xref: /linux/fs/namespace.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37 
38 #include "pnode.h"
39 #include "internal.h"
40 
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48 
49 static __initdata unsigned long mhash_entries;
50 static int __init set_mhash_entries(char *str)
51 {
52 	if (!str)
53 		return 0;
54 	mhash_entries = simple_strtoul(str, &str, 0);
55 	return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58 
59 static __initdata unsigned long mphash_entries;
60 static int __init set_mphash_entries(char *str)
61 {
62 	if (!str)
63 		return 0;
64 	mphash_entries = simple_strtoul(str, &str, 0);
65 	return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68 
69 static char * __initdata initramfs_options;
70 static int __init initramfs_options_setup(char *str)
71 {
72 	initramfs_options = str;
73 	return 1;
74 }
75 
76 __setup("initramfs_options=", initramfs_options_setup);
77 
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81 
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85 
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93 
94 static inline void namespace_lock(void);
95 static void namespace_unlock(void);
96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 				      up_read(&namespace_sem))
99 
100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101 
102 #ifdef CONFIG_FSNOTIFY
103 LIST_HEAD(notify_list); /* protected by namespace_sem */
104 #endif
105 
106 enum mount_kattr_flags_t {
107 	MOUNT_KATTR_RECURSE		= (1 << 0),
108 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
109 };
110 
111 struct mount_kattr {
112 	unsigned int attr_set;
113 	unsigned int attr_clr;
114 	unsigned int propagation;
115 	unsigned int lookup_flags;
116 	enum mount_kattr_flags_t kflags;
117 	struct user_namespace *mnt_userns;
118 	struct mnt_idmap *mnt_idmap;
119 };
120 
121 /* /sys/fs */
122 struct kobject *fs_kobj __ro_after_init;
123 EXPORT_SYMBOL_GPL(fs_kobj);
124 
125 /*
126  * vfsmount lock may be taken for read to prevent changes to the
127  * vfsmount hash, ie. during mountpoint lookups or walking back
128  * up the tree.
129  *
130  * It should be taken for write in all cases where the vfsmount
131  * tree or hash is modified or when a vfsmount structure is modified.
132  */
133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134 
135 static void mnt_ns_release(struct mnt_namespace *ns)
136 {
137 	/* keep alive for {list,stat}mount() */
138 	if (ns && refcount_dec_and_test(&ns->passive)) {
139 		fsnotify_mntns_delete(ns);
140 		put_user_ns(ns->user_ns);
141 		kfree(ns);
142 	}
143 }
144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
145 	    if (!IS_ERR(_T)) mnt_ns_release(_T))
146 
147 static void mnt_ns_release_rcu(struct rcu_head *rcu)
148 {
149 	mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
150 }
151 
152 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
153 {
154 	/* remove from global mount namespace list */
155 	if (ns_tree_active(ns))
156 		ns_tree_remove(ns);
157 
158 	call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
159 }
160 
161 /*
162  * Lookup a mount namespace by id and take a passive reference count. Taking a
163  * passive reference means the mount namespace can be emptied if e.g., the last
164  * task holding an active reference exits. To access the mounts of the
165  * namespace the @namespace_sem must first be acquired. If the namespace has
166  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
167  * see that the mount rbtree of the namespace is empty.
168  *
169  * Note the lookup is lockless protected by a sequence counter. We only
170  * need to guard against false negatives as false positives aren't
171  * possible. So if we didn't find a mount namespace and the sequence
172  * counter has changed we need to retry. If the sequence counter is
173  * still the same we know the search actually failed.
174  */
175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
176 {
177 	struct mnt_namespace *mnt_ns;
178 	struct ns_common *ns;
179 
180 	guard(rcu)();
181 	ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
182 	if (!ns)
183 		return NULL;
184 
185 	/*
186 	 * The last reference count is put with RCU delay so we can
187 	 * unconditonally acquire a reference here.
188 	 */
189 	mnt_ns = container_of(ns, struct mnt_namespace, ns);
190 	refcount_inc(&mnt_ns->passive);
191 	return mnt_ns;
192 }
193 
194 static inline void lock_mount_hash(void)
195 {
196 	write_seqlock(&mount_lock);
197 }
198 
199 static inline void unlock_mount_hash(void)
200 {
201 	write_sequnlock(&mount_lock);
202 }
203 
204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
205 {
206 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
207 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
208 	tmp = tmp + (tmp >> m_hash_shift);
209 	return &mount_hashtable[tmp & m_hash_mask];
210 }
211 
212 static inline struct hlist_head *mp_hash(struct dentry *dentry)
213 {
214 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
215 	tmp = tmp + (tmp >> mp_hash_shift);
216 	return &mountpoint_hashtable[tmp & mp_hash_mask];
217 }
218 
219 static int mnt_alloc_id(struct mount *mnt)
220 {
221 	int res;
222 
223 	xa_lock(&mnt_id_xa);
224 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
225 	if (!res)
226 		mnt->mnt_id_unique = ++mnt_id_ctr;
227 	xa_unlock(&mnt_id_xa);
228 	return res;
229 }
230 
231 static void mnt_free_id(struct mount *mnt)
232 {
233 	xa_erase(&mnt_id_xa, mnt->mnt_id);
234 }
235 
236 /*
237  * Allocate a new peer group ID
238  */
239 static int mnt_alloc_group_id(struct mount *mnt)
240 {
241 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
242 
243 	if (res < 0)
244 		return res;
245 	mnt->mnt_group_id = res;
246 	return 0;
247 }
248 
249 /*
250  * Release a peer group ID
251  */
252 void mnt_release_group_id(struct mount *mnt)
253 {
254 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
255 	mnt->mnt_group_id = 0;
256 }
257 
258 /*
259  * vfsmount lock must be held for read
260  */
261 static inline void mnt_add_count(struct mount *mnt, int n)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
265 #else
266 	preempt_disable();
267 	mnt->mnt_count += n;
268 	preempt_enable();
269 #endif
270 }
271 
272 /*
273  * vfsmount lock must be held for write
274  */
275 int mnt_get_count(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	int count = 0;
279 	int cpu;
280 
281 	for_each_possible_cpu(cpu) {
282 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
283 	}
284 
285 	return count;
286 #else
287 	return mnt->mnt_count;
288 #endif
289 }
290 
291 static struct mount *alloc_vfsmnt(const char *name)
292 {
293 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
294 	if (mnt) {
295 		int err;
296 
297 		err = mnt_alloc_id(mnt);
298 		if (err)
299 			goto out_free_cache;
300 
301 		if (name)
302 			mnt->mnt_devname = kstrdup_const(name,
303 							 GFP_KERNEL_ACCOUNT);
304 		else
305 			mnt->mnt_devname = "none";
306 		if (!mnt->mnt_devname)
307 			goto out_free_id;
308 
309 #ifdef CONFIG_SMP
310 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
311 		if (!mnt->mnt_pcp)
312 			goto out_free_devname;
313 
314 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
315 #else
316 		mnt->mnt_count = 1;
317 		mnt->mnt_writers = 0;
318 #endif
319 
320 		INIT_HLIST_NODE(&mnt->mnt_hash);
321 		INIT_LIST_HEAD(&mnt->mnt_child);
322 		INIT_LIST_HEAD(&mnt->mnt_mounts);
323 		INIT_LIST_HEAD(&mnt->mnt_list);
324 		INIT_LIST_HEAD(&mnt->mnt_expire);
325 		INIT_LIST_HEAD(&mnt->mnt_share);
326 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
327 		INIT_HLIST_NODE(&mnt->mnt_slave);
328 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
329 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
330 		RB_CLEAR_NODE(&mnt->mnt_node);
331 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
332 	}
333 	return mnt;
334 
335 #ifdef CONFIG_SMP
336 out_free_devname:
337 	kfree_const(mnt->mnt_devname);
338 #endif
339 out_free_id:
340 	mnt_free_id(mnt);
341 out_free_cache:
342 	kmem_cache_free(mnt_cache, mnt);
343 	return NULL;
344 }
345 
346 /*
347  * Most r/o checks on a fs are for operations that take
348  * discrete amounts of time, like a write() or unlink().
349  * We must keep track of when those operations start
350  * (for permission checks) and when they end, so that
351  * we can determine when writes are able to occur to
352  * a filesystem.
353  */
354 /*
355  * __mnt_is_readonly: check whether a mount is read-only
356  * @mnt: the mount to check for its write status
357  *
358  * This shouldn't be used directly ouside of the VFS.
359  * It does not guarantee that the filesystem will stay
360  * r/w, just that it is right *now*.  This can not and
361  * should not be used in place of IS_RDONLY(inode).
362  * mnt_want/drop_write() will _keep_ the filesystem
363  * r/w.
364  */
365 bool __mnt_is_readonly(const struct vfsmount *mnt)
366 {
367 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
368 }
369 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
370 
371 static inline void mnt_inc_writers(struct mount *mnt)
372 {
373 #ifdef CONFIG_SMP
374 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
375 #else
376 	mnt->mnt_writers++;
377 #endif
378 }
379 
380 static inline void mnt_dec_writers(struct mount *mnt)
381 {
382 #ifdef CONFIG_SMP
383 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
384 #else
385 	mnt->mnt_writers--;
386 #endif
387 }
388 
389 static unsigned int mnt_get_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 	unsigned int count = 0;
393 	int cpu;
394 
395 	for_each_possible_cpu(cpu) {
396 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
397 	}
398 
399 	return count;
400 #else
401 	return mnt->mnt_writers;
402 #endif
403 }
404 
405 static int mnt_is_readonly(const struct vfsmount *mnt)
406 {
407 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
408 		return 1;
409 	/*
410 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
411 	 * making sure if we don't see s_readonly_remount set yet, we also will
412 	 * not see any superblock / mount flag changes done by remount.
413 	 * It also pairs with the barrier in sb_end_ro_state_change()
414 	 * assuring that if we see s_readonly_remount already cleared, we will
415 	 * see the values of superblock / mount flags updated by remount.
416 	 */
417 	smp_rmb();
418 	return __mnt_is_readonly(mnt);
419 }
420 
421 /*
422  * Most r/o & frozen checks on a fs are for operations that take discrete
423  * amounts of time, like a write() or unlink().  We must keep track of when
424  * those operations start (for permission checks) and when they end, so that we
425  * can determine when writes are able to occur to a filesystem.
426  */
427 /**
428  * mnt_get_write_access - get write access to a mount without freeze protection
429  * @m: the mount on which to take a write
430  *
431  * This tells the low-level filesystem that a write is about to be performed to
432  * it, and makes sure that writes are allowed (mnt it read-write) before
433  * returning success. This operation does not protect against filesystem being
434  * frozen. When the write operation is finished, mnt_put_write_access() must be
435  * called. This is effectively a refcount.
436  */
437 int mnt_get_write_access(struct vfsmount *m)
438 {
439 	struct mount *mnt = real_mount(m);
440 	int ret = 0;
441 
442 	preempt_disable();
443 	mnt_inc_writers(mnt);
444 	/*
445 	 * The store to mnt_inc_writers must be visible before we pass
446 	 * WRITE_HOLD loop below, so that the slowpath can see our
447 	 * incremented count after it has set WRITE_HOLD.
448 	 */
449 	smp_mb();
450 	might_lock(&mount_lock.lock);
451 	while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
452 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
453 			cpu_relax();
454 		} else {
455 			/*
456 			 * This prevents priority inversion, if the task
457 			 * setting WRITE_HOLD got preempted on a remote
458 			 * CPU, and it prevents life lock if the task setting
459 			 * WRITE_HOLD has a lower priority and is bound to
460 			 * the same CPU as the task that is spinning here.
461 			 */
462 			preempt_enable();
463 			read_seqlock_excl(&mount_lock);
464 			read_sequnlock_excl(&mount_lock);
465 			preempt_disable();
466 		}
467 	}
468 	/*
469 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
470 	 * sure that if we see WRITE_HOLD cleared, we will also see
471 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
472 	 * mnt_is_readonly() and bail in case we are racing with remount
473 	 * read-only.
474 	 */
475 	smp_rmb();
476 	if (mnt_is_readonly(m)) {
477 		mnt_dec_writers(mnt);
478 		ret = -EROFS;
479 	}
480 	preempt_enable();
481 
482 	return ret;
483 }
484 EXPORT_SYMBOL_GPL(mnt_get_write_access);
485 
486 /**
487  * mnt_want_write - get write access to a mount
488  * @m: the mount on which to take a write
489  *
490  * This tells the low-level filesystem that a write is about to be performed to
491  * it, and makes sure that writes are allowed (mount is read-write, filesystem
492  * is not frozen) before returning success.  When the write operation is
493  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
494  */
495 int mnt_want_write(struct vfsmount *m)
496 {
497 	int ret;
498 
499 	sb_start_write(m->mnt_sb);
500 	ret = mnt_get_write_access(m);
501 	if (ret)
502 		sb_end_write(m->mnt_sb);
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write);
506 
507 /**
508  * mnt_get_write_access_file - get write access to a file's mount
509  * @file: the file who's mount on which to take a write
510  *
511  * This is like mnt_get_write_access, but if @file is already open for write it
512  * skips incrementing mnt_writers (since the open file already has a reference)
513  * and instead only does the check for emergency r/o remounts.  This must be
514  * paired with mnt_put_write_access_file.
515  */
516 int mnt_get_write_access_file(struct file *file)
517 {
518 	if (file->f_mode & FMODE_WRITER) {
519 		/*
520 		 * Superblock may have become readonly while there are still
521 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
522 		 */
523 		if (__mnt_is_readonly(file->f_path.mnt))
524 			return -EROFS;
525 		return 0;
526 	}
527 	return mnt_get_write_access(file->f_path.mnt);
528 }
529 
530 /**
531  * mnt_want_write_file - get write access to a file's mount
532  * @file: the file who's mount on which to take a write
533  *
534  * This is like mnt_want_write, but if the file is already open for writing it
535  * skips incrementing mnt_writers (since the open file already has a reference)
536  * and instead only does the freeze protection and the check for emergency r/o
537  * remounts.  This must be paired with mnt_drop_write_file.
538  */
539 int mnt_want_write_file(struct file *file)
540 {
541 	int ret;
542 
543 	sb_start_write(file_inode(file)->i_sb);
544 	ret = mnt_get_write_access_file(file);
545 	if (ret)
546 		sb_end_write(file_inode(file)->i_sb);
547 	return ret;
548 }
549 EXPORT_SYMBOL_GPL(mnt_want_write_file);
550 
551 /**
552  * mnt_put_write_access - give up write access to a mount
553  * @mnt: the mount on which to give up write access
554  *
555  * Tells the low-level filesystem that we are done
556  * performing writes to it.  Must be matched with
557  * mnt_get_write_access() call above.
558  */
559 void mnt_put_write_access(struct vfsmount *mnt)
560 {
561 	preempt_disable();
562 	mnt_dec_writers(real_mount(mnt));
563 	preempt_enable();
564 }
565 EXPORT_SYMBOL_GPL(mnt_put_write_access);
566 
567 /**
568  * mnt_drop_write - give up write access to a mount
569  * @mnt: the mount on which to give up write access
570  *
571  * Tells the low-level filesystem that we are done performing writes to it and
572  * also allows filesystem to be frozen again.  Must be matched with
573  * mnt_want_write() call above.
574  */
575 void mnt_drop_write(struct vfsmount *mnt)
576 {
577 	mnt_put_write_access(mnt);
578 	sb_end_write(mnt->mnt_sb);
579 }
580 EXPORT_SYMBOL_GPL(mnt_drop_write);
581 
582 void mnt_put_write_access_file(struct file *file)
583 {
584 	if (!(file->f_mode & FMODE_WRITER))
585 		mnt_put_write_access(file->f_path.mnt);
586 }
587 
588 void mnt_drop_write_file(struct file *file)
589 {
590 	mnt_put_write_access_file(file);
591 	sb_end_write(file_inode(file)->i_sb);
592 }
593 EXPORT_SYMBOL(mnt_drop_write_file);
594 
595 /**
596  * mnt_hold_writers - prevent write access to the given mount
597  * @mnt: mnt to prevent write access to
598  *
599  * Prevents write access to @mnt if there are no active writers for @mnt.
600  * This function needs to be called and return successfully before changing
601  * properties of @mnt that need to remain stable for callers with write access
602  * to @mnt.
603  *
604  * After this functions has been called successfully callers must pair it with
605  * a call to mnt_unhold_writers() in order to stop preventing write access to
606  * @mnt.
607  *
608  * Context: This function expects to be in mount_locked_reader scope serializing
609  *          setting WRITE_HOLD.
610  * Return: On success 0 is returned.
611  *	   On error, -EBUSY is returned.
612  */
613 static inline int mnt_hold_writers(struct mount *mnt)
614 {
615 	set_write_hold(mnt);
616 	/*
617 	 * After storing WRITE_HOLD, we'll read the counters. This store
618 	 * should be visible before we do.
619 	 */
620 	smp_mb();
621 
622 	/*
623 	 * With writers on hold, if this value is zero, then there are
624 	 * definitely no active writers (although held writers may subsequently
625 	 * increment the count, they'll have to wait, and decrement it after
626 	 * seeing MNT_READONLY).
627 	 *
628 	 * It is OK to have counter incremented on one CPU and decremented on
629 	 * another: the sum will add up correctly. The danger would be when we
630 	 * sum up each counter, if we read a counter before it is incremented,
631 	 * but then read another CPU's count which it has been subsequently
632 	 * decremented from -- we would see more decrements than we should.
633 	 * WRITE_HOLD protects against this scenario, because
634 	 * mnt_want_write first increments count, then smp_mb, then spins on
635 	 * WRITE_HOLD, so it can't be decremented by another CPU while
636 	 * we're counting up here.
637 	 */
638 	if (mnt_get_writers(mnt) > 0)
639 		return -EBUSY;
640 
641 	return 0;
642 }
643 
644 /**
645  * mnt_unhold_writers - stop preventing write access to the given mount
646  * @mnt: mnt to stop preventing write access to
647  *
648  * Stop preventing write access to @mnt allowing callers to gain write access
649  * to @mnt again.
650  *
651  * This function can only be called after a call to mnt_hold_writers().
652  *
653  * Context: This function expects to be in the same mount_locked_reader scope
654  * as the matching mnt_hold_writers().
655  */
656 static inline void mnt_unhold_writers(struct mount *mnt)
657 {
658 	if (!test_write_hold(mnt))
659 		return;
660 	/*
661 	 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
662 	 * that become unheld will see MNT_READONLY.
663 	 */
664 	smp_wmb();
665 	clear_write_hold(mnt);
666 }
667 
668 static inline void mnt_del_instance(struct mount *m)
669 {
670 	struct mount **p = m->mnt_pprev_for_sb;
671 	struct mount *next = m->mnt_next_for_sb;
672 
673 	if (next)
674 		next->mnt_pprev_for_sb = p;
675 	*p = next;
676 }
677 
678 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
679 {
680 	struct mount *first = s->s_mounts;
681 
682 	if (first)
683 		first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
684 	m->mnt_next_for_sb = first;
685 	m->mnt_pprev_for_sb = &s->s_mounts;
686 	s->s_mounts = m;
687 }
688 
689 static int mnt_make_readonly(struct mount *mnt)
690 {
691 	int ret;
692 
693 	ret = mnt_hold_writers(mnt);
694 	if (!ret)
695 		mnt->mnt.mnt_flags |= MNT_READONLY;
696 	mnt_unhold_writers(mnt);
697 	return ret;
698 }
699 
700 int sb_prepare_remount_readonly(struct super_block *sb)
701 {
702 	int err = 0;
703 
704 	/* Racy optimization.  Recheck the counter under WRITE_HOLD */
705 	if (atomic_long_read(&sb->s_remove_count))
706 		return -EBUSY;
707 
708 	guard(mount_locked_reader)();
709 
710 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
711 		if (!(m->mnt.mnt_flags & MNT_READONLY)) {
712 			err = mnt_hold_writers(m);
713 			if (err)
714 				break;
715 		}
716 	}
717 	if (!err && atomic_long_read(&sb->s_remove_count))
718 		err = -EBUSY;
719 
720 	if (!err)
721 		sb_start_ro_state_change(sb);
722 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
723 		if (test_write_hold(m))
724 			clear_write_hold(m);
725 	}
726 
727 	return err;
728 }
729 
730 static void free_vfsmnt(struct mount *mnt)
731 {
732 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
733 	kfree_const(mnt->mnt_devname);
734 #ifdef CONFIG_SMP
735 	free_percpu(mnt->mnt_pcp);
736 #endif
737 	kmem_cache_free(mnt_cache, mnt);
738 }
739 
740 static void delayed_free_vfsmnt(struct rcu_head *head)
741 {
742 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
743 }
744 
745 /* call under rcu_read_lock */
746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
747 {
748 	struct mount *mnt;
749 	if (read_seqretry(&mount_lock, seq))
750 		return 1;
751 	if (bastard == NULL)
752 		return 0;
753 	mnt = real_mount(bastard);
754 	mnt_add_count(mnt, 1);
755 	smp_mb();		// see mntput_no_expire() and do_umount()
756 	if (likely(!read_seqretry(&mount_lock, seq)))
757 		return 0;
758 	lock_mount_hash();
759 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
760 		mnt_add_count(mnt, -1);
761 		unlock_mount_hash();
762 		return 1;
763 	}
764 	unlock_mount_hash();
765 	/* caller will mntput() */
766 	return -1;
767 }
768 
769 /* call under rcu_read_lock */
770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
771 {
772 	int res = __legitimize_mnt(bastard, seq);
773 	if (likely(!res))
774 		return true;
775 	if (unlikely(res < 0)) {
776 		rcu_read_unlock();
777 		mntput(bastard);
778 		rcu_read_lock();
779 	}
780 	return false;
781 }
782 
783 /**
784  * __lookup_mnt - mount hash lookup
785  * @mnt:	parent mount
786  * @dentry:	dentry of mountpoint
787  *
788  * If @mnt has a child mount @c mounted on @dentry find and return it.
789  * Caller must either hold the spinlock component of @mount_lock or
790  * hold rcu_read_lock(), sample the seqcount component before the call
791  * and recheck it afterwards.
792  *
793  * Return: The child of @mnt mounted on @dentry or %NULL.
794  */
795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
796 {
797 	struct hlist_head *head = m_hash(mnt, dentry);
798 	struct mount *p;
799 
800 	hlist_for_each_entry_rcu(p, head, mnt_hash)
801 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
802 			return p;
803 	return NULL;
804 }
805 
806 /**
807  * lookup_mnt - Return the child mount mounted at given location
808  * @path:	location in the namespace
809  *
810  * Acquires and returns a new reference to mount at given location
811  * or %NULL if nothing is mounted there.
812  */
813 struct vfsmount *lookup_mnt(const struct path *path)
814 {
815 	struct mount *child_mnt;
816 	struct vfsmount *m;
817 	unsigned seq;
818 
819 	rcu_read_lock();
820 	do {
821 		seq = read_seqbegin(&mount_lock);
822 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
823 		m = child_mnt ? &child_mnt->mnt : NULL;
824 	} while (!legitimize_mnt(m, seq));
825 	rcu_read_unlock();
826 	return m;
827 }
828 
829 /*
830  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
831  *                         current mount namespace.
832  *
833  * The common case is dentries are not mountpoints at all and that
834  * test is handled inline.  For the slow case when we are actually
835  * dealing with a mountpoint of some kind, walk through all of the
836  * mounts in the current mount namespace and test to see if the dentry
837  * is a mountpoint.
838  *
839  * The mount_hashtable is not usable in the context because we
840  * need to identify all mounts that may be in the current mount
841  * namespace not just a mount that happens to have some specified
842  * parent mount.
