xref: /linux/fs/namespace.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38 
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 /*
58  * vfsmount lock may be taken for read to prevent changes to the
59  * vfsmount hash, ie. during mountpoint lookups or walking back
60  * up the tree.
61  *
62  * It should be taken for write in all cases where the vfsmount
63  * tree or hash is modified or when a vfsmount structure is modified.
64  */
65 DEFINE_BRLOCK(vfsmount_lock);
66 
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 	tmp = tmp + (tmp >> HASH_SHIFT);
72 	return tmp & (HASH_SIZE - 1);
73 }
74 
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76 
77 /*
78  * allocation is serialized by namespace_sem, but we need the spinlock to
79  * serialize with freeing.
80  */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 	int res;
84 
85 retry:
86 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 	spin_lock(&mnt_id_lock);
88 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 	if (!res)
90 		mnt_id_start = mnt->mnt_id + 1;
91 	spin_unlock(&mnt_id_lock);
92 	if (res == -EAGAIN)
93 		goto retry;
94 
95 	return res;
96 }
97 
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 	int id = mnt->mnt_id;
101 	spin_lock(&mnt_id_lock);
102 	ida_remove(&mnt_id_ida, id);
103 	if (mnt_id_start > id)
104 		mnt_id_start = id;
105 	spin_unlock(&mnt_id_lock);
106 }
107 
108 /*
109  * Allocate a new peer group ID
110  *
111  * mnt_group_ida is protected by namespace_sem
112  */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 	int res;
116 
117 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 		return -ENOMEM;
119 
120 	res = ida_get_new_above(&mnt_group_ida,
121 				mnt_group_start,
122 				&mnt->mnt_group_id);
123 	if (!res)
124 		mnt_group_start = mnt->mnt_group_id + 1;
125 
126 	return res;
127 }
128 
129 /*
130  * Release a peer group ID
131  */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 	int id = mnt->mnt_group_id;
135 	ida_remove(&mnt_group_ida, id);
136 	if (mnt_group_start > id)
137 		mnt_group_start = id;
138 	mnt->mnt_group_id = 0;
139 }
140 
141 /*
142  * vfsmount lock must be held for read
143  */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 	preempt_disable();
150 	mnt->mnt_count += n;
151 	preempt_enable();
152 #endif
153 }
154 
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
156 {
157 #ifdef CONFIG_SMP
158 	this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 	mnt->mnt_count = n;
161 #endif
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_inc_count(struct vfsmount *mnt)
168 {
169 	mnt_add_count(mnt, 1);
170 }
171 
172 /*
173  * vfsmount lock must be held for read
174  */
175 static inline void mnt_dec_count(struct vfsmount *mnt)
176 {
177 	mnt_add_count(mnt, -1);
178 }
179 
180 /*
181  * vfsmount lock must be held for write
182  */
183 unsigned int mnt_get_count(struct vfsmount *mnt)
184 {
185 #ifdef CONFIG_SMP
186 	unsigned int count = atomic_read(&mnt->mnt_longrefs);
187 	int cpu;
188 
189 	for_each_possible_cpu(cpu) {
190 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 	}
192 
193 	return count;
194 #else
195 	return mnt->mnt_count;
196 #endif
197 }
198 
199 struct vfsmount *alloc_vfsmnt(const char *name)
200 {
201 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 	if (mnt) {
203 		int err;
204 
205 		err = mnt_alloc_id(mnt);
206 		if (err)
207 			goto out_free_cache;
208 
209 		if (name) {
210 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 			if (!mnt->mnt_devname)
212 				goto out_free_id;
213 		}
214 
215 #ifdef CONFIG_SMP
216 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 		if (!mnt->mnt_pcp)
218 			goto out_free_devname;
219 
220 		atomic_set(&mnt->mnt_longrefs, 1);
221 #else
222 		mnt->mnt_count = 1;
223 		mnt->mnt_writers = 0;
224 #endif
225 
226 		INIT_LIST_HEAD(&mnt->mnt_hash);
227 		INIT_LIST_HEAD(&mnt->mnt_child);
228 		INIT_LIST_HEAD(&mnt->mnt_mounts);
229 		INIT_LIST_HEAD(&mnt->mnt_list);
230 		INIT_LIST_HEAD(&mnt->mnt_expire);
231 		INIT_LIST_HEAD(&mnt->mnt_share);
232 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 		INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 int __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	if (mnt->mnt_flags & MNT_READONLY)
273 		return 1;
274 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 		return 1;
276 	return 0;
277 }
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279 
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
281 {
282 #ifdef CONFIG_SMP
283 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 	mnt->mnt_writers++;
286 #endif
287 }
288 
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 	mnt->mnt_writers--;
295 #endif
296 }
297 
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 	unsigned int count = 0;
302 	int cpu;
303 
304 	for_each_possible_cpu(cpu) {
305 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 	}
307 
308 	return count;
309 #else
310 	return mnt->mnt_writers;
311 #endif
312 }
313 
314 /*
315  * Most r/o checks on a fs are for operations that take
316  * discrete amounts of time, like a write() or unlink().
317  * We must keep track of when those operations start
318  * (for permission checks) and when they end, so that
319  * we can determine when writes are able to occur to
320  * a filesystem.
321  */
322 /**
323  * mnt_want_write - get write access to a mount
324  * @mnt: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is
327  * about to be performed to it, and makes sure that
328  * writes are allowed before returning success.  When
329  * the write operation is finished, mnt_drop_write()
330  * must be called.  This is effectively a refcount.
331  */
332 int mnt_want_write(struct vfsmount *mnt)
333 {
334 	int ret = 0;
335 
336 	preempt_disable();
337 	mnt_inc_writers(mnt);
338 	/*
339 	 * The store to mnt_inc_writers must be visible before we pass
340 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 	 * incremented count after it has set MNT_WRITE_HOLD.
342 	 */
343 	smp_mb();
344 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 		cpu_relax();
346 	/*
347 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 	 * be set to match its requirements. So we must not load that until
349 	 * MNT_WRITE_HOLD is cleared.
350 	 */
351 	smp_rmb();
352 	if (__mnt_is_readonly(mnt)) {
353 		mnt_dec_writers(mnt);
354 		ret = -EROFS;
355 		goto out;
356 	}
357 out:
358 	preempt_enable();
359 	return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362 
363 /**
364  * mnt_clone_write - get write access to a mount
365  * @mnt: the mount on which to take a write
366  *
367  * This is effectively like mnt_want_write, except
368  * it must only be used to take an extra write reference
369  * on a mountpoint that we already know has a write reference
370  * on it. This allows some optimisation.
371  *
372  * After finished, mnt_drop_write must be called as usual to
373  * drop the reference.
374  */
375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 	/* superblock may be r/o */
378 	if (__mnt_is_readonly(mnt))
379 		return -EROFS;
380 	preempt_disable();
381 	mnt_inc_writers(mnt);
382 	preempt_enable();
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386 
387 /**
388  * mnt_want_write_file - get write access to a file's mount
389  * @file: the file who's mount on which to take a write
390  *
391  * This is like mnt_want_write, but it takes a file and can
392  * do some optimisations if the file is open for write already
393  */
394 int mnt_want_write_file(struct file *file)
395 {
396 	struct inode *inode = file->f_dentry->d_inode;
397 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 		return mnt_want_write(file->f_path.mnt);
399 	else
400 		return mnt_clone_write(file->f_path.mnt);
401 }
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
403 
404 /**
405  * mnt_drop_write - give up write access to a mount
406  * @mnt: the mount on which to give up write access
407  *
408  * Tells the low-level filesystem that we are done
409  * performing writes to it.  Must be matched with
410  * mnt_want_write() call above.
411  */
412 void mnt_drop_write(struct vfsmount *mnt)
413 {
414 	preempt_disable();
415 	mnt_dec_writers(mnt);
416 	preempt_enable();
417 }
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
419 
420 static int mnt_make_readonly(struct vfsmount *mnt)
421 {
422 	int ret = 0;
423 
424 	br_write_lock(vfsmount_lock);
425 	mnt->mnt_flags |= MNT_WRITE_HOLD;
426 	/*
427 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 	 * should be visible before we do.
429 	 */
430 	smp_mb();
431 
432 	/*
433 	 * With writers on hold, if this value is zero, then there are
434 	 * definitely no active writers (although held writers may subsequently
435 	 * increment the count, they'll have to wait, and decrement it after
436 	 * seeing MNT_READONLY).
437 	 *
438 	 * It is OK to have counter incremented on one CPU and decremented on
439 	 * another: the sum will add up correctly. The danger would be when we
440 	 * sum up each counter, if we read a counter before it is incremented,
441 	 * but then read another CPU's count which it has been subsequently
442 	 * decremented from -- we would see more decrements than we should.
443 	 * MNT_WRITE_HOLD protects against this scenario, because
444 	 * mnt_want_write first increments count, then smp_mb, then spins on
445 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 	 * we're counting up here.
447 	 */
448 	if (mnt_get_writers(mnt) > 0)
449 		ret = -EBUSY;
450 	else
451 		mnt->mnt_flags |= MNT_READONLY;
452 	/*
453 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 	 * that become unheld will see MNT_READONLY.
