ns->passive, 1); 4060 new_ns->mounts = RB_ROOT; 4061 INIT_LIST_HEAD(&new_ns->mnt_ns_list); 4062 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 4063 init_waitqueue_head(&new_ns->poll); 4064 new_ns->user_ns = get_user_ns(user_ns); 4065 new_ns->ucounts = ucounts; 4066 return new_ns; 4067 } 4068 4069 __latent_entropy 4070 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 4071 struct user_namespace *user_ns, struct fs_struct *new_fs) 4072 { 4073 struct mnt_namespace *new_ns; 4074 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 4075 struct mount *p, *q; 4076 struct mount *old; 4077 struct mount *new; 4078 int copy_flags; 4079 4080 BUG_ON(!ns); 4081 4082 if (likely(!(flags & CLONE_NEWNS))) { 4083 get_mnt_ns(ns); 4084 return ns; 4085 } 4086 4087 old = ns->root; 4088 4089 new_ns = alloc_mnt_ns(user_ns, false); 4090 if (IS_ERR(new_ns)) 4091 return new_ns; 4092 4093 namespace_lock(); 4094 /* First pass: copy the tree topology */ 4095 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4096 if (user_ns != ns->user_ns) 4097 copy_flags |= CL_SHARED_TO_SLAVE; 4098 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4099 if (IS_ERR(new)) { 4100 namespace_unlock(); 4101 ns_free_inum(&new_ns->ns); 4102 dec_mnt_namespaces(new_ns->ucounts); 4103 mnt_ns_release(new_ns); 4104 return ERR_CAST(new); 4105 } 4106 if (user_ns != ns->user_ns) { 4107 lock_mount_hash(); 4108 lock_mnt_tree(new); 4109 unlock_mount_hash(); 4110 } 4111 new_ns->root = new; 4112 4113 /* 4114 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4115 * as belonging to new namespace. We have already acquired a private 4116 * fs_struct, so tsk->fs->lock is not needed. 4117 */ 4118 p = old; 4119 q = new; 4120 while (p) { 4121 mnt_add_to_ns(new_ns, q); 4122 new_ns->nr_mounts++; 4123 if (new_fs) { 4124 if (&p->mnt == new_fs->root.mnt) { 4125 new_fs->root.mnt = mntget(&q->mnt); 4126 rootmnt = &p->mnt; 4127 } 4128 if (&p->mnt == new_fs->pwd.mnt) { 4129 new_fs->pwd.mnt = mntget(&q->mnt); 4130 pwdmnt = &p->mnt; 4131 } 4132 } 4133 p = next_mnt(p, old); 4134 q = next_mnt(q, new); 4135 if (!q) 4136 break; 4137 // an mntns binding we'd skipped? 4138 while (p->mnt.mnt_root != q->mnt.mnt_root) 4139 p = next_mnt(skip_mnt_tree(p), old); 4140 } 4141 namespace_unlock(); 4142 4143 if (rootmnt) 4144 mntput(rootmnt); 4145 if (pwdmnt) 4146 mntput(pwdmnt); 4147 4148 mnt_ns_tree_add(new_ns); 4149 return new_ns; 4150 } 4151 4152 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4153 { 4154 struct mount *mnt = real_mount(m); 4155 struct mnt_namespace *ns; 4156 struct super_block *s; 4157 struct path path; 4158 int err; 4159 4160 ns = alloc_mnt_ns(&init_user_ns, true); 4161 if (IS_ERR(ns)) { 4162 mntput(m); 4163 return ERR_CAST(ns); 4164 } 4165 ns->root = mnt; 4166 ns->nr_mounts++; 4167 mnt_add_to_ns(ns, mnt); 4168 4169 err = vfs_path_lookup(m->mnt_root, m, 4170 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4171 4172 put_mnt_ns(ns); 4173 4174 if (err) 4175 return ERR_PTR(err); 4176 4177 /* trade a vfsmount reference for active sb one */ 4178 s = path.mnt->mnt_sb; 4179 atomic_inc(&s->s_active); 4180 mntput(path.mnt); 4181 /* lock the sucker */ 4182 down_write(&s->s_umount); 4183 /* ... and return the root of (sub)tree on it */ 4184 return path.dentry; 4185 } 4186 EXPORT_SYMBOL(mount_subtree); 4187 4188 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4189 char __user *, type, unsigned long, flags, void __user *, data) 4190 { 4191 int ret; 4192 char *kernel_type; 4193 char *kernel_dev; 4194 void *options; 4195 4196 kernel_type = copy_mount_string(type); 4197 ret = PTR_ERR(kernel_type); 4198 if (IS_ERR(kernel_type)) 4199 goto out_type; 4200 4201 kernel_dev = copy_mount_string(dev_name); 4202 ret = PTR_ERR(kernel_dev); 4203 if (IS_ERR(kernel_dev)) 4204 goto out_dev; 4205 4206 options = copy_mount_options(data); 4207 ret = PTR_ERR(options); 4208 if (IS_ERR(options)) 4209 goto out_data; 4210 4211 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4212 4213 kfree(options); 4214 out_data: 4215 kfree(kernel_dev); 4216 out_dev: 4217 kfree(kernel_type); 4218 out_type: 4219 return ret; 4220 } 4221 4222 #define FSMOUNT_VALID_FLAGS \ 4223 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4224 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4225 MOUNT_ATTR_NOSYMFOLLOW) 4226 4227 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4228 4229 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4230 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4231 4232 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4233 { 4234 unsigned int mnt_flags = 0; 4235 4236 if (attr_flags & MOUNT_ATTR_RDONLY) 4237 mnt_flags |= MNT_READONLY; 4238 if (attr_flags & MOUNT_ATTR_NOSUID) 4239 mnt_flags |= MNT_NOSUID; 4240 if (attr_flags & MOUNT_ATTR_NODEV) 4241 mnt_flags |= MNT_NODEV; 4242 if (attr_flags & MOUNT_ATTR_NOEXEC) 4243 mnt_flags |= MNT_NOEXEC; 4244 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4245 mnt_flags |= MNT_NODIRATIME; 4246 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4247 mnt_flags |= MNT_NOSYMFOLLOW; 4248 4249 return mnt_flags; 4250 } 4251 4252 /* 4253 * Create a kernel mount representation for a new, prepared superblock 4254 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4255 */ 4256 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4257 unsigned int, attr_flags) 4258 { 4259 struct mnt_namespace *ns; 4260 struct fs_context *fc; 4261 struct file *file; 4262 struct path newmount; 4263 struct mount *mnt; 4264 unsigned int mnt_flags = 0; 4265 long ret; 4266 4267 if (!may_mount()) 4268 return -EPERM; 4269 4270 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4271 return -EINVAL; 4272 4273 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4274 return -EINVAL; 4275 4276 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4277 4278 switch (attr_flags & MOUNT_ATTR__ATIME) { 4279 case MOUNT_ATTR_STRICTATIME: 4280 break; 4281 case MOUNT_ATTR_NOATIME: 4282 mnt_flags |= MNT_NOATIME; 4283 break; 4284 case MOUNT_ATTR_RELATIME: 4285 mnt_flags |= MNT_RELATIME; 4286 break; 4287 default: 4288 return -EINVAL; 4289 } 4290 4291 CLASS(fd, f)(fs_fd); 4292 if (fd_empty(f)) 4293 return -EBADF; 4294 4295 if (fd_file(f)->f_op != &fscontext_fops) 4296 return -EINVAL; 4297 4298 fc = fd_file(f)->private_data; 4299 4300 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4301 if (ret < 0) 4302 return ret; 4303 4304 /* There must be a valid superblock or we can't mount it */ 4305 ret = -EINVAL; 4306 if (!fc->root) 4307 goto err_unlock; 4308 4309 ret = -EPERM; 4310 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4311 pr_warn("VFS: Mount too revealing\n"); 4312 goto err_unlock; 4313 } 4314 4315 ret = -EBUSY; 4316 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4317 goto err_unlock; 4318 4319 if (fc->sb_flags & SB_MANDLOCK) 4320 warn_mandlock(); 4321 4322 newmount.mnt = vfs_create_mount(fc); 4323 if (IS_ERR(newmount.mnt)) { 4324 ret = PTR_ERR(newmount.mnt); 4325 goto err_unlock; 4326 } 4327 newmount.dentry = dget(fc->root); 4328 newmount.mnt->mnt_flags = mnt_flags; 4329 4330 /* We've done the mount bit - now move the file context into more or 4331 * less the same state as if we'd done an fspick(). We don't want to 4332 * do any memory allocation or anything like that at this point as we 4333 * don't want to have to handle any errors incurred. 