843  */
844 bool __is_local_mountpoint(const struct dentry *dentry)
845 {
846 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
847 	struct mount *mnt, *n;
848 
849 	guard(namespace_shared)();
850 
851 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
852 		if (mnt->mnt_mountpoint == dentry)
853 			return true;
854 
855 	return false;
856 }
857 
858 struct pinned_mountpoint {
859 	struct hlist_node node;
860 	struct mountpoint *mp;
861 	struct mount *parent;
862 };
863 
864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
865 {
866 	struct hlist_head *chain = mp_hash(dentry);
867 	struct mountpoint *mp;
868 
869 	hlist_for_each_entry(mp, chain, m_hash) {
870 		if (mp->m_dentry == dentry) {
871 			hlist_add_head(&m->node, &mp->m_list);
872 			m->mp = mp;
873 			return true;
874 		}
875 	}
876 	return false;
877 }
878 
879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
880 {
881 	struct mountpoint *mp __free(kfree) = NULL;
882 	bool found;
883 	int ret;
884 
885 	if (d_mountpoint(dentry)) {
886 		/* might be worth a WARN_ON() */
887 		if (d_unlinked(dentry))
888 			return -ENOENT;
889 mountpoint:
890 		read_seqlock_excl(&mount_lock);
891 		found = lookup_mountpoint(dentry, m);
892 		read_sequnlock_excl(&mount_lock);
893 		if (found)
894 			return 0;
895 	}
896 
897 	if (!mp)
898 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
899 	if (!mp)
900 		return -ENOMEM;
901 
902 	/* Exactly one processes may set d_mounted */
903 	ret = d_set_mounted(dentry);
904 
905 	/* Someone else set d_mounted? */
906 	if (ret == -EBUSY)
907 		goto mountpoint;
908 
909 	/* The dentry is not available as a mountpoint? */
910 	if (ret)
911 		return ret;
912 
913 	/* Add the new mountpoint to the hash table */
914 	read_seqlock_excl(&mount_lock);
915 	mp->m_dentry = dget(dentry);
916 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
917 	INIT_HLIST_HEAD(&mp->m_list);
918 	hlist_add_head(&m->node, &mp->m_list);
919 	m->mp = no_free_ptr(mp);
920 	read_sequnlock_excl(&mount_lock);
921 	return 0;
922 }
923 
924 /*
925  * vfsmount lock must be held.  Additionally, the caller is responsible
926  * for serializing calls for given disposal list.
927  */
928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
929 {
930 	if (hlist_empty(&mp->m_list)) {
931 		struct dentry *dentry = mp->m_dentry;
932 		spin_lock(&dentry->d_lock);
933 		dentry->d_flags &= ~DCACHE_MOUNTED;
934 		spin_unlock(&dentry->d_lock);
935 		dput_to_list(dentry, list);
936 		hlist_del(&mp->m_hash);
937 		kfree(mp);
938 	}
939 }
940 
941 /*
942  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
943  */
944 static void unpin_mountpoint(struct pinned_mountpoint *m)
945 {
946 	if (m->mp) {
947 		hlist_del(&m->node);
948 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
949 	}
950 }
951 
952 static inline int check_mnt(const struct mount *mnt)
953 {
954 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
955 }
956 
957 static inline bool check_anonymous_mnt(struct mount *mnt)
958 {
959 	u64 seq;
960 
961 	if (!is_anon_ns(mnt->mnt_ns))
962 		return false;
963 
964 	seq = mnt->mnt_ns->seq_origin;
965 	return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
966 }
967 
968 /*
969  * vfsmount lock must be held for write
970  */
971 static void touch_mnt_namespace(struct mnt_namespace *ns)
972 {
973 	if (ns) {
974 		ns->event = ++event;
975 		wake_up_interruptible(&ns->poll);
976 	}
977 }
978 
979 /*
980  * vfsmount lock must be held for write
981  */
982 static void __touch_mnt_namespace(struct mnt_namespace *ns)
983 {
984 	if (ns && ns->event != event) {
985 		ns->event = event;
986 		wake_up_interruptible(&ns->poll);
987 	}
988 }
989 
990 /*
991  * locks: mount_lock[write_seqlock]
992  */
993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
994 {
995 	struct mountpoint *mp;
996 	struct mount *parent = mnt->mnt_parent;
997 	if (unlikely(parent->overmount == mnt))
998 		parent->overmount = NULL;
999 	mnt->mnt_parent = mnt;
1000 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 	list_del_init(&mnt->mnt_child);
1002 	hlist_del_init_rcu(&mnt->mnt_hash);
1003 	hlist_del_init(&mnt->mnt_mp_list);
1004 	mp = mnt->mnt_mp;
1005 	mnt->mnt_mp = NULL;
1006 	maybe_free_mountpoint(mp, shrink_list);
1007 }
1008 
1009 /*
1010  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1011  */
1012 static void umount_mnt(struct mount *mnt)
1013 {
1014 	__umount_mnt(mnt, &ex_mountpoints);
1015 }
1016 
1017 /*
1018  * vfsmount lock must be held for write
1019  */
1020 void mnt_set_mountpoint(struct mount *mnt,
1021 			struct mountpoint *mp,
1022 			struct mount *child_mnt)
1023 {
1024 	child_mnt->mnt_mountpoint = mp->m_dentry;
1025 	child_mnt->mnt_parent = mnt;
1026 	child_mnt->mnt_mp = mp;
1027 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029 
1030 static void make_visible(struct mount *mnt)
1031 {
1032 	struct mount *parent = mnt->mnt_parent;
1033 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1034 		parent->overmount = mnt;
1035 	hlist_add_head_rcu(&mnt->mnt_hash,
1036 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1037 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1038 }
1039 
1040 /**
1041  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1042  *              list of child mounts
1043  * @parent:  the parent
1044  * @mnt:     the new mount
1045  * @mp:      the new mountpoint
1046  *
1047  * Mount @mnt at @mp on @parent. Then attach @mnt
1048  * to @parent's child mount list and to @mount_hashtable.
1049  *
1050  * Note, when make_visible() is called @mnt->mnt_parent already points
1051  * to the correct parent.
1052  *
1053  * Context: This function expects namespace_lock() and lock_mount_hash()
1054  *          to have been acquired in that order.
1055  */
1056 static void attach_mnt(struct mount *mnt, struct mount *parent,
1057 		       struct mountpoint *mp)
1058 {
1059 	mnt_set_mountpoint(parent, mp, mnt);
1060 	make_visible(mnt);
1061 }
1062 
1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1064 {
1065 	struct mountpoint *old_mp = mnt->mnt_mp;
1066 
1067 	list_del_init(&mnt->mnt_child);
1068 	hlist_del_init(&mnt->mnt_mp_list);
1069 	hlist_del_init_rcu(&mnt->mnt_hash);
1070 
1071 	attach_mnt(mnt, parent, mp);
1072 
1073 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1074 }
1075 
1076 static inline struct mount *node_to_mount(struct rb_node *node)
1077 {
1078 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1079 }
1080 
1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1082 {
1083 	struct rb_node **link = &ns->mounts.rb_node;
1084 	struct rb_node *parent = NULL;
1085 	bool mnt_first_node = true, mnt_last_node = true;
1086 
1087 	WARN_ON(mnt_ns_attached(mnt));
1088 	mnt->mnt_ns = ns;
1089 	while (*link) {
1090 		parent = *link;
1091 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1092 			link = &parent->rb_left;
1093 			mnt_last_node = false;
1094 		} else {
1095 			link = &parent->rb_right;
1096 			mnt_first_node = false;
1097 		}
1098 	}
1099 
1100 	if (mnt_last_node)
1101 		ns->mnt_last_node = &mnt->mnt_node;
1102 	if (mnt_first_node)
1103 		ns->mnt_first_node = &mnt->mnt_node;
1104 	rb_link_node(&mnt->mnt_node, parent, link);
1105 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1106 
1107 	mnt_notify_add(mnt);
1108 }
1109 
1110 static struct mount *next_mnt(struct mount *p, struct mount *root)
1111 {
1112 	struct list_head *next = p->mnt_mounts.next;
1113 	if (next == &p->mnt_mounts) {
1114 		while (1) {
1115 			if (p == root)
1116 				return NULL;
1117 			next = p->mnt_child.next;
1118 			if (next != &p->mnt_parent->mnt_mounts)
1119 				break;
1120 			p = p->mnt_parent;
1121 		}
1122 	}
1123 	return list_entry(next, struct mount, mnt_child);
1124 }
1125 
1126 static struct mount *skip_mnt_tree(struct mount *p)
1127 {
1128 	struct list_head *prev = p->mnt_mounts.prev;
1129 	while (prev != &p->mnt_mounts) {
1130 		p = list_entry(prev, struct mount, mnt_child);
1131 		prev = p->mnt_mounts.prev;
1132 	}
1133 	return p;
1134 }
1135 
1136 /*
1137  * vfsmount lock must be held for write
1138  */
1139 static void commit_tree(struct mount *mnt)
1140 {
1141 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1142 
1143 	if (!mnt_ns_attached(mnt)) {
1144 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1145 			mnt_add_to_ns(n, m);
1146 		n->nr_mounts += n->pending_mounts;
1147 		n->pending_mounts = 0;
1148 	}
1149 
1150 	make_visible(mnt);
1151 	touch_mnt_namespace(n);
1152 }
1153 
1154 static void setup_mnt(struct mount *m, struct dentry *root)
1155 {
1156 	struct super_block *s = root->d_sb;
1157 
1158 	atomic_inc(&s->s_active);
1159 	m->mnt.mnt_sb = s;
1160 	m->mnt.mnt_root = dget(root);
1161 	m->mnt_mountpoint = m->mnt.mnt_root;
1162 	m->mnt_parent = m;
1163 
1164 	guard(mount_locked_reader)();
1165 	mnt_add_instance(m, s);
1166 }
1167 
1168 /**
1169  * vfs_create_mount - Create a mount for a configured superblock
1170  * @fc: The configuration context with the superblock attached
1171  *
1172  * Create a mount to an already configured superblock.  If necessary, the
1173  * caller should invoke vfs_get_tree() before calling this.
1174  *
1175  * Note that this does not attach the mount to anything.
1176  */
1177 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1178 {
1179 	struct mount *mnt;
1180 
1181 	if (!fc->root)
1182 		return ERR_PTR(-EINVAL);
1183 
1184 	mnt = alloc_vfsmnt(fc->source);
1185 	if (!mnt)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	if (fc->sb_flags & SB_KERNMOUNT)
1189 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1190 
1191 	setup_mnt(mnt, fc->root);
1192 
1193 	return &mnt->mnt;
1194 }
1195 EXPORT_SYMBOL(vfs_create_mount);
1196 
1197 struct vfsmount *fc_mount(struct fs_context *fc)
1198 {
1199 	int err = vfs_get_tree(fc);
1200 	if (!err) {
1201 		up_write(&fc->root->d_sb->s_umount);
1202 		return vfs_create_mount(fc);
1203 	}
1204 	return ERR_PTR(err);
1205 }
1206 EXPORT_SYMBOL(fc_mount);
1207 
1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1209 {
1210 	struct vfsmount *mnt = fc_mount(fc);
1211 	if (!IS_ERR(mnt))
1212 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1213 	return mnt;
1214 }
1215 EXPORT_SYMBOL(fc_mount_longterm);
1216 
1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1218 				int flags, const char *name,
1219 				void *data)
1220 {
1221 	struct fs_context *fc;
1222 	struct vfsmount *mnt;
1223 	int ret = 0;
1224 
1225 	if (!type)
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	fc = fs_context_for_mount(type, flags);
1229 	if (IS_ERR(fc))
1230 		return ERR_CAST(fc);
1231 
1232 	if (name)
1233 		ret = vfs_parse_fs_string(fc, "source", name);
1234 	if (!ret)
1235 		ret = parse_monolithic_mount_data(fc, data);
1236 	if (!ret)
1237 		mnt = fc_mount(fc);
1238 	else
1239 		mnt = ERR_PTR(ret);
1240 
1241 	put_fs_context(fc);
1242 	return mnt;
1243 }
1244 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1245 
1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1247 					int flag)
1248 {
1249 	struct mount *mnt;
1250 	int err;
1251 
1252 	mnt = alloc_vfsmnt(old->mnt_devname);
1253 	if (!mnt)
1254 		return ERR_PTR(-ENOMEM);
1255 
1256 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1257 			     ~MNT_INTERNAL_FLAGS;
1258 
1259 	if (flag & (CL_SLAVE | CL_PRIVATE))
1260 		mnt->mnt_group_id = 0; /* not a peer of original */
1261 	else
1262 		mnt->mnt_group_id = old->mnt_group_id;
1263 
1264 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1265 		err = mnt_alloc_group_id(mnt);
1266 		if (err)
1267 			goto out_free;
1268 	}
1269 
1270 	if (mnt->mnt_group_id)
1271 		set_mnt_shared(mnt);
1272 
1273 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1274 
1275 	setup_mnt(mnt, root);
1276 
1277 	if (flag & CL_PRIVATE)	// we are done with it
1278 		return mnt;
1279 
1280 	if (peers(mnt, old))
1281 		list_add(&mnt->mnt_share, &old->mnt_share);
1282 
1283 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 		mnt->mnt_master = old;
1286 	} else if (IS_MNT_SLAVE(old)) {
1287 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 		mnt->mnt_master = old->mnt_master;
1289 	}
1290 	return mnt;
1291 
1292  out_free:
1293 	mnt_free_id(mnt);
1294 	free_vfsmnt(mnt);
1295 	return ERR_PTR(err);
1296 }
1297 
1298 static void cleanup_mnt(struct mount *mnt)
1299 {
1300 	struct hlist_node *p;
1301 	struct mount *m;
1302 	/*
1303 	 * The warning here probably indicates that somebody messed
1304 	 * up a mnt_want/drop_write() pair.  If this happens, the
1305 	 * filesystem was probably unable to make r/w->r/o transitions.
1306 	 * The locking used to deal with mnt_count decrement provides barriers,
1307 	 * so mnt_get_writers() below is safe.
1308 	 */
1309 	WARN_ON(mnt_get_writers(mnt));
1310 	if (unlikely(mnt->mnt_pins.first))
1311 		mnt_pin_kill(mnt);
1312 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 		hlist_del(&m->mnt_umount);
1314 		mntput(&m->mnt);
1315 	}
1316 	fsnotify_vfsmount_delete(&mnt->mnt);
1317 	dput(mnt->mnt.mnt_root);
1318 	deactivate_super(mnt->mnt.mnt_sb);
1319 	mnt_free_id(mnt);
1320 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321 }
1322 
1323 static void __cleanup_mnt(struct rcu_head *head)
1324 {
1325 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326 }
1327 
1328 static LLIST_HEAD(delayed_mntput_list);
1329 static void delayed_mntput(struct work_struct *unused)
1330 {
1331 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 	struct mount *m, *t;
1333 
1334 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 		cleanup_mnt(m);
1336 }
1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338 
1339 static void noinline mntput_no_expire_slowpath(struct mount *mnt)
1340 {
1341 	LIST_HEAD(list);
1342 	int count;
1343 
1344 	VFS_BUG_ON(mnt->mnt_ns);
1345 	lock_mount_hash();
1346 	/*
1347 	 * make sure that if __legitimize_mnt() has not seen us grab
1348 	 * mount_lock, we'll see their refcount increment here.
1349 	 */
1350 	smp_mb();
1351 	mnt_add_count(mnt, -1);
1352 	count = mnt_get_count(mnt);
1353 	if (count != 0) {
1354 		WARN_ON(count < 0);
1355 		rcu_read_unlock();
1356 		unlock_mount_hash();
1357 		return;
1358 	}
1359 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1360 		rcu_read_unlock();
1361 		unlock_mount_hash();
1362 		return;
1363 	}
1364 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1365 	rcu_read_unlock();
1366 
1367 	mnt_del_instance(mnt);
1368 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1369 		list_del(&mnt->mnt_expire);
1370 
1371 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1372 		struct mount *p, *tmp;
1373 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1374 			__umount_mnt(p, &list);
1375 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1376 		}
1377 	}
1378 	unlock_mount_hash();
1379 	shrink_dentry_list(&list);
1380 
1381 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1382 		struct task_struct *task = current;
1383 		if (likely(!(task->flags & PF_KTHREAD))) {
1384 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1385 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1386 				return;
1387 		}
1388 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1389 			schedule_delayed_work(&delayed_mntput_work, 1);
1390 		return;
1391 	}
1392 	cleanup_mnt(mnt);
1393 }
1394 
1395 static void mntput_no_expire(struct mount *mnt)
1396 {
1397 	rcu_read_lock();
1398 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1399 		/*
1400 		 * Since we don't do lock_mount_hash() here,
1401 		 * ->mnt_ns can change under us.  However, if it's
1402 		 * non-NULL, then there's a reference that won't
1403 		 * be dropped until after an RCU delay done after
1404 		 * turning ->mnt_ns NULL.  So if we observe it
1405 		 * non-NULL under rcu_read_lock(), the reference
1406 		 * we are dropping is not the final one.
1407 		 */
1408 		mnt_add_count(mnt, -1);
1409 		rcu_read_unlock();
1410 		return;
1411 	}
1412 	mntput_no_expire_slowpath(mnt);
1413 }
1414 
1415 void mntput(struct vfsmount *mnt)
1416 {
1417 	if (mnt) {
1418 		struct mount *m = real_mount(mnt);
1419 		/* avoid cacheline pingpong */
1420 		if (unlikely(m->mnt_expiry_mark))
1421 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1422 		mntput_no_expire(m);
1423 	}
1424 }
1425 EXPORT_SYMBOL(mntput);
1426 
1427 struct vfsmount *mntget(struct vfsmount *mnt)
1428 {
1429 	if (mnt)
1430 		mnt_add_count(real_mount(mnt), 1);
1431 	return mnt;
1432 }
1433 EXPORT_SYMBOL(mntget);
1434 
1435 /*
1436  * Make a mount point inaccessible to new lookups.
1437  * Because there may still be current users, the caller MUST WAIT
1438  * for an RCU grace period before destroying the mount point.
1439  */
1440 void mnt_make_shortterm(struct vfsmount *mnt)
1441 {
1442 	if (mnt)
1443 		real_mount(mnt)->mnt_ns = NULL;
1444 }
1445 
1446 /**
1447  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1448  * @path: path to check
1449  *
1450  *  d_mountpoint() can only be used reliably to establish if a dentry is
1451  *  not mounted in any namespace and that common case is handled inline.
1452  *  d_mountpoint() isn't aware of the possibility there may be multiple
1453  *  mounts using a given dentry in a different namespace. This function
1454  *  checks if the passed in path is a mountpoint rather than the dentry
1455  *  alone.
1456  */
1457 bool path_is_mountpoint(const struct path *path)
1458 {
1459 	unsigned seq;
1460 	bool res;
1461 
1462 	if (!d_mountpoint(path->dentry))
1463 		return false;
1464 
1465 	rcu_read_lock();
1466 	do {
1467 		seq = read_seqbegin(&mount_lock);
1468 		res = __path_is_mountpoint(path);
1469 	} while (read_seqretry(&mount_lock, seq));
1470 	rcu_read_unlock();
1471 
1472 	return res;
1473 }
1474 EXPORT_SYMBOL(path_is_mountpoint);
1475 
1476 struct vfsmount *mnt_clone_internal(const struct path *path)
1477 {
1478 	struct mount *p;
1479 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1480 	if (IS_ERR(p))
1481 		return ERR_CAST(p);
1482 	p->mnt.mnt_flags |= MNT_INTERNAL;
1483 	return &p->mnt;
1484 }
1485 
1486 /*
1487  * Returns the mount which either has the specified mnt_id, or has the next
1488  * smallest id afer the specified one.
1489  */
1490 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1491 {
1492 	struct rb_node *node = ns->mounts.rb_node;
1493 	struct mount *ret = NULL;
1494 
1495 	while (node) {
1496 		struct mount *m = node_to_mount(node);
1497 
1498 		if (mnt_id <= m->mnt_id_unique) {
1499 			ret = node_to_mount(node);
1500 			if (mnt_id == m->mnt_id_unique)
1501 				break;
1502 			node = node->rb_left;
1503 		} else {
1504 			node = node->rb_right;
1505 		}
1506 	}
1507 	return ret;
1508 }
1509 
1510 /*
1511  * Returns the mount which either has the specified mnt_id, or has the next
1512  * greater id before the specified one.
1513  */
1514 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1515 {
1516 	struct rb_node *node = ns->mounts.rb_node;
1517 	struct mount *ret = NULL;
1518 
1519 	while (node) {
1520 		struct mount *m = node_to_mount(node);
1521 
1522 		if (mnt_id >= m->mnt_id_unique) {
1523 			ret = node_to_mount(node);
1524 			if (mnt_id == m->mnt_id_unique)
1525 				break;
1526 			node = node->rb_right;
1527 		} else {
1528 			node = node->rb_left;
1529 		}
1530 	}
1531 	return ret;
1532 }
1533 
1534 #ifdef CONFIG_PROC_FS
1535 
1536 /* iterator; we want it to have access to namespace_sem, thus here... */
1537 static void *m_start(struct seq_file *m, loff_t *pos)
1538 {
1539 	struct proc_mounts *p = m->private;
1540 
1541 	down_read(&namespace_sem);
1542 
1543 	return mnt_find_id_at(p->ns, *pos);
1544 }
1545 
1546 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1547 {
1548 	struct mount *next = NULL, *mnt = v;
1549 	struct rb_node *node = rb_next(&mnt->mnt_node);
1550 
1551 	++*pos;
1552 	if (node) {
1553 		next = node_to_mount(node);
1554 		*pos = next->mnt_id_unique;
1555 	}
1556 	return next;
1557 }
1558 
1559 static void m_stop(struct seq_file *m, void *v)
1560 {
1561 	up_read(&namespace_sem);
1562 }
1563 
1564 static int m_show(struct seq_file *m, void *v)
1565 {
1566 	struct proc_mounts *p = m->private;
1567 	struct mount *r = v;
1568 	return p->show(m, &r->mnt);
1569 }
1570 
1571 const struct seq_operations mounts_op = {
1572 	.start	= m_start,
1573 	.next	= m_next,
1574 	.stop	= m_stop,
1575 	.show	= m_show,
1576 };
1577 
1578 #endif  /* CONFIG_PROC_FS */
1579 
1580 /**
1581  * may_umount_tree - check if a mount tree is busy
1582  * @m: root of mount tree
1583  *
1584  * This is called to check if a tree of mounts has any
1585  * open files, pwds, chroots or sub mounts that are
1586  * busy.
1587  */
1588 int may_umount_tree(struct vfsmount *m)
1589 {
1590 	struct mount *mnt = real_mount(m);
1591 	bool busy = false;
1592 
1593 	/* write lock needed for mnt_get_count */
1594 	lock_mount_hash();
1595 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1596 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1597 			busy = true;
1598 			break;
1599 		}
1600 	}
1601 	unlock_mount_hash();
1602 
1603 	return !busy;
1604 }
1605 
1606 EXPORT_SYMBOL(may_umount_tree);
1607 
1608 /**
1609  * may_umount - check if a mount point is busy
1610  * @mnt: root of mount
1611  *
1612  * This is called to check if a mount point has any
1613  * open files, pwds, chroots or sub mounts. If the
1614  * mount has sub mounts this will return busy
1615  * regardless of whether the sub mounts are busy.
1616  *
1617  * Doesn't take quota and stuff into account. IOW, in some cases it will
1618  * give false negatives. The main reason why it's here is that we need
1619  * a non-destructive way to look for easily umountable filesystems.
1620  */
1621 int may_umount(struct vfsmount *mnt)
1622 {
1623 	int ret = 1;
1624 	down_read(&namespace_sem);
1625 	lock_mount_hash();
1626 	if (propagate_mount_busy(real_mount(mnt), 2))
1627 		ret = 0;
1628 	unlock_mount_hash();
1629 	up_read(&namespace_sem);
1630 	return ret;
1631 }
1632 
1633 EXPORT_SYMBOL(may_umount);
1634 
1635 #ifdef CONFIG_FSNOTIFY
1636 static void mnt_notify(struct mount *p)
1637 {
1638 	if (!p->prev_ns && p->mnt_ns) {
1639 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1640 	} else if (p->prev_ns && !p->mnt_ns) {
1641 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1642 	} else if (p->prev_ns == p->mnt_ns) {
1643 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1644 	} else {
1645 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1646 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1647 	}
1648 	p->prev_ns = p->mnt_ns;
1649 }
1650 
1651 static void notify_mnt_list(void)
1652 {
1653 	struct mount *m, *tmp;
1654 	/*
1655 	 * Notify about mounts that were added/reparented/detached/remain
1656 	 * connected after unmount.
