xref: /linux/fs/namespace.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(1ULL << 32);
74 
75 static struct hlist_head *mount_hashtable __ro_after_init;
76 static struct hlist_head *mountpoint_hashtable __ro_after_init;
77 static struct kmem_cache *mnt_cache __ro_after_init;
78 static DECLARE_RWSEM(namespace_sem);
79 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
80 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
81 
82 struct mount_kattr {
83 	unsigned int attr_set;
84 	unsigned int attr_clr;
85 	unsigned int propagation;
86 	unsigned int lookup_flags;
87 	bool recurse;
88 	struct user_namespace *mnt_userns;
89 	struct mnt_idmap *mnt_idmap;
90 };
91 
92 /* /sys/fs */
93 struct kobject *fs_kobj __ro_after_init;
94 EXPORT_SYMBOL_GPL(fs_kobj);
95 
96 /*
97  * vfsmount lock may be taken for read to prevent changes to the
98  * vfsmount hash, ie. during mountpoint lookups or walking back
99  * up the tree.
100  *
101  * It should be taken for write in all cases where the vfsmount
102  * tree or hash is modified or when a vfsmount structure is modified.
103  */
104 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
105 
106 static inline void lock_mount_hash(void)
107 {
108 	write_seqlock(&mount_lock);
109 }
110 
111 static inline void unlock_mount_hash(void)
112 {
113 	write_sequnlock(&mount_lock);
114 }
115 
116 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
117 {
118 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
119 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
120 	tmp = tmp + (tmp >> m_hash_shift);
121 	return &mount_hashtable[tmp & m_hash_mask];
122 }
123 
124 static inline struct hlist_head *mp_hash(struct dentry *dentry)
125 {
126 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
127 	tmp = tmp + (tmp >> mp_hash_shift);
128 	return &mountpoint_hashtable[tmp & mp_hash_mask];
129 }
130 
131 static int mnt_alloc_id(struct mount *mnt)
132 {
133 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
134 
135 	if (res < 0)
136 		return res;
137 	mnt->mnt_id = res;
138 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
139 	return 0;
140 }
141 
142 static void mnt_free_id(struct mount *mnt)
143 {
144 	ida_free(&mnt_id_ida, mnt->mnt_id);
145 }
146 
147 /*
148  * Allocate a new peer group ID
149  */
150 static int mnt_alloc_group_id(struct mount *mnt)
151 {
152 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
153 
154 	if (res < 0)
155 		return res;
156 	mnt->mnt_group_id = res;
157 	return 0;
158 }
159 
160 /*
161  * Release a peer group ID
162  */
163 void mnt_release_group_id(struct mount *mnt)
164 {
165 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
166 	mnt->mnt_group_id = 0;
167 }
168 
169 /*
170  * vfsmount lock must be held for read
171  */
172 static inline void mnt_add_count(struct mount *mnt, int n)
173 {
174 #ifdef CONFIG_SMP
175 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
176 #else
177 	preempt_disable();
178 	mnt->mnt_count += n;
179 	preempt_enable();
180 #endif
181 }
182 
183 /*
184  * vfsmount lock must be held for write
185  */
186 int mnt_get_count(struct mount *mnt)
187 {
188 #ifdef CONFIG_SMP
189 	int count = 0;
190 	int cpu;
191 
192 	for_each_possible_cpu(cpu) {
193 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
194 	}
195 
196 	return count;
197 #else
198 	return mnt->mnt_count;
199 #endif
200 }
201 
202 static struct mount *alloc_vfsmnt(const char *name)
203 {
204 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
205 	if (mnt) {
206 		int err;
207 
208 		err = mnt_alloc_id(mnt);
209 		if (err)
210 			goto out_free_cache;
211 
212 		if (name) {
213 			mnt->mnt_devname = kstrdup_const(name,
214 							 GFP_KERNEL_ACCOUNT);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 
230 		INIT_HLIST_NODE(&mnt->mnt_hash);
231 		INIT_LIST_HEAD(&mnt->mnt_child);
232 		INIT_LIST_HEAD(&mnt->mnt_mounts);
233 		INIT_LIST_HEAD(&mnt->mnt_list);
234 		INIT_LIST_HEAD(&mnt->mnt_expire);
235 		INIT_LIST_HEAD(&mnt->mnt_share);
236 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 		INIT_LIST_HEAD(&mnt->mnt_slave);
238 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 		INIT_LIST_HEAD(&mnt->mnt_umounting);
240 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
241 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
242 	}
243 	return mnt;
244 
245 #ifdef CONFIG_SMP
246 out_free_devname:
247 	kfree_const(mnt->mnt_devname);
248 #endif
249 out_free_id:
250 	mnt_free_id(mnt);
251 out_free_cache:
252 	kmem_cache_free(mnt_cache, mnt);
253 	return NULL;
254 }
255 
256 /*
257  * Most r/o checks on a fs are for operations that take
258  * discrete amounts of time, like a write() or unlink().
259  * We must keep track of when those operations start
260  * (for permission checks) and when they end, so that
261  * we can determine when writes are able to occur to
262  * a filesystem.
263  */
264 /*
265  * __mnt_is_readonly: check whether a mount is read-only
266  * @mnt: the mount to check for its write status
267  *
268  * This shouldn't be used directly ouside of the VFS.
269  * It does not guarantee that the filesystem will stay
270  * r/w, just that it is right *now*.  This can not and
271  * should not be used in place of IS_RDONLY(inode).
272  * mnt_want/drop_write() will _keep_ the filesystem
273  * r/w.
274  */
275 bool __mnt_is_readonly(struct vfsmount *mnt)
276 {
277 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
278 }
279 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
280 
281 static inline void mnt_inc_writers(struct mount *mnt)
282 {
283 #ifdef CONFIG_SMP
284 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
285 #else
286 	mnt->mnt_writers++;
287 #endif
288 }
289 
290 static inline void mnt_dec_writers(struct mount *mnt)
291 {
292 #ifdef CONFIG_SMP
293 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
294 #else
295 	mnt->mnt_writers--;
296 #endif
297 }
298 
299 static unsigned int mnt_get_writers(struct mount *mnt)
300 {
301 #ifdef CONFIG_SMP
302 	unsigned int count = 0;
303 	int cpu;
304 
305 	for_each_possible_cpu(cpu) {
306 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
307 	}
308 
309 	return count;
310 #else
311 	return mnt->mnt_writers;
312 #endif
313 }
314 
315 static int mnt_is_readonly(struct vfsmount *mnt)
316 {
317 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
318 		return 1;
319 	/*
320 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
321 	 * making sure if we don't see s_readonly_remount set yet, we also will
322 	 * not see any superblock / mount flag changes done by remount.
323 	 * It also pairs with the barrier in sb_end_ro_state_change()
324 	 * assuring that if we see s_readonly_remount already cleared, we will
325 	 * see the values of superblock / mount flags updated by remount.
326 	 */
327 	smp_rmb();
328 	return __mnt_is_readonly(mnt);
329 }
330 
331 /*
332  * Most r/o & frozen checks on a fs are for operations that take discrete
333  * amounts of time, like a write() or unlink().  We must keep track of when
334  * those operations start (for permission checks) and when they end, so that we
335  * can determine when writes are able to occur to a filesystem.
336  */
337 /**
338  * mnt_get_write_access - get write access to a mount without freeze protection
339  * @m: the mount on which to take a write
340  *
341  * This tells the low-level filesystem that a write is about to be performed to
342  * it, and makes sure that writes are allowed (mnt it read-write) before
343  * returning success. This operation does not protect against filesystem being
344  * frozen. When the write operation is finished, mnt_put_write_access() must be
345  * called. This is effectively a refcount.
346  */
347 int mnt_get_write_access(struct vfsmount *m)
348 {
349 	struct mount *mnt = real_mount(m);
350 	int ret = 0;
351 
352 	preempt_disable();
353 	mnt_inc_writers(mnt);
354 	/*
355 	 * The store to mnt_inc_writers must be visible before we pass
356 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 	 * incremented count after it has set MNT_WRITE_HOLD.
358 	 */
359 	smp_mb();
360 	might_lock(&mount_lock.lock);
361 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
362 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
363 			cpu_relax();
364 		} else {
365 			/*
366 			 * This prevents priority inversion, if the task
367 			 * setting MNT_WRITE_HOLD got preempted on a remote
368 			 * CPU, and it prevents life lock if the task setting
369 			 * MNT_WRITE_HOLD has a lower priority and is bound to
370 			 * the same CPU as the task that is spinning here.
371 			 */
372 			preempt_enable();
373 			lock_mount_hash();
374 			unlock_mount_hash();
375 			preempt_disable();
376 		}
377 	}
378 	/*
379 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
380 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
381 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
382 	 * mnt_is_readonly() and bail in case we are racing with remount
383 	 * read-only.
384 	 */
385 	smp_rmb();
386 	if (mnt_is_readonly(m)) {
387 		mnt_dec_writers(mnt);
388 		ret = -EROFS;
389 	}
390 	preempt_enable();
391 
392 	return ret;
393 }
394 EXPORT_SYMBOL_GPL(mnt_get_write_access);
395 
396 /**
397  * mnt_want_write - get write access to a mount
398  * @m: the mount on which to take a write
399  *
400  * This tells the low-level filesystem that a write is about to be performed to
401  * it, and makes sure that writes are allowed (mount is read-write, filesystem
402  * is not frozen) before returning success.  When the write operation is
403  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
404  */
405 int mnt_want_write(struct vfsmount *m)
406 {
407 	int ret;
408 
409 	sb_start_write(m->mnt_sb);
410 	ret = mnt_get_write_access(m);
411 	if (ret)
412 		sb_end_write(m->mnt_sb);
413 	return ret;
414 }
415 EXPORT_SYMBOL_GPL(mnt_want_write);
416 
417 /**
418  * mnt_get_write_access_file - get write access to a file's mount
419  * @file: the file who's mount on which to take a write
420  *
421  * This is like mnt_get_write_access, but if @file is already open for write it
422  * skips incrementing mnt_writers (since the open file already has a reference)
423  * and instead only does the check for emergency r/o remounts.  This must be
424  * paired with mnt_put_write_access_file.
425  */
426 int mnt_get_write_access_file(struct file *file)
427 {
428 	if (file->f_mode & FMODE_WRITER) {
429 		/*
430 		 * Superblock may have become readonly while there are still
431 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
432 		 */
433 		if (__mnt_is_readonly(file->f_path.mnt))
434 			return -EROFS;
435 		return 0;
436 	}
437 	return mnt_get_write_access(file->f_path.mnt);
438 }
439 
440 /**
441  * mnt_want_write_file - get write access to a file's mount
442  * @file: the file who's mount on which to take a write
443  *
444  * This is like mnt_want_write, but if the file is already open for writing it
445  * skips incrementing mnt_writers (since the open file already has a reference)
446  * and instead only does the freeze protection and the check for emergency r/o
447  * remounts.  This must be paired with mnt_drop_write_file.
448  */
449 int mnt_want_write_file(struct file *file)
450 {
451 	int ret;
452 
453 	sb_start_write(file_inode(file)->i_sb);
454 	ret = mnt_get_write_access_file(file);
455 	if (ret)
456 		sb_end_write(file_inode(file)->i_sb);
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(mnt_want_write_file);
460 
461 /**
462  * mnt_put_write_access - give up write access to a mount
463  * @mnt: the mount on which to give up write access
464  *
465  * Tells the low-level filesystem that we are done
466  * performing writes to it.  Must be matched with
467  * mnt_get_write_access() call above.
468  */
469 void mnt_put_write_access(struct vfsmount *mnt)
470 {
471 	preempt_disable();
472 	mnt_dec_writers(real_mount(mnt));
473 	preempt_enable();
474 }
475 EXPORT_SYMBOL_GPL(mnt_put_write_access);
476 
477 /**
478  * mnt_drop_write - give up write access to a mount
479  * @mnt: the mount on which to give up write access
480  *
481  * Tells the low-level filesystem that we are done performing writes to it and
482  * also allows filesystem to be frozen again.  Must be matched with
483  * mnt_want_write() call above.
484  */
485 void mnt_drop_write(struct vfsmount *mnt)
486 {
487 	mnt_put_write_access(mnt);
488 	sb_end_write(mnt->mnt_sb);
489 }
490 EXPORT_SYMBOL_GPL(mnt_drop_write);
491 
492 void mnt_put_write_access_file(struct file *file)
493 {
494 	if (!(file->f_mode & FMODE_WRITER))
495 		mnt_put_write_access(file->f_path.mnt);
496 }
497 
498 void mnt_drop_write_file(struct file *file)
499 {
500 	mnt_put_write_access_file(file);
501 	sb_end_write(file_inode(file)->i_sb);
502 }
503 EXPORT_SYMBOL(mnt_drop_write_file);
504 
505 /**
506  * mnt_hold_writers - prevent write access to the given mount
507  * @mnt: mnt to prevent write access to
508  *
509  * Prevents write access to @mnt if there are no active writers for @mnt.
510  * This function needs to be called and return successfully before changing
511  * properties of @mnt that need to remain stable for callers with write access
512  * to @mnt.
513  *
514  * After this functions has been called successfully callers must pair it with
515  * a call to mnt_unhold_writers() in order to stop preventing write access to
516  * @mnt.
517  *
518  * Context: This function expects lock_mount_hash() to be held serializing
519  *          setting MNT_WRITE_HOLD.
520  * Return: On success 0 is returned.
521  *	   On error, -EBUSY is returned.
522  */
523 static inline int mnt_hold_writers(struct mount *mnt)
524 {
525 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 	/*
527 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
528 	 * should be visible before we do.
529 	 */
530 	smp_mb();
531 
532 	/*
533 	 * With writers on hold, if this value is zero, then there are
534 	 * definitely no active writers (although held writers may subsequently
535 	 * increment the count, they'll have to wait, and decrement it after
536 	 * seeing MNT_READONLY).
537 	 *
538 	 * It is OK to have counter incremented on one CPU and decremented on
539 	 * another: the sum will add up correctly. The danger would be when we
540 	 * sum up each counter, if we read a counter before it is incremented,
541 	 * but then read another CPU's count which it has been subsequently
542 	 * decremented from -- we would see more decrements than we should.
543 	 * MNT_WRITE_HOLD protects against this scenario, because
544 	 * mnt_want_write first increments count, then smp_mb, then spins on
545 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
546 	 * we're counting up here.
547 	 */
548 	if (mnt_get_writers(mnt) > 0)
549 		return -EBUSY;
550 
551 	return 0;
552 }
553 
554 /**
555  * mnt_unhold_writers - stop preventing write access to the given mount
556  * @mnt: mnt to stop preventing write access to
557  *
558  * Stop preventing write access to @mnt allowing callers to gain write access
559  * to @mnt again.
560  *
561  * This function can only be called after a successful call to
562  * mnt_hold_writers().
563  *
564  * Context: This function expects lock_mount_hash() to be held.
565  */
566 static inline void mnt_unhold_writers(struct mount *mnt)
567 {
568 	/*
569 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
570 	 * that become unheld will see MNT_READONLY.
571 	 */
572 	smp_wmb();
573 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
574 }
575 
576 static int mnt_make_readonly(struct mount *mnt)
577 {
578 	int ret;
579 
580 	ret = mnt_hold_writers(mnt);
581 	if (!ret)
582 		mnt->mnt.mnt_flags |= MNT_READONLY;
583 	mnt_unhold_writers(mnt);
584 	return ret;
585 }
586 
587 int sb_prepare_remount_readonly(struct super_block *sb)
588 {
589 	struct mount *mnt;
590 	int err = 0;
591 
592 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
593 	if (atomic_long_read(&sb->s_remove_count))
594 		return -EBUSY;
595 
596 	lock_mount_hash();
597 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
598 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
599 			err = mnt_hold_writers(mnt);
600 			if (err)
601 				break;
602 		}
603 	}
604 	if (!err && atomic_long_read(&sb->s_remove_count))
605 		err = -EBUSY;
606 
607 	if (!err)
608 		sb_start_ro_state_change(sb);
609 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
610 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
611 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
612 	}
613 	unlock_mount_hash();
614 
615 	return err;
616 }
617 
618 static void free_vfsmnt(struct mount *mnt)
619 {
620 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
621 	kfree_const(mnt->mnt_devname);
622 #ifdef CONFIG_SMP
623 	free_percpu(mnt->mnt_pcp);
624 #endif
625 	kmem_cache_free(mnt_cache, mnt);
626 }
627 
628 static void delayed_free_vfsmnt(struct rcu_head *head)
629 {
630 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
631 }
632 
633 /* call under rcu_read_lock */
634 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
635 {
636 	struct mount *mnt;
637 	if (read_seqretry(&mount_lock, seq))
638 		return 1;
639 	if (bastard == NULL)
640 		return 0;
641 	mnt = real_mount(bastard);
642 	mnt_add_count(mnt, 1);
643 	smp_mb();			// see mntput_no_expire()
644 	if (likely(!read_seqretry(&mount_lock, seq)))
645 		return 0;
646 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
647 		mnt_add_count(mnt, -1);
648 		return 1;
649 	}
650 	lock_mount_hash();
651 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
652 		mnt_add_count(mnt, -1);
653 		unlock_mount_hash();
654 		return 1;
655 	}
656 	unlock_mount_hash();
657 	/* caller will mntput() */
658 	return -1;
659 }
660 
661 /* call under rcu_read_lock */
662 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
663 {
664 	int res = __legitimize_mnt(bastard, seq);
665 	if (likely(!res))
666 		return true;
667 	if (unlikely(res < 0)) {
668 		rcu_read_unlock();
669 		mntput(bastard);
670 		rcu_read_lock();
671 	}
672 	return false;
673 }
674 
675 /**
676  * __lookup_mnt - find first child mount
677  * @mnt:	parent mount
678  * @dentry:	mountpoint
679  *
680  * If @mnt has a child mount @c mounted @dentry find and return it.
681  *
682  * Note that the child mount @c need not be unique. There are cases
683  * where shadow mounts are created. For example, during mount
684  * propagation when a source mount @mnt whose root got overmounted by a
685  * mount @o after path lookup but before @namespace_sem could be
686  * acquired gets copied and propagated. So @mnt gets copied including
687  * @o. When @mnt is propagated to a destination mount @d that already
688  * has another mount @n mounted at the same mountpoint then the source
689  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
690  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
691  * on @dentry.
692  *
693  * Return: The first child of @mnt mounted @dentry or NULL.
694  */
695 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
696 {
697 	struct hlist_head *head = m_hash(mnt, dentry);
698 	struct mount *p;
699 
700 	hlist_for_each_entry_rcu(p, head, mnt_hash)
701 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
702 			return p;
703 	return NULL;
704 }
705 
706 /*
707  * lookup_mnt - Return the first child mount mounted at path
708  *
709  * "First" means first mounted chronologically.  If you create the
710  * following mounts:
711  *
712  * mount /dev/sda1 /mnt
713  * mount /dev/sda2 /mnt
714  * mount /dev/sda3 /mnt
715  *
716  * Then lookup_mnt() on the base /mnt dentry in the root mount will
717  * return successively the root dentry and vfsmount of /dev/sda1, then
718  * /dev/sda2, then /dev/sda3, then NULL.
719  *
720  * lookup_mnt takes a reference to the found vfsmount.
721  */
722 struct vfsmount *lookup_mnt(const struct path *path)
723 {
724 	struct mount *child_mnt;
725 	struct vfsmount *m;
726 	unsigned seq;
727 
728 	rcu_read_lock();
729 	do {
730 		seq = read_seqbegin(&mount_lock);
731 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
732 		m = child_mnt ? &child_mnt->mnt : NULL;
733 	} while (!legitimize_mnt(m, seq));
734 	rcu_read_unlock();
735 	return m;
736 }
737 
738 /*
739  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
740  *                         current mount namespace.
741  *
742  * The common case is dentries are not mountpoints at all and that
743  * test is handled inline.  For the slow case when we are actually
744  * dealing with a mountpoint of some kind, walk through all of the
745  * mounts in the current mount namespace and test to see if the dentry
746  * is a mountpoint.
747  *
748  * The mount_hashtable is not usable in the context because we
749  * need to identify all mounts that may be in the current mount
750  * namespace not just a mount that happens to have some specified
751  * parent mount.