4334 */ 4335 vfs_clean_context(fc); 4336 4337 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4338 if (IS_ERR(ns)) { 4339 ret = PTR_ERR(ns); 4340 goto err_path; 4341 } 4342 mnt = real_mount(newmount.mnt); 4343 ns->root = mnt; 4344 ns->nr_mounts = 1; 4345 mnt_add_to_ns(ns, mnt); 4346 mntget(newmount.mnt); 4347 4348 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4349 * it, not just simply put it. 4350 */ 4351 file = dentry_open(&newmount, O_PATH, fc->cred); 4352 if (IS_ERR(file)) { 4353 dissolve_on_fput(newmount.mnt); 4354 ret = PTR_ERR(file); 4355 goto err_path; 4356 } 4357 file->f_mode |= FMODE_NEED_UNMOUNT; 4358 4359 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4360 if (ret >= 0) 4361 fd_install(ret, file); 4362 else 4363 fput(file); 4364 4365 err_path: 4366 path_put(&newmount); 4367 err_unlock: 4368 mutex_unlock(&fc->uapi_mutex); 4369 return ret; 4370 } 4371 4372 /* 4373 * Move a mount from one place to another. In combination with 4374 * fsopen()/fsmount() this is used to install a new mount and in combination 4375 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4376 * a mount subtree. 4377 * 4378 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4379 */ 4380 SYSCALL_DEFINE5(move_mount, 4381 int, from_dfd, const char __user *, from_pathname, 4382 int, to_dfd, const char __user *, to_pathname, 4383 unsigned int, flags) 4384 { 4385 struct path from_path, to_path; 4386 unsigned int lflags; 4387 int ret = 0; 4388 4389 if (!may_mount()) 4390 return -EPERM; 4391 4392 if (flags & ~MOVE_MOUNT__MASK) 4393 return -EINVAL; 4394 4395 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4396 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4397 return -EINVAL; 4398 4399 /* If someone gives a pathname, they aren't permitted to move 4400 * from an fd that requires unmount as we can't get at the flag 4401 * to clear it afterwards. 4402 */ 4403 lflags = 0; 4404 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4405 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4406 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4407 4408 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4409 if (ret < 0) 4410 return ret; 4411 4412 lflags = 0; 4413 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4414 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4415 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4416 4417 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4418 if (ret < 0) 4419 goto out_from; 4420 4421 ret = security_move_mount(&from_path, &to_path); 4422 if (ret < 0) 4423 goto out_to; 4424 4425 if (flags & MOVE_MOUNT_SET_GROUP) 4426 ret = do_set_group(&from_path, &to_path); 4427 else 4428 ret = do_move_mount(&from_path, &to_path, 4429 (flags & MOVE_MOUNT_BENEATH)); 4430 4431 out_to: 4432 path_put(&to_path); 4433 out_from: 4434 path_put(&from_path); 4435 return ret; 4436 } 4437 4438 /* 4439 * Return true if path is reachable from root 4440 * 4441 * namespace_sem or mount_lock is held 4442 */ 4443 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4444 const struct path *root) 4445 { 4446 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4447 dentry = mnt->mnt_mountpoint; 4448 mnt = mnt->mnt_parent; 4449 } 4450 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4451 } 4452 4453 bool path_is_under(const struct path *path1, const struct path *path2) 4454 { 4455 bool res; 4456 read_seqlock_excl(&mount_lock); 4457 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4458 read_sequnlock_excl(&mount_lock); 4459 return res; 4460 } 4461 EXPORT_SYMBOL(path_is_under); 4462 4463 /* 4464 * pivot_root Semantics: 4465 * Moves the root file system of the current process to the directory put_old, 4466 * makes new_root as the new root file system of the current process, and sets 4467 * root/cwd of all processes which had them on the current root to new_root. 4468 * 4469 * Restrictions: 4470 * The new_root and put_old must be directories, and must not be on the 4471 * same file system as the current process root. The put_old must be 4472 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4473 * pointed to by put_old must yield the same directory as new_root. No other 4474 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4475 * 4476 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4477 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4478 * in this situation. 4479 * 4480 * Notes: 4481 * - we don't move root/cwd if they are not at the root (reason: if something 4482 * cared enough to change them, it's probably wrong to force them elsewhere) 4483 * - it's okay to pick a root that isn't the root of a file system, e.g. 4484 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4485 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4486 * first. 4487 */ 4488 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4489 const char __user *, put_old) 4490 { 4491 struct path new, old, root; 4492 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4493 struct mountpoint *old_mp, *root_mp; 4494 int error; 4495 4496 if (!may_mount()) 4497 return -EPERM; 4498 4499 error = user_path_at(AT_FDCWD, new_root, 4500 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4501 if (error) 4502 goto out0; 4503 4504 error = user_path_at(AT_FDCWD, put_old, 4505 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4506 if (error) 4507 goto out1; 4508 4509 error = security_sb_pivotroot(&old, &new); 4510 if (error) 4511 goto out2; 4512 4513 get_fs_root(current->fs, &root); 4514 old_mp = lock_mount(&old); 4515 error = PTR_ERR(old_mp); 4516 if (IS_ERR(old_mp)) 4517 goto out3; 4518 4519 error = -EINVAL; 4520 new_mnt = real_mount(new.mnt); 4521 root_mnt = real_mount(root.mnt); 4522 old_mnt = real_mount(old.mnt); 4523 ex_parent = new_mnt->mnt_parent; 4524 root_parent = root_mnt->mnt_parent; 4525 if (IS_MNT_SHARED(old_mnt) || 4526 IS_MNT_SHARED(ex_parent) || 4527 IS_MNT_SHARED(root_parent)) 4528 goto out4; 4529 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4530 goto out4; 4531 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4532 goto out4; 4533 error = -ENOENT; 4534 if (d_unlinked(new.dentry)) 4535 goto out4; 4536 error = -EBUSY; 4537 if (new_mnt == root_mnt || old_mnt == root_mnt) 4538 goto out4; /* loop, on the same file system */ 4539 error = -EINVAL; 4540 if (!path_mounted(&root)) 4541 goto out4; /* not a mountpoint */ 4542 if (!mnt_has_parent(root_mnt)) 4543 goto out4; /* not attached */ 4544 if (!path_mounted(&new)) 4545 goto out4; /* not a mountpoint */ 4546 if (!mnt_has_parent(new_mnt)) 4547 goto out4; /* not attached */ 4548 /* make sure we can reach put_old from new_root */ 4549 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4550 goto out4; 4551 /* make certain new is below the root */ 4552 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4553 goto out4; 4554 lock_mount_hash(); 4555 umount_mnt(new_mnt); 4556 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4557 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4558 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4559 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4560 } 4561 /* mount old root on put_old */ 4562 attach_mnt(root_mnt, old_mnt, old_mp, false); 4563 /* mount new_root on / */ 4564 attach_mnt(new_mnt, root_parent, root_mp, false); 4565 mnt_add_count(root_parent, -1); 4566 touch_mnt_namespace(current->nsproxy->mnt_ns); 4567 /* A moved mount should not expire automatically */ 4568 list_del_init(&new_mnt->mnt_expire); 4569 put_mountpoint(root_mp); 4570 unlock_mount_hash(); 4571 mnt_notify_add(root_mnt); 4572 mnt_notify_add(new_mnt); 4573 chroot_fs_refs(&root, &new); 4574 error = 0; 4575 out4: 4576 unlock_mount(old_mp); 4577 if (!error) 4578 mntput_no_expire(ex_parent); 4579 out3: 4580 path_put(&root); 4581 out2: 4582 path_put(&old); 4583 out1: 4584 path_put(&new); 4585 out0: 4586 return error; 4587 } 4588 4589 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4590 { 4591 unsigned int flags = mnt->mnt.mnt_flags; 4592 4593 /* flags to clear */ 4594 flags &= ~kattr->attr_clr; 4595 /* flags to raise */ 4596 flags |= kattr->attr_set; 4597 4598 return flags; 4599 } 4600 4601 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4602 { 4603 struct vfsmount *m = &mnt->mnt; 4604 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4605 4606 if (!kattr->mnt_idmap) 4607 return 0; 4608 4609 /* 4610 * Creating an idmapped mount with the filesystem wide idmapping 4611 * doesn't make sense so block that. We don't allow mushy semantics. 