1657 	 */
1658 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1659 		mnt_notify(m);
1660 		list_del_init(&m->to_notify);
1661 	}
1662 }
1663 
1664 static bool need_notify_mnt_list(void)
1665 {
1666 	return !list_empty(&notify_list);
1667 }
1668 #else
1669 static void notify_mnt_list(void)
1670 {
1671 }
1672 
1673 static bool need_notify_mnt_list(void)
1674 {
1675 	return false;
1676 }
1677 #endif
1678 
1679 static void free_mnt_ns(struct mnt_namespace *);
1680 static void namespace_unlock(void)
1681 {
1682 	struct hlist_head head;
1683 	struct hlist_node *p;
1684 	struct mount *m;
1685 	struct mnt_namespace *ns = emptied_ns;
1686 	LIST_HEAD(list);
1687 
1688 	hlist_move_list(&unmounted, &head);
1689 	list_splice_init(&ex_mountpoints, &list);
1690 	emptied_ns = NULL;
1691 
1692 	if (need_notify_mnt_list()) {
1693 		/*
1694 		 * No point blocking out concurrent readers while notifications
1695 		 * are sent. This will also allow statmount()/listmount() to run
1696 		 * concurrently.
1697 		 */
1698 		downgrade_write(&namespace_sem);
1699 		notify_mnt_list();
1700 		up_read(&namespace_sem);
1701 	} else {
1702 		up_write(&namespace_sem);
1703 	}
1704 	if (unlikely(ns)) {
1705 		/* Make sure we notice when we leak mounts. */
1706 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1707 		free_mnt_ns(ns);
1708 	}
1709 
1710 	shrink_dentry_list(&list);
1711 
1712 	if (likely(hlist_empty(&head)))
1713 		return;
1714 
1715 	synchronize_rcu_expedited();
1716 
1717 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1718 		hlist_del(&m->mnt_umount);
1719 		mntput(&m->mnt);
1720 	}
1721 }
1722 
1723 static inline void namespace_lock(void)
1724 {
1725 	down_write(&namespace_sem);
1726 }
1727 
1728 enum umount_tree_flags {
1729 	UMOUNT_SYNC = 1,
1730 	UMOUNT_PROPAGATE = 2,
1731 	UMOUNT_CONNECTED = 4,
1732 };
1733 
1734 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1735 {
1736 	/* Leaving mounts connected is only valid for lazy umounts */
1737 	if (how & UMOUNT_SYNC)
1738 		return true;
1739 
1740 	/* A mount without a parent has nothing to be connected to */
1741 	if (!mnt_has_parent(mnt))
1742 		return true;
1743 
1744 	/* Because the reference counting rules change when mounts are
1745 	 * unmounted and connected, umounted mounts may not be
1746 	 * connected to mounted mounts.
1747 	 */
1748 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1749 		return true;
1750 
1751 	/* Has it been requested that the mount remain connected? */
1752 	if (how & UMOUNT_CONNECTED)
1753 		return false;
1754 
1755 	/* Is the mount locked such that it needs to remain connected? */
1756 	if (IS_MNT_LOCKED(mnt))
1757 		return false;
1758 
1759 	/* By default disconnect the mount */
1760 	return true;
1761 }
1762 
1763 /*
1764  * mount_lock must be held
1765  * namespace_sem must be held for write
1766  */
1767 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1768 {
1769 	LIST_HEAD(tmp_list);
1770 	struct mount *p;
1771 
1772 	if (how & UMOUNT_PROPAGATE)
1773 		propagate_mount_unlock(mnt);
1774 
1775 	/* Gather the mounts to umount */
1776 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1777 		p->mnt.mnt_flags |= MNT_UMOUNT;
1778 		if (mnt_ns_attached(p))
1779 			move_from_ns(p);
1780 		list_add_tail(&p->mnt_list, &tmp_list);
1781 	}
1782 
1783 	/* Hide the mounts from mnt_mounts */
1784 	list_for_each_entry(p, &tmp_list, mnt_list) {
1785 		list_del_init(&p->mnt_child);
1786 	}
1787 
1788 	/* Add propagated mounts to the tmp_list */
1789 	if (how & UMOUNT_PROPAGATE)
1790 		propagate_umount(&tmp_list);
1791 
1792 	bulk_make_private(&tmp_list);
1793 
1794 	while (!list_empty(&tmp_list)) {
1795 		struct mnt_namespace *ns;
1796 		bool disconnect;
1797 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1798 		list_del_init(&p->mnt_expire);
1799 		list_del_init(&p->mnt_list);
1800 		ns = p->mnt_ns;
1801 		if (ns) {
1802 			ns->nr_mounts--;
1803 			__touch_mnt_namespace(ns);
1804 		}
1805 		p->mnt_ns = NULL;
1806 		if (how & UMOUNT_SYNC)
1807 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1808 
1809 		disconnect = disconnect_mount(p, how);
1810 		if (mnt_has_parent(p)) {
1811 			if (!disconnect) {
1812 				/* Don't forget about p */
1813 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1814 			} else {
1815 				umount_mnt(p);
1816 			}
1817 		}
1818 		if (disconnect)
1819 			hlist_add_head(&p->mnt_umount, &unmounted);
1820 
1821 		/*
1822 		 * At this point p->mnt_ns is NULL, notification will be queued
1823 		 * only if
1824 		 *
1825 		 *  - p->prev_ns is non-NULL *and*
1826 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1827 		 *
1828 		 * This will preclude queuing the mount if this is a cleanup
1829 		 * after a failed copy_tree() or destruction of an anonymous
1830 		 * namespace, etc.
1831 		 */
1832 		mnt_notify_add(p);
1833 	}
1834 }
1835 
1836 static void shrink_submounts(struct mount *mnt);
1837 
1838 static int do_umount_root(struct super_block *sb)
1839 {
1840 	int ret = 0;
1841 
1842 	down_write(&sb->s_umount);
1843 	if (!sb_rdonly(sb)) {
1844 		struct fs_context *fc;
1845 
1846 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1847 						SB_RDONLY);
1848 		if (IS_ERR(fc)) {
1849 			ret = PTR_ERR(fc);
1850 		} else {
1851 			ret = parse_monolithic_mount_data(fc, NULL);
1852 			if (!ret)
1853 				ret = reconfigure_super(fc);
1854 			put_fs_context(fc);
1855 		}
1856 	}
1857 	up_write(&sb->s_umount);
1858 	return ret;
1859 }
1860 
1861 static int do_umount(struct mount *mnt, int flags)
1862 {
1863 	struct super_block *sb = mnt->mnt.mnt_sb;
1864 	int retval;
1865 
1866 	retval = security_sb_umount(&mnt->mnt, flags);
1867 	if (retval)
1868 		return retval;
1869 
1870 	/*
1871 	 * Allow userspace to request a mountpoint be expired rather than
1872 	 * unmounting unconditionally. Unmount only happens if:
1873 	 *  (1) the mark is already set (the mark is cleared by mntput())
1874 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1875 	 */
1876 	if (flags & MNT_EXPIRE) {
1877 		if (&mnt->mnt == current->fs->root.mnt ||
1878 		    flags & (MNT_FORCE | MNT_DETACH))
1879 			return -EINVAL;
1880 
1881 		/*
1882 		 * probably don't strictly need the lock here if we examined
1883 		 * all race cases, but it's a slowpath.
1884 		 */
1885 		lock_mount_hash();
1886 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1887 			unlock_mount_hash();
1888 			return -EBUSY;
1889 		}
1890 		unlock_mount_hash();
1891 
1892 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1893 			return -EAGAIN;
1894 	}
1895 
1896 	/*
1897 	 * If we may have to abort operations to get out of this
1898 	 * mount, and they will themselves hold resources we must
1899 	 * allow the fs to do things. In the Unix tradition of
1900 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1901 	 * might fail to complete on the first run through as other tasks
1902 	 * must return, and the like. Thats for the mount program to worry
1903 	 * about for the moment.
1904 	 */
1905 
1906 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1907 		sb->s_op->umount_begin(sb);
1908 	}
1909 
1910 	/*
1911 	 * No sense to grab the lock for this test, but test itself looks
1912 	 * somewhat bogus. Suggestions for better replacement?
1913 	 * Ho-hum... In principle, we might treat that as umount + switch
1914 	 * to rootfs. GC would eventually take care of the old vfsmount.
1915 	 * Actually it makes sense, especially if rootfs would contain a
1916 	 * /reboot - static binary that would close all descriptors and
1917 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1918 	 */
1919 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1920 		/*
1921 		 * Special case for "unmounting" root ...
1922 		 * we just try to remount it readonly.
1923 		 */
1924 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1925 			return -EPERM;
1926 		return do_umount_root(sb);
1927 	}
1928 
1929 	namespace_lock();
1930 	lock_mount_hash();
1931 
1932 	/* Repeat the earlier racy checks, now that we are holding the locks */
1933 	retval = -EINVAL;
1934 	if (!check_mnt(mnt))
1935 		goto out;
1936 
1937 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1938 		goto out;
1939 
1940 	if (!mnt_has_parent(mnt)) /* not the absolute root */
1941 		goto out;
1942 
1943 	event++;
1944 	if (flags & MNT_DETACH) {
1945 		umount_tree(mnt, UMOUNT_PROPAGATE);
1946 		retval = 0;
1947 	} else {
1948 		smp_mb(); // paired with __legitimize_mnt()
1949 		shrink_submounts(mnt);
1950 		retval = -EBUSY;
1951 		if (!propagate_mount_busy(mnt, 2)) {
1952 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1953 			retval = 0;
1954 		}
1955 	}
1956 out:
1957 	unlock_mount_hash();
1958 	namespace_unlock();
1959 	return retval;
1960 }
1961 
1962 /*
1963  * __detach_mounts - lazily unmount all mounts on the specified dentry
1964  *
1965  * During unlink, rmdir, and d_drop it is possible to loose the path
1966  * to an existing mountpoint, and wind up leaking the mount.
1967  * detach_mounts allows lazily unmounting those mounts instead of
1968  * leaking them.
1969  *
1970  * The caller may hold dentry->d_inode->i_rwsem.
1971  */
1972 void __detach_mounts(struct dentry *dentry)
1973 {
1974 	struct pinned_mountpoint mp = {};
1975 	struct mount *mnt;
1976 
1977 	guard(namespace_excl)();
1978 	guard(mount_writer)();
1979 
1980 	if (!lookup_mountpoint(dentry, &mp))
1981 		return;
1982 
1983 	event++;
1984 	while (mp.node.next) {
1985 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1986 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1987 			umount_mnt(mnt);
1988 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1989 		}
1990 		else umount_tree(mnt, UMOUNT_CONNECTED);
1991 	}
1992 	unpin_mountpoint(&mp);
1993 }
1994 
1995 /*
1996  * Is the caller allowed to modify his namespace?
1997  */
1998 bool may_mount(void)
1999 {
2000 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2001 }
2002 
2003 static void warn_mandlock(void)
2004 {
2005 	pr_warn_once("=======================================================\n"
2006 		     "WARNING: The mand mount option has been deprecated and\n"
2007 		     "         and is ignored by this kernel. Remove the mand\n"
2008 		     "         option from the mount to silence this warning.\n"
2009 		     "=======================================================\n");
2010 }
2011 
2012 static int can_umount(const struct path *path, int flags)
2013 {
2014 	struct mount *mnt = real_mount(path->mnt);
2015 	struct super_block *sb = path->dentry->d_sb;
2016 
2017 	if (!may_mount())
2018 		return -EPERM;
2019 	if (!path_mounted(path))
2020 		return -EINVAL;
2021 	if (!check_mnt(mnt))
2022 		return -EINVAL;
2023 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2024 		return -EINVAL;
2025 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2026 		return -EPERM;
2027 	return 0;
2028 }
2029 
2030 // caller is responsible for flags being sane
2031 int path_umount(const struct path *path, int flags)
2032 {
2033 	struct mount *mnt = real_mount(path->mnt);
2034 	int ret;
2035 
2036 	ret = can_umount(path, flags);
2037 	if (!ret)
2038 		ret = do_umount(mnt, flags);
2039 
2040 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2041 	dput(path->dentry);
2042 	mntput_no_expire(mnt);
2043 	return ret;
2044 }
2045 
2046 static int ksys_umount(char __user *name, int flags)
2047 {
2048 	int lookup_flags = LOOKUP_MOUNTPOINT;
2049 	struct path path;
2050 	int ret;
2051 
2052 	// basic validity checks done first
2053 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2054 		return -EINVAL;
2055 
2056 	if (!(flags & UMOUNT_NOFOLLOW))
2057 		lookup_flags |= LOOKUP_FOLLOW;
2058 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2059 	if (ret)
2060 		return ret;
2061 	return path_umount(&path, flags);
2062 }
2063 
2064 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2065 {
2066 	return ksys_umount(name, flags);
2067 }
2068 
2069 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2070 
2071 /*
2072  *	The 2.0 compatible umount. No flags.
2073  */
2074 SYSCALL_DEFINE1(oldumount, char __user *, name)
2075 {
2076 	return ksys_umount(name, 0);
2077 }
2078 
2079 #endif
2080 
2081 static bool is_mnt_ns_file(struct dentry *dentry)
2082 {
2083 	struct ns_common *ns;
2084 
2085 	/* Is this a proxy for a mount namespace? */
2086 	if (dentry->d_op != &ns_dentry_operations)
2087 		return false;
2088 
2089 	ns = d_inode(dentry)->i_private;
2090 
2091 	return ns->ops == &mntns_operations;
2092 }
2093 
2094 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2095 {
2096 	return &mnt->ns;
2097 }
2098 
2099 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2100 {
2101 	struct ns_common *ns;
2102 
2103 	guard(rcu)();
2104 
2105 	for (;;) {
2106 		ns = ns_tree_adjoined_rcu(mntns, previous);
2107 		if (IS_ERR(ns))
2108 			return ERR_CAST(ns);
2109 
2110 		mntns = to_mnt_ns(ns);
2111 
2112 		/*
2113 		 * The last passive reference count is put with RCU
2114 		 * delay so accessing the mount namespace is not just
2115 		 * safe but all relevant members are still valid.
2116 		 */
2117 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2118 			continue;
2119 
2120 		/*
2121 		 * We need an active reference count as we're persisting
2122 		 * the mount namespace and it might already be on its
2123 		 * deathbed.
2124 		 */
2125 		if (!ns_ref_get(mntns))
2126 			continue;
2127 
2128 		return mntns;
2129 	}
2130 }
2131 
2132 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2133 {
2134 	if (!is_mnt_ns_file(dentry))
2135 		return NULL;
2136 
2137 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2138 }
2139 
2140 static bool mnt_ns_loop(struct dentry *dentry)
2141 {
2142 	/* Could bind mounting the mount namespace inode cause a
2143 	 * mount namespace loop?
2144 	 */
2145 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2146 
2147 	if (!mnt_ns)
2148 		return false;
2149 
2150 	return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2151 }
2152 
2153 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2154 					int flag)
2155 {
2156 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2157 		*dst_parent, *dst_mnt;
2158 
2159 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2163 		return ERR_PTR(-EINVAL);
2164 
2165 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2166 	if (IS_ERR(dst_mnt))
2167 		return dst_mnt;
2168 
2169 	src_parent = src_root;
2170 
2171 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2172 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2173 			continue;
2174 
2175 		for (src_mnt = src_root_child; src_mnt;
2176 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2177 			if (!(flag & CL_COPY_UNBINDABLE) &&
2178 			    IS_MNT_UNBINDABLE(src_mnt)) {
2179 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2180 					/* Both unbindable and locked. */
2181 					dst_mnt = ERR_PTR(-EPERM);
2182 					goto out;
2183 				} else {
2184 					src_mnt = skip_mnt_tree(src_mnt);
2185 					continue;
2186 				}
2187 			}
2188 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2189 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2190 				src_mnt = skip_mnt_tree(src_mnt);
2191 				continue;
2192 			}
2193 			while (src_parent != src_mnt->mnt_parent) {
2194 				src_parent = src_parent->mnt_parent;
2195 				dst_mnt = dst_mnt->mnt_parent;
2196 			}
2197 
2198 			src_parent = src_mnt;
2199 			dst_parent = dst_mnt;
2200 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2201 			if (IS_ERR(dst_mnt))
2202 				goto out;
2203 			lock_mount_hash();
2204 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2205 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2206 			if (unlikely(flag & CL_EXPIRE)) {
2207 				/* stick the duplicate mount on the same expiry
2208 				 * list as the original if that was on one */
2209 				if (!list_empty(&src_mnt->mnt_expire))
2210 					list_add(&dst_mnt->mnt_expire,
2211 						 &src_mnt->mnt_expire);
2212 			}
2213 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2214 			unlock_mount_hash();
2215 		}
2216 	}
2217 	return res;
2218 
2219 out:
2220 	if (res) {
2221 		lock_mount_hash();
2222 		umount_tree(res, UMOUNT_SYNC);
2223 		unlock_mount_hash();
2224 	}
2225 	return dst_mnt;
2226 }
2227 
2228 static inline bool extend_array(struct path **res, struct path **to_free,
2229 				unsigned n, unsigned *count, unsigned new_count)
2230 {
2231 	struct path *p;
2232 
2233 	if (likely(n < *count))
2234 		return true;
2235 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2236 	if (p && *count)
2237 		memcpy(p, *res, *count * sizeof(struct path));
2238 	*count = new_count;
2239 	kfree(*to_free);
2240 	*to_free = *res = p;
2241 	return p;
2242 }
2243 
2244 const struct path *collect_paths(const struct path *path,
2245 			      struct path *prealloc, unsigned count)
2246 {
2247 	struct mount *root = real_mount(path->mnt);
2248 	struct mount *child;
2249 	struct path *res = prealloc, *to_free = NULL;
2250 	unsigned n = 0;
2251 
2252 	guard(namespace_shared)();
2253 
2254 	if (!check_mnt(root))
2255 		return ERR_PTR(-EINVAL);
2256 	if (!extend_array(&res, &to_free, 0, &count, 32))
2257 		return ERR_PTR(-ENOMEM);
2258 	res[n++] = *path;
2259 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2260 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2261 			continue;
2262 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2263 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2264 				return ERR_PTR(-ENOMEM);
2265 			res[n].mnt = &m->mnt;
2266 			res[n].dentry = m->mnt.mnt_root;
2267 			n++;
2268 		}
2269 	}
2270 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2271 		return ERR_PTR(-ENOMEM);
2272 	memset(res + n, 0, (count - n) * sizeof(struct path));
2273 	for (struct path *p = res; p->mnt; p++)
2274 		path_get(p);
2275 	return res;
2276 }
2277 
2278 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2279 {
2280 	for (const struct path *p = paths; p->mnt; p++)
2281 		path_put(p);
2282 	if (paths != prealloc)
2283 		kfree(paths);
2284 }
2285 
2286 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2287 
2288 void dissolve_on_fput(struct vfsmount *mnt)
2289 {
2290 	struct mount *m = real_mount(mnt);
2291 
2292 	/*
2293 	 * m used to be the root of anon namespace; if it still is one,
2294 	 * we need to dissolve the mount tree and free that namespace.
2295 	 * Let's try to avoid taking namespace_sem if we can determine
2296 	 * that there's nothing to do without it - rcu_read_lock() is
2297 	 * enough to make anon_ns_root() memory-safe and once m has
2298 	 * left its namespace, it's no longer our concern, since it will
2299 	 * never become a root of anon ns again.
2300 	 */
2301 
2302 	scoped_guard(rcu) {
2303 		if (!anon_ns_root(m))
2304 			return;
2305 	}
2306 
2307 	scoped_guard(namespace_excl) {
2308 		if (!anon_ns_root(m))
2309 			return;
2310 
2311 		emptied_ns = m->mnt_ns;
2312 		lock_mount_hash();
2313 		umount_tree(m, UMOUNT_CONNECTED);
2314 		unlock_mount_hash();
2315 	}
2316 }
2317 
2318 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
2319 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2320 {
2321 	struct mount *child;
2322 
2323 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2324 		if (!is_subdir(child->mnt_mountpoint, dentry))
2325 			continue;
2326 
2327 		if (child->mnt.mnt_flags & MNT_LOCKED)
2328 			return true;
2329 	}
2330 	return false;
2331 }
2332 
2333 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2334 {
2335 	guard(mount_locked_reader)();
2336 	return __has_locked_children(mnt, dentry);
2337 }
2338 
2339 /*
2340  * Check that there aren't references to earlier/same mount namespaces in the
2341  * specified subtree.  Such references can act as pins for mount namespaces
2342  * that aren't checked by the mount-cycle checking code, thereby allowing
2343  * cycles to be made.
2344  *
2345  * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2346  */
2347 static bool check_for_nsfs_mounts(struct mount *subtree)
2348 {
2349 	for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2350 		if (mnt_ns_loop(p->mnt.mnt_root))
2351 			return false;
2352 	return true;
2353 }
2354 
2355 /**
2356  * clone_private_mount - create a private clone of a path
2357  * @path: path to clone
2358  *
2359  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2360  * will not be attached anywhere in the namespace and will be private (i.e.
2361  * changes to the originating mount won't be propagated into this).
2362  *
2363  * This assumes caller has called or done the equivalent of may_mount().
2364  *
2365  * Release with mntput().
2366  */
2367 struct vfsmount *clone_private_mount(const struct path *path)
2368 {
2369 	struct mount *old_mnt = real_mount(path->mnt);
2370 	struct mount *new_mnt;
2371 
2372 	guard(namespace_shared)();
2373 
2374 	if (IS_MNT_UNBINDABLE(old_mnt))
2375 		return ERR_PTR(-EINVAL);
2376 
2377 	/*
2378 	 * Make sure the source mount is acceptable.
2379 	 * Anything mounted in our mount namespace is allowed.
2380 	 * Otherwise, it must be the root of an anonymous mount
2381 	 * namespace, and we need to make sure no namespace
2382 	 * loops get created.
2383 	 */
2384 	if (!check_mnt(old_mnt)) {
2385 		if (!anon_ns_root(old_mnt))
2386 			return ERR_PTR(-EINVAL);
2387 
2388 		if (!check_for_nsfs_mounts(old_mnt))
2389 			return ERR_PTR(-EINVAL);
2390 	}
2391 
2392 	if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2393 		return ERR_PTR(-EPERM);
2394 
2395 	if (__has_locked_children(old_mnt, path->dentry))
2396 		return ERR_PTR(-EINVAL);
2397 
2398 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2399 	if (IS_ERR(new_mnt))
2400 		return ERR_PTR(-EINVAL);
2401 
2402 	/* Longterm mount to be removed by kern_unmount*() */
2403 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2404 	return &new_mnt->mnt;
2405 }
2406 EXPORT_SYMBOL_GPL(clone_private_mount);
2407 
2408 static void lock_mnt_tree(struct mount *mnt)
2409 {
2410 	struct mount *p;
2411 
2412 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2413 		int flags = p->mnt.mnt_flags;
2414 		/* Don't allow unprivileged users to change mount flags */
2415 		flags |= MNT_LOCK_ATIME;
2416 
2417 		if (flags & MNT_READONLY)
2418 			flags |= MNT_LOCK_READONLY;
2419 
2420 		if (flags & MNT_NODEV)
2421 			flags |= MNT_LOCK_NODEV;
2422 
2423 		if (flags & MNT_NOSUID)
2424 			flags |= MNT_LOCK_NOSUID;
2425 
2426 		if (flags & MNT_NOEXEC)
2427 			flags |= MNT_LOCK_NOEXEC;
2428 		/* Don't allow unprivileged users to reveal what is under a mount */
2429 		if (list_empty(&p->mnt_expire) && p != mnt)
2430 			flags |= MNT_LOCKED;
2431 		p->mnt.mnt_flags = flags;
2432 	}
2433 }
2434 
2435 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2436 {
2437 	struct mount *p;
2438 
2439 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2440 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2441 			mnt_release_group_id(p);
2442 	}
2443 }
2444 
2445 static int invent_group_ids(struct mount *mnt, bool recurse)
2446 {
2447 	struct mount *p;
2448 
2449 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2450 		if (!p->mnt_group_id) {
2451 			int err = mnt_alloc_group_id(p);
2452 			if (err) {
2453 				cleanup_group_ids(mnt, p);
2454 				return err;
2455 			}
2456 		}
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2463 {
2464 	unsigned int max = READ_ONCE(sysctl_mount_max);
2465 	unsigned int mounts = 0;
2466 	struct mount *p;
2467 
2468 	if (ns->nr_mounts >= max)
2469 		return -ENOSPC;
2470 	max -= ns->nr_mounts;
2471 	if (ns->pending_mounts >= max)
2472 		return -ENOSPC;
2473 	max -= ns->pending_mounts;
2474 
2475 	for (p = mnt; p; p = next_mnt(p, mnt))
2476 		mounts++;
2477 
2478 	if (mounts > max)
2479 		return -ENOSPC;
2480 
2481 	ns->pending_mounts += mounts;
2482 	return 0;
2483 }
2484 
2485 enum mnt_tree_flags_t {
2486 	MNT_TREE_BENEATH = BIT(0),
2487 	MNT_TREE_PROPAGATION = BIT(1),
2488 };
2489 
2490 /**
2491  * attach_recursive_mnt - attach a source mount tree
2492  * @source_mnt: mount tree to be attached
2493  * @dest:	the context for mounting at the place where the tree should go
2494  *
2495  *  NOTE: in the table below explains the semantics when a source mount
2496  *  of a given type is attached to a destination mount of a given type.