752  */
753 bool __is_local_mountpoint(struct dentry *dentry)
754 {
755 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
756 	struct mount *mnt, *n;
757 	bool is_covered = false;
758 
759 	down_read(&namespace_sem);
760 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
761 		is_covered = (mnt->mnt_mountpoint == dentry);
762 		if (is_covered)
763 			break;
764 	}
765 	up_read(&namespace_sem);
766 
767 	return is_covered;
768 }
769 
770 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
771 {
772 	struct hlist_head *chain = mp_hash(dentry);
773 	struct mountpoint *mp;
774 
775 	hlist_for_each_entry(mp, chain, m_hash) {
776 		if (mp->m_dentry == dentry) {
777 			mp->m_count++;
778 			return mp;
779 		}
780 	}
781 	return NULL;
782 }
783 
784 static struct mountpoint *get_mountpoint(struct dentry *dentry)
785 {
786 	struct mountpoint *mp, *new = NULL;
787 	int ret;
788 
789 	if (d_mountpoint(dentry)) {
790 		/* might be worth a WARN_ON() */
791 		if (d_unlinked(dentry))
792 			return ERR_PTR(-ENOENT);
793 mountpoint:
794 		read_seqlock_excl(&mount_lock);
795 		mp = lookup_mountpoint(dentry);
796 		read_sequnlock_excl(&mount_lock);
797 		if (mp)
798 			goto done;
799 	}
800 
801 	if (!new)
802 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
803 	if (!new)
804 		return ERR_PTR(-ENOMEM);
805 
806 
807 	/* Exactly one processes may set d_mounted */
808 	ret = d_set_mounted(dentry);
809 
810 	/* Someone else set d_mounted? */
811 	if (ret == -EBUSY)
812 		goto mountpoint;
813 
814 	/* The dentry is not available as a mountpoint? */
815 	mp = ERR_PTR(ret);
816 	if (ret)
817 		goto done;
818 
819 	/* Add the new mountpoint to the hash table */
820 	read_seqlock_excl(&mount_lock);
821 	new->m_dentry = dget(dentry);
822 	new->m_count = 1;
823 	hlist_add_head(&new->m_hash, mp_hash(dentry));
824 	INIT_HLIST_HEAD(&new->m_list);
825 	read_sequnlock_excl(&mount_lock);
826 
827 	mp = new;
828 	new = NULL;
829 done:
830 	kfree(new);
831 	return mp;
832 }
833 
834 /*
835  * vfsmount lock must be held.  Additionally, the caller is responsible
836  * for serializing calls for given disposal list.
837  */
838 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
839 {
840 	if (!--mp->m_count) {
841 		struct dentry *dentry = mp->m_dentry;
842 		BUG_ON(!hlist_empty(&mp->m_list));
843 		spin_lock(&dentry->d_lock);
844 		dentry->d_flags &= ~DCACHE_MOUNTED;
845 		spin_unlock(&dentry->d_lock);
846 		dput_to_list(dentry, list);
847 		hlist_del(&mp->m_hash);
848 		kfree(mp);
849 	}
850 }
851 
852 /* called with namespace_lock and vfsmount lock */
853 static void put_mountpoint(struct mountpoint *mp)
854 {
855 	__put_mountpoint(mp, &ex_mountpoints);
856 }
857 
858 static inline int check_mnt(struct mount *mnt)
859 {
860 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
861 }
862 
863 /*
864  * vfsmount lock must be held for write
865  */
866 static void touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 	if (ns) {
869 		ns->event = ++event;
870 		wake_up_interruptible(&ns->poll);
871 	}
872 }
873 
874 /*
875  * vfsmount lock must be held for write
876  */
877 static void __touch_mnt_namespace(struct mnt_namespace *ns)
878 {
879 	if (ns && ns->event != event) {
880 		ns->event = event;
881 		wake_up_interruptible(&ns->poll);
882 	}
883 }
884 
885 /*
886  * vfsmount lock must be held for write
887  */
888 static struct mountpoint *unhash_mnt(struct mount *mnt)
889 {
890 	struct mountpoint *mp;
891 	mnt->mnt_parent = mnt;
892 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
893 	list_del_init(&mnt->mnt_child);
894 	hlist_del_init_rcu(&mnt->mnt_hash);
895 	hlist_del_init(&mnt->mnt_mp_list);
896 	mp = mnt->mnt_mp;
897 	mnt->mnt_mp = NULL;
898 	return mp;
899 }
900 
901 /*
902  * vfsmount lock must be held for write
903  */
904 static void umount_mnt(struct mount *mnt)
905 {
906 	put_mountpoint(unhash_mnt(mnt));
907 }
908 
909 /*
910  * vfsmount lock must be held for write
911  */
912 void mnt_set_mountpoint(struct mount *mnt,
913 			struct mountpoint *mp,
914 			struct mount *child_mnt)
915 {
916 	mp->m_count++;
917 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
918 	child_mnt->mnt_mountpoint = mp->m_dentry;
919 	child_mnt->mnt_parent = mnt;
920 	child_mnt->mnt_mp = mp;
921 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
922 }
923 
924 /**
925  * mnt_set_mountpoint_beneath - mount a mount beneath another one
926  *
927  * @new_parent: the source mount
928  * @top_mnt:    the mount beneath which @new_parent is mounted
929  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
930  *
931  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
932  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
933  * @new_mp. And mount @new_parent on the old parent and old
934  * mountpoint of @top_mnt.
935  *
936  * Context: This function expects namespace_lock() and lock_mount_hash()
937  *          to have been acquired in that order.
938  */
939 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
940 				       struct mount *top_mnt,
941 				       struct mountpoint *new_mp)
942 {
943 	struct mount *old_top_parent = top_mnt->mnt_parent;
944 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
945 
946 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
947 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
948 }
949 
950 
951 static void __attach_mnt(struct mount *mnt, struct mount *parent)
952 {
953 	hlist_add_head_rcu(&mnt->mnt_hash,
954 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
955 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
956 }
957 
958 /**
959  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
960  *              list of child mounts
961  * @parent:  the parent
962  * @mnt:     the new mount
963  * @mp:      the new mountpoint
964  * @beneath: whether to mount @mnt beneath or on top of @parent
965  *
966  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
967  * to @parent's child mount list and to @mount_hashtable.
968  *
969  * If @beneath is true, remove @mnt from its current parent and
970  * mountpoint and mount it on @mp on @parent, and mount @parent on the
971  * old parent and old mountpoint of @mnt. Finally, attach @parent to
972  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
973  *
974  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
975  * to the correct parent.
976  *
977  * Context: This function expects namespace_lock() and lock_mount_hash()
978  *          to have been acquired in that order.
979  */
980 static void attach_mnt(struct mount *mnt, struct mount *parent,
981 		       struct mountpoint *mp, bool beneath)
982 {
983 	if (beneath)
984 		mnt_set_mountpoint_beneath(mnt, parent, mp);
985 	else
986 		mnt_set_mountpoint(parent, mp, mnt);
987 	/*
988 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
989 	 * beneath @parent then @mnt will need to be attached to
990 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
991 	 * isn't the same mount as @parent.
992 	 */
993 	__attach_mnt(mnt, mnt->mnt_parent);
994 }
995 
996 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
997 {
998 	struct mountpoint *old_mp = mnt->mnt_mp;
999 	struct mount *old_parent = mnt->mnt_parent;
1000 
1001 	list_del_init(&mnt->mnt_child);
1002 	hlist_del_init(&mnt->mnt_mp_list);
1003 	hlist_del_init_rcu(&mnt->mnt_hash);
1004 
1005 	attach_mnt(mnt, parent, mp, false);
1006 
1007 	put_mountpoint(old_mp);
1008 	mnt_add_count(old_parent, -1);
1009 }
1010 
1011 static inline struct mount *node_to_mount(struct rb_node *node)
1012 {
1013 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1014 }
1015 
1016 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1017 {
1018 	struct rb_node **link = &ns->mounts.rb_node;
1019 	struct rb_node *parent = NULL;
1020 
1021 	WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1022 	mnt->mnt_ns = ns;
1023 	while (*link) {
1024 		parent = *link;
1025 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1026 			link = &parent->rb_left;
1027 		else
1028 			link = &parent->rb_right;
1029 	}
1030 	rb_link_node(&mnt->mnt_node, parent, link);
1031 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1032 	mnt->mnt.mnt_flags |= MNT_ONRB;
1033 }
1034 
1035 /*
1036  * vfsmount lock must be held for write
1037  */
1038 static void commit_tree(struct mount *mnt)
1039 {
1040 	struct mount *parent = mnt->mnt_parent;
1041 	struct mount *m;
1042 	LIST_HEAD(head);
1043 	struct mnt_namespace *n = parent->mnt_ns;
1044 
1045 	BUG_ON(parent == mnt);
1046 
1047 	list_add_tail(&head, &mnt->mnt_list);
1048 	while (!list_empty(&head)) {
1049 		m = list_first_entry(&head, typeof(*m), mnt_list);
1050 		list_del(&m->mnt_list);
1051 
1052 		mnt_add_to_ns(n, m);
1053 	}
1054 	n->nr_mounts += n->pending_mounts;
1055 	n->pending_mounts = 0;
1056 
1057 	__attach_mnt(mnt, parent);
1058 	touch_mnt_namespace(n);
1059 }
1060 
1061 static struct mount *next_mnt(struct mount *p, struct mount *root)
1062 {
1063 	struct list_head *next = p->mnt_mounts.next;
1064 	if (next == &p->mnt_mounts) {
1065 		while (1) {
1066 			if (p == root)
1067 				return NULL;
1068 			next = p->mnt_child.next;
1069 			if (next != &p->mnt_parent->mnt_mounts)
1070 				break;
1071 			p = p->mnt_parent;
1072 		}
1073 	}
1074 	return list_entry(next, struct mount, mnt_child);
1075 }
1076 
1077 static struct mount *skip_mnt_tree(struct mount *p)
1078 {
1079 	struct list_head *prev = p->mnt_mounts.prev;
1080 	while (prev != &p->mnt_mounts) {
1081 		p = list_entry(prev, struct mount, mnt_child);
1082 		prev = p->mnt_mounts.prev;
1083 	}
1084 	return p;
1085 }
1086 
1087 /**
1088  * vfs_create_mount - Create a mount for a configured superblock
1089  * @fc: The configuration context with the superblock attached
1090  *
1091  * Create a mount to an already configured superblock.  If necessary, the
1092  * caller should invoke vfs_get_tree() before calling this.
1093  *
1094  * Note that this does not attach the mount to anything.
1095  */
1096 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1097 {
1098 	struct mount *mnt;
1099 
1100 	if (!fc->root)
1101 		return ERR_PTR(-EINVAL);
1102 
1103 	mnt = alloc_vfsmnt(fc->source ?: "none");
1104 	if (!mnt)
1105 		return ERR_PTR(-ENOMEM);
1106 
1107 	if (fc->sb_flags & SB_KERNMOUNT)
1108 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1109 
1110 	atomic_inc(&fc->root->d_sb->s_active);
1111 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1112 	mnt->mnt.mnt_root	= dget(fc->root);
1113 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1114 	mnt->mnt_parent		= mnt;
1115 
1116 	lock_mount_hash();
1117 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1118 	unlock_mount_hash();
1119 	return &mnt->mnt;
1120 }
1121 EXPORT_SYMBOL(vfs_create_mount);
1122 
1123 struct vfsmount *fc_mount(struct fs_context *fc)
1124 {
1125 	int err = vfs_get_tree(fc);
1126 	if (!err) {
1127 		up_write(&fc->root->d_sb->s_umount);
1128 		return vfs_create_mount(fc);
1129 	}
1130 	return ERR_PTR(err);
1131 }
1132 EXPORT_SYMBOL(fc_mount);
1133 
1134 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1135 				int flags, const char *name,
1136 				void *data)
1137 {
1138 	struct fs_context *fc;
1139 	struct vfsmount *mnt;
1140 	int ret = 0;
1141 
1142 	if (!type)
1143 		return ERR_PTR(-EINVAL);
1144 
1145 	fc = fs_context_for_mount(type, flags);
1146 	if (IS_ERR(fc))
1147 		return ERR_CAST(fc);
1148 
1149 	if (name)
1150 		ret = vfs_parse_fs_string(fc, "source",
1151 					  name, strlen(name));
1152 	if (!ret)
1153 		ret = parse_monolithic_mount_data(fc, data);
1154 	if (!ret)
1155 		mnt = fc_mount(fc);
1156 	else
1157 		mnt = ERR_PTR(ret);
1158 
1159 	put_fs_context(fc);
1160 	return mnt;
1161 }
1162 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1163 
1164 struct vfsmount *
1165 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1166 	     const char *name, void *data)
1167 {
1168 	/* Until it is worked out how to pass the user namespace
1169 	 * through from the parent mount to the submount don't support
1170 	 * unprivileged mounts with submounts.
1171 	 */
1172 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1173 		return ERR_PTR(-EPERM);
1174 
1175 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1176 }
1177 EXPORT_SYMBOL_GPL(vfs_submount);
1178 
1179 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1180 					int flag)
1181 {
1182 	struct super_block *sb = old->mnt.mnt_sb;
1183 	struct mount *mnt;
1184 	int err;
1185 
1186 	mnt = alloc_vfsmnt(old->mnt_devname);
1187 	if (!mnt)
1188 		return ERR_PTR(-ENOMEM);
1189 
1190 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1191 		mnt->mnt_group_id = 0; /* not a peer of original */
1192 	else
1193 		mnt->mnt_group_id = old->mnt_group_id;
1194 
1195 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1196 		err = mnt_alloc_group_id(mnt);
1197 		if (err)
1198 			goto out_free;
1199 	}
1200 
1201 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1202 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1203 
1204 	atomic_inc(&sb->s_active);
1205 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1206 
1207 	mnt->mnt.mnt_sb = sb;
1208 	mnt->mnt.mnt_root = dget(root);
1209 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1210 	mnt->mnt_parent = mnt;
1211 	lock_mount_hash();
1212 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1213 	unlock_mount_hash();
1214 
1215 	if ((flag & CL_SLAVE) ||
1216 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1217 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1218 		mnt->mnt_master = old;
1219 		CLEAR_MNT_SHARED(mnt);
1220 	} else if (!(flag & CL_PRIVATE)) {
1221 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1222 			list_add(&mnt->mnt_share, &old->mnt_share);
1223 		if (IS_MNT_SLAVE(old))
1224 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1225 		mnt->mnt_master = old->mnt_master;
1226 	} else {
1227 		CLEAR_MNT_SHARED(mnt);
1228 	}
1229 	if (flag & CL_MAKE_SHARED)
1230 		set_mnt_shared(mnt);
1231 
1232 	/* stick the duplicate mount on the same expiry list
1233 	 * as the original if that was on one */
1234 	if (flag & CL_EXPIRE) {
1235 		if (!list_empty(&old->mnt_expire))
1236 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1237 	}
1238 
1239 	return mnt;
1240 
1241  out_free:
1242 	mnt_free_id(mnt);
1243 	free_vfsmnt(mnt);
1244 	return ERR_PTR(err);
1245 }
1246 
1247 static void cleanup_mnt(struct mount *mnt)
1248 {
1249 	struct hlist_node *p;
1250 	struct mount *m;
1251 	/*
1252 	 * The warning here probably indicates that somebody messed
1253 	 * up a mnt_want/drop_write() pair.  If this happens, the
1254 	 * filesystem was probably unable to make r/w->r/o transitions.
1255 	 * The locking used to deal with mnt_count decrement provides barriers,
1256 	 * so mnt_get_writers() below is safe.
1257 	 */
1258 	WARN_ON(mnt_get_writers(mnt));
1259 	if (unlikely(mnt->mnt_pins.first))
1260 		mnt_pin_kill(mnt);
1261 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1262 		hlist_del(&m->mnt_umount);
1263 		mntput(&m->mnt);
1264 	}
1265 	fsnotify_vfsmount_delete(&mnt->mnt);
1266 	dput(mnt->mnt.mnt_root);
1267 	deactivate_super(mnt->mnt.mnt_sb);
1268 	mnt_free_id(mnt);
1269 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1270 }
1271 
1272 static void __cleanup_mnt(struct rcu_head *head)
1273 {
1274 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1275 }
1276 
1277 static LLIST_HEAD(delayed_mntput_list);
1278 static void delayed_mntput(struct work_struct *unused)
1279 {
1280 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1281 	struct mount *m, *t;
1282 
1283 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1284 		cleanup_mnt(m);
1285 }
1286 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1287 
1288 static void mntput_no_expire(struct mount *mnt)
1289 {
1290 	LIST_HEAD(list);
1291 	int count;
1292 
1293 	rcu_read_lock();
1294 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1295 		/*
1296 		 * Since we don't do lock_mount_hash() here,
1297 		 * ->mnt_ns can change under us.  However, if it's
1298 		 * non-NULL, then there's a reference that won't
1299 		 * be dropped until after an RCU delay done after
1300 		 * turning ->mnt_ns NULL.  So if we observe it
1301 		 * non-NULL under rcu_read_lock(), the reference
1302 		 * we are dropping is not the final one.
1303 		 */
1304 		mnt_add_count(mnt, -1);
1305 		rcu_read_unlock();
1306 		return;
1307 	}
1308 	lock_mount_hash();
1309 	/*
1310 	 * make sure that if __legitimize_mnt() has not seen us grab
1311 	 * mount_lock, we'll see their refcount increment here.
1312 	 */
1313 	smp_mb();
1314 	mnt_add_count(mnt, -1);
1315 	count = mnt_get_count(mnt);
1316 	if (count != 0) {
1317 		WARN_ON(count < 0);
1318 		rcu_read_unlock();
1319 		unlock_mount_hash();
1320 		return;
1321 	}
1322 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1323 		rcu_read_unlock();
1324 		unlock_mount_hash();
1325 		return;
1326 	}
1327 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1328 	rcu_read_unlock();
1329 
1330 	list_del(&mnt->mnt_instance);
1331 
1332 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1333 		struct mount *p, *tmp;
1334 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1335 			__put_mountpoint(unhash_mnt(p), &list);
1336 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1337 		}
1338 	}
1339 	unlock_mount_hash();
1340 	shrink_dentry_list(&list);
1341 
1342 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1343 		struct task_struct *task = current;
1344 		if (likely(!(task->flags & PF_KTHREAD))) {
1345 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1346 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1347 				return;
1348 		}
1349 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1350 			schedule_delayed_work(&delayed_mntput_work, 1);
1351 		return;
1352 	}
1353 	cleanup_mnt(mnt);
1354 }
1355 
1356 void mntput(struct vfsmount *mnt)
1357 {
1358 	if (mnt) {
1359 		struct mount *m = real_mount(mnt);
1360 		/* avoid cacheline pingpong */
1361 		if (unlikely(m->mnt_expiry_mark))
1362 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1363 		mntput_no_expire(m);
1364 	}
1365 }
1366 EXPORT_SYMBOL(mntput);
1367 
1368 struct vfsmount *mntget(struct vfsmount *mnt)
1369 {
1370 	if (mnt)
1371 		mnt_add_count(real_mount(mnt), 1);
1372 	return mnt;
1373 }
1374 EXPORT_SYMBOL(mntget);
1375 
1376 /*
1377  * Make a mount point inaccessible to new lookups.
1378  * Because there may still be current users, the caller MUST WAIT
1379  * for an RCU grace period before destroying the mount point.
1380  */
1381 void mnt_make_shortterm(struct vfsmount *mnt)
1382 {
1383 	if (mnt)
1384 		real_mount(mnt)->mnt_ns = NULL;
1385 }
1386 
1387 /**
1388  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1389  * @path: path to check
1390  *
1391  *  d_mountpoint() can only be used reliably to establish if a dentry is
1392  *  not mounted in any namespace and that common case is handled inline.
1393  *  d_mountpoint() isn't aware of the possibility there may be multiple
1394  *  mounts using a given dentry in a different namespace. This function
1395  *  checks if the passed in path is a mountpoint rather than the dentry
1396  *  alone.
1397  */
1398 bool path_is_mountpoint(const struct path *path)
1399 {
1400 	unsigned seq;
1401 	bool res;
1402 
1403 	if (!d_mountpoint(path->dentry))
1404 		return false;
1405 
1406 	rcu_read_lock();
1407 	do {
1408 		seq = read_seqbegin(&mount_lock);
1409 		res = __path_is_mountpoint(path);
1410 	} while (read_seqretry(&mount_lock, seq));
1411 	rcu_read_unlock();
1412 
1413 	return res;
1414 }
1415 EXPORT_SYMBOL(path_is_mountpoint);
1416 
1417 struct vfsmount *mnt_clone_internal(const struct path *path)
1418 {
1419 	struct mount *p;
1420 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1421 	if (IS_ERR(p))
1422 		return ERR_CAST(p);
1423 	p->mnt.mnt_flags |= MNT_INTERNAL;
1424 	return &p->mnt;
1425 }
1426 
1427 /*
1428  * Returns the mount which either has the specified mnt_id, or has the next
1429  * smallest id afer the specified one.
1430  */
1431 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1432 {
1433 	struct rb_node *node = ns->mounts.rb_node;
1434 	struct mount *ret = NULL;
1435 
1436 	while (node) {
1437 		struct mount *m = node_to_mount(node);
1438 
1439 		if (mnt_id <= m->mnt_id_unique) {
1440 			ret = node_to_mount(node);
1441 			if (mnt_id == m->mnt_id_unique)
1442 				break;
1443 			node = node->rb_left;
1444 		} else {
1445 			node = node->rb_right;
1446 		}
1447 	}
1448 	return ret;
1449 }
1450 
1451 #ifdef CONFIG_PROC_FS
1452 
1453 /* iterator; we want it to have access to namespace_sem, thus here... */
1454 static void *m_start(struct seq_file *m, loff_t *pos)
1455 {
1456 	struct proc_mounts *p = m->private;
1457 
1458 	down_read(&namespace_sem);
1459 
1460 	return mnt_find_id_at(p->ns, *pos);
1461 }
1462 
1463 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1464 {
1465 	struct mount *next = NULL, *mnt = v;
1466 	struct rb_node *node = rb_next(&mnt->mnt_node);
1467 
1468 	++*pos;
1469 	if (node) {
1470 		next = node_to_mount(node);
1471 		*pos = next->mnt_id_unique;
1472 	}
1473 	return next;
1474 }
1475 
1476 static void m_stop(struct seq_file *m, void *v)
1477 {
1478 	up_read(&namespace_sem);
1479 }
1480 
1481 static int m_show(struct seq_file *m, void *v)
1482 {
1483 	struct proc_mounts *p = m->private;
1484 	struct mount *r = v;
1485 	return p->show(m, &r->mnt);
1486 }
1487 
1488 const struct seq_operations mounts_op = {
1489 	.start	= m_start,
1490 	.next	= m_next,
1491 	.stop	= m_stop,
1492 	.show	= m_show,
1493 };
1494 
1495 #endif  /* CONFIG_PROC_FS */
1496 
1497 /**
1498  * may_umount_tree - check if a mount tree is busy
1499  * @m: root of mount tree
1500  *
1501  * This is called to check if a tree of mounts has any
1502  * open files, pwds, chroots or sub mounts that are
1503  * busy.
1504  */
1505 int may_umount_tree(struct vfsmount *m)
1506 {
1507 	struct mount *mnt = real_mount(m);
1508 	int actual_refs = 0;
1509 	int minimum_refs = 0;
1510 	struct mount *p;
1511 	BUG_ON(!m);
1512 
1513 	/* write lock needed for mnt_get_count */
1514 	lock_mount_hash();
1515 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1516 		actual_refs += mnt_get_count(p);
1517 		minimum_refs += 2;
1518 	}
1519 	unlock_mount_hash();
1520 
1521 	if (actual_refs > minimum_refs)
1522 		return 0;
1523 
1524 	return 1;
1525 }
1526 
1527 EXPORT_SYMBOL(may_umount_tree);
1528 
1529 /**
1530  * may_umount - check if a mount point is busy
1531  * @mnt: root of mount
1532  *
1533  * This is called to check if a mount point has any
1534  * open files, pwds, chroots or sub mounts. If the
1535  * mount has sub mounts this will return busy
1536  * regardless of whether the sub mounts are busy.
1537  *
1538  * Doesn't take quota and stuff into account. IOW, in some cases it will
1539  * give false negatives. The main reason why it's here is that we need
1540  * a non-destructive way to look for easily umountable filesystems.
1541  */
1542 int may_umount(struct vfsmount *mnt)
1543 {
1544 	int ret = 1;
1545 	down_read(&namespace_sem);
1546 	lock_mount_hash();
1547 	if (propagate_mount_busy(real_mount(mnt), 2))
1548 		ret = 0;
1549 	unlock_mount_hash();
1550 	up_read(&namespace_sem);
1551 	return ret;
1552 }
1553 
1554 EXPORT_SYMBOL(may_umount);
1555 
1556 static void namespace_unlock(void)
1557 {
1558 	struct hlist_head head;
1559 	struct hlist_node *p;
1560 	struct mount *m;
1561 	LIST_HEAD(list);
1562 
1563 	hlist_move_list(&unmounted, &head);
1564 	list_splice_init(&ex_mountpoints, &list);
1565 
1566 	up_write(&namespace_sem);
1567 
1568 	shrink_dentry_list(&list);
1569 
1570 	if (likely(hlist_empty(&head)))
1571 		return;
1572 
1573 	synchronize_rcu_expedited();
1574 
1575 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1576 		hlist_del(&m->mnt_umount);
1577 		mntput(&m->mnt);
1578 	}
1579 }
1580 
1581 static inline void namespace_lock(void)
1582 {
1583 	down_write(&namespace_sem);
1584 }
1585 
1586 enum umount_tree_flags {
1587 	UMOUNT_SYNC = 1,
1588 	UMOUNT_PROPAGATE = 2,
1589 	UMOUNT_CONNECTED = 4,
1590 };
1591 
1592 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1593 {
1594 	/* Leaving mounts connected is only valid for lazy umounts */
1595 	if (how & UMOUNT_SYNC)
1596 		return true;
1597 
1598 	/* A mount without a parent has nothing to be connected to */
1599 	if (!mnt_has_parent(mnt))
1600 		return true;
1601 
1602 	/* Because the reference counting rules change when mounts are
1603 	 * unmounted and connected, umounted mounts may not be
1604 	 * connected to mounted mounts.
1605 	 */
1606 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1607 		return true;
1608 
1609 	/* Has it been requested that the mount remain connected? */
1610 	if (how & UMOUNT_CONNECTED)
1611 		return false;
1612 
1613 	/* Is the mount locked such that it needs to remain connected? */
1614 	if (IS_MNT_LOCKED(mnt))
1615 		return false;
1616 
1617 	/* By default disconnect the mount */
1618 	return true;
1619 }
1620 
1621 /*
1622  * mount_lock must be held
1623  * namespace_sem must be held for write
1624  */
1625 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1626 {
1627 	LIST_HEAD(tmp_list);
1628 	struct mount *p;
1629 
1630 	if (how & UMOUNT_PROPAGATE)
1631 		propagate_mount_unlock(mnt);
1632 
1633 	/* Gather the mounts to umount */
1634 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1635 		p->mnt.mnt_flags |= MNT_UMOUNT;
1636 		if (p->mnt.mnt_flags & MNT_ONRB)
1637 			move_from_ns(p, &tmp_list);
1638 		else
1639 			list_move(&p->mnt_list, &tmp_list);
1640 	}
1641 
1642 	/* Hide the mounts from mnt_mounts */
1643 	list_for_each_entry(p, &tmp_list, mnt_list) {
1644 		list_del_init(&p->mnt_child);
1645 	}
1646 
1647 	/* Add propogated mounts to the tmp_list */
1648 	if (how & UMOUNT_PROPAGATE)
1649 		propagate_umount(&tmp_list);
1650 
1651 	while (!list_empty(&tmp_list)) {
1652 		struct mnt_namespace *ns;
1653 		bool disconnect;
1654 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1655 		list_del_init(&p->mnt_expire);
1656 		list_del_init(&p->mnt_list);
1657 		ns = p->mnt_ns;
1658 		if (ns) {
1659 			ns->nr_mounts--;
1660 			__touch_mnt_namespace(ns);
1661 		}
1662 		p->mnt_ns = NULL;
1663 		if (how & UMOUNT_SYNC)
1664 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1665 
1666 		disconnect = disconnect_mount(p, how);
1667 		if (mnt_has_parent(p)) {
1668 			mnt_add_count(p->mnt_parent, -1);
1669 			if (!disconnect) {
1670 				/* Don't forget about p */
1671 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1672 			} else {
1673 				umount_mnt(p);
1674 			}
1675 		}
1676 		change_mnt_propagation(p, MS_PRIVATE);
1677 		if (disconnect)
1678 			hlist_add_head(&p->mnt_umount, &unmounted);
1679 	}
1680 }
1681 
1682 static void shrink_submounts(struct mount *mnt);
1683 
1684 static int do_umount_root(struct super_block *sb)
1685 {
1686 	int ret = 0;
1687 
1688 	down_write(&sb->s_umount);
1689 	if (!sb_rdonly(sb)) {
1690 		struct fs_context *fc;
1691 
1692 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1693 						SB_RDONLY);
1694 		if (IS_ERR(fc)) {
1695 			ret = PTR_ERR(fc);
1696 		} else {
1697 			ret = parse_monolithic_mount_data(fc, NULL);
1698 			if (!ret)
1699 				ret = reconfigure_super(fc);
1700 			put_fs_context(fc);
1701 		}
1702 	}
1703 	up_write(&sb->s_umount);
1704 	return ret;
1705 }
1706 
1707 static int do_umount(struct mount *mnt, int flags)
1708 {
1709 	struct super_block *sb = mnt->mnt.mnt_sb;
1710 	int retval;
1711 
1712 	retval = security_sb_umount(&mnt->mnt, flags);
1713 	if (retval)
1714 		return retval;
1715 
1716 	/*
1717 	 * Allow userspace to request a mountpoint be expired rather than
1718 	 * unmounting unconditionally. Unmount only happens if:
1719 	 *  (1) the mark is already set (the mark is cleared by mntput())
1720 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1721 	 */
1722 	if (flags & MNT_EXPIRE) {
1723 		if (&mnt->mnt == current->fs->root.mnt ||
1724 		    flags & (MNT_FORCE | MNT_DETACH))
1725 			return -EINVAL;
1726 
1727 		/*
1728 		 * probably don't strictly need the lock here if we examined
1729 		 * all race cases, but it's a slowpath.
1730 		 */
1731 		lock_mount_hash();
1732 		if (mnt_get_count(mnt) != 2) {
1733 			unlock_mount_hash();
1734 			return -EBUSY;
1735 		}
1736 		unlock_mount_hash();
1737 
1738 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1739 			return -EAGAIN;
1740 	}
1741 
1742 	/*
1743 	 * If we may have to abort operations to get out of this
1744 	 * mount, and they will themselves hold resources we must
1745 	 * allow the fs to do things. In the Unix tradition of
1746 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1747 	 * might fail to complete on the first run through as other tasks
1748 	 * must return, and the like. Thats for the mount program to worry
1749 	 * about for the moment.
1750 	 */
1751 
1752 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1753 		sb->s_op->umount_begin(sb);
1754 	}
1755 
1756 	/*
1757 	 * No sense to grab the lock for this test, but test itself looks
1758 	 * somewhat bogus. Suggestions for better replacement?
1759 	 * Ho-hum... In principle, we might treat that as umount + switch
1760 	 * to rootfs. GC would eventually take care of the old vfsmount.
1761 	 * Actually it makes sense, especially if rootfs would contain a
1762 	 * /reboot - static binary that would close all descriptors and
1763 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1764 	 */
1765 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1766 		/*
1767 		 * Special case for "unmounting" root ...
1768 		 * we just try to remount it readonly.
1769 		 */
1770 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1771 			return -EPERM;
1772 		return do_umount_root(sb);
1773 	}
1774 
1775 	namespace_lock();
1776 	lock_mount_hash();
1777 
1778 	/* Recheck MNT_LOCKED with the locks held */
1779 	retval = -EINVAL;
1780 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1781 		goto out;
1782 
1783 	event++;
1784 	if (flags & MNT_DETACH) {
1785 		if (mnt->mnt.mnt_flags & MNT_ONRB ||
1786 		    !list_empty(&mnt->mnt_list))
1787 			umount_tree(mnt, UMOUNT_PROPAGATE);
1788 		retval = 0;
1789 	} else {
1790 		shrink_submounts(mnt);
1791 		retval = -EBUSY;
1792 		if (!propagate_mount_busy(mnt, 2)) {
1793 			if (mnt->mnt.mnt_flags & MNT_ONRB ||
1794 			    !list_empty(&mnt->mnt_list))
1795 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1796 			retval = 0;
1797 		}
1798 	}
1799 out:
1800 	unlock_mount_hash();
1801 	namespace_unlock();
1802 	return retval;
1803 }
1804 
1805 /*
1806  * __detach_mounts - lazily unmount all mounts on the specified dentry
1807  *
1808  * During unlink, rmdir, and d_drop it is possible to loose the path
1809  * to an existing mountpoint, and wind up leaking the mount.
1810  * detach_mounts allows lazily unmounting those mounts instead of
1811  * leaking them.
1812  *
1813  * The caller may hold dentry->d_inode->i_mutex.
1814  */
1815 void __detach_mounts(struct dentry *dentry)
1816 {
1817 	struct mountpoint *mp;
1818 	struct mount *mnt;
1819 
1820 	namespace_lock();
1821 	lock_mount_hash();
1822 	mp = lookup_mountpoint(dentry);
1823 	if (!mp)
1824 		goto out_unlock;
1825 
1826 	event++;
1827 	while (!hlist_empty(&mp->m_list)) {
1828 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1829 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1830 			umount_mnt(mnt);
1831 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1832 		}
1833 		else umount_tree(mnt, UMOUNT_CONNECTED);
1834 	}
1835 	put_mountpoint(mp);
1836 out_unlock:
1837 	unlock_mount_hash();
1838 	namespace_unlock();
1839 }
1840 
1841 /*
1842  * Is the caller allowed to modify his namespace?
1843  */
1844 bool may_mount(void)
1845 {
1846 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1847 }
1848 
1849 /**
1850  * path_mounted - check whether path is mounted
1851  * @path: path to check
1852  *
1853  * Determine whether @path refers to the root of a mount.
1854  *
1855  * Return: true if @path is the root of a mount, false if not.
1856  */
1857 static inline bool path_mounted(const struct path *path)
1858 {
1859 	return path->mnt->mnt_root == path->dentry;
1860 }
1861 
1862 static void warn_mandlock(void)
1863 {
1864 	pr_warn_once("=======================================================\n"
1865 		     "WARNING: The mand mount option has been deprecated and\n"
1866 		     "         and is ignored by this kernel. Remove the mand\n"
1867 		     "         option from the mount to silence this warning.\n"
1868 		     "=======================================================\n");
1869 }
1870 
1871 static int can_umount(const struct path *path, int flags)
1872 {
1873 	struct mount *mnt = real_mount(path->mnt);
1874 
1875 	if (!may_mount())
1876 		return -EPERM;
1877 	if (!path_mounted(path))
1878 		return -EINVAL;
1879 	if (!check_mnt(mnt))
1880 		return -EINVAL;
1881 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1882 		return -EINVAL;
1883 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1884 		return -EPERM;
1885 	return 0;
1886 }
1887 
1888 // caller is responsible for flags being sane
1889 int path_umount(struct path *path, int flags)
1890 {
1891 	struct mount *mnt = real_mount(path->mnt);
1892 	int ret;
1893 
1894 	ret = can_umount(path, flags);
1895 	if (!ret)
1896 		ret = do_umount(mnt, flags);
1897 
1898 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1899 	dput(path->dentry);
1900 	mntput_no_expire(mnt);
1901 	return ret;
1902 }
1903 
1904 static int ksys_umount(char __user *name, int flags)
1905 {
1906 	int lookup_flags = LOOKUP_MOUNTPOINT;
1907 	struct path path;
1908 	int ret;
1909 
1910 	// basic validity checks done first
1911 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1912 		return -EINVAL;
1913 
1914 	if (!(flags & UMOUNT_NOFOLLOW))
1915 		lookup_flags |= LOOKUP_FOLLOW;
1916 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1917 	if (ret)
1918 		return ret;
1919 	return path_umount(&path, flags);
1920 }
1921 
1922 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1923 {
1924 	return ksys_umount(name, flags);
1925 }
1926 
1927 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1928 
1929 /*
1930  *	The 2.0 compatible umount. No flags.
1931  */
1932 SYSCALL_DEFINE1(oldumount, char __user *, name)
1933 {
1934 	return ksys_umount(name, 0);
1935 }
1936 
1937 #endif
1938 
1939 static bool is_mnt_ns_file(struct dentry *dentry)
1940 {
1941 	/* Is this a proxy for a mount namespace? */
1942 	return dentry->d_op == &ns_dentry_operations &&
1943 	       dentry->d_fsdata == &mntns_operations;
1944 }
1945 
1946 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1947 {
1948 	return container_of(ns, struct mnt_namespace, ns);
1949 }
1950 
1951 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1952 {
1953 	return &mnt->ns;
1954 }
1955 
1956 static bool mnt_ns_loop(struct dentry *dentry)
1957 {
1958 	/* Could bind mounting the mount namespace inode cause a
1959 	 * mount namespace loop?
1960 	 */
1961 	struct mnt_namespace *mnt_ns;
1962 	if (!is_mnt_ns_file(dentry))
1963 		return false;
1964 
1965 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1966 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1967 }
1968 
1969 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1970 					int flag)
1971 {
1972 	struct mount *res, *p, *q, *r, *parent;
1973 
1974 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1975 		return ERR_PTR(-EINVAL);
1976 
1977 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1978 		return ERR_PTR(-EINVAL);
1979 
1980 	res = q = clone_mnt(mnt, dentry, flag);
1981 	if (IS_ERR(q))
1982 		return q;
1983 
1984 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1985 
1986 	p = mnt;
1987 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1988 		struct mount *s;
1989 		if (!is_subdir(r->mnt_mountpoint, dentry))
1990 			continue;
1991 
1992 		for (s = r; s; s = next_mnt(s, r)) {
1993 			if (!(flag & CL_COPY_UNBINDABLE) &&
1994 			    IS_MNT_UNBINDABLE(s)) {
1995 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1996 					/* Both unbindable and locked. */
1997 					q = ERR_PTR(-EPERM);
1998 					goto out;
1999 				} else {
2000 					s = skip_mnt_tree(s);
2001 					continue;
2002 				}
2003 			}
2004 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2005 			    is_mnt_ns_file(s->mnt.mnt_root)) {
2006 				s = skip_mnt_tree(s);
2007 				continue;
2008 			}
2009 			while (p != s->mnt_parent) {
2010 				p = p->mnt_parent;
2011 				q = q->mnt_parent;
2012 			}
2013 			p = s;
2014 			parent = q;
2015 			q = clone_mnt(p, p->mnt.mnt_root, flag);
2016 			if (IS_ERR(q))
2017 				goto out;
2018 			lock_mount_hash();
2019 			list_add_tail(&q->mnt_list, &res->mnt_list);
2020 			attach_mnt(q, parent, p->mnt_mp, false);
2021 			unlock_mount_hash();
2022 		}
2023 	}
2024 	return res;
2025 out:
2026 	if (res) {
2027 		lock_mount_hash();
2028 		umount_tree(res, UMOUNT_SYNC);
2029 		unlock_mount_hash();
2030 	}
2031 	return q;
2032 }
2033 
2034 /* Caller should check returned pointer for errors */
2035 
2036 struct vfsmount *collect_mounts(const struct path *path)
2037 {
2038 	struct mount *tree;
2039 	namespace_lock();
2040 	if (!check_mnt(real_mount(path->mnt)))
2041 		tree = ERR_PTR(-EINVAL);
2042 	else
2043 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2044 				 CL_COPY_ALL | CL_PRIVATE);
2045 	namespace_unlock();
2046 	if (IS_ERR(tree))
2047 		return ERR_CAST(tree);
2048 	return &tree->mnt;
2049 }
2050 
2051 static void free_mnt_ns(struct mnt_namespace *);
2052 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2053 
2054 void dissolve_on_fput(struct vfsmount *mnt)
2055 {
2056 	struct mnt_namespace *ns;
2057 	namespace_lock();
2058 	lock_mount_hash();
2059 	ns = real_mount(mnt)->mnt_ns;
2060 	if (ns) {
2061 		if (is_anon_ns(ns))
2062 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2063 		else
2064 			ns = NULL;
2065 	}
2066 	unlock_mount_hash();
2067 	namespace_unlock();
2068 	if (ns)
2069 		free_mnt_ns(ns);
2070 }
2071 
2072 void drop_collected_mounts(struct vfsmount *mnt)
2073 {
2074 	namespace_lock();
2075 	lock_mount_hash();
2076 	umount_tree(real_mount(mnt), 0);
2077 	unlock_mount_hash();
2078 	namespace_unlock();
2079 }
2080 
2081 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2082 {
2083 	struct mount *child;
2084 
2085 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2086 		if (!is_subdir(child->mnt_mountpoint, dentry))
2087 			continue;
2088 
2089 		if (child->mnt.mnt_flags & MNT_LOCKED)
2090 			return true;
2091 	}
2092 	return false;
2093 }
2094 
2095 /**
2096  * clone_private_mount - create a private clone of a path
2097  * @path: path to clone
2098  *
2099  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2100  * will not be attached anywhere in the namespace and will be private (i.e.
2101  * changes to the originating mount won't be propagated into this).
2102  *
2103  * Release with mntput().
2104  */
2105 struct vfsmount *clone_private_mount(const struct path *path)
2106 {
2107 	struct mount *old_mnt = real_mount(path->mnt);
2108 	struct mount *new_mnt;
2109 
2110 	down_read(&namespace_sem);
2111 	if (IS_MNT_UNBINDABLE(old_mnt))
2112 		goto invalid;
2113 
2114 	if (!check_mnt(old_mnt))
2115 		goto invalid;
2116 
2117 	if (has_locked_children(old_mnt, path->dentry))
2118 		goto invalid;
2119 
2120 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2121 	up_read(&namespace_sem);
2122 
2123 	if (IS_ERR(new_mnt))
2124 		return ERR_CAST(new_mnt);
2125 
2126 	/* Longterm mount to be removed by kern_unmount*() */
2127 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2128 
2129 	return &new_mnt->mnt;
2130 
2131 invalid:
2132 	up_read(&namespace_sem);
2133 	return ERR_PTR(-EINVAL);
2134 }
2135 EXPORT_SYMBOL_GPL(clone_private_mount);
2136 
2137 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2138 		   struct vfsmount *root)
2139 {
2140 	struct mount *mnt;
2141 	int res = f(root, arg);
2142 	if (res)
2143 		return res;
2144 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2145 		res = f(&mnt->mnt, arg);
2146 		if (res)
2147 			return res;
2148 	}
2149 	return 0;
2150 }
2151 
2152 static void lock_mnt_tree(struct mount *mnt)
2153 {
2154 	struct mount *p;
2155 
2156 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2157 		int flags = p->mnt.mnt_flags;
2158 		/* Don't allow unprivileged users to change mount flags */
2159 		flags |= MNT_LOCK_ATIME;
2160 
2161 		if (flags & MNT_READONLY)
2162 			flags |= MNT_LOCK_READONLY;
2163 
2164 		if (flags & MNT_NODEV)
2165 			flags |= MNT_LOCK_NODEV;
2166 
2167 		if (flags & MNT_NOSUID)
2168 			flags |= MNT_LOCK_NOSUID;
2169 
2170 		if (flags & MNT_NOEXEC)
2171 			flags |= MNT_LOCK_NOEXEC;
2172 		/* Don't allow unprivileged users to reveal what is under a mount */
2173 		if (list_empty(&p->mnt_expire))
2174 			flags |= MNT_LOCKED;
2175 		p->mnt.mnt_flags = flags;
2176 	}
2177 }
2178 
2179 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2180 {
2181 	struct mount *p;
2182 
2183 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2184 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2185 			mnt_release_group_id(p);
2186 	}
2187 }
2188 
2189 static int invent_group_ids(struct mount *mnt, bool recurse)
2190 {
2191 	struct mount *p;
2192 
2193 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2194 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2195 			int err = mnt_alloc_group_id(p);
2196 			if (err) {
2197 				cleanup_group_ids(mnt, p);
2198 				return err;
2199 			}
2200 		}
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2207 {
2208 	unsigned int max = READ_ONCE(sysctl_mount_max);
2209 	unsigned int mounts = 0;
2210 	struct mount *p;
2211 
2212 	if (ns->nr_mounts >= max)
2213 		return -ENOSPC;
2214 	max -= ns->nr_mounts;
2215 	if (ns->pending_mounts >= max)
2216 		return -ENOSPC;
2217 	max -= ns->pending_mounts;
2218 
2219 	for (p = mnt; p; p = next_mnt(p, mnt))
2220 		mounts++;
2221 
2222 	if (mounts > max)
2223 		return -ENOSPC;
2224 
2225 	ns->pending_mounts += mounts;
2226 	return 0;
2227 }
2228 
2229 enum mnt_tree_flags_t {
2230 	MNT_TREE_MOVE = BIT(0),
2231 	MNT_TREE_BENEATH = BIT(1),
2232 };
2233 
2234 /**
2235  * attach_recursive_mnt - attach a source mount tree
2236  * @source_mnt: mount tree to be attached
2237  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2238  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2239  * @flags:      modify how @source_mnt is supposed to be attached
2240  *
2241  *  NOTE: in the table below explains the semantics when a source mount
2242  *  of a given type is attached to a destination mount of a given type.
2243  * ---------------------------------------------------------------------------
2244  * |         BIND MOUNT OPERATION                                            |
2245  * |**************************************************************************
2246  * | source-->| shared        |       private  |       slave    | unbindable |
2247  * | dest     |               |                |                |            |
2248  * |   |      |               |                |                |            |
2249  * |   v      |               |                |                |            |
2250  * |**************************************************************************
2251  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2252  * |          |               |                |                |            |
2253  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2254  * ***************************************************************************
2255  * A bind operation clones the source mount and mounts the clone on the
2256  * destination mount.
2257  *
2258  * (++)  the cloned mount is propagated to all the mounts in the propagation
2259  * 	 tree of the destination mount and the cloned mount is added to
2260  * 	 the peer group of the source mount.
2261  * (+)   the cloned mount is created under the destination mount and is marked
2262  *       as shared. The cloned mount is added to the peer group of the source
2263  *       mount.
2264  * (+++) the mount is propagated to all the mounts in the propagation tree
2265  *       of the destination mount and the cloned mount is made slave
2266  *       of the same master as that of the source mount. The cloned mount
2267  *       is marked as 'shared and slave'.
2268  * (*)   the cloned mount is made a slave of the same master as that of the
2269  * 	 source mount.
2270  *
2271  * ---------------------------------------------------------------------------
2272  * |         		MOVE MOUNT OPERATION                                 |
2273  * |**************************************************************************
2274  * | source-->| shared        |       private  |       slave    | unbindable |
2275  * | dest     |               |                |                |            |
2276  * |   |      |               |                |                |            |
2277  * |   v      |               |                |                |            |
2278  * |**************************************************************************
2279  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2280  * |          |               |                |                |            |
2281  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2282  * ***************************************************************************
2283  *
2284  * (+)  the mount is moved to the destination. And is then propagated to
2285  * 	all the mounts in the propagation tree of the destination mount.
2286  * (+*)  the mount is moved to the destination.
2287  * (+++)  the mount is moved to the destination and is then propagated to
2288  * 	all the mounts belonging to the destination mount's propagation tree.
2289  * 	the mount is marked as 'shared and slave'.
2290  * (*)	the mount continues to be a slave at the new location.
2291  *
2292  * if the source mount is a tree, the operations explained above is
2293  * applied to each mount in the tree.
2294  * Must be called without spinlocks held, since this function can sleep
2295  * in allocations.
2296  *
2297  * Context: The function expects namespace_lock() to be held.
2298  * Return: If @source_mnt was successfully attached 0 is returned.
2299  *         Otherwise a negative error code is returned.
2300  */
2301 static int attach_recursive_mnt(struct mount *source_mnt,
2302 				struct mount *top_mnt,
2303 				struct mountpoint *dest_mp,
2304 				enum mnt_tree_flags_t flags)
2305 {
2306 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2307 	HLIST_HEAD(tree_list);
2308 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2309 	struct mountpoint *smp;
2310 	struct mount *child, *dest_mnt, *p;
2311 	struct hlist_node *n;
2312 	int err = 0;
2313 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2314 
2315 	/*
2316 	 * Preallocate a mountpoint in case the new mounts need to be
2317 	 * mounted beneath mounts on the same mountpoint.
2318 	 */
2319 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2320 	if (IS_ERR(smp))
2321 		return PTR_ERR(smp);
2322 
2323 	/* Is there space to add these mounts to the mount namespace? */
2324 	if (!moving) {
2325 		err = count_mounts(ns, source_mnt);
2326 		if (err)
2327 			goto out;
2328 	}
2329 
2330 	if (beneath)
2331 		dest_mnt = top_mnt->mnt_parent;
2332 	else
2333 		dest_mnt = top_mnt;
2334 
2335 	if (IS_MNT_SHARED(dest_mnt)) {
2336 		err = invent_group_ids(source_mnt, true);
2337 		if (err)
2338 			goto out;
2339 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2340 	}
2341 	lock_mount_hash();
2342 	if (err)
2343 		goto out_cleanup_ids;
2344 
2345 	if (IS_MNT_SHARED(dest_mnt)) {
2346 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2347 			set_mnt_shared(p);
2348 	}
2349 
2350 	if (moving) {
2351 		if (beneath)
2352 			dest_mp = smp;
2353 		unhash_mnt(source_mnt);
2354 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2355 		touch_mnt_namespace(source_mnt->mnt_ns);
2356 	} else {
2357 		if (source_mnt->mnt_ns) {
2358 			LIST_HEAD(head);
2359 
2360 			/* move from anon - the caller will destroy */
2361 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2362 				move_from_ns(p, &head);
2363 			list_del_init(&head);
2364 		}
2365 		if (beneath)
2366 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2367 		else
2368 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2369 		commit_tree(source_mnt);
2370 	}
2371 
2372 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2373 		struct mount *q;
2374 		hlist_del_init(&child->mnt_hash);
2375 		q = __lookup_mnt(&child->mnt_parent->mnt,
2376 				 child->mnt_mountpoint);
2377 		if (q)
2378 			mnt_change_mountpoint(child, smp, q);
2379 		/* Notice when we are propagating across user namespaces */
2380 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2381 			lock_mnt_tree(child);
2382 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2383 		commit_tree(child);
2384 	}
2385 	put_mountpoint(smp);
2386 	unlock_mount_hash();
2387 
2388 	return 0;
2389 
2390  out_cleanup_ids:
2391 	while (!hlist_empty(&tree_list)) {
2392 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2393 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2394 		umount_tree(child, UMOUNT_SYNC);
2395 	}
2396 	unlock_mount_hash();
2397 	cleanup_group_ids(source_mnt, NULL);
2398  out:
2399 	ns->pending_mounts = 0;
2400 
2401 	read_seqlock_excl(&mount_lock);
2402 	put_mountpoint(smp);
2403 	read_sequnlock_excl(&mount_lock);
2404 
2405 	return err;
2406 }
2407 
2408 /**
2409  * do_lock_mount - lock mount and mountpoint
2410  * @path:    target path
2411  * @beneath: whether the intention is to mount beneath @path
2412  *
2413  * Follow the mount stack on @path until the top mount @mnt is found. If
2414  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2415  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2416  * until nothing is stacked on top of it anymore.
2417  *
2418  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2419  * against concurrent removal of the new mountpoint from another mount
2420  * namespace.
2421  *
2422  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2423  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2424  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2425  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2426  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2427  * on top of it for @beneath.
2428  *
2429  * In addition, @beneath needs to make sure that @mnt hasn't been
2430  * unmounted or moved from its current mountpoint in between dropping
2431  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2432  * being unmounted would be detected later by e.g., calling
2433  * check_mnt(mnt) in the function it's called from. For the @beneath
2434  * case however, it's useful to detect it directly in do_lock_mount().
2435  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2436  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2437  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2438  *
2439  * Return: Either the target mountpoint on the top mount or the top
2440  *         mount's mountpoint.
2441  */
2442 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2443 {
2444 	struct vfsmount *mnt = path->mnt;
2445 	struct dentry *dentry;
2446 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2447 
2448 	for (;;) {
2449 		struct mount *m;
2450 
2451 		if (beneath) {
2452 			m = real_mount(mnt);
2453 			read_seqlock_excl(&mount_lock);
2454 			dentry = dget(m->mnt_mountpoint);
2455 			read_sequnlock_excl(&mount_lock);
2456 		} else {
2457 			dentry = path->dentry;
2458 		}
2459 
2460 		inode_lock(dentry->d_inode);
2461 		if (unlikely(cant_mount(dentry))) {
2462 			inode_unlock(dentry->d_inode);
2463 			goto out;
2464 		}
2465 
2466 		namespace_lock();
2467 
2468 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2469 			namespace_unlock();
2470 			inode_unlock(dentry->d_inode);
2471 			goto out;
2472 		}
2473 
2474 		mnt = lookup_mnt(path);
2475 		if (likely(!mnt))
2476 			break;
2477 
2478 		namespace_unlock();
2479 		inode_unlock(dentry->d_inode);
2480 		if (beneath)
2481 			dput(dentry);
2482 		path_put(path);
2483 		path->mnt = mnt;
2484 		path->dentry = dget(mnt->mnt_root);
2485 	}
2486 
2487 	mp = get_mountpoint(dentry);
2488 	if (IS_ERR(mp)) {
2489 		namespace_unlock();
2490 		inode_unlock(dentry->d_inode);
2491 	}
2492 
2493 out:
2494 	if (beneath)
2495 		dput(dentry);
2496 
2497 	return mp;
2498 }
2499 
2500 static inline struct mountpoint *lock_mount(struct path *path)
2501 {
2502 	return do_lock_mount(path, false);
2503 }
2504 
2505 static void unlock_mount(struct mountpoint *where)
2506 {
2507 	struct dentry *dentry = where->m_dentry;
2508 
2509 	read_seqlock_excl(&mount_lock);
2510 	put_mountpoint(where);
2511 	read_sequnlock_excl(&mount_lock);
2512 
2513 	namespace_unlock();
2514 	inode_unlock(dentry->d_inode);
2515 }
2516 
2517 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2518 {
2519 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2520 		return -EINVAL;
2521 
2522 	if (d_is_dir(mp->m_dentry) !=
2523 	      d_is_dir(mnt->mnt.mnt_root))
2524 		return -ENOTDIR;
2525 
2526 	return attach_recursive_mnt(mnt, p, mp, 0);
2527 }
2528 
2529 /*
2530  * Sanity check the flags to change_mnt_propagation.
2531  */
2532 
2533 static int flags_to_propagation_type(int ms_flags)
2534 {
2535 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2536 
2537 	/* Fail if any non-propagation flags are set */
2538 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2539 		return 0;
2540 	/* Only one propagation flag should be set */
2541 	if (!is_power_of_2(type))
2542 		return 0;
2543 	return type;
2544 }
2545 
2546 /*
2547  * recursively change the type of the mountpoint.
2548  */
2549 static int do_change_type(struct path *path, int ms_flags)
2550 {
2551 	struct mount *m;
2552 	struct mount *mnt = real_mount(path->mnt);
2553 	int recurse = ms_flags & MS_REC;
2554 	int type;
2555 	int err = 0;
2556 
2557 	if (!path_mounted(path))
2558 		return -EINVAL;
2559 
2560 	type = flags_to_propagation_type(ms_flags);
2561 	if (!type)
2562 		return -EINVAL;
2563 
2564 	namespace_lock();
2565 	if (type == MS_SHARED) {
2566 		err = invent_group_ids(mnt, recurse);
2567 		if (err)
2568 			goto out_unlock;
2569 	}
2570 
2571 	lock_mount_hash();
2572 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2573 		change_mnt_propagation(m, type);
2574 	unlock_mount_hash();
2575 
2576  out_unlock:
2577 	namespace_unlock();
2578 	return err;
2579 }
2580 
2581 static struct mount *__do_loopback(struct path *old_path, int recurse)
2582 {
2583 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2584 
2585 	if (IS_MNT_UNBINDABLE(old))
2586 		return mnt;
2587 
2588 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2589 		return mnt;
2590 
2591 	if (!recurse && has_locked_children(old, old_path->dentry))
2592 		return mnt;
2593 
2594 	if (recurse)
2595 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2596 	else
2597 		mnt = clone_mnt(old, old_path->dentry, 0);
2598 
2599 	if (!IS_ERR(mnt))
2600 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2601 
2602 	return mnt;
2603 }
2604 
2605 /*
2606  * do loopback mount.
2607  */
2608 static int do_loopback(struct path *path, const char *old_name,
2609 				int recurse)
2610 {
2611 	struct path old_path;
2612 	struct mount *mnt = NULL, *parent;
2613 	struct mountpoint *mp;
2614 	int err;
2615 	if (!old_name || !*old_name)
2616 		return -EINVAL;
2617 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2618 	if (err)
2619 		return err;
2620 
2621 	err = -EINVAL;
2622 	if (mnt_ns_loop(old_path.dentry))
2623 		goto out;
2624 
2625 	mp = lock_mount(path);
2626 	if (IS_ERR(mp)) {
2627 		err = PTR_ERR(mp);
2628 		goto out;
2629 	}
2630 
2631 	parent = real_mount(path->mnt);
2632 	if (!check_mnt(parent))
2633 		goto out2;
2634 
2635 	mnt = __do_loopback(&old_path, recurse);
2636 	if (IS_ERR(mnt)) {
2637 		err = PTR_ERR(mnt);
2638 		goto out2;
2639 	}
2640 
2641 	err = graft_tree(mnt, parent, mp);
2642 	if (err) {
2643 		lock_mount_hash();
2644 		umount_tree(mnt, UMOUNT_SYNC);
2645 		unlock_mount_hash();
2646 	}
2647 out2:
2648 	unlock_mount(mp);
2649 out:
2650 	path_put(&old_path);
2651 	return err;
2652 }
2653 
2654 static struct file *open_detached_copy(struct path *path, bool recursive)
2655 {
2656 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2657 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2658 	struct mount *mnt, *p;
2659 	struct file *file;
2660 
2661 	if (IS_ERR(ns))
2662 		return ERR_CAST(ns);
2663 
2664 	namespace_lock();
2665 	mnt = __do_loopback(path, recursive);
2666 	if (IS_ERR(mnt)) {
2667 		namespace_unlock();
2668 		free_mnt_ns(ns);
2669 		return ERR_CAST(mnt);
2670 	}
2671 
2672 	lock_mount_hash();
2673 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2674 		mnt_add_to_ns(ns, p);
2675 		ns->nr_mounts++;
2676 	}
2677 	ns->root = mnt;
2678 	mntget(&mnt->mnt);
2679 	unlock_mount_hash();
2680 	namespace_unlock();
2681 
2682 	mntput(path->mnt);
2683 	path->mnt = &mnt->mnt;
2684 	file = dentry_open(path, O_PATH, current_cred());
2685 	if (IS_ERR(file))
2686 		dissolve_on_fput(path->mnt);
2687 	else
2688 		file->f_mode |= FMODE_NEED_UNMOUNT;
2689 	return file;
2690 }
2691 
2692 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2693 {
2694 	struct file *file;
2695 	struct path path;
2696 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2697 	bool detached = flags & OPEN_TREE_CLONE;
2698 	int error;
2699 	int fd;
2700 
2701 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2702 
2703 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2704 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2705 		      OPEN_TREE_CLOEXEC))
2706 		return -EINVAL;
2707 
2708 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2709 		return -EINVAL;
2710 
2711 	if (flags & AT_NO_AUTOMOUNT)
2712 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2713 	if (flags & AT_SYMLINK_NOFOLLOW)
2714 		lookup_flags &= ~LOOKUP_FOLLOW;
2715 	if (flags & AT_EMPTY_PATH)
2716 		lookup_flags |= LOOKUP_EMPTY;
2717 
2718 	if (detached && !may_mount())
2719 		return -EPERM;
2720 
2721 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2722 	if (fd < 0)
2723 		return fd;
2724 
2725 	error = user_path_at(dfd, filename, lookup_flags, &path);
2726 	if (unlikely(error)) {
2727 		file = ERR_PTR(error);
2728 	} else {
2729 		if (detached)
2730 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2731 		else
2732 			file = dentry_open(&path, O_PATH, current_cred());
2733 		path_put(&path);
2734 	}
2735 	if (IS_ERR(file)) {
2736 		put_unused_fd(fd);
2737 		return PTR_ERR(file);
2738 	}
2739 	fd_install(fd, file);
2740 	return fd;
2741 }
2742 
2743 /*
2744  * Don't allow locked mount flags to be cleared.
2745  *
2746  * No locks need to be held here while testing the various MNT_LOCK
2747  * flags because those flags can never be cleared once they are set.
2748  */
2749 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2750 {
2751 	unsigned int fl = mnt->mnt.mnt_flags;
2752 
2753 	if ((fl & MNT_LOCK_READONLY) &&
2754 	    !(mnt_flags & MNT_READONLY))
2755 		return false;
2756 
2757 	if ((fl & MNT_LOCK_NODEV) &&
2758 	    !(mnt_flags & MNT_NODEV))
2759 		return false;
2760 
2761 	if ((fl & MNT_LOCK_NOSUID) &&
2762 	    !(mnt_flags & MNT_NOSUID))
2763 		return false;
2764 
2765 	if ((fl & MNT_LOCK_NOEXEC) &&
2766 	    !(mnt_flags & MNT_NOEXEC))
2767 		return false;
2768 
2769 	if ((fl & MNT_LOCK_ATIME) &&
2770 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2771 		return false;
2772 
2773 	return true;
2774 }
2775 
2776 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2777 {
2778 	bool readonly_request = (mnt_flags & MNT_READONLY);
2779 
2780 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2781 		return 0;
2782 
2783 	if (readonly_request)
2784 		return mnt_make_readonly(mnt);
2785 
2786 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2787 	return 0;
2788 }
2789 
2790 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2791 {
2792 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2793 	mnt->mnt.mnt_flags = mnt_flags;
2794 	touch_mnt_namespace(mnt->mnt_ns);
2795 }
2796 
2797 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2798 {
2799 	struct super_block *sb = mnt->mnt_sb;
2800 
2801 	if (!__mnt_is_readonly(mnt) &&
2802 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2803 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2804 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2805 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2806 
2807 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2808 			sb->s_type->name,
2809 			is_mounted(mnt) ? "remounted" : "mounted",
2810 			mntpath, &sb->s_time_max,
2811 			(unsigned long long)sb->s_time_max);
2812 
2813 		free_page((unsigned long)buf);
2814 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2815 	}
2816 }
2817 
2818 /*
2819  * Handle reconfiguration of the mountpoint only without alteration of the
2820  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2821  * to mount(2).
2822  */
2823 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2824 {
2825 	struct super_block *sb = path->mnt->mnt_sb;
2826 	struct mount *mnt = real_mount(path->mnt);
2827 	int ret;
2828 
2829 	if (!check_mnt(mnt))
2830 		return -EINVAL;
2831 
2832 	if (!path_mounted(path))
2833 		return -EINVAL;
2834 
2835 	if (!can_change_locked_flags(mnt, mnt_flags))
2836 		return -EPERM;
2837 
2838 	/*
2839 	 * We're only checking whether the superblock is read-only not
2840 	 * changing it, so only take down_read(&sb->s_umount).
2841 	 */
2842 	down_read(&sb->s_umount);
2843 	lock_mount_hash();
2844 	ret = change_mount_ro_state(mnt, mnt_flags);
2845 	if (ret == 0)
2846 		set_mount_attributes(mnt, mnt_flags);
2847 	unlock_mount_hash();
2848 	up_read(&sb->s_umount);
2849 
2850 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2851 
2852 	return ret;
2853 }
2854 
2855 /*
2856  * change filesystem flags. dir should be a physical root of filesystem.
2857  * If you've mounted a non-root directory somewhere and want to do remount
2858  * on it - tough luck.
2859  */
2860 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2861 		      int mnt_flags, void *data)
2862 {
2863 	int err;
2864 	struct super_block *sb = path->mnt->mnt_sb;
2865 	struct mount *mnt = real_mount(path->mnt);
2866 	struct fs_context *fc;
2867 
2868 	if (!check_mnt(mnt))
2869 		return -EINVAL;
2870 
2871 	if (!path_mounted(path))
2872 		return -EINVAL;
2873 
2874 	if (!can_change_locked_flags(mnt, mnt_flags))
2875 		return -EPERM;
2876 
2877 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2878 	if (IS_ERR(fc))
2879 		return PTR_ERR(fc);
2880 
2881 	/*
2882 	 * Indicate to the filesystem that the remount request is coming
2883 	 * from the legacy mount system call.
2884 	 */
2885 	fc->oldapi = true;
2886 
2887 	err = parse_monolithic_mount_data(fc, data);
2888 	if (!err) {
2889 		down_write(&sb->s_umount);
2890 		err = -EPERM;
2891 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2892 			err = reconfigure_super(fc);
2893 			if (!err) {
2894 				lock_mount_hash();
2895 				set_mount_attributes(mnt, mnt_flags);
2896 				unlock_mount_hash();
2897 			}
2898 		}
2899 		up_write(&sb->s_umount);
2900 	}
2901 
2902 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2903 
2904 	put_fs_context(fc);
2905 	return err;
2906 }
2907 
2908 static inline int tree_contains_unbindable(struct mount *mnt)
2909 {
2910 	struct mount *p;
2911 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2912 		if (IS_MNT_UNBINDABLE(p))
2913 			return 1;
2914 	}
2915 	return 0;
2916 }
2917 
2918 /*
2919  * Check that there aren't references to earlier/same mount namespaces in the
2920  * specified subtree.  Such references can act as pins for mount namespaces
2921  * that aren't checked by the mount-cycle checking code, thereby allowing
2922  * cycles to be made.
2923  */
2924 static bool check_for_nsfs_mounts(struct mount *subtree)
2925 {
2926 	struct mount *p;
2927 	bool ret = false;
2928 
2929 	lock_mount_hash();
2930 	for (p = subtree; p; p = next_mnt(p, subtree))
2931 		if (mnt_ns_loop(p->mnt.mnt_root))
2932 			goto out;
2933 
2934 	ret = true;
2935 out:
2936 	unlock_mount_hash();
2937 	return ret;
2938 }
2939 
2940 static int do_set_group(struct path *from_path, struct path *to_path)
2941 {
2942 	struct mount *from, *to;
2943 	int err;
2944 
2945 	from = real_mount(from_path->mnt);
2946 	to = real_mount(to_path->mnt);
2947 
2948 	namespace_lock();
2949 
2950 	err = -EINVAL;
2951 	/* To and From must be mounted */
2952 	if (!is_mounted(&from->mnt))
2953 		goto out;
2954 	if (!is_mounted(&to->mnt))
2955 		goto out;
2956 
2957 	err = -EPERM;
2958 	/* We should be allowed to modify mount namespaces of both mounts */
2959 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2960 		goto out;
2961 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2962 		goto out;
2963 
2964 	err = -EINVAL;
2965 	/* To and From paths should be mount roots */
2966 	if (!path_mounted(from_path))
2967 		goto out;
2968 	if (!path_mounted(to_path))
2969 		goto out;
2970 
2971 	/* Setting sharing groups is only allowed across same superblock */
2972 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2973 		goto out;
2974 
2975 	/* From mount root should be wider than To mount root */
2976 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2977 		goto out;
2978 
2979 	/* From mount should not have locked children in place of To's root */
2980 	if (has_locked_children(from, to->mnt.mnt_root))
2981 		goto out;
2982 
2983 	/* Setting sharing groups is only allowed on private mounts */
2984 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2985 		goto out;
2986 
2987 	/* From should not be private */
2988 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2989 		goto out;
2990 
2991 	if (IS_MNT_SLAVE(from)) {
2992 		struct mount *m = from->mnt_master;
2993 
2994 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2995 		to->mnt_master = m;
2996 	}
2997 
2998 	if (IS_MNT_SHARED(from)) {
2999 		to->mnt_group_id = from->mnt_group_id;
3000 		list_add(&to->mnt_share, &from->mnt_share);
3001 		lock_mount_hash();
3002 		set_mnt_shared(to);
3003 		unlock_mount_hash();
3004 	}
3005 
3006 	err = 0;
3007 out:
3008 	namespace_unlock();
3009 	return err;
3010 }
3011 
3012 /**
3013  * path_overmounted - check if path is overmounted
3014  * @path: path to check
3015  *
3016  * Check if path is overmounted, i.e., if there's a mount on top of
3017  * @path->mnt with @path->dentry as mountpoint.
3018  *
3019  * Context: This function expects namespace_lock() to be held.
3020  * Return: If path is overmounted true is returned, false if not.
3021  */
3022 static inline bool path_overmounted(const struct path *path)
3023 {
3024 	rcu_read_lock();
3025 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3026 		rcu_read_unlock();
3027 		return true;
3028 	}
3029 	rcu_read_unlock();
3030 	return false;
3031 }
3032 
3033 /**
3034  * can_move_mount_beneath - check that we can mount beneath the top mount
3035  * @from: mount to mount beneath
3036  * @to:   mount under which to mount
3037  * @mp:   mountpoint of @to
3038  *
3039  * - Make sure that @to->dentry is actually the root of a mount under
3040  *   which we can mount another mount.
3041  * - Make sure that nothing can be mounted beneath the caller's current
3042  *   root or the rootfs of the namespace.
3043  * - Make sure that the caller can unmount the topmost mount ensuring
3044  *   that the caller could reveal the underlying mountpoint.
3045  * - Ensure that nothing has been mounted on top of @from before we
3046  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3047  * - Prevent mounting beneath a mount if the propagation relationship
3048  *   between the source mount, parent mount, and top mount would lead to
3049  *   nonsensical mount trees.
3050  *
3051  * Context: This function expects namespace_lock() to be held.
3052  * Return: On success 0, and on error a negative error code is returned.
3053  */
3054 static int can_move_mount_beneath(const struct path *from,
3055 				  const struct path *to,
3056 				  const struct mountpoint *mp)
3057 {
3058 	struct mount *mnt_from = real_mount(from->mnt),
3059 		     *mnt_to = real_mount(to->mnt),
3060 		     *parent_mnt_to = mnt_to->mnt_parent;
3061 
3062 	if (!mnt_has_parent(mnt_to))
3063 		return -EINVAL;
3064 
3065 	if (!path_mounted(to))
3066 		return -EINVAL;
3067 
3068 	if (IS_MNT_LOCKED(mnt_to))
3069 		return -EINVAL;
3070 
3071 	/* Avoid creating shadow mounts during mount propagation. */
3072 	if (path_overmounted(from))
3073 		return -EINVAL;
3074 
3075 	/*
3076 	 * Mounting beneath the rootfs only makes sense when the
3077 	 * semantics of pivot_root(".", ".") are used.
3078 	 */
3079 	if (&mnt_to->mnt == current->fs->root.mnt)
3080 		return -EINVAL;
3081 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3082 		return -EINVAL;
3083 
3084 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3085 		if (p == mnt_to)
3086 			return -EINVAL;
3087 
3088 	/*
3089 	 * If the parent mount propagates to the child mount this would
3090 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3091 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3092 	 * defeats the whole purpose of mounting beneath another mount.
3093 	 */
3094 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3095 		return -EINVAL;
3096 
3097 	/*
3098 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3099 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3100 	 * Afterwards @mnt_from would be mounted on top of
3101 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3102 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3103 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3104 	 * remounted on top of @c. Afterwards, @mnt_from would be
3105 	 * covered by a copy @c of @mnt_from and @c would be covered by
3106 	 * @mnt_from itself. This defeats the whole purpose of mounting
3107 	 * @mnt_from beneath @mnt_to.
3108 	 */
3109 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3110 		return -EINVAL;
3111 
3112 	return 0;
3113 }
3114 
3115 static int do_move_mount(struct path *old_path, struct path *new_path,
3116 			 bool beneath)
3117 {
3118 	struct mnt_namespace *ns;
3119 	struct mount *p;
3120 	struct mount *old;
3121 	struct mount *parent;
3122 	struct mountpoint *mp, *old_mp;
3123 	int err;
3124 	bool attached;
3125 	enum mnt_tree_flags_t flags = 0;
3126 
3127 	mp = do_lock_mount(new_path, beneath);
3128 	if (IS_ERR(mp))
3129 		return PTR_ERR(mp);
3130 
3131 	old = real_mount(old_path->mnt);
3132 	p = real_mount(new_path->mnt);
3133 	parent = old->mnt_parent;
3134 	attached = mnt_has_parent(old);
3135 	if (attached)
3136 		flags |= MNT_TREE_MOVE;
3137 	old_mp = old->mnt_mp;
3138 	ns = old->mnt_ns;
3139 
3140 	err = -EINVAL;
3141 	/* The mountpoint must be in our namespace. */
3142 	if (!check_mnt(p))
3143 		goto out;
3144 
3145 	/* The thing moved must be mounted... */
3146 	if (!is_mounted(&old->mnt))
3147 		goto out;
3148 
3149 	/* ... and either ours or the root of anon namespace */
3150 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3151 		goto out;
3152 
3153 	if (old->mnt.mnt_flags & MNT_LOCKED)
3154 		goto out;
3155 
3156 	if (!path_mounted(old_path))
3157 		goto out;
3158 
3159 	if (d_is_dir(new_path->dentry) !=
3160 	    d_is_dir(old_path->dentry))
3161 		goto out;
3162 	/*
3163 	 * Don't move a mount residing in a shared parent.
3164 	 */
3165 	if (attached && IS_MNT_SHARED(parent))
3166 		goto out;
3167 
3168 	if (beneath) {
3169 		err = can_move_mount_beneath(old_path, new_path, mp);
3170 		if (err)
3171 			goto out;
3172 
3173 		err = -EINVAL;
3174 		p = p->mnt_parent;
3175 		flags |= MNT_TREE_BENEATH;
3176 	}
3177 
3178 	/*
3179 	 * Don't move a mount tree containing unbindable mounts to a destination
3180 	 * mount which is shared.
3181 	 */
3182 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3183 		goto out;
3184 	err = -ELOOP;
3185 	if (!check_for_nsfs_mounts(old))
3186 		goto out;
3187 	for (; mnt_has_parent(p); p = p->mnt_parent)
3188 		if (p == old)
3189 			goto out;
3190 
3191 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3192 	if (err)
3193 		goto out;
3194 
3195 	/* if the mount is moved, it should no longer be expire
3196 	 * automatically */
3197 	list_del_init(&old->mnt_expire);
3198 	if (attached)
3199 		put_mountpoint(old_mp);
3200 out:
3201 	unlock_mount(mp);
3202 	if (!err) {
3203 		if (attached)
3204 			mntput_no_expire(parent);
3205 		else
3206 			free_mnt_ns(ns);
3207 	}
3208 	return err;
3209 }
3210 
3211 static int do_move_mount_old(struct path *path, const char *old_name)
3212 {
3213 	struct path old_path;
3214 	int err;
3215 
3216 	if (!old_name || !*old_name)
3217 		return -EINVAL;
3218 
3219 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3220 	if (err)
3221 		return err;
3222 
3223 	err = do_move_mount(&old_path, path, false);
3224 	path_put(&old_path);
3225 	return err;
3226 }
3227 
3228 /*
3229  * add a mount into a namespace's mount tree
3230  */
3231 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3232 			const struct path *path, int mnt_flags)
3233 {
3234 	struct mount *parent = real_mount(path->mnt);
3235 
3236 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3237 
3238 	if (unlikely(!check_mnt(parent))) {
3239 		/* that's acceptable only for automounts done in private ns */
3240 		if (!(mnt_flags & MNT_SHRINKABLE))
3241 			return -EINVAL;
3242 		/* ... and for those we'd better have mountpoint still alive */
3243 		if (!parent->mnt_ns)
3244 			return -EINVAL;
3245 	}
3246 
3247 	/* Refuse the same filesystem on the same mount point */
3248 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3249 		return -EBUSY;
3250 
3251 	if (d_is_symlink(newmnt->mnt.mnt_root))
3252 		return -EINVAL;
3253 
3254 	newmnt->mnt.mnt_flags = mnt_flags;
3255 	return graft_tree(newmnt, parent, mp);
3256 }
3257 
3258 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3259 
3260 /*
3261  * Create a new mount using a superblock configuration and request it
3262  * be added to the namespace tree.
3263  */
3264 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3265 			   unsigned int mnt_flags)
3266 {
3267 	struct vfsmount *mnt;
3268 	struct mountpoint *mp;
3269 	struct super_block *sb = fc->root->d_sb;
3270 	int error;
3271 
3272 	error = security_sb_kern_mount(sb);
3273 	if (!error && mount_too_revealing(sb, &mnt_flags))
3274 		error = -EPERM;
3275 
3276 	if (unlikely(error)) {
3277 		fc_drop_locked(fc);
3278 		return error;
3279 	}
3280 
3281 	up_write(&sb->s_umount);
3282 
3283 	mnt = vfs_create_mount(fc);
3284 	if (IS_ERR(mnt))
3285 		return PTR_ERR(mnt);
3286 
3287 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3288 
3289 	mp = lock_mount(mountpoint);
3290 	if (IS_ERR(mp)) {
3291 		mntput(mnt);
3292 		return PTR_ERR(mp);
3293 	}
3294 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3295 	unlock_mount(mp);
3296 	if (error < 0)
3297 		mntput(mnt);
3298 	return error;
3299 }
3300 
3301 /*
3302  * create a new mount for userspace and request it to be added into the
3303  * namespace's tree
3304  */
3305 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3306 			int mnt_flags, const char *name, void *data)
3307 {
3308 	struct file_system_type *type;
3309 	struct fs_context *fc;
3310 	const char *subtype = NULL;
3311 	int err = 0;
3312 
3313 	if (!fstype)
3314 		return -EINVAL;
3315 
3316 	type = get_fs_type(fstype);
3317 	if (!type)
3318 		return -ENODEV;
3319 
3320 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3321 		subtype = strchr(fstype, '.');
3322 		if (subtype) {
3323 			subtype++;
3324 			if (!*subtype) {
3325 				put_filesystem(type);
3326 				return -EINVAL;
3327 			}
3328 		}
3329 	}
3330 
3331 	fc = fs_context_for_mount(type, sb_flags);
3332 	put_filesystem(type);
3333 	if (IS_ERR(fc))
3334 		return PTR_ERR(fc);
3335 
3336 	/*
3337 	 * Indicate to the filesystem that the mount request is coming
3338 	 * from the legacy mount system call.
3339 	 */
3340 	fc->oldapi = true;
3341 
3342 	if (subtype)
3343 		err = vfs_parse_fs_string(fc, "subtype",
3344 					  subtype, strlen(subtype));
3345 	if (!err && name)
3346 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3347 	if (!err)
3348 		err = parse_monolithic_mount_data(fc, data);
3349 	if (!err && !mount_capable(fc))
3350 		err = -EPERM;
3351 	if (!err)
3352 		err = vfs_get_tree(fc);
3353 	if (!err)
3354 		err = do_new_mount_fc(fc, path, mnt_flags);
3355 
3356 	put_fs_context(fc);
3357 	return err;
3358 }
3359 
3360 int finish_automount(struct vfsmount *m, const struct path *path)
3361 {
3362 	struct dentry *dentry = path->dentry;
3363 	struct mountpoint *mp;
3364 	struct mount *mnt;
3365 	int err;
3366 
3367 	if (!m)
3368 		return 0;
3369 	if (IS_ERR(m))
3370 		return PTR_ERR(m);
3371 
3372 	mnt = real_mount(m);
3373 	/* The new mount record should have at least 2 refs to prevent it being
3374 	 * expired before we get a chance to add it
3375 	 */
3376 	BUG_ON(mnt_get_count(mnt) < 2);
3377 
3378 	if (m->mnt_sb == path->mnt->mnt_sb &&
3379 	    m->mnt_root == dentry) {
3380 		err = -ELOOP;
3381 		goto discard;
3382 	}
3383 
3384 	/*
3385 	 * we don't want to use lock_mount() - in this case finding something
3386 	 * that overmounts our mountpoint to be means "quitely drop what we've
3387 	 * got", not "try to mount it on top".
3388 	 */
3389 	inode_lock(dentry->d_inode);
3390 	namespace_lock();
3391 	if (unlikely(cant_mount(dentry))) {
3392 		err = -ENOENT;
3393 		goto discard_locked;
3394 	}
3395 	if (path_overmounted(path)) {
3396 		err = 0;
3397 		goto discard_locked;
3398 	}
3399 	mp = get_mountpoint(dentry);
3400 	if (IS_ERR(mp)) {
3401 		err = PTR_ERR(mp);
3402 		goto discard_locked;
3403 	}
3404 
3405 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3406 	unlock_mount(mp);
3407 	if (unlikely(err))
3408 		goto discard;
3409 	mntput(m);
3410 	return 0;
3411 
3412 discard_locked:
3413 	namespace_unlock();
3414 	inode_unlock(dentry->d_inode);
3415 discard:
3416 	/* remove m from any expiration list it may be on */
3417 	if (!list_empty(&mnt->mnt_expire)) {
3418 		namespace_lock();
3419 		list_del_init(&mnt->mnt_expire);
3420 		namespace_unlock();
3421 	}
3422 	mntput(m);
3423 	mntput(m);
3424 	return err;
3425 }
3426 
3427 /**
3428  * mnt_set_expiry - Put a mount on an expiration list
3429  * @mnt: The mount to list.
3430  * @expiry_list: The list to add the mount to.
3431  */
3432 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3433 {
3434 	namespace_lock();
3435 
3436 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3437 
3438 	namespace_unlock();
3439 }
3440 EXPORT_SYMBOL(mnt_set_expiry);
3441 
3442 /*
3443  * process a list of expirable mountpoints with the intent of discarding any
3444  * mountpoints that aren't in use and haven't been touched since last we came
3445  * here
3446  */
3447 void mark_mounts_for_expiry(struct list_head *mounts)
3448 {
3449 	struct mount *mnt, *next;
3450 	LIST_HEAD(graveyard);
3451 
3452 	if (list_empty(mounts))
3453 		return;
3454 
3455 	namespace_lock();
3456 	lock_mount_hash();
3457 
3458 	/* extract from the expiration list every vfsmount that matches the
3459 	 * following criteria:
3460 	 * - only referenced by its parent vfsmount
3461 	 * - still marked for expiry (marked on the last call here; marks are
3462 	 *   cleared by mntput())
3463 	 */
3464 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3465 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3466 			propagate_mount_busy(mnt, 1))
3467 			continue;
3468 		list_move(&mnt->mnt_expire, &graveyard);
3469 	}
3470 	while (!list_empty(&graveyard)) {
3471 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3472 		touch_mnt_namespace(mnt->mnt_ns);
3473 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3474 	}
3475 	unlock_mount_hash();
3476 	namespace_unlock();
3477 }
3478 
3479 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3480 
3481 /*
3482  * Ripoff of 'select_parent()'
3483  *
3484  * search the list of submounts for a given mountpoint, and move any
3485  * shrinkable submounts to the 'graveyard' list.
3486  */
3487 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3488 {
3489 	struct mount *this_parent = parent;
3490 	struct list_head *next;
3491 	int found = 0;
3492 
3493 repeat:
3494 	next = this_parent->mnt_mounts.next;
3495 resume:
3496 	while (next != &this_parent->mnt_mounts) {
3497 		struct list_head *tmp = next;
3498 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3499 
3500 		next = tmp->next;
3501 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3502 			continue;
3503 		/*
3504 		 * Descend a level if the d_mounts list is non-empty.
3505 		 */
3506 		if (!list_empty(&mnt->mnt_mounts)) {
3507 			this_parent = mnt;
3508 			goto repeat;
3509 		}
3510 
3511 		if (!propagate_mount_busy(mnt, 1)) {
3512 			list_move_tail(&mnt->mnt_expire, graveyard);
3513 			found++;
3514 		}
3515 	}
3516 	/*
3517 	 * All done at this level ... ascend and resume the search
3518 	 */
3519 	if (this_parent != parent) {
3520 		next = this_parent->mnt_child.next;
3521 		this_parent = this_parent->mnt_parent;
3522 		goto resume;
3523 	}
3524 	return found;
3525 }
3526 
3527 /*
3528  * process a list of expirable mountpoints with the intent of discarding any
3529  * submounts of a specific parent mountpoint
3530  *
3531  * mount_lock must be held for write
3532  */
3533 static void shrink_submounts(struct mount *mnt)
3534 {
3535 	LIST_HEAD(graveyard);
3536 	struct mount *m;
3537 
3538 	/* extract submounts of 'mountpoint' from the expiration list */
3539 	while (select_submounts(mnt, &graveyard)) {
3540 		while (!list_empty(&graveyard)) {
3541 			m = list_first_entry(&graveyard, struct mount,
3542 						mnt_expire);
3543 			touch_mnt_namespace(m->mnt_ns);
3544 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3545 		}
3546 	}
3547 }
3548 
3549 static void *copy_mount_options(const void __user * data)
3550 {
3551 	char *copy;
3552 	unsigned left, offset;
3553 
3554 	if (!data)
3555 		return NULL;
3556 
3557 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3558 	if (!copy)
3559 		return ERR_PTR(-ENOMEM);
3560 
3561 	left = copy_from_user(copy, data, PAGE_SIZE);
3562 
3563 	/*
3564 	 * Not all architectures have an exact copy_from_user(). Resort to
3565 	 * byte at a time.
3566 	 */
3567 	offset = PAGE_SIZE - left;
3568 	while (left) {
3569 		char c;
3570 		if (get_user(c, (const char __user *)data + offset))
3571 			break;
3572 		copy[offset] = c;
3573 		left--;
3574 		offset++;
3575 	}
3576 
3577 	if (left == PAGE_SIZE) {
3578 		kfree(copy);
3579 		return ERR_PTR(-EFAULT);
3580 	}
3581 
3582 	return copy;
3583 }
3584 
3585 static char *copy_mount_string(const void __user *data)
3586 {
3587 	return data ? strndup_user(data, PATH_MAX) : NULL;
3588 }
3589 
3590 /*
3591  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3592  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3593  *
3594  * data is a (void *) that can point to any structure up to
3595  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3596  * information (or be NULL).
3597  *
3598  * Pre-0.97 versions of mount() didn't have a flags word.
3599  * When the flags word was introduced its top half was required
3600  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3601  * Therefore, if this magic number is present, it carries no information
3602  * and must be discarded.
3603  */
3604 int path_mount(const char *dev_name, struct path *path,
3605 		const char *type_page, unsigned long flags, void *data_page)
3606 {
3607 	unsigned int mnt_flags = 0, sb_flags;
3608 	int ret;
3609 
3610 	/* Discard magic */
3611 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3612 		flags &= ~MS_MGC_MSK;
3613 
3614 	/* Basic sanity checks */
3615 	if (data_page)
3616 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3617 
3618 	if (flags & MS_NOUSER)
3619 		return -EINVAL;
3620 
3621 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3622 	if (ret)
3623 		return ret;
3624 	if (!may_mount())
3625 		return -EPERM;
3626 	if (flags & SB_MANDLOCK)
3627 		warn_mandlock();
3628 
3629 	/* Default to relatime unless overriden */
3630 	if (!(flags & MS_NOATIME))
3631 		mnt_flags |= MNT_RELATIME;
3632 
3633 	/* Separate the per-mountpoint flags */
3634 	if (flags & MS_NOSUID)
3635 		mnt_flags |= MNT_NOSUID;
3636 	if (flags & MS_NODEV)
3637 		mnt_flags |= MNT_NODEV;
3638 	if (flags & MS_NOEXEC)
3639 		mnt_flags |= MNT_NOEXEC;
3640 	if (flags & MS_NOATIME)
3641 		mnt_flags |= MNT_NOATIME;
3642 	if (flags & MS_NODIRATIME)
3643 		mnt_flags |= MNT_NODIRATIME;
3644 	if (flags & MS_STRICTATIME)
3645 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3646 	if (flags & MS_RDONLY)
3647 		mnt_flags |= MNT_READONLY;
3648 	if (flags & MS_NOSYMFOLLOW)
3649 		mnt_flags |= MNT_NOSYMFOLLOW;
3650 
3651 	/* The default atime for remount is preservation */
3652 	if ((flags & MS_REMOUNT) &&
3653 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3654 		       MS_STRICTATIME)) == 0)) {
3655 		mnt_flags &= ~MNT_ATIME_MASK;
3656 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3657 	}
3658 
3659 	sb_flags = flags & (SB_RDONLY |
3660 			    SB_SYNCHRONOUS |
3661 			    SB_MANDLOCK |
3662 			    SB_DIRSYNC |
3663 			    SB_SILENT |
3664 			    SB_POSIXACL |
3665 			    SB_LAZYTIME |
3666 			    SB_I_VERSION);
3667 
3668 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3669 		return do_reconfigure_mnt(path, mnt_flags);
3670 	if (flags & MS_REMOUNT)
3671 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3672 	if (flags & MS_BIND)
3673 		return do_loopback(path, dev_name, flags & MS_REC);
3674 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3675 		return do_change_type(path, flags);
3676 	if (flags & MS_MOVE)
3677 		return do_move_mount_old(path, dev_name);
3678 
3679 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3680 			    data_page);
3681 }
3682 
3683 long do_mount(const char *dev_name, const char __user *dir_name,
3684 		const char *type_page, unsigned long flags, void *data_page)
3685 {
3686 	struct path path;
3687 	int ret;
3688 
3689 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3690 	if (ret)
3691 		return ret;
3692 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3693 	path_put(&path);
3694 	return ret;
3695 }
3696 
3697 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3698 {
3699 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3700 }
3701 
3702 static void dec_mnt_namespaces(struct ucounts *ucounts)
3703 {
3704 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3705 }
3706 
3707 static void free_mnt_ns(struct mnt_namespace *ns)
3708 {
3709 	if (!is_anon_ns(ns))
3710 		ns_free_inum(&ns->ns);
3711 	dec_mnt_namespaces(ns->ucounts);
3712 	put_user_ns(ns->user_ns);
3713 	kfree(ns);
3714 }
3715 
3716 /*
3717  * Assign a sequence number so we can detect when we attempt to bind
3718  * mount a reference to an older mount namespace into the current
3719  * mount namespace, preventing reference counting loops.  A 64bit
3720  * number incrementing at 10Ghz will take 12,427 years to wrap which
3721  * is effectively never, so we can ignore the possibility.
3722  */
3723 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3724 
3725 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3726 {
3727 	struct mnt_namespace *new_ns;
3728 	struct ucounts *ucounts;
3729 	int ret;
3730 
3731 	ucounts = inc_mnt_namespaces(user_ns);
3732 	if (!ucounts)
3733 		return ERR_PTR(-ENOSPC);
3734 
3735 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3736 	if (!new_ns) {
3737 		dec_mnt_namespaces(ucounts);
3738 		return ERR_PTR(-ENOMEM);
3739 	}
3740 	if (!anon) {
3741 		ret = ns_alloc_inum(&new_ns->ns);
3742 		if (ret) {
3743 			kfree(new_ns);
3744 			dec_mnt_namespaces(ucounts);
3745 			return ERR_PTR(ret);
3746 		}
3747 	}
3748 	new_ns->ns.ops = &mntns_operations;
3749 	if (!anon)
3750 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3751 	refcount_set(&new_ns->ns.count, 1);
3752 	new_ns->mounts = RB_ROOT;
3753 	init_waitqueue_head(&new_ns->poll);
3754 	new_ns->user_ns = get_user_ns(user_ns);
3755 	new_ns->ucounts = ucounts;
3756 	return new_ns;
3757 }
3758 
3759 __latent_entropy
3760 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3761 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3762 {
3763 	struct mnt_namespace *new_ns;
3764 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3765 	struct mount *p, *q;
3766 	struct mount *old;
3767 	struct mount *new;
3768 	int copy_flags;
3769 
3770 	BUG_ON(!ns);
3771 
3772 	if (likely(!(flags & CLONE_NEWNS))) {
3773 		get_mnt_ns(ns);
3774 		return ns;
3775 	}
3776 
3777 	old = ns->root;
3778 
3779 	new_ns = alloc_mnt_ns(user_ns, false);
3780 	if (IS_ERR(new_ns))
3781 		return new_ns;
3782 
3783 	namespace_lock();
3784 	/* First pass: copy the tree topology */
3785 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3786 	if (user_ns != ns->user_ns)
3787 		copy_flags |= CL_SHARED_TO_SLAVE;
3788 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3789 	if (IS_ERR(new)) {
3790 		namespace_unlock();
3791 		free_mnt_ns(new_ns);
3792 		return ERR_CAST(new);
3793 	}
3794 	if (user_ns != ns->user_ns) {
3795 		lock_mount_hash();
3796 		lock_mnt_tree(new);
3797 		unlock_mount_hash();
3798 	}
3799 	new_ns->root = new;
3800 
3801 	/*
3802 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3803 	 * as belonging to new namespace.  We have already acquired a private
3804 	 * fs_struct, so tsk->fs->lock is not needed.
3805 	 */
3806 	p = old;
3807 	q = new;
3808 	while (p) {
3809 		mnt_add_to_ns(new_ns, q);
3810 		new_ns->nr_mounts++;
3811 		if (new_fs) {
3812 			if (&p->mnt == new_fs->root.mnt) {
3813 				new_fs->root.mnt = mntget(&q->mnt);
3814 				rootmnt = &p->mnt;
3815 			}
3816 			if (&p->mnt == new_fs->pwd.mnt) {
3817 				new_fs->pwd.mnt = mntget(&q->mnt);
3818 				pwdmnt = &p->mnt;
3819 			}
3820 		}
3821 		p = next_mnt(p, old);
3822 		q = next_mnt(q, new);
3823 		if (!q)
3824 			break;
3825 		// an mntns binding we'd skipped?
3826 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3827 			p = next_mnt(skip_mnt_tree(p), old);
3828 	}
3829 	namespace_unlock();
3830 
3831 	if (rootmnt)
3832 		mntput(rootmnt);
3833 	if (pwdmnt)
3834 		mntput(pwdmnt);
3835 
3836 	return new_ns;
3837 }
3838 
3839 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3840 {
3841 	struct mount *mnt = real_mount(m);
3842 	struct mnt_namespace *ns;
3843 	struct super_block *s;
3844 	struct path path;
3845 	int err;
3846 
3847 	ns = alloc_mnt_ns(&init_user_ns, true);
3848 	if (IS_ERR(ns)) {
3849 		mntput(m);
3850 		return ERR_CAST(ns);
3851 	}
3852 	ns->root = mnt;
3853 	ns->nr_mounts++;
3854 	mnt_add_to_ns(ns, mnt);
3855 
3856 	err = vfs_path_lookup(m->mnt_root, m,
3857 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3858 
3859 	put_mnt_ns(ns);
3860 
3861 	if (err)
3862 		return ERR_PTR(err);
3863 
3864 	/* trade a vfsmount reference for active sb one */
3865 	s = path.mnt->mnt_sb;
3866 	atomic_inc(&s->s_active);
3867 	mntput(path.mnt);
3868 	/* lock the sucker */
3869 	down_write(&s->s_umount);
3870 	/* ... and return the root of (sub)tree on it */
3871 	return path.dentry;
3872 }
3873 EXPORT_SYMBOL(mount_subtree);
3874 
3875 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3876 		char __user *, type, unsigned long, flags, void __user *, data)
3877 {
3878 	int ret;
3879 	char *kernel_type;
3880 	char *kernel_dev;
3881 	void *options;
3882 
3883 	kernel_type = copy_mount_string(type);
3884 	ret = PTR_ERR(kernel_type);
3885 	if (IS_ERR(kernel_type))
3886 		goto out_type;
3887 
3888 	kernel_dev = copy_mount_string(dev_name);
3889 	ret = PTR_ERR(kernel_dev);
3890 	if (IS_ERR(kernel_dev))
3891 		goto out_dev;
3892 
3893 	options = copy_mount_options(data);
3894 	ret = PTR_ERR(options);
3895 	if (IS_ERR(options))
3896 		goto out_data;
3897 
3898 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3899 
3900 	kfree(options);
3901 out_data:
3902 	kfree(kernel_dev);
3903 out_dev:
3904 	kfree(kernel_type);
3905 out_type:
3906 	return ret;
3907 }
3908 
3909 #define FSMOUNT_VALID_FLAGS                                                    \
3910 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3911 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3912 	 MOUNT_ATTR_NOSYMFOLLOW)
3913 
3914 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3915 
3916 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3917 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3918 
3919 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3920 {
3921 	unsigned int mnt_flags = 0;
3922 
3923 	if (attr_flags & MOUNT_ATTR_RDONLY)
3924 		mnt_flags |= MNT_READONLY;
3925 	if (attr_flags & MOUNT_ATTR_NOSUID)
3926 		mnt_flags |= MNT_NOSUID;
3927 	if (attr_flags & MOUNT_ATTR_NODEV)
3928 		mnt_flags |= MNT_NODEV;
3929 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3930 		mnt_flags |= MNT_NOEXEC;
3931 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3932 		mnt_flags |= MNT_NODIRATIME;
3933 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3934 		mnt_flags |= MNT_NOSYMFOLLOW;
3935 
3936 	return mnt_flags;
3937 }
3938 
3939 /*
3940  * Create a kernel mount representation for a new, prepared superblock
3941  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3942  */
3943 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3944 		unsigned int, attr_flags)
3945 {
3946 	struct mnt_namespace *ns;
3947 	struct fs_context *fc;
3948 	struct file *file;
3949 	struct path newmount;
3950 	struct mount *mnt;
3951 	struct fd f;
3952 	unsigned int mnt_flags = 0;
3953 	long ret;
3954 
3955 	if (!may_mount())
3956 		return -EPERM;
3957 
3958 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3959 		return -EINVAL;
3960 
3961 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3962 		return -EINVAL;
3963 
3964 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3965 
3966 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3967 	case MOUNT_ATTR_STRICTATIME:
3968 		break;
3969 	case MOUNT_ATTR_NOATIME:
3970 		mnt_flags |= MNT_NOATIME;
3971 		break;
3972 	case MOUNT_ATTR_RELATIME:
3973 		mnt_flags |= MNT_RELATIME;
3974 		break;
3975 	default:
3976 		return -EINVAL;
3977 	}
3978 
3979 	f = fdget(fs_fd);
3980 	if (!f.file)
3981 		return -EBADF;
3982 
3983 	ret = -EINVAL;
3984 	if (f.file->f_op != &fscontext_fops)
3985 		goto err_fsfd;
3986 
3987 	fc = f.file->private_data;
3988 
3989 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3990 	if (ret < 0)
3991 		goto err_fsfd;
3992 
3993 	/* There must be a valid superblock or we can't mount it */
3994 	ret = -EINVAL;
3995 	if (!fc->root)
3996 		goto err_unlock;
3997 
3998 	ret = -EPERM;
3999 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4000 		pr_warn("VFS: Mount too revealing\n");
4001 		goto err_unlock;
4002 	}
4003 
4004 	ret = -EBUSY;
4005 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4006 		goto err_unlock;
4007 
4008 	if (fc->sb_flags & SB_MANDLOCK)
4009 		warn_mandlock();
4010 
4011 	newmount.mnt = vfs_create_mount(fc);
4012 	if (IS_ERR(newmount.mnt)) {
4013 		ret = PTR_ERR(newmount.mnt);
4014 		goto err_unlock;
4015 	}
4016 	newmount.dentry = dget(fc->root);
4017 	newmount.mnt->mnt_flags = mnt_flags;
4018 
4019 	/* We've done the mount bit - now move the file context into more or
4020 	 * less the same state as if we'd done an fspick().  We don't want to
4021 	 * do any memory allocation or anything like that at this point as we
4022 	 * don't want to have to handle any errors incurred.
4023 	 */
4024 	vfs_clean_context(fc);
4025 
4026 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4027 	if (IS_ERR(ns)) {
4028 		ret = PTR_ERR(ns);
4029 		goto err_path;
4030 	}
4031 	mnt = real_mount(newmount.mnt);
4032 	ns->root = mnt;
4033 	ns->nr_mounts = 1;
4034 	mnt_add_to_ns(ns, mnt);
4035 	mntget(newmount.mnt);
4036 
4037 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4038 	 * it, not just simply put it.
4039 	 */
4040 	file = dentry_open(&newmount, O_PATH, fc->cred);
4041 	if (IS_ERR(file)) {
4042 		dissolve_on_fput(newmount.mnt);
4043 		ret = PTR_ERR(file);
4044 		goto err_path;
4045 	}
4046 	file->f_mode |= FMODE_NEED_UNMOUNT;
4047 
4048 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4049 	if (ret >= 0)
4050 		fd_install(ret, file);
4051 	else
4052 		fput(file);
4053 
4054 err_path:
4055 	path_put(&newmount);
4056 err_unlock:
4057 	mutex_unlock(&fc->uapi_mutex);
4058 err_fsfd:
4059 	fdput(f);
4060 	return ret;
4061 }
4062 
4063 /*
4064  * Move a mount from one place to another.  In combination with
4065  * fsopen()/fsmount() this is used to install a new mount and in combination
4066  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4067  * a mount subtree.
4068  *
4069  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4070  */
4071 SYSCALL_DEFINE5(move_mount,
4072 		int, from_dfd, const char __user *, from_pathname,
4073 		int, to_dfd, const char __user *, to_pathname,
4074 		unsigned int, flags)
4075 {
4076 	struct path from_path, to_path;
4077 	unsigned int lflags;
4078 	int ret = 0;
4079 
4080 	if (!may_mount())
4081 		return -EPERM;
4082 
4083 	if (flags & ~MOVE_MOUNT__MASK)
4084 		return -EINVAL;
4085 
4086 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4087 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4088 		return -EINVAL;
4089 
4090 	/* If someone gives a pathname, they aren't permitted to move
4091 	 * from an fd that requires unmount as we can't get at the flag
4092 	 * to clear it afterwards.
4093 	 */
4094 	lflags = 0;
4095 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4096 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4097 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4098 
4099 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4100 	if (ret < 0)
4101 		return ret;
4102 
4103 	lflags = 0;
4104 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4105 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4106 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4107 
4108 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4109 	if (ret < 0)
4110 		goto out_from;
4111 
4112 	ret = security_move_mount(&from_path, &to_path);
4113 	if (ret < 0)
4114 		goto out_to;
4115 
4116 	if (flags & MOVE_MOUNT_SET_GROUP)
4117 		ret = do_set_group(&from_path, &to_path);
4118 	else
4119 		ret = do_move_mount(&from_path, &to_path,
4120 				    (flags & MOVE_MOUNT_BENEATH));
4121 
4122 out_to:
4123 	path_put(&to_path);
4124 out_from:
4125 	path_put(&from_path);
4126 	return ret;
4127 }
4128 
4129 /*
4130  * Return true if path is reachable from root
4131  *
4132  * namespace_sem or mount_lock is held
4133  */
4134 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4135 			 const struct path *root)
4136 {
4137 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4138 		dentry = mnt->mnt_mountpoint;
4139 		mnt = mnt->mnt_parent;
4140 	}
4141 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4142 }
4143 
4144 bool path_is_under(const struct path *path1, const struct path *path2)
4145 {
4146 	bool res;
4147 	read_seqlock_excl(&mount_lock);
4148 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4149 	read_sequnlock_excl(&mount_lock);
4150 	return res;
4151 }
4152 EXPORT_SYMBOL(path_is_under);
4153 
4154 /*
4155  * pivot_root Semantics:
4156  * Moves the root file system of the current process to the directory put_old,
4157  * makes new_root as the new root file system of the current process, and sets
4158  * root/cwd of all processes which had them on the current root to new_root.
4159  *
4160  * Restrictions:
4161  * The new_root and put_old must be directories, and  must not be on the
4162  * same file  system as the current process root. The put_old  must  be
4163  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4164  * pointed to by put_old must yield the same directory as new_root. No other
4165  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4166  *
4167  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4168  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4169  * in this situation.
4170  *
4171  * Notes:
4172  *  - we don't move root/cwd if they are not at the root (reason: if something
4173  *    cared enough to change them, it's probably wrong to force them elsewhere)
4174  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4175  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4176  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4177  *    first.
4178  */
4179 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4180 		const char __user *, put_old)
4181 {
4182 	struct path new, old, root;
4183 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4184 	struct mountpoint *old_mp, *root_mp;
4185 	int error;
4186 
4187 	if (!may_mount())
4188 		return -EPERM;
4189 
4190 	error = user_path_at(AT_FDCWD, new_root,
4191 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4192 	if (error)
4193 		goto out0;
4194 
4195 	error = user_path_at(AT_FDCWD, put_old,
4196 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4197 	if (error)
4198 		goto out1;
4199 
4200 	error = security_sb_pivotroot(&old, &new);
4201 	if (error)
4202 		goto out2;
4203 
4204 	get_fs_root(current->fs, &root);
4205 	old_mp = lock_mount(&old);
4206 	error = PTR_ERR(old_mp);
4207 	if (IS_ERR(old_mp))
4208 		goto out3;
4209 
4210 	error = -EINVAL;
4211 	new_mnt = real_mount(new.mnt);
4212 	root_mnt = real_mount(root.mnt);
4213 	old_mnt = real_mount(old.mnt);
4214 	ex_parent = new_mnt->mnt_parent;
4215 	root_parent = root_mnt->mnt_parent;
4216 	if (IS_MNT_SHARED(old_mnt) ||
4217 		IS_MNT_SHARED(ex_parent) ||
4218 		IS_MNT_SHARED(root_parent))
4219 		goto out4;
4220 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4221 		goto out4;
4222 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4223 		goto out4;
4224 	error = -ENOENT;
4225 	if (d_unlinked(new.dentry))
4226 		goto out4;
4227 	error = -EBUSY;
4228 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4229 		goto out4; /* loop, on the same file system  */
4230 	error = -EINVAL;
4231 	if (!path_mounted(&root))
4232 		goto out4; /* not a mountpoint */
4233 	if (!mnt_has_parent(root_mnt))
4234 		goto out4; /* not attached */
4235 	if (!path_mounted(&new))
4236 		goto out4; /* not a mountpoint */
4237 	if (!mnt_has_parent(new_mnt))
4238 		goto out4; /* not attached */
4239 	/* make sure we can reach put_old from new_root */
4240 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4241 		goto out4;
4242 	/* make certain new is below the root */
4243 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4244 		goto out4;
4245 	lock_mount_hash();
4246 	umount_mnt(new_mnt);
4247 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4248 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4249 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4250 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4251 	}
4252 	/* mount old root on put_old */
4253 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4254 	/* mount new_root on / */
4255 	attach_mnt(new_mnt, root_parent, root_mp, false);
4256 	mnt_add_count(root_parent, -1);
4257 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4258 	/* A moved mount should not expire automatically */
4259 	list_del_init(&new_mnt->mnt_expire);
4260 	put_mountpoint(root_mp);
4261 	unlock_mount_hash();
4262 	chroot_fs_refs(&root, &new);
4263 	error = 0;
4264 out4:
4265 	unlock_mount(old_mp);
4266 	if (!error)
4267 		mntput_no_expire(ex_parent);
4268 out3:
4269 	path_put(&root);
4270 out2:
4271 	path_put(&old);
4272 out1:
4273 	path_put(&new);
4274 out0:
4275 	return error;
4276 }
4277 
4278 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4279 {
4280 	unsigned int flags = mnt->mnt.mnt_flags;
4281 
4282 	/*  flags to clear */
4283 	flags &= ~kattr->attr_clr;
4284 	/* flags to raise */
4285 	flags |= kattr->attr_set;
4286 
4287 	return flags;
4288 }
4289 
4290 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4291 {
4292 	struct vfsmount *m = &mnt->mnt;
4293 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4294 
4295 	if (!kattr->mnt_idmap)
4296 		return 0;
4297 
4298 	/*
4299 	 * Creating an idmapped mount with the filesystem wide idmapping
4300 	 * doesn't make sense so block that. We don't allow mushy semantics.
4301 	 */
4302 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4303 		return -EINVAL;
4304 
4305 	/*
4306 	 * Once a mount has been idmapped we don't allow it to change its
4307 	 * mapping. It makes things simpler and callers can just create
4308 	 * another bind-mount they can idmap if they want to.
4309 	 */
4310 	if (is_idmapped_mnt(m))
4311 		return -EPERM;
4312 
4313 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4314 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4315 		return -EINVAL;
4316 
4317 	/* We're not controlling the superblock. */
4318 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4319 		return -EPERM;
4320 
4321 	/* Mount has already been visible in the filesystem hierarchy. */
4322 	if (!is_anon_ns(mnt->mnt_ns))
4323 		return -EINVAL;
4324 
4325 	return 0;
4326 }
4327 
4328 /**
4329  * mnt_allow_writers() - check whether the attribute change allows writers
4330  * @kattr: the new mount attributes
4331  * @mnt: the mount to which @kattr will be applied
4332  *
4333  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4334  *
4335  * Return: true if writers need to be held, false if not
4336  */
4337 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4338 				     const struct mount *mnt)
4339 {
4340 	return (!(kattr->attr_set & MNT_READONLY) ||
4341 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4342 	       !kattr->mnt_idmap;
4343 }
4344 
4345 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4346 {
4347 	struct mount *m;
4348 	int err;
4349 
4350 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4351 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4352 			err = -EPERM;
4353 			break;
4354 		}
4355 
4356 		err = can_idmap_mount(kattr, m);
4357 		if (err)
4358 			break;
4359 
4360 		if (!mnt_allow_writers(kattr, m)) {
4361 			err = mnt_hold_writers(m);
4362 			if (err)
4363 				break;
4364 		}
4365 
4366 		if (!kattr->recurse)
4367 			return 0;
4368 	}
4369 
4370 	if (err) {
4371 		struct mount *p;
4372 
4373 		/*
4374 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4375 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4376 		 * mounts and needs to take care to include the first mount.
4377 		 */
4378 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4379 			/* If we had to hold writers unblock them. */
4380 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4381 				mnt_unhold_writers(p);
4382 
4383 			/*
4384 			 * We're done once the first mount we changed got
4385 			 * MNT_WRITE_HOLD unset.
4386 			 */
4387 			if (p == m)
4388 				break;
4389 		}
4390 	}
4391 	return err;
4392 }
4393 
4394 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4395 {
4396 	if (!kattr->mnt_idmap)
4397 		return;
4398 
4399 	/*
4400 	 * Pairs with smp_load_acquire() in mnt_idmap().
4401 	 *
4402 	 * Since we only allow a mount to change the idmapping once and
4403 	 * verified this in can_idmap_mount() we know that the mount has
4404 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4405 	 * references.
4406 	 */
4407 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4408 }
4409 
4410 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4411 {
4412 	struct mount *m;
4413 
4414 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4415 		unsigned int flags;
4416 
4417 		do_idmap_mount(kattr, m);
4418 		flags = recalc_flags(kattr, m);
4419 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4420 
4421 		/* If we had to hold writers unblock them. */
4422 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4423 			mnt_unhold_writers(m);
4424 
4425 		if (kattr->propagation)
4426 			change_mnt_propagation(m, kattr->propagation);
4427 		if (!kattr->recurse)
4428 			break;
4429 	}
4430 	touch_mnt_namespace(mnt->mnt_ns);
4431 }
4432 
4433 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4434 {
4435 	struct mount *mnt = real_mount(path->mnt);
4436 	int err = 0;
4437 
4438 	if (!path_mounted(path))
4439 		return -EINVAL;
4440 
4441 	if (kattr->mnt_userns) {
4442 		struct mnt_idmap *mnt_idmap;
4443 
4444 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4445 		if (IS_ERR(mnt_idmap))
4446 			return PTR_ERR(mnt_idmap);
4447 		kattr->mnt_idmap = mnt_idmap;
4448 	}
4449 
4450 	if (kattr->propagation) {
4451 		/*
4452 		 * Only take namespace_lock() if we're actually changing
4453 		 * propagation.
4454 		 */
4455 		namespace_lock();
4456 		if (kattr->propagation == MS_SHARED) {
4457 			err = invent_group_ids(mnt, kattr->recurse);
4458 			if (err) {
4459 				namespace_unlock();
4460 				return err;
4461 			}
4462 		}
4463 	}
4464 
4465 	err = -EINVAL;
4466 	lock_mount_hash();
4467 
4468 	/* Ensure that this isn't anything purely vfs internal. */
4469 	if (!is_mounted(&mnt->mnt))
4470 		goto out;
4471 
4472 	/*
4473 	 * If this is an attached mount make sure it's located in the callers
4474 	 * mount namespace. If it's not don't let the caller interact with it.
4475 	 *
4476 	 * If this mount doesn't have a parent it's most often simply a
4477 	 * detached mount with an anonymous mount namespace. IOW, something
4478 	 * that's simply not attached yet. But there are apparently also users
4479 	 * that do change mount properties on the rootfs itself. That obviously
4480 	 * neither has a parent nor is it a detached mount so we cannot
4481 	 * unconditionally check for detached mounts.
4482 	 */
4483 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4484 		goto out;
4485 
4486 	/*
4487 	 * First, we get the mount tree in a shape where we can change mount
4488 	 * properties without failure. If we succeeded to do so we commit all
4489 	 * changes and if we failed we clean up.
4490 	 */
4491 	err = mount_setattr_prepare(kattr, mnt);
4492 	if (!err)
4493 		mount_setattr_commit(kattr, mnt);
4494 
4495 out:
4496 	unlock_mount_hash();
4497 
4498 	if (kattr->propagation) {
4499 		if (err)
4500 			cleanup_group_ids(mnt, NULL);
4501 		namespace_unlock();
4502 	}
4503 
4504 	return err;
4505 }
4506 
4507 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4508 				struct mount_kattr *kattr, unsigned int flags)
4509 {
4510 	int err = 0;
4511 	struct ns_common *ns;
4512 	struct user_namespace *mnt_userns;
4513 	struct fd f;
4514 
4515 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4516 		return 0;
4517 
4518 	/*
4519 	 * We currently do not support clearing an idmapped mount. If this ever
4520 	 * is a use-case we can revisit this but for now let's keep it simple
4521 	 * and not allow it.
4522 	 */
4523 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4524 		return -EINVAL;
4525 
4526 	if (attr->userns_fd > INT_MAX)
4527 		return -EINVAL;
4528 
4529 	f = fdget(attr->userns_fd);
4530 	if (!f.file)
4531 		return -EBADF;
4532 
4533 	if (!proc_ns_file(f.file)) {
4534 		err = -EINVAL;
4535 		goto out_fput;
4536 	}
4537 
4538 	ns = get_proc_ns(file_inode(f.file));
4539 	if (ns->ops->type != CLONE_NEWUSER) {
4540 		err = -EINVAL;
4541 		goto out_fput;
4542 	}
4543 
4544 	/*
4545 	 * The initial idmapping cannot be used to create an idmapped
4546 	 * mount. We use the initial idmapping as an indicator of a mount
4547 	 * that is not idmapped. It can simply be passed into helpers that
4548 	 * are aware of idmapped mounts as a convenient shortcut. A user
4549 	 * can just create a dedicated identity mapping to achieve the same
4550 	 * result.
4551 	 */
4552 	mnt_userns = container_of(ns, struct user_namespace, ns);
4553 	if (mnt_userns == &init_user_ns) {
4554 		err = -EPERM;
4555 		goto out_fput;
4556 	}
4557 
4558 	/* We're not controlling the target namespace. */
4559 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4560 		err = -EPERM;
4561 		goto out_fput;
4562 	}
4563 
4564 	kattr->mnt_userns = get_user_ns(mnt_userns);
4565 
4566 out_fput:
4567 	fdput(f);
4568 	return err;
4569 }
4570 
4571 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4572 			     struct mount_kattr *kattr, unsigned int flags)
4573 {
4574 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4575 
4576 	if (flags & AT_NO_AUTOMOUNT)
4577 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4578 	if (flags & AT_SYMLINK_NOFOLLOW)
4579 		lookup_flags &= ~LOOKUP_FOLLOW;
4580 	if (flags & AT_EMPTY_PATH)
4581 		lookup_flags |= LOOKUP_EMPTY;
4582 
4583 	*kattr = (struct mount_kattr) {
4584 		.lookup_flags	= lookup_flags,
4585 		.recurse	= !!(flags & AT_RECURSIVE),
4586 	};
4587 
4588 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4589 		return -EINVAL;
4590 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4591 		return -EINVAL;
4592 	kattr->propagation = attr->propagation;
4593 
4594 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4595 		return -EINVAL;
4596 
4597 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4598 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4599 
4600 	/*
4601 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4602 	 * users wanting to transition to a different atime setting cannot
4603 	 * simply specify the atime setting in @attr_set, but must also
4604 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4605 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4606 	 * @attr_clr and that @attr_set can't have any atime bits set if
4607 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4608 	 */
4609 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4610 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4611 			return -EINVAL;
4612 
4613 		/*
4614 		 * Clear all previous time settings as they are mutually
4615 		 * exclusive.
4616 		 */
4617 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4618 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4619 		case MOUNT_ATTR_RELATIME:
4620 			kattr->attr_set |= MNT_RELATIME;
4621 			break;
4622 		case MOUNT_ATTR_NOATIME:
4623 			kattr->attr_set |= MNT_NOATIME;
4624 			break;
4625 		case MOUNT_ATTR_STRICTATIME:
4626 			break;
4627 		default:
4628 			return -EINVAL;
4629 		}
4630 	} else {
4631 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4632 			return -EINVAL;
4633 	}
4634 
4635 	return build_mount_idmapped(attr, usize, kattr, flags);
4636 }
4637 
4638 static void finish_mount_kattr(struct mount_kattr *kattr)
4639 {
4640 	put_user_ns(kattr->mnt_userns);
4641 	kattr->mnt_userns = NULL;
4642 
4643 	if (kattr->mnt_idmap)
4644 		mnt_idmap_put(kattr->mnt_idmap);
4645 }
4646 
4647 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4648 		unsigned int, flags, struct mount_attr __user *, uattr,
4649 		size_t, usize)
4650 {
4651 	int err;
4652 	struct path target;
4653 	struct mount_attr attr;
4654 	struct mount_kattr kattr;
4655 
4656 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4657 
4658 	if (flags & ~(AT_EMPTY_PATH |
4659 		      AT_RECURSIVE |
4660 		      AT_SYMLINK_NOFOLLOW |
4661 		      AT_NO_AUTOMOUNT))
4662 		return -EINVAL;
4663 
4664 	if (unlikely(usize > PAGE_SIZE))
4665 		return -E2BIG;
4666 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4667 		return -EINVAL;
4668 
4669 	if (!may_mount())
4670 		return -EPERM;
4671 
4672 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4673 	if (err)
4674 		return err;
4675 
4676 	/* Don't bother walking through the mounts if this is a nop. */
4677 	if (attr.attr_set == 0 &&
4678 	    attr.attr_clr == 0 &&
4679 	    attr.propagation == 0)
4680 		return 0;
4681 
4682 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4683 	if (err)
4684 		return err;
4685 
4686 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4687 	if (!err) {
4688 		err = do_mount_setattr(&target, &kattr);
4689 		path_put(&target);
4690 	}
4691 	finish_mount_kattr(&kattr);
4692 	return err;
4693 }
4694 
4695 int show_path(struct seq_file *m, struct dentry *root)
4696 {
4697 	if (root->d_sb->s_op->show_path)
4698 		return root->d_sb->s_op->show_path(m, root);
4699 
4700 	seq_dentry(m, root, " \t\n\\");
4701 	return 0;
4702 }
4703 
4704 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4705 {
4706 	struct mount *mnt = mnt_find_id_at(ns, id);
4707 
4708 	if (!mnt || mnt->mnt_id_unique != id)
4709 		return NULL;
4710 
4711 	return &mnt->mnt;
4712 }
4713 
4714 struct kstatmount {
4715 	struct statmount __user *buf;
4716 	size_t bufsize;
4717 	struct vfsmount *mnt;
4718 	u64 mask;
4719 	struct path root;
4720 	struct statmount sm;
4721 	struct seq_file seq;
4722 };
4723 
4724 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4725 {
4726 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4727 	u64 attr_flags = 0;
4728 
4729 	if (mnt_flags & MNT_READONLY)
4730 		attr_flags |= MOUNT_ATTR_RDONLY;
4731 	if (mnt_flags & MNT_NOSUID)
4732 		attr_flags |= MOUNT_ATTR_NOSUID;
4733 	if (mnt_flags & MNT_NODEV)
4734 		attr_flags |= MOUNT_ATTR_NODEV;
4735 	if (mnt_flags & MNT_NOEXEC)
4736 		attr_flags |= MOUNT_ATTR_NOEXEC;
4737 	if (mnt_flags & MNT_NODIRATIME)
4738 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4739 	if (mnt_flags & MNT_NOSYMFOLLOW)
4740 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4741 
4742 	if (mnt_flags & MNT_NOATIME)
4743 		attr_flags |= MOUNT_ATTR_NOATIME;
4744 	else if (mnt_flags & MNT_RELATIME)
4745 		attr_flags |= MOUNT_ATTR_RELATIME;
4746 	else
4747 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4748 
4749 	if (is_idmapped_mnt(mnt))
4750 		attr_flags |= MOUNT_ATTR_IDMAP;
4751 
4752 	return attr_flags;
4753 }
4754 
4755 static u64 mnt_to_propagation_flags(struct mount *m)
4756 {
4757 	u64 propagation = 0;
4758 
4759 	if (IS_MNT_SHARED(m))
4760 		propagation |= MS_SHARED;
4761 	if (IS_MNT_SLAVE(m))
4762 		propagation |= MS_SLAVE;
4763 	if (IS_MNT_UNBINDABLE(m))
4764 		propagation |= MS_UNBINDABLE;
4765 	if (!propagation)
4766 		propagation |= MS_PRIVATE;
4767 
4768 	return propagation;
4769 }
4770 
4771 static void statmount_sb_basic(struct kstatmount *s)
4772 {
4773 	struct super_block *sb = s->mnt->mnt_sb;
4774 
4775 	s->sm.mask |= STATMOUNT_SB_BASIC;
4776 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4777 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4778 	s->sm.sb_magic = sb->s_magic;
4779 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4780 }
4781 
4782 static void statmount_mnt_basic(struct kstatmount *s)
4783 {
4784 	struct mount *m = real_mount(s->mnt);
4785 
4786 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4787 	s->sm.mnt_id = m->mnt_id_unique;
4788 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4789 	s->sm.mnt_id_old = m->mnt_id;
4790 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4791 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4792 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4793 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4794 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4795 }
4796 
4797 static void statmount_propagate_from(struct kstatmount *s)
4798 {
4799 	struct mount *m = real_mount(s->mnt);
4800 
4801 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4802 	if (IS_MNT_SLAVE(m))
4803 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4804 }
4805 
4806 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4807 {
4808 	int ret;
4809 	size_t start = seq->count;
4810 
4811 	ret = show_path(seq, s->mnt->mnt_root);
4812 	if (ret)
4813 		return ret;
4814 
4815 	if (unlikely(seq_has_overflowed(seq)))
4816 		return -EAGAIN;
4817 
4818 	/*
4819          * Unescape the result. It would be better if supplied string was not
4820          * escaped in the first place, but that's a pretty invasive change.
4821          */
4822 	seq->buf[seq->count] = '\0';
4823 	seq->count = start;
4824 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4825 	return 0;
4826 }
4827 
4828 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4829 {
4830 	struct vfsmount *mnt = s->mnt;
4831 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4832 	int err;
4833 
4834 	err = seq_path_root(seq, &mnt_path, &s->root, "");
4835 	return err == SEQ_SKIP ? 0 : err;
4836 }
4837 
4838 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4839 {
4840 	struct super_block *sb = s->mnt->mnt_sb;
4841 
4842 	seq_puts(seq, sb->s_type->name);
4843 	return 0;
4844 }
4845 
4846 static int statmount_string(struct kstatmount *s, u64 flag)
4847 {
4848 	int ret;
4849 	size_t kbufsize;
4850 	struct seq_file *seq = &s->seq;
4851 	struct statmount *sm = &s->sm;
4852 
4853 	switch (flag) {
4854 	case STATMOUNT_FS_TYPE:
4855 		sm->fs_type = seq->count;
4856 		ret = statmount_fs_type(s, seq);
4857 		break;
4858 	case STATMOUNT_MNT_ROOT:
4859 		sm->mnt_root = seq->count;
4860 		ret = statmount_mnt_root(s, seq);
4861 		break;
4862 	case STATMOUNT_MNT_POINT:
4863 		sm->mnt_point = seq->count;
4864 		ret = statmount_mnt_point(s, seq);
4865 		break;
4866 	default:
4867 		WARN_ON_ONCE(true);
4868 		return -EINVAL;
4869 	}
4870 
4871 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
4872 		return -EOVERFLOW;
4873 	if (kbufsize >= s->bufsize)
4874 		return -EOVERFLOW;
4875 
4876 	/* signal a retry */
4877 	if (unlikely(seq_has_overflowed(seq)))
4878 		return -EAGAIN;
4879 
4880 	if (ret)
4881 		return ret;
4882 
4883 	seq->buf[seq->count++] = '\0';
4884 	sm->mask |= flag;
4885 	return 0;
4886 }
4887 
4888 static int copy_statmount_to_user(struct kstatmount *s)
4889 {
4890 	struct statmount *sm = &s->sm;
4891 	struct seq_file *seq = &s->seq;
4892 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
4893 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
4894 
4895 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
4896 		return -EFAULT;
4897 
4898 	/* Return the number of bytes copied to the buffer */
4899 	sm->size = copysize + seq->count;
4900 	if (copy_to_user(s->buf, sm, copysize))
4901 		return -EFAULT;
4902 
4903 	return 0;
4904 }
4905 
4906 static int do_statmount(struct kstatmount *s)
4907 {
4908 	struct mount *m = real_mount(s->mnt);
4909 	int err;
4910 
4911 	/*
4912 	 * Don't trigger audit denials. We just want to determine what
4913 	 * mounts to show users.
4914 	 */
4915 	if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
4916 	    !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN))
4917 		return -EPERM;
4918 
4919 	err = security_sb_statfs(s->mnt->mnt_root);
4920 	if (err)
4921 		return err;
4922 
4923 	if (s->mask & STATMOUNT_SB_BASIC)
4924 		statmount_sb_basic(s);
4925 
4926 	if (s->mask & STATMOUNT_MNT_BASIC)
4927 		statmount_mnt_basic(s);
4928 
4929 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
4930 		statmount_propagate_from(s);
4931 
4932 	if (s->mask & STATMOUNT_FS_TYPE)
4933 		err = statmount_string(s, STATMOUNT_FS_TYPE);
4934 
4935 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
4936 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
4937 
4938 	if (!err && s->mask & STATMOUNT_MNT_POINT)
4939 		err = statmount_string(s, STATMOUNT_MNT_POINT);
4940 
4941 	if (err)
4942 		return err;
4943 
4944 	return 0;
4945 }
4946 
4947 static inline bool retry_statmount(const long ret, size_t *seq_size)
4948 {
4949 	if (likely(ret != -EAGAIN))
4950 		return false;
4951 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
4952 		return false;
4953 	if (unlikely(*seq_size > MAX_RW_COUNT))
4954 		return false;
4955 	return true;
4956 }
4957 
4958 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
4959 			      struct statmount __user *buf, size_t bufsize,
4960 			      size_t seq_size)
4961 {
4962 	if (!access_ok(buf, bufsize))
4963 		return -EFAULT;
4964 
4965 	memset(ks, 0, sizeof(*ks));
4966 	ks->mask = kreq->param;
4967 	ks->buf = buf;
4968 	ks->bufsize = bufsize;
4969 	ks->seq.size = seq_size;
4970 	ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
4971 	if (!ks->seq.buf)
4972 		return -ENOMEM;
4973 	return 0;
4974 }
4975 
4976 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
4977 			   struct mnt_id_req *kreq)
4978 {
4979 	int ret;
4980 	size_t usize;
4981 
4982 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER0);
4983 
4984 	ret = get_user(usize, &req->size);
4985 	if (ret)
4986 		return -EFAULT;
4987 	if (unlikely(usize > PAGE_SIZE))
4988 		return -E2BIG;
4989 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
4990 		return -EINVAL;
4991 	memset(kreq, 0, sizeof(*kreq));
4992 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
4993 	if (ret)
4994 		return ret;
4995 	if (kreq->spare != 0)
4996 		return -EINVAL;
4997 	return 0;
4998 }
4999 
5000 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5001 		struct statmount __user *, buf, size_t, bufsize,
5002 		unsigned int, flags)
5003 {
5004 	struct vfsmount *mnt;
5005 	struct mnt_id_req kreq;
5006 	struct kstatmount ks;
5007 	/* We currently support retrieval of 3 strings. */
5008 	size_t seq_size = 3 * PATH_MAX;
5009 	int ret;
5010 
5011 	if (flags)
5012 		return -EINVAL;
5013 
5014 	ret = copy_mnt_id_req(req, &kreq);
5015 	if (ret)
5016 		return ret;
5017 
5018 retry:
5019 	ret = prepare_kstatmount(&ks, &kreq, buf, bufsize, seq_size);
5020 	if (ret)
5021 		return ret;
5022 
5023 	down_read(&namespace_sem);
5024 	mnt = lookup_mnt_in_ns(kreq.mnt_id, current->nsproxy->mnt_ns);
5025 	if (!mnt) {
5026 		up_read(&namespace_sem);
5027 		kvfree(ks.seq.buf);
5028 		return -ENOENT;
5029 	}
5030 
5031 	ks.mnt = mnt;
5032 	get_fs_root(current->fs, &ks.root);
5033 	ret = do_statmount(&ks);
5034 	path_put(&ks.root);
5035 	up_read(&namespace_sem);
5036 
5037 	if (!ret)
5038 		ret = copy_statmount_to_user(&ks);
5039 	kvfree(ks.seq.buf);
5040 	if (retry_statmount(ret, &seq_size))
5041 		goto retry;
5042 	return ret;
5043 }
5044 
5045 static struct mount *listmnt_next(struct mount *curr)
5046 {
5047 	return node_to_mount(rb_next(&curr->mnt_node));
5048 }
5049 
5050 static ssize_t do_listmount(struct mount *first, struct path *orig,
5051 			    u64 mnt_parent_id, u64 __user *mnt_ids,
5052 			    size_t nr_mnt_ids, const struct path *root)
5053 {
5054 	struct mount *r;
5055 	ssize_t ret;
5056 
5057 	/*
5058 	 * Don't trigger audit denials. We just want to determine what
5059 	 * mounts to show users.
5060 	 */
5061 	if (!is_path_reachable(real_mount(orig->mnt), orig->dentry, root) &&
5062 	    !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN))
5063 		return -EPERM;
5064 
5065 	ret = security_sb_statfs(orig->dentry);
5066 	if (ret)
5067 		return ret;
5068 
5069 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r)) {
5070 		if (r->mnt_id_unique == mnt_parent_id)
5071 			continue;
5072 		if (!is_path_reachable(r, r->mnt.mnt_root, orig))
5073 			continue;
5074 		if (put_user(r->mnt_id_unique, mnt_ids))
5075 			return -EFAULT;
5076 		mnt_ids++;
5077 		nr_mnt_ids--;
5078 		ret++;
5079 	}
5080 	return ret;
5081 }
5082 
5083 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, u64 __user *,
5084 		mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5085 {
5086 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5087 	struct mnt_id_req kreq;
5088 	struct mount *first;
5089 	struct path root, orig;
5090 	u64 mnt_parent_id, last_mnt_id;
5091 	const size_t maxcount = (size_t)-1 >> 3;
5092 	ssize_t ret;
5093 
5094 	if (flags)
5095 		return -EINVAL;
5096 
5097 	if (unlikely(nr_mnt_ids > maxcount))
5098 		return -EFAULT;
5099 
5100 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5101 		return -EFAULT;
5102 
5103 	ret = copy_mnt_id_req(req, &kreq);
5104 	if (ret)
5105 		return ret;
5106 	mnt_parent_id = kreq.mnt_id;
5107 	last_mnt_id = kreq.param;
5108 
5109 	down_read(&namespace_sem);
5110 	get_fs_root(current->fs, &root);
5111 	if (mnt_parent_id == LSMT_ROOT) {
5112 		orig = root;
5113 	} else {
5114 		ret = -ENOENT;
5115 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5116 		if (!orig.mnt)
5117 			goto err;
5118 		orig.dentry = orig.mnt->mnt_root;
5119 	}
5120 	if (!last_mnt_id)
5121 		first = node_to_mount(rb_first(&ns->mounts));
5122 	else
5123 		first = mnt_find_id_at(ns, last_mnt_id + 1);
5124 
5125 	ret = do_listmount(first, &orig, mnt_parent_id, mnt_ids, nr_mnt_ids, &root);
5126 err:
5127 	path_put(&root);
5128 	up_read(&namespace_sem);
5129 	return ret;
5130 }
5131 
5132 
5133 static void __init init_mount_tree(void)
5134 {
5135 	struct vfsmount *mnt;
5136 	struct mount *m;
5137 	struct mnt_namespace *ns;
5138 	struct path root;
5139 
5140 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5141 	if (IS_ERR(mnt))
5142 		panic("Can't create rootfs");
5143 
5144 	ns = alloc_mnt_ns(&init_user_ns, false);
5145 	if (IS_ERR(ns))
5146 		panic("Can't allocate initial namespace");
5147 	m = real_mount(mnt);
5148 	ns->root = m;
5149 	ns->nr_mounts = 1;
5150 	mnt_add_to_ns(ns, m);
5151 	init_task.nsproxy->mnt_ns = ns;
5152 	get_mnt_ns(ns);
5153 
5154 	root.mnt = mnt;
5155 	root.dentry = mnt->mnt_root;
5156 	mnt->mnt_flags |= MNT_LOCKED;
5157 
5158 	set_fs_pwd(current->fs, &root);
5159 	set_fs_root(current->fs, &root);
5160 }
5161 
5162 void __init mnt_init(void)
5163 {
5164 	int err;
5165 
5166 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5167 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5168 
5169 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5170 				sizeof(struct hlist_head),
5171 				mhash_entries, 19,
5172 				HASH_ZERO,
5173 				&m_hash_shift, &m_hash_mask, 0, 0);
5174 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5175 				sizeof(struct hlist_head),
5176 				mphash_entries, 19,
5177 				HASH_ZERO,
5178 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5179 
5180 	if (!mount_hashtable || !mountpoint_hashtable)
5181 		panic("Failed to allocate mount hash table\n");
5182 
5183 	kernfs_init();
5184 
5185 	err = sysfs_init();
5186 	if (err)
5187 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5188 			__func__, err);
5189 	fs_kobj = kobject_create_and_add("fs", NULL);
5190 	if (!fs_kobj)
5191 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5192 	shmem_init();
5193 	init_rootfs();
5194 	init_mount_tree();
5195 }
5196 
5197 void put_mnt_ns(struct mnt_namespace *ns)
5198 {
5199 	if (!refcount_dec_and_test(&ns->ns.count))
5200 		return;
5201 	drop_collected_mounts(&ns->root->mnt);
5202 	free_mnt_ns(ns);
5203 }
5204 
5205 struct vfsmount *kern_mount(struct file_system_type *type)
5206 {
5207 	struct vfsmount *mnt;
5208 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5209 	if (!IS_ERR(mnt)) {
5210 		/*
5211 		 * it is a longterm mount, don't release mnt until
5212 		 * we unmount before file sys is unregistered
5213 		*/
5214 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5215 	}
5216 	return mnt;
5217 }
5218 EXPORT_SYMBOL_GPL(kern_mount);
5219 
5220 void kern_unmount(struct vfsmount *mnt)
5221 {
5222 	/* release long term mount so mount point can be released */
5223 	if (!IS_ERR(mnt)) {
5224 		mnt_make_shortterm(mnt);
5225 		synchronize_rcu();	/* yecchhh... */
5226 		mntput(mnt);
5227 	}
5228 }
5229 EXPORT_SYMBOL(kern_unmount);
5230 
5231 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5232 {
5233 	unsigned int i;
5234 
5235 	for (i = 0; i < num; i++)
5236 		mnt_make_shortterm(mnt[i]);
5237 	synchronize_rcu_expedited();
5238 	for (i = 0; i < num; i++)
5239 		mntput(mnt[i]);
5240 }
5241 EXPORT_SYMBOL(kern_unmount_array);
5242 
5243 bool our_mnt(struct vfsmount *mnt)
5244 {
5245 	return check_mnt(real_mount(mnt));
5246 }
5247 
5248 bool current_chrooted(void)
5249 {
5250 	/* Does the current process have a non-standard root */
5251 	struct path ns_root;
5252 	struct path fs_root;
5253 	bool chrooted;
5254 
5255 	/* Find the namespace root */
5256 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5257 	ns_root.dentry = ns_root.mnt->mnt_root;
5258 	path_get(&ns_root);
5259 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5260 		;
5261 
5262 	get_fs_root(current->fs, &fs_root);
5263 
5264 	chrooted = !path_equal(&fs_root, &ns_root);
5265 
5266 	path_put(&fs_root);
5267 	path_put(&ns_root);
5268 
5269 	return chrooted;
5270 }
5271 
5272 static bool mnt_already_visible(struct mnt_namespace *ns,
5273 				const struct super_block *sb,
5274 				int *new_mnt_flags)
5275 {
5276 	int new_flags = *new_mnt_flags;
5277 	struct mount *mnt, *n;
5278 	bool visible = false;
5279 
5280 	down_read(&namespace_sem);
5281 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5282 		struct mount *child;
5283 		int mnt_flags;
5284 
5285 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5286 			continue;
5287 
5288 		/* This mount is not fully visible if it's root directory
5289 		 * is not the root directory of the filesystem.
5290 		 */
5291 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5292 			continue;
5293 
5294 		/* A local view of the mount flags */
5295 		mnt_flags = mnt->mnt.mnt_flags;
5296 
5297 		/* Don't miss readonly hidden in the superblock flags */
5298 		if (sb_rdonly(mnt->mnt.mnt_sb))
5299 			mnt_flags |= MNT_LOCK_READONLY;
5300 
5301 		/* Verify the mount flags are equal to or more permissive
5302 		 * than the proposed new mount.
5303 		 */
5304 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5305 		    !(new_flags & MNT_READONLY))
5306 			continue;
5307 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5308 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5309 			continue;
5310 
5311 		/* This mount is not fully visible if there are any
5312 		 * locked child mounts that cover anything except for
5313 		 * empty directories.
5314 		 */
5315 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5316 			struct inode *inode = child->mnt_mountpoint->d_inode;
5317 			/* Only worry about locked mounts */
5318 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5319 				continue;
5320 			/* Is the directory permanetly empty? */
5321 			if (!is_empty_dir_inode(inode))
5322 				goto next;
5323 		}
5324 		/* Preserve the locked attributes */
5325 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5326 					       MNT_LOCK_ATIME);
5327 		visible = true;
5328 		goto found;
5329 	next:	;
5330 	}
5331 found:
5332 	up_read(&namespace_sem);
5333 	return visible;
5334 }
5335 
5336 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5337 {
5338 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5339 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5340 	unsigned long s_iflags;
5341 
5342 	if (ns->user_ns == &init_user_ns)
5343 		return false;
5344 
5345 	/* Can this filesystem be too revealing? */
5346 	s_iflags = sb->s_iflags;
5347 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5348 		return false;
5349 
5350 	if ((s_iflags & required_iflags) != required_iflags) {
5351 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5352 			  required_iflags);
5353 		return true;
5354 	}
5355 
5356 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5357 }
5358 
5359 bool mnt_may_suid(struct vfsmount *mnt)
5360 {
5361 	/*
5362 	 * Foreign mounts (accessed via fchdir or through /proc
5363 	 * symlinks) are always treated as if they are nosuid.  This
5364 	 * prevents namespaces from trusting potentially unsafe
5365 	 * suid/sgid bits, file caps, or security labels that originate
5366 	 * in other namespaces.
5367 	 */
5368 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5369 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5370 }
5371 
5372 static struct ns_common *mntns_get(struct task_struct *task)
5373 {
5374 	struct ns_common *ns = NULL;
5375 	struct nsproxy *nsproxy;
5376 
5377 	task_lock(task);
5378 	nsproxy = task->nsproxy;
5379 	if (nsproxy) {
5380 		ns = &nsproxy->mnt_ns->ns;
5381 		get_mnt_ns(to_mnt_ns(ns));
5382 	}
5383 	task_unlock(task);
5384 
5385 	return ns;
5386 }
5387 
5388 static void mntns_put(struct ns_common *ns)
5389 {
5390 	put_mnt_ns(to_mnt_ns(ns));
5391 }
5392 
5393 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5394 {
5395 	struct nsproxy *nsproxy = nsset->nsproxy;
5396 	struct fs_struct *fs = nsset->fs;
5397 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5398 	struct user_namespace *user_ns = nsset->cred->user_ns;
5399 	struct path root;
5400 	int err;
5401 
5402 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5403 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5404 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5405 		return -EPERM;
5406 
5407 	if (is_anon_ns(mnt_ns))
5408 		return -EINVAL;
5409 
5410 	if (fs->users != 1)
5411 		return -EINVAL;
5412 
5413 	get_mnt_ns(mnt_ns);
5414 	old_mnt_ns = nsproxy->mnt_ns;
5415 	nsproxy->mnt_ns = mnt_ns;
5416 
5417 	/* Find the root */
5418 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5419 				"/", LOOKUP_DOWN, &root);
5420 	if (err) {
5421 		/* revert to old namespace */
5422 		nsproxy->mnt_ns = old_mnt_ns;
5423 		put_mnt_ns(mnt_ns);
5424 		return err;
5425 	}
5426 
5427 	put_mnt_ns(old_mnt_ns);
5428 
5429 	/* Update the pwd and root */
5430 	set_fs_pwd(fs, &root);
5431 	set_fs_root(fs, &root);
5432 
5433 	path_put(&root);
5434 	return 0;
5435 }
5436 
5437 static struct user_namespace *mntns_owner(struct ns_common *ns)
5438 {
5439 	return to_mnt_ns(ns)->user_ns;
5440 }
5441 
5442 const struct proc_ns_operations mntns_operations = {
5443 	.name		= "mnt",
5444 	.type		= CLONE_NEWNS,
5445 	.get		= mntns_get,
5446 	.put		= mntns_put,
5447 	.install	= mntns_install,
5448 	.owner		= mntns_owner,
5449 };
5450 
5451 #ifdef CONFIG_SYSCTL
5452 static struct ctl_table fs_namespace_sysctls[] = {
5453 	{
5454 		.procname	= "mount-max",
5455 		.data		= &sysctl_mount_max,
5456 		.maxlen		= sizeof(unsigned int),
5457 		.mode		= 0644,
5458 		.proc_handler	= proc_dointvec_minmax,
5459 		.extra1		= SYSCTL_ONE,
5460 	},
5461 };
5462 
5463 static int __init init_fs_namespace_sysctls(void)
5464 {
5465 	register_sysctl_init("fs", fs_namespace_sysctls);
5466 	return 0;
5467 }
5468 fs_initcall(init_fs_namespace_sysctls);
5469 
5470 #endif /* CONFIG_SYSCTL */
5471