4612 */ 4613 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4614 return -EINVAL; 4615 4616 /* 4617 * We only allow an mount to change it's idmapping if it has 4618 * never been accessible to userspace. 4619 */ 4620 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4621 return -EPERM; 4622 4623 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4624 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4625 return -EINVAL; 4626 4627 /* The filesystem has turned off idmapped mounts. */ 4628 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4629 return -EINVAL; 4630 4631 /* We're not controlling the superblock. */ 4632 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4633 return -EPERM; 4634 4635 /* Mount has already been visible in the filesystem hierarchy. */ 4636 if (!is_anon_ns(mnt->mnt_ns)) 4637 return -EINVAL; 4638 4639 return 0; 4640 } 4641 4642 /** 4643 * mnt_allow_writers() - check whether the attribute change allows writers 4644 * @kattr: the new mount attributes 4645 * @mnt: the mount to which @kattr will be applied 4646 * 4647 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4648 * 4649 * Return: true if writers need to be held, false if not 4650 */ 4651 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4652 const struct mount *mnt) 4653 { 4654 return (!(kattr->attr_set & MNT_READONLY) || 4655 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4656 !kattr->mnt_idmap; 4657 } 4658 4659 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4660 { 4661 struct mount *m; 4662 int err; 4663 4664 for (m = mnt; m; m = next_mnt(m, mnt)) { 4665 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4666 err = -EPERM; 4667 break; 4668 } 4669 4670 err = can_idmap_mount(kattr, m); 4671 if (err) 4672 break; 4673 4674 if (!mnt_allow_writers(kattr, m)) { 4675 err = mnt_hold_writers(m); 4676 if (err) 4677 break; 4678 } 4679 4680 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4681 return 0; 4682 } 4683 4684 if (err) { 4685 struct mount *p; 4686 4687 /* 4688 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4689 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4690 * mounts and needs to take care to include the first mount. 4691 */ 4692 for (p = mnt; p; p = next_mnt(p, mnt)) { 4693 /* If we had to hold writers unblock them. */ 4694 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4695 mnt_unhold_writers(p); 4696 4697 /* 4698 * We're done once the first mount we changed got 4699 * MNT_WRITE_HOLD unset. 4700 */ 4701 if (p == m) 4702 break; 4703 } 4704 } 4705 return err; 4706 } 4707 4708 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4709 { 4710 struct mnt_idmap *old_idmap; 4711 4712 if (!kattr->mnt_idmap) 4713 return; 4714 4715 old_idmap = mnt_idmap(&mnt->mnt); 4716 4717 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4718 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4719 mnt_idmap_put(old_idmap); 4720 } 4721 4722 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4723 { 4724 struct mount *m; 4725 4726 for (m = mnt; m; m = next_mnt(m, mnt)) { 4727 unsigned int flags; 4728 4729 do_idmap_mount(kattr, m); 4730 flags = recalc_flags(kattr, m); 4731 WRITE_ONCE(m->mnt.mnt_flags, flags); 4732 4733 /* If we had to hold writers unblock them. */ 4734 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4735 mnt_unhold_writers(m); 4736 4737 if (kattr->propagation) 4738 change_mnt_propagation(m, kattr->propagation); 4739 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4740 break; 4741 } 4742 touch_mnt_namespace(mnt->mnt_ns); 4743 } 4744 4745 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4746 { 4747 struct mount *mnt = real_mount(path->mnt); 4748 int err = 0; 4749 4750 if (!path_mounted(path)) 4751 return -EINVAL; 4752 4753 if (kattr->mnt_userns) { 4754 struct mnt_idmap *mnt_idmap; 4755 4756 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4757 if (IS_ERR(mnt_idmap)) 4758 return PTR_ERR(mnt_idmap); 4759 kattr->mnt_idmap = mnt_idmap; 4760 } 4761 4762 if (kattr->propagation) { 4763 /* 4764 * Only take namespace_lock() if we're actually changing 4765 * propagation. 4766 */ 4767 namespace_lock(); 4768 if (kattr->propagation == MS_SHARED) { 4769 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 4770 if (err) { 4771 namespace_unlock(); 4772 return err; 4773 } 4774 } 4775 } 4776 4777 err = -EINVAL; 4778 lock_mount_hash(); 4779 4780 /* Ensure that this isn't anything purely vfs internal. */ 4781 if (!is_mounted(&mnt->mnt)) 4782 goto out; 4783 4784 /* 4785 * If this is an attached mount make sure it's located in the callers 4786 * mount namespace. If it's not don't let the caller interact with it. 4787 * 4788 * If this mount doesn't have a parent it's most often simply a 4789 * detached mount with an anonymous mount namespace. IOW, something 4790 * that's simply not attached yet. But there are apparently also users 4791 * that do change mount properties on the rootfs itself. That obviously 4792 * neither has a parent nor is it a detached mount so we cannot 4793 * unconditionally check for detached mounts. 4794 */ 4795 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4796 goto out; 4797 4798 /* 4799 * First, we get the mount tree in a shape where we can change mount 4800 * properties without failure. If we succeeded to do so we commit all 4801 * changes and if we failed we clean up. 4802 */ 4803 err = mount_setattr_prepare(kattr, mnt); 4804 if (!err) 4805 mount_setattr_commit(kattr, mnt); 4806 4807 out: 4808 unlock_mount_hash(); 4809 4810 if (kattr->propagation) { 4811 if (err) 4812 cleanup_group_ids(mnt, NULL); 4813 namespace_unlock(); 4814 } 4815 4816 return err; 4817 } 4818 4819 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4820 struct mount_kattr *kattr) 4821 { 4822 struct ns_common *ns; 4823 struct user_namespace *mnt_userns; 4824 4825 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4826 return 0; 4827 4828 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 4829 /* 4830 * We can only remove an idmapping if it's never been 4831 * exposed to userspace. 4832 */ 4833 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 4834 return -EINVAL; 4835 4836 /* 4837 * Removal of idmappings is equivalent to setting 4838 * nop_mnt_idmap. 4839 */ 4840 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 4841 kattr->mnt_idmap = &nop_mnt_idmap; 4842 return 0; 4843 } 4844 } 4845 4846 if (attr->userns_fd > INT_MAX) 4847 return -EINVAL; 4848 4849 CLASS(fd, f)(attr->userns_fd); 4850 if (fd_empty(f)) 4851 return -EBADF; 4852 4853 if (!proc_ns_file(fd_file(f))) 4854 return -EINVAL; 4855 4856 ns = get_proc_ns(file_inode(fd_file(f))); 4857 if (ns->ops->type != CLONE_NEWUSER) 4858 return -EINVAL; 4859 4860 /* 4861 * The initial idmapping cannot be used to create an idmapped 4862 * mount. We use the initial idmapping as an indicator of a mount 4863 * that is not idmapped. It can simply be passed into helpers that 4864 * are aware of idmapped mounts as a convenient shortcut. A user 4865 * can just create a dedicated identity mapping to achieve the same 4866 * result. 