2497  * ---------------------------------------------------------------------------
2498  * |         BIND MOUNT OPERATION                                            |
2499  * |**************************************************************************
2500  * | source-->| shared        |       private  |       slave    | unbindable |
2501  * | dest     |               |                |                |            |
2502  * |   |      |               |                |                |            |
2503  * |   v      |               |                |                |            |
2504  * |**************************************************************************
2505  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2506  * |          |               |                |                |            |
2507  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2508  * ***************************************************************************
2509  * A bind operation clones the source mount and mounts the clone on the
2510  * destination mount.
2511  *
2512  * (++)  the cloned mount is propagated to all the mounts in the propagation
2513  * 	 tree of the destination mount and the cloned mount is added to
2514  * 	 the peer group of the source mount.
2515  * (+)   the cloned mount is created under the destination mount and is marked
2516  *       as shared. The cloned mount is added to the peer group of the source
2517  *       mount.
2518  * (+++) the mount is propagated to all the mounts in the propagation tree
2519  *       of the destination mount and the cloned mount is made slave
2520  *       of the same master as that of the source mount. The cloned mount
2521  *       is marked as 'shared and slave'.
2522  * (*)   the cloned mount is made a slave of the same master as that of the
2523  * 	 source mount.
2524  *
2525  * ---------------------------------------------------------------------------
2526  * |         		MOVE MOUNT OPERATION                                 |
2527  * |**************************************************************************
2528  * | source-->| shared        |       private  |       slave    | unbindable |
2529  * | dest     |               |                |                |            |
2530  * |   |      |               |                |                |            |
2531  * |   v      |               |                |                |            |
2532  * |**************************************************************************
2533  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2534  * |          |               |                |                |            |
2535  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2536  * ***************************************************************************
2537  *
2538  * (+)  the mount is moved to the destination. And is then propagated to
2539  * 	all the mounts in the propagation tree of the destination mount.
2540  * (+*)  the mount is moved to the destination.
2541  * (+++)  the mount is moved to the destination and is then propagated to
2542  * 	all the mounts belonging to the destination mount's propagation tree.
2543  * 	the mount is marked as 'shared and slave'.
2544  * (*)	the mount continues to be a slave at the new location.
2545  *
2546  * if the source mount is a tree, the operations explained above is
2547  * applied to each mount in the tree.
2548  * Must be called without spinlocks held, since this function can sleep
2549  * in allocations.
2550  *
2551  * Context: The function expects namespace_lock() to be held.
2552  * Return: If @source_mnt was successfully attached 0 is returned.
2553  *         Otherwise a negative error code is returned.
2554  */
2555 static int attach_recursive_mnt(struct mount *source_mnt,
2556 				const struct pinned_mountpoint *dest)
2557 {
2558 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2559 	struct mount *dest_mnt = dest->parent;
2560 	struct mountpoint *dest_mp = dest->mp;
2561 	HLIST_HEAD(tree_list);
2562 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2563 	struct pinned_mountpoint root = {};
2564 	struct mountpoint *shorter = NULL;
2565 	struct mount *child, *p;
2566 	struct mount *top;
2567 	struct hlist_node *n;
2568 	int err = 0;
2569 	bool moving = mnt_has_parent(source_mnt);
2570 
2571 	/*
2572 	 * Preallocate a mountpoint in case the new mounts need to be
2573 	 * mounted beneath mounts on the same mountpoint.
2574 	 */
2575 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2576 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2577 			shorter = top->mnt_mp;
2578 	}
2579 	err = get_mountpoint(top->mnt.mnt_root, &root);
2580 	if (err)
2581 		return err;
2582 
2583 	/* Is there space to add these mounts to the mount namespace? */
2584 	if (!moving) {
2585 		err = count_mounts(ns, source_mnt);
2586 		if (err)
2587 			goto out;
2588 	}
2589 
2590 	if (IS_MNT_SHARED(dest_mnt)) {
2591 		err = invent_group_ids(source_mnt, true);
2592 		if (err)
2593 			goto out;
2594 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2595 	}
2596 	lock_mount_hash();
2597 	if (err)
2598 		goto out_cleanup_ids;
2599 
2600 	if (IS_MNT_SHARED(dest_mnt)) {
2601 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2602 			set_mnt_shared(p);
2603 	}
2604 
2605 	if (moving) {
2606 		umount_mnt(source_mnt);
2607 		mnt_notify_add(source_mnt);
2608 		/* if the mount is moved, it should no longer be expired
2609 		 * automatically */
2610 		list_del_init(&source_mnt->mnt_expire);
2611 	} else {
2612 		if (source_mnt->mnt_ns) {
2613 			/* move from anon - the caller will destroy */
2614 			emptied_ns = source_mnt->mnt_ns;
2615 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2616 				move_from_ns(p);
2617 		}
2618 	}
2619 
2620 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2621 	/*
2622 	 * Now the original copy is in the same state as the secondaries -
2623 	 * its root attached to mountpoint, but not hashed and all mounts
2624 	 * in it are either in our namespace or in no namespace at all.
2625 	 * Add the original to the list of copies and deal with the
2626 	 * rest of work for all of them uniformly.
2627 	 */
2628 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2629 
2630 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2631 		struct mount *q;
2632 		hlist_del_init(&child->mnt_hash);
2633 		/* Notice when we are propagating across user namespaces */
2634 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2635 			lock_mnt_tree(child);
2636 		q = __lookup_mnt(&child->mnt_parent->mnt,
2637 				 child->mnt_mountpoint);
2638 		commit_tree(child);
2639 		if (q) {
2640 			struct mount *r = topmost_overmount(child);
2641 			struct mountpoint *mp = root.mp;
2642 
2643 			if (unlikely(shorter) && child != source_mnt)
2644 				mp = shorter;
2645 			mnt_change_mountpoint(r, mp, q);
2646 		}
2647 	}
2648 	unpin_mountpoint(&root);
2649 	unlock_mount_hash();
2650 
2651 	return 0;
2652 
2653  out_cleanup_ids:
2654 	while (!hlist_empty(&tree_list)) {
2655 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2656 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2657 		umount_tree(child, UMOUNT_SYNC);
2658 	}
2659 	unlock_mount_hash();
2660 	cleanup_group_ids(source_mnt, NULL);
2661  out:
2662 	ns->pending_mounts = 0;
2663 
2664 	read_seqlock_excl(&mount_lock);
2665 	unpin_mountpoint(&root);
2666 	read_sequnlock_excl(&mount_lock);
2667 
2668 	return err;
2669 }
2670 
2671 static inline struct mount *where_to_mount(const struct path *path,
2672 					   struct dentry **dentry,
2673 					   bool beneath)
2674 {
2675 	struct mount *m;
2676 
2677 	if (unlikely(beneath)) {
2678 		m = topmost_overmount(real_mount(path->mnt));
2679 		*dentry = m->mnt_mountpoint;
2680 		return m->mnt_parent;
2681 	}
2682 	m = __lookup_mnt(path->mnt, path->dentry);
2683 	if (unlikely(m)) {
2684 		m = topmost_overmount(m);
2685 		*dentry = m->mnt.mnt_root;
2686 		return m;
2687 	}
2688 	*dentry = path->dentry;
2689 	return real_mount(path->mnt);
2690 }
2691 
2692 /**
2693  * do_lock_mount - acquire environment for mounting
2694  * @path:	target path
2695  * @res:	context to set up
2696  * @beneath:	whether the intention is to mount beneath @path
2697  *
2698  * To mount something at given location, we need
2699  *	namespace_sem locked exclusive
2700  *	inode of dentry we are mounting on locked exclusive
2701  *	struct mountpoint for that dentry
2702  *	struct mount we are mounting on
2703  *
2704  * Results are stored in caller-supplied context (pinned_mountpoint);
2705  * on success we have res->parent and res->mp pointing to parent and
2706  * mountpoint respectively and res->node inserted into the ->m_list
2707  * of the mountpoint, making sure the mountpoint won't disappear.
2708  * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2709  * left NULL, res->node - empty.
2710  * In case of success do_lock_mount returns with locks acquired (in
2711  * proper order - inode lock nests outside of namespace_sem).
2712  *
2713  * Request to mount on overmounted location is treated as "mount on
2714  * top of whatever's overmounting it"; request to mount beneath
2715  * a location - "mount immediately beneath the topmost mount at that
2716  * place".
2717  *
2718  * In all cases the location must not have been unmounted and the
2719  * chosen mountpoint must be allowed to be mounted on.  For "beneath"
2720  * case we also require the location to be at the root of a mount
2721  * that has a parent (i.e. is not a root of some namespace).
2722  */
2723 static void do_lock_mount(const struct path *path,
2724 			  struct pinned_mountpoint *res,
2725 			  bool beneath)
2726 {
2727 	int err;
2728 
2729 	if (unlikely(beneath) && !path_mounted(path)) {
2730 		res->parent = ERR_PTR(-EINVAL);
2731 		return;
2732 	}
2733 
2734 	do {
2735 		struct dentry *dentry, *d;
2736 		struct mount *m, *n;
2737 
2738 		scoped_guard(mount_locked_reader) {
2739 			m = where_to_mount(path, &dentry, beneath);
2740 			if (&m->mnt != path->mnt) {
2741 				mntget(&m->mnt);
2742 				dget(dentry);
2743 			}
2744 		}
2745 
2746 		inode_lock(dentry->d_inode);
2747 		namespace_lock();
2748 
2749 		// check if the chain of mounts (if any) has changed.
2750 		scoped_guard(mount_locked_reader)
2751 			n = where_to_mount(path, &d, beneath);
2752 
2753 		if (unlikely(n != m || dentry != d))
2754 			err = -EAGAIN;		// something moved, retry
2755 		else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2756 			err = -ENOENT;		// not to be mounted on
2757 		else if (beneath && &m->mnt == path->mnt && !m->overmount)
2758 			err = -EINVAL;
2759 		else
2760 			err = get_mountpoint(dentry, res);
2761 
2762 		if (unlikely(err)) {
2763 			res->parent = ERR_PTR(err);
2764 			namespace_unlock();
2765 			inode_unlock(dentry->d_inode);
2766 		} else {
2767 			res->parent = m;
2768 		}
2769 		/*
2770 		 * Drop the temporary references.  This is subtle - on success
2771 		 * we are doing that under namespace_sem, which would normally
2772 		 * be forbidden.  However, in that case we are guaranteed that
2773 		 * refcounts won't reach zero, since we know that path->mnt
2774 		 * is mounted and thus all mounts reachable from it are pinned
2775 		 * and stable, along with their mountpoints and roots.
2776 		 */
2777 		if (&m->mnt != path->mnt) {
2778 			dput(dentry);
2779 			mntput(&m->mnt);
2780 		}
2781 	} while (err == -EAGAIN);
2782 }
2783 
2784 static void __unlock_mount(struct pinned_mountpoint *m)
2785 {
2786 	inode_unlock(m->mp->m_dentry->d_inode);
2787 	read_seqlock_excl(&mount_lock);
2788 	unpin_mountpoint(m);
2789 	read_sequnlock_excl(&mount_lock);
2790 	namespace_unlock();
2791 }
2792 
2793 static inline void unlock_mount(struct pinned_mountpoint *m)
2794 {
2795 	if (!IS_ERR(m->parent))
2796 		__unlock_mount(m);
2797 }
2798 
2799 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2800 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2801 	do_lock_mount((path), &mp, (beneath))
2802 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2803 #define LOCK_MOUNT_EXACT(mp, path) \
2804 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2805 	lock_mount_exact((path), &mp)
2806 
2807 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2808 {
2809 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2810 		return -EINVAL;
2811 
2812 	if (d_is_dir(mp->mp->m_dentry) !=
2813 	      d_is_dir(mnt->mnt.mnt_root))
2814 		return -ENOTDIR;
2815 
2816 	return attach_recursive_mnt(mnt, mp);
2817 }
2818 
2819 static int may_change_propagation(const struct mount *m)
2820 {
2821         struct mnt_namespace *ns = m->mnt_ns;
2822 
2823 	 // it must be mounted in some namespace
2824 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2825 		 return -EINVAL;
2826 	 // and the caller must be admin in userns of that namespace
2827 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2828 		 return -EPERM;
2829 	 return 0;
2830 }
2831 
2832 /*
2833  * Sanity check the flags to change_mnt_propagation.
2834  */
2835 
2836 static int flags_to_propagation_type(int ms_flags)
2837 {
2838 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2839 
2840 	/* Fail if any non-propagation flags are set */
2841 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2842 		return 0;
2843 	/* Only one propagation flag should be set */
2844 	if (!is_power_of_2(type))
2845 		return 0;
2846 	return type;
2847 }
2848 
2849 /*
2850  * recursively change the type of the mountpoint.
2851  */
2852 static int do_change_type(const struct path *path, int ms_flags)
2853 {
2854 	struct mount *m;
2855 	struct mount *mnt = real_mount(path->mnt);
2856 	int recurse = ms_flags & MS_REC;
2857 	int type;
2858 	int err;
2859 
2860 	if (!path_mounted(path))
2861 		return -EINVAL;
2862 
2863 	type = flags_to_propagation_type(ms_flags);
2864 	if (!type)
2865 		return -EINVAL;
2866 
2867 	guard(namespace_excl)();
2868 
2869 	err = may_change_propagation(mnt);
2870 	if (err)
2871 		return err;
2872 
2873 	if (type == MS_SHARED) {
2874 		err = invent_group_ids(mnt, recurse);
2875 		if (err)
2876 			return err;
2877 	}
2878 
2879 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2880 		change_mnt_propagation(m, type);
2881 
2882 	return 0;
2883 }
2884 
2885 /* may_copy_tree() - check if a mount tree can be copied
2886  * @path: path to the mount tree to be copied
2887  *
2888  * This helper checks if the caller may copy the mount tree starting
2889  * from @path->mnt. The caller may copy the mount tree under the
2890  * following circumstances:
2891  *
2892  * (1) The caller is located in the mount namespace of the mount tree.
2893  *     This also implies that the mount does not belong to an anonymous
2894  *     mount namespace.
2895  * (2) The caller tries to copy an nfs mount referring to a mount
2896  *     namespace, i.e., the caller is trying to copy a mount namespace
2897  *     entry from nsfs.
2898  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2899  * (4) The caller is trying to copy a mount tree that belongs to an
2900  *     anonymous mount namespace.
2901  *
2902  *     For that to be safe, this helper enforces that the origin mount
2903  *     namespace the anonymous mount namespace was created from is the
2904  *     same as the caller's mount namespace by comparing the sequence
2905  *     numbers.
2906  *
2907  *     This is not strictly necessary. The current semantics of the new
2908  *     mount api enforce that the caller must be located in the same
2909  *     mount namespace as the mount tree it interacts with. Using the
2910  *     origin sequence number preserves these semantics even for
2911  *     anonymous mount namespaces. However, one could envision extending
2912  *     the api to directly operate across mount namespace if needed.
2913  *
2914  *     The ownership of a non-anonymous mount namespace such as the
2915  *     caller's cannot change.
2916  *     => We know that the caller's mount namespace is stable.
2917  *
2918  *     If the origin sequence number of the anonymous mount namespace is
2919  *     the same as the sequence number of the caller's mount namespace.
2920  *     => The owning namespaces are the same.
2921  *
2922  *     ==> The earlier capability check on the owning namespace of the
2923  *         caller's mount namespace ensures that the caller has the
2924  *         ability to copy the mount tree.
2925  *
2926  * Returns true if the mount tree can be copied, false otherwise.
2927  */
2928 static inline bool may_copy_tree(const struct path *path)
2929 {
2930 	struct mount *mnt = real_mount(path->mnt);
2931 	const struct dentry_operations *d_op;
2932 
2933 	if (check_mnt(mnt))
2934 		return true;
2935 
2936 	d_op = path->dentry->d_op;
2937 	if (d_op == &ns_dentry_operations)
2938 		return true;
2939 
2940 	if (d_op == &pidfs_dentry_operations)
2941 		return true;
2942 
2943 	if (!is_mounted(path->mnt))
2944 		return false;
2945 
2946 	return check_anonymous_mnt(mnt);
2947 }
2948 
2949 
2950 static struct mount *__do_loopback(const struct path *old_path, int recurse)
2951 {
2952 	struct mount *old = real_mount(old_path->mnt);
2953 
2954 	if (IS_MNT_UNBINDABLE(old))
2955 		return ERR_PTR(-EINVAL);
2956 
2957 	if (!may_copy_tree(old_path))
2958 		return ERR_PTR(-EINVAL);
2959 
2960 	if (!recurse && __has_locked_children(old, old_path->dentry))
2961 		return ERR_PTR(-EINVAL);
2962 
2963 	if (recurse)
2964 		return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2965 	else
2966 		return clone_mnt(old, old_path->dentry, 0);
2967 }
2968 
2969 /*
2970  * do loopback mount.
2971  */
2972 static int do_loopback(const struct path *path, const char *old_name,
2973 		       int recurse)
2974 {
2975 	struct path old_path __free(path_put) = {};
2976 	struct mount *mnt = NULL;
2977 	int err;
2978 	if (!old_name || !*old_name)
2979 		return -EINVAL;
2980 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2981 	if (err)
2982 		return err;
2983 
2984 	if (mnt_ns_loop(old_path.dentry))
2985 		return -EINVAL;
2986 
2987 	LOCK_MOUNT(mp, path);
2988 	if (IS_ERR(mp.parent))
2989 		return PTR_ERR(mp.parent);
2990 
2991 	if (!check_mnt(mp.parent))
2992 		return -EINVAL;
2993 
2994 	mnt = __do_loopback(&old_path, recurse);
2995 	if (IS_ERR(mnt))
2996 		return PTR_ERR(mnt);
2997 
2998 	err = graft_tree(mnt, &mp);
2999 	if (err) {
3000 		lock_mount_hash();
3001 		umount_tree(mnt, UMOUNT_SYNC);
3002 		unlock_mount_hash();
3003 	}
3004 	return err;
3005 }
3006 
3007 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3008 {
3009 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3010 	struct user_namespace *user_ns = mnt_ns->user_ns;
3011 	struct mount *mnt, *p;
3012 
3013 	ns = alloc_mnt_ns(user_ns, true);
3014 	if (IS_ERR(ns))
3015 		return ns;
3016 
3017 	guard(namespace_excl)();
3018 
3019 	/*
3020 	 * Record the sequence number of the source mount namespace.
3021 	 * This needs to hold namespace_sem to ensure that the mount
3022 	 * doesn't get attached.
3023 	 */
3024 	if (is_mounted(path->mnt)) {
3025 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3026 		if (is_anon_ns(src_mnt_ns))
3027 			ns->seq_origin = src_mnt_ns->seq_origin;
3028 		else
3029 			ns->seq_origin = src_mnt_ns->ns.ns_id;
3030 	}
3031 
3032 	mnt = __do_loopback(path, recursive);
3033 	if (IS_ERR(mnt)) {
3034 		emptied_ns = ns;
3035 		return ERR_CAST(mnt);
3036 	}
3037 
3038 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3039 		mnt_add_to_ns(ns, p);
3040 		ns->nr_mounts++;
3041 	}
3042 	ns->root = mnt;
3043 	return ns;
3044 }
3045 
3046 static struct file *open_detached_copy(struct path *path, bool recursive)
3047 {
3048 	struct mnt_namespace *ns = get_detached_copy(path, recursive);
3049 	struct file *file;
3050 
3051 	if (IS_ERR(ns))
3052 		return ERR_CAST(ns);
3053 
3054 	mntput(path->mnt);
3055 	path->mnt = mntget(&ns->root->mnt);
3056 	file = dentry_open(path, O_PATH, current_cred());
3057 	if (IS_ERR(file))
3058 		dissolve_on_fput(path->mnt);
3059 	else
3060 		file->f_mode |= FMODE_NEED_UNMOUNT;
3061 	return file;
3062 }
3063 
3064 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3065 {
3066 	int ret;
3067 	struct path path __free(path_put) = {};
3068 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3069 	bool detached = flags & OPEN_TREE_CLONE;
3070 
3071 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3072 
3073 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3074 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3075 		      OPEN_TREE_CLOEXEC))
3076 		return ERR_PTR(-EINVAL);
3077 
3078 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3079 		return ERR_PTR(-EINVAL);
3080 
3081 	if (flags & AT_NO_AUTOMOUNT)
3082 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3083 	if (flags & AT_SYMLINK_NOFOLLOW)
3084 		lookup_flags &= ~LOOKUP_FOLLOW;
3085 	if (flags & AT_EMPTY_PATH)
3086 		lookup_flags |= LOOKUP_EMPTY;
3087 
3088 	if (detached && !may_mount())
3089 		return ERR_PTR(-EPERM);
3090 
3091 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3092 	if (unlikely(ret))
3093 		return ERR_PTR(ret);
3094 
3095 	if (detached)
3096 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3097 
3098 	return dentry_open(&path, O_PATH, current_cred());
3099 }
3100 
3101 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3102 {
3103 	return FD_ADD(flags, vfs_open_tree(dfd, filename, flags));
3104 }
3105 
3106 /*
3107  * Don't allow locked mount flags to be cleared.
3108  *
3109  * No locks need to be held here while testing the various MNT_LOCK
3110  * flags because those flags can never be cleared once they are set.
3111  */
3112 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3113 {
3114 	unsigned int fl = mnt->mnt.mnt_flags;
3115 
3116 	if ((fl & MNT_LOCK_READONLY) &&
3117 	    !(mnt_flags & MNT_READONLY))
3118 		return false;
3119 
3120 	if ((fl & MNT_LOCK_NODEV) &&
3121 	    !(mnt_flags & MNT_NODEV))
3122 		return false;
3123 
3124 	if ((fl & MNT_LOCK_NOSUID) &&
3125 	    !(mnt_flags & MNT_NOSUID))
3126 		return false;
3127 
3128 	if ((fl & MNT_LOCK_NOEXEC) &&
3129 	    !(mnt_flags & MNT_NOEXEC))
3130 		return false;
3131 
3132 	if ((fl & MNT_LOCK_ATIME) &&
3133 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3134 		return false;
3135 
3136 	return true;
3137 }
3138 
3139 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3140 {
3141 	bool readonly_request = (mnt_flags & MNT_READONLY);
3142 
3143 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3144 		return 0;
3145 
3146 	if (readonly_request)
3147 		return mnt_make_readonly(mnt);
3148 
3149 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3150 	return 0;
3151 }
3152 
3153 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3154 {
3155 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3156 	mnt->mnt.mnt_flags = mnt_flags;
3157 	touch_mnt_namespace(mnt->mnt_ns);
3158 }
3159 
3160 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3161 				      struct vfsmount *mnt)
3162 {
3163 	struct super_block *sb = mnt->mnt_sb;
3164 
3165 	if (!__mnt_is_readonly(mnt) &&
3166 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3167 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3168 		char *buf, *mntpath;
3169 
3170 		buf = (char *)__get_free_page(GFP_KERNEL);
3171 		if (buf)
3172 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3173 		else
3174 			mntpath = ERR_PTR(-ENOMEM);
3175 		if (IS_ERR(mntpath))
3176 			mntpath = "(unknown)";
3177 
3178 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3179 			sb->s_type->name,
3180 			is_mounted(mnt) ? "remounted" : "mounted",
3181 			mntpath, &sb->s_time_max,
3182 			(unsigned long long)sb->s_time_max);
3183 
3184 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3185 		if (buf)
3186 			free_page((unsigned long)buf);
3187 	}
3188 }
3189 
3190 /*
3191  * Handle reconfiguration of the mountpoint only without alteration of the
3192  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3193  * to mount(2).