455 	 */
456 	smp_wmb();
457 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 	br_write_unlock(vfsmount_lock);
459 	return ret;
460 }
461 
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
463 {
464 	br_write_lock(vfsmount_lock);
465 	mnt->mnt_flags &= ~MNT_READONLY;
466 	br_write_unlock(vfsmount_lock);
467 }
468 
469 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
470 {
471 	mnt->mnt_sb = sb;
472 	mnt->mnt_root = dget(sb->s_root);
473 }
474 
475 EXPORT_SYMBOL(simple_set_mnt);
476 
477 void free_vfsmnt(struct vfsmount *mnt)
478 {
479 	kfree(mnt->mnt_devname);
480 	mnt_free_id(mnt);
481 #ifdef CONFIG_SMP
482 	free_percpu(mnt->mnt_pcp);
483 #endif
484 	kmem_cache_free(mnt_cache, mnt);
485 }
486 
487 /*
488  * find the first or last mount at @dentry on vfsmount @mnt depending on
489  * @dir. If @dir is set return the first mount else return the last mount.
490  * vfsmount_lock must be held for read or write.
491  */
492 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 			      int dir)
494 {
495 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 	struct list_head *tmp = head;
497 	struct vfsmount *p, *found = NULL;
498 
499 	for (;;) {
500 		tmp = dir ? tmp->next : tmp->prev;
501 		p = NULL;
502 		if (tmp == head)
503 			break;
504 		p = list_entry(tmp, struct vfsmount, mnt_hash);
505 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
506 			found = p;
507 			break;
508 		}
509 	}
510 	return found;
511 }
512 
513 /*
514  * lookup_mnt increments the ref count before returning
515  * the vfsmount struct.
516  */
517 struct vfsmount *lookup_mnt(struct path *path)
518 {
519 	struct vfsmount *child_mnt;
520 
521 	br_read_lock(vfsmount_lock);
522 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
523 		mntget(child_mnt);
524 	br_read_unlock(vfsmount_lock);
525 	return child_mnt;
526 }
527 
528 static inline int check_mnt(struct vfsmount *mnt)
529 {
530 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
531 }
532 
533 /*
534  * vfsmount lock must be held for write
535  */
536 static void touch_mnt_namespace(struct mnt_namespace *ns)
537 {
538 	if (ns) {
539 		ns->event = ++event;
540 		wake_up_interruptible(&ns->poll);
541 	}
542 }
543 
544 /*
545  * vfsmount lock must be held for write
546  */
547 static void __touch_mnt_namespace(struct mnt_namespace *ns)
548 {
549 	if (ns && ns->event != event) {
550 		ns->event = event;
551 		wake_up_interruptible(&ns->poll);
552 	}
553 }
554 
555 /*
556  * Clear dentry's mounted state if it has no remaining mounts.
557  * vfsmount_lock must be held for write.
558  */
559 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
560 {
561 	unsigned u;
562 
563 	for (u = 0; u < HASH_SIZE; u++) {
564 		struct vfsmount *p;
565 
566 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 			if (p->mnt_mountpoint == dentry)
568 				return;
569 		}
570 	}
571 	spin_lock(&dentry->d_lock);
572 	dentry->d_flags &= ~DCACHE_MOUNTED;
573 	spin_unlock(&dentry->d_lock);
574 }
575 
576 /*
577  * vfsmount lock must be held for write
578  */
579 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
580 {
581 	old_path->dentry = mnt->mnt_mountpoint;
582 	old_path->mnt = mnt->mnt_parent;
583 	mnt->mnt_parent = mnt;
584 	mnt->mnt_mountpoint = mnt->mnt_root;
585 	list_del_init(&mnt->mnt_child);
586 	list_del_init(&mnt->mnt_hash);
587 	dentry_reset_mounted(old_path->mnt, old_path->dentry);
588 }
589 
590 /*
591  * vfsmount lock must be held for write
592  */
593 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 			struct vfsmount *child_mnt)
595 {
596 	child_mnt->mnt_parent = mntget(mnt);
597 	child_mnt->mnt_mountpoint = dget(dentry);
598 	spin_lock(&dentry->d_lock);
599 	dentry->d_flags |= DCACHE_MOUNTED;
600 	spin_unlock(&dentry->d_lock);
601 }
602 
603 /*
604  * vfsmount lock must be held for write
605  */
606 static void attach_mnt(struct vfsmount *mnt, struct path *path)
607 {
608 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
609 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
610 			hash(path->mnt, path->dentry));
611 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
612 }
613 
614 /*
615  * vfsmount lock must be held for write
616  */
617 static void commit_tree(struct vfsmount *mnt)
618 {
619 	struct vfsmount *parent = mnt->mnt_parent;
620 	struct vfsmount *m;
621 	LIST_HEAD(head);
622 	struct mnt_namespace *n = parent->mnt_ns;
623 
624 	BUG_ON(parent == mnt);
625 
626 	list_add_tail(&head, &mnt->mnt_list);
627 	list_for_each_entry(m, &head, mnt_list)
628 		m->mnt_ns = n;
629 	list_splice(&head, n->list.prev);
630 
631 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
632 				hash(parent, mnt->mnt_mountpoint));
633 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
634 	touch_mnt_namespace(n);
635 }
636 
637 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
638 {
639 	struct list_head *next = p->mnt_mounts.next;
640 	if (next == &p->mnt_mounts) {
641 		while (1) {
642 			if (p == root)
643 				return NULL;
644 			next = p->mnt_child.next;
645 			if (next != &p->mnt_parent->mnt_mounts)
646 				break;
647 			p = p->mnt_parent;
648 		}
649 	}
650 	return list_entry(next, struct vfsmount, mnt_child);
651 }
652 
653 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
654 {
655 	struct list_head *prev = p->mnt_mounts.prev;
656 	while (prev != &p->mnt_mounts) {
657 		p = list_entry(prev, struct vfsmount, mnt_child);
658 		prev = p->mnt_mounts.prev;
659 	}
660 	return p;
661 }
662 
663 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
664 					int flag)
665 {
666 	struct super_block *sb = old->mnt_sb;
667 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
668 
669 	if (mnt) {
670 		if (flag & (CL_SLAVE | CL_PRIVATE))
671 			mnt->mnt_group_id = 0; /* not a peer of original */
672 		else
673 			mnt->mnt_group_id = old->mnt_group_id;
674 
675 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
676 			int err = mnt_alloc_group_id(mnt);
677 			if (err)
678 				goto out_free;
679 		}
680 
681 		mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
682 		atomic_inc(&sb->s_active);
683 		mnt->mnt_sb = sb;
684 		mnt->mnt_root = dget(root);
685 		mnt->mnt_mountpoint = mnt->mnt_root;
686 		mnt->mnt_parent = mnt;
687 
688 		if (flag & CL_SLAVE) {
689 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
690 			mnt->mnt_master = old;
691 			CLEAR_MNT_SHARED(mnt);
692 		} else if (!(flag & CL_PRIVATE)) {
693 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
694 				list_add(&mnt->mnt_share, &old->mnt_share);
695 			if (IS_MNT_SLAVE(old))
696 				list_add(&mnt->mnt_slave, &old->mnt_slave);
697 			mnt->mnt_master = old->mnt_master;
698 		}
699 		if (flag & CL_MAKE_SHARED)
700 			set_mnt_shared(mnt);
701 
702 		/* stick the duplicate mount on the same expiry list
703 		 * as the original if that was on one */
704 		if (flag & CL_EXPIRE) {
705 			if (!list_empty(&old->mnt_expire))
706 				list_add(&mnt->mnt_expire, &old->mnt_expire);
707 		}
708 	}
709 	return mnt;
710 
711  out_free:
712 	free_vfsmnt(mnt);
713 	return NULL;
714 }
715 
716 static inline void mntfree(struct vfsmount *mnt)
717 {
718 	struct super_block *sb = mnt->mnt_sb;
719 
720 	/*
721 	 * This probably indicates that somebody messed
722 	 * up a mnt_want/drop_write() pair.  If this
723 	 * happens, the filesystem was probably unable
724 	 * to make r/w->r/o transitions.
725 	 */
726 	/*
727 	 * The locking used to deal with mnt_count decrement provides barriers,
728 	 * so mnt_get_writers() below is safe.