4867 */ 4868 mnt_userns = container_of(ns, struct user_namespace, ns); 4869 if (mnt_userns == &init_user_ns) 4870 return -EPERM; 4871 4872 /* We're not controlling the target namespace. */ 4873 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 4874 return -EPERM; 4875 4876 kattr->mnt_userns = get_user_ns(mnt_userns); 4877 return 0; 4878 } 4879 4880 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4881 struct mount_kattr *kattr) 4882 { 4883 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4884 return -EINVAL; 4885 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4886 return -EINVAL; 4887 kattr->propagation = attr->propagation; 4888 4889 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4890 return -EINVAL; 4891 4892 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4893 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4894 4895 /* 4896 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4897 * users wanting to transition to a different atime setting cannot 4898 * simply specify the atime setting in @attr_set, but must also 4899 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4900 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4901 * @attr_clr and that @attr_set can't have any atime bits set if 4902 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4903 */ 4904 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4905 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4906 return -EINVAL; 4907 4908 /* 4909 * Clear all previous time settings as they are mutually 4910 * exclusive. 4911 */ 4912 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4913 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4914 case MOUNT_ATTR_RELATIME: 4915 kattr->attr_set |= MNT_RELATIME; 4916 break; 4917 case MOUNT_ATTR_NOATIME: 4918 kattr->attr_set |= MNT_NOATIME; 4919 break; 4920 case MOUNT_ATTR_STRICTATIME: 4921 break; 4922 default: 4923 return -EINVAL; 4924 } 4925 } else { 4926 if (attr->attr_set & MOUNT_ATTR__ATIME) 4927 return -EINVAL; 4928 } 4929 4930 return build_mount_idmapped(attr, usize, kattr); 4931 } 4932 4933 static void finish_mount_kattr(struct mount_kattr *kattr) 4934 { 4935 if (kattr->mnt_userns) { 4936 put_user_ns(kattr->mnt_userns); 4937 kattr->mnt_userns = NULL; 4938 } 4939 4940 if (kattr->mnt_idmap) 4941 mnt_idmap_put(kattr->mnt_idmap); 4942 } 4943 4944 static int copy_mount_setattr(struct mount_attr __user *uattr, size_t usize, 4945 struct mount_kattr *kattr) 4946 { 4947 int ret; 4948 struct mount_attr attr; 4949 4950 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4951 4952 if (unlikely(usize > PAGE_SIZE)) 4953 return -E2BIG; 4954 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4955 return -EINVAL; 4956 4957 if (!may_mount()) 4958 return -EPERM; 4959 4960 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4961 if (ret) 4962 return ret; 4963 4964 /* Don't bother walking through the mounts if this is a nop. */ 4965 if (attr.attr_set == 0 && 4966 attr.attr_clr == 0 && 4967 attr.propagation == 0) 4968 return 0; 4969 4970 return build_mount_kattr(&attr, usize, kattr); 4971 } 4972 4973 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4974 unsigned int, flags, struct mount_attr __user *, uattr, 4975 size_t, usize) 4976 { 4977 int err; 4978 struct path target; 4979 struct mount_kattr kattr; 4980 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4981 4982 if (flags & ~(AT_EMPTY_PATH | 4983 AT_RECURSIVE | 4984 AT_SYMLINK_NOFOLLOW | 4985 AT_NO_AUTOMOUNT)) 4986 return -EINVAL; 4987 4988 if (flags & AT_NO_AUTOMOUNT) 4989 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4990 if (flags & AT_SYMLINK_NOFOLLOW) 4991 lookup_flags &= ~LOOKUP_FOLLOW; 4992 if (flags & AT_EMPTY_PATH) 4993 lookup_flags |= LOOKUP_EMPTY; 4994 4995 kattr = (struct mount_kattr) { 4996 .lookup_flags = lookup_flags, 4997 }; 4998 4999 if (flags & AT_RECURSIVE) 5000 kattr.kflags |= MOUNT_KATTR_RECURSE; 5001 5002 err = copy_mount_setattr(uattr, usize, &kattr); 5003 if (err) 5004 return err; 5005 5006 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5007 if (!err) { 5008 err = do_mount_setattr(&target, &kattr); 5009 path_put(&target); 5010 } 5011 finish_mount_kattr(&kattr); 5012 return err; 5013 } 5014 5015 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5016 unsigned, flags, struct mount_attr __user *, uattr, 5017 size_t, usize) 5018 { 5019 struct file __free(fput) *file = NULL; 5020 int fd; 5021 5022 if (!uattr && usize) 5023 return -EINVAL; 5024 5025 file = vfs_open_tree(dfd, filename, flags); 5026 if (IS_ERR(file)) 5027 return PTR_ERR(file); 5028 5029 if (uattr) { 5030 int ret; 5031 struct mount_kattr kattr = {}; 5032 5033 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5034 if (flags & AT_RECURSIVE) 5035 kattr.kflags |= MOUNT_KATTR_RECURSE; 5036 5037 ret = copy_mount_setattr(uattr, usize, &kattr); 5038 if (ret) 5039 return ret; 5040 5041 ret = do_mount_setattr(&file->f_path, &kattr); 5042 if (ret) 5043 return ret; 5044 5045 finish_mount_kattr(&kattr); 5046 } 5047 5048 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5049 if (fd < 0) 5050 return fd; 5051 5052 fd_install(fd, no_free_ptr(file)); 5053 return fd; 5054 } 5055 5056 int show_path(struct seq_file *m, struct dentry *root) 5057 { 5058 if (root->d_sb->s_op->show_path) 5059 return root->d_sb->s_op->show_path(m, root); 5060 5061 seq_dentry(m, root, " \t\n\\"); 5062 return 0; 5063 } 5064 5065 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5066 { 5067 struct mount *mnt = mnt_find_id_at(ns, id); 5068 5069 if (!mnt || mnt->mnt_id_unique != id) 5070 return NULL; 5071 5072 return &mnt->mnt; 5073 } 5074 5075 struct kstatmount { 5076 struct statmount __user *buf; 5077 size_t bufsize; 5078 struct vfsmount *mnt; 5079 struct mnt_idmap *idmap; 5080 u64 mask; 5081 struct path root; 5082 struct statmount sm; 5083 struct seq_file seq; 5084 }; 5085 5086 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5087 { 5088 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5089 u64 attr_flags = 0; 5090 5091 if (mnt_flags & MNT_READONLY) 5092 attr_flags |= MOUNT_ATTR_RDONLY; 5093 if (mnt_flags & MNT_NOSUID) 5094 attr_flags |= MOUNT_ATTR_NOSUID; 5095 if (mnt_flags & MNT_NODEV) 5096 attr_flags |= MOUNT_ATTR_NODEV; 5097 if (mnt_flags & MNT_NOEXEC) 5098 attr_flags |= MOUNT_ATTR_NOEXEC; 5099 if (mnt_flags & MNT_NODIRATIME) 5100 attr_flags |= MOUNT_ATTR_NODIRATIME; 5101 if (mnt_flags & MNT_NOSYMFOLLOW) 5102 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5103 5104 if (mnt_flags & MNT_NOATIME) 5105 attr_flags |= MOUNT_ATTR_NOATIME; 5106 else if (mnt_flags & MNT_RELATIME) 5107 attr_flags |= MOUNT_ATTR_RELATIME; 5108 else 5109 attr_flags |= MOUNT_ATTR_STRICTATIME; 5110 5111 if (is_idmapped_mnt(mnt)) 5112 attr_flags |= MOUNT_ATTR_IDMAP; 5113 5114 return attr_flags; 5115 } 5116 5117 static u64 mnt_to_propagation_flags(struct mount *m) 5118 { 5119 u64 propagation = 0; 5120 5121 if (IS_MNT_SHARED(m)) 5122 propagation |= MS_SHARED; 5123 if (IS_MNT_SLAVE(m)) 5124 propagation |= MS_SLAVE; 5125 if (IS_MNT_UNBINDABLE(m)) 5126 propagation |= MS_UNBINDABLE; 5127 if (!propagation) 5128 propagation |= MS_PRIVATE; 5129 5130 return propagation; 5131 } 5132 5133 static void statmount_sb_basic(struct kstatmount *s) 5134 { 5135 struct super_block *sb = s->mnt->mnt_sb; 5136 5137 s->sm.mask |= STATMOUNT_SB_BASIC; 5138 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5139 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5140 s->sm.sb_magic = sb->s_magic; 5141 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5142 } 5143 5144 static void statmount_mnt_basic(struct kstatmount *s) 5145 { 5146 struct mount *m = real_mount(s->mnt); 5147 5148 s->sm.mask |= STATMOUNT_MNT_BASIC; 5149 s->sm.mnt_id = m->mnt_id_unique; 5150 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5151 s->sm.mnt_id_old = m->mnt_id; 5152 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5153 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5154 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5155 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 5156 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5157 } 5158 5159 static void statmount_propagate_from(struct kstatmount *s) 5160 { 5161 struct mount *m = real_mount(s->mnt); 5162 5163 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5164 if (IS_MNT_SLAVE(m)) 5165 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5166 } 5167 5168 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5169 { 5170 int ret; 5171 size_t start = seq->count; 5172 5173 ret = show_path(seq, s->mnt->mnt_root); 5174 if (ret) 5175 return ret; 5176 5177 if (unlikely(seq_has_overflowed(seq))) 5178 return -EAGAIN; 5179 5180 /* 5181 * Unescape the result. It would be better if supplied string was not 5182 * escaped in the first place, but that's a pretty invasive change. 5183 */ 5184 seq->buf[seq->count] = '\0'; 5185 seq->count = start; 5186 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5187 return 0; 5188 } 5189 5190 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5191 { 5192 struct vfsmount *mnt = s->mnt; 5193 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5194 int err; 5195 5196 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5197 return err == SEQ_SKIP ? 0 : err; 5198 } 5199 5200 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5201 { 5202 struct super_block *sb = s->mnt->mnt_sb; 5203 5204 seq_puts(seq, sb->s_type->name); 5205 return 0; 5206 } 5207 5208 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5209 { 5210 struct super_block *sb = s->mnt->mnt_sb; 5211 5212 if (sb->s_subtype) 5213 seq_puts(seq, sb->s_subtype); 5214 } 5215 5216 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5217 { 5218 struct super_block *sb = s->mnt->mnt_sb; 5219 struct mount *r = real_mount(s->mnt); 5220 5221 if (sb->s_op->show_devname) { 5222 size_t start = seq->count; 5223 int ret; 5224 5225 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5226 if (ret) 5227 return ret; 5228 5229 if (unlikely(seq_has_overflowed(seq))) 5230 return -EAGAIN; 5231 5232 /* Unescape the result */ 5233 seq->buf[seq->count] = '\0'; 5234 seq->count = start; 5235 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5236 } else if (r->mnt_devname) { 5237 seq_puts(seq, r->mnt_devname); 5238 } 5239 return 0; 5240 } 5241 5242 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5243 { 5244 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5245 s->sm.mnt_ns_id = ns->seq; 5246 } 5247 5248 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5249 { 5250 struct vfsmount *mnt = s->mnt; 5251 struct super_block *sb = mnt->mnt_sb; 5252 size_t start = seq->count; 5253 int err; 5254 5255 err = security_sb_show_options(seq, sb); 5256 if (err) 5257 return err; 5258 5259 if (sb->s_op->show_options) { 5260 err = sb->s_op->show_options(seq, mnt->mnt_root); 5261 if (err) 5262 return err; 5263 } 5264 5265 if (unlikely(seq_has_overflowed(seq))) 5266 return -EAGAIN; 5267 5268 if (seq->count == start) 5269 return 0; 5270 5271 /* skip leading comma */ 5272 memmove(seq->buf + start, seq->buf + start + 1, 5273 seq->count - start - 1); 5274 seq->count--; 5275 5276 return 0; 5277 } 5278 5279 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5280 { 5281 char *buf_end, *opt_end, *src, *dst; 5282 int count = 0; 5283 5284 if (unlikely(seq_has_overflowed(seq))) 5285 return -EAGAIN; 5286 5287 buf_end = seq->buf + seq->count; 5288 dst = seq->buf + start; 5289 src = dst + 1; /* skip initial comma */ 5290 5291 if (src >= buf_end) { 5292 seq->count = start; 5293 return 0; 5294 } 5295 5296 *buf_end = '\0'; 5297 for (; src < buf_end; src = opt_end + 1) { 5298 opt_end = strchrnul(src, ','); 5299 *opt_end = '\0'; 5300 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5301 if (WARN_ON_ONCE(++count == INT_MAX)) 5302 return -EOVERFLOW; 5303 } 5304 seq->count = dst - 1 - seq->buf; 5305 return count; 5306 } 5307 5308 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5309 { 5310 struct vfsmount *mnt = s->mnt; 5311 struct super_block *sb = mnt->mnt_sb; 5312 size_t start = seq->count; 5313 int err; 5314 5315 if (!sb->s_op->show_options) 5316 return 0; 5317 5318 err = sb->s_op->show_options(seq, mnt->mnt_root); 5319 if (err) 5320 return err; 5321 5322 err = statmount_opt_process(seq, start); 5323 if (err < 0) 5324 return err; 5325 5326 s->sm.opt_num = err; 5327 return 0; 5328 } 5329 5330 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5331 { 5332 struct vfsmount *mnt = s->mnt; 5333 struct super_block *sb = mnt->mnt_sb; 5334 size_t start = seq->count; 5335 int err; 5336 5337 err = security_sb_show_options(seq, sb); 5338 if (err) 5339 return err; 5340 5341 err = statmount_opt_process(seq, start); 5342 if (err < 0) 5343 return err; 5344 5345 s->sm.opt_sec_num = err; 5346 return 0; 5347 } 5348 5349 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5350 { 5351 int ret; 5352 5353 ret = statmount_mnt_idmap(s->idmap, seq, true); 5354 if (ret < 0) 5355 return ret; 5356 5357 s->sm.mnt_uidmap_num = ret; 5358 /* 5359 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5360 * mappings. This allows userspace to distinguish between a 5361 * non-idmapped mount and an idmapped mount where none of the 5362 * individual mappings are valid in the caller's idmapping. 5363 */ 5364 if (is_valid_mnt_idmap(s->idmap)) 5365 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5366 return 0; 5367 } 5368 5369 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5370 { 5371 int ret; 5372 5373 ret = statmount_mnt_idmap(s->idmap, seq, false); 5374 if (ret < 0) 5375 return ret; 5376 5377 s->sm.mnt_gidmap_num = ret; 5378 /* 5379 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5380 * mappings. This allows userspace to distinguish between a 5381 * non-idmapped mount and an idmapped mount where none of the 5382 * individual mappings are valid in the caller's idmapping. 5383 */ 5384 if (is_valid_mnt_idmap(s->idmap)) 5385 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5386 return 0; 5387 } 5388 5389 static int statmount_string(struct kstatmount *s, u64 flag) 5390 { 5391 int ret = 0; 5392 size_t kbufsize; 5393 struct seq_file *seq = &s->seq; 5394 struct statmount *sm = &s->sm; 5395 u32 start, *offp; 5396 5397 /* Reserve an empty string at the beginning for any unset offsets */ 5398 if (!seq->count) 5399 seq_putc(seq, 0); 5400 5401 start = seq->count; 5402 5403 switch (flag) { 5404 case STATMOUNT_FS_TYPE: 5405 offp = &sm->fs_type; 5406 ret = statmount_fs_type(s, seq); 5407 break; 5408 case STATMOUNT_MNT_ROOT: 5409 offp = &sm->mnt_root; 5410 ret = statmount_mnt_root(s, seq); 5411 break; 5412 case STATMOUNT_MNT_POINT: 5413 offp = &sm->mnt_point; 5414 ret = statmount_mnt_point(s, seq); 5415 break; 5416 case STATMOUNT_MNT_OPTS: 5417 offp = &sm->mnt_opts; 5418 ret = statmount_mnt_opts(s, seq); 5419 break; 5420 case STATMOUNT_OPT_ARRAY: 5421 offp = &sm->opt_array; 5422 ret = statmount_opt_array(s, seq); 5423 break; 5424 case STATMOUNT_OPT_SEC_ARRAY: 5425 offp = &sm->opt_sec_array; 5426 ret = statmount_opt_sec_array(s, seq); 5427 break; 5428 case STATMOUNT_FS_SUBTYPE: 5429 offp = &sm->fs_subtype; 5430 statmount_fs_subtype(s, seq); 5431 break; 5432 case STATMOUNT_SB_SOURCE: 5433 offp = &sm->sb_source; 5434 ret = statmount_sb_source(s, seq); 5435 break; 5436 case STATMOUNT_MNT_UIDMAP: 5437 sm->mnt_uidmap = start; 5438 ret = statmount_mnt_uidmap(s, seq); 5439 break; 5440 case STATMOUNT_MNT_GIDMAP: 5441 sm->mnt_gidmap = start; 5442 ret = statmount_mnt_gidmap(s, seq); 5443 break; 5444 default: 5445 WARN_ON_ONCE(true); 5446 return -EINVAL; 5447 } 5448 5449 /* 5450 * If nothing was emitted, return to avoid setting the flag 5451 * and terminating the buffer. 5452 */ 5453 if (seq->count == start) 5454 return ret; 5455 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5456 return -EOVERFLOW; 5457 if (kbufsize >= s->bufsize) 5458 return -EOVERFLOW; 5459 5460 /* signal a retry */ 5461 if (unlikely(seq_has_overflowed(seq))) 5462 return -EAGAIN; 5463 5464 if (ret) 5465 return ret; 5466 5467 seq->buf[seq->count++] = '\0'; 5468 sm->mask |= flag; 5469 *offp = start; 5470 return 0; 5471 } 5472 5473 static int copy_statmount_to_user(struct kstatmount *s) 5474 { 5475 struct statmount *sm = &s->sm; 5476 struct seq_file *seq = &s->seq; 5477 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5478 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5479 5480 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5481 return -EFAULT; 5482 5483 /* Return the number of bytes copied to the buffer */ 5484 sm->size = copysize + seq->count; 5485 if (copy_to_user(s->buf, sm, copysize)) 5486 return -EFAULT; 5487 5488 return 0; 5489 } 5490 5491 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5492 { 5493 struct rb_node *node; 5494 5495 if (reverse) 5496 node = rb_prev(&curr->mnt_node); 5497 else 5498 node = rb_next(&curr->mnt_node); 5499 5500 return node_to_mount(node); 5501 } 5502 5503 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5504 { 5505 struct mount *first, *child; 5506 5507 rwsem_assert_held(&namespace_sem); 5508 5509 /* We're looking at our own ns, just use get_fs_root. */ 5510 if (ns == current->nsproxy->mnt_ns) { 5511 get_fs_root(current->fs, root); 5512 return 0; 5513 } 5514 5515 /* 5516 * We have to find the first mount in our ns and use that, however it 5517 * may not exist, so handle that properly. 5518 */ 5519 if (RB_EMPTY_ROOT(&ns->mounts)) 5520 return -ENOENT; 5521 5522 first = child = ns->root; 5523 for (;;) { 5524 child = listmnt_next(child, false); 5525 if (!child) 5526 return -ENOENT; 5527 if (child->mnt_parent == first) 5528 break; 5529 } 5530 5531 root->mnt = mntget(&child->mnt); 5532 root->dentry = dget(root->mnt->mnt_root); 5533 return 0; 5534 } 5535 5536 /* This must be updated whenever a new flag is added */ 5537 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5538 STATMOUNT_MNT_BASIC | \ 5539 STATMOUNT_PROPAGATE_FROM | \ 5540 STATMOUNT_MNT_ROOT | \ 5541 STATMOUNT_MNT_POINT | \ 5542 STATMOUNT_FS_TYPE | \ 5543 STATMOUNT_MNT_NS_ID | \ 5544 STATMOUNT_MNT_OPTS | \ 5545 STATMOUNT_FS_SUBTYPE | \ 5546 STATMOUNT_SB_SOURCE | \ 5547 STATMOUNT_OPT_ARRAY | \ 5548 STATMOUNT_OPT_SEC_ARRAY | \ 5549 STATMOUNT_SUPPORTED_MASK) 5550 5551 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5552 struct mnt_namespace *ns) 5553 { 5554 struct path root __free(path_put) = {}; 5555 struct mount *m; 5556 int err; 5557 5558 /* Has the namespace already been emptied? */ 5559 if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts)) 5560 return -ENOENT; 5561 5562 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5563 if (!s->mnt) 5564 return -ENOENT; 5565 5566 err = grab_requested_root(ns, &root); 5567 if (err) 5568 return err; 5569 5570 /* 5571 * Don't trigger audit denials. We just want to determine what 5572 * mounts to show users. 5573 */ 5574 m = real_mount(s->mnt); 5575 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5576 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5577 return -EPERM; 5578 5579 err = security_sb_statfs(s->mnt->mnt_root); 5580 if (err) 5581 return err; 5582 5583 s->root = root; 5584 s->idmap = mnt_idmap(s->mnt); 5585 if (s->mask & STATMOUNT_SB_BASIC) 5586 statmount_sb_basic(s); 5587 5588 if (s->mask & STATMOUNT_MNT_BASIC) 5589 statmount_mnt_basic(s); 5590 5591 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5592 statmount_propagate_from(s); 5593 5594 if (s->mask & STATMOUNT_FS_TYPE) 5595 err = statmount_string(s, STATMOUNT_FS_TYPE); 5596 5597 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5598 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5599 5600 if (!err && s->mask & STATMOUNT_MNT_POINT) 5601 err = statmount_string(s, STATMOUNT_MNT_POINT); 5602 5603 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5604 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5605 5606 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5607 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5608 5609 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5610 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5611 5612 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5613 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5614 5615 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5616 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5617 5618 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5619 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5620 5621 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5622 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5623 5624 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5625 statmount_mnt_ns_id(s, ns); 5626 5627 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5628 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5629 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5630 } 5631 5632 if (err) 5633 return err; 5634 5635 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5636 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5637 5638 return 0; 5639 } 5640 5641 static inline bool retry_statmount(const long ret, size_t *seq_size) 5642 { 5643 if (likely(ret != -EAGAIN)) 5644 return false; 5645 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5646 return false; 5647 if (unlikely(*seq_size > MAX_RW_COUNT)) 5648 return false; 5649 return true; 5650 } 5651 5652 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5653 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5654 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5655 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5656 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5657 5658 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5659 struct statmount __user *buf, size_t bufsize, 5660 size_t seq_size) 5661 { 5662 if (!access_ok(buf, bufsize)) 5663 return -EFAULT; 5664 5665 memset(ks, 0, sizeof(*ks)); 5666 ks->mask = kreq->param; 5667 ks->buf = buf; 5668 ks->bufsize = bufsize; 5669 5670 if (ks->mask & STATMOUNT_STRING_REQ) { 5671 if (bufsize == sizeof(ks->sm)) 5672 return -EOVERFLOW; 5673 5674 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5675 if (!ks->seq.buf) 5676 return -ENOMEM; 5677 5678 ks->seq.size = seq_size; 5679 } 5680 5681 return 0; 5682 } 5683 5684 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5685 struct mnt_id_req *kreq) 5686 { 5687 int ret; 5688 size_t usize; 5689 5690 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5691 5692 ret = get_user(usize, &req->size); 5693 if (ret) 5694 return -EFAULT; 5695 if (unlikely(usize > PAGE_SIZE)) 5696 return -E2BIG; 5697 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5698 return -EINVAL; 5699 memset(kreq, 0, sizeof(*kreq)); 5700 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5701 if (ret) 5702 return ret; 5703 if (kreq->spare != 0) 5704 return -EINVAL; 5705 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5706 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5707 return -EINVAL; 5708 return 0; 5709 } 5710 5711 /* 5712 * If the user requested a specific mount namespace id, look that up and return 5713 * that, or if not simply grab a passive reference on our mount namespace and 5714 * return that. 5715 */ 5716 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5717 { 5718 struct mnt_namespace *mnt_ns; 5719 5720 if (kreq->mnt_ns_id && kreq->spare) 5721 return ERR_PTR(-EINVAL); 5722 5723 if (kreq->mnt_ns_id) 5724 return lookup_mnt_ns(kreq->mnt_ns_id); 5725 5726 if (kreq->spare) { 5727 struct ns_common *ns; 5728 5729 CLASS(fd, f)(kreq->spare); 5730 if (fd_empty(f)) 5731 return ERR_PTR(-EBADF); 5732 5733 if (!proc_ns_file(fd_file(f))) 5734 return ERR_PTR(-EINVAL); 5735 5736 ns = get_proc_ns(file_inode(fd_file(f))); 5737 if (ns->ops->type != CLONE_NEWNS) 5738 return ERR_PTR(-EINVAL); 5739 5740 mnt_ns = to_mnt_ns(ns); 5741 } else { 5742 mnt_ns = current->nsproxy->mnt_ns; 5743 } 5744 5745 refcount_inc(&mnt_ns->passive); 5746 return mnt_ns; 5747 } 5748 5749 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5750 struct statmount __user *, buf, size_t, bufsize, 5751 unsigned int, flags) 5752 { 5753 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5754 struct kstatmount *ks __free(kfree) = NULL; 5755 struct mnt_id_req kreq; 5756 /* We currently support retrieval of 3 strings. */ 5757 size_t seq_size = 3 * PATH_MAX; 5758 int ret; 5759 5760 if (flags) 5761 return -EINVAL; 5762 5763 ret = copy_mnt_id_req(req, &kreq); 5764 if (ret) 5765 return ret; 5766 5767 ns = grab_requested_mnt_ns(&kreq); 5768 if (!ns) 5769 return -ENOENT; 5770 5771 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5772 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5773 return -ENOENT; 5774 5775 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 5776 if (!ks) 5777 return -ENOMEM; 5778 5779 retry: 5780 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 5781 if (ret) 5782 return ret; 5783 5784 scoped_guard(rwsem_read, &namespace_sem) 5785 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 5786 5787 if (!ret) 5788 ret = copy_statmount_to_user(ks); 5789 kvfree(ks->seq.buf); 5790 if (retry_statmount(ret, &seq_size)) 5791 goto retry; 5792 return ret; 5793 } 5794 5795 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 5796 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 5797 bool reverse) 5798 { 5799 struct path root __free(path_put) = {}; 5800 struct path orig; 5801 struct mount *r, *first; 5802 ssize_t ret; 5803 5804 rwsem_assert_held(&namespace_sem); 5805 5806 ret = grab_requested_root(ns, &root); 5807 if (ret) 5808 return ret; 5809 5810 if (mnt_parent_id == LSMT_ROOT) { 5811 orig = root; 5812 } else { 5813 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5814 if (!orig.mnt) 5815 return -ENOENT; 5816 orig.dentry = orig.mnt->mnt_root; 5817 } 5818 5819 /* 5820 * Don't trigger audit denials. We just want to determine what 5821 * mounts to show users. 5822 */ 5823 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 5824 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5825 return -EPERM; 5826 5827 ret = security_sb_statfs(orig.dentry); 5828 if (ret) 5829 return ret; 5830 5831 if (!last_mnt_id) { 5832 if (reverse) 5833 first = node_to_mount(ns->mnt_last_node); 5834 else 5835 first = node_to_mount(ns->mnt_first_node); 5836 } else { 5837 if (reverse) 5838 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 5839 else 5840 first = mnt_find_id_at(ns, last_mnt_id + 1); 5841 } 5842 5843 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 5844 if (r->mnt_id_unique == mnt_parent_id) 5845 continue; 5846 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 5847 continue; 5848 *mnt_ids = r->mnt_id_unique; 5849 mnt_ids++; 5850 nr_mnt_ids--; 5851 ret++; 5852 } 5853 return ret; 5854 } 5855 5856 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 5857 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 5858 { 5859 u64 *kmnt_ids __free(kvfree) = NULL; 5860 const size_t maxcount = 1000000; 5861 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5862 struct mnt_id_req kreq; 5863 u64 last_mnt_id; 5864 ssize_t ret; 5865 5866 if (flags & ~LISTMOUNT_REVERSE) 5867 return -EINVAL; 5868 5869 /* 5870 * If the mount namespace really has more than 1 million mounts the 5871 * caller must iterate over the mount namespace (and reconsider their 5872 * system design...). 5873 */ 5874 if (unlikely(nr_mnt_ids > maxcount)) 5875 return -EOVERFLOW; 5876 5877 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 5878 return -EFAULT; 5879 5880 ret = copy_mnt_id_req(req, &kreq); 5881 if (ret) 5882 return ret; 5883 5884 last_mnt_id = kreq.param; 5885 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5886 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 5887 return -EINVAL; 5888 5889 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 5890 GFP_KERNEL_ACCOUNT); 5891 if (!kmnt_ids) 5892 return -ENOMEM; 5893 5894 ns = grab_requested_mnt_ns(&kreq); 5895 if (!ns) 5896 return -ENOENT; 5897 5898 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5899 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5900 return -ENOENT; 5901 5902 scoped_guard(rwsem_read, &namespace_sem) 5903 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 5904 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 5905 if (ret <= 0) 5906 return ret; 5907 5908 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 5909 return -EFAULT; 5910 5911 return ret; 5912 } 5913 5914 static void __init init_mount_tree(void) 5915 { 5916 struct vfsmount *mnt; 5917 struct mount *m; 5918 struct mnt_namespace *ns; 5919 struct path root; 5920 5921 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 5922 if (IS_ERR(mnt)) 5923 panic("Can't create rootfs"); 5924 5925 ns = alloc_mnt_ns(&init_user_ns, false); 5926 if (IS_ERR(ns)) 5927 panic("Can't allocate initial namespace"); 5928 m = real_mount(mnt); 5929 ns->root = m; 5930 ns->nr_mounts = 1; 5931 mnt_add_to_ns(ns, m); 5932 init_task.nsproxy->mnt_ns = ns; 5933 get_mnt_ns(ns); 5934 5935 root.mnt = mnt; 5936 root.dentry = mnt->mnt_root; 5937 mnt->mnt_flags |= MNT_LOCKED; 5938 5939 set_fs_pwd(current->fs, &root); 5940 set_fs_root(current->fs, &root); 5941 5942 mnt_ns_tree_add(ns); 5943 } 5944 5945 void __init mnt_init(void) 5946 { 5947 int err; 5948 5949 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 5950 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 5951 5952 mount_hashtable = alloc_large_system_hash("Mount-cache", 5953 sizeof(struct hlist_head), 5954 mhash_entries, 19, 5955 HASH_ZERO, 5956 &m_hash_shift, &m_hash_mask, 0, 0); 5957 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 5958 sizeof(struct hlist_head), 5959 mphash_entries, 19, 5960 HASH_ZERO, 5961 &mp_hash_shift, &mp_hash_mask, 0, 0); 5962 5963 if (!mount_hashtable || !mountpoint_hashtable) 5964 panic("Failed to allocate mount hash table\n"); 5965 5966 kernfs_init(); 5967 5968 err = sysfs_init(); 5969 if (err) 5970 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 5971 __func__, err); 5972 fs_kobj = kobject_create_and_add("fs", NULL); 5973 if (!fs_kobj) 5974 printk(KERN_WARNING "%s: kobj create error\n", __func__); 5975 shmem_init(); 5976 init_rootfs(); 5977 init_mount_tree(); 5978 } 5979 5980 void put_mnt_ns(struct mnt_namespace *ns) 5981 { 5982 if (!refcount_dec_and_test(&ns->ns.count)) 5983 return; 5984 drop_collected_mounts(&ns->root->mnt); 5985 free_mnt_ns(ns); 5986 } 5987 5988 struct vfsmount *kern_mount(struct file_system_type *type) 5989 { 5990 struct vfsmount *mnt; 5991 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 5992 if (!IS_ERR(mnt)) { 5993 /* 5994 * it is a longterm mount, don't release mnt until 5995 * we unmount before file sys is unregistered 5996 */ 5997 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 5998 } 5999 return mnt; 6000 } 6001 EXPORT_SYMBOL_GPL(kern_mount); 6002 6003 void kern_unmount(struct vfsmount *mnt) 6004 { 6005 /* release long term mount so mount point can be released */ 6006 if (!IS_ERR(mnt)) { 6007 mnt_make_shortterm(mnt); 6008 synchronize_rcu(); /* yecchhh... */ 6009 mntput(mnt); 6010 } 6011 } 6012 EXPORT_SYMBOL(kern_unmount); 6013 6014 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6015 { 6016 unsigned int i; 6017 6018 for (i = 0; i < num; i++) 6019 mnt_make_shortterm(mnt[i]); 6020 synchronize_rcu_expedited(); 6021 for (i = 0; i < num; i++) 6022 mntput(mnt[i]); 6023 } 6024 EXPORT_SYMBOL(kern_unmount_array); 6025 6026 bool our_mnt(struct vfsmount *mnt) 6027 { 6028 return check_mnt(real_mount(mnt)); 6029 } 6030 6031 bool current_chrooted(void) 6032 { 6033 /* Does the current process have a non-standard root */ 6034 struct path ns_root; 6035 struct path fs_root; 6036 bool chrooted; 6037 6038 /* Find the namespace root */ 6039 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 6040 ns_root.dentry = ns_root.mnt->mnt_root; 6041 path_get(&ns_root); 6042 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 6043 ; 6044 6045 get_fs_root(current->fs, &fs_root); 6046 6047 chrooted = !path_equal(&fs_root, &ns_root); 6048 6049 path_put(&fs_root); 6050 path_put(&ns_root); 6051 6052 return chrooted; 6053 } 6054 6055 static bool mnt_already_visible(struct mnt_namespace *ns, 6056 const struct super_block *sb, 6057 int *new_mnt_flags) 6058 { 6059 int new_flags = *new_mnt_flags; 6060 struct mount *mnt, *n; 6061 bool visible = false; 6062 6063 down_read(&namespace_sem); 6064 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6065 struct mount *child; 6066 int mnt_flags; 6067 6068 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6069 continue; 6070 6071 /* This mount is not fully visible if it's root directory 6072 * is not the root directory of the filesystem. 6073 */ 6074 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6075 continue; 6076 6077 /* A local view of the mount flags */ 6078 mnt_flags = mnt->mnt.mnt_flags; 6079 6080 /* Don't miss readonly hidden in the superblock flags */ 6081 if (sb_rdonly(mnt->mnt.mnt_sb)) 6082 mnt_flags |= MNT_LOCK_READONLY; 6083 6084 /* Verify the mount flags are equal to or more permissive 6085 * than the proposed new mount. 6086 */ 6087 if ((mnt_flags & MNT_LOCK_READONLY) && 6088 !(new_flags & MNT_READONLY)) 6089 continue; 6090 if ((mnt_flags & MNT_LOCK_ATIME) && 6091 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6092 continue; 6093 6094 /* This mount is not fully visible if there are any 6095 * locked child mounts that cover anything except for 6096 * empty directories. 6097 */ 6098 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6099 struct inode *inode = child->mnt_mountpoint->d_inode; 6100 /* Only worry about locked mounts */ 6101 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6102 continue; 6103 /* Is the directory permanently empty? */ 6104 if (!is_empty_dir_inode(inode)) 6105 goto next; 6106 } 6107 /* Preserve the locked attributes */ 6108 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6109 MNT_LOCK_ATIME); 6110 visible = true; 6111 goto found; 6112 next: ; 6113 } 6114 found: 6115 up_read(&namespace_sem); 6116 return visible; 6117 } 6118 6119 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6120 { 6121 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6122 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6123 unsigned long s_iflags; 6124 6125 if (ns->user_ns == &init_user_ns) 6126 return false; 6127 6128 /* Can this filesystem be too revealing? */ 6129 s_iflags = sb->s_iflags; 6130 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6131 return false; 6132 6133 if ((s_iflags & required_iflags) != required_iflags) { 6134 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6135 required_iflags); 6136 return true; 6137 } 6138 6139 return !mnt_already_visible(ns, sb, new_mnt_flags); 6140 } 6141 6142 bool mnt_may_suid(struct vfsmount *mnt) 6143 { 6144 /* 6145 * Foreign mounts (accessed via fchdir or through /proc 6146 * symlinks) are always treated as if they are nosuid. This 6147 * prevents namespaces from trusting potentially unsafe 6148 * suid/sgid bits, file caps, or security labels that originate 6149 * in other namespaces. 6150 */ 6151 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6152 current_in_userns(mnt->mnt_sb->s_user_ns); 6153 } 6154 6155 static struct ns_common *mntns_get(struct task_struct *task) 6156 { 6157 struct ns_common *ns = NULL; 6158 struct nsproxy *nsproxy; 6159 6160 task_lock(task); 6161 nsproxy = task->nsproxy; 6162 if (nsproxy) { 6163 ns = &nsproxy->mnt_ns->ns; 6164 get_mnt_ns(to_mnt_ns(ns)); 6165 } 6166 task_unlock(task); 6167 6168 return ns; 6169 } 6170 6171 static void mntns_put(struct ns_common *ns) 6172 { 6173 put_mnt_ns(to_mnt_ns(ns)); 6174 } 6175 6176 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6177 { 6178 struct nsproxy *nsproxy = nsset->nsproxy; 6179 struct fs_struct *fs = nsset->fs; 6180 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6181 struct user_namespace *user_ns = nsset->cred->user_ns; 6182 struct path root; 6183 int err; 6184 6185 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6186 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6187 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6188 return -EPERM; 6189 6190 if (is_anon_ns(mnt_ns)) 6191 return -EINVAL; 6192 6193 if (fs->users != 1) 6194 return -EINVAL; 6195 6196 get_mnt_ns(mnt_ns); 6197 old_mnt_ns = nsproxy->mnt_ns; 6198 nsproxy->mnt_ns = mnt_ns; 6199 6200 /* Find the root */ 6201 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6202 "/", LOOKUP_DOWN, &root); 6203 if (err) { 6204 /* revert to old namespace */ 6205 nsproxy->mnt_ns = old_mnt_ns; 6206 put_mnt_ns(mnt_ns); 6207 return err; 6208 } 6209 6210 put_mnt_ns(old_mnt_ns); 6211 6212 /* Update the pwd and root */ 6213 set_fs_pwd(fs, &root); 6214 set_fs_root(fs, &root); 6215 6216 path_put(&root); 6217 return 0; 6218 } 6219 6220 static struct user_namespace *mntns_owner(struct ns_common *ns) 6221 { 6222 return to_mnt_ns(ns)->user_ns; 6223 } 6224 6225 const struct proc_ns_operations mntns_operations = { 6226 .name = "mnt", 6227 .type = CLONE_NEWNS, 6228 .get = mntns_get, 6229 .put = mntns_put, 6230 .install = mntns_install, 6231 .owner = mntns_owner, 6232 }; 6233 6234 #ifdef CONFIG_SYSCTL 6235 static const struct ctl_table fs_namespace_sysctls[] = { 6236 { 6237 .procname = "mount-max", 6238 .data = &sysctl_mount_max, 6239 .maxlen = sizeof(unsigned int), 6240 .mode = 0644, 6241 .proc_handler = proc_dointvec_minmax, 6242 .extra1 = SYSCTL_ONE, 6243 }, 6244 }; 6245 6246 static int __init init_fs_namespace_sysctls(void) 6247 { 6248 register_sysctl_init("fs", fs_namespace_sysctls); 6249 return 0; 6250 } 6251 fs_initcall(init_fs_namespace_sysctls); 6252 6253 #endif /* CONFIG_SYSCTL */ 6254