3194  */
3195 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3196 {
3197 	struct super_block *sb = path->mnt->mnt_sb;
3198 	struct mount *mnt = real_mount(path->mnt);
3199 	int ret;
3200 
3201 	if (!check_mnt(mnt))
3202 		return -EINVAL;
3203 
3204 	if (!path_mounted(path))
3205 		return -EINVAL;
3206 
3207 	if (!can_change_locked_flags(mnt, mnt_flags))
3208 		return -EPERM;
3209 
3210 	/*
3211 	 * We're only checking whether the superblock is read-only not
3212 	 * changing it, so only take down_read(&sb->s_umount).
3213 	 */
3214 	down_read(&sb->s_umount);
3215 	lock_mount_hash();
3216 	ret = change_mount_ro_state(mnt, mnt_flags);
3217 	if (ret == 0)
3218 		set_mount_attributes(mnt, mnt_flags);
3219 	unlock_mount_hash();
3220 	up_read(&sb->s_umount);
3221 
3222 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3223 
3224 	return ret;
3225 }
3226 
3227 /*
3228  * change filesystem flags. dir should be a physical root of filesystem.
3229  * If you've mounted a non-root directory somewhere and want to do remount
3230  * on it - tough luck.
3231  */
3232 static int do_remount(const struct path *path, int sb_flags,
3233 		      int mnt_flags, void *data)
3234 {
3235 	int err;
3236 	struct super_block *sb = path->mnt->mnt_sb;
3237 	struct mount *mnt = real_mount(path->mnt);
3238 	struct fs_context *fc;
3239 
3240 	if (!check_mnt(mnt))
3241 		return -EINVAL;
3242 
3243 	if (!path_mounted(path))
3244 		return -EINVAL;
3245 
3246 	if (!can_change_locked_flags(mnt, mnt_flags))
3247 		return -EPERM;
3248 
3249 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3250 	if (IS_ERR(fc))
3251 		return PTR_ERR(fc);
3252 
3253 	/*
3254 	 * Indicate to the filesystem that the remount request is coming
3255 	 * from the legacy mount system call.
3256 	 */
3257 	fc->oldapi = true;
3258 
3259 	err = parse_monolithic_mount_data(fc, data);
3260 	if (!err) {
3261 		down_write(&sb->s_umount);
3262 		err = -EPERM;
3263 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3264 			err = reconfigure_super(fc);
3265 			if (!err) {
3266 				lock_mount_hash();
3267 				set_mount_attributes(mnt, mnt_flags);
3268 				unlock_mount_hash();
3269 			}
3270 		}
3271 		up_write(&sb->s_umount);
3272 	}
3273 
3274 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3275 
3276 	put_fs_context(fc);
3277 	return err;
3278 }
3279 
3280 static inline int tree_contains_unbindable(struct mount *mnt)
3281 {
3282 	struct mount *p;
3283 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3284 		if (IS_MNT_UNBINDABLE(p))
3285 			return 1;
3286 	}
3287 	return 0;
3288 }
3289 
3290 static int do_set_group(const struct path *from_path, const struct path *to_path)
3291 {
3292 	struct mount *from = real_mount(from_path->mnt);
3293 	struct mount *to = real_mount(to_path->mnt);
3294 	int err;
3295 
3296 	guard(namespace_excl)();
3297 
3298 	err = may_change_propagation(from);
3299 	if (err)
3300 		return err;
3301 	err = may_change_propagation(to);
3302 	if (err)
3303 		return err;
3304 
3305 	/* To and From paths should be mount roots */
3306 	if (!path_mounted(from_path))
3307 		return -EINVAL;
3308 	if (!path_mounted(to_path))
3309 		return -EINVAL;
3310 
3311 	/* Setting sharing groups is only allowed across same superblock */
3312 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3313 		return -EINVAL;
3314 
3315 	/* From mount root should be wider than To mount root */
3316 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3317 		return -EINVAL;
3318 
3319 	/* From mount should not have locked children in place of To's root */
3320 	if (__has_locked_children(from, to->mnt.mnt_root))
3321 		return -EINVAL;
3322 
3323 	/* Setting sharing groups is only allowed on private mounts */
3324 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3325 		return -EINVAL;
3326 
3327 	/* From should not be private */
3328 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3329 		return -EINVAL;
3330 
3331 	if (IS_MNT_SLAVE(from)) {
3332 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3333 		to->mnt_master = from->mnt_master;
3334 	}
3335 
3336 	if (IS_MNT_SHARED(from)) {
3337 		to->mnt_group_id = from->mnt_group_id;
3338 		list_add(&to->mnt_share, &from->mnt_share);
3339 		set_mnt_shared(to);
3340 	}
3341 	return 0;
3342 }
3343 
3344 /**
3345  * path_overmounted - check if path is overmounted
3346  * @path: path to check
3347  *
3348  * Check if path is overmounted, i.e., if there's a mount on top of
3349  * @path->mnt with @path->dentry as mountpoint.
3350  *
3351  * Context: namespace_sem must be held at least shared.
3352  * MUST NOT be called under lock_mount_hash() (there one should just
3353  * call __lookup_mnt() and check if it returns NULL).
3354  * Return: If path is overmounted true is returned, false if not.
3355  */
3356 static inline bool path_overmounted(const struct path *path)
3357 {
3358 	unsigned seq = read_seqbegin(&mount_lock);
3359 	bool no_child;
3360 
3361 	rcu_read_lock();
3362 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3363 	rcu_read_unlock();
3364 	if (need_seqretry(&mount_lock, seq)) {
3365 		read_seqlock_excl(&mount_lock);
3366 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3367 		read_sequnlock_excl(&mount_lock);
3368 	}
3369 	return unlikely(!no_child);
3370 }
3371 
3372 /*
3373  * Check if there is a possibly empty chain of descent from p1 to p2.
3374  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3375  */
3376 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3377 {
3378 	while (p2 != p1 && mnt_has_parent(p2))
3379 		p2 = p2->mnt_parent;
3380 	return p2 == p1;
3381 }
3382 
3383 /**
3384  * can_move_mount_beneath - check that we can mount beneath the top mount
3385  * @mnt_from: mount we are trying to move
3386  * @mnt_to:   mount under which to mount
3387  * @mp:   mountpoint of @mnt_to
3388  *
3389  * - Make sure that nothing can be mounted beneath the caller's current
3390  *   root or the rootfs of the namespace.
3391  * - Make sure that the caller can unmount the topmost mount ensuring
3392  *   that the caller could reveal the underlying mountpoint.
3393  * - Ensure that nothing has been mounted on top of @mnt_from before we
3394  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3395  * - Prevent mounting beneath a mount if the propagation relationship
3396  *   between the source mount, parent mount, and top mount would lead to
3397  *   nonsensical mount trees.
3398  *
3399  * Context: This function expects namespace_lock() to be held.
3400  * Return: On success 0, and on error a negative error code is returned.
3401  */
3402 static int can_move_mount_beneath(const struct mount *mnt_from,
3403 				  const struct mount *mnt_to,
3404 				  const struct mountpoint *mp)
3405 {
3406 	struct mount *parent_mnt_to = mnt_to->mnt_parent;
3407 
3408 	if (IS_MNT_LOCKED(mnt_to))
3409 		return -EINVAL;
3410 
3411 	/* Avoid creating shadow mounts during mount propagation. */
3412 	if (mnt_from->overmount)
3413 		return -EINVAL;
3414 
3415 	/*
3416 	 * Mounting beneath the rootfs only makes sense when the
3417 	 * semantics of pivot_root(".", ".") are used.
3418 	 */
3419 	if (&mnt_to->mnt == current->fs->root.mnt)
3420 		return -EINVAL;
3421 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3422 		return -EINVAL;
3423 
3424 	if (mount_is_ancestor(mnt_to, mnt_from))
3425 		return -EINVAL;
3426 
3427 	/*
3428 	 * If the parent mount propagates to the child mount this would
3429 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3430 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3431 	 * defeats the whole purpose of mounting beneath another mount.
3432 	 */
3433 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3434 		return -EINVAL;
3435 
3436 	/*
3437 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3438 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3439 	 * Afterwards @mnt_from would be mounted on top of
3440 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3441 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3442 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3443 	 * remounted on top of @c. Afterwards, @mnt_from would be
3444 	 * covered by a copy @c of @mnt_from and @c would be covered by
3445 	 * @mnt_from itself. This defeats the whole purpose of mounting
3446 	 * @mnt_from beneath @mnt_to.
3447 	 */
3448 	if (check_mnt(mnt_from) &&
3449 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3450 		return -EINVAL;
3451 
3452 	return 0;
3453 }
3454 
3455 /* may_use_mount() - check if a mount tree can be used
3456  * @mnt: vfsmount to be used
3457  *
3458  * This helper checks if the caller may use the mount tree starting
3459  * from @path->mnt. The caller may use the mount tree under the
3460  * following circumstances:
3461  *
3462  * (1) The caller is located in the mount namespace of the mount tree.
3463  *     This also implies that the mount does not belong to an anonymous
3464  *     mount namespace.
3465  * (2) The caller is trying to use a mount tree that belongs to an
3466  *     anonymous mount namespace.
3467  *
3468  *     For that to be safe, this helper enforces that the origin mount
3469  *     namespace the anonymous mount namespace was created from is the
3470  *     same as the caller's mount namespace by comparing the sequence
3471  *     numbers.
3472  *
3473  *     The ownership of a non-anonymous mount namespace such as the
3474  *     caller's cannot change.
3475  *     => We know that the caller's mount namespace is stable.
3476  *
3477  *     If the origin sequence number of the anonymous mount namespace is
3478  *     the same as the sequence number of the caller's mount namespace.
3479  *     => The owning namespaces are the same.
3480  *
3481  *     ==> The earlier capability check on the owning namespace of the
3482  *         caller's mount namespace ensures that the caller has the
3483  *         ability to use the mount tree.
3484  *
3485  * Returns true if the mount tree can be used, false otherwise.
3486  */
3487 static inline bool may_use_mount(struct mount *mnt)
3488 {
3489 	if (check_mnt(mnt))
3490 		return true;
3491 
3492 	/*
3493 	 * Make sure that noone unmounted the target path or somehow
3494 	 * managed to get their hands on something purely kernel
3495 	 * internal.
3496 	 */
3497 	if (!is_mounted(&mnt->mnt))
3498 		return false;
3499 
3500 	return check_anonymous_mnt(mnt);
3501 }
3502 
3503 static int do_move_mount(const struct path *old_path,
3504 			 const struct path *new_path,
3505 			 enum mnt_tree_flags_t flags)
3506 {
3507 	struct mount *old = real_mount(old_path->mnt);
3508 	int err;
3509 	bool beneath = flags & MNT_TREE_BENEATH;
3510 
3511 	if (!path_mounted(old_path))
3512 		return -EINVAL;
3513 
3514 	if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3515 		return -EINVAL;
3516 
3517 	LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3518 	if (IS_ERR(mp.parent))
3519 		return PTR_ERR(mp.parent);
3520 
3521 	if (check_mnt(old)) {
3522 		/* if the source is in our namespace... */
3523 		/* ... it should be detachable from parent */
3524 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3525 			return -EINVAL;
3526 		/* ... which should not be shared */
3527 		if (IS_MNT_SHARED(old->mnt_parent))
3528 			return -EINVAL;
3529 		/* ... and the target should be in our namespace */
3530 		if (!check_mnt(mp.parent))
3531 			return -EINVAL;
3532 	} else {
3533 		/*
3534 		 * otherwise the source must be the root of some anon namespace.
3535 		 */
3536 		if (!anon_ns_root(old))
3537 			return -EINVAL;
3538 		/*
3539 		 * Bail out early if the target is within the same namespace -
3540 		 * subsequent checks would've rejected that, but they lose
3541 		 * some corner cases if we check it early.
3542 		 */
3543 		if (old->mnt_ns == mp.parent->mnt_ns)
3544 			return -EINVAL;
3545 		/*
3546 		 * Target should be either in our namespace or in an acceptable
3547 		 * anon namespace, sensu check_anonymous_mnt().
3548 		 */
3549 		if (!may_use_mount(mp.parent))
3550 			return -EINVAL;
3551 	}
3552 
3553 	if (beneath) {
3554 		struct mount *over = real_mount(new_path->mnt);
3555 
3556 		if (mp.parent != over->mnt_parent)
3557 			over = mp.parent->overmount;
3558 		err = can_move_mount_beneath(old, over, mp.mp);
3559 		if (err)
3560 			return err;
3561 	}
3562 
3563 	/*
3564 	 * Don't move a mount tree containing unbindable mounts to a destination
3565 	 * mount which is shared.
3566 	 */
3567 	if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3568 		return -EINVAL;
3569 	if (!check_for_nsfs_mounts(old))
3570 		return -ELOOP;
3571 	if (mount_is_ancestor(old, mp.parent))
3572 		return -ELOOP;
3573 
3574 	return attach_recursive_mnt(old, &mp);
3575 }
3576 
3577 static int do_move_mount_old(const struct path *path, const char *old_name)
3578 {
3579 	struct path old_path __free(path_put) = {};
3580 	int err;
3581 
3582 	if (!old_name || !*old_name)
3583 		return -EINVAL;
3584 
3585 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3586 	if (err)
3587 		return err;
3588 
3589 	return do_move_mount(&old_path, path, 0);
3590 }
3591 
3592 /*
3593  * add a mount into a namespace's mount tree
3594  */
3595 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3596 			int mnt_flags)
3597 {
3598 	struct mount *parent = mp->parent;
3599 
3600 	if (IS_ERR(parent))
3601 		return PTR_ERR(parent);
3602 
3603 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3604 
3605 	if (unlikely(!check_mnt(parent))) {
3606 		/* that's acceptable only for automounts done in private ns */
3607 		if (!(mnt_flags & MNT_SHRINKABLE))
3608 			return -EINVAL;
3609 		/* ... and for those we'd better have mountpoint still alive */
3610 		if (!parent->mnt_ns)
3611 			return -EINVAL;
3612 	}
3613 
3614 	/* Refuse the same filesystem on the same mount point */
3615 	if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3616 	    parent->mnt.mnt_root == mp->mp->m_dentry)
3617 		return -EBUSY;
3618 
3619 	if (d_is_symlink(newmnt->mnt.mnt_root))
3620 		return -EINVAL;
3621 
3622 	newmnt->mnt.mnt_flags = mnt_flags;
3623 	return graft_tree(newmnt, mp);
3624 }
3625 
3626 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3627 
3628 /*
3629  * Create a new mount using a superblock configuration and request it
3630  * be added to the namespace tree.
3631  */
3632 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3633 			   unsigned int mnt_flags)
3634 {
3635 	struct super_block *sb;
3636 	struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3637 	int error;
3638 
3639 	if (IS_ERR(mnt))
3640 		return PTR_ERR(mnt);
3641 
3642 	sb = fc->root->d_sb;
3643 	error = security_sb_kern_mount(sb);
3644 	if (unlikely(error))
3645 		return error;
3646 
3647 	if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3648 		errorfcp(fc, "VFS", "Mount too revealing");
3649 		return -EPERM;
3650 	}
3651 
3652 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3653 
3654 	LOCK_MOUNT(mp, mountpoint);
3655 	error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3656 	if (!error)
3657 		retain_and_null_ptr(mnt); // consumed on success
3658 	return error;
3659 }
3660 
3661 /*
3662  * create a new mount for userspace and request it to be added into the
3663  * namespace's tree
3664  */
3665 static int do_new_mount(const struct path *path, const char *fstype,
3666 			int sb_flags, int mnt_flags,
3667 			const char *name, void *data)
3668 {
3669 	struct file_system_type *type;
3670 	struct fs_context *fc;
3671 	const char *subtype = NULL;
3672 	int err = 0;
3673 
3674 	if (!fstype)
3675 		return -EINVAL;
3676 
3677 	type = get_fs_type(fstype);
3678 	if (!type)
3679 		return -ENODEV;
3680 
3681 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3682 		subtype = strchr(fstype, '.');
3683 		if (subtype) {
3684 			subtype++;
3685 			if (!*subtype) {
3686 				put_filesystem(type);
3687 				return -EINVAL;
3688 			}
3689 		}
3690 	}
3691 
3692 	fc = fs_context_for_mount(type, sb_flags);
3693 	put_filesystem(type);
3694 	if (IS_ERR(fc))
3695 		return PTR_ERR(fc);
3696 
3697 	/*
3698 	 * Indicate to the filesystem that the mount request is coming
3699 	 * from the legacy mount system call.
3700 	 */
3701 	fc->oldapi = true;
3702 
3703 	if (subtype)
3704 		err = vfs_parse_fs_string(fc, "subtype", subtype);
3705 	if (!err && name)
3706 		err = vfs_parse_fs_string(fc, "source", name);
3707 	if (!err)
3708 		err = parse_monolithic_mount_data(fc, data);
3709 	if (!err && !mount_capable(fc))
3710 		err = -EPERM;
3711 	if (!err)
3712 		err = do_new_mount_fc(fc, path, mnt_flags);
3713 
3714 	put_fs_context(fc);
3715 	return err;
3716 }
3717 
3718 static void lock_mount_exact(const struct path *path,
3719 			     struct pinned_mountpoint *mp)
3720 {
3721 	struct dentry *dentry = path->dentry;
3722 	int err;
3723 
3724 	inode_lock(dentry->d_inode);
3725 	namespace_lock();
3726 	if (unlikely(cant_mount(dentry)))
3727 		err = -ENOENT;
3728 	else if (path_overmounted(path))
3729 		err = -EBUSY;
3730 	else
3731 		err = get_mountpoint(dentry, mp);
3732 	if (unlikely(err)) {
3733 		namespace_unlock();
3734 		inode_unlock(dentry->d_inode);
3735 		mp->parent = ERR_PTR(err);
3736 	} else {
3737 		mp->parent = real_mount(path->mnt);
3738 	}
3739 }
3740 
3741 int finish_automount(struct vfsmount *__m, const struct path *path)
3742 {
3743 	struct vfsmount *m __free(mntput) = __m;
3744 	struct mount *mnt;
3745 	int err;
3746 
3747 	if (!m)
3748 		return 0;
3749 	if (IS_ERR(m))
3750 		return PTR_ERR(m);
3751 
3752 	mnt = real_mount(m);
3753 
3754 	if (m->mnt_root == path->dentry)
3755 		return -ELOOP;
3756 
3757 	/*
3758 	 * we don't want to use LOCK_MOUNT() - in this case finding something
3759 	 * that overmounts our mountpoint to be means "quitely drop what we've
3760 	 * got", not "try to mount it on top".
3761 	 */
3762 	LOCK_MOUNT_EXACT(mp, path);
3763 	if (mp.parent == ERR_PTR(-EBUSY))
3764 		return 0;
3765 
3766 	err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3767 	if (likely(!err))
3768 		retain_and_null_ptr(m);
3769 	return err;
3770 }
3771 
3772 /**
3773  * mnt_set_expiry - Put a mount on an expiration list
3774  * @mnt: The mount to list.
3775  * @expiry_list: The list to add the mount to.
3776  */
3777 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3778 {
3779 	guard(mount_locked_reader)();
3780 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3781 }
3782 EXPORT_SYMBOL(mnt_set_expiry);
3783 
3784 /*
3785  * process a list of expirable mountpoints with the intent of discarding any
3786  * mountpoints that aren't in use and haven't been touched since last we came
3787  * here
3788  */
3789 void mark_mounts_for_expiry(struct list_head *mounts)
3790 {
3791 	struct mount *mnt, *next;
3792 	LIST_HEAD(graveyard);
3793 
3794 	if (list_empty(mounts))
3795 		return;
3796 
3797 	guard(namespace_excl)();
3798 	guard(mount_writer)();
3799 
3800 	/* extract from the expiration list every vfsmount that matches the
3801 	 * following criteria:
3802 	 * - already mounted
3803 	 * - only referenced by its parent vfsmount
3804 	 * - still marked for expiry (marked on the last call here; marks are
3805 	 *   cleared by mntput())
3806 	 */
3807 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3808 		if (!is_mounted(&mnt->mnt))
3809 			continue;
3810 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3811 			propagate_mount_busy(mnt, 1))
3812 			continue;
3813 		list_move(&mnt->mnt_expire, &graveyard);
3814 	}
3815 	while (!list_empty(&graveyard)) {
3816 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3817 		touch_mnt_namespace(mnt->mnt_ns);
3818 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3819 	}
3820 }
3821 
3822 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3823 
3824 /*
3825  * Ripoff of 'select_parent()'
3826  *
3827  * search the list of submounts for a given mountpoint, and move any
3828  * shrinkable submounts to the 'graveyard' list.
3829  */
3830 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3831 {
3832 	struct mount *this_parent = parent;
3833 	struct list_head *next;
3834 	int found = 0;
3835 
3836 repeat:
3837 	next = this_parent->mnt_mounts.next;
3838 resume:
3839 	while (next != &this_parent->mnt_mounts) {
3840 		struct list_head *tmp = next;
3841 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3842 
3843 		next = tmp->next;
3844 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3845 			continue;
3846 		/*
3847 		 * Descend a level if the d_mounts list is non-empty.
3848 		 */
3849 		if (!list_empty(&mnt->mnt_mounts)) {
3850 			this_parent = mnt;
3851 			goto repeat;
3852 		}
3853 
3854 		if (!propagate_mount_busy(mnt, 1)) {
3855 			list_move_tail(&mnt->mnt_expire, graveyard);
3856 			found++;
3857 		}
3858 	}
3859 	/*
3860 	 * All done at this level ... ascend and resume the search
3861 	 */
3862 	if (this_parent != parent) {
3863 		next = this_parent->mnt_child.next;
3864 		this_parent = this_parent->mnt_parent;
3865 		goto resume;
3866 	}
3867 	return found;
3868 }
3869 
3870 /*
3871  * process a list of expirable mountpoints with the intent of discarding any
3872  * submounts of a specific parent mountpoint
3873  *
3874  * mount_lock must be held for write
3875  */
3876 static void shrink_submounts(struct mount *mnt)
3877 {
3878 	LIST_HEAD(graveyard);
3879 	struct mount *m;
3880 
3881 	/* extract submounts of 'mountpoint' from the expiration list */
3882 	while (select_submounts(mnt, &graveyard)) {
3883 		while (!list_empty(&graveyard)) {
3884 			m = list_first_entry(&graveyard, struct mount,
3885 						mnt_expire);
3886 			touch_mnt_namespace(m->mnt_ns);
3887 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3888 		}
3889 	}
3890 }
3891 
3892 static void *copy_mount_options(const void __user * data)
3893 {
3894 	char *copy;
3895 	unsigned left, offset;
3896 
3897 	if (!data)
3898 		return NULL;
3899 
3900 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3901 	if (!copy)
3902 		return ERR_PTR(-ENOMEM);
3903 
3904 	left = copy_from_user(copy, data, PAGE_SIZE);
3905 
3906 	/*
3907 	 * Not all architectures have an exact copy_from_user(). Resort to
3908 	 * byte at a time.
3909 	 */
3910 	offset = PAGE_SIZE - left;
3911 	while (left) {
3912 		char c;
3913 		if (get_user(c, (const char __user *)data + offset))
3914 			break;
3915 		copy[offset] = c;
3916 		left--;
3917 		offset++;
3918 	}
3919 
3920 	if (left == PAGE_SIZE) {
3921 		kfree(copy);
3922 		return ERR_PTR(-EFAULT);
3923 	}
3924 
3925 	return copy;
3926 }
3927 
3928 static char *copy_mount_string(const void __user *data)
3929 {
3930 	return data ? strndup_user(data, PATH_MAX) : NULL;
3931 }
3932 
3933 /*
3934  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3935  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3936  *
3937  * data is a (void *) that can point to any structure up to
3938  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3939  * information (or be NULL).
3940  *
3941  * Pre-0.97 versions of mount() didn't have a flags word.
3942  * When the flags word was introduced its top half was required
3943  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3944  * Therefore, if this magic number is present, it carries no information
3945  * and must be discarded.
3946  */
3947 int path_mount(const char *dev_name, const struct path *path,
3948 		const char *type_page, unsigned long flags, void *data_page)
3949 {
3950 	unsigned int mnt_flags = 0, sb_flags;
3951 	int ret;
3952 
3953 	/* Discard magic */
3954 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3955 		flags &= ~MS_MGC_MSK;
3956 
3957 	/* Basic sanity checks */
3958 	if (data_page)
3959 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3960 
3961 	if (flags & MS_NOUSER)
3962 		return -EINVAL;
3963 
3964 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3965 	if (ret)
3966 		return ret;
3967 	if (!may_mount())
3968 		return -EPERM;
3969 	if (flags & SB_MANDLOCK)
3970 		warn_mandlock();
3971 
3972 	/* Default to relatime unless overriden */
3973 	if (!(flags & MS_NOATIME))
3974 		mnt_flags |= MNT_RELATIME;
3975 
3976 	/* Separate the per-mountpoint flags */
3977 	if (flags & MS_NOSUID)
3978 		mnt_flags |= MNT_NOSUID;
3979 	if (flags & MS_NODEV)
3980 		mnt_flags |= MNT_NODEV;
3981 	if (flags & MS_NOEXEC)
3982 		mnt_flags |= MNT_NOEXEC;
3983 	if (flags & MS_NOATIME)
3984 		mnt_flags |= MNT_NOATIME;
3985 	if (flags & MS_NODIRATIME)
3986 		mnt_flags |= MNT_NODIRATIME;
3987 	if (flags & MS_STRICTATIME)
3988 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3989 	if (flags & MS_RDONLY)
3990 		mnt_flags |= MNT_READONLY;
3991 	if (flags & MS_NOSYMFOLLOW)
3992 		mnt_flags |= MNT_NOSYMFOLLOW;
3993 
3994 	/* The default atime for remount is preservation */
3995 	if ((flags & MS_REMOUNT) &&
3996 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3997 		       MS_STRICTATIME)) == 0)) {
3998 		mnt_flags &= ~MNT_ATIME_MASK;
3999 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4000 	}
4001 
4002 	sb_flags = flags & (SB_RDONLY |
4003 			    SB_SYNCHRONOUS |
4004 			    SB_MANDLOCK |
4005 			    SB_DIRSYNC |
4006 			    SB_SILENT |
4007 			    SB_POSIXACL |
4008 			    SB_LAZYTIME |
4009 			    SB_I_VERSION);
4010 
4011 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4012 		return do_reconfigure_mnt(path, mnt_flags);
4013 	if (flags & MS_REMOUNT)
4014 		return do_remount(path, sb_flags, mnt_flags, data_page);
4015 	if (flags & MS_BIND)
4016 		return do_loopback(path, dev_name, flags & MS_REC);
4017 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4018 		return do_change_type(path, flags);
4019 	if (flags & MS_MOVE)
4020 		return do_move_mount_old(path, dev_name);
4021 
4022 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4023 			    data_page);
4024 }
4025 
4026 int do_mount(const char *dev_name, const char __user *dir_name,
4027 		const char *type_page, unsigned long flags, void *data_page)
4028 {
4029 	struct path path __free(path_put) = {};
4030 	int ret;
4031 
4032 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4033 	if (ret)
4034 		return ret;
4035 	return path_mount(dev_name, &path, type_page, flags, data_page);
4036 }
4037 
4038 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4039 {
4040 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4041 }
4042 
4043 static void dec_mnt_namespaces(struct ucounts *ucounts)
4044 {
4045 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4046 }
4047 
4048 static void free_mnt_ns(struct mnt_namespace *ns)
4049 {
4050 	if (!is_anon_ns(ns))
4051 		ns_common_free(ns);
4052 	dec_mnt_namespaces(ns->ucounts);
4053 	mnt_ns_tree_remove(ns);
4054 }
4055 
4056 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4057 {
4058 	struct mnt_namespace *new_ns;
4059 	struct ucounts *ucounts;
4060 	int ret;
4061 
4062 	ucounts = inc_mnt_namespaces(user_ns);
4063 	if (!ucounts)
4064 		return ERR_PTR(-ENOSPC);
4065 
4066 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4067 	if (!new_ns) {
4068 		dec_mnt_namespaces(ucounts);
4069 		return ERR_PTR(-ENOMEM);
4070 	}
4071 
4072 	if (anon)
4073 		ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4074 	else
4075 		ret = ns_common_init(new_ns);
4076 	if (ret) {
4077 		kfree(new_ns);
4078 		dec_mnt_namespaces(ucounts);
4079 		return ERR_PTR(ret);
4080 	}
4081 	ns_tree_gen_id(new_ns);
4082 
4083 	new_ns->is_anon = anon;
4084 	refcount_set(&new_ns->passive, 1);
4085 	new_ns->mounts = RB_ROOT;
4086 	init_waitqueue_head(&new_ns->poll);
4087 	new_ns->user_ns = get_user_ns(user_ns);
4088 	new_ns->ucounts = ucounts;
4089 	return new_ns;
4090 }
4091 
4092 __latent_entropy
4093 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4094 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4095 {
4096 	struct mnt_namespace *new_ns;
4097 	struct vfsmount *rootmnt __free(mntput) = NULL;
4098 	struct vfsmount *pwdmnt __free(mntput) = NULL;
4099 	struct mount *p, *q;
4100 	struct mount *old;
4101 	struct mount *new;
4102 	int copy_flags;
4103 
4104 	BUG_ON(!ns);
4105 
4106 	if (likely(!(flags & CLONE_NEWNS))) {
4107 		get_mnt_ns(ns);
4108 		return ns;
4109 	}
4110 
4111 	old = ns->root;
4112 
4113 	new_ns = alloc_mnt_ns(user_ns, false);
4114 	if (IS_ERR(new_ns))
4115 		return new_ns;
4116 
4117 	guard(namespace_excl)();
4118 	/* First pass: copy the tree topology */
4119 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4120 	if (user_ns != ns->user_ns)
4121 		copy_flags |= CL_SLAVE;
4122 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4123 	if (IS_ERR(new)) {
4124 		emptied_ns = new_ns;
4125 		return ERR_CAST(new);
4126 	}
4127 	if (user_ns != ns->user_ns) {
4128 		guard(mount_writer)();
4129 		lock_mnt_tree(new);
4130 	}
4131 	new_ns->root = new;
4132 
4133 	/*
4134 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4135 	 * as belonging to new namespace.  We have already acquired a private
4136 	 * fs_struct, so tsk->fs->lock is not needed.
4137 	 */
4138 	p = old;
4139 	q = new;
4140 	while (p) {
4141 		mnt_add_to_ns(new_ns, q);
4142 		new_ns->nr_mounts++;
4143 		if (new_fs) {
4144 			if (&p->mnt == new_fs->root.mnt) {
4145 				new_fs->root.mnt = mntget(&q->mnt);
4146 				rootmnt = &p->mnt;
4147 			}
4148 			if (&p->mnt == new_fs->pwd.mnt) {
4149 				new_fs->pwd.mnt = mntget(&q->mnt);
4150 				pwdmnt = &p->mnt;
4151 			}
4152 		}
4153 		p = next_mnt(p, old);
4154 		q = next_mnt(q, new);
4155 		if (!q)
4156 			break;
4157 		// an mntns binding we'd skipped?
4158 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4159 			p = next_mnt(skip_mnt_tree(p), old);
4160 	}
4161 	ns_tree_add_raw(new_ns);
4162 	return new_ns;
4163 }
4164 
4165 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4166 {
4167 	struct mount *mnt = real_mount(m);
4168 	struct mnt_namespace *ns;
4169 	struct super_block *s;
4170 	struct path path;
4171 	int err;
4172 
4173 	ns = alloc_mnt_ns(&init_user_ns, true);
4174 	if (IS_ERR(ns)) {
4175 		mntput(m);
4176 		return ERR_CAST(ns);
4177 	}
4178 	ns->root = mnt;
4179 	ns->nr_mounts++;
4180 	mnt_add_to_ns(ns, mnt);
4181 
4182 	err = vfs_path_lookup(m->mnt_root, m,
4183 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4184 
4185 	put_mnt_ns(ns);
4186 
4187 	if (err)
4188 		return ERR_PTR(err);
4189 
4190 	/* trade a vfsmount reference for active sb one */
4191 	s = path.mnt->mnt_sb;
4192 	atomic_inc(&s->s_active);
4193 	mntput(path.mnt);
4194 	/* lock the sucker */
4195 	down_write(&s->s_umount);
4196 	/* ... and return the root of (sub)tree on it */
4197 	return path.dentry;
4198 }
4199 EXPORT_SYMBOL(mount_subtree);
4200 
4201 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4202 		char __user *, type, unsigned long, flags, void __user *, data)
4203 {
4204 	int ret;
4205 	char *kernel_type;
4206 	char *kernel_dev;
4207 	void *options;
4208 
4209 	kernel_type = copy_mount_string(type);
4210 	ret = PTR_ERR(kernel_type);
4211 	if (IS_ERR(kernel_type))
4212 		goto out_type;
4213 
4214 	kernel_dev = copy_mount_string(dev_name);
4215 	ret = PTR_ERR(kernel_dev);
4216 	if (IS_ERR(kernel_dev))
4217 		goto out_dev;
4218 
4219 	options = copy_mount_options(data);
4220 	ret = PTR_ERR(options);
4221 	if (IS_ERR(options))
4222 		goto out_data;
4223 
4224 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4225 
4226 	kfree(options);
4227 out_data:
4228 	kfree(kernel_dev);
4229 out_dev:
4230 	kfree(kernel_type);
4231 out_type:
4232 	return ret;
4233 }
4234 
4235 #define FSMOUNT_VALID_FLAGS                                                    \
4236 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4237 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4238 	 MOUNT_ATTR_NOSYMFOLLOW)
4239 
4240 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4241 
4242 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4243 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4244 
4245 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4246 {
4247 	unsigned int mnt_flags = 0;
4248 
4249 	if (attr_flags & MOUNT_ATTR_RDONLY)
4250 		mnt_flags |= MNT_READONLY;
4251 	if (attr_flags & MOUNT_ATTR_NOSUID)
4252 		mnt_flags |= MNT_NOSUID;
4253 	if (attr_flags & MOUNT_ATTR_NODEV)
4254 		mnt_flags |= MNT_NODEV;
4255 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4256 		mnt_flags |= MNT_NOEXEC;
4257 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4258 		mnt_flags |= MNT_NODIRATIME;
4259 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4260 		mnt_flags |= MNT_NOSYMFOLLOW;
4261 
4262 	return mnt_flags;
4263 }
4264 
4265 /*
4266  * Create a kernel mount representation for a new, prepared superblock
4267  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4268  */
4269 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4270 		unsigned int, attr_flags)
4271 {
4272 	struct path new_path __free(path_put) = {};
4273 	struct mnt_namespace *ns;
4274 	struct fs_context *fc;
4275 	struct vfsmount *new_mnt;
4276 	struct mount *mnt;
4277 	unsigned int mnt_flags = 0;
4278 	long ret;
4279 
4280 	if (!may_mount())
4281 		return -EPERM;
4282 
4283 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4284 		return -EINVAL;
4285 
4286 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4287 		return -EINVAL;
4288 
4289 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4290 
4291 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4292 	case MOUNT_ATTR_STRICTATIME:
4293 		break;
4294 	case MOUNT_ATTR_NOATIME:
4295 		mnt_flags |= MNT_NOATIME;
4296 		break;
4297 	case MOUNT_ATTR_RELATIME:
4298 		mnt_flags |= MNT_RELATIME;
4299 		break;
4300 	default:
4301 		return -EINVAL;
4302 	}
4303 
4304 	CLASS(fd, f)(fs_fd);
4305 	if (fd_empty(f))
4306 		return -EBADF;
4307 
4308 	if (fd_file(f)->f_op != &fscontext_fops)
4309 		return -EINVAL;
4310 
4311 	fc = fd_file(f)->private_data;
4312 
4313 	ACQUIRE(mutex_intr, uapi_mutex)(&fc->uapi_mutex);
4314 	ret = ACQUIRE_ERR(mutex_intr, &uapi_mutex);
4315 	if (ret)
4316 		return ret;
4317 
4318 	/* There must be a valid superblock or we can't mount it */
4319 	ret = -EINVAL;
4320 	if (!fc->root)
4321 		return ret;
4322 
4323 	ret = -EPERM;
4324 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4325 		errorfcp(fc, "VFS", "Mount too revealing");
4326 		return ret;
4327 	}
4328 
4329 	ret = -EBUSY;
4330 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4331 		return ret;
4332 
4333 	if (fc->sb_flags & SB_MANDLOCK)
4334 		warn_mandlock();
4335 
4336 	new_mnt = vfs_create_mount(fc);
4337 	if (IS_ERR(new_mnt))
4338 		return PTR_ERR(new_mnt);
4339 	new_mnt->mnt_flags = mnt_flags;
4340 
4341 	new_path.dentry = dget(fc->root);
4342 	new_path.mnt = new_mnt;
4343 
4344 	/* We've done the mount bit - now move the file context into more or
4345 	 * less the same state as if we'd done an fspick().  We don't want to
4346 	 * do any memory allocation or anything like that at this point as we
4347 	 * don't want to have to handle any errors incurred.
4348 	 */
4349 	vfs_clean_context(fc);
4350 
4351 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4352 	if (IS_ERR(ns))
4353 		return PTR_ERR(ns);
4354 	mnt = real_mount(new_path.mnt);
4355 	ns->root = mnt;
4356 	ns->nr_mounts = 1;
4357 	mnt_add_to_ns(ns, mnt);
4358 	mntget(new_path.mnt);
4359 
4360 	FD_PREPARE(fdf, (flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0,
4361 		   dentry_open(&new_path, O_PATH, fc->cred));
4362 	if (fdf.err) {
4363 		dissolve_on_fput(new_path.mnt);
4364 		return fdf.err;
4365 	}
4366 
4367 	/*
4368 	 * Attach to an apparent O_PATH fd with a note that we
4369 	 * need to unmount it, not just simply put it.
4370 	 */
4371 	fd_prepare_file(fdf)->f_mode |= FMODE_NEED_UNMOUNT;
4372 	return fd_publish(fdf);
4373 }
4374 
4375 static inline int vfs_move_mount(const struct path *from_path,
4376 				 const struct path *to_path,
4377 				 enum mnt_tree_flags_t mflags)
4378 {
4379 	int ret;
4380 
4381 	ret = security_move_mount(from_path, to_path);
4382 	if (ret)
4383 		return ret;
4384 
4385 	if (mflags & MNT_TREE_PROPAGATION)
4386 		return do_set_group(from_path, to_path);
4387 
4388 	return do_move_mount(from_path, to_path, mflags);
4389 }
4390 
4391 /*
4392  * Move a mount from one place to another.  In combination with
4393  * fsopen()/fsmount() this is used to install a new mount and in combination
4394  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4395  * a mount subtree.
4396  *
4397  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4398  */
4399 SYSCALL_DEFINE5(move_mount,
4400 		int, from_dfd, const char __user *, from_pathname,
4401 		int, to_dfd, const char __user *, to_pathname,
4402 		unsigned int, flags)
4403 {
4404 	struct path to_path __free(path_put) = {};
4405 	struct path from_path __free(path_put) = {};
4406 	struct filename *to_name __free(putname) = NULL;
4407 	struct filename *from_name __free(putname) = NULL;
4408 	unsigned int lflags, uflags;
4409 	enum mnt_tree_flags_t mflags = 0;
4410 	int ret = 0;
4411 
4412 	if (!may_mount())
4413 		return -EPERM;
4414 
4415 	if (flags & ~MOVE_MOUNT__MASK)
4416 		return -EINVAL;
4417 
4418 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4419 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4420 		return -EINVAL;
4421 
4422 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4423 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4424 
4425 	uflags = 0;
4426 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4427 		uflags = AT_EMPTY_PATH;
4428 
4429 	to_name = getname_maybe_null(to_pathname, uflags);
4430 	if (IS_ERR(to_name))
4431 		return PTR_ERR(to_name);
4432 
4433 	if (!to_name && to_dfd >= 0) {
4434 		CLASS(fd_raw, f_to)(to_dfd);
4435 		if (fd_empty(f_to))
4436 			return -EBADF;
4437 
4438 		to_path = fd_file(f_to)->f_path;
4439 		path_get(&to_path);
4440 	} else {
4441 		lflags = 0;
4442 		if (flags & MOVE_MOUNT_T_SYMLINKS)
4443 			lflags |= LOOKUP_FOLLOW;
4444 		if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4445 			lflags |= LOOKUP_AUTOMOUNT;
4446 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4447 		if (ret)
4448 			return ret;
4449 	}
4450 
4451 	uflags = 0;
4452 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4453 		uflags = AT_EMPTY_PATH;
4454 
4455 	from_name = getname_maybe_null(from_pathname, uflags);
4456 	if (IS_ERR(from_name))
4457 		return PTR_ERR(from_name);
4458 
4459 	if (!from_name && from_dfd >= 0) {
4460 		CLASS(fd_raw, f_from)(from_dfd);
4461 		if (fd_empty(f_from))
4462 			return -EBADF;
4463 
4464 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4465 	}
4466 
4467 	lflags = 0;
4468 	if (flags & MOVE_MOUNT_F_SYMLINKS)
4469 		lflags |= LOOKUP_FOLLOW;
4470 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4471 		lflags |= LOOKUP_AUTOMOUNT;
4472 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4473 	if (ret)
4474 		return ret;
4475 
4476 	return vfs_move_mount(&from_path, &to_path, mflags);
4477 }
4478 
4479 /*
4480  * Return true if path is reachable from root
4481  *
4482  * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4483  */
4484 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4485 			 const struct path *root)
4486 {
4487 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4488 		dentry = mnt->mnt_mountpoint;
4489 		mnt = mnt->mnt_parent;
4490 	}
4491 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4492 }
4493 
4494 bool path_is_under(const struct path *path1, const struct path *path2)
4495 {
4496 	guard(mount_locked_reader)();
4497 	return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4498 }
4499 EXPORT_SYMBOL(path_is_under);
4500 
4501 /*
4502  * pivot_root Semantics:
4503  * Moves the root file system of the current process to the directory put_old,
4504  * makes new_root as the new root file system of the current process, and sets
4505  * root/cwd of all processes which had them on the current root to new_root.
4506  *
4507  * Restrictions:
4508  * The new_root and put_old must be directories, and  must not be on the
4509  * same file  system as the current process root. The put_old  must  be
4510  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4511  * pointed to by put_old must yield the same directory as new_root. No other
4512  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4513  *
4514  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4515  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4516  * in this situation.
4517  *
4518  * Notes:
4519  *  - we don't move root/cwd if they are not at the root (reason: if something
4520  *    cared enough to change them, it's probably wrong to force them elsewhere)
4521  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4522  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4523  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4524  *    first.
4525  */
4526 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4527 		const char __user *, put_old)
4528 {
4529 	struct path new __free(path_put) = {};
4530 	struct path old __free(path_put) = {};
4531 	struct path root __free(path_put) = {};
4532 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4533 	int error;
4534 
4535 	if (!may_mount())
4536 		return -EPERM;
4537 
4538 	error = user_path_at(AT_FDCWD, new_root,
4539 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4540 	if (error)
4541 		return error;
4542 
4543 	error = user_path_at(AT_FDCWD, put_old,
4544 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4545 	if (error)
4546 		return error;
4547 
4548 	error = security_sb_pivotroot(&old, &new);
4549 	if (error)
4550 		return error;
4551 
4552 	get_fs_root(current->fs, &root);
4553 
4554 	LOCK_MOUNT(old_mp, &old);
4555 	old_mnt = old_mp.parent;
4556 	if (IS_ERR(old_mnt))
4557 		return PTR_ERR(old_mnt);
4558 
4559 	new_mnt = real_mount(new.mnt);
4560 	root_mnt = real_mount(root.mnt);
4561 	ex_parent = new_mnt->mnt_parent;
4562 	root_parent = root_mnt->mnt_parent;
4563 	if (IS_MNT_SHARED(old_mnt) ||
4564 		IS_MNT_SHARED(ex_parent) ||
4565 		IS_MNT_SHARED(root_parent))
4566 		return -EINVAL;
4567 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4568 		return -EINVAL;
4569 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4570 		return -EINVAL;
4571 	if (d_unlinked(new.dentry))
4572 		return -ENOENT;
4573 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4574 		return -EBUSY; /* loop, on the same file system  */
4575 	if (!path_mounted(&root))
4576 		return -EINVAL; /* not a mountpoint */
4577 	if (!mnt_has_parent(root_mnt))
4578 		return -EINVAL; /* absolute root */
4579 	if (!path_mounted(&new))
4580 		return -EINVAL; /* not a mountpoint */
4581 	if (!mnt_has_parent(new_mnt))
4582 		return -EINVAL; /* absolute root */
4583 	/* make sure we can reach put_old from new_root */
4584 	if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4585 		return -EINVAL;
4586 	/* make certain new is below the root */
4587 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4588 		return -EINVAL;
4589 	lock_mount_hash();
4590 	umount_mnt(new_mnt);
4591 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4592 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4593 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4594 	}
4595 	/* mount new_root on / */
4596 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4597 	umount_mnt(root_mnt);
4598 	/* mount old root on put_old */
4599 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4600 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4601 	/* A moved mount should not expire automatically */
4602 	list_del_init(&new_mnt->mnt_expire);
4603 	unlock_mount_hash();
4604 	mnt_notify_add(root_mnt);
4605 	mnt_notify_add(new_mnt);
4606 	chroot_fs_refs(&root, &new);
4607 	return 0;
4608 }
4609 
4610 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4611 {
4612 	unsigned int flags = mnt->mnt.mnt_flags;
4613 
4614 	/*  flags to clear */
4615 	flags &= ~kattr->attr_clr;
4616 	/* flags to raise */
4617 	flags |= kattr->attr_set;
4618 
4619 	return flags;
4620 }
4621 
4622 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4623 {
4624 	struct vfsmount *m = &mnt->mnt;
4625 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4626 
4627 	if (!kattr->mnt_idmap)
4628 		return 0;
4629 
4630 	/*
4631 	 * Creating an idmapped mount with the filesystem wide idmapping
4632 	 * doesn't make sense so block that. We don't allow mushy semantics.
4633 	 */
4634 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4635 		return -EINVAL;
4636 
4637 	/*
4638 	 * We only allow an mount to change it's idmapping if it has
4639 	 * never been accessible to userspace.
4640 	 */
4641 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4642 		return -EPERM;
4643 
4644 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4645 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4646 		return -EINVAL;
4647 
4648 	/* The filesystem has turned off idmapped mounts. */
4649 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4650 		return -EINVAL;
4651 
4652 	/* We're not controlling the superblock. */
4653 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4654 		return -EPERM;
4655 
4656 	/* Mount has already been visible in the filesystem hierarchy. */
4657 	if (!is_anon_ns(mnt->mnt_ns))
4658 		return -EINVAL;
4659 
4660 	return 0;
4661 }
4662 
4663 /**
4664  * mnt_allow_writers() - check whether the attribute change allows writers
4665  * @kattr: the new mount attributes
4666  * @mnt: the mount to which @kattr will be applied
4667  *
4668  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4669  *
4670  * Return: true if writers need to be held, false if not
4671  */
4672 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4673 				     const struct mount *mnt)
4674 {
4675 	return (!(kattr->attr_set & MNT_READONLY) ||
4676 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4677 	       !kattr->mnt_idmap;
4678 }
4679 
4680 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4681 {
4682 	struct mount *m;
4683 	int err;
4684 
4685 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4686 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4687 			err = -EPERM;
4688 			break;
4689 		}
4690 
4691 		err = can_idmap_mount(kattr, m);
4692 		if (err)
4693 			break;
4694 
4695 		if (!mnt_allow_writers(kattr, m)) {
4696 			err = mnt_hold_writers(m);
4697 			if (err) {
4698 				m = next_mnt(m, mnt);
4699 				break;
4700 			}
4701 		}
4702 
4703 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4704 			return 0;
4705 	}
4706 
4707 	if (err) {
4708 		/* undo all mnt_hold_writers() we'd done */
4709 		for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4710 			mnt_unhold_writers(p);
4711 	}
4712 	return err;
4713 }
4714 
4715 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4716 {
4717 	struct mnt_idmap *old_idmap;
4718 
4719 	if (!kattr->mnt_idmap)
4720 		return;
4721 
4722 	old_idmap = mnt_idmap(&mnt->mnt);
4723 
4724 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4725 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4726 	mnt_idmap_put(old_idmap);
4727 }
4728 
4729 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4730 {
4731 	struct mount *m;
4732 
4733 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4734 		unsigned int flags;
4735 
4736 		do_idmap_mount(kattr, m);
4737 		flags = recalc_flags(kattr, m);
4738 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4739 
4740 		/* If we had to hold writers unblock them. */
4741 		mnt_unhold_writers(m);
4742 
4743 		if (kattr->propagation)
4744 			change_mnt_propagation(m, kattr->propagation);
4745 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4746 			break;
4747 	}
4748 	touch_mnt_namespace(mnt->mnt_ns);
4749 }
4750 
4751 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4752 {
4753 	struct mount *mnt = real_mount(path->mnt);
4754 	int err = 0;
4755 
4756 	if (!path_mounted(path))
4757 		return -EINVAL;
4758 
4759 	if (kattr->mnt_userns) {
4760 		struct mnt_idmap *mnt_idmap;
4761 
4762 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4763 		if (IS_ERR(mnt_idmap))
4764 			return PTR_ERR(mnt_idmap);
4765 		kattr->mnt_idmap = mnt_idmap;
4766 	}
4767 
4768 	if (kattr->propagation) {
4769 		/*
4770 		 * Only take namespace_lock() if we're actually changing
4771 		 * propagation.
4772 		 */
4773 		namespace_lock();
4774 		if (kattr->propagation == MS_SHARED) {
4775 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4776 			if (err) {
4777 				namespace_unlock();
4778 				return err;
4779 			}
4780 		}
4781 	}
4782 
4783 	err = -EINVAL;
4784 	lock_mount_hash();
4785 
4786 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4787 		goto out;
4788 
4789 	/*
4790 	 * First, we get the mount tree in a shape where we can change mount
4791 	 * properties without failure. If we succeeded to do so we commit all
4792 	 * changes and if we failed we clean up.
4793 	 */
4794 	err = mount_setattr_prepare(kattr, mnt);
4795 	if (!err)
4796 		mount_setattr_commit(kattr, mnt);
4797 
4798 out:
4799 	unlock_mount_hash();
4800 
4801 	if (kattr->propagation) {
4802 		if (err)
4803 			cleanup_group_ids(mnt, NULL);
4804 		namespace_unlock();
4805 	}
4806 
4807 	return err;
4808 }
4809 
4810 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4811 				struct mount_kattr *kattr)
4812 {
4813 	struct ns_common *ns;
4814 	struct user_namespace *mnt_userns;
4815 
4816 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4817 		return 0;
4818 
4819 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4820 		/*
4821 		 * We can only remove an idmapping if it's never been
4822 		 * exposed to userspace.
4823 		 */
4824 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4825 			return -EINVAL;
4826 
4827 		/*
4828 		 * Removal of idmappings is equivalent to setting
4829 		 * nop_mnt_idmap.
4830 		 */
4831 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4832 			kattr->mnt_idmap = &nop_mnt_idmap;
4833 			return 0;
4834 		}
4835 	}
4836 
4837 	if (attr->userns_fd > INT_MAX)
4838 		return -EINVAL;
4839 
4840 	CLASS(fd, f)(attr->userns_fd);
4841 	if (fd_empty(f))
4842 		return -EBADF;
4843 
4844 	if (!proc_ns_file(fd_file(f)))
4845 		return -EINVAL;
4846 
4847 	ns = get_proc_ns(file_inode(fd_file(f)));
4848 	if (ns->ns_type != CLONE_NEWUSER)
4849 		return -EINVAL;
4850 
4851 	/*
4852 	 * The initial idmapping cannot be used to create an idmapped
4853 	 * mount. We use the initial idmapping as an indicator of a mount
4854 	 * that is not idmapped. It can simply be passed into helpers that
4855 	 * are aware of idmapped mounts as a convenient shortcut. A user
4856 	 * can just create a dedicated identity mapping to achieve the same
4857 	 * result.
4858 	 */
4859 	mnt_userns = container_of(ns, struct user_namespace, ns);
4860 	if (mnt_userns == &init_user_ns)
4861 		return -EPERM;
4862 
4863 	/* We're not controlling the target namespace. */
4864 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4865 		return -EPERM;
4866 
4867 	kattr->mnt_userns = get_user_ns(mnt_userns);
4868 	return 0;
4869 }
4870 
4871 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4872 			     struct mount_kattr *kattr)
4873 {
4874 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4875 		return -EINVAL;
4876 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4877 		return -EINVAL;
4878 	kattr->propagation = attr->propagation;
4879 
4880 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4881 		return -EINVAL;
4882 
4883 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4884 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4885 
4886 	/*
4887 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4888 	 * users wanting to transition to a different atime setting cannot
4889 	 * simply specify the atime setting in @attr_set, but must also
4890 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4891 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4892 	 * @attr_clr and that @attr_set can't have any atime bits set if
4893 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4894 	 */
4895 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4896 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4897 			return -EINVAL;
4898 
4899 		/*
4900 		 * Clear all previous time settings as they are mutually
4901 		 * exclusive.
4902 		 */
4903 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4904 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4905 		case MOUNT_ATTR_RELATIME:
4906 			kattr->attr_set |= MNT_RELATIME;
4907 			break;
4908 		case MOUNT_ATTR_NOATIME:
4909 			kattr->attr_set |= MNT_NOATIME;
4910 			break;
4911 		case MOUNT_ATTR_STRICTATIME:
4912 			break;
4913 		default:
4914 			return -EINVAL;
4915 		}
4916 	} else {
4917 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4918 			return -EINVAL;
4919 	}
4920 
4921 	return build_mount_idmapped(attr, usize, kattr);
4922 }
4923 
4924 static void finish_mount_kattr(struct mount_kattr *kattr)
4925 {
4926 	if (kattr->mnt_userns) {
4927 		put_user_ns(kattr->mnt_userns);
4928 		kattr->mnt_userns = NULL;
4929 	}
4930 
4931 	if (kattr->mnt_idmap)
4932 		mnt_idmap_put(kattr->mnt_idmap);
4933 }
4934 
4935 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4936 			       struct mount_kattr *kattr)
4937 {
4938 	int ret;
4939 	struct mount_attr attr;
4940 
4941 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4942 
4943 	if (unlikely(usize > PAGE_SIZE))
4944 		return -E2BIG;
4945 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4946 		return -EINVAL;
4947 
4948 	if (!may_mount())
4949 		return -EPERM;
4950 
4951 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4952 	if (ret)
4953 		return ret;
4954 
4955 	/* Don't bother walking through the mounts if this is a nop. */
4956 	if (attr.attr_set == 0 &&
4957 	    attr.attr_clr == 0 &&
4958 	    attr.propagation == 0)
4959 		return 0; /* Tell caller to not bother. */
4960 
4961 	ret = build_mount_kattr(&attr, usize, kattr);
4962 	if (ret < 0)
4963 		return ret;
4964 
4965 	return 1;
4966 }
4967 
4968 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4969 		unsigned int, flags, struct mount_attr __user *, uattr,
4970 		size_t, usize)
4971 {
4972 	int err;
4973 	struct path target;
4974 	struct mount_kattr kattr;
4975 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4976 
4977 	if (flags & ~(AT_EMPTY_PATH |
4978 		      AT_RECURSIVE |
4979 		      AT_SYMLINK_NOFOLLOW |
4980 		      AT_NO_AUTOMOUNT))
4981 		return -EINVAL;
4982 
4983 	if (flags & AT_NO_AUTOMOUNT)
4984 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4985 	if (flags & AT_SYMLINK_NOFOLLOW)
4986 		lookup_flags &= ~LOOKUP_FOLLOW;
4987 	if (flags & AT_EMPTY_PATH)
4988 		lookup_flags |= LOOKUP_EMPTY;
4989 
4990 	kattr = (struct mount_kattr) {
4991 		.lookup_flags	= lookup_flags,
4992 	};
4993 
4994 	if (flags & AT_RECURSIVE)
4995 		kattr.kflags |= MOUNT_KATTR_RECURSE;
4996 
4997 	err = wants_mount_setattr(uattr, usize, &kattr);
4998 	if (err <= 0)
4999 		return err;
5000 
5001 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5002 	if (!err) {
5003 		err = do_mount_setattr(&target, &kattr);
5004 		path_put(&target);
5005 	}
5006 	finish_mount_kattr(&kattr);
5007 	return err;
5008 }
5009 
5010 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5011 		unsigned, flags, struct mount_attr __user *, uattr,
5012 		size_t, usize)
5013 {
5014 	if (!uattr && usize)
5015 		return -EINVAL;
5016 
5017 	FD_PREPARE(fdf, flags, vfs_open_tree(dfd, filename, flags));
5018 	if (fdf.err)
5019 		return fdf.err;
5020 
5021 	if (uattr) {
5022 		struct mount_kattr kattr = {};
5023 		struct file *file = fd_prepare_file(fdf);
5024 		int ret;
5025 
5026 		if (flags & OPEN_TREE_CLONE)
5027 			kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5028 		if (flags & AT_RECURSIVE)
5029 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5030 
5031 		ret = wants_mount_setattr(uattr, usize, &kattr);
5032 		if (ret > 0) {
5033 			ret = do_mount_setattr(&file->f_path, &kattr);
5034 			finish_mount_kattr(&kattr);
5035 		}
5036 		if (ret)
5037 			return ret;
5038 	}
5039 
5040 	return fd_publish(fdf);
5041 }
5042 
5043 int show_path(struct seq_file *m, struct dentry *root)
5044 {
5045 	if (root->d_sb->s_op->show_path)
5046 		return root->d_sb->s_op->show_path(m, root);
5047 
5048 	seq_dentry(m, root, " \t\n\\");
5049 	return 0;
5050 }
5051 
5052 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5053 {
5054 	struct mount *mnt = mnt_find_id_at(ns, id);
5055 
5056 	if (!mnt || mnt->mnt_id_unique != id)
5057 		return NULL;
5058 
5059 	return &mnt->mnt;
5060 }
5061 
5062 struct kstatmount {
5063 	struct statmount __user *buf;
5064 	size_t bufsize;
5065 	struct vfsmount *mnt;
5066 	struct mnt_idmap *idmap;
5067 	u64 mask;
5068 	struct path root;
5069 	struct seq_file seq;
5070 
5071 	/* Must be last --ends in a flexible-array member. */
5072 	struct statmount sm;
5073 };
5074 
5075 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5076 {
5077 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5078 	u64 attr_flags = 0;
5079 
5080 	if (mnt_flags & MNT_READONLY)
5081 		attr_flags |= MOUNT_ATTR_RDONLY;
5082 	if (mnt_flags & MNT_NOSUID)
5083 		attr_flags |= MOUNT_ATTR_NOSUID;
5084 	if (mnt_flags & MNT_NODEV)
5085 		attr_flags |= MOUNT_ATTR_NODEV;
5086 	if (mnt_flags & MNT_NOEXEC)
5087 		attr_flags |= MOUNT_ATTR_NOEXEC;
5088 	if (mnt_flags & MNT_NODIRATIME)
5089 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5090 	if (mnt_flags & MNT_NOSYMFOLLOW)
5091 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5092 
5093 	if (mnt_flags & MNT_NOATIME)
5094 		attr_flags |= MOUNT_ATTR_NOATIME;
5095 	else if (mnt_flags & MNT_RELATIME)
5096 		attr_flags |= MOUNT_ATTR_RELATIME;
5097 	else
5098 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5099 
5100 	if (is_idmapped_mnt(mnt))
5101 		attr_flags |= MOUNT_ATTR_IDMAP;
5102 
5103 	return attr_flags;
5104 }
5105 
5106 static u64 mnt_to_propagation_flags(struct mount *m)
5107 {
5108 	u64 propagation = 0;
5109 
5110 	if (IS_MNT_SHARED(m))
5111 		propagation |= MS_SHARED;
5112 	if (IS_MNT_SLAVE(m))
5113 		propagation |= MS_SLAVE;
5114 	if (IS_MNT_UNBINDABLE(m))
5115 		propagation |= MS_UNBINDABLE;
5116 	if (!propagation)
5117 		propagation |= MS_PRIVATE;
5118 
5119 	return propagation;
5120 }
5121 
5122 u64 vfsmount_to_propagation_flags(struct vfsmount *mnt)
5123 {
5124 	return mnt_to_propagation_flags(real_mount(mnt));
5125 }
5126 EXPORT_SYMBOL_GPL(vfsmount_to_propagation_flags);
5127 
5128 static void statmount_sb_basic(struct kstatmount *s)
5129 {
5130 	struct super_block *sb = s->mnt->mnt_sb;
5131 
5132 	s->sm.mask |= STATMOUNT_SB_BASIC;
5133 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5134 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5135 	s->sm.sb_magic = sb->s_magic;
5136 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5137 }
5138 
5139 static void statmount_mnt_basic(struct kstatmount *s)
5140 {
5141 	struct mount *m = real_mount(s->mnt);
5142 
5143 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5144 	s->sm.mnt_id = m->mnt_id_unique;
5145 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5146 	s->sm.mnt_id_old = m->mnt_id;
5147 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5148 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5149 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5150 	s->sm.mnt_peer_group = m->mnt_group_id;
5151 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5152 }
5153 
5154 static void statmount_propagate_from(struct kstatmount *s)
5155 {
5156 	struct mount *m = real_mount(s->mnt);
5157 
5158 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5159 	if (IS_MNT_SLAVE(m))
5160 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5161 }
5162 
5163 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5164 {
5165 	int ret;
5166 	size_t start = seq->count;
5167 
5168 	ret = show_path(seq, s->mnt->mnt_root);
5169 	if (ret)
5170 		return ret;
5171 
5172 	if (unlikely(seq_has_overflowed(seq)))
5173 		return -EAGAIN;
5174 
5175 	/*
5176          * Unescape the result. It would be better if supplied string was not
5177          * escaped in the first place, but that's a pretty invasive change.
5178          */
5179 	seq->buf[seq->count] = '\0';
5180 	seq->count = start;
5181 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5182 	return 0;
5183 }
5184 
5185 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5186 {
5187 	struct vfsmount *mnt = s->mnt;
5188 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5189 	int err;
5190 
5191 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5192 	return err == SEQ_SKIP ? 0 : err;
5193 }
5194 
5195 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5196 {
5197 	struct super_block *sb = s->mnt->mnt_sb;
5198 
5199 	seq_puts(seq, sb->s_type->name);
5200 	return 0;
5201 }
5202 
5203 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5204 {
5205 	struct super_block *sb = s->mnt->mnt_sb;
5206 
5207 	if (sb->s_subtype)
5208 		seq_puts(seq, sb->s_subtype);
5209 }
5210 
5211 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5212 {
5213 	struct super_block *sb = s->mnt->mnt_sb;
5214 	struct mount *r = real_mount(s->mnt);
5215 
5216 	if (sb->s_op->show_devname) {
5217 		size_t start = seq->count;
5218 		int ret;
5219 
5220 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5221 		if (ret)
5222 			return ret;
5223 
5224 		if (unlikely(seq_has_overflowed(seq)))
5225 			return -EAGAIN;
5226 
5227 		/* Unescape the result */
5228 		seq->buf[seq->count] = '\0';
5229 		seq->count = start;
5230 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5231 	} else {
5232 		seq_puts(seq, r->mnt_devname);
5233 	}
5234 	return 0;
5235 }
5236 
5237 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5238 {
5239 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5240 	s->sm.mnt_ns_id = ns->ns.ns_id;
5241 }
5242 
5243 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5244 {
5245 	struct vfsmount *mnt = s->mnt;
5246 	struct super_block *sb = mnt->mnt_sb;
5247 	size_t start = seq->count;
5248 	int err;
5249 
5250 	err = security_sb_show_options(seq, sb);
5251 	if (err)
5252 		return err;
5253 
5254 	if (sb->s_op->show_options) {
5255 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5256 		if (err)
5257 			return err;
5258 	}
5259 
5260 	if (unlikely(seq_has_overflowed(seq)))
5261 		return -EAGAIN;
5262 
5263 	if (seq->count == start)
5264 		return 0;
5265 
5266 	/* skip leading comma */
5267 	memmove(seq->buf + start, seq->buf + start + 1,
5268 		seq->count - start - 1);
5269 	seq->count--;
5270 
5271 	return 0;
5272 }
5273 
5274 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5275 {
5276 	char *buf_end, *opt_end, *src, *dst;
5277 	int count = 0;
5278 
5279 	if (unlikely(seq_has_overflowed(seq)))
5280 		return -EAGAIN;
5281 
5282 	buf_end = seq->buf + seq->count;
5283 	dst = seq->buf + start;
5284 	src = dst + 1;	/* skip initial comma */
5285 
5286 	if (src >= buf_end) {
5287 		seq->count = start;
5288 		return 0;
5289 	}
5290 
5291 	*buf_end = '\0';
5292 	for (; src < buf_end; src = opt_end + 1) {
5293 		opt_end = strchrnul(src, ',');
5294 		*opt_end = '\0';
5295 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5296 		if (WARN_ON_ONCE(++count == INT_MAX))
5297 			return -EOVERFLOW;
5298 	}
5299 	seq->count = dst - 1 - seq->buf;
5300 	return count;
5301 }
5302 
5303 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5304 {
5305 	struct vfsmount *mnt = s->mnt;
5306 	struct super_block *sb = mnt->mnt_sb;
5307 	size_t start = seq->count;
5308 	int err;
5309 
5310 	if (!sb->s_op->show_options)
5311 		return 0;
5312 
5313 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5314 	if (err)
5315 		return err;
5316 
5317 	err = statmount_opt_process(seq, start);
5318 	if (err < 0)
5319 		return err;
5320 
5321 	s->sm.opt_num = err;
5322 	return 0;
5323 }
5324 
5325 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5326 {
5327 	struct vfsmount *mnt = s->mnt;
5328 	struct super_block *sb = mnt->mnt_sb;
5329 	size_t start = seq->count;
5330 	int err;
5331 
5332 	err = security_sb_show_options(seq, sb);
5333 	if (err)
5334 		return err;
5335 
5336 	err = statmount_opt_process(seq, start);
5337 	if (err < 0)
5338 		return err;
5339 
5340 	s->sm.opt_sec_num = err;
5341 	return 0;
5342 }
5343 
5344 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5345 {
5346 	int ret;
5347 
5348 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5349 	if (ret < 0)
5350 		return ret;
5351 
5352 	s->sm.mnt_uidmap_num = ret;
5353 	/*
5354 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5355 	 * mappings. This allows userspace to distinguish between a
5356 	 * non-idmapped mount and an idmapped mount where none of the
5357 	 * individual mappings are valid in the caller's idmapping.
5358 	 */
5359 	if (is_valid_mnt_idmap(s->idmap))
5360 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5361 	return 0;
5362 }
5363 
5364 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5365 {
5366 	int ret;
5367 
5368 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5369 	if (ret < 0)
5370 		return ret;
5371 
5372 	s->sm.mnt_gidmap_num = ret;
5373 	/*
5374 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5375 	 * mappings. This allows userspace to distinguish between a
5376 	 * non-idmapped mount and an idmapped mount where none of the
5377 	 * individual mappings are valid in the caller's idmapping.
5378 	 */
5379 	if (is_valid_mnt_idmap(s->idmap))
5380 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5381 	return 0;
5382 }
5383 
5384 static int statmount_string(struct kstatmount *s, u64 flag)
5385 {
5386 	int ret = 0;
5387 	size_t kbufsize;
5388 	struct seq_file *seq = &s->seq;
5389 	struct statmount *sm = &s->sm;
5390 	u32 start, *offp;
5391 
5392 	/* Reserve an empty string at the beginning for any unset offsets */
5393 	if (!seq->count)
5394 		seq_putc(seq, 0);
5395 
5396 	start = seq->count;
5397 
5398 	switch (flag) {
5399 	case STATMOUNT_FS_TYPE:
5400 		offp = &sm->fs_type;
5401 		ret = statmount_fs_type(s, seq);
5402 		break;
5403 	case STATMOUNT_MNT_ROOT:
5404 		offp = &sm->mnt_root;
5405 		ret = statmount_mnt_root(s, seq);
5406 		break;
5407 	case STATMOUNT_MNT_POINT:
5408 		offp = &sm->mnt_point;
5409 		ret = statmount_mnt_point(s, seq);
5410 		break;
5411 	case STATMOUNT_MNT_OPTS:
5412 		offp = &sm->mnt_opts;
5413 		ret = statmount_mnt_opts(s, seq);
5414 		break;
5415 	case STATMOUNT_OPT_ARRAY:
5416 		offp = &sm->opt_array;
5417 		ret = statmount_opt_array(s, seq);
5418 		break;
5419 	case STATMOUNT_OPT_SEC_ARRAY:
5420 		offp = &sm->opt_sec_array;
5421 		ret = statmount_opt_sec_array(s, seq);
5422 		break;
5423 	case STATMOUNT_FS_SUBTYPE:
5424 		offp = &sm->fs_subtype;
5425 		statmount_fs_subtype(s, seq);
5426 		break;
5427 	case STATMOUNT_SB_SOURCE:
5428 		offp = &sm->sb_source;
5429 		ret = statmount_sb_source(s, seq);
5430 		break;
5431 	case STATMOUNT_MNT_UIDMAP:
5432 		offp = &sm->mnt_uidmap;
5433 		ret = statmount_mnt_uidmap(s, seq);
5434 		break;
5435 	case STATMOUNT_MNT_GIDMAP:
5436 		offp = &sm->mnt_gidmap;
5437 		ret = statmount_mnt_gidmap(s, seq);
5438 		break;
5439 	default:
5440 		WARN_ON_ONCE(true);
5441 		return -EINVAL;
5442 	}
5443 
5444 	/*
5445 	 * If nothing was emitted, return to avoid setting the flag
5446 	 * and terminating the buffer.
5447 	 */
5448 	if (seq->count == start)
5449 		return ret;
5450 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5451 		return -EOVERFLOW;
5452 	if (kbufsize >= s->bufsize)
5453 		return -EOVERFLOW;
5454 
5455 	/* signal a retry */
5456 	if (unlikely(seq_has_overflowed(seq)))
5457 		return -EAGAIN;
5458 
5459 	if (ret)
5460 		return ret;
5461 
5462 	seq->buf[seq->count++] = '\0';
5463 	sm->mask |= flag;
5464 	*offp = start;
5465 	return 0;
5466 }
5467 
5468 static int copy_statmount_to_user(struct kstatmount *s)
5469 {
5470 	struct statmount *sm = &s->sm;
5471 	struct seq_file *seq = &s->seq;
5472 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5473 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5474 
5475 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5476 		return -EFAULT;
5477 
5478 	/* Return the number of bytes copied to the buffer */
5479 	sm->size = copysize + seq->count;
5480 	if (copy_to_user(s->buf, sm, copysize))
5481 		return -EFAULT;
5482 
5483 	return 0;
5484 }
5485 
5486 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5487 {
5488 	struct rb_node *node;
5489 
5490 	if (reverse)
5491 		node = rb_prev(&curr->mnt_node);
5492 	else
5493 		node = rb_next(&curr->mnt_node);
5494 
5495 	return node_to_mount(node);
5496 }
5497 
5498 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5499 {
5500 	struct mount *first, *child;
5501 
5502 	rwsem_assert_held(&namespace_sem);
5503 
5504 	/* We're looking at our own ns, just use get_fs_root. */
5505 	if (ns == current->nsproxy->mnt_ns) {
5506 		get_fs_root(current->fs, root);
5507 		return 0;
5508 	}
5509 
5510 	/*
5511 	 * We have to find the first mount in our ns and use that, however it
5512 	 * may not exist, so handle that properly.
5513 	 */
5514 	if (mnt_ns_empty(ns))
5515 		return -ENOENT;
5516 
5517 	first = child = ns->root;
5518 	for (;;) {
5519 		child = listmnt_next(child, false);
5520 		if (!child)
5521 			return -ENOENT;
5522 		if (child->mnt_parent == first)
5523 			break;
5524 	}
5525 
5526 	root->mnt = mntget(&child->mnt);
5527 	root->dentry = dget(root->mnt->mnt_root);
5528 	return 0;
5529 }
5530 
5531 /* This must be updated whenever a new flag is added */
5532 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5533 			     STATMOUNT_MNT_BASIC | \
5534 			     STATMOUNT_PROPAGATE_FROM | \
5535 			     STATMOUNT_MNT_ROOT | \
5536 			     STATMOUNT_MNT_POINT | \
5537 			     STATMOUNT_FS_TYPE | \
5538 			     STATMOUNT_MNT_NS_ID | \
5539 			     STATMOUNT_MNT_OPTS | \
5540 			     STATMOUNT_FS_SUBTYPE | \
5541 			     STATMOUNT_SB_SOURCE | \
5542 			     STATMOUNT_OPT_ARRAY | \
5543 			     STATMOUNT_OPT_SEC_ARRAY | \
5544 			     STATMOUNT_SUPPORTED_MASK | \
5545 			     STATMOUNT_MNT_UIDMAP | \
5546 			     STATMOUNT_MNT_GIDMAP)
5547 
5548 /* locks: namespace_shared */
5549 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5550 			struct mnt_namespace *ns)
5551 {
5552 	struct mount *m;
5553 	int err;
5554 
5555 	/* Has the namespace already been emptied? */
5556 	if (mnt_ns_id && mnt_ns_empty(ns))
5557 		return -ENOENT;
5558 
5559 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5560 	if (!s->mnt)
5561 		return -ENOENT;
5562 
5563 	err = grab_requested_root(ns, &s->root);
5564 	if (err)
5565 		return err;
5566 
5567 	/*
5568 	 * Don't trigger audit denials. We just want to determine what
5569 	 * mounts to show users.
5570 	 */
5571 	m = real_mount(s->mnt);
5572 	if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5573 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5574 		return -EPERM;
5575 
5576 	err = security_sb_statfs(s->mnt->mnt_root);
5577 	if (err)
5578 		return err;
5579 
5580 	/*
5581 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5582 	 * can change concurrently as we only hold the read-side of the
5583 	 * namespace semaphore and mount properties may change with only
5584 	 * the mount lock held.
5585 	 *
5586 	 * We could sample the mount lock sequence counter to detect
5587 	 * those changes and retry. But it's not worth it. Worst that
5588 	 * happens is that the mnt->mnt_idmap pointer is already changed
5589 	 * while mnt->mnt_flags isn't or vica versa. So what.
5590 	 *
5591 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5592 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5593 	 * torn read/write. That's all we care about right now.
5594 	 */
5595 	s->idmap = mnt_idmap(s->mnt);
5596 	if (s->mask & STATMOUNT_MNT_BASIC)
5597 		statmount_mnt_basic(s);
5598 
5599 	if (s->mask & STATMOUNT_SB_BASIC)
5600 		statmount_sb_basic(s);
5601 
5602 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5603 		statmount_propagate_from(s);
5604 
5605 	if (s->mask & STATMOUNT_FS_TYPE)
5606 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5607 
5608 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5609 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5610 
5611 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5612 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5613 
5614 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5615 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5616 
5617 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5618 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5619 
5620 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5621 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5622 
5623 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5624 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5625 
5626 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5627 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5628 
5629 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5630 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5631 
5632 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5633 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5634 
5635 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5636 		statmount_mnt_ns_id(s, ns);
5637 
5638 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5639 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5640 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5641 	}
5642 
5643 	if (err)
5644 		return err;
5645 
5646 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5647 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5648 
5649 	return 0;
5650 }
5651 
5652 static inline bool retry_statmount(const long ret, size_t *seq_size)
5653 {
5654 	if (likely(ret != -EAGAIN))
5655 		return false;
5656 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5657 		return false;
5658 	if (unlikely(*seq_size > MAX_RW_COUNT))
5659 		return false;
5660 	return true;
5661 }
5662 
5663 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5664 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5665 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5666 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5667 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5668 
5669 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5670 			      struct statmount __user *buf, size_t bufsize,
5671 			      size_t seq_size)
5672 {
5673 	if (!access_ok(buf, bufsize))
5674 		return -EFAULT;
5675 
5676 	memset(ks, 0, sizeof(*ks));
5677 	ks->mask = kreq->param;
5678 	ks->buf = buf;
5679 	ks->bufsize = bufsize;
5680 
5681 	if (ks->mask & STATMOUNT_STRING_REQ) {
5682 		if (bufsize == sizeof(ks->sm))
5683 			return -EOVERFLOW;
5684 
5685 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5686 		if (!ks->seq.buf)
5687 			return -ENOMEM;
5688 
5689 		ks->seq.size = seq_size;
5690 	}
5691 
5692 	return 0;
5693 }
5694 
5695 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5696 			   struct mnt_id_req *kreq)
5697 {
5698 	int ret;
5699 	size_t usize;
5700 
5701 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5702 
5703 	ret = get_user(usize, &req->size);
5704 	if (ret)
5705 		return -EFAULT;
5706 	if (unlikely(usize > PAGE_SIZE))
5707 		return -E2BIG;
5708 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5709 		return -EINVAL;
5710 	memset(kreq, 0, sizeof(*kreq));
5711 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5712 	if (ret)
5713 		return ret;
5714 	if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5715 		return -EINVAL;
5716 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5717 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5718 		return -EINVAL;
5719 	return 0;
5720 }
5721 
5722 /*
5723  * If the user requested a specific mount namespace id, look that up and return
5724  * that, or if not simply grab a passive reference on our mount namespace and
5725  * return that.
5726  */
5727 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5728 {
5729 	struct mnt_namespace *mnt_ns;
5730 
5731 	if (kreq->mnt_ns_id) {
5732 		mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5733 		if (!mnt_ns)
5734 			return ERR_PTR(-ENOENT);
5735 	} else if (kreq->mnt_ns_fd) {
5736 		struct ns_common *ns;
5737 
5738 		CLASS(fd, f)(kreq->mnt_ns_fd);
5739 		if (fd_empty(f))
5740 			return ERR_PTR(-EBADF);
5741 
5742 		if (!proc_ns_file(fd_file(f)))
5743 			return ERR_PTR(-EINVAL);
5744 
5745 		ns = get_proc_ns(file_inode(fd_file(f)));
5746 		if (ns->ns_type != CLONE_NEWNS)
5747 			return ERR_PTR(-EINVAL);
5748 
5749 		mnt_ns = to_mnt_ns(ns);
5750 		refcount_inc(&mnt_ns->passive);
5751 	} else {
5752 		mnt_ns = current->nsproxy->mnt_ns;
5753 		refcount_inc(&mnt_ns->passive);
5754 	}
5755 
5756 	return mnt_ns;
5757 }
5758 
5759 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5760 		struct statmount __user *, buf, size_t, bufsize,
5761 		unsigned int, flags)
5762 {
5763 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5764 	struct kstatmount *ks __free(kfree) = NULL;
5765 	struct mnt_id_req kreq;
5766 	/* We currently support retrieval of 3 strings. */
5767 	size_t seq_size = 3 * PATH_MAX;
5768 	int ret;
5769 
5770 	if (flags)
5771 		return -EINVAL;
5772 
5773 	ret = copy_mnt_id_req(req, &kreq);
5774 	if (ret)
5775 		return ret;
5776 
5777 	ns = grab_requested_mnt_ns(&kreq);
5778 	if (IS_ERR(ns))
5779 		return PTR_ERR(ns);
5780 
5781 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5782 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5783 		return -ENOENT;
5784 
5785 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5786 	if (!ks)
5787 		return -ENOMEM;
5788 
5789 retry:
5790 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5791 	if (ret)
5792 		return ret;
5793 
5794 	scoped_guard(namespace_shared)
5795 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5796 
5797 	if (!ret)
5798 		ret = copy_statmount_to_user(ks);
5799 	kvfree(ks->seq.buf);
5800 	path_put(&ks->root);
5801 	if (retry_statmount(ret, &seq_size))
5802 		goto retry;
5803 	return ret;
5804 }
5805 
5806 struct klistmount {
5807 	u64 last_mnt_id;
5808 	u64 mnt_parent_id;
5809 	u64 *kmnt_ids;
5810 	u32 nr_mnt_ids;
5811 	struct mnt_namespace *ns;
5812 	struct path root;
5813 };
5814 
5815 /* locks: namespace_shared */
5816 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5817 {
5818 	struct mnt_namespace *ns = kls->ns;
5819 	u64 mnt_parent_id = kls->mnt_parent_id;
5820 	u64 last_mnt_id = kls->last_mnt_id;
5821 	u64 *mnt_ids = kls->kmnt_ids;
5822 	size_t nr_mnt_ids = kls->nr_mnt_ids;
5823 	struct path orig;
5824 	struct mount *r, *first;
5825 	ssize_t ret;
5826 
5827 	rwsem_assert_held(&namespace_sem);
5828 
5829 	ret = grab_requested_root(ns, &kls->root);
5830 	if (ret)
5831 		return ret;
5832 
5833 	if (mnt_parent_id == LSMT_ROOT) {
5834 		orig = kls->root;
5835 	} else {
5836 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5837 		if (!orig.mnt)
5838 			return -ENOENT;
5839 		orig.dentry = orig.mnt->mnt_root;
5840 	}
5841 
5842 	/*
5843 	 * Don't trigger audit denials. We just want to determine what
5844 	 * mounts to show users.
5845 	 */
5846 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5847 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5848 		return -EPERM;
5849 
5850 	ret = security_sb_statfs(orig.dentry);
5851 	if (ret)
5852 		return ret;
5853 
5854 	if (!last_mnt_id) {
5855 		if (reverse)
5856 			first = node_to_mount(ns->mnt_last_node);
5857 		else
5858 			first = node_to_mount(ns->mnt_first_node);
5859 	} else {
5860 		if (reverse)
5861 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5862 		else
5863 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5864 	}
5865 
5866 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5867 		if (r->mnt_id_unique == mnt_parent_id)
5868 			continue;
5869 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5870 			continue;
5871 		*mnt_ids = r->mnt_id_unique;
5872 		mnt_ids++;
5873 		nr_mnt_ids--;
5874 		ret++;
5875 	}
5876 	return ret;
5877 }
5878 
5879 static void __free_klistmount_free(const struct klistmount *kls)
5880 {
5881 	path_put(&kls->root);
5882 	kvfree(kls->kmnt_ids);
5883 	mnt_ns_release(kls->ns);
5884 }
5885 
5886 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5887 				     size_t nr_mnt_ids)
5888 {
5889 	u64 last_mnt_id = kreq->param;
5890 	struct mnt_namespace *ns;
5891 
5892 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5893 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5894 		return -EINVAL;
5895 
5896 	kls->last_mnt_id = last_mnt_id;
5897 
5898 	kls->nr_mnt_ids = nr_mnt_ids;
5899 	kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5900 				       GFP_KERNEL_ACCOUNT);
5901 	if (!kls->kmnt_ids)
5902 		return -ENOMEM;
5903 
5904 	ns = grab_requested_mnt_ns(kreq);
5905 	if (IS_ERR(ns))
5906 		return PTR_ERR(ns);
5907 	kls->ns = ns;
5908 
5909 	kls->mnt_parent_id = kreq->mnt_id;
5910 	return 0;
5911 }
5912 
5913 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5914 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5915 {
5916 	struct klistmount kls __free(klistmount_free) = {};
5917 	const size_t maxcount = 1000000;
5918 	struct mnt_id_req kreq;
5919 	ssize_t ret;
5920 
5921 	if (flags & ~LISTMOUNT_REVERSE)
5922 		return -EINVAL;
5923 
5924 	/*
5925 	 * If the mount namespace really has more than 1 million mounts the
5926 	 * caller must iterate over the mount namespace (and reconsider their
5927 	 * system design...).
5928 	 */
5929 	if (unlikely(nr_mnt_ids > maxcount))
5930 		return -EOVERFLOW;
5931 
5932 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5933 		return -EFAULT;
5934 
5935 	ret = copy_mnt_id_req(req, &kreq);
5936 	if (ret)
5937 		return ret;
5938 
5939 	ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5940 	if (ret)
5941 		return ret;
5942 
5943 	if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5944 	    !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5945 		return -ENOENT;
5946 
5947 	/*
5948 	 * We only need to guard against mount topology changes as
5949 	 * listmount() doesn't care about any mount properties.
5950 	 */
5951 	scoped_guard(namespace_shared)
5952 		ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5953 	if (ret <= 0)
5954 		return ret;
5955 
5956 	if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5957 		return -EFAULT;
5958 
5959 	return ret;
5960 }
5961 
5962 struct mnt_namespace init_mnt_ns = {
5963 	.ns		= NS_COMMON_INIT(init_mnt_ns),
5964 	.user_ns	= &init_user_ns,
5965 	.passive	= REFCOUNT_INIT(1),
5966 	.mounts		= RB_ROOT,
5967 	.poll		= __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5968 };
5969 
5970 static void __init init_mount_tree(void)
5971 {
5972 	struct vfsmount *mnt;
5973 	struct mount *m;
5974 	struct path root;
5975 
5976 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
5977 	if (IS_ERR(mnt))
5978 		panic("Can't create rootfs");
5979 
5980 	m = real_mount(mnt);
5981 	init_mnt_ns.root = m;
5982 	init_mnt_ns.nr_mounts = 1;
5983 	mnt_add_to_ns(&init_mnt_ns, m);
5984 	init_task.nsproxy->mnt_ns = &init_mnt_ns;
5985 	get_mnt_ns(&init_mnt_ns);
5986 
5987 	root.mnt = mnt;
5988 	root.dentry = mnt->mnt_root;
5989 
5990 	set_fs_pwd(current->fs, &root);
5991 	set_fs_root(current->fs, &root);
5992 
5993 	ns_tree_add(&init_mnt_ns);
5994 }
5995 
5996 void __init mnt_init(void)
5997 {
5998 	int err;
5999 
6000 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6001 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6002 
6003 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6004 				sizeof(struct hlist_head),
6005 				mhash_entries, 19,
6006 				HASH_ZERO,
6007 				&m_hash_shift, &m_hash_mask, 0, 0);
6008 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6009 				sizeof(struct hlist_head),
6010 				mphash_entries, 19,
6011 				HASH_ZERO,
6012 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6013 
6014 	if (!mount_hashtable || !mountpoint_hashtable)
6015 		panic("Failed to allocate mount hash table\n");
6016 
6017 	kernfs_init();
6018 
6019 	err = sysfs_init();
6020 	if (err)
6021 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6022 			__func__, err);
6023 	fs_kobj = kobject_create_and_add("fs", NULL);
6024 	if (!fs_kobj)
6025 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6026 	shmem_init();
6027 	init_rootfs();
6028 	init_mount_tree();
6029 }
6030 
6031 void put_mnt_ns(struct mnt_namespace *ns)
6032 {
6033 	if (!ns_ref_put(ns))
6034 		return;
6035 	guard(namespace_excl)();
6036 	emptied_ns = ns;
6037 	guard(mount_writer)();
6038 	umount_tree(ns->root, 0);
6039 }
6040 
6041 struct vfsmount *kern_mount(struct file_system_type *type)
6042 {
6043 	struct vfsmount *mnt;
6044 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6045 	if (!IS_ERR(mnt)) {
6046 		/*
6047 		 * it is a longterm mount, don't release mnt until
6048 		 * we unmount before file sys is unregistered
6049 		*/
6050 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6051 	}
6052 	return mnt;
6053 }
6054 EXPORT_SYMBOL_GPL(kern_mount);
6055 
6056 void kern_unmount(struct vfsmount *mnt)
6057 {
6058 	/* release long term mount so mount point can be released */
6059 	if (!IS_ERR(mnt)) {
6060 		mnt_make_shortterm(mnt);
6061 		synchronize_rcu();	/* yecchhh... */
6062 		mntput(mnt);
6063 	}
6064 }
6065 EXPORT_SYMBOL(kern_unmount);
6066 
6067 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6068 {
6069 	unsigned int i;
6070 
6071 	for (i = 0; i < num; i++)
6072 		mnt_make_shortterm(mnt[i]);
6073 	synchronize_rcu_expedited();
6074 	for (i = 0; i < num; i++)
6075 		mntput(mnt[i]);
6076 }
6077 EXPORT_SYMBOL(kern_unmount_array);
6078 
6079 bool our_mnt(struct vfsmount *mnt)
6080 {
6081 	return check_mnt(real_mount(mnt));
6082 }
6083 
6084 bool current_chrooted(void)
6085 {
6086 	/* Does the current process have a non-standard root */
6087 	struct path fs_root __free(path_put) = {};
6088 	struct mount *root;
6089 
6090 	get_fs_root(current->fs, &fs_root);
6091 
6092 	/* Find the namespace root */
6093 
6094 	guard(mount_locked_reader)();
6095 
6096 	root = topmost_overmount(current->nsproxy->mnt_ns->root);
6097 
6098 	return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6099 }
6100 
6101 static bool mnt_already_visible(struct mnt_namespace *ns,
6102 				const struct super_block *sb,
6103 				int *new_mnt_flags)
6104 {
6105 	int new_flags = *new_mnt_flags;
6106 	struct mount *mnt, *n;
6107 
6108 	guard(namespace_shared)();
6109 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6110 		struct mount *child;
6111 		int mnt_flags;
6112 
6113 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6114 			continue;
6115 
6116 		/* This mount is not fully visible if it's root directory
6117 		 * is not the root directory of the filesystem.
6118 		 */
6119 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6120 			continue;
6121 
6122 		/* A local view of the mount flags */
6123 		mnt_flags = mnt->mnt.mnt_flags;
6124 
6125 		/* Don't miss readonly hidden in the superblock flags */
6126 		if (sb_rdonly(mnt->mnt.mnt_sb))
6127 			mnt_flags |= MNT_LOCK_READONLY;
6128 
6129 		/* Verify the mount flags are equal to or more permissive
6130 		 * than the proposed new mount.
6131 		 */
6132 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6133 		    !(new_flags & MNT_READONLY))
6134 			continue;
6135 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6136 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6137 			continue;
6138 
6139 		/* This mount is not fully visible if there are any
6140 		 * locked child mounts that cover anything except for
6141 		 * empty directories.
6142 		 */
6143 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6144 			struct inode *inode = child->mnt_mountpoint->d_inode;
6145 			/* Only worry about locked mounts */
6146 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6147 				continue;
6148 			/* Is the directory permanently empty? */
6149 			if (!is_empty_dir_inode(inode))
6150 				goto next;
6151 		}
6152 		/* Preserve the locked attributes */
6153 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6154 					       MNT_LOCK_ATIME);
6155 		return true;
6156 	next:	;
6157 	}
6158 	return false;
6159 }
6160 
6161 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6162 {
6163 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6164 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6165 	unsigned long s_iflags;
6166 
6167 	if (ns->user_ns == &init_user_ns)
6168 		return false;
6169 
6170 	/* Can this filesystem be too revealing? */
6171 	s_iflags = sb->s_iflags;
6172 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6173 		return false;
6174 
6175 	if ((s_iflags & required_iflags) != required_iflags) {
6176 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6177 			  required_iflags);
6178 		return true;
6179 	}
6180 
6181 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6182 }
6183 
6184 bool mnt_may_suid(struct vfsmount *mnt)
6185 {
6186 	/*
6187 	 * Foreign mounts (accessed via fchdir or through /proc
6188 	 * symlinks) are always treated as if they are nosuid.  This
6189 	 * prevents namespaces from trusting potentially unsafe
6190 	 * suid/sgid bits, file caps, or security labels that originate
6191 	 * in other namespaces.
6192 	 */
6193 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6194 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6195 }
6196 
6197 static struct ns_common *mntns_get(struct task_struct *task)
6198 {
6199 	struct ns_common *ns = NULL;
6200 	struct nsproxy *nsproxy;
6201 
6202 	task_lock(task);
6203 	nsproxy = task->nsproxy;
6204 	if (nsproxy) {
6205 		ns = &nsproxy->mnt_ns->ns;
6206 		get_mnt_ns(to_mnt_ns(ns));
6207 	}
6208 	task_unlock(task);
6209 
6210 	return ns;
6211 }
6212 
6213 static void mntns_put(struct ns_common *ns)
6214 {
6215 	put_mnt_ns(to_mnt_ns(ns));
6216 }
6217 
6218 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6219 {
6220 	struct nsproxy *nsproxy = nsset->nsproxy;
6221 	struct fs_struct *fs = nsset->fs;
6222 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6223 	struct user_namespace *user_ns = nsset->cred->user_ns;
6224 	struct path root;
6225 	int err;
6226 
6227 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6228 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6229 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6230 		return -EPERM;
6231 
6232 	if (is_anon_ns(mnt_ns))
6233 		return -EINVAL;
6234 
6235 	if (fs->users != 1)
6236 		return -EINVAL;
6237 
6238 	get_mnt_ns(mnt_ns);
6239 	old_mnt_ns = nsproxy->mnt_ns;
6240 	nsproxy->mnt_ns = mnt_ns;
6241 
6242 	/* Find the root */
6243 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6244 				"/", LOOKUP_DOWN, &root);
6245 	if (err) {
6246 		/* revert to old namespace */
6247 		nsproxy->mnt_ns = old_mnt_ns;
6248 		put_mnt_ns(mnt_ns);
6249 		return err;
6250 	}
6251 
6252 	put_mnt_ns(old_mnt_ns);
6253 
6254 	/* Update the pwd and root */
6255 	set_fs_pwd(fs, &root);
6256 	set_fs_root(fs, &root);
6257 
6258 	path_put(&root);
6259 	return 0;
6260 }
6261 
6262 static struct user_namespace *mntns_owner(struct ns_common *ns)
6263 {
6264 	return to_mnt_ns(ns)->user_ns;
6265 }
6266 
6267 const struct proc_ns_operations mntns_operations = {
6268 	.name		= "mnt",
6269 	.get		= mntns_get,
6270 	.put		= mntns_put,
6271 	.install	= mntns_install,
6272 	.owner		= mntns_owner,
6273 };
6274 
6275 #ifdef CONFIG_SYSCTL
6276 static const struct ctl_table fs_namespace_sysctls[] = {
6277 	{
6278 		.procname	= "mount-max",
6279 		.data		= &sysctl_mount_max,
6280 		.maxlen		= sizeof(unsigned int),
6281 		.mode		= 0644,
6282 		.proc_handler	= proc_dointvec_minmax,
6283 		.extra1		= SYSCTL_ONE,
6284 	},
6285 };
6286 
6287 static int __init init_fs_namespace_sysctls(void)
6288 {
6289 	register_sysctl_init("fs", fs_namespace_sysctls);
6290 	return 0;
6291 }
6292 fs_initcall(init_fs_namespace_sysctls);
6293 
6294 #endif /* CONFIG_SYSCTL */
6295