729 	 */
730 	WARN_ON(mnt_get_writers(mnt));
731 	fsnotify_vfsmount_delete(mnt);
732 	dput(mnt->mnt_root);
733 	free_vfsmnt(mnt);
734 	deactivate_super(sb);
735 }
736 
737 #ifdef CONFIG_SMP
738 static inline void __mntput(struct vfsmount *mnt, int longrefs)
739 {
740 	if (!longrefs) {
741 put_again:
742 		br_read_lock(vfsmount_lock);
743 		if (likely(atomic_read(&mnt->mnt_longrefs))) {
744 			mnt_dec_count(mnt);
745 			br_read_unlock(vfsmount_lock);
746 			return;
747 		}
748 		br_read_unlock(vfsmount_lock);
749 	} else {
750 		BUG_ON(!atomic_read(&mnt->mnt_longrefs));
751 		if (atomic_add_unless(&mnt->mnt_longrefs, -1, 1))
752 			return;
753 	}
754 
755 	br_write_lock(vfsmount_lock);
756 	if (!longrefs)
757 		mnt_dec_count(mnt);
758 	else
759 		atomic_dec(&mnt->mnt_longrefs);
760 	if (mnt_get_count(mnt)) {
761 		br_write_unlock(vfsmount_lock);
762 		return;
763 	}
764 	if (unlikely(mnt->mnt_pinned)) {
765 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
766 		mnt->mnt_pinned = 0;
767 		br_write_unlock(vfsmount_lock);
768 		acct_auto_close_mnt(mnt);
769 		goto put_again;
770 	}
771 	br_write_unlock(vfsmount_lock);
772 	mntfree(mnt);
773 }
774 #else
775 static inline void __mntput(struct vfsmount *mnt, int longrefs)
776 {
777 put_again:
778 	mnt_dec_count(mnt);
779 	if (likely(mnt_get_count(mnt)))
780 		return;
781 	br_write_lock(vfsmount_lock);
782 	if (unlikely(mnt->mnt_pinned)) {
783 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
784 		mnt->mnt_pinned = 0;
785 		br_write_unlock(vfsmount_lock);
786 		acct_auto_close_mnt(mnt);
787 		goto put_again;
788 	}
789 	br_write_unlock(vfsmount_lock);
790 	mntfree(mnt);
791 }
792 #endif
793 
794 static void mntput_no_expire(struct vfsmount *mnt)
795 {
796 	__mntput(mnt, 0);
797 }
798 
799 void mntput(struct vfsmount *mnt)
800 {
801 	if (mnt) {
802 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
803 		if (unlikely(mnt->mnt_expiry_mark))
804 			mnt->mnt_expiry_mark = 0;
805 		__mntput(mnt, 0);
806 	}
807 }
808 EXPORT_SYMBOL(mntput);
809 
810 struct vfsmount *mntget(struct vfsmount *mnt)
811 {
812 	if (mnt)
813 		mnt_inc_count(mnt);
814 	return mnt;
815 }
816 EXPORT_SYMBOL(mntget);
817 
818 void mntput_long(struct vfsmount *mnt)
819 {
820 #ifdef CONFIG_SMP
821 	if (mnt) {
822 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
823 		if (unlikely(mnt->mnt_expiry_mark))
824 			mnt->mnt_expiry_mark = 0;
825 		__mntput(mnt, 1);
826 	}
827 #else
828 	mntput(mnt);
829 #endif
830 }
831 EXPORT_SYMBOL(mntput_long);
832 
833 struct vfsmount *mntget_long(struct vfsmount *mnt)
834 {
835 #ifdef CONFIG_SMP
836 	if (mnt)
837 		atomic_inc(&mnt->mnt_longrefs);
838 	return mnt;
839 #else
840 	return mntget(mnt);
841 #endif
842 }
843 EXPORT_SYMBOL(mntget_long);
844 
845 void mnt_pin(struct vfsmount *mnt)
846 {
847 	br_write_lock(vfsmount_lock);
848 	mnt->mnt_pinned++;
849 	br_write_unlock(vfsmount_lock);
850 }
851 EXPORT_SYMBOL(mnt_pin);
852 
853 void mnt_unpin(struct vfsmount *mnt)
854 {
855 	br_write_lock(vfsmount_lock);
856 	if (mnt->mnt_pinned) {
857 		mnt_inc_count(mnt);
858 		mnt->mnt_pinned--;
859 	}
860 	br_write_unlock(vfsmount_lock);
861 }
862 EXPORT_SYMBOL(mnt_unpin);
863 
864 static inline void mangle(struct seq_file *m, const char *s)
865 {
866 	seq_escape(m, s, " \t\n\\");
867 }
868 
869 /*
870  * Simple .show_options callback for filesystems which don't want to
871  * implement more complex mount option showing.
872  *
873  * See also save_mount_options().
874  */
875 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
876 {
877 	const char *options;
878 
879 	rcu_read_lock();
880 	options = rcu_dereference(mnt->mnt_sb->s_options);
881 
882 	if (options != NULL && options[0]) {
883 		seq_putc(m, ',');
884 		mangle(m, options);
885 	}
886 	rcu_read_unlock();
887 
888 	return 0;
889 }
890 EXPORT_SYMBOL(generic_show_options);
891 
892 /*
893  * If filesystem uses generic_show_options(), this function should be
894  * called from the fill_super() callback.
895  *
896  * The .remount_fs callback usually needs to be handled in a special
897  * way, to make sure, that previous options are not overwritten if the
898  * remount fails.
899  *
900  * Also note, that if the filesystem's .remount_fs function doesn't
901  * reset all options to their default value, but changes only newly
902  * given options, then the displayed options will not reflect reality
903  * any more.
904  */
905 void save_mount_options(struct super_block *sb, char *options)
906 {
907 	BUG_ON(sb->s_options);
908 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
909 }
910 EXPORT_SYMBOL(save_mount_options);
911 
912 void replace_mount_options(struct super_block *sb, char *options)
913 {
914 	char *old = sb->s_options;
915 	rcu_assign_pointer(sb->s_options, options);
916 	if (old) {
917 		synchronize_rcu();
918 		kfree(old);
919 	}
920 }
921 EXPORT_SYMBOL(replace_mount_options);
922 
923 #ifdef CONFIG_PROC_FS
924 /* iterator */
925 static void *m_start(struct seq_file *m, loff_t *pos)
926 {
927 	struct proc_mounts *p = m->private;
928 
929 	down_read(&namespace_sem);
930 	return seq_list_start(&p->ns->list, *pos);
931 }
932 
933 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
934 {
935 	struct proc_mounts *p = m->private;
936 
937 	return seq_list_next(v, &p->ns->list, pos);
938 }
939 
940 static void m_stop(struct seq_file *m, void *v)
941 {
942 	up_read(&namespace_sem);
943 }
944 
945 int mnt_had_events(struct proc_mounts *p)
946 {
947 	struct mnt_namespace *ns = p->ns;
948 	int res = 0;
949 
950 	br_read_lock(vfsmount_lock);
951 	if (p->event != ns->event) {
952 		p->event = ns->event;
953 		res = 1;
954 	}
955 	br_read_unlock(vfsmount_lock);
956 
957 	return res;
958 }
959 
960 struct proc_fs_info {
961 	int flag;
962 	const char *str;
963 };
964 
965 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
966 {
967 	static const struct proc_fs_info fs_info[] = {
968 		{ MS_SYNCHRONOUS, ",sync" },
969 		{ MS_DIRSYNC, ",dirsync" },
970 		{ MS_MANDLOCK, ",mand" },
971 		{ 0, NULL }
972 	};
973 	const struct proc_fs_info *fs_infop;
974 
975 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
976 		if (sb->s_flags & fs_infop->flag)
977 			seq_puts(m, fs_infop->str);
978 	}
979 
980 	return security_sb_show_options(m, sb);
981 }
982 
983 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
984 {
985 	static const struct proc_fs_info mnt_info[] = {
986 		{ MNT_NOSUID, ",nosuid" },
987 		{ MNT_NODEV, ",nodev" },
988 		{ MNT_NOEXEC, ",noexec" },
989 		{ MNT_NOATIME, ",noatime" },
990 		{ MNT_NODIRATIME, ",nodiratime" },
991 		{ MNT_RELATIME, ",relatime" },
992 		{ 0, NULL }
993 	};
994 	const struct proc_fs_info *fs_infop;
995 
996 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
997 		if (mnt->mnt_flags & fs_infop->flag)
998 			seq_puts(m, fs_infop->str);
999 	}
1000 }
1001 
1002 static void show_type(struct seq_file *m, struct super_block *sb)
1003 {
1004 	mangle(m, sb->s_type->name);
1005 	if (sb->s_subtype && sb->s_subtype[0]) {
1006 		seq_putc(m, '.');
1007 		mangle(m, sb->s_subtype);
1008 	}
1009 }
1010 
1011 static int show_vfsmnt(struct seq_file *m, void *v)
1012 {
1013 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1014 	int err = 0;
1015 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1016 
1017 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1018 	seq_putc(m, ' ');
1019 	seq_path(m, &mnt_path, " \t\n\\");
1020 	seq_putc(m, ' ');
1021 	show_type(m, mnt->mnt_sb);
1022 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1023 	err = show_sb_opts(m, mnt->mnt_sb);
1024 	if (err)
1025 		goto out;
1026 	show_mnt_opts(m, mnt);
1027 	if (mnt->mnt_sb->s_op->show_options)
1028 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
1029 	seq_puts(m, " 0 0\n");
1030 out:
1031 	return err;
1032 }
1033 
1034 const struct seq_operations mounts_op = {
1035 	.start	= m_start,
1036 	.next	= m_next,
1037 	.stop	= m_stop,
1038 	.show	= show_vfsmnt
1039 };
1040 
1041 static int show_mountinfo(struct seq_file *m, void *v)
1042 {
1043 	struct proc_mounts *p = m->private;
1044 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1045 	struct super_block *sb = mnt->mnt_sb;
1046 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1047 	struct path root = p->root;
1048 	int err = 0;
1049 
1050 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1051 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
1052 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
1053 	seq_putc(m, ' ');
1054 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
1055 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1056 		/*
1057 		 * Mountpoint is outside root, discard that one.  Ugly,
1058 		 * but less so than trying to do that in iterator in a
1059 		 * race-free way (due to renames).
1060 		 */
1061 		return SEQ_SKIP;
1062 	}
1063 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1064 	show_mnt_opts(m, mnt);
1065 
1066 	/* Tagged fields ("foo:X" or "bar") */
1067 	if (IS_MNT_SHARED(mnt))
1068 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
1069 	if (IS_MNT_SLAVE(mnt)) {
1070 		int master = mnt->mnt_master->mnt_group_id;
1071 		int dom = get_dominating_id(mnt, &p->root);
1072 		seq_printf(m, " master:%i", master);
1073 		if (dom && dom != master)
1074 			seq_printf(m, " propagate_from:%i", dom);
1075 	}
1076 	if (IS_MNT_UNBINDABLE(mnt))
1077 		seq_puts(m, " unbindable");
1078 
1079 	/* Filesystem specific data */
1080 	seq_puts(m, " - ");
1081 	show_type(m, sb);
1082 	seq_putc(m, ' ');
1083 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1084 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1085 	err = show_sb_opts(m, sb);
1086 	if (err)
1087 		goto out;
1088 	if (sb->s_op->show_options)
1089 		err = sb->s_op->show_options(m, mnt);
1090 	seq_putc(m, '\n');
1091 out:
1092 	return err;
1093 }
1094 
1095 const struct seq_operations mountinfo_op = {
1096 	.start	= m_start,
1097 	.next	= m_next,
1098 	.stop	= m_stop,
1099 	.show	= show_mountinfo,
1100 };
1101 
1102 static int show_vfsstat(struct seq_file *m, void *v)
1103 {
1104 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1105 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1106 	int err = 0;
1107 
1108 	/* device */
1109 	if (mnt->mnt_devname) {
1110 		seq_puts(m, "device ");
1111 		mangle(m, mnt->mnt_devname);
1112 	} else
1113 		seq_puts(m, "no device");
1114 
1115 	/* mount point */
1116 	seq_puts(m, " mounted on ");
1117 	seq_path(m, &mnt_path, " \t\n\\");
1118 	seq_putc(m, ' ');
1119 
1120 	/* file system type */
1121 	seq_puts(m, "with fstype ");
1122 	show_type(m, mnt->mnt_sb);
1123 
1124 	/* optional statistics */
1125 	if (mnt->mnt_sb->s_op->show_stats) {
1126 		seq_putc(m, ' ');
1127 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1128 	}
1129 
1130 	seq_putc(m, '\n');
1131 	return err;
1132 }
1133 
1134 const struct seq_operations mountstats_op = {
1135 	.start	= m_start,
1136 	.next	= m_next,
1137 	.stop	= m_stop,
1138 	.show	= show_vfsstat,
1139 };
1140 #endif  /* CONFIG_PROC_FS */
1141 
1142 /**
1143  * may_umount_tree - check if a mount tree is busy
1144  * @mnt: root of mount tree
1145  *
1146  * This is called to check if a tree of mounts has any
1147  * open files, pwds, chroots or sub mounts that are
1148  * busy.
1149  */
1150 int may_umount_tree(struct vfsmount *mnt)
1151 {
1152 	int actual_refs = 0;
1153 	int minimum_refs = 0;
1154 	struct vfsmount *p;
1155 
1156 	/* write lock needed for mnt_get_count */
1157 	br_write_lock(vfsmount_lock);
1158 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1159 		actual_refs += mnt_get_count(p);
1160 		minimum_refs += 2;
1161 	}
1162 	br_write_unlock(vfsmount_lock);
1163 
1164 	if (actual_refs > minimum_refs)
1165 		return 0;
1166 
1167 	return 1;
1168 }
1169 
1170 EXPORT_SYMBOL(may_umount_tree);
1171 
1172 /**
1173  * may_umount - check if a mount point is busy
1174  * @mnt: root of mount
1175  *
1176  * This is called to check if a mount point has any
1177  * open files, pwds, chroots or sub mounts. If the
1178  * mount has sub mounts this will return busy
1179  * regardless of whether the sub mounts are busy.
1180  *
1181  * Doesn't take quota and stuff into account. IOW, in some cases it will
1182  * give false negatives. The main reason why it's here is that we need
1183  * a non-destructive way to look for easily umountable filesystems.
1184  */
1185 int may_umount(struct vfsmount *mnt)
1186 {
1187 	int ret = 1;
1188 	down_read(&namespace_sem);
1189 	br_write_lock(vfsmount_lock);
1190 	if (propagate_mount_busy(mnt, 2))
1191 		ret = 0;
1192 	br_write_unlock(vfsmount_lock);
1193 	up_read(&namespace_sem);
1194 	return ret;
1195 }
1196 
1197 EXPORT_SYMBOL(may_umount);
1198 
1199 void release_mounts(struct list_head *head)
1200 {
1201 	struct vfsmount *mnt;
1202 	while (!list_empty(head)) {
1203 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1204 		list_del_init(&mnt->mnt_hash);
1205 		if (mnt->mnt_parent != mnt) {
1206 			struct dentry *dentry;
1207 			struct vfsmount *m;
1208 
1209 			br_write_lock(vfsmount_lock);
1210 			dentry = mnt->mnt_mountpoint;
1211 			m = mnt->mnt_parent;
1212 			mnt->mnt_mountpoint = mnt->mnt_root;
1213 			mnt->mnt_parent = mnt;
1214 			m->mnt_ghosts--;
1215 			br_write_unlock(vfsmount_lock);
1216 			dput(dentry);
1217 			mntput(m);
1218 		}
1219 		mntput_long(mnt);
1220 	}
1221 }
1222 
1223 /*
1224  * vfsmount lock must be held for write
1225  * namespace_sem must be held for write
1226  */
1227 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1228 {
1229 	struct vfsmount *p;
1230 
1231 	for (p = mnt; p; p = next_mnt(p, mnt))
1232 		list_move(&p->mnt_hash, kill);
1233 
1234 	if (propagate)
1235 		propagate_umount(kill);
1236 
1237 	list_for_each_entry(p, kill, mnt_hash) {
1238 		list_del_init(&p->mnt_expire);
1239 		list_del_init(&p->mnt_list);
1240 		__touch_mnt_namespace(p->mnt_ns);
1241 		p->mnt_ns = NULL;
1242 		list_del_init(&p->mnt_child);
1243 		if (p->mnt_parent != p) {
1244 			p->mnt_parent->mnt_ghosts++;
1245 			dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1246 		}
1247 		change_mnt_propagation(p, MS_PRIVATE);
1248 	}
1249 }
1250 
1251 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1252 
1253 static int do_umount(struct vfsmount *mnt, int flags)
1254 {
1255 	struct super_block *sb = mnt->mnt_sb;
1256 	int retval;
1257 	LIST_HEAD(umount_list);
1258 
1259 	retval = security_sb_umount(mnt, flags);
1260 	if (retval)
1261 		return retval;
1262 
1263 	/*
1264 	 * Allow userspace to request a mountpoint be expired rather than
1265 	 * unmounting unconditionally. Unmount only happens if:
1266 	 *  (1) the mark is already set (the mark is cleared by mntput())
1267 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1268 	 */
1269 	if (flags & MNT_EXPIRE) {
1270 		if (mnt == current->fs->root.mnt ||
1271 		    flags & (MNT_FORCE | MNT_DETACH))
1272 			return -EINVAL;
1273 
1274 		/*
1275 		 * probably don't strictly need the lock here if we examined
1276 		 * all race cases, but it's a slowpath.
1277 		 */
1278 		br_write_lock(vfsmount_lock);
1279 		if (mnt_get_count(mnt) != 2) {
1280 			br_write_lock(vfsmount_lock);
1281 			return -EBUSY;
1282 		}
1283 		br_write_unlock(vfsmount_lock);
1284 
1285 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1286 			return -EAGAIN;
1287 	}
1288 
1289 	/*
1290 	 * If we may have to abort operations to get out of this
1291 	 * mount, and they will themselves hold resources we must
1292 	 * allow the fs to do things. In the Unix tradition of
1293 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1294 	 * might fail to complete on the first run through as other tasks
1295 	 * must return, and the like. Thats for the mount program to worry
1296 	 * about for the moment.
1297 	 */
1298 
1299 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1300 		sb->s_op->umount_begin(sb);
1301 	}
1302 
1303 	/*
1304 	 * No sense to grab the lock for this test, but test itself looks
1305 	 * somewhat bogus. Suggestions for better replacement?
1306 	 * Ho-hum... In principle, we might treat that as umount + switch
1307 	 * to rootfs. GC would eventually take care of the old vfsmount.
1308 	 * Actually it makes sense, especially if rootfs would contain a
1309 	 * /reboot - static binary that would close all descriptors and
1310 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1311 	 */
1312 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1313 		/*
1314 		 * Special case for "unmounting" root ...
1315 		 * we just try to remount it readonly.
1316 		 */
1317 		down_write(&sb->s_umount);
1318 		if (!(sb->s_flags & MS_RDONLY))
1319 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1320 		up_write(&sb->s_umount);
1321 		return retval;
1322 	}
1323 
1324 	down_write(&namespace_sem);
1325 	br_write_lock(vfsmount_lock);
1326 	event++;
1327 
1328 	if (!(flags & MNT_DETACH))
1329 		shrink_submounts(mnt, &umount_list);
1330 
1331 	retval = -EBUSY;
1332 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1333 		if (!list_empty(&mnt->mnt_list))
1334 			umount_tree(mnt, 1, &umount_list);
1335 		retval = 0;
1336 	}
1337 	br_write_unlock(vfsmount_lock);
1338 	up_write(&namespace_sem);
1339 	release_mounts(&umount_list);
1340 	return retval;
1341 }
1342 
1343 /*
1344  * Now umount can handle mount points as well as block devices.
1345  * This is important for filesystems which use unnamed block devices.
1346  *
1347  * We now support a flag for forced unmount like the other 'big iron'
1348  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1349  */
1350 
1351 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1352 {
1353 	struct path path;
1354 	int retval;
1355 	int lookup_flags = 0;
1356 
1357 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1358 		return -EINVAL;
1359 
1360 	if (!(flags & UMOUNT_NOFOLLOW))
1361 		lookup_flags |= LOOKUP_FOLLOW;
1362 
1363 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1364 	if (retval)
1365 		goto out;
1366 	retval = -EINVAL;
1367 	if (path.dentry != path.mnt->mnt_root)
1368 		goto dput_and_out;
1369 	if (!check_mnt(path.mnt))
1370 		goto dput_and_out;
1371 
1372 	retval = -EPERM;
1373 	if (!capable(CAP_SYS_ADMIN))
1374 		goto dput_and_out;
1375 
1376 	retval = do_umount(path.mnt, flags);
1377 dput_and_out:
1378 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1379 	dput(path.dentry);
1380 	mntput_no_expire(path.mnt);
1381 out:
1382 	return retval;
1383 }
1384 
1385 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1386 
1387 /*
1388  *	The 2.0 compatible umount. No flags.
1389  */
1390 SYSCALL_DEFINE1(oldumount, char __user *, name)
1391 {
1392 	return sys_umount(name, 0);
1393 }
1394 
1395 #endif
1396 
1397 static int mount_is_safe(struct path *path)
1398 {
1399 	if (capable(CAP_SYS_ADMIN))
1400 		return 0;
1401 	return -EPERM;
1402 #ifdef notyet
1403 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1404 		return -EPERM;
1405 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1406 		if (current_uid() != path->dentry->d_inode->i_uid)
1407 			return -EPERM;
1408 	}
1409 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1410 		return -EPERM;
1411 	return 0;
1412 #endif
1413 }
1414 
1415 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1416 					int flag)
1417 {
1418 	struct vfsmount *res, *p, *q, *r, *s;
1419 	struct path path;
1420 
1421 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1422 		return NULL;
1423 
1424 	res = q = clone_mnt(mnt, dentry, flag);
1425 	if (!q)
1426 		goto Enomem;
1427 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1428 
1429 	p = mnt;
1430 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1431 		if (!is_subdir(r->mnt_mountpoint, dentry))
1432 			continue;
1433 
1434 		for (s = r; s; s = next_mnt(s, r)) {
1435 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1436 				s = skip_mnt_tree(s);
1437 				continue;
1438 			}
1439 			while (p != s->mnt_parent) {
1440 				p = p->mnt_parent;
1441 				q = q->mnt_parent;
1442 			}
1443 			p = s;
1444 			path.mnt = q;
1445 			path.dentry = p->mnt_mountpoint;
1446 			q = clone_mnt(p, p->mnt_root, flag);
1447 			if (!q)
1448 				goto Enomem;
1449 			br_write_lock(vfsmount_lock);
1450 			list_add_tail(&q->mnt_list, &res->mnt_list);
1451 			attach_mnt(q, &path);
1452 			br_write_unlock(vfsmount_lock);
1453 		}
1454 	}
1455 	return res;
1456 Enomem:
1457 	if (res) {
1458 		LIST_HEAD(umount_list);
1459 		br_write_lock(vfsmount_lock);
1460 		umount_tree(res, 0, &umount_list);
1461 		br_write_unlock(vfsmount_lock);
1462 		release_mounts(&umount_list);
1463 	}
1464 	return NULL;
1465 }
1466 
1467 struct vfsmount *collect_mounts(struct path *path)
1468 {
1469 	struct vfsmount *tree;
1470 	down_write(&namespace_sem);
1471 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1472 	up_write(&namespace_sem);
1473 	return tree;
1474 }
1475 
1476 void drop_collected_mounts(struct vfsmount *mnt)
1477 {
1478 	LIST_HEAD(umount_list);
1479 	down_write(&namespace_sem);
1480 	br_write_lock(vfsmount_lock);
1481 	umount_tree(mnt, 0, &umount_list);
1482 	br_write_unlock(vfsmount_lock);
1483 	up_write(&namespace_sem);
1484 	release_mounts(&umount_list);
1485 }
1486 
1487 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1488 		   struct vfsmount *root)
1489 {
1490 	struct vfsmount *mnt;
1491 	int res = f(root, arg);
1492 	if (res)
1493 		return res;
1494 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1495 		res = f(mnt, arg);
1496 		if (res)
1497 			return res;
1498 	}
1499 	return 0;
1500 }
1501 
1502 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1503 {
1504 	struct vfsmount *p;
1505 
1506 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1507 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1508 			mnt_release_group_id(p);
1509 	}
1510 }
1511 
1512 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1513 {
1514 	struct vfsmount *p;
1515 
1516 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1517 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1518 			int err = mnt_alloc_group_id(p);
1519 			if (err) {
1520 				cleanup_group_ids(mnt, p);
1521 				return err;
1522 			}
1523 		}
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 /*
1530  *  @source_mnt : mount tree to be attached
1531  *  @nd         : place the mount tree @source_mnt is attached
1532  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1533  *  		   store the parent mount and mountpoint dentry.
1534  *  		   (done when source_mnt is moved)
1535  *
1536  *  NOTE: in the table below explains the semantics when a source mount
1537  *  of a given type is attached to a destination mount of a given type.
1538  * ---------------------------------------------------------------------------
1539  * |         BIND MOUNT OPERATION                                            |
1540  * |**************************************************************************
1541  * | source-->| shared        |       private  |       slave    | unbindable |
1542  * | dest     |               |                |                |            |
1543  * |   |      |               |                |                |            |
1544  * |   v      |               |                |                |            |
1545  * |**************************************************************************
1546  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1547  * |          |               |                |                |            |
1548  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1549  * ***************************************************************************
1550  * A bind operation clones the source mount and mounts the clone on the
1551  * destination mount.
1552  *
1553  * (++)  the cloned mount is propagated to all the mounts in the propagation
1554  * 	 tree of the destination mount and the cloned mount is added to
1555  * 	 the peer group of the source mount.
1556  * (+)   the cloned mount is created under the destination mount and is marked
1557  *       as shared. The cloned mount is added to the peer group of the source
1558  *       mount.
1559  * (+++) the mount is propagated to all the mounts in the propagation tree
1560  *       of the destination mount and the cloned mount is made slave
1561  *       of the same master as that of the source mount. The cloned mount
1562  *       is marked as 'shared and slave'.
1563  * (*)   the cloned mount is made a slave of the same master as that of the
1564  * 	 source mount.
1565  *
1566  * ---------------------------------------------------------------------------
1567  * |         		MOVE MOUNT OPERATION                                 |
1568  * |**************************************************************************
1569  * | source-->| shared        |       private  |       slave    | unbindable |
1570  * | dest     |               |                |                |            |
1571  * |   |      |               |                |                |            |
1572  * |   v      |               |                |                |            |
1573  * |**************************************************************************
1574  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1575  * |          |               |                |                |            |
1576  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1577  * ***************************************************************************
1578  *
1579  * (+)  the mount is moved to the destination. And is then propagated to
1580  * 	all the mounts in the propagation tree of the destination mount.
1581  * (+*)  the mount is moved to the destination.
1582  * (+++)  the mount is moved to the destination and is then propagated to
1583  * 	all the mounts belonging to the destination mount's propagation tree.
1584  * 	the mount is marked as 'shared and slave'.
1585  * (*)	the mount continues to be a slave at the new location.
1586  *
1587  * if the source mount is a tree, the operations explained above is
1588  * applied to each mount in the tree.
1589  * Must be called without spinlocks held, since this function can sleep
1590  * in allocations.
1591  */
1592 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1593 			struct path *path, struct path *parent_path)
1594 {
1595 	LIST_HEAD(tree_list);
1596 	struct vfsmount *dest_mnt = path->mnt;
1597 	struct dentry *dest_dentry = path->dentry;
1598 	struct vfsmount *child, *p;
1599 	int err;
1600 
1601 	if (IS_MNT_SHARED(dest_mnt)) {
1602 		err = invent_group_ids(source_mnt, true);
1603 		if (err)
1604 			goto out;
1605 	}
1606 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1607 	if (err)
1608 		goto out_cleanup_ids;
1609 
1610 	br_write_lock(vfsmount_lock);
1611 
1612 	if (IS_MNT_SHARED(dest_mnt)) {
1613 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1614 			set_mnt_shared(p);
1615 	}
1616 	if (parent_path) {
1617 		detach_mnt(source_mnt, parent_path);
1618 		attach_mnt(source_mnt, path);
1619 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1620 	} else {
1621 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1622 		commit_tree(source_mnt);
1623 	}
1624 
1625 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1626 		list_del_init(&child->mnt_hash);
1627 		commit_tree(child);
1628 	}
1629 	br_write_unlock(vfsmount_lock);
1630 
1631 	return 0;
1632 
1633  out_cleanup_ids:
1634 	if (IS_MNT_SHARED(dest_mnt))
1635 		cleanup_group_ids(source_mnt, NULL);
1636  out:
1637 	return err;
1638 }
1639 
1640 static int graft_tree(struct vfsmount *mnt, struct path *path)
1641 {
1642 	int err;
1643 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1644 		return -EINVAL;
1645 
1646 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1647 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1648 		return -ENOTDIR;
1649 
1650 	err = -ENOENT;
1651 	mutex_lock(&path->dentry->d_inode->i_mutex);
1652 	if (cant_mount(path->dentry))
1653 		goto out_unlock;
1654 
1655 	if (!d_unlinked(path->dentry))
1656 		err = attach_recursive_mnt(mnt, path, NULL);
1657 out_unlock:
1658 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1659 	return err;
1660 }
1661 
1662 /*
1663  * Sanity check the flags to change_mnt_propagation.
1664  */
1665 
1666 static int flags_to_propagation_type(int flags)
1667 {
1668 	int type = flags & ~MS_REC;
1669 
1670 	/* Fail if any non-propagation flags are set */
1671 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1672 		return 0;
1673 	/* Only one propagation flag should be set */
1674 	if (!is_power_of_2(type))
1675 		return 0;
1676 	return type;
1677 }
1678 
1679 /*
1680  * recursively change the type of the mountpoint.
1681  */
1682 static int do_change_type(struct path *path, int flag)
1683 {
1684 	struct vfsmount *m, *mnt = path->mnt;
1685 	int recurse = flag & MS_REC;
1686 	int type;
1687 	int err = 0;
1688 
1689 	if (!capable(CAP_SYS_ADMIN))
1690 		return -EPERM;
1691 
1692 	if (path->dentry != path->mnt->mnt_root)
1693 		return -EINVAL;
1694 
1695 	type = flags_to_propagation_type(flag);
1696 	if (!type)
1697 		return -EINVAL;
1698 
1699 	down_write(&namespace_sem);
1700 	if (type == MS_SHARED) {
1701 		err = invent_group_ids(mnt, recurse);
1702 		if (err)
1703 			goto out_unlock;
1704 	}
1705 
1706 	br_write_lock(vfsmount_lock);
1707 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1708 		change_mnt_propagation(m, type);
1709 	br_write_unlock(vfsmount_lock);
1710 
1711  out_unlock:
1712 	up_write(&namespace_sem);
1713 	return err;
1714 }
1715 
1716 /*
1717  * do loopback mount.
1718  */
1719 static int do_loopback(struct path *path, char *old_name,
1720 				int recurse)
1721 {
1722 	struct path old_path;
1723 	struct vfsmount *mnt = NULL;
1724 	int err = mount_is_safe(path);
1725 	if (err)
1726 		return err;
1727 	if (!old_name || !*old_name)
1728 		return -EINVAL;
1729 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1730 	if (err)
1731 		return err;
1732 
1733 	down_write(&namespace_sem);
1734 	err = -EINVAL;
1735 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1736 		goto out;
1737 
1738 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1739 		goto out;
1740 
1741 	err = -ENOMEM;
1742 	if (recurse)
1743 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1744 	else
1745 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1746 
1747 	if (!mnt)
1748 		goto out;
1749 
1750 	err = graft_tree(mnt, path);
1751 	if (err) {
1752 		LIST_HEAD(umount_list);
1753 
1754 		br_write_lock(vfsmount_lock);
1755 		umount_tree(mnt, 0, &umount_list);
1756 		br_write_unlock(vfsmount_lock);
1757 		release_mounts(&umount_list);
1758 	}
1759 
1760 out:
1761 	up_write(&namespace_sem);
1762 	path_put(&old_path);
1763 	return err;
1764 }
1765 
1766 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1767 {
1768 	int error = 0;
1769 	int readonly_request = 0;
1770 
1771 	if (ms_flags & MS_RDONLY)
1772 		readonly_request = 1;
1773 	if (readonly_request == __mnt_is_readonly(mnt))
1774 		return 0;
1775 
1776 	if (readonly_request)
1777 		error = mnt_make_readonly(mnt);
1778 	else
1779 		__mnt_unmake_readonly(mnt);
1780 	return error;
1781 }
1782 
1783 /*
1784  * change filesystem flags. dir should be a physical root of filesystem.
1785  * If you've mounted a non-root directory somewhere and want to do remount
1786  * on it - tough luck.
1787  */
1788 static int do_remount(struct path *path, int flags, int mnt_flags,
1789 		      void *data)
1790 {
1791 	int err;
1792 	struct super_block *sb = path->mnt->mnt_sb;
1793 
1794 	if (!capable(CAP_SYS_ADMIN))
1795 		return -EPERM;
1796 
1797 	if (!check_mnt(path->mnt))
1798 		return -EINVAL;
1799 
1800 	if (path->dentry != path->mnt->mnt_root)
1801 		return -EINVAL;
1802 
1803 	down_write(&sb->s_umount);
1804 	if (flags & MS_BIND)
1805 		err = change_mount_flags(path->mnt, flags);
1806 	else
1807 		err = do_remount_sb(sb, flags, data, 0);
1808 	if (!err) {
1809 		br_write_lock(vfsmount_lock);
1810 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1811 		path->mnt->mnt_flags = mnt_flags;
1812 		br_write_unlock(vfsmount_lock);
1813 	}
1814 	up_write(&sb->s_umount);
1815 	if (!err) {
1816 		br_write_lock(vfsmount_lock);
1817 		touch_mnt_namespace(path->mnt->mnt_ns);
1818 		br_write_unlock(vfsmount_lock);
1819 	}
1820 	return err;
1821 }
1822 
1823 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1824 {
1825 	struct vfsmount *p;
1826 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1827 		if (IS_MNT_UNBINDABLE(p))
1828 			return 1;
1829 	}
1830 	return 0;
1831 }
1832 
1833 static int do_move_mount(struct path *path, char *old_name)
1834 {
1835 	struct path old_path, parent_path;
1836 	struct vfsmount *p;
1837 	int err = 0;
1838 	if (!capable(CAP_SYS_ADMIN))
1839 		return -EPERM;
1840 	if (!old_name || !*old_name)
1841 		return -EINVAL;
1842 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1843 	if (err)
1844 		return err;
1845 
1846 	down_write(&namespace_sem);
1847 	while (d_mountpoint(path->dentry) &&
1848 	       follow_down(path))
1849 		;
1850 	err = -EINVAL;
1851 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1852 		goto out;
1853 
1854 	err = -ENOENT;
1855 	mutex_lock(&path->dentry->d_inode->i_mutex);
1856 	if (cant_mount(path->dentry))
1857 		goto out1;
1858 
1859 	if (d_unlinked(path->dentry))
1860 		goto out1;
1861 
1862 	err = -EINVAL;
1863 	if (old_path.dentry != old_path.mnt->mnt_root)
1864 		goto out1;
1865 
1866 	if (old_path.mnt == old_path.mnt->mnt_parent)
1867 		goto out1;
1868 
1869 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1870 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1871 		goto out1;
1872 	/*
1873 	 * Don't move a mount residing in a shared parent.
1874 	 */
1875 	if (old_path.mnt->mnt_parent &&
1876 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1877 		goto out1;
1878 	/*
1879 	 * Don't move a mount tree containing unbindable mounts to a destination
1880 	 * mount which is shared.
1881 	 */
1882 	if (IS_MNT_SHARED(path->mnt) &&
1883 	    tree_contains_unbindable(old_path.mnt))
1884 		goto out1;
1885 	err = -ELOOP;
1886 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1887 		if (p == old_path.mnt)
1888 			goto out1;
1889 
1890 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1891 	if (err)
1892 		goto out1;
1893 
1894 	/* if the mount is moved, it should no longer be expire
1895 	 * automatically */
1896 	list_del_init(&old_path.mnt->mnt_expire);
1897 out1:
1898 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1899 out:
1900 	up_write(&namespace_sem);
1901 	if (!err)
1902 		path_put(&parent_path);
1903 	path_put(&old_path);
1904 	return err;
1905 }
1906 
1907 /*
1908  * create a new mount for userspace and request it to be added into the
1909  * namespace's tree
1910  */
1911 static int do_new_mount(struct path *path, char *type, int flags,
1912 			int mnt_flags, char *name, void *data)
1913 {
1914 	struct vfsmount *mnt;
1915 
1916 	if (!type)
1917 		return -EINVAL;
1918 
1919 	/* we need capabilities... */
1920 	if (!capable(CAP_SYS_ADMIN))
1921 		return -EPERM;
1922 
1923 	mnt = do_kern_mount(type, flags, name, data);
1924 	if (IS_ERR(mnt))
1925 		return PTR_ERR(mnt);
1926 
1927 	return do_add_mount(mnt, path, mnt_flags, NULL);
1928 }
1929 
1930 /*
1931  * add a mount into a namespace's mount tree
1932  * - provide the option of adding the new mount to an expiration list
1933  */
1934 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1935 		 int mnt_flags, struct list_head *fslist)
1936 {
1937 	int err;
1938 
1939 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1940 
1941 	down_write(&namespace_sem);
1942 	/* Something was mounted here while we slept */
1943 	while (d_mountpoint(path->dentry) &&
1944 	       follow_down(path))
1945 		;
1946 	err = -EINVAL;
1947 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1948 		goto unlock;
1949 
1950 	/* Refuse the same filesystem on the same mount point */
1951 	err = -EBUSY;
1952 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1953 	    path->mnt->mnt_root == path->dentry)
1954 		goto unlock;
1955 
1956 	err = -EINVAL;
1957 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1958 		goto unlock;
1959 
1960 	newmnt->mnt_flags = mnt_flags;
1961 	if ((err = graft_tree(newmnt, path)))
1962 		goto unlock;
1963 
1964 	if (fslist) /* add to the specified expiration list */
1965 		list_add_tail(&newmnt->mnt_expire, fslist);
1966 
1967 	up_write(&namespace_sem);
1968 	return 0;
1969 
1970 unlock:
1971 	up_write(&namespace_sem);
1972 	mntput_long(newmnt);
1973 	return err;
1974 }
1975 
1976 EXPORT_SYMBOL_GPL(do_add_mount);
1977 
1978 /*
1979  * process a list of expirable mountpoints with the intent of discarding any
1980  * mountpoints that aren't in use and haven't been touched since last we came
1981  * here
1982  */
1983 void mark_mounts_for_expiry(struct list_head *mounts)
1984 {
1985 	struct vfsmount *mnt, *next;
1986 	LIST_HEAD(graveyard);
1987 	LIST_HEAD(umounts);
1988 
1989 	if (list_empty(mounts))
1990 		return;
1991 
1992 	down_write(&namespace_sem);
1993 	br_write_lock(vfsmount_lock);
1994 
1995 	/* extract from the expiration list every vfsmount that matches the
1996 	 * following criteria:
1997 	 * - only referenced by its parent vfsmount
1998 	 * - still marked for expiry (marked on the last call here; marks are
1999 	 *   cleared by mntput())
2000 	 */
2001 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2002 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2003 			propagate_mount_busy(mnt, 1))
2004 			continue;
2005 		list_move(&mnt->mnt_expire, &graveyard);
2006 	}
2007 	while (!list_empty(&graveyard)) {
2008 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2009 		touch_mnt_namespace(mnt->mnt_ns);
2010 		umount_tree(mnt, 1, &umounts);
2011 	}
2012 	br_write_unlock(vfsmount_lock);
2013 	up_write(&namespace_sem);
2014 
2015 	release_mounts(&umounts);
2016 }
2017 
2018 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2019 
2020 /*
2021  * Ripoff of 'select_parent()'
2022  *
2023  * search the list of submounts for a given mountpoint, and move any
2024  * shrinkable submounts to the 'graveyard' list.
2025  */
2026 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2027 {
2028 	struct vfsmount *this_parent = parent;
2029 	struct list_head *next;
2030 	int found = 0;
2031 
2032 repeat:
2033 	next = this_parent->mnt_mounts.next;
2034 resume:
2035 	while (next != &this_parent->mnt_mounts) {
2036 		struct list_head *tmp = next;
2037 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2038 
2039 		next = tmp->next;
2040 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2041 			continue;
2042 		/*
2043 		 * Descend a level if the d_mounts list is non-empty.
2044 		 */
2045 		if (!list_empty(&mnt->mnt_mounts)) {
2046 			this_parent = mnt;
2047 			goto repeat;
2048 		}
2049 
2050 		if (!propagate_mount_busy(mnt, 1)) {
2051 			list_move_tail(&mnt->mnt_expire, graveyard);
2052 			found++;
2053 		}
2054 	}
2055 	/*
2056 	 * All done at this level ... ascend and resume the search
2057 	 */
2058 	if (this_parent != parent) {
2059 		next = this_parent->mnt_child.next;
2060 		this_parent = this_parent->mnt_parent;
2061 		goto resume;
2062 	}
2063 	return found;
2064 }
2065 
2066 /*
2067  * process a list of expirable mountpoints with the intent of discarding any
2068  * submounts of a specific parent mountpoint
2069  *
2070  * vfsmount_lock must be held for write
2071  */
2072 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2073 {
2074 	LIST_HEAD(graveyard);
2075 	struct vfsmount *m;
2076 
2077 	/* extract submounts of 'mountpoint' from the expiration list */
2078 	while (select_submounts(mnt, &graveyard)) {
2079 		while (!list_empty(&graveyard)) {
2080 			m = list_first_entry(&graveyard, struct vfsmount,
2081 						mnt_expire);
2082 			touch_mnt_namespace(m->mnt_ns);
2083 			umount_tree(m, 1, umounts);
2084 		}
2085 	}
2086 }
2087 
2088 /*
2089  * Some copy_from_user() implementations do not return the exact number of
2090  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2091  * Note that this function differs from copy_from_user() in that it will oops
2092  * on bad values of `to', rather than returning a short copy.
2093  */
2094 static long exact_copy_from_user(void *to, const void __user * from,
2095 				 unsigned long n)
2096 {
2097 	char *t = to;
2098 	const char __user *f = from;
2099 	char c;
2100 
2101 	if (!access_ok(VERIFY_READ, from, n))
2102 		return n;
2103 
2104 	while (n) {
2105 		if (__get_user(c, f)) {
2106 			memset(t, 0, n);
2107 			break;
2108 		}
2109 		*t++ = c;
2110 		f++;
2111 		n--;
2112 	}
2113 	return n;
2114 }
2115 
2116 int copy_mount_options(const void __user * data, unsigned long *where)
2117 {
2118 	int i;
2119 	unsigned long page;
2120 	unsigned long size;
2121 
2122 	*where = 0;
2123 	if (!data)
2124 		return 0;
2125 
2126 	if (!(page = __get_free_page(GFP_KERNEL)))
2127 		return -ENOMEM;
2128 
2129 	/* We only care that *some* data at the address the user
2130 	 * gave us is valid.  Just in case, we'll zero
2131 	 * the remainder of the page.
2132 	 */
2133 	/* copy_from_user cannot cross TASK_SIZE ! */
2134 	size = TASK_SIZE - (unsigned long)data;
2135 	if (size > PAGE_SIZE)
2136 		size = PAGE_SIZE;
2137 
2138 	i = size - exact_copy_from_user((void *)page, data, size);
2139 	if (!i) {
2140 		free_page(page);
2141 		return -EFAULT;
2142 	}
2143 	if (i != PAGE_SIZE)
2144 		memset((char *)page + i, 0, PAGE_SIZE - i);
2145 	*where = page;
2146 	return 0;
2147 }
2148 
2149 int copy_mount_string(const void __user *data, char **where)
2150 {
2151 	char *tmp;
2152 
2153 	if (!data) {
2154 		*where = NULL;
2155 		return 0;
2156 	}
2157 
2158 	tmp = strndup_user(data, PAGE_SIZE);
2159 	if (IS_ERR(tmp))
2160 		return PTR_ERR(tmp);
2161 
2162 	*where = tmp;
2163 	return 0;
2164 }
2165 
2166 /*
2167  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2168  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2169  *
2170  * data is a (void *) that can point to any structure up to
2171  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2172  * information (or be NULL).
2173  *
2174  * Pre-0.97 versions of mount() didn't have a flags word.
2175  * When the flags word was introduced its top half was required
2176  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2177  * Therefore, if this magic number is present, it carries no information
2178  * and must be discarded.
2179  */
2180 long do_mount(char *dev_name, char *dir_name, char *type_page,
2181 		  unsigned long flags, void *data_page)
2182 {
2183 	struct path path;
2184 	int retval = 0;
2185 	int mnt_flags = 0;
2186 
2187 	/* Discard magic */
2188 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2189 		flags &= ~MS_MGC_MSK;
2190 
2191 	/* Basic sanity checks */
2192 
2193 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2194 		return -EINVAL;
2195 
2196 	if (data_page)
2197 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2198 
2199 	/* ... and get the mountpoint */
2200 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2201 	if (retval)
2202 		return retval;
2203 
2204 	retval = security_sb_mount(dev_name, &path,
2205 				   type_page, flags, data_page);
2206 	if (retval)
2207 		goto dput_out;
2208 
2209 	/* Default to relatime unless overriden */
2210 	if (!(flags & MS_NOATIME))
2211 		mnt_flags |= MNT_RELATIME;
2212 
2213 	/* Separate the per-mountpoint flags */
2214 	if (flags & MS_NOSUID)
2215 		mnt_flags |= MNT_NOSUID;
2216 	if (flags & MS_NODEV)
2217 		mnt_flags |= MNT_NODEV;
2218 	if (flags & MS_NOEXEC)
2219 		mnt_flags |= MNT_NOEXEC;
2220 	if (flags & MS_NOATIME)
2221 		mnt_flags |= MNT_NOATIME;
2222 	if (flags & MS_NODIRATIME)
2223 		mnt_flags |= MNT_NODIRATIME;
2224 	if (flags & MS_STRICTATIME)
2225 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2226 	if (flags & MS_RDONLY)
2227 		mnt_flags |= MNT_READONLY;
2228 
2229 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2230 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2231 		   MS_STRICTATIME);
2232 
2233 	if (flags & MS_REMOUNT)
2234 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2235 				    data_page);
2236 	else if (flags & MS_BIND)
2237 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2238 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2239 		retval = do_change_type(&path, flags);
2240 	else if (flags & MS_MOVE)
2241 		retval = do_move_mount(&path, dev_name);
2242 	else
2243 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2244 				      dev_name, data_page);
2245 dput_out:
2246 	path_put(&path);
2247 	return retval;
2248 }
2249 
2250 static struct mnt_namespace *alloc_mnt_ns(void)
2251 {
2252 	struct mnt_namespace *new_ns;
2253 
2254 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2255 	if (!new_ns)
2256 		return ERR_PTR(-ENOMEM);
2257 	atomic_set(&new_ns->count, 1);
2258 	new_ns->root = NULL;
2259 	INIT_LIST_HEAD(&new_ns->list);
2260 	init_waitqueue_head(&new_ns->poll);
2261 	new_ns->event = 0;
2262 	return new_ns;
2263 }
2264 
2265 /*
2266  * Allocate a new namespace structure and populate it with contents
2267  * copied from the namespace of the passed in task structure.
2268  */
2269 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2270 		struct fs_struct *fs)
2271 {
2272 	struct mnt_namespace *new_ns;
2273 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2274 	struct vfsmount *p, *q;
2275 
2276 	new_ns = alloc_mnt_ns();
2277 	if (IS_ERR(new_ns))
2278 		return new_ns;
2279 
2280 	down_write(&namespace_sem);
2281 	/* First pass: copy the tree topology */
2282 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2283 					CL_COPY_ALL | CL_EXPIRE);
2284 	if (!new_ns->root) {
2285 		up_write(&namespace_sem);
2286 		kfree(new_ns);
2287 		return ERR_PTR(-ENOMEM);
2288 	}
2289 	br_write_lock(vfsmount_lock);
2290 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2291 	br_write_unlock(vfsmount_lock);
2292 
2293 	/*
2294 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2295 	 * as belonging to new namespace.  We have already acquired a private
2296 	 * fs_struct, so tsk->fs->lock is not needed.
2297 	 */
2298 	p = mnt_ns->root;
2299 	q = new_ns->root;
2300 	while (p) {
2301 		q->mnt_ns = new_ns;
2302 		if (fs) {
2303 			if (p == fs->root.mnt) {
2304 				rootmnt = p;
2305 				fs->root.mnt = mntget_long(q);
2306 			}
2307 			if (p == fs->pwd.mnt) {
2308 				pwdmnt = p;
2309 				fs->pwd.mnt = mntget_long(q);
2310 			}
2311 		}
2312 		p = next_mnt(p, mnt_ns->root);
2313 		q = next_mnt(q, new_ns->root);
2314 	}
2315 	up_write(&namespace_sem);
2316 
2317 	if (rootmnt)
2318 		mntput_long(rootmnt);
2319 	if (pwdmnt)
2320 		mntput_long(pwdmnt);
2321 
2322 	return new_ns;
2323 }
2324 
2325 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2326 		struct fs_struct *new_fs)
2327 {
2328 	struct mnt_namespace *new_ns;
2329 
2330 	BUG_ON(!ns);
2331 	get_mnt_ns(ns);
2332 
2333 	if (!(flags & CLONE_NEWNS))
2334 		return ns;
2335 
2336 	new_ns = dup_mnt_ns(ns, new_fs);
2337 
2338 	put_mnt_ns(ns);
2339 	return new_ns;
2340 }
2341 
2342 /**
2343  * create_mnt_ns - creates a private namespace and adds a root filesystem
2344  * @mnt: pointer to the new root filesystem mountpoint
2345  */
2346 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2347 {
2348 	struct mnt_namespace *new_ns;
2349 
2350 	new_ns = alloc_mnt_ns();
2351 	if (!IS_ERR(new_ns)) {
2352 		mnt->mnt_ns = new_ns;
2353 		new_ns->root = mnt;
2354 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2355 	}
2356 	return new_ns;
2357 }
2358 EXPORT_SYMBOL(create_mnt_ns);
2359 
2360 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2361 		char __user *, type, unsigned long, flags, void __user *, data)
2362 {
2363 	int ret;
2364 	char *kernel_type;
2365 	char *kernel_dir;
2366 	char *kernel_dev;
2367 	unsigned long data_page;
2368 
2369 	ret = copy_mount_string(type, &kernel_type);
2370 	if (ret < 0)
2371 		goto out_type;
2372 
2373 	kernel_dir = getname(dir_name);
2374 	if (IS_ERR(kernel_dir)) {
2375 		ret = PTR_ERR(kernel_dir);
2376 		goto out_dir;
2377 	}
2378 
2379 	ret = copy_mount_string(dev_name, &kernel_dev);
2380 	if (ret < 0)
2381 		goto out_dev;
2382 
2383 	ret = copy_mount_options(data, &data_page);
2384 	if (ret < 0)
2385 		goto out_data;
2386 
2387 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2388 		(void *) data_page);
2389 
2390 	free_page(data_page);
2391 out_data:
2392 	kfree(kernel_dev);
2393 out_dev:
2394 	putname(kernel_dir);
2395 out_dir:
2396 	kfree(kernel_type);
2397 out_type:
2398 	return ret;
2399 }
2400 
2401 /*
2402  * pivot_root Semantics:
2403  * Moves the root file system of the current process to the directory put_old,
2404  * makes new_root as the new root file system of the current process, and sets
2405  * root/cwd of all processes which had them on the current root to new_root.
2406  *
2407  * Restrictions:
2408  * The new_root and put_old must be directories, and  must not be on the
2409  * same file  system as the current process root. The put_old  must  be
2410  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2411  * pointed to by put_old must yield the same directory as new_root. No other
2412  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2413  *
2414  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2415  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2416  * in this situation.
2417  *
2418  * Notes:
2419  *  - we don't move root/cwd if they are not at the root (reason: if something
2420  *    cared enough to change them, it's probably wrong to force them elsewhere)
2421  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2422  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2423  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2424  *    first.
2425  */
2426 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2427 		const char __user *, put_old)
2428 {
2429 	struct vfsmount *tmp;
2430 	struct path new, old, parent_path, root_parent, root;
2431 	int error;
2432 
2433 	if (!capable(CAP_SYS_ADMIN))
2434 		return -EPERM;
2435 
2436 	error = user_path_dir(new_root, &new);
2437 	if (error)
2438 		goto out0;
2439 	error = -EINVAL;
2440 	if (!check_mnt(new.mnt))
2441 		goto out1;
2442 
2443 	error = user_path_dir(put_old, &old);
2444 	if (error)
2445 		goto out1;
2446 
2447 	error = security_sb_pivotroot(&old, &new);
2448 	if (error) {
2449 		path_put(&old);
2450 		goto out1;
2451 	}
2452 
2453 	get_fs_root(current->fs, &root);
2454 	down_write(&namespace_sem);
2455 	mutex_lock(&old.dentry->d_inode->i_mutex);
2456 	error = -EINVAL;
2457 	if (IS_MNT_SHARED(old.mnt) ||
2458 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2459 		IS_MNT_SHARED(root.mnt->mnt_parent))
2460 		goto out2;
2461 	if (!check_mnt(root.mnt))
2462 		goto out2;
2463 	error = -ENOENT;
2464 	if (cant_mount(old.dentry))
2465 		goto out2;
2466 	if (d_unlinked(new.dentry))
2467 		goto out2;
2468 	if (d_unlinked(old.dentry))
2469 		goto out2;
2470 	error = -EBUSY;
2471 	if (new.mnt == root.mnt ||
2472 	    old.mnt == root.mnt)
2473 		goto out2; /* loop, on the same file system  */
2474 	error = -EINVAL;
2475 	if (root.mnt->mnt_root != root.dentry)
2476 		goto out2; /* not a mountpoint */
2477 	if (root.mnt->mnt_parent == root.mnt)
2478 		goto out2; /* not attached */
2479 	if (new.mnt->mnt_root != new.dentry)
2480 		goto out2; /* not a mountpoint */
2481 	if (new.mnt->mnt_parent == new.mnt)
2482 		goto out2; /* not attached */
2483 	/* make sure we can reach put_old from new_root */
2484 	tmp = old.mnt;
2485 	br_write_lock(vfsmount_lock);
2486 	if (tmp != new.mnt) {
2487 		for (;;) {
2488 			if (tmp->mnt_parent == tmp)
2489 				goto out3; /* already mounted on put_old */
2490 			if (tmp->mnt_parent == new.mnt)
2491 				break;
2492 			tmp = tmp->mnt_parent;
2493 		}
2494 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2495 			goto out3;
2496 	} else if (!is_subdir(old.dentry, new.dentry))
2497 		goto out3;
2498 	detach_mnt(new.mnt, &parent_path);
2499 	detach_mnt(root.mnt, &root_parent);
2500 	/* mount old root on put_old */
2501 	attach_mnt(root.mnt, &old);
2502 	/* mount new_root on / */
2503 	attach_mnt(new.mnt, &root_parent);
2504 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2505 	br_write_unlock(vfsmount_lock);
2506 	chroot_fs_refs(&root, &new);
2507 
2508 	error = 0;
2509 	path_put(&root_parent);
2510 	path_put(&parent_path);
2511 out2:
2512 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2513 	up_write(&namespace_sem);
2514 	path_put(&root);
2515 	path_put(&old);
2516 out1:
2517 	path_put(&new);
2518 out0:
2519 	return error;
2520 out3:
2521 	br_write_unlock(vfsmount_lock);
2522 	goto out2;
2523 }
2524 
2525 static void __init init_mount_tree(void)
2526 {
2527 	struct vfsmount *mnt;
2528 	struct mnt_namespace *ns;
2529 	struct path root;
2530 
2531 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2532 	if (IS_ERR(mnt))
2533 		panic("Can't create rootfs");
2534 
2535 	ns = create_mnt_ns(mnt);
2536 	if (IS_ERR(ns))
2537 		panic("Can't allocate initial namespace");
2538 
2539 	init_task.nsproxy->mnt_ns = ns;
2540 	get_mnt_ns(ns);
2541 
2542 	root.mnt = ns->root;
2543 	root.dentry = ns->root->mnt_root;
2544 
2545 	set_fs_pwd(current->fs, &root);
2546 	set_fs_root(current->fs, &root);
2547 }
2548 
2549 void __init mnt_init(void)
2550 {
2551 	unsigned u;
2552 	int err;
2553 
2554 	init_rwsem(&namespace_sem);
2555 
2556 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2557 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2558 
2559 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2560 
2561 	if (!mount_hashtable)
2562 		panic("Failed to allocate mount hash table\n");
2563 
2564 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2565 
2566 	for (u = 0; u < HASH_SIZE; u++)
2567 		INIT_LIST_HEAD(&mount_hashtable[u]);
2568 
2569 	br_lock_init(vfsmount_lock);
2570 
2571 	err = sysfs_init();
2572 	if (err)
2573 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2574 			__func__, err);
2575 	fs_kobj = kobject_create_and_add("fs", NULL);
2576 	if (!fs_kobj)
2577 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2578 	init_rootfs();
2579 	init_mount_tree();
2580 }
2581 
2582 void put_mnt_ns(struct mnt_namespace *ns)
2583 {
2584 	LIST_HEAD(umount_list);
2585 
2586 	if (!atomic_dec_and_test(&ns->count))
2587 		return;
2588 	down_write(&namespace_sem);
2589 	br_write_lock(vfsmount_lock);
2590 	umount_tree(ns->root, 0, &umount_list);
2591 	br_write_unlock(vfsmount_lock);
2592 	up_write(&namespace_sem);
2593 	release_mounts(&umount_list);
2594 	kfree(ns);
2595 }
2596 EXPORT_SYMBOL(put_mnt_